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ABSTRACT 

 

 

 The use of immunohistochemistry has become commonplace in the field of 

cancer diagnosis.  A major limitation to the ability to use this tool effectively is the time 

consuming tasks required for the analysis of data due to the fact that it is largely done by 

hand.  Additionally, because of this, there is an inherent level of subjectivity in the results 

obtained from this process that may depend on who it is conducting the analysis.  

Therefore, there exists a need for a method that is able to quantify results from 

immunohistochemical techniques in a way that it is both time-effective and consistent in 

how each sample is treated.    

 In this study a program was developed that was able to give a quantitative 

analysis of DAB stained prostate cancer samples that mimics the results obtained by the 

conventional manual annotation method.  This program was then used further to analyze 

much larger samples that would be too time consuming to analyze in the conventional 

way, as well as to analyze a large series of samples generated in a tissue microarray.   
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I. INTRODUCTION 

 

 

 

A. Background on Prostate Cancer 

 

 The prostate is a gland present only in males that sits between the urinary bladder 

and the rectum whose job is to make a fluid that nourishes sperm cells which make the 

semen more liquid (1).    Prostate cancer is the second most common form of cancer in 

American men, affecting 1 out of 7 men in their lifetime, and the second leading cause of 

cancer death in American men, killing 1 in 38 American men.  It is estimated to create 

220,800 new cases and 27,540 deaths in just a year.  The risk of prostate cancer increases 

with age with 60% of cases being in men age 65 and older and the average age of the 

patient at diagnosis being 66(2).  Almost all cases of prostate cancer are 

adenocarcinomas, a type of cancer that starts in the gland cells which, in the prostate, 

create the prostate fluid.  There are other, rarer forms of prostate cancer which include 

sarcomas, small cell carcinomas, neuroendocrine tumors, and transitional cell 
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carcinomas.  Prostate cancer might start as a pre-cancerous condition, one example of 

which is Prostatic Intraepithelial Neoplasia (PIN).  PIN involves prostate gland cells that 

appear abnormal under a microscope but do not grow into other parts of the prostate.  

PIN is extremely common as almost 50% of men have low-grade PIN by age 50.  

Individuals possessing high-grade PIN have about a 1 in 5 chance of also having prostate 

cancer present in another part of the prostate.  Another pre-cancerous condition that may 

lead to prostate cancer Proliferative Inflammatory Atrophy (PIA).  PIA involves prostate 

cells that look smaller than normal under microscope after a biopsy while also possessing 

signs of inflammation.  PIA is believed to lead to either high-grade PIN or to prostate 

cancer directly (1). 

 There are various risk factors for prostate cancer including age, race/ethnicity, 

geography, family history, genetic mutations, diet, and undergoing a vasectomy.  Prostate 

cancer is rare in men under age 40, however the risk rises rapidly after age 50.  Prostate 

cancer is most common in African-American men and Caribbean men of African 

ancestry, with these individuals being twice as likely to die from prostate cancer as white 

men.  Asian-American and Hispanic/Latino men are less likely to be diagnosed with 

prostate cancer than non-Hispanic white men.  Prostate cancer is most prevalent in North 

America, northwestern Europe, Australia, and the Caribbean Islands.  Having either a 

father or brother who has had prostate cancer more than doubles the risk of the individual 

developing prostate cancer.  Increased risk for prostate cancer has also been found to be 

tied to specific genetic mutations on the BRCA1 and BRCA2 genes as well as individuals 

with Lynch Syndrome.  Eating a diet consisting of red meat, high-fat dairy products, 

along with a lack of fruits and vegetables can slightly increase the risk of developing 
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prostate cancer.  Also, men who have had a vasectomy performed on them have a slightly 

increased risk for developing prostate cancer (3).  There are a variety of treatment options 

available to patients with prostate cancer including active surveillance, surgery, radiation 

therapy, cryotherapy, hormone therapy, chemotherapy, vaccine treatments, and bone-

directed treatments.  The factors affecting which treatment is best for the patient include 

the age and life expectancy of the patient, other health conditions, stage/grade of the 

cancer, necessity for immediate treatment, success rates for different treatments, and risk 

of possible side effects of these treatments (4).   

 

 

B.  Background on Immunohistochemistry 

 

 Immunohistochemistry has been used as a complimentary method in the diagnosis 

of various forms of cancer.  Specific tumor markers, primarily proteins, have been 

identified whose levels can be used as signals for the presence of tumor cells (6).  CD31 

(aka platelet-endothelial cell adhesion molecule type 1) is an immunohistochemical stain 

that indicates endothelial cells, granulocytes, monocytes, and platelets.  CD31 is 

primarily used to identify tumors that are of endothelial origin.  MiB-1 is a nuclear non-

histone protein that is present in all stages of the cell cycle except G0.  Constantly 

proliferating cells express this protein and, therefore, it is useful in estimating the growth 

fraction of both benign and malignant tissue (5). 
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 The analysis of immunohistochemically stained tissue samples has traditionally 

been done manually by a pathologist through a process that is both time consuming and 

subjective.  The use of tissue micro arrays (TMA’s) for many studies can result in the 

development of hundreds of samples needing to be analyzed at a time.  This has led to a 

need for an automated process that can reduce the time necessary for sample analysis and 

perform consistently for every sample.   

 

 

C.  Current Use of Automated Programs for Analysis of IHC Stained Samples 

 

Automated programs have been developed to meet the need for quick analysis 

tools in analyzing IHC stained tissue in specific applications.  One example of the use of 

automated programs is to separate areas of ovarian carcinoma from the remainder of the 

sample (8).  This program was able to successfully segregate the portions of various 

TMA cores that contained carcinomas from the remainder of the sample and the 

background using the existing Genie Histology Pattern Recognition System (Leica 

Biosystems).  This system, however was not able to be used in a fully automated way as 

it still required a pathologist and technician to identify tumor regions in samples in order 

to create the input parameters for the software and also requires multiple repetitions of 

the training algorithm before it was able to produce results mimicking the original work 

done by the pathologist and technician, with each iteration of the training program 

requiring the user to provide feedback and make adjustments to the program’s results.  
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Another main limitation driving the need for the long calibration periods of the current 

methods available is that each IHC stain and cancer type requires individual attention for 

method development.  While this system is robust in its ability to potentially be used for 

multiple different types of stain and tissue, the calibration methods can lead to a less than 

ideal experience for those needing to routinely run high throughput analysis on samples 

of consistent tissue and staining methods.   

Another example of using computers to analyze IHC staining is CRImage, which 

has been used in the analysis of hematoxylin and eosin (H&E) staining (9, 10).  CRImage 

is a package extension of the R programming language, which can be downloaded and 

used freely.  This program is capable of classifying cells, segmenting samples, and 

calculating tumor cellularity, on top of R’s native statistical analysis capabilities.  There 

are, however limitations involved with CRImage that can be improved upon.  Firstly, in 

order to use CRImage, you must have some level of knowledge of the R programming 

language due to the lack of a graphical user interface which can present a large obstacle 

for medical doctors who would like to make use of the program.  Additionally, CRImage 

is not a fully automated analysis system.  While it is capable of image segmentation and 

sample classification without the need for user input, it still requires the user to enter 

commands for every process they want to use on the image and each image must be 

processed individually.  CRImage is also incapable of being used on Aperio Image 

Slides, a popular format for saving high resolution pathological images, due to their use 

of the SVS file format.  Workarounds for this problem exist but require the user to 

change the format of the image outside of the CRImage package.  Lastly, the use of the 

CRImage analysis package is limited to samples possessing H&E stain so this is not a 
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practical solution on its own for those interested in processing slides from various stain 

types. 

Computer aided techniques have also been used extensively for cell counting (11, 

12, 13).  MATLAB has been a successful platform for developing multiple cell counting 

algorithms.  These programs tend to have a more limited applications that the previous 

options, providing only information on how many cells are present and not analyzing the 

characteristics of those cells.  Many of these programs are intended for use with either 

dark field microscopy or grayscale images that possess high contrast between the items of 

interest and the background, making separating cells from the background of the image 

simpler.  These programs would not inherently be usable with DAB staining methods but 

indicate that MATLAB is a viable platform for biological image analysis software. 
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II. INSTRUMENTATION AND EQUIPMENT 

 

 

This program was designed using Matlab version 8.3 (R2014a) on a laptop running 

Windows 8.1 (64 bit).  The laptop possessed 8 gigabytes of physical memory and an Intel 

1.80 GHz Core i7-4500u CPU.  
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III. METHODS 

 

 

 

A. Tissue Micro Array 

 

1. Program Startup  

 

Due to the large size of the files for the high resolution images, it is possible that 

the computer may run out of memory. For this reason, the program begins by closing all 

open windows within MATLAB, clearing the command screen, and clearing all variables 

stored in memory in order to avoid limitations associated with the hardware of the 

computer it is being run on.  Additionally, warnings have been turned off to prevent 

warnings associated with displaying the images. 
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2. Reading in Image 

 

A scaled down version of the TMA image is first loaded in to extract necessary 

information while conserving system memory.  Information regarding the size of this 

image is gathered in order to create an all-black image of the same size. 

 

3. Isolating Core Samples 

 

The first step of separating the cores on the TMA’s is to remove the background 

of the image.  Each pixel is examined to determine whether it is part of a core or the 

background.  If the pixel is determined to be part of the background then the 

corresponding pixel on the black image is changed to white.  Some samples are not 

continuous, therefore it is necessary to manipulate the image to merge those sections.  

This is accomplished by creating a structuring element, using it to erode/dilate the image, 

creating a perimeter around the outside of the object, and filling all of the holes within the 

object to leave one whole area representing the location of the core.  In order to remove 

unwanted objects and samples that have merged together from the TMA the areas of the 

objects are analyzed, turning all areas that are either exceedingly small or large back to 

black. A visual representation of this process can be seen below: 
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FIGURE 1 – Core Isolation 

Top Left:  The original image is shown.  Top Right:  Background is separated from the 

samples.  Bottom Left:  Holes in the samples are filled to create solid objects.  Bottom 

Right:  Small objects are removed as well as samples that are overlapping each other.  
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4. Collecting/Managing Core Location Data 

 

Centroid locations of all of the remaining white objects are collected and exported 

to a matrix with each row representing a different core, the first column representing the 

horizontal position of the centroid, and the second column representing the vertical 

position of the centroid.  A third column is then created and filled with the value equal to 

the sum of the first two columns and the entire matrix is sorted by the third column to 

find the core closest to the image’s origin, i.e. the top left corner of the image. 

 

FIGURE 2 – Centroid Matrix Excerpt 

Excerpt from the centroid matrix.  The left column shows the X position of the centroid, 

central column shows the Y position of the centroid, and the right column shows the sum 

of the first two columns. 

 

A separate location matrix is created with size equal to that of the grid of cores 

present on the TMA.  The first entry in the centroid matrix is then labeled as the first 

entry, (1,1), in the location matrix.  The program then references the centroid location of 
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the original core to search for adjacent cores, focusing first on completing the first 

column by searching the centroid matrix for entries with similar horizontal position to the 

previous core and vertical positions within a specified range away from the previous core.  

If a centroid is found to be in this expected location then that core is referenced in the 

location matrix by filling its relative position with the row number of its entry in the 

centroid matrix and the process is repeated to find the next core along the column.  If no 

core is found for an expected area then the search is expanded to look for a centroid that 

would be located two places on the grid away from the previous core and the search is 

expanded in this fashion until the next core is found.  Once the first column is complete 

there is a check to make sure a proper amount of samples were found to create a baseline 

for the row information based off of that column.  If the amount of samples is found to be 

insufficient then the program will instead attempt to create a baseline from the first row 

rather than the first column.  Once the baseline row/column is established, the program 

will then fill in the columns/rows by similar means to the previous method, using the 

baseline row/column as the original reference.   
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FIGURE 3 – Location Matrix/TMA Direct Comparison 

Excerpt from the location matrix and the portion of the TMA it represents.  The location 

matrix is filled in with the sample number in the corresponding location of the sample on 

the TMA.  Locations where a core is not found are left as a 0, as highlighted by the red 

rectangles. 

 

Once the location matrix is complete, two columns are added to the centroid 

matrix and are filled with the row and column information for where that sample was 

placed in the location matrix.  This results in the assigning of the core to both a column 

and row for future reference.  Due to the fact that the TMA images are oriented opposite 

of the conventional numbering system being used for the rows and columns of the 

samples the value of the row and column assigned to each sample is inverted so that 

samples assigned to the first row or column are now labeled as being in the last row or 

column and vice versa.   
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FIGURE 4 – Core Numbering Adjustment 

Left of red line:  Centroid matrix updated with rankings based on core locations.  The 

first number represents which column the core is in while the second number represents 

which row the core is in. Right of red line:  Centroid matrix once the row and column 

information has been adjusted to match the conventional numbering system. 

 

5. Reading in Large Scale Image/Translating Location Data 

 

The large scale TMA image is now read into the program so that the cores can be 

analyzed at a higher resolution.  Due to the fact that the location information gathered for 

the centroid locations does not correspond to their locations on the larger image the pixel 

locations must be multiplied by a scale factor equal to the scale factor of the image sizes.   
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FIGURE 5 – Translation of Location Data to Large Scale Image 

Left: excerpt from the original centroid matrix.  Right:  centroid matrix updated to 

accurately reflect centroid information on the higher resolution image.  The first two 

columns, representing the X and Y positions of the center of the cores, have been scaled 

up to the new resolution. 

 

Additionally, data is read in from a spreadsheet consisting of the row location, 

column location, and Gleason Scores of the cores on the TMA.  This data is used to 

assign the proper Gleason Score to each core that was found by the program. 

 

6. Processing of Large Scale Image 

 

The scaled location data from the centroid matrix is used to identify the centroid 

locations on the large scale image.  From the area surrounding the centroid location a 

composite image is generated that consists of only one sample.  Another image of the 

same size as the single core image is created to document the analysis of the core.    First, 

the core is analyzed pixel by pixel to determine whether each pixel is part of the 
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background or the sample in question.  If it is determined that the pixel is part of the 

background then the corresponding pixel in the analysis image is set to black, whereas if 

the pixel is determined to be part of the sample then the corresponding pixel is set to 

white.  The program now takes the sum total of all of the black pixels in the analysis 

image to document how much of the image is background and the sum total of all of the 

white pixels to determine how much of the image is part of the sample.  Next the core is 

analyzed pixel by pixel to determine if there is brown stain present in that pixel.  If it is 

determined that there is brown stain present in the pixel then the corresponding pixel in 

the analysis image is set to black, whereas if there is no brown stain present in the pixel 

the corresponding location is set to white.  The total amount of stain present in the sample 

is found by taking the sum total of all of the black pixels in the analysis image.   
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FIGURE 6 – Processing of TMA Core 

Left:  Sample of a core being analyzed individually.  Right: core on the left after being 

analyzed for the presence of stain.  The white areas reflect the location of the brown stain 

in the left image. 

 

From here, the percent of the core that is stained is found by dividing the number 

of pixels found to possess the brown stain by the number of pixels that were not found to 

be part of the background and multiplying by 100.  This data is then recorded in a new 

column of the centroid matrix and the process is repeated on the next core until all have 

been analyzed.  Once all core analysis is complete, the centroid matrix, consisting of core 

centroid locations, row and column of the core, Gleason Score of the core, and the 

percentage of the core that possessed the brown stain, is exported and saved in an excel 

file for further analysis. 
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FIGURE 7 – TMA Data Exportation 

Excerpt from exported excel file. The first two columns represent the X and Y locations 

for the center of the core.  The third column represents distance from the image’s origin.  

Columns 4 and 5 represent which column and row the core is located in.  The sixth 

column is the percentage of the core that was found to possess the stain, while the 

seventh column indicates the Gleason Score of the core.  Several samples are used as 

controls on the TMA, therefore not all samples have a Gleason Score associated with 

them. 
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B. Whole Slice 

 

1. Initial Setup 

 

The processing of whole slice images allows for the user to process a series of 

images automatically.  In order for the program to do so, the user must set up a folder 

including all images that are to be processed.  Upon program startup the user will be 

presented with a file explorer which they will use to select the folder in which they’ve put 

the images.  The program then reads the number of SVS images present in the folder to 

determine how many images will need to be analyzed. 

 

2. Image Segmentation 

 

The program begins by accessing the file name of the image currently being 

analyzed for labeling purposes.  The program then reads in that image and collects both 

the height and width of the image.  Due to limitations associated with both the size of the 

images and the hardware used to process them, each image of the whole tissue slice needs 

to be segmented to be processed one piece at a time. The program divides the original 

image up into a four by four grid, creating sixteen pieces equal in size, as seen below. 
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FIGURE 8 – Whole Slice Image Segmentation 

The program then creates a separate image of size equal to that of the sixteen sections to 

be used during the analysis.  The program also creates variables that will be used to store 

values for the amount of pixels in the image that represent the background, sample, 

stained sample, and non-stained sample and sets them all equal to zero. 

 

3. Section Processing 

 

A series of nested for-loops begins to have the program begin to process all 

sixteen pieces one at a time.  To reduce strain on the hardware running the program, each 
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sections analysis overwrites the previous.  The program first analyzes each pixel within 

the section by categorizing it to either be a part of the sample or the background.  The 

corresponding pixel location in the composite image is then changed to either be black or 

white based on the category.  The total number of black pixels in the composite image is 

calculated, as well as the total number of white pixels in the image, and then the number 

of pixels found to be in each category is added to the variable associated with the 

category outside the for-loop during image segmentation.  Next each pixel of the section 

is categorized to either be containing the brown stain or not in a method similar to the 

sample/background categorization.  The number of white pixels present in the composite 

image is then counted to be representative of the amount of stained sample in this section.  

The amount of non-stained sample in this section is calculated by subtracting the amount 

of stained sample from the amount of total sample for the section.  These values are then 

added to the variable associated with the category outside the for-loop for storage.  This 

process then continues for each of the remaining 16 sections, continually adding the 

values found for each section to the cumulative total being tracked.   

 

4. Data Management 

 

Once the totals for the entire image has been calculated, the total pixels present in 

the image is calculated by adding the amount of background, stained sample, and non-

stained sample pixels together.  This value is then used to find the percent of the total 

image that is represented by background, stained sample, and non-stained sample.  The 
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proportion of the tissue that possesses the brown stain in found by dividing the number of 

pixels found to possess the stain by the total amount of pixels making up the sample.  At 

the end of the processing of each image the program exports the file name, percentage of 

the image that is background, possesses brown stain, and normal tissue, and the 

proportion of the tissue that possesses the brown stain to a new row in an Excel file for 

further analysis. 

 

 

C. Regions of Interest 

 

1. Initial Setup 

 

The processing of the regions of interest allows for the continuous processing of 

multiple images provided that they are all located within the same folder.   The program 

begins by prompting the user to select the folder containing the images of interest.  The 

program then reads the number of tiff images present in the folder to determine how 

many times the analysis needs to be run. 
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2. Image Analysis 

 

For each image, the program begins by reading in its filename to label the sample.  

Next, the program collects size information about the image to create a blank composite 

image of duplicate height and width.  Due to the relatively small file sizes associated with 

the ROI’s, as opposed to the whole slice images and the TMA’s, the entire image can be 

processed in one piece.  The first step is to analyze the image to separate background 

from the sample.  As the program goes through the ROI pixel by pixel, it sets the 

corresponding pixel in the composite image to either be black if it is a background pixel, 

or white if it is a part of the sample.  The sum total of all of the white pixels is then taken 

to determine the area occupied by the sample.  The program then goes over the original 

image again to separate pixels containing the stain from the rest of the image.  If the 

program determines the pixel contains the stain it will turn the corresponding location in 

the composite image white, while leaving the location black if it does not possess the 

stain.  The total number of white pixels in the composite image is then calculated to find 

the area occupied by the stain and this value is used to calculate what percent of the 

sample present in the image contains the stain.  The program then exports the images 

filename and this stain percentage to an excel file before beginning this process again on 

the next image. 
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D. Processing Flow Chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 9 – Processing Flow Chart 
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IV. RESULTS 

 

 

 

A. Comparing Program to Manual Results 

 

The process of designing an automated program began with designing a system 

that could replicate the current process.  The current process had been used to analyze 

various regions of interest from existing tissue slices so these were used as the 

benchmark.  The program ran analysis for these regions possessing both MiB-1 and 

CD31 stains and calculated the ratio of the two for each region.  For both the MiB-1 and 

CD31 stains the program underreported in comparison to the manual method but 

followed the same general trend between samples.  This resulted in the ratio of the MiB-1 

stain to the CD31 stain being consistent with the data collected manually. 
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FIGURE 10 – ROI MiB-1 Manual/Program Comparison 
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FIGURE 11 – ROI CD31 Manual/Program Comparison 
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FIGURE12 – ROI MiB-1/CD31 Ratio Manual/Program Comparison 

 

 In order to show that the program was showing similar results as the manual 

process the data was normalized in respect to its method.  To do this, the reported average 

stain concentrations for each sample were divided by the sample reported to possess the 

highest stain concentration, creating a scale from zero to one.  The standard deviations 

measured from the method were also transformed to match this scale.  The resultant data 

was then plotted to visualize the comparison. 
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FIGURE 13 – Weighted Program and Manual MiB-1 Results 

 

FIGURE 14 – Weighted Program and Manual CD31 Results 

 Visual inspection seemed to indicate that the program was reporting the same 

relative results as the manual method due to the similarity in the trends of the graph.  To 
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having an overlap of the error bars for the two points representing the same sample would 

indicate that the weighted values are not distinctly different. 

  

FIGURE 15 – Weighted MiB-1 Results with Error Bars 

 

FIGURE 16 – Weighted CD31 Results with Error Bars 
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 Analysis of this technique shows that 30 of the 43 data points (~70%) include 

overlap between the ranges of (reported averages ± one standard deviation) for the two 

methods.  This provided sufficient support for the accuracy of the automated method to 

continue developing it for further analysis. 

 

 

B. ROI/Whole Slice/TMA Analysis 

 

The program was used to analyze three different data sets: regions of interest, 

whole tissue slices, and tissue micro arrays.  For each sample within each data set there 

was an image possessing MiB-1 stain and a separate image possessing CD31 stain.  Once 

every sample had been analyzed the samples were separated into two categories based on 

the Gleason Score’s for the patient, one group consisting of all samples that possessed 

Gleason Scores of either 6 or 7, the other consisting of all samples with Gleason Scores 

of 8 or 9.  A t-test was then conducted on the difference between these two categories for 

each of the data sets in terms of their presence of MiB-1 stain, presence of CD31 stain, 

and the ratio of the amount MiB-1 stain the sample possessed to the amount of CD31 

stain the sample possessed.  The results of the t-test showed that the difference in the 

presence of the MiB-1 stain was only significant in the Region of Interest samples taken, 

the difference in the presence of CD31 stain was only significant in the TMA samples, 

while the difference in the MiB-1 to CD31 ratio was found to be significant in all data 

sets.  
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FIGURE 17 – MiB-1 Results 

TABLE I 

MiB-1 RESULTS 

MiB-1 

 6&7 Average 

(StDev) 

8&9 Average 

(StDev) 

Statistically 

Signifigant? 

Regions of Interest 1.7877 (1.0339) 3.4407 (1.2902) Yes 

Whole Slices 2.2392 (1.2554) 2.8164 (1.0900) No 

Tissue Micro Array 0.0876 (0.1062) 0.0738 (0.0970) No 
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FIGURE 18 – CD31 Results 

TABLE II 

CD31 RESULTS 

CD31 

 6&7 Average 

(StDev) 

8&9 Average 

(StDev) 

Statistically 

Signifigant? 

Regions of Interest 2.5050 (1.6626) 2.3213 (1.0534) No 

Whole Slices 3.0808 (1.5060) 3.3273 (1.0477) No 

Tissue Micro Array 0.1354 (0.1472) 0.1691 (0.1608) Yes 
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FIGURE 19 – MiB-1/CD31 Ratio Results 

TABLE III 

MiB-1/CD31 RATIO RESULTS 

MiB-1/CD31 

 6&7 Average 

(StDev) 

8&9 Average 

(StDev) 

Statistically 

Signifigant? 

Regions of Interest 0.8918 (0.3543) 2.0209 (0.5251) Yes 

Whole Slices 0.7161 (0.1270) 0.8451 (0.1410) Yes 

Tissue Micro Array 0.6795 (0.4999) 0.4559 (0.4059) Yes 

 



35 
 

The calculations of the t-tests were done using the formula: 

𝑡 =
𝑥1̅̅̅ − 𝑥2̅̅ ̅

√
𝑆1

2

𝑁1
  +   

𝑆2
2

𝑁2

 

where t is the t-score, x represents the averages of the category, S the standard deviation 

of the category, and N the number of samples in the category, with the subscript 1 

categorizing the data with Gleason Scores of 8 or 9 and the subscript 2 categorizing the 

data with Gleason Scores of 6 or 7. 

The degrees of freedom for the t-test was determined by the formula: 

𝐷𝑜𝐹 = 𝑁1 + 𝑁2 − 2 

The results of the t-test were evaluated at the confidence level of 0.05.  The 

complete tables of the calculation process can be seen below. 
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TABLE IV 

ROI STATISTICAL SIGNIFICANCE 

 

Regions of Interest 

     

     

MiB-1/CD31 n Average Standard Deviation Variance 

6/7 AVG 13 0.892 0.354 0.125 

8/9 AVG 9 2.021 0.525 0.276 

     

  Variance of Difference  Standard Deviation 

  0.040  0.201 

     

  t DoF p 

  5.624739336 20 0.000 

    SIGNIFICANT 

     

     

MiB-1 n Average Standard Deviation Variance 

6/7 AVG 13 1.788 1.034 1.069 

8/9 AVG 9 3.441 1.290 1.665 

     

  Variance of Difference  Standard Deviation 

  0.267  0.517 

     

  t DoF p 

  3.198 20 0.002 

    SIGNIFICANT 

     

     

CD31 n Average Standard Deviation Variance 

6/7 AVG 13 2.505 1.663 2.764 

8/9 AVG 9 2.321 1.053 1.110 

     

  Variance of Difference  Standard Deviation 

  0.336  0.580 

     

  t DoF p 

  -0.317 20 0.488 

    NOT SIGNIFICANT 
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TABLE V 

WHOLE SLICE STATISTICAL SIGNIFICANCE 

 

Whole Slice Samples 

     

     

MiB-1/CD31 n Average Standard Deviation Variance 

6/7 AVG 9 0.716 0.127 0.016 

8/9 AVG 8 0.845 0.141 0.020 

     

  Variance of Difference  Standard Deviation 

  0.004  0.065 

     

  t DoF p 

  1.972 15 0.034 

    SIGNIFICANT  

     

     

MiB-1 n Average Standard Deviation Variance 

6/7 AVG 9 2.239 1.255 1.576 

8/9 AVG 8 2.816 1.090 1.188 

     

  Variance of Difference  Standard Deviation 

  0.324  0.569 

     

  t DoF p 

  1.015 15 0.163 

    NOT SIGNIFICANT 

     

     

CD31 n Average Standard Deviation Variance 

6/7 AVG 9 3.081 1.506 2.268 

8/9 AVG 8 3.327 1.048 1.098 

     

  Variance of Difference  Standard Deviation 

  0.389  0.624 

     

  t DoF p 

  0.395 15 0.349 

    

NOT SIGNIFICANT 
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TABLE VI 

TMA STATISTICAL SIGNIFICANCE 

Tissue Micro Array 

     

     

MiB-1 
/CD31 n Average Standard Deviation Variance 

6/7 AVG 975 0.679 0.500 0.250 

8/9 AVG 132 0.456 0.406 0.165 

     

  Variance of Difference  Standard Deviation 

  0.002  0.039 

     

  t DoF p 

  5.763 1105 0.000 

    SIGNIFICANT 

     

     

MiB-1 n Average Standard Deviation Variance 

6/7 AVG 1213 0.088 0.106 0.011 

8/9 AVG 158 0.074 0.097 0.009 

     

  Variance of Difference  Standard Deviation 

  6.883E-05  8.296E-03 

     

  t DoF p 

  1.666 1369 0.096 

    NOT SIGNIFICANT  

     

     

CD31 n Average Standard Deviation Variance 

6/7 AVG 1142 0.135 0.147 0.022 

8/9 AVG 156 0.169 0.161 0.026 

     

  Variance of Difference  Standard Deviation 

  0.00018463  0.013587876 

     

  t DoF p 

  2.481 1296 0.013 

    SIGNIFICANT 
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V.  DISCUSSION 

 

 

Visual inspection of the whole slices of the prostate show that there tended to be a 

high degree of heterogeneity within some of the stained samples of higher Gleason scores 

(i.e. 8 & 9), meaning that the stain was found to be densely populated in certain regions 

within the slice while being almost non-existent in other regions.  It is believed that this is 

a contributing factor in the results found for the tissue micro-array samples.  While the 

region of interest samples were selected based on the opinion that they were areas 

representative of the whole tissue, the TMA samples seemed to have a large amount of 

samples that possess next to no staining, accounting for the lower average stain 

percentages and the relatively large standard deviations in comparison to the other 

selection methods.   

 Taking this into consideration, it is believed that the results seen in the whole slice 

analysis and the analysis of the regions of interest should be the point of focus moving 
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forward.  The results of these sample types show that samples coming from patients rated 

at higher Gleason scores (8’s and 9’s) tend to express higher levels of the MiB-1 stain 

relative to the CD31 stain in comparison to samples coming from patients rated at lower 

Gleason scores (6’s and 7’s).   
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VI. CONCLUSION 

 

 

It has been discussed that a limitation of tissue microarrays is that, due to the 

small size of the samples taken, the tissue selected for analysis may not be representative 

of the tissue as a whole.  Additionally, this is thought to be a larger problem for epithelial 

tumors due to the heterogeneous nature of the tumors (7).  Prostate cancer primarily takes 

the form of adenocarcinomas which are formed in the epithelial tissue in the prostate 

glands which creates a cause for concern for the tissue microarrays used in this study may 

not have been representative of the larger tissue used to calculate the Gleason score for 

the sample.  It is for this reason that it is believed that primary conclusions from this 

study should be drawn from the results of the whole tissue and region of interest analysis. 

 It is the intended use of this program to be used by doctors independently as a 

supplemental means for helping them better understand the nature of their patients’ 
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condition.  With more knowledge regarding the status of the patients’ condition, 

hopefully doctors will be able to make better informed decisions as to what is the best 

way to treat their patients. 
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VII. RECOMMENDATIONS 

 

 

One of the remaining limitations of this program is its inability to detect 

imperfections in the source image.  If there is a problem that occurred in the generation of 

the image (e.g. sample folded over, smudges on microscope lens, foreign object in field 

of view, etc…) the program currently has no way of flagging these samples and can 

report back inaccurate data.  This is a simple process in the manual method due to the 

ability of the person performing the analysis being able to visually see what’s going on 

before the analysis and can either account for the issue or preemptively remove the 

sample before it gets put in with the other data.  It is therefore recommended that future 

work on this program be involved with ensuring that there is a way for the program to 

flag samples that could possess imperfections so that the user can then decide whether 

those samples are included in their final data or not. 

It is believed that the program developed for this study could be adapted for 

alternate future applications, especially for the use in analysis of other types of tumors 
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besides prostate tumors and other types of immunohistochemical stains.  The primary 

adjustments that would need to be made to adjust the program for these situations would 

involve changing the inclusion/exclusion criteria for what constitutes stain vs normal 

tissue in the slides.  The process by which the program goes through the various images 

and analyzes them should remain the same regardless of the content of the images.  Some 

adjustment to how the analyzed data is handled may also be necessary depending on the 

desired information. 

Additionally, if the program was to be used on a more powerful computer, the 

program could be optimized further by eliminating/changing certain steps in the process 

that were necessary due to the limitations imposed by the computer the program was 

designed on.  
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