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ABSTRACT 

 

 

Purpose: Left ventricular assist device (LVAD) therapy can be live-saving for advanced 

heart failure patients. Conventional anastomosis (surgical connection) of LVAD outflow 

grafts to the aorta requires aortic clamping and hand-suturing. Aortic clamping increases 

the risk for neurological complications. Hand-suturing may be time-consuming and 

requires significant surgical dexterity. There is currently no commercially available 

device for sutureless anastomosis of large vascular grafts (diameter > 5mm). To 

overcome these limitations, a prototype LVAD outflow graft anastomosis device (GrAD) 

that facilitates sutureless anastomosis was developed and tested to demonstrate proof-of-

concept and feasibility for (1) secured attachment withstanding physiological pressures, 

and (2) comparable attachment strength to conventionally hand-sewn sutured 

anastomosis.  

Methods: To demonstrate proof-of-concept, prototype GrADs were fabricated using a 

nitinol wire connector attached to a 15 mm graft, felt flanged cuff, and cyanoacrylate 

adhesive. To demonstrate feasibility, the GrAD was anastomosed to bovine descending 

aorta and tested in a mock flow loop over a range of static (0, 50, 100, 150, 200 mmHg) 

and dynamic pressures (normal, hypertension, heart failure, LVAD support) to quantify 
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leakage. The maximum pull-out force for the GrAD and sutured anastomosis were also 

measured after completing static and dynamic testing in the mock flow loop model. 

Results: The GrAD remained securely attached during all static and dynamic pressure 

test conditions as evidenced by minimal leak rates during clinically equivalent normal 

(22.1 ± 9.3 ml/min), hypertension (23.1 ± 10.1 ml/min), heart failure (16.4 ± 6.4 ml/min), 

and LVAD support (16.4 ± 4.3 mL/min) test conditions. Significantly larger leak rates at 

normal dynamic pressure (120/80 mmHg) between the GrAD and previously reported 

results for hand-sutured anastomosis were not observed. Differences in peak pull-out 

force between GrAD (43.57 ± 17.31 N) and hand-sutured anastomosis (63.48 ± 8.72 N) 

were statistically indiscernible (paired t-test, p < 0.5). No indications of device damage 

were observed. 

Conclusion: A prototype GrAD enabling a sutureless, adaptable, and angled LVAD 

outflow graft anastomosis was developed with preliminary feasibility testing 

demonstrating proof-of-concept. The proposed LVAD outflow GrAD may facilitate 

surgical implant by eliminating the need for hand-suturing, decrease implant time, and 

increase reliability and reproducibility with the potential to improve patient outcomes.  

  



vi 
 

 

 

 

 

 

 

 

 

 

TABLE OF CONTENTS 

 

 

Page 

APPROVAL PAGE ............................................................................................................. i 

DEDICATION .................................................................................................................... ii 

ACKNOWLEDGEMENTS ............................................................................................... iii 

ABSTRACT ....................................................................................................................... iv 

LIST OF TABLES ........................................................................................................... viii 

LIST OF FIGURES .............................................................................................................x 

I. BACKGROUND ..................................................................................................1 

A. Heart Failure ...........................................................................................1 

B. Left Ventricular Assist Device (LVAD) .................................................3 

1. Surgical Implantation of LVADs .................................................5 

2. Outflow Graft Anastomosis of LVAD .........................................7 

C. Sutureless Anastomosis ...........................................................................9 

D. Devices for Sutureless Anastomosis .....................................................10 

E. Surgical Adhesives ................................................................................17 

F. Device Design for LVAD Outflow Graft Anastomosis Device 

(GrAD) ..................................................................................................20 

1. Design Requirements for a LVAD Outflow GrAD ...................20 

2. Design Considerations for LVAD Outflow GrAD ....................24 

3. Graft-to-Vessel Connection .......................................................24 

4. Materials ....................................................................................25 

5. Biomechanical Properties ..........................................................27 



vii 
 

II. METHODS........................................................................................................29 

A. Study Design .........................................................................................29 

B. Prototype Design Development ............................................................31 

C. Nitinol Connector Fabrication ...............................................................31 

1. Frame Construction ....................................................................33 

2. Shape Setting Nitinol .................................................................34 

D. Felt Flanged Cuff Fabrication ...............................................................36 

E. Bovine Aorta Specimens .......................................................................36 

F. Static and Dynamic Pressure Testing ....................................................37 

G. Pull-out Testing .....................................................................................40 

H. Analysis Methods ..................................................................................42 

III. RESULTS ........................................................................................................43 

A. Final Prototype Design..........................................................................43 

B. Static Pressure Testing ..........................................................................44 

C. Dynamic Pressure Testing .....................................................................46 

D. Pull-out Testing .....................................................................................50 

IV. DISCUSSION ..................................................................................................53 

A. Limitations ............................................................................................56 

V. CONCLUSION .................................................................................................58 

VI. REFERENCES ................................................................................................60 

APPENDIX I: RAW AND ADDITIONAL DATA ..........................................................79 

APPENDIX II: STATISTICAL ANALYSIS ....................................................................83 

CURRICULUM VITAE ....................................................................................................87 

   

 

  



viii 
 

 

 

 

 

 

 

 

 

 

LIST OF TABLES 

 

 

Table 1: Physiologic and mechanical design requirements for an LVAD outflow graft 

anastomosis device (GrAD) ................................................................................20 

Table 2: Average and maximum wall thicknesses of ascending aorta. Large variability in 

wall thicknesses is shown based on sex, race, and age (Li et al., 2004) .............23 

Table 3: Hemodynamic tuning parameters for each dynamic mock loop test condition ..39 

Table 4: Mean ± standard deviation of leak rates for static pressure tests ........................45 

Table 5: Mean ± standard deviations of hemodynamic parameter measurements 

calculated on a beat-to-beat basis for dynamic mock loop tests; arterial pressure 

(ArtP); aortic pressure (AoP); aortic flow (AoF); ventricular assist device flow 

(VADF); left ventricular assist device (LVAD) .................................................47 

Table 6: Mean ± standard deviation leak rates for dynamic mock loop pressure tests; left 

ventricular assist device (LVAD) .......................................................................48 

Table 7: Specifications for typical suture types used for anastomosis; needle:suture 

diameter ratio (N:S Ratio); polytetrafluoroethylene (PTFE) ..............................49 

Table 8: Static pressure test raw leak rate data .................................................................79 

Table 9: Dynamic pressure test leak rate data...................................................................80 

Table 10: Dynamic pressure test hemodynamic beat-to-beat raw calculations ................81 



ix 
 

Table 11: Pull-out force raw data ......................................................................................82 

 

 

 

  



x 
 

 

 

 

 

 

 

 

 

 

LIST OF FIGURES 

 

Figure 1: Number of heart transplants performed in North America, Europe and other 

countries as reported by the International Society for Heart & Lung 

Transplantation Transplant Registry (Stehlik et al., 2010) ..............................2 

Figure 2: Number of left ventricular assist device (LVAD) and total artificial heart 

implants from 2006-2014 as reported by the Interagency Registry for 

Mechanically Assisted Circulatory Support Devices (Kirklin et al., 2014) .....3 

Figure 3: Images showing different surgical approaches for implanting left ventricular 

assist devices (LVADs). A) Median sternotomy used for conventional 

implantation of LVADs (Zucchetta et al., 2014), B) Less-invasive incisions 

used for implantations of LVADs, also showing standard locations for inflow 

cannulation to the left ventricular apex and outflow graft anastomosis to the 

ascending aorta (Gregoric et al., 2008) ............................................................7 

Figure 4: Diagram of an end-to-side anastomosis performed using a running suture 

technique (Baker, 2015) ...................................................................................8 

Figure 5: Timeline showing the chronological development of historical sutureless 

anastomosis devices (P. Tozzi, 2007) ..............................................................9 



xi 
 

Figure 6: Photo of the first generation St. Jude Medical Symmetry Aortic Connector. 

Aortic wall is compressed between internal and external struts. Connection 

with the vessel is achieved with vein hooks (P. Tozzi, 2007) ........................10 

Figure 7: Photo showing occlusion of St. Jude Medical Symmetry Aortic Connector one-

month after implantation due to intima hyperplasia onto the struts (P. Tozzi, 

2007) ...............................................................................................................11 

Figure 8: Drawings showing the Cardiovations CorLink device. A) CorLink device 

being loaded with a graft vessel inserted through the side of the insertion 

tool, vessel-end everted, and pins penetrating through the everted vessel 

(Bar-El et al., 2003), B) CorLink device deployed into the side of a vessel 

showing pins penetrating intima and struts compressing the exterior surface 

of the vessel (Riess et al., 2002) .....................................................................12 

Figure 9: Images of the PAS-Port proximal aortic connector. A) Integrated deployment 

and aortotomy tool, B) Loaded vessel being deployed onto the proximal 

aorta, C) PAS-Port connector after deployment onto the aortic wall showing 

compression of the vessel wall without penetration (Dohmen et al., 2011) ..13 

Figure 10: Images of the Converge Coronary Anastomosis Coupler and the Cardica C-

port anastomosis devices. A) Converge Coronary Anastomosis Coupler 

attached to an artery showing angled anastomosis through attachment of two 

coupled connectors (Boening et al., 2005), B) Cardica C-port anastomosis 

device showing angled anastomosis through stapling in a interrupted suture 

manner (P. Tozzi, 2007) .................................................................................14 



xii 
 

Figure 11: Photograph showing the end-to-side version of the Vascular Join anastomosis 

device. End of a synthetic graft is fastened to the prosthesis and a saddle 

element is fastened on to the side of the target vessel through connection of 

hooks into the wall of the vessel (P. Tozzi, 2007) .........................................15 

Figure 12: Drawing showing a hybrid mechanical and adhesive anastomosis device. 

Stainless steel ring has 4 hooks extended axially with thickening at the end 

that are elastic and can be bent for insertion. Vessel connection is 

consolidated by cyanoacrylate adhesive (P. Tozzi, 2007). .............................19 

Figure 13: Diagram showing systolic movement of vessel edges at the anastomosis due 

to sutured anastomosis. Schematic shows the reduction in cross-section 

lumen at systole or higher pressure (P. Tozzi, 2007) .....................................22 

Figure 14: Diagram showing experimental design consisting of static and dynamic 

pressure, and pull-out tests .............................................................................29 

Figure 15: Photographs of various views of the prototype LVAD outflow graft 

anastomosis device (GrAD) consisting of a nitinol connector fastened to a 15 

mm vascular graft and felt flanged cuff: A) Side-view, B) Top-view, C) 

Bottom-view, D) Top-view inside lumen of graft ..........................................30 

Figure 16: Photographs of preliminary fit studies of the nitinol connector within silicone 

tubing and bovine descending aorta specimens. A) Curved nitinol connector 

within silicone tubing showing curvature due to forces exerted by the tubing, 

B) Struts of a flat nitinol connector protruding out of the aorta due to rigidity 

of thick wire gages, C) Poor conformation of a flat nitinol connector to the 

inner lumen aortic wall that have the potential for causing complications ....32 



xiii 
 

Figure 17: Photographs of the nitinol connector frame fabrication. A) Mill used for 

boring holes according to template mounted onto copper slip coupling, B) 

Copper slip coupling used to create curved nitinol connectors, C) Steel plate 

used to create flat nitinol connectors ..............................................................33 

Figure 18: Photograph of candidate prototype nitinol connectors of various wire gauges, 

curved/flat members, and with/without loops ................................................34 

Figure 19: Photographs of 0.36 mm gauge nitinol connector providing smooth 

conformation to the inner lumen wall of a bovine descending aorta 

specimen .........................................................................................................35 

Figure 20: Photographs of prototype felt flanged. A) Sewn flanged cuff without silicone 

coating, B) Flanged cuff with 3 coats of silicone ...........................................36 

Figure 21: Photograph showing experimental setup for static pressure testing ...............38 

Figure 22: Photograph and block diagram showing experimental setup for dynamic 

mock loop pressure tests; systemic vascular resistance (SVR); left ventricular 

assist device (LVAD) .....................................................................................40 

Figure 23: Experimental setup for pull-out testing ...........................................................41 

Figure 24: Dimensions of the prototype nitinol connector used for experimentation ......43 

Figure 25: Dimensions of the prototype flanged cuff used for experimentation ..............44 

Figure 26: Leak rates for each vessel during static pressure tests. Vessel 2 consistently 

showed greater leak rates at all pressures ≥ 50 mmHg ..................................45 

Figure 27: Graphs comparing pressure and flows for each dynamic mock loop condition 

reflecting typical physiologic trends in hemodynamic parameters associated 



xiv 
 

with each condition; arterial pressure (ArtP); aortic pressure (AoP); aortic 

flow (AoF); left ventricular assist device (LVAD) ........................................46 

Figure 28: Sample waveforms collected for normal, hypertension, heart failure, and 

LVAD support during dynamic mock loop tests ............................................47 

Figure 29: Leak rates for static and dynamic pressure tests; left ventricular assist device 

(LVAD) ..........................................................................................................49 

Figure 30: Graph comparing mean leak rate from graft anastomosis device (GrAD) and 

literature reported leak rate of Hemo-Seal (HS), Prolene (PR 1, PR 2), and 

expanded-polytetrafluoroethylene (PTFE) sutures. Asterisks show significant 

differences between GrAD and PR1 and PTFE (p < .05) ..............................50 

Figure 31: Peak pull-out force for graft anastomosis device (GrAD) and sutured 

anastomosis ....................................................................................................51 

Figure 32: Photos of the graft anastomosis device (GrAD) after pull-out testing with no 

indications of device damage. A) The debonded device with an observable 

layer of adventitial tissue on the flanged cuff, 2) Bovine descending aorta 

after delamination of a portion of the adventitial tissue by the device ...........51 

Figure 33: Photographs of the suture anastomosis after pull-out testing. A) Anastomosis 

site on the aorta where slits from suture ripping vessel can be observed, B) 

Fractured suture with a sliver of aortic tissue remaining ...............................52 

 

 

 

 



1 
 

 

 

 

 

 

 

 

 

 

I. BACKGROUND 

 

 

A. Heart Failure 

 

Heart failure (HF) is a progressive condition in which the heart muscle loses its 

capacity to pump adequate blood volume to satisfy the body’s demand for oxygen and 

nutrients, and removal of carbon dioxide and waste. It continues to be one of the largest 

unsolved medical complications despite being one of the most explored medical diseases. 

HF is the leading cause of death in the United States, affecting ~5.7 million people in the 

US with a projected increase in prevalence of 46% from 2012 to 2030 (Mozaffarian et al., 

2015). In 2011, the direct and indirect costs of HF in the US was an estimated 34.4 billion 

dollars (Heidenreich et al., 2011), and is projected to increase from 44.6 to 97 billion 

from 2015 through 2030 (Roger et al., 2012). According to the National Center for 

Health Statistics (NCHS) and the National Heart, Lung, and Blood Institute (NHLBI), 

one in 9 deaths in the US have been attributed to HF. Although survival following HF 

diagnosis has improved over time due to advances in medical treatment, the death rate 

remains high with a ~50% mortality rate within 5 years of HF diagnosis (Levy et al., 

2002; V. L. Roger et al., 2004).  
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Preferred treatment strategy(s) for HF is dependent on the type of HF and 

severity. For example, symptoms are managed using pharmacologic therapy and changes 

to lifestyle factors in early stage HF. Unfortunately, there is a large group of patients with 

severe HF (advanced HF) that are unresponsive to pharmacologic therapy and changes in 

lifestyle factors. The gold standard for treating these advanced HF patients is heart 

transplantation, but the supply of donor hearts cannot satisfy the clinical demand. In 

2013, only 51.1% of candidates listed for heart transplantation received heart transplants 

(Colvin-Adams et al., 2014). The number of heart transplants has reached a plateau while 

the number of advanced HF patients continues to grow (Figure 1).  Subsequently, there is 

a significant unmet clinical need and demand for alternative HF treatment options.  

 

 

Figure 1: Number of heart transplants performed in North America, Europe and other countries as reported 

by the International Society for Heart & Lung Transplantation Transplant Registry (Stehlik et al., 2010). 
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B. Left Ventricular Assist Device (LVAD) 

 

 Left ventricular assist devices (LVADs) are blood pumps that assist the blood 

pumping function of the heart in advanced heart failure patients (Figure 2). In 2006, the 

Interagency Registry for Mechanically Assisted Circulatory Support Devices 

(INTERMACS) reported 94 LVAD implants per year, which increased to 2,447 LVAD 

implants per year in 2014 (Kirklin et al., 2015). LVADs were initially implanted as 

bridge to transplantation (BTT) devices for patients with deteriorating HF that were at 

high mortality risk while on the waiting list wait for a heart transplant.  Due to early 

success and technical advances in LVAD technology over the past 15 years, the use of 

these devices has expanded to include long-term and myocardial recovery therapy.   

Figure 2: Number of left ventricular assist device (LVAD) and total artificial heart implants from 2006-

2014 as reported by the Interagency Registry for Mechanically Assisted Circulatory Support Devices 

(Kirklin et al., 2014). 
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LVAD technology has evolved significantly from first-generation devices that 

were large, pulsatile, volume displacement pumps to current third-generation devices that 

are smaller size, lighter weight, valveless, and magnetically-levitated rotary pumps. 

Technological innovations of LVADs included miniaturization of pumps, increased 

durability due to less moving parts, introduction of continuous-flow pumps, and 

magnetically levitated pump rotors. In parallel with the technological evolution of 

LVADs, there has been a marked improvement in the survival rates after LVAD 

implantation. The one-year and two-year actuarial survival rates of these continuous-flow 

devices are 68% and 58%, respectively, compared to 55% and 24% for first generation 

pulsatile-flow devices (Slaughter et al., 2009). In addition, there have been significantly 

less clinically significant adverse events (e.g. device-related infection, non-device-related 

infection, right heart failure, respiratory failure, renal failure, cardiac arrhythmia) in 

patients with continuous-flow devices compared to pulsatile-flow devices (Slaughter et 

al., 2009).  

The success of LVADs as BTT devices combined with increased survival rates 

and reduced adverse events has expanded their clinical role to permanent (long-term) 

support devices (destination therapy). The Randomized Evaluation of Mechanical 

Assistance for the Treatment of Congestive Heart (REMATCH) trial compared optimal 

medical management (pharmacological therapy) vs Heartmate I Left Ventricular Assist 

Device LVAD as permanent treatment among 129 advanced HF patients. The LVAD 

group had a 52% one-year survival and 23% two-year survival compared to 25% one-

year survival and 8% for the optimal medical management (OMM) therapy (Rose et al., 
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2001). These results from the REMATCH trial led to Food and Drug Administration 

(FDA) approval of a few CF LVADs for destination therapy (DT).  

Clinical research has demonstrated improvements in cardiac function and reverse 

remodeling with LVAD support offering hope for LVAD use as a potential therapy 

strategy for sustained myocardial recovery (Frazier et al., 1996). Studies offer compelling 

evidence that chronic volume unloading provided by LVADs is associated with 

beneficial structural and molecular remodeling that may lead to functional improvement 

(Birks et al., 2005; Birks et al., 2006; Cullen et al., 2006; Hall et al., 2007; Latif, Yacoub, 

George, Barton, & Birks, 2007). For some patients, the reverse remodeling that occurs 

may allow for removal of the LVAD due to regained cardiac function (Birks, 2010; Birks 

et al., 2006; Dandel et al., 2005). Emma Birks et al. has pioneered the methodology of 

combining the neurohormonal effects of HF medications and mechanical left ventricular 

volume unloading with LVADs as a treatment strategy for myocardial recovery (Birks et 

al., 2006; Lenneman & Birks, 2014). This treatment method has allowed about 2/3 of a 

small cohort of patients receiving the treatment to regain cardiac function for device 

removal (Birks, 2010; Birks et al., 2006). Expanding clinical indications for LVAD 

therapy as BTT, DT, or myocardial recovery promotes a larger application and use of 

LVADs for HF patients.  

 

1. Surgical Implantation of LVADs 

 Although LVADs can be a life-saving therapy for advanced HF patients, 

implantation of these devices requires a major surgical procedure that can take up to 4+ 

hours. Conventional implantation for popular LVAD systems in the US—Thoratec 
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HeartMate II, HeartWare HVAD, Jarvik-2000—require a median sternotomy (Figure 3), 

cardiopulmonary bypass (CPB) and partial clamping of the aorta. Median sternotomy is 

associated with risk of infection, high hospital stay costs, and severe burden for the 

patient (Graf et al., 2010; Heilmann et al., 2013; Taylor, Mitchell, & Mitchell, 2012). 

CPB is associated with post-operative bleeding (Ohri et al., 1991) and/or pulmonary 

complications (Huffmyer & Groves, 2015), as well as potential risk of blood damage 

(Mamikonian et al., 2014). Clamping of the aorta has been associated with increased risk 

of neurological complications (Zamvar et al., 2002) and aortic dissections (Stanger, 

Oberwalder, Dacar, Knez, & Rigler, 2002). These limitations have led investigators to 

investigate the development of alternative surgical approaches and/or novel technologies 

that may enable less-invasive implantation techniques to reduce time and facilitate 

surgery and recovery. 

Several investigators have reported less-invasive (Figure 3) and beating heart (off-

pump; without cardiopulmonary bypass) surgeries for LVAD implantation (Anyanwu, 

Fischer, Plotkina, Pinney, & Adams, 2007; Cheung et al., 2011; Frazier, 2003; Gregoric 

et al., 2008; Maltais, Davis, & Haglund, 2014; Rojas et al., 2015; Sun et al., 2008; 

Wagner et al., 2015). For example, the Sutureless Beating Heart connector (APK 

Advanced Medical Technologies, Atlanta, GA) allows for off-pump, beating heart 

implantation of inflow cannulas of LVADs (Koenig et al., 2014). The combination of 

less-invasive surgical approaches and novel technologies may enable less-invasive and 

off-pump implantation of LVADs, thereby potentially reducing post-operative recovery 
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times, cost of hospital stays, and the risk of further complications associated with CPB 

and median sternotomy.  

2. Outflow Graft Anastomosis of LVAD 

To complete the LVAD outflow graft anastomosis (surgical connection), a side-

biting clamp is placed on the ascending aorta to facilitate suturing and minimize blood 

loss by creating an area of flow stagnation. A small incision is then made to the aorta 

(aortotomy) to connect to outflow graft. An aortic punch is typically used to round out the 

edges of the incision to prevent damage or tearing at the incision site. A 3-0 to 5-0 

Prolene suture is used to hand-suture a gelatin-impregnated, woven polyethylene 

terephthalate (PET) graft in a running suture technique (Figure 4). Upon completion of 

the suturing, the side-biting clamp is removed and blood flow provided through the 

outflow graft.  

A B 

Figure 3: Images showing different surgical approaches for implanting left ventricular assist devices 

(LVADs). A) Median sternotomy used for conventional implantation of LVADs (Zucchetta, Tarzia, 

Bottio, & Gerosa, 2014), B) Less-invasive incisions used for implantations of LVADs, also showing 

standard locations for inflow cannulation to the left ventricular apex and outflow graft anastomosis to the 

ascending aorta (Gregoric et al., 2008). 
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 Conventional LVAD outflow graft anastomosis requires aortic cross- or partial-

clamping, which as mentioned previously is associated with aortic complications. To 

complete anastomosis of the LVAD outflow graft to the aorta requires surgical dexterity 

and may be time-consuming (up to 30 minutes) to complete. As surgical implantation for 

LVADs advance toward less-invasive, off-pump procedures, alternative solutions are 

warranted for completing LVAD outflow graft anastomosis that would complement an 

altogether less-invasive procedure. 

 

Figure 4: Diagram of an end-to-side anastomosis performed using a 

running suture technique (Baker, 2015). 
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C. Sutureless Anastomosis 

Historically, anastomosis has been completed using hand-suture methods based 

on the principles established by Alexis Carrel in 1902 (Carrel, 1902). The reliability and 

long-term patency results of this method has rooted it as the gold standard for vascular 

anastomosis. Earliest scientific reports for completing sutureless anastomosis used crude 

materials (e.g. quill-pens, glass, ivory cuffs, ox shin bones) as vascular prostheses (Abbe, 

1894; Callow, 1982; Muir, 1914; Nitze, 1897; Tuffier, 1915). More promising 

technologies were introduced in the 1900s that employed interlocking rings (Berggren, 

Ostrup, & Lidman, 1987; Nakayama, Tamiya, Yamamoto, & Akimoto, 1962; Payr, 

1904), symmetrical anvils (Daniel & Olding, 1984), staples (Androsov, 1956), heat-

shrink tubing (Mattox & Wozniak, 1991), and clips (Kirsch, 1998). Less mechanical 

approaches for sutureless anastomosis included the combination of lasers with stay 

stitches (Grubbs et al., 1988; Jain & Gorisch, 1979; Phillips et al., 1999). None of these 

Figure 5: Timeline showing the chronological development of historical 

sutureless anastomosis devices (P. Tozzi, 2007). 
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devices were widely accepted due to limitations that included complex and cumbersome 

instrumentation, rigid foreign bodies, and poor clinical results (P. Tozzi, 2007).  

 

D. Devices for Sutureless Anastomosis 

Currently there are no commercially available devices for sutureless anastomosis 

of large-diameter synthetic grafts (>5 mm), similar to those used for LVAD outflow 

grafts. The majority of devices enabling sutureless anastomosis were developed for 

facilitating coronary artery bypass graft (CABG) procedures, which require end-to-side 

anastomosis of small-diameter arteries/veins (<5 mm). These devices may be categorized 

as proximal (anastomosed to the ascending aorta) or distal (anastomosed to the 

descending aorta) anastomotic devices.  

The St. Jude Medical Symmetry Aortic Connector was the first nitinol connector 

to gain clinical approval (P. Tozzi, 2007). Nitinol is a Nickel and Titanium alloy that 

exhibits superelastic and shape-memory properties enabling it to return to an original 

shape after large deformations. This star-shaped connector attaches vein grafts at a 90° 

Figure 6: Photograph of the first generation St. Jude Medical Symmetry Aortic 

Connector. Aortic wall is compressed between internal and external struts. Connection 

with the vessel is achieved with vein hooks (P. Tozzi, 2007). 
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angle to the proximal aorta by compressing the aortic wall between internal and external 

struts (Figure 6). Once a graft vein is excised, it is loaded onto the delivery system. 

Hooks arranged around the inner ring of the connector fasten to the vein. A limitation of 

this device is that only a single end of the vessel can be anastomosed since a free-end is 

required for loading onto the deployment tool. Furthermore, the 90° take-off angle 

requires precise placement of the graft vessel to avoid graft kinking. Of the 44 

anastomoses constructed by the Symmetry Aortic Connector 55% were occluded (Figure 

7) at a mean follow-up period of 41 months (P. Bergmann et al., 2007). In another study, 

74 patients underwent elective CABG in which 131 anastomoses were constructed using 

the Symmetry Aortic connector, in which 20 bypass grafts (2 hand suture, 18 Symmetry) 

showed severe stenosis or occlusion (Traverse et al., 2003). Although the Symmetry 

device reliably allows blood flow acutely through an anastomosis (Dewey et al., 2004; 

Eckstein et al., 2002), long-term clinical results discouraged the continued usage of the 

device. 

Figure 7: Photograph showing occlusion of St. Jude Medical 

Symmetry Aortic Connector one-month after implantation due 

to intima hyperplasia onto the struts (P. Tozzi, 2007). 
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 Other devices that allow anastomosis between the ascending aorta and a graft 

vessel include the CorLink (Cardiovations, Somerville, NJ) and Spyder (Coalescent 

Surgical, Sunnyvale, CA). The CorLink is a nitinol connector that requires a graft vessel 

to be everted over the end of the connector, which may be cumbersome and/or damage 

the vessel intima (innermost cellular layer in contact with blood flow), as shown in 

Figure 8. The graft vessel is pulled through an insertion tool for deployment (Figure 8). 

The mechanism of loading the vessel through the side of the integrated deployment tool 

offers the advantage of not requiring the graft to have a free-end.  For this device to 

successfully attach to a target vessel, two sets of five pins must fully-penetrate through 

the vessel. The Spyder uses a novel approach of depositing 6 nitinol sutures (U-clips) 

between a pre-mounted vein graft and the aorta, resulting in a connection similar to an 

interrupted suture technique without the requirement of tying nots. Both the Corlink and 

Spyder devices demonstrated higher incidence of occlusion versus standard suture 

anastomosis, as well as failed to create hemostasis upon deployment (Biancari et al., 

2007; Gummert et al., 2007). These devices had limited foreign body exposure, but the 

Figure 8: Drawings showing the Cardiovations CorLink device. A) CorLink device being loaded with a 

graft vessel inserted through the side of the insertion tool, vessel-end everted, and pins penetrating through 

the everted vessel (Bar-El, Tio, & Shofti, 2003), B) CorLink device deployed into the side of a vessel 

showing pins penetrating intima and struts compressing the exterior surface of the vessel (Riess et al., 2002) 
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increased vascular injury from penetration of pins/clips may have alternatively triggered 

intimal hyperplasia (proliferation of intimal cells decreasing vessel lumen space) and 

gradual occlusion of the graft. These pre-clinical and clinical results failed to gain the 

enthusiasm for adoption of these devices, therefore these devices are no longer used 

clinically.    

 The PAS-Port (Cardica Inc, Redwood City, CA) is the only commercially 

available proximal anastomosis system that is currently distributed in both Europe and 

the US (Figure 9). Unlike aforementioned devices, this novel device integrates the action 

of the aortotomy and deployment of the connector into a single tool. After loading the 

graft vessel onto the deployment tool, the tool is placed onto the target location and the 

surgeon rotates a knob on the tail-end of the tool to complete the anastomosis. In the 

pivotal EPIC trial, 220-patients requiring CABG with at least 2 vein grafts randomly 

received one graft with the PAS-Port device, and the other with a hand-sewn suture 

method. Results showed an 80.3% 9-month graft patency (state of being unblocked) 

versus 82.0% for hand-sewn. Similar freedom from major adverse cardiac events at 9-

Figure 9: Images of the PAS-Port proximal aortic connector. A) Integrated deployment and aortotomy 

tool, B) Loaded vessel being deployed onto the proximal aorta, C) PAS-Port connector after deployment 

onto the aortic wall showing compression of the vessel wall without penetration (Dohmen et al., 2011). 
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months was demonstrated between the two methods. However, the PAS-Port system was 

associated with a statistically significant, 4.6 ± 3.9 minute reduction in anastomotic time  

from the overall 7.7 ± 2.9 minutes required to complete conventional hand-sewn 

anastomosis(Puskas et al., 2009). Promising mid- to long-term results were also 

demonstrated in Japan (Kai et al., 2009) and Europe (Gummert et al., 2006). 

Technological innovations of the PAS-Port system include: 1) Integrated aortotomy and 

deployment tool, 2) Reduced non-biologic material exposure inside the vessel lumen, 3) 

Utilization of 316L stainless-steel material in replacement of nitinol. These 

characteristics may have contributed to the greater clinical results of PAS-Port system 

compared to preceding devices.  

 The second category of sutureless anastomotic devices are intended for distal 

anastomosis. Some of the more promising distal anastomotic devices are the Converge 

Coronary Anastomosis Coupler (Converge Medical Inc., Sunnyvale, CA) and the Cardica 

C-Port (Cardica Inc., Redwood City, CA). The Converge device is a two-piece coupler 

made of nitinol that clamps the vessels being anastomosed together (Figure 10). The graft 

vessel is placed between the two frames, which is loaded into a dedicated deployment 

Figure 10: Images of the Converge Coronary Anastomosis Coupler and the Cardica C-port anastomosis 

devices. A) Converge Coronary Anastomosis Coupler attached to an artery showing angled anastomosis 

through attachment of two coupled connectors (Boening et al., 2005), B) Cardica C-port anastomosis 

device showing angled anastomosis through stapling in a interrupted suture manner (P. Tozzi, 2007). 
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tool for insertion into the target artery at a 30° take-off angle. Loading of the coupler has 

been reported to be cumbersome and anastomosis leak has been common (Boening et al., 

2005). The C-port is an anastomosis device that deposits stainless steel staples to form an 

end-to-side anastomosis similar to an interrupted suture technique (Figure 10). In a 

single-center study, the anastomotic patency of the Cardica C-Port was compared to the 

hand-sew anastomosis. One-year patency rates between the two techniques showed no 

statistically discernible differences, and the incidence of complications was comparable 

to the hand-sewn anastomosis (Verberkmoes et al., 2013). The C-port is particularly 

promising because it creates an angled anastomosis, has similar non-intimal surface as a 

sutured anastomosis thereby requiring no anticoagulation therapy, and is capable of 

creating a side-to-end anastomosis in very small (1mm) diameter vessels (P. Tozzi, 

2007).  

 One of the most promising sutureless devices that addresses the limitations of 

vascular injury and foreign-body blood exposure is the Vascular Join (Idee & Sviluppo 

LLC, Bologna, Italy). The Vascular Join consists of two metallic rings that are fixed to 

Figure 11: Photograph showing the end-to-side version of the Vascular Join anastomosis 

device. End of a synthetic graft is fastened to the prosthesis and a saddle element is fastened on 

to the side of the target vessel through connection of hooks into the wall of the vessel (P. Tozzi, 

2007). 
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the exterior of either a biologic or synthetic graft (Figure 11). There are various sized 

elements accommodating 3 to 12 mm diameter grafts, but there are no restrictions in 

respect to vessel size. For end-to-side anastomosis, a saddle element is attached to the 

exterior of the desired side vessel by hooks that only penetrate the vessel wall without 

full-thickness penetration. After creation of an elliptical hole with a dedicated rotary 

blade, the graft with a pre-mounted ring is inserted to create the anastomosis. The device 

provides reproducible anastomosis with biologic and synthetic grafts with the advantages 

of zero foreign-body exposure to blood, angled geometry, and may be adapted to any size 

graft regardless of graft diameter and thickness. Clinical results for the end-to-end 

version of the Vascular Join showed 100% patency, immediate hemostasis, adequate 

blood flow and no instances of technical failure (Ferrari, Tozzi, & von Segesser, 2007). 

Long-term and end-to-side clinical studies are needed in order for this device to gain 

wide clinical acceptance.  

 All of the aforementioned devices, except the Vascular Join, are limited to 

applications of attaching small biologic vessels to either the ascending or descending 

aorta. None of these devices were designed for LVAD outflow grafts anastomosis, hence 

have not been tested in relevant models consisting of end-to-side anastomosis to a large 

aortotomy (>5 mm diameter) under turbulent and high pressures common to the 

ascending aorta. There are currently no commercially-available devices or scientific 

reports of sutureless anastomotic devices for LVAD outflow grafts, providing an 

opportunity for the development of innovative technologies to facilitate anastomosis of 

LVAD outflow grafts.  
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E. Surgical Adhesives 

 Surgical adhesives are a promising and growing area for development due to 

many potential clinical applications. Currently, octyl cyanoacrylate (Dermabond) is in 

use clinically to replace sutures for incisional or laceration closure (Bruns & 

Worthington, 2000). Other adhesives, such as fibrin sealants (e.g. EVICEL, TISSEAL), 

are clinically approved as an adjunct to standard sutures for hemostasis. Fibrin adhesives 

have shown to be highly effective in preventing leaks in conjunction with sutures for 

vessel-to-vessel anastomosis, as well as synthetic graft-to-vessel anastomosis (Saha et al., 

2012). In the application of wound closure, adhesives over the advantage of fast 

application, less traumatic closure, and the ability for application within difficult working 

environments.  

 Many hemostatic adhesives have been developed based on fibrin, collagen, 

cyanoacrylate (Hee Park et al., 2003; Szanka, Szanka, Şen, Nugay, & Kennedy, 2015), 

polyethylene glycol (Marc et al., 2000), albumin-glutaraldehyde (Küçükaksu, Akgül, 

Çağli, & Taşdemir, 2000; Mitrev, Belostotskii, & Hristov, 2007), or gelatin-resorcinal-

formaldehyde (Perrin et al., 2009). Other adhesives have drawn inspiration from nature, 

such as citrate-based mussel-inspired adhesive (Mitrev et al., 2007), and poly(glycerol 

sebacate acrylate)-based gecko-inspired adhesive (Mahdavi et al., 2008). Requirements of 

an ideal hemostatic surgical adhesive is that it must be easy to use, safe, polymerize in a 

wet environment, and have strong adhesion properties. Development of a strong 

hemostatic adhesive with these properties has the potential of replacing sutures.  
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 Several studies have attempted replacement of sutures with available hemostatic 

adhesives. Fibrin- and cyanoacrylate-based adhesives has been used to complete 

microvascular anastomosis (Carton, Heifetz, & Kessler, 1962; Carton, Kessler, 

Seidenberg, & Hurwitt, 1960; Carton, Kessler, Seidenberg, & Hurwitt, 1961; Ikossi‐

O'Connor, Ambrus, & Rao, 1983; Kim et al., 2004). However, fibrin adhesives are 

inherently weak adhesives and has not been reported to be used alone in high pressure 

arterial applications. Inadvertent entrance of both fibrin and cyanoacrylate may risk 

thrombus (blood clot) formation (Ang, Tan, Tan, Ng, & Song, 2001; LeMaire et al., 

2005; Middleton, Matthews, & Chiasson, 1991). Although cyanoacrylate-based adhesives 

have strong adhesive properties, they have been associated with anyeursmal dilatation 

(Carton et al., 1961) and tissue necrosis (Takenaka, Esato, Ohara, & Zempo, 1992). 

Recently developed adhesives have had promising results in repairing of high-pressure 

cardiovascular defects. One of the most promising adhesives is a hydrophobic light 

activated adhesive that demonstrated capability of closing 3 to 4 mm carotid artery 

defects and 2 mm full-thickness defects of the left ventricle in combination with a patch 

(Lang et al., 2014). Although this adhesive has shown comparable adhesive strength with 

cyanoacrylate adhesives, without the toxic effects, long-term studies are required for 

clinical approval.  

 A separate strategy that has been employed for replacing sutured anastomoses is a 

hybrid approach combining surgical adhesives with a mechanical coupling. Buijsrogge et 

al. reported a technique for end-to-side anastomosis using a extraluminal stainless steel 

frame with 4 downward facing hooks (Figure 12) (Buijsrogge et al., 2002). The device is 

inserted into the target vessel by inserting each hook element, then octyl-cyanoacrylate 
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adhesive is applied to consolidate the connection. Limitations of the device include a 

critical incision length, high external ring frame that can lead to kinking, and the adhesive 

used is only approved for external use (P. Tozzi, 2007). Other hybrid approaches have 

combined cuff systems with an adhesive, but all reports were limited to small vessels or 

low-pressure venous applications (Galvao, Bacchella, & Machado, 2007; Sacak, Tosun, 

Egemen, Sakiz, & Ugurlu, 2015).   

 

Figure 12: Drawing showing a hybrid mechanical and adhesive anastomosis device. Stainless steel ring 

has 4 hooks extended axially with thickening at the end that are elastic and can be bent for insertion. 

Vessel connection is consolidated by cyanoacrylate adhesive (P. Tozzi, 2007). 
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F. Device Design for LVAD Outflow Graft Anastomosis Device (GrAD) 

 The standard running suture technique is the preferred method for LVAD outflow 

graft anastomosis. However, this technique may be time-consuming, difficult to perform 

in constrained surgical spaces, and requires clamping of the aorta. Further, the 

progression of LVAD implantation surgery toward less-invasive and off-pump 

procedures increases the technical difficulty of completing standard hand-sewn LVAD 

outflow graft anastomosis due to uncompensated aortic flow dynamics and smaller 

surgical spaces.  These limitations of the standard sutured anastomosis motivates the 

development of a novel method for sutureless LVAD outflow graft anastomosis.  

 

1. Design Requirements for a LVAD Outflow GrAD 

 

 The general design criteria for an LVAD outflow graft anastomosis device 

(GrAD) are listed in Table 1. Any foreign material in the blood stream will likely trigger 

an inflammatory response (Anderson, Rodriguez, & Chang, 2008) and increase vessel 

wall stress (Scheltes, Heikens, Pistecky, van Andel, & Borst, 2000). Additionally, foreign 

materials elicit intimal hyperplasia leading to gradual decrease of effective luminal area 

Physiologic Design Requirements Mechanical Design Requirements

Minimal foreign-body non-intimal surface area Adaptable to range of graft diameters

Minimal tissue trauma Adaptable to range of wall thicknesses

Minimal alteration of native tissue compliance Attachable/detachable

Smooth profiles complementing intimal wall Easily deformable and elastic

Angled conformation Easily deployable  in small spaces

Clampless Recovery mode for device failure

Economical 

Table 1: Physiologic and mechanical design requirements for an LVAD outflow graft anastomosis device 

(GrAD). 
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for blood to flow. Tissue trauma, which may be caused by suture or pin vessel wall 

penetration, is another source contributing to triggering an inflammatory response and 

intimal hyperplasia (Kornowski et al., 1998). In principle, a device with zero foreign-

body non-intimal surface exposure and tissue trauma is desirable to minimize 

inflammatory response, increase in wall stress, and intimal hyperplasia. 

Minimal alteration of the native compliance at the anastomosis, smooth profiles of 

the device to the intimal wall, and angled conformation minimize the negative effects of 

the device on vessel wall and blood flow properties. Sutured anastomoses are often 

associated with changes in vessel compliance observed through increased wall rigidity 

and alteration of elastic modulus at the anastomotic site (N. Baumgartner, Dobrin, 

Morasch, Dong, & Mrkvicka, 1996). There may also be a reduction in luminal area 

observed at the sutured anastomoses, which has been shown to reduce further during 

systole (Figure 13) or as blood pressure increases (Tozzi et al., 2000a, 2000b). Abrupt 

profiles of devices to the intimal wall may disrupt the natural wall shear stress patterns, 

which is associated with thrombus formation and intimal hyperplasia (Fillinger et al., 

1990; Ojha, 1994). Studies have demonstrated that anastomosis angle affects blood flow. 

The ideal anastomosis angle should be 30° to 45° (P. Tozzi, 2007). Anastomosis angles >  

60° demonstrate reductions in expected flow and creation of blood stagnancy areas (Leva 

& Engström, 2003; Zhang, Moskovitz, Piscatelli, Longaker, & Siebert, 1995). Therefore, 

highly compliant, smooth profiled, and angled anastomosis may reduce the disposition 

for the development of myiointimal hyperplasia and thrombus formation, as well as 

minimize the alteration of native vessel and blood flow properties at the anastomosis. 
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Clamping of the aorta creates an area of blood stagnancy such that an aortotomy 

can be created without the risk of hemorrhage (major loss of blood). Aortic clamping 

increases the risk of neurological complications (Zamvar et al., 2002) and aortic 

dissections (Stanger et al., 2002). For CABG procedures, clampless and off-pump 

procedures demonstrated lower mortality and stroke rates (Borgermann et al., 2012). A 

device allowing clampless anastomosis could similarly reduce the risk for any neurologic 

or aortic complications due to LVAD outflow graft anastomosis.  

An LVAD outflow GrAD should be adaptable to a wide range of graft diameters 

and aortic wall thicknesses. LVAD outflow graft diameter range from 10 mm to 20 mm, 

varying between LVAD types. Aortic wall thicknesses may range from 2 mm to 4 mm 

based on sex, race, and age shown in Table 2.  Wall thickness variability arises with 

elderly HF patients with calcified aortas that is shown to be associated with aortic wall 

thicknesses > 4 mm (Jang et al., 2012). To allow anastomosis of all LVAD outflow grafts 

to any patient, the GrAD should accommodate all graft diameters and adapt to any aortic 

wall thicknesses. LVAD outflow graft lengths are tapered to each patient by positioning 

the graft in its desired location and cutting off any unnecessary length in order to reduce 

Figure 13: Diagram showing systolic movement of vessel edges at the anastomosis due to 

sutured anastomosis. Schematic shows the reduction in cross-section lumen at systole or higher 

pressure (P. Tozzi, 2007). 
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the risk for graft kinking due to superfluous graft length in the constrained thoracic 

cavity. Some LVAD systems require the inflow end of the graft to be secured prior to 

completion of the outflow anastomosis, limiting the surgeon to a single free-end of graft. 

An attachable anastomosis system would allow surgeons to appropriately size grafts to 

patients then attach the anastomosis system to the free-end. An easily deformable and 

elastic device are important characteristics for development of an efficient deployment 

mechanism for the device, allowing it to remain undamaged when collapsed into a 

deployment catheter or sheath. An easy deployment mechanism is especially critical in 

less-invasive procedures where surgical windows are confined. A method for safe 

recovery of the anastomosis in the case of device failure is also of critical importance 

since failure of an anastomosis may lead to catastrophic hemorrhage and potential death.  

 

 

 

Table 2: Average and maximum wall thicknesses of ascending aorta. Large variability in wall 

thicknesses is shown based on sex, race, and age (Li et al., 2004). 
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2. Design Considerations for LVAD Outflow GrAD 

 There are three main design considerations for the development of a LVAD 

outflow GrAD: 

 1) Graft-to-vessel connection 

 2) Materials  

 3) Anastomosis biomechanical properties 

 

3. Graft-to-Vessel Connection 

There are four main mechanisms for connecting a sutureless device with either a 

graft or vessel: Pins, wall eversion, wall compression, and adhesion. Pins penetrate 

through the wall from either the inner lumen to the outside or from the opposite direction. 

If the pins push from the inside to the outside it allows the device to push outward 

radially reducing the risk of hemorrhage and generation of a dissection. If pins push from 

the outside to the inside the opposite occurs and there is an increased risk for hemorrhage 

and generation of dissection.  

Wall eversion is restricted to the tubular member with a free-end and typically 

employs an anvil to achieve eversion. This technique has larger implications for vessel-

to-vessel anastomosis, because it permits intima-to-intima contact. However, the main 

limitation of wall eversion is potential damage to the tissue itself as it is being everted, 

which is not a factor since the tubular member with a free-end being anastomosed would 

be a synthetic graft.  



25 
 

Wall compression is the most non-traumatic for the vessel wall if the two surfaces 

creating the compression are designed to allow for nutrient perfusion to the vessel wall 

itself. The advantage of this approach is it can easily be attached and detached. The 

limitation of this connection type is that it provides limited strength that can be 

catastrophic if it were to disconnect. Design limitations of previous devices relying on 

wall compression for connection include the amount of foreign material exposed inside of 

the vessel lumen. Coronary stents have demonstrated that large amounts of foreign 

material inside of vessel lumens results in intimal hyperplasia and re-stenosis (Lal et al., 

2003). Another design limitation of previous wall compression devices is the strict design 

constraints for wall-thickness due to a single-body component participating in the 

compression.  

Adhesive connection for anastomotic applications has been discussed earlier. 

Adhesives offer the advantage of minimal foreign-body exposure to the inner lumen. The 

main limitation of current hemostatic adhesives is that they have inadequate adhesive 

strength to connect tubular members alone or have toxic and/or thrombogenic properties 

in vascular applications. 

 

4. Materials 

Critical to any material implanted in the human body is that the material can 

interface with tissues without causing unacceptable harm to the body. Second, the 

material must have necessary material properties to accomplish and sustain their function 

for its intended implantation duration. For LVAD outflow graft anastomosis, materials 

must be capable of sustaining attachment to the continuously moving aorta for up to 8 
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years--the longest duration a LVAD has been implanted. Further, materials may contact 

blood flow exposing them to turbulent pressure and flow. Therefore, a LVAD outflow 

GrAD must ensure attachment in a dynamic environment to enable LVAD flow to the 

aorta, while having minimal impact on the major role of the aorta to dampen pulse 

pressures and provide blood to the body.  

Materials that have been used for cardiovascular applications include shape-

memory alloys and polymer textiles. Nitinol is one of the most commonly used metals for 

fabrication of sutureless anastomosis devices in the form of connectors, anvils, and self-

closing sutures. Alternative metals that are also commonly used are stainless steel and 

cobalt-chromium alloy. These metals allow for fabrication of devices that can be 

collapsed into deployment tools for introduction through limited surgical spaces and 

deployment into their desired location. With limited blood exposure area, these bare-

metals have served well as anastomosis connectors. Intimal hyperplasia is the main cause 

of long-term failure associated with metallic devices as tissue proliferation leads to 

narrowing and obstruction. Trauma to the nearby tissue from metallic devices leading to 

intimal hyperplasia is due to physical irritation rather than chemically induced from 

corrosion of the metal (Williams, 2008), suggesting that these metals have adequate 

corrosion resistance. When using shape-memory alloys, designs should minimize the 

surface area of the material exposed to blood and potential for vessel trauma (e.g. vessel 

penetration, friction rubbing) to reduce the extent of intimal hyperplasia. 

Expanded polytetrafluoroethylene (ePTFE) and polyethylene terephthalate (PET, 

Dacron) compose the majority of polymers used for fabrication of vascular grafts and 

sewing rings. These polymers react similarly within the human body (Mueller & 
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Dasbach, 1994). Upon implantation, thrombus is formed within the pores and cellular 

infiltration occurs. Then cellular proliferation via fibroblasts provides tissue in-growth 

with connective tissue. For inner lumen surfaces of vascular grafts, intimal hyperplasia 

leads to deposition of cell layers lining the inner surface of the graft. Synthetic grafts are 

recognized to function reasonably in large diameter and high flow applications, where 

narrowing due to intimal hyperplasia has a smaller impact on overall flow and rarely 

leads to obstruction. The few reported cases of LVAD outflow graft obstruction were due 

to factors extrinsic to the graft (Bergmann, Kottenberg-Assenmacher, & Peters, 2007; 

Frogel, Vodur, & Horak, 2008; Kaplon et al., 2001; Weitzel, Puskas, Cleveland, Levi, & 

Seres, 2009).  There are reports of synthetic graft degradation after 15 years of implant 

(Shiiya, Kunihara, Matsuzaki, & Sugiki, 2006; Van Damme, Deprez, Creemers, & Limet, 

2005), however, the duration for graft degradation far exceeds that of current LVAD 

implantation durations. Therefore, ePTFE and PET should be acceptable graft materials 

for fabrication of a GrAD. 

 

5. Biomechanical Properties  

The natural biologic properties of vessels are altered by anastomosis, such as 

vessel compliance. Generally, more compliant anastomosis devices impart less influence 

on the natural elastic properties of the vessel which may reduce changes in wall stress 

and risk for intimal hyperplasia. It can be speculated that sutureless anastomosis devices 

fabricated from shape-memory alloys and elastic polymers will be more compliant that 

running suture anastomosis since these materials are more elastic than polypropylene 

suture. Alterations in blood flow is another concern as anastomosis angle and material 
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profiles in the blood stream may affect the flow patterns and wall shear stress at the 

anastomosis. Therefore, a highly compliant and 30° to 45° angle anastomosis, and 

smooth profiles of foreign bodies conforming to the luminal vessel wall may reduce 

potential risk of complications inherent to alterations of biomechanical properties of the 

native aorta.  Patched or cuffed anastomoses have demonstrated better patency (Brumby, 

Petrucco, Walsh, & Bond, 1992) and lower peak wall shear stress (Harris, 1999; Walsh, 

Kavanagh, O'brien, Grace, & McGloughlin, 2003). Subsequently, a sutureless LVAD 

outflow GrAD should promote the native biomechanical properties of the blood vessels 

and natural blood flow.   
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II. METHODS 

 

 

A. Study Design 

 

The objective of this study was to develop a LVAD outflow GrAD to facilitate 

anastomosis to the ascending aorta. To demonstrate proof-of-concept, the following aims 

were proposed: 

1) Complete fabrication of a device enabling sutureless anastomosis of LVAD 

outflow graft to the ascending aorta 

2) Complete feasibility testing of candidate prototype GrAD to demonstrate 

secure connection under static and dynamic pressures 

3) Complete feasibility testing of candidate prototype GrAD to demonstrate 

comparable attachment strength as standard sutured anastomosis technique 

Figure 14: Diagram showing experimental design consisting of static and dynamic pressure, and pull-

out tests. 
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To successfully complete the proposed aims, three studies were completed: 1) static 

pressure testing (n=3), 2) dynamic mock loop pressure testing (n=3), and 3) paired pull-

out force testing to compare GrAD to sutured anastomosis (n=3) (Figure 14). 

The prototype GrAD comprised of an attachable nitinol connector, polymer felt 

flanged cuff, and adhesive (Figure 15). Prototypes of the components were fabricated and 

tested experimentally to investigate smooth conformation in plastic models and bovine 

aorta specimens. Preliminary testing of several adhesives was completed to assess 

capability of adhering the device to aortic tissue while maintaining connection without 

significant fluid leakage. The anastomosis device was tested in static pressure and 

dynamic mock loop pressure models using harvested bovine descending aorta and de-

ionized (DI) water. Paired mechanical pull-out experiments for device completed 

A B 

C D 

Figure 15: Photographs of various views of the prototype LVAD outflow graft anastomosis device 

(GrAD) consisting of a nitinol connector fastened to a 15 mm vascular graft and felt flanged cuff: 

A) Side-view, B) Top-view, C) Bottom-view, D) Top-view inside lumen of graft 
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anastomosis and hand-sewn suture anastomosis attached to bovine descending aorta were 

performed to quantify peak tensile force measured in Newtons (N) before failure. 

 

B. Prototype Design Development 

Literature, patent application, and patent reviews were conducted to evaluate intellectual 

property of other potential competing devices developed for sutureless and end-to-side 

anastomosis. Based on the literature and patent review, and design considerations for a 

sutureless LVAD outflow GrAD, design specifications were established, as shown in 

Table 1. The design of combining a nitinol connector, polymer felt flanged cuff, and 

adhesive was selected for further development. Curvature of the CADs were dimensioned 

based on human adult ascending aorta dimensions (Rylski, Desjardins, Moser, Bavaria, & 

Milewski, 2014).  

 

C. Nitinol Connector Fabrication 

 In order to fabricate each nitinol connector, metal frames were used to mount the 

wire into its desired shape, annealed in a high-temperature oven, and quenched in a cold-

water bath. Flat and curved nitinol connectors were fabricated using several different 

gauges of nitinol wire. The various nitinol connector types were assessed for strength and 

fit using plastic model of an aorta (section of Zygon tubing) and bovine descending aorta 

(Figure 16). 
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Figure 16: Photographs of preliminary fit studies of the nitinol connector within silicone tubing and 

bovine descending aorta specimens. A) Curved nitinol connector within silicone tubing showing curvature 

due to forces exerted by the tubing, B) Struts of a flat nitinol connector protruding out of the aorta due to 

rigidity of thick wire gages, C) Poor conformation of a flat nitinol connector to the inner lumen aortic wall 

that have the potential for causing complications 
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1. Frame Construction 

For flat nitinol connector frames, 3.175 mm thick flat stainless steel plates were 

cut into 31.175 mm x 31.175 mm squares. For curved nitinol connector frames, 31.75 

mm outer diameter copper slip couplings were used. Template drawings directing 

placement of screws for molding the nitinol shape were created using SOLIDWORKS 

2015 and attached to the frames. With a mill, 2.0 mm titanium drill bit was used to bore 

holes for setting main shape of the connector and a 2.4 mm titanium drill bit was used for 

B C 

A 

Figure 17: Photographs of the nitinol connector frame fabrication. A) Mill used for boring holes 

according to template mounted onto copper slip coupling, B) Copper slip coupling used to create curved 

nitinol connectors, C) Steel plate used to create flat nitinol connectors. 
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anchoring the nitinol wire. Each hole was threaded using a 2-56 and 4-40 tap and die set 

for the 2.0 and 2.4 mm bored holes, respectively. Stainless steel screws corresponding to 

the threaded hole size were inserted into the frames. Photos of the completed frames are 

shown in Figure 17. 

 

2. Shape Setting Nitinol 

Super elastic temper, light oxide nitinol round wire (0.76, 0.50, 0.40, 0.36, 0.23, 

and 0.18 mm gauge) was used to create the nitinol connectors. The end of the nitinol wire 

was secured to the frames using binder clips and reinforced by wrapping the wire several 

times around the 4-40 anchoring screws. Then the wire was wrapped tightly around each 

of the 2-56 screws to form the desired shape and each screw was tightened to ensure that 

the wire was held securely in tension. The free-end of the wire was anchored by wrapping 

the wire around the anchoring screw. Excess wire was removed and the remaining end 

was secured to the frame with a second binder clip.  

 Nitinol frames were placed in a Thermolyne Benchtop Muffle Furnace 

(ThermoScientific, Waltham, MA) pre-heated to 530°C for 9 minutes. Frames were 

removed from the furnace and quenched immediately in a room temperature bath of DI 

Figure 18: Photograph of candidate prototype nitinol connectors of various wire gauges, curved/flat 

members, and with/without loops. 
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water. After cooling, the frames were air-dried. Each screw was loosened and the wire 

was carefully removed from the frames. Excess wire was removed and the loose ends 

were fastened together using 2-0 Black Braided silk suture (Ethicon, Somerville, NJ). 

Figure 18 shows various candidate nitinol connectors that were assessed for fitting. 

A single end of a 15 mm Gelweave Gelatin Impregnated Woven Vascular 

Prosthesis vascular graft (Vascutek Ltd, Glasgow, UK) was cut at a 45° angle. Each 

nitinol connector was fastened to the graft with 7 radially tied 2-0 Ethibond Excel 

polyester suture (Ethicon, Somerville, NJ). Combined graft and nitinol connector were 

inserted into 19.05 mm inner diameter Zygon silicone tube (Saint-Gobain North America, 

Malvern, PA) through a 15.0 x 21.2 mm axes elliptical hole. Combined graft and 

connector were assessed for ease of insertion and smooth conformation to the inner 

lumen. Select nitinol connector designs were further assessed using bovine descending 

aorta specimens for identical assessment parameters. Based on these preliminary 

assessments, additional 0.36 mm gauge curved nitinol connectors were fabricated for 

further experimentation (Figure 19).  

Figure 19: Photographs of 0.36 mm gauge nitinol connector providing smooth conformation to the luminal 

wall of a bovine descending aorta specimen. 
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D. Felt Flanged Cuff Fabrication 

 Medical-grade polymer felt was cut and hand-sewn using 2-0 Ethibond Excel 

polyester suture (Ethicon, Somerville, NJ) to construct the flanged cuff structure as 

shown in Figure 20. Three coats of GE Silicone II (General Electric, Fairfield, CT) were 

applied to the exterior of each cuff, allowing each coat to cure for at least 30 minutes 

before re-application. After application of the final coat, they were allowed to dry for 24 

hours before initiating static and dynamic pressure testing. 

E. Bovine Aorta Specimens 

 Descending aorta specimens were excised from adult male jersey calves within 6 

hours of euthanasia. Specimens were removed carefully to maintain as much length of 

any branching arteries. Each vessel was immediately submerged in 3°C Belzer UW Cold 

Storage Solution (Bridge to Life Ltd., Columbia, SC) and cryopreserved at -80°C. 

 

 

A B 

Figure 20: Photographs of prototype felt flanged cuff. A) Sewn flanged cuff without silicone coating, 

B) Flanged cuff with 3 coats of silicone. 
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F. Static and Dynamic Pressure Testing 

 Cyanoacrylate, octylacrylate, and fibrin/thrombin adhesives were tested for 

adequate attachment strength of the GrAD to the bovine descending aorta specimens. The 

selected adhesive for attachment was cyanoacrylate. After thawing bovine descending 

aorta specimens, any branching arteries were tied off using 3-0 silk ties. If there was 

inadequate length to tie off branching arteries, 5-0 Prolene suture was used to cinch the 

hole shut and a drop of cyanoacrylate adhesive was applied for sealing. Tubing 

connectors were inserted into each end of the aorta specimen and secured using a 

combination of 2-0 silk ties and zip ties. Elliptical aortotomies were created in bovine 

descending aorta specimens (n=3) with major and minor mean axis ± standard deviation 

lengths of 10.5 ± 0.4 mm and 15.7 ± 0.9 mm, respectively. Combined graft and nitinol 

connectors were inserted through the aortotomy. Using opposition by pulling the free-end 

of the graft, the flanged cuff was slid down the exterior of the graft to interface snug with 

the exterior of the aorta. .07 mL of cyanoacrylate adhesive was applied between the 

flanged cuff and vessel, and between the graft and flanged cuff. Each anastomosis was 

allowed to cure for 30 seconds before attaching the vessel to the static/dynamic mock 

loop in its natural forward flow orientation. A new nitinol connector and flanged cuff was 

used for each experimental set.  
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The experimental setup (mock loop model) used for static pressure testing is 

shown in Figure 21. For each vessel an internal pressure of 0, 50, 100, 150, and 200 

mmHg was applied and maintained at steady-steady ( ± 2mmHg) at each pressure step for 

30 seconds, and any fluid leakage from the anastomosis was collected in a basin placed 

underneath the vessel. Total fluid loss at each pressure step was measured using a 

graduated cylinder. Fluid leak rate was calculated using the following equation and 

converted to mL/min for reporting: 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝐹𝑙𝑢𝑖𝑑 𝐿𝑜𝑠𝑠 (𝑚𝐿)

30𝑠
∗

60𝑠

1𝑚𝑖𝑛
=

𝑚𝐿

𝑚𝑖𝑛
 [𝐿𝑒𝑎𝑘 𝑅𝑎𝑡𝑒] 

Pressure was set using a pressure hand pump (Meriam Process Technologies, 

Cleveland, OH) connected to a SMART Manometer (Meriam Process Technologies, 

Cleveland, OH) and an air column compliance chamber via a three-way adapter. Internal 

Figure 21: Photograph showing experimental setup for static pressure testing. 
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pressure was measured using a Mikro-tip Pressure Transducer (Millar, Houston, TX) and 

continuously monitored with Labchart 8 (AD Instruments, Sydney, Australia).  

 

Dynamic pressure testing was completed using the mock flow loop model shown 

in Figure 22. The simulated test conditions and hemodynamic parameter requirements of 

each condition are shown in Table 3. The following hemodynamic measurements were 

continuously recorded for 30 seconds at a 400 Hz sampling rate using Labchart 8: 

1. Aortic Pressure (AoP) – mmHg 

2. Arterial Pressure (ArtP) – mmHg 

3. Aortic Flow (AoF) – L/min 

4. Ventricular Assist Device Flow (VADF) – L/min 

Fluid leakage from the anastomosis was collected during each data set and measured 

using a graduated cylinder. Mikro-tip Pressure Transducers were used to measure 

pressure and PXL Clamp-on Flowsensors (Transonic Systems Inc., Ithaca, NY) to 

measure flow. The mock ventricle was fitted with a single leaflet mechanical valve at the 

inlet and a trileaflet mechanical valve at the outlet with filling and ejection controlled 

using a customized pulse duplicator (LB Technology LLC, Louisville, KY). A Castaloy 

Normal Hypertension Heart Failure Partial Support

Artmean (mmHg) 90 - 110 > 120 < 90 80 - 100

ArtPsystolic  (mmHg) 110 - 130 > 140 < 100 100 - 120

ArtPdiastolic  (mmHg) 70 - 90 > 100 < 60 60-90

AoFmean (L/min) 4.5 - 5.0 4.5 - 5.0 3.0 - 4.0 4.0 - 5.0

VADFmean (L/min) 0.0 0.0 0.0 2.0 - 3.0

Table 3: Hemodynamic tuning parameters for each dynamic mock loop condition. 
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clamp (Thermo Fisher Scientific, Waltham, MA) was used to vary afterload resistance. 

An air-filled column chamber was used to vary compliance. For the LVAD support test 

condition, a HeartMate II (Thoratec Corp., Pleasanton, CA) was used. All hemodynamic 

data were signal conditioned using a custom data acquisition system (Koenig et al., 

2004). All pressure and flow transducers were pre- and post-calibrated using an 

established technique (Koenig et al., 2004).  

 

G. Pull-out Testing 

The experimental setup for mechanical pull-out testing is shown in Figure 23. 

Following completion of the static and dynamic pressure tests, an experienced cardiac 

surgeon anastomosed a 15 mm GelWeave graft in a running suture technique with 4-0 

Prolene suture onto the same aortic specimen used in static and dynamic pressure tests 

(note: same person performed all hand sutured anastomosis for all tests). For each vessel, 

Figure 22: Photo and block diagram showing experimental setup for dynamic mock loop pressure tests; 

Systemic vascular resistance (SVR); left ventricular assist device (LVAD). 
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a hand-sewn anastomosis was constructed on the opposite side of the previously attached 

anastomosis device. A 12.7 mm diameter round bar was passed through the vessel, which 

was then mounted to a 609.6 x 609.6 x 12.5 mm piece of slate. The graft from the 

anastomosis being tested was secured in-between two metal plates with sandpaper 

adhered to the contacting surfaces. #16 wire was passed through a bored hole through the 

plates to attach the graft to a HF-50 Force Gauge (M&A Instruments Inc., Arcadia, CA). 

A preload of 2.5 ± 0.5 N was applied before hand-pulling the gauge vertically upwards 

until failure and peak force was achieved and recorded. Each vessel and graft was 

photographed at the original site of the anastomosis. The hand-sewn anastomosis or 

device anastomosis was randomly selected to be tested first, but it was ensured that at 

least one from each group was tested first.  

Figure 23: Experimental setup for pull-out testing. 
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H. Analysis Methods 

The mean hemodynamic parameter values recorded during the dynamic pressure 

testing were calculated on a beat-to-beat basis using Labchart 8. Previously reported 

results for blood leakage rates under normal dynamic pressure (120/80 mmHg) associated 

with hand-sewn suture anastomoses (Sergeant, Kocharian, Patel, Pfefferkorn, & 

Matonick, 2016) were used for comparison. All statistical tests were performed using 

GraphPad Prism (GraphPad Software Inc., La Jolla, CA) and a 95% confidence level (p 

< .05) was used for determining statistical significance. 
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III. RESULTS 

 

 

A. Final Prototype Design 

  

Figure 24: Dimensions of the prototype nitinol connector used for experimentation. 
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 The dimensions for the nitinol connector and flanged cuff that were tested 

experimentally are shown in Figures 24-25. A curved 0.36 mm thick nitinol wire with 

intermittent spring elements was selected based on ease of collapsibility, smooth 

conformation to the luminal vessel wall, adequate rigidity to remain within the vessel, 

and capability to be fastened to a vascular graft. The addition of spring elements 

enhanced the collapsibility of the connector and provided a graft attachment point.  

 

B. Static Pressure Testing 

A summary of the leak rates for all static pressure steps are presented in Table 4. 

There was an increase in mean leak rate with increasing pressure for all device completed 

Figure 25: Dimensions of the prototype flanged cuff used for experimentation. 
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anastomoses. All leaks were categorized as drips. Notably, a consistently larger leak rate 

was reported in vessel #2 at all pressure steps (Figure 26). 

 

 

Table 4: Mean ± standard deviation of leak rates from static pressure tests. 
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Figure 26: Leak rates for each vessel during static pressure tests. Vessel 2 consistently showed greater leak 

rates at all pressures ≥ 50 mmHg. 

Pressure 

(mmHg)

Leak Rate 

(mL/min)

0 0.00 ± 0.00

50 5.6 ± 7.1

100 11.9 ± 11.4

150 22.7 ± 20.7

200 43.6 ± 23.4
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C. Dynamic Pressure Testing 

 Each of the dynamic pressure test conditions met the aforementioned 

hemodynamic requirements for ArtP, AoF, and VADF. Pressure trends consistent with 

other mock loop studies (Bartoli et al., 2010; Giridharan et al., 2015) were observed in 

ArtPmean, PAoPmean, AoF, and VADF between conditions (Table 5, Figure 27):  

 1) Increased mean pressures from normal to hypertension 

 2) Decreased mean pressures and AoF from normal to heart failure 

 3) Increased mean pressures and flows from heart failure to LVAD support 

Sample pressure and flow waveforms for each dynamic pressure test condition are shown 

in Figure 28. 

 

Figure 27- Graphs comparing pressure and flows for each dynamic mock loop condition reflecting typical 

physiologic trends in hemodynamic parameters associated with each condition; arterial pressure (ArtP); 

aortic pressure (AoP); aortic flow (AoF); left ventricular assist device (LVAD). 
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Figure 28: Sample waveforms collected for normal, hypertension, heart failure, and LVAD support dynamic 

mock loop tests. 

 
Normal

(n=3)

Hypertension

(n=3)

Heart Failure

(n=3)

LVAD Support

(n=3)

ArtPmean (mmHg) 100 ± 2 131 ± 1 79 ± 4 83 ± 7

ArtPsystolic  (mmHg) 121 ± 1 153 ± 2 94 ± 4 99 ± 6

ArtPdiastolic  (mmHg) 82 ± 2 111 ± 3 65 ± 2 67 ± 5

AoPmean  (mmHg) 112 ± 8 143 ± 10 86 ± 10 106 ± 9

AoPsystolic  (mmHg) 154 ± 18 187 ± 24 127 ± 24 160 ± 26

AoPdiastolic  (mmHg) 64 ± 7 84 ± 13 44 ± 8 55 ± 18

AoFmean (L/min) 4.79 ± 0.14 4.67 ± 0.11 3.65 ± 0.19 4.09 ± 0.09

VADFmean (L/min) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.49 ± 0.26

Table 5: Mean ± standard deviations of hemodynamic parameter measurements calculated on a beat-to-

beat basis for dynamic mock loop tests; arterial pressure (ArtP); aortic pressure (AoP); aortic flow (AoF); 

ventricular assist device flow (VADF); left ventricular assist device (LVAD) 
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The leak rates recorded for dynamic pressure tests are listed in Table 6, and the 

leak rates for the static and dynamic pressure tests are shown in Figure 29. Although a 

noticeable positive correlation was observed between mean leak rate and mean pressures, 

no statistically discernible differences were observed. The leak rates for normal mock 

flow loop condition and literature reported leak rates for sutured anastomosis are shown 

in Figure 30. A one-way ANOVA demonstrated a significant difference in leak rate 

between the GrAD and sutured anastomosis (p ≤ 0.05) was observed. A Tukey 

comparison test showed significant differences in leak rates between the GrAD and 

Prolene 2, as well e-PTFE sutures (Table 7, Figure 30). No differences in leak rate 

between the GrAD and other sutures were statistically discernible. All leaks were 

categorized as drips.  

 

Table 6: Mean ± standard deviation leak rates for dynamic mock loop pressure tests; 

left ventricular assist device (LVAD) 

Hemodynamic 

Condition

Leak Rate 

(mL/min) 

(n=3)

Normal 22.1 ± 9.3

Hypertension 23.1 ± 10.1

Heart Failure 16.4 ± 6.4

LVAD Support 16.4 ± 4.3
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Suture Size Needle Type N:S Ratio Suture Material

Sergeant et al. Study Sutures

Hemo-Seal Prolene (HS) 5-0 C-1 1.84:1 Monofilament polypropylene

Prolene 1 (PR1) 5-0 C-1 2.41:1 Monofilament polypropylene

Prolene 2 (PR2) 5-0 C-1 2.06:1 Monofilament polypropylene

e-PTFE (PTFE) CV-6 TTc-13 1.4:1 Monofilament e-PTFE

Additional Graft Sutures

Prolene 3 3-0 SH 2.6:1 Monofilament polypropylene

Prolene 4 4-0 SH 3.47:1 Monofilament polypropylene

Prolene 5 5-0 SH 5.2:1 Monofilament polypropylene

Figure 29: Leak rates for static and dynamic pressure tests; left ventricular assist device (LVAD). 

Table 7: Specifications for typical suture types used for anastomosis; needle:suture diameter ratio (N:S 

Ratio); polytetrafluoroethylene (PTFE). 
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D. Pull-Out Testing 

 A comparison of peak pull-out forces for the GrAD and suture anastomosis is 

shown in Figure 31. The sutured anastomosis had a 19.9 N higher mean peak pull-out 

force than the device anastomosis, but paired t-test showed no significant difference in 

means.  

Sample photos of the anastomosis device and aorta at the site of the anastomosis 

after pull-out testing are shown in Figure 32. All modes of failure for the GrAD appeared 

to be due to delamination of the adventitia (outermost layer of vessel tissue) based on the 

confluent layer of tissue observed on the flange face attached to the aorta. This was 

further supported by the discernably continuous difference in tissue color and depth on 

Figure 30: Graph comparing mean leak rate from graft anastomosis device (GrAD) and literature reported 

leak rate of Hemo-Seal (HS), Prolene (PR 1, PR 2), and expanded-polytetrafluoroethylene (PTFE) sutures. 

Asterisks show significant differences between GrAD and PR1 and PTFE (p < .05). 
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the aorta at the site of the failed anastomoses. No signs of damage were observed in the 

nitinol connector or flanged cuff for all samples.  

Figure 32: Peak pull-out force for graft anastomosis device (GrAD) 

and sutured anastomosis. 

A B 

Figure 31: Photographs of the graft anastomosis device (GrAD) after pull-out testing with no indications 

of device damage. A) The debonded device with an observable layer of adventitial tissue on the flanged 

cuff, 2) Bovine descending aorta after delamination of a portion of the adventitial tissue by the device. 
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Sample photos of the suture and aorta at the site of the anastomosis are shown in 

Figure 33. The mode of failure for two of the suture anastomoses was due to the tissue 

tearing propagating from the suture holes. This was supported by the slits observed at 

every suture hole on the aorta and the remaining tissue within the intact sutures. For 

Vessel 2, the mode of failure appeared to be in part due to tissue tear propagation, as well 

as fracture of the suture. This was supported by the absence of slits propagating from a 

portion of the suture holes. Furthermore, a sliver of tissue remained where the suture was 

intact, but no tissue remnants were observed where the suture fractured (Figure 33).  

  

A B 

Figure 33: Photographs of the suture anastomosis after pull-out testing. A) Anastomosis site on the aorta 

where slits from suture ripping vessel can be observed, B) Fractured suture with a sliver of aortic tissue 

remaining. 
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IV. DISCUSSION 

 

 

 In regards to static pressure and dynamic pressure testing, all GrADs remained 

securely attached throughout all physiological hemodynamic test conditions. All leak 

rates were classified as drips that may have clotted if whole blood had been used (instead 

of water). The majority of leaks were observed to originate from the vascular graft that 

was uncovered by the flanged cuff and from ineffectively closed branching vessels from 

the aorta. Leaking innate to the device originated from the attachment of the graft and 

flanged cuff. It is speculated that a poor seal was created where the cuff, graft, and 

aortotomy interfaced. Alternative adhesives or solutions for attaching the flanged cuff 

and graft material may mitigate or effectively seal this connection point from leaking.  

 Comparison of leak rates under normal physiologic pressure (120/80 mmHg) 

between the GrAD and sutures showed statistically significant lower leak rate by the 

device compared to Prolene 1 and PTFE suture, and no statistically discernible 

differences were observed in comparing Hemo-Seal Prolene and Prolene 2 (Table 07). 

Sergeant et al. evaluated needle-hole blood leakage of various suture types from an end-

to-end anastomosis of ePTFE grafts at normal physiologic pressures (120/80 mmHg) 

(Sergeant et al., 2016). Higher needle:suture (N:S) ratios were associated with higher leak 

rates; therefore, it can be speculated that leak rates of other common sutures for 
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anastomosis with larger N:S ratios (Prolene 3, Prolene 4, Prolene 5) may have resulted in 

significantly higher leak rates similar to Prolene 1. There were several differences in 

experimental design between the Seargent et al. study and the normal dynamic pressure 

test in this project, including: 1) an anticoagulated blood solution as opposed to DI water, 

2) non-porous ePTFE grafts were used rather than gelatin-impregnated porous PET. 

Anticoagulated blood has been previously shown to leak from a syringe tip at rate 5.5 

times slower than water (Elblbesy, 2014). The non-porous ePTFE graft did not contribute 

to the total leak rate, whereas leakage from the porous gelatin-impregnated grafts was 

included in the total leak rate in these experiments. The lower associated leak rate of 

blood and non-porous graft material would suggest that suture leak rates in the Sergeant 

el al. study should be less than the device. These variations may have contributed, in part, 

to the 11.6% reduction in mean leak rate of Hemo-Seal suture compared to the device, 

although it was demonstrated that the GrAD produced similar leak rates as conventional 

sutures used for anastomosis.  

In regards to peak pull-out strengths, no statistically significant differences were 

discerned between GrAD and sutured anastomosis. Based on the GrAD failure mode 

attributed to delamination of the adventitial layer of the aorta, pull-out strength is 

believed to be dependent on the strength of the bonds between aortic tissue layers 

suggesting that the bond strength provided by cyanoacrylate adhesive between the 

flanged cuff and aortic tissue is stronger than the bond strength between the layers of the 

aorta. Comparatively, pull-out strength for suture anastomosis is believed to be dependent 

on the strength of the suture and the strength of the aortic wall against an opening mode 

tearing fracture.  
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Sutureless connection to the aorta minimizes potential risk of tissue trauma 

inherent to the presence of non-absorbable sutures through the tissue. It may also reduce 

the time required to complete the anastomosis and be configured for a range of aortic 

thicknesses and graft diameters. Since this device employs a two component attachment 

method to compress the aortic wall, it is not limited by narrow range of aortic thickness 

specifications associated with the Symmetry and Pas-PORT devices. Up-scaling or 

down-scaling the connector dimensions to accommodate different graft diameters would 

simply require proportional scaling of the frames used to fabricate the rings. In GrAD 

design, an angled anastomosis is maintained by the flanged cuff which has been shown to 

promote superior blood flow dynamics and reduce the risk of clinical adverse events. 

 An important design consideration is the selection and/or development of a 

surgical adhesive. Acrylate-based adhesives, including cyanoacrylate, have not been 

approved for human internal use and have been reported to be toxic and thrombogenic. 

Fibrin glue adhesives, which are approved for human internal applications, were 

evaluated as a candidate adhesive for the device. However, we chose to use water (rather 

than whole blood) to demonstrate early feasibility, which did not allow clot formation 

and likely resulted in a higher leak rate. Fibrin sealant has been used to achieve 

hemostasis at the higher pressure levels in the arterial systems (B. Baumgartner, Draxler, 

& Lewis, 2016; N. Baumgartner et al., 1996; Detweiler, Detweiler, & Fenton, 1999),   

warranting further investigation of fibrin and other adhesives as an alternative solution. In 

this study, it was demonstrated that cyanoacrylate is capable of securely attaching LVAD 
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outflow grafts to the aorta, and is worth further consideration and investigation as a 

potential clinical sealant.  

 

A. Limitations 

To demonstrate proof-of-concept of device performance and early feasibility of 

device function, a small sample size (n=3) for each test was performed. Larger sample 

size based upon a power analysis will be required to demonstrate statistical significance, 

which will likely be performed once a design freeze has been achieved. A limitation 

associated with the static and dynamic leak testing was that in quantifying the leak rate, 

the fluid volume from the graft and branching vessels (not completely closed) were 

included in the overall leak rate calculation. For example, Vessel #2 was observed to be 

leaking in large part from the graft section that was not covered by the flanged cuff, 

which may be attributed to protein degradation of the gelatin that was impregnated into 

the porous graft. Vessels #1 and #3 were not observed to be leaking as profusely from the 

graft during static pressure tests.  A second limitation of the pressure experiments was the 

use of water rather than whole blood, which represented a lower viscosity as is seen in 

anticoagulated blood and a worst case for leak rate.  In future testing, the leak rate should 

be lower with the use of whole blood. A limitation associated with the pull-out tests was 

the apparatus constructed for testing. Since the force gauge was pulled vertically by hand, 

inconsistent directional tension may have been applied to each test sample. Second, the 

velocity that the force gauge was pulled may have varied for each test sample. These 

variables could be addressed if future pull-out experiments were conducted using a 

universal testing machine.  
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 Cryopreservation methodology of the bovine descending aorta specimens may 

have altered the natural mechanical and molecular properties compared to fresh harvested 

tissue. UW solution is a commonly used solution hypothermic storage of blood vessels to 

minimize cellular degeneration (Abrahamse, Dinant, Pfaffendorf, & Van Gulik, 2002). 

However, hypothermia and cryopreservation has been shown to induce cellular damage 

(Wille, de Groot, & Rauen, 2008). Previous studies comparing vessel mechanics of fresh 

and cryopreserved tissues have reported contradictory results on the effects of 

cryopreservation, although a majority have found no significant differences (Stemper et 

al., 2007). A recent study demonstrated that vessels maintained physiological mechanics 

after 3 months of cryopreservation (Stemper et al., 2007). All bovine descending aorta 

specimens used for experiments were stored at -80°C for 3 to 4 months before 

experiments using similar established methods for cryopreservation. There is still a 

potential that the hypothermic storage, tissue handling, and series of experiments could 

have altered the behavior of the tissue affecting the results of this project. Fresh aortic 

segments may have reduced any variability due to tissue handling or storage.  
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V. CONCLUSION 

 

 

The primary objective of this MEng thesis to develop a novel device that 

facilitates LVAD outflow graft anastomosis by demonstrating proof-of-concept and 

feasibility of prototype design. The preliminary data demonstrated feasibility as 

evidenced by secure connection to the aorta over a wide range of physiologic static and 

dynamic pressures, as well as leak rates and connection strength comparable to 

conventional hand-sutured anastomosis. Future developmental work should focus on (1) 

alternative adhesive exploration and (2) deployment tool. Since the nitinol connector and 

flanged cuff are collapsible, the components can be easily loaded into a deployment tool 

for device delivery.  A dedicated deployment tool would also allow for the device to be 

deployed in small surgical windows using less invasive surgical techniques. 

Three key characteristics of the prototype GrAD that may facilitate LVAD 

outflow graft anastomosis are: 1) sutureless connection to the aorta, 2) adaptable to 

various aortic thicknesses and graft diameters, and 3) 30-45 angled anastomosis. This 

novel device could provide an alternative method for LVAD outflow graft anastomosis 

that may be completed faster, more consistently, and with less dependence on surgical 

skill than conventional hand-suturing, thereby potentially allowing outflow anastomosis 

to be completed less-invasively. The device enables a sutureless, adaptable, and angled 
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anastomosis. Thereby, it has the potential of facilitating less-invasive LVAD 

implantation, faster implant time, and improving the reliability and reproducibility with 

the potential to improve patient outcomes. 
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APPENDIX I: RAW AND ADDITIONAL DATA 

 

Table 8: Static pressure test raw leak rate data. 

  

Pressure (mmHg)

Leak Rate (mL/30s) Note Leak Rate (mL/30s) Note Leak Rate (mL/30s) Note

0 0 Drip 0 Drip 0 Drip

50 0.6 Drip 7.8 Drip 0 Drip

100 1.6 Drip 14 Drip (Graft) 2.2 Drip

150 3.8 Drip 26 Drip (Graft) 4.2 Drip

200 5.4 Drip 32 Drip (Graft) 28 Drip (graft)

Leak Rate (mL/30s)

Vessel 1 Vessel 2 Vessel 3
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Table 9: Dynamic pressure test leak rate raw data. 

 

  

Leak Rate (mL/30s) Note Leak Rate (mL/30s) Note Leak Rate (mL/30s) Note

Normal 5.6 Drip 17 Drip (graft) 10.5 Drip

Hypertension 5.7 Drip 18 Drip (graft) 11 Drip

Heart Failure 6.8 Drip 12.6 Drip (graft) 5.2 Drip

Partial VAD Support 7.9 Drip 11 Drip (graft) 5.7 Drip

Vessel 1 Vessel 2 Vessel 3

Dynamic Pressure Leak Rate Data
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Table 10: Dynamic pressure test hemodynamic beat-to-beat raw calculations 
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Table 11: Pull-out force raw Data. 

 

  

Peak Pull-out Strength (N) 

  Device Suture 

1 63.43 53.43 

2 31.62 67.95 

3 35.66 69.06 
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APPENDIX II: STATISTICAL ANALYSIS 

 

 

A) Dynamic Pressure Leak Rate ANOVA 

 

Table Analyzed Data 1     

      

ANOVA summary      

  F 0.4194     

  P value 0.7441     

  P value summary ns     

  Are differences among means statistically significant? (P < 0.05) No   

  

  R square 0.1359     

      

Brown-Forsythe test      

  F (DFn, DFd) 0.4021 (3, 8)     

  P value 0.7555     

  P value summary ns     

  Significantly different standard deviations? (P < 0.05) No     

      

Bartlett's test      

  Bartlett's statistic (corrected)      

  P value      

  P value summary      

  Significantly different standard deviations? (P < 0.05)      

      

ANOVA table SS DF MS F (DFn, DFd) P value 

  Treatment (between columns) 117.0 3 39.01 F (3, 8) = 0.4194 P = 

0.7441 

  Residual (within columns) 744.1 8 93.02   

  Total 861.2 11    

      

Data summary      

  Number of treatments (columns) 4     

  Number of values (total) 12     

B) Unpaired ANOVA against Literature Data 
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Table Analyzed Data 1     

      

ANOVA summary      

  F 83.02     

  P value < 0.0001     

  P value summary ****     

  Are differences among means statistically significant? (P < 0.05) Yes   

  

  R square 0.8098     

      

Brown-Forsythe test      

  F (DFn, DFd)      

  P value      

  P value summary      

  Significantly different standard deviations? (P < 0.05)      

      

Bartlett's test      

  Bartlett's statistic (corrected)      

  P value      

  P value summary      

  Significantly different standard deviations? (P < 0.05)      

      

ANOVA table SS DF MS F (DFn, DFd) P value 

  Treatment (between columns) 16516 4 4129 F (4, 78) = 83.02 P < 

0.0001 

  Residual (within columns) 3879 78 49.73   

  Total 20395 82    

      

Data summary      

  Number of treatments (columns) 5     

  Number of values (total) 83   
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B) Tukey Test of Leak Rates from Device vs Literature 

         

Number of families 1        

Number of comparisons per family 10        

Alpha 0.05        

         

Tukey's multiple comparisons test Mean Diff. 95% CI of diff. Significant?

 Summary     

         

  Device vs. SH 2.270 -9.923 to 14.46 No ns  A-B   

  Device vs. PR 1 -35.13 -47.32 to -22.94 Yes ****  A-C   

  Device vs. PR 2 -11.73 -23.92 to 0.4635 No ns  A-D   

  Device vs. PTFE -24.43 -36.62 to -12.24 Yes ****  A-E   

  SH vs. PR 1 -37.40 -43.63 to -31.17 Yes ****  B-C   

  SH vs. PR 2 -14.00 -20.23 to -7.772 Yes ****  B-D   

  SH vs. PTFE -26.70 -32.93 to -20.47 Yes ****  B-E   

  PR 1 vs. PR 2 23.40 17.17 to 29.63 Yes ****  C-D   

  PR 1 vs. PTFE 10.70 4.472 to 16.93 Yes ****  C-E   

  PR 2 vs. PTFE -12.70 -18.93 to -6.472 Yes ****  D-E   

         

         

Test details Mean 1 Mean 2 Mean Diff. SE of diff. n1 n2

 q DF 

         

  Device vs. SH 22.07 19.80 2.270 4.366 3 20 0.7352 78 

  Device vs. PR 1 22.07 57.20 -35.13 4.366 3 20 11.38 78 

  Device vs. PR 2 22.07 33.80 -11.73 4.366 3 20 3.799 78 

  Device vs. PTFE 22.07 46.50 -24.43 4.366 3 20 7.913 78 

  SH vs. PR 1 19.80 57.20 -37.40 2.230 20 20 23.72 78 

  SH vs. PR 2 19.80 33.80 -14.00 2.230 20 20 8.878 78 

  SH vs. PTFE 19.80 46.50 -26.70 2.230 20 20 16.93 78 

  PR 1 vs. PR 2 57.20 33.80 23.40 2.230 20 20 14.84 78 

  PR 1 vs. PTFE 57.20 46.50 10.70 2.230 20 20 6.785 78 

  PR 2 vs. PTFE 33.80 46.50 -12.70 2.230 20 20 8.054 78 
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C) Paired T-Test for Pull-Out Tests 

 

Table Analyzed Paired t test data 

  

Column A Device 

vs. vs. 

Column B Suture 

  

Paired t test  

  P value 0.3151 

  P value summary ns 

  Significantly different? (P < 0.05) No 

  One- or two-tailed P value? Two-tailed 

  t, df t=1.329 df=2 

  Number of pairs 3 

  

How big is the difference?  

  Mean of differences -19.91 

  SD of differences 25.94 

  SEM of differences 14.98 

  95% confidence interval -84.36 to 44.54 

  R squared 0.4690 

  

How effective was the pairing?  

  Correlation coefficient (r) -0.9837 

  P value (one tailed) 0.0575 

  P value summary ns 

  Was the pairing significantly effective? No 

  



87 
 

 

 

 

 

 

 

 

 

 

VII. Curriculum Vitae 

 

YOUNG CHOI 
MEng Student in Bioengineering 

J.B. Speed School of Engineering 

University of Louisville 

Education: 
Master of Engineering in Bioengineering | University of Louisville | Expected 2015 | GPA 3.79 / 4.00 

Bachelor of Science in Bioengineering with Honors | University of Louisville | 2014 | GPA 3.26 / 4.00 

 

 

Contact: 
(502) 938-3231 

y0choi05@louisville.edu 

1021 Ardmore Drive 

Louisville, KY 40217 

 

 

Office: 
Cardiovascular Innovation Institute 

302 East Muhammad Ali Blvd. 

Department of Bioengineering 

University of Louisville 

Louisville, KY 40202 

Fax: 502-587-4011 

 

 

 

Academic and Professional Experience: 
Research Assistant | Cardiovascular Innovation Institute | May 2014 – Present 

 Support principal investigators of the Cardiovascular Research (CARE) group with data acquisition, and 

grant/manuscript preparation 

 Develop a device for sutureless left ventricular assist device outflow graft anastomosis as Master’s of 

Engineering (MEng) thesis 



88 
 

 Perform weekly echocardiography assessment using a Philips IE33 Ultrasound System of large animals 

with mechanical circulatory support devices implanted 

 

Engineering Co-op | Cardiovascular Innovation Institute | Aug 2012 – May 2014 

 Provided engineering support through data instrumentation, acquisition and analysis, developing 

experimental protocols, and grant/manuscript writing 

 Captured intraoperative echocardiograms using a Philips IE33 Ultrasound System during large animal 

studies, and performed 3-D volumetric analysis using QLAB quantification software (Philips, 

Amsterdam, Netherlands) 

 Assisted in large animal and cadaver studies for mechanical circulatory support devices and medical 

devices as engineering support and circulator 

 Designed Solidworks (Dassault Systémes SolidWorks Corp., Waltham, MA) computer-aided designs 

(CADs) of electrocardiogram (EKG) leads and cannulas; EKG leads were prototyped 

 Generated signal processing MATLAB scripts for reduction and analysis of hemodynamic waveform 

data 

 Supervised a high school student’s Intel International Science and Engineering Fair (ISEF) project – 

Sumanth Chenraddy  

 Designed and conducted ex-vivo experiments with kidneys and carotid arteries investigating pulsatility 

effects 

 

Clinical Research Associate | University Cardiothoracic Surgical Associates, Jewish Hospital Rudd 

Heart and Lung Center | Jan 2013 – Jan 2014 

 HIPAA certified for data and tissue collection, and retrieval of informed patient consent for clinical 

research studies 

 Harvested and processed tissue for multiple Institutional Review Board (IRB) approved clinical studies 

 Compiled retrospective data on 180+ patients from patient medical records for multi-institutional study 

in cooperation with Natasha Loghmanpour (Carnegie-Mellon Unieversity) to develop a risk 

stratification model for ventricular assist device 90-day survival 

 Retrieved and input data for IRB studies involving ventricular assist device implantation; devices 

included HVAD (HeartWare International Inc., Framingham, MA)  and HeartMate II (Thoratec Corp., 

Pleasanton, CA) Ventricular Assist Devices  

Bachelors of Science Senior Capstone Project | University of Louisville | Aug 2013 – Dec 2013 

 Worked on a team to develop MATLAB code for body edge detection in Multi-Spectral Optoacoustic 

Tomography (MSOT) images, including a complete mock FDA 510(k) submission for market approval 

 Independently generated Matlab code for Region of Interest (ROI) masking of MSOT color images for 

Dr. Lacey McNally at the James Graham Brown Cancer Center  

 

Student Research Assistant | University of Louisville | Feb 2012 – Dec 2012 

 Conducted background research for the development of 3-dimensional cellular models of ovarian cancer 

under the supervision of Dr. Hermann B Frieboes 

 

Technical Skills: 

 Software: MATLAB (Signal/Image Processing), ANSYS, LabVIEW, Multisim, SolidWorks, 

AutoCAD, Adobe Photoshop CS6, Microsoft Office, Minitab, GraphPad Prism, Phillips QLAB 

 Programming: C++, HTML (CSS), Android Studio, Arduino 

 Languages: Korean (advanced, 10+ years studied), Spanish (advanced, 13+ years studied), German 

(beginner, 1 year studied) 

Leadership Positions and Activities: 
Biomedical Engineering Society Louisville Student Chapter | President May 2014 – Sept 2014 | 



89 
 

Member Jan 2014 - Present 

 Fundraised $3000+ for the organization that was used for BMES events on campus and cover travel 

expenses for 3 undergraduate BMES members to attend the 2014 BMES Annual Meeting in San 

Antonio, TX 

 Organized the 3rd Annual Bioengineering Pig Roast and Research Showcase—An annual BMES event 

at the University of Louisville to showcase the Bioengineering departmental research to student body 

 

Biomedical Engineering Society (BMES) | Member 2014 to 2015 

 

American Society of Artificial Internal Organs (ASAIO) | Member Aug 2014 - Present  

 Attended the ASAIO 60th-61st Annual Conference 

 

Biomedical Engineering Society 

 

Bamboozle Breakdance Crew | Member Jan 2010 – Present 

 Perform as part of a dance group at local venues, events, and fundraisers 

 Instruct classes at Saffiyah’s Dance Company (Louisville, KY)  

 

Americana Community Center Volunteer | May 2010 – Dec 2011 

 Founding member of the student organization intended to promote dance within the Louisville 

community as a fun and safe activity for young adults 

 Volunteered weekly at the Americana Community Center, Inc. (Louisville, KY) to provide free dance 

classes to low-income families, including refugees and immigrants 

 

 

Honors: 
Whitaker International Fellow  

Award funding one year abroad for the development of a right ventricular assist device at RWTH Aachen 

University (Aachen, Germany) 

Joseph Henry Award in Translational Bioengineering  

Award recognizing a student who has devised or potentially devised a new medical invention 

 

Rolando “Chip” Cheng, Jr. Memorial Scholarship 

Award recognizing a student that reflects humanitarianism, innovative mind, and entrepreneurial spirit.” 

 

Master of Engineering (MEng) Research Assistantship  

MEng scholarship that provides full tuition plus stipend graduate studies sponsored by Dr. Steven Koenig 

 

Trustee’s Scholarship 

Competitive undergraduate scholarship that provides full tuition. 

 

Kentucky Educational Excellence Scholarship (KEES) Award 

Scholarship award that provided up to $2225 each academic year for four years based on high school GPA, 

ACT score, and Advanced Placement course credit.  

 

Additional Honors & Awards 

 Dean’s List (Spring 2012, Summer 2012, Fall 2013) 

 University of Louisville Honor’s Program 

 

 



90 
 

Peer Reviewed Publications:  
Peer-Reviewed Journals - Published  

1. Linsky PL, Choi Y, Ouseph R, Slaughter MS, Keller BB, Jones CM. High Resolution Imaging using the 

VisualSonics Vevo 2100 on Isolated, Perfused Porcine Kidneys on Mechanical Circulatory Support. 

ASAIO J. 2014;60(4):473-8.  

2. Koenig SC, Jimenez JH, West SD, Sobieski MA, Choi Y, Monreal G, Giridharan GA, Soucy KG, 

Slaughter MS. Early Feasibility Testing and Engineering Development of a Universal Sutureless 

Beating Heart (SBH) Connector for Left Ventricular Assist Devices (LVAD). ASAIO 

J. 2014;60(6):617-25. 

3. Slaughter MS, Soucy KG, Matheny RG, Lewis BC, Hennick MF, Choi Y, Monreal G, Sobieski MA, 

Giridharan GA, Koenig SC. Development of an Extracellular Matrix (ECM) Delivery System for 

Effective Intramyocardial Injection in Ischemic Tissue. ASAIO J. 2014;60(6):730-6.   

4. Soucy KG, Giridharan GA, Choi Y, Sobieski MA, Monreal G, Schumer E, Slaughter MS, Koenig SC. 

Rotary Pump Speed Modulation for Generating Pulsatile Flow and Phasic Left Ventricular Volume 

Unloading in a Bovine Model of Chronic Ischemic Heart Failure. J Heart Lung Transplant. 

2015;34(1):122-31.  

5. Giridharan GA, Koenig SC, Soucy KG, Choi Y, Pirbodaghi T, Bartoli CR, Monreal G, Sobieski MA, 

Schumer E, Cheng A, Slaughter MS. Hemodynamic Changes and Retrograde Flow in LVAD Failure. 

ASAIO J. 2015;61(3):282-91. 

6. Giridharan GA, Koenig SC, Soucy KG, Choi Y, Pirbodaghi T, Bartoli CR, Monreal G, Sobieski MA, 

Schumer E, Cheng A, Slaughter MS. Left Ventricular Volume Unloading with Axial and Centrifugal 

Rotary Blood Pumps. ASAIO J. 2015;61(3):292-300.  

7. Schumer EM, Zoeller KA, Linsky PL, Monreal G, Choi Y, Giridharan GA, Sobieski MA, Slaughter 

MS, van Berkel VH. Feasibility study of pulsatile left ventricular assist device for prolonged ex vivo 

lung perfusion. Annals of Thoracic Surgery. 2015;99(6):1961-7. 

 

 


	Development of a novel device for ventricular assist device outflow graft anastomosis.
	Recommended Citation

	tmp.1464032950.pdf.owEqd

