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ABSTRACT 

WOODY PLANT COMMUNITIES OF THREE URBAN WETLANDS 

AND THE SUCCESS OF AN INVASIVE SHRUB (LONICERA MAACKII) OVER 

NATURAL AND EXPERIMENTAL FLOODING GRADIENTS 

 

Meghan R. Langley 

June 3, 2016 

 Globally, wetlands are known for providing important ecosystem services that 

enhance the quality of human life and regulating global biogeochemical cycles.  Despite 

the wide recognition of their value, temperate forested wetlands are the least protected 

type of ecosystem world-wide, and are threatened by human activities such as logging 

and development.  The ecology of forested wetlands remaining in urbanized areas is 

impacted by a multitude of anthropogenic threats, including fragmentation (which 

decreases the amount of interior habitat and increases edge habitat), hydrologic 

modification (ditching and draining of wetlands) and the incursion of invasive species 

(which are frequently introduced by human activities).   

In the first study presented in this dissertation (Chapter 2), I examined how woody 

plant communities of three urban wetlands—the dominant biota of these ecosystems—

changed along edge-to-interior and hydrologic gradients.  Detailed measurements of 

elevation, surface water levels, and ground water levels were made to estimate the 

number of days each transect was flooded.  The three study forests were surveyed in 

transects along edge-to-interior gradients (0-60 meters from the forest edge) and were 
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found to exhibit a gradient of flooding (measured as the number of days flooded in 

sampled areas).  Ordination with non-metric multidimensional scaling (NMS)—using 

Importance Values (IVs) of adult trees, saplings, tree seedlings, shrubs and vines in 

transects at 1, 5, 10, 30 and 60 m from the edge—was used to see if patterns in the woody 

plant community related to distance from edge, number of days flooded and other 

environmental variables.  

Distance from the forest edge and number of days flooded were the two variables 

shown to be most correlated with ordination axes generated from the species matrix 

(r
2
≥0.15), and each was associated with a different axis.  The shrub community was most 

indicative of community differences along the hydrologic gradient (Axis 1); Lindera 

benzoin (a facultative shrub) and Cornus foemina (a facultative wetland shrub) were the 

species most associated with drier and wetter transects, respectively.  The invasive shrub 

species, Lonicera maackii, was present at all sites, but more important at the two driest 

sites.  Because the relative elevation (within a transect) of L. maackii plants increased 

with the number of days flooded, it appeared that higher elevation microsites may have 

provided refugia for the establishment and/or persistence of this invasive species in 

flooded areas.  Fraxinus pennsylvanica (green ash) was a major component of the tree 

canopy species at all sites, and the imminent threat posed by the emerald ash borer 

(Agrilus planipennis) will most certainly result in the formation of large canopy gaps.   

Following the findings of Chapter 2, two manipulated experiments were 

conducted to determine the degree to which L. maackii was impacted by flooding at early 

life history stages. In the first experiment (Chapter 3), seedlings of L. maackii were 

subjected to factorial treatment combinations of simulated canopy cover (2 levels), 
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flooding duration (3 levels) and flooding depth (4 levels) in experimental mesocosms for 

40 days.  Flooding events were followed by a recovery period.  Inundation and saturation 

of seedlings for 10 to 17 days had a markedly negative effect on honeysuckle seedlings as 

shown by slow vertical growth or dieback and loss of leaves.  No seedlings inundated for 

17 days survived.    

In the second experiment (Chapter 4), I measured the germinability and mean 

germination time (MGT) of L. maackii seeds stratified under cool-moist, cool-saturated, 

or cool-inundated conditions and transitioned to a second set of conditions intended to 

mimic natural drawdown or flooding events.  A constantly moist control was included.  

Only MGT, but not germinability, of moist-to-inundated transitions (a simulated flooding 

treatment) differed significantly from moist controls.  Seeds subjected to simulated 

drawdown conditions did not differ from moist controls, indicating that seeds of L. 

maackii seeds can remain viable in flooded areas, and that temporary, winter flooding of 

wetland microsites may not impose a major limitation on L. maackii germination.   

The results of these three studies underscore the threats posed by invasive plant 

and insect species to the native woody plant community of these study systems.  

Evidence from the field and mesocosm studies suggest that flooding does pose a barrier 

to L. maackii colonization, but that higher elevation “safe sites” (with shorter flooding 

durations and/or depths) may enhance the ability of this species to invade wetter areas.  

At the time of field data collection (2010), emerald ash borer was largely absent from 

these forests, but has now caused widespread tree death in the region.  Because Lonicera 

maackii is known to benefit from increased light availability, the opening of the tree 
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canopy could have a beneficial effect on the spread of this invasive plant species within 

wetland sites.   



 

x 

 

TABLE OF CONTENTS 

PAGE 

DEDICATION …………………………………………………………………………...iii 

ACKNOWLEDGEMENTS ……………………………………………………………...iv 

ABSTRACT …………………..…………………………………………………………vi 

LIST OF TABLES .………………………………………………………………..…….xii 

LIST OF FIGURES ………………………………………………………………...…..xiv 

 

Chapter I: Introduction .……………………………….…………………………………..1 

 

Chapter II: Patterns of Woody Plant Communities Over Hydrologic and Edge-To-Interior 

Gradients:  A Study of Three Urban Wetlands.…………………………………...5 

 Introduction ……………………………………………………………………….5 

 Methods ……………………………………...……………………………………8 

 Results …………………………………………………………………………...25 

 Discussion ……………………………………………………………………….37 

 Conclusions ……………………………………………………………………...41 

 

Chapter III: Effects of Flooding Duration, Flooding Depth and Light on the Growth and 

Survival of Lonicera Maackii in an Experimental Mesocosm ……………….…67 

 Introduction ……………………………………………………………………...67 

Methods ……………………………………………………………………….…71 

Results ………………………………………………………………………..….83 

Discussion ……………………………………………………………………….90 

Conclusions ……………………………………………………………………...94 

 

Chapter IV: Effects of Simulated Flooding on Germination of Lonicera Maackii  

Seeds ………………………………………………………………………….. 119 

Introduction …………………………………………………………………….119 

Methods ……………………………………………………………………...…121 

Results ……………………………………………………………………….…128 

Discussion …………………………………………………………...…………129 

Conclusions ………………………………………………………………….…135 

 

REFERENCES …………………………………………………………………...……140 

 

APPENDICES ………………………………………………………………………....148 

Appendix Table 1 ………………………………………………………………148 

Appendix Table 2 ………...…………………………………………………….151 

Appendix Table 3 ………………………………………………………...…….152 



 

xi 

 

Appendix Table 4 ………………………………………………………………153 

Appendix Table 5 ………………………………………………………………154 

Appendix Table 6 .………………………………………………………….…..155 

Appendix Table 7 ………………………………………………………………158 

Appendix Table 8…………………………………………………………….…162 

Appendix Table 9  .……………………………………………………………..163 

Appendix Table 10 .…………………………………………………………….166 

Appendix Table 11 .…………………………………………………………….167 

Appendix Table 12 .…………………………………………………………….169 

Appendix Table 13 .…………………………………………………………….170 

Appendix Table 14 .…………………………………………………………….171 

Appendix Table 15 .…………………………………………………………….174 

Appendix Table 16 ……………………………………………………………..177 

Appendix Figure 1 .…………………………………………………………….179 

Appendix Figure 2 .………………………………………………………….…180 

Appendix Figure 3 .…………………………………………………………….181 

Appendix Figure 4 .…………………………………………………………….182 

Appendix Figure 5 .…………………………………………………………….183 

Appendix Figure 6  ……………………………………………………...…….184 

Appendix Figure 7 .…………………………………………………………….185 

Appendix Figure 8 .…………………………………………………………….186 

Appendix Figure 9 .…………………………………………………………….187 

Appendix Figure 10 .………………………………………………………...…188 

Appendix Figure 11 .……………………………………………………...……189 

 

  

CURRICULUM VITAE …………………………………………………………….…190



 

xii 

 

LIST OF TABLES 

Table 2-1: Summary of research site characteristics ……………………………………42 

Table 2-2: Number of days flooded for edge-to-interior transects and sites …………... 43 

Table 2-3: Summary of environmental variables in edge-to-interior transects …………44  

Table 2-4: Correlations between environmental variables ……………………………...45 

Table 2-5: Density, Importance Values and basal area of adult trees by site ………...…46 

Table 2-6: Species richness and diversity measures for all vegetation layers …………..48 

Table 2-7: Density, Importance Values and frequency of tree saplings by site ………...49 

Table 2-8: Density, Importance Values and frequency of tree seedlings by site ….....…50 

Table 2-9: Density, Importance Values and frequency of shrub species by site ...…...…51 

Table 2-10: Density, Importance Values and frequency of shrub species by site ...….…52 

Table 2-11: Summary of environmental and biotic and environmental variables 

associated with NMS ordination axes .……………………………..……….…...53 

Table 2-12: Correlation data for relationships between days flooded, total shrub stem 

density, and stem density of important shrub species …………………………...54 

Table 3-1: Results of mixed model regression testing effects of experimental variables on  

plant growth response of Lonicera maackii seedlings ………………………......96 

Table 3-2: Results of mixed model regression testing effects of experimental variables on  

leaf number response of Lonicera maackii seedlings …………………………...97 

Table 3-3: Mean, minimum and maximum days lived of Lonicera maackii seedlings for 

all combinations of flooding depth and flooding duration ………………………98 

Table 3-4: Results of mixed model regression testing effects of experimental variables on  

final aboveground biomass of Lonicera maackii seedlings ...……...……………99 

Table 3-5: Results of mixed model regression testing effects of experimental variables on  

final belowground biomass of Lonicera maackii seedlings ..……...……...……100 



 

xiii 

 

Table 3-6: Results of mixed model regression testing effects of experimental variables on  

final root-shoot ratio of Lonicera maackii seedlings ..…………….…………...101 

Table 4-1: Summary of stratification and post-stratification treatments for all five 

treatment groups in germination assay …………………………...……………137 

Table 4-2: Means of mean germination time (MGT) for all flooding treatments and moist 

controls ………………………………………………..…………………...…...138  

Table 4-3: Means of total seed germinability for different flooding treatments ...……..139 

  



 

xiv 

 

LIST OF FIGURES 

Figure 2-1:  Layout and dimensions of sampling units …………………………………55 

Figure 2-2: Visual aid explaining terms used in quantifying site hydrology ……….......56 

Figure 2-3: Hydrographs depicting water levels in water monitoring wells in each of the 

three research sites.………………...………………………………………….…57 

Figure 2-4: Seedling density of important species in north and south-facing edges with 

varying distance from the edge.………………………………………………….58 

Figure 2-5: Mean stem density of the four most abundant shrub species, at each site.….59 

Figure 2-6: Height class distribution of Lonicera maackii stems at each site.……..……60 

Figure 2-7: Total percent cover of Lonicera japonica vines with distance from the forest 

edge at all three research sites..…………………………………………………………..61 

Figure 2-8: Biplot of environmental variables with NMS ordination axes 1 and 3 based on 

woody plant species Importance Values (IVs) in all sampling units (parallel transects) 

from all three study sites.…………………………………………………..………….…62 

Figure 2-9: Biplot of biotic variables with NMS ordination axes 1 and 3 based on woody 

plant species Importance Values (IVs) in all sampling units (parallel transects) from all 

three study sites.………………………………………………………………………….63 

Figure 2-10: Biplot of biotic variables with NMS ordination axes 1 and 2 based on woody 

plant species Importance Values (IVs) in all sampling units (parallel transects) from all 

three study sites.…………………………………………………………………………64 

Figure 2-11: Stem densities of dominant shrub species vs. days flooded in parallel 

transects across all sites………………………………………………………………....65 

Figure 2-12: Factor–ceiling distribution of the number of days flooded vs. the rank 

elevation of all Lonicera maackii individuals sampled.………………………………....66 



 

xv 

 

Figure 3-1: Graphical summary of split-split plot experimental design, showing nested 

structure of variables……………………………………………………………102 

Figure 3-2: Photographs illustrating construction of outdoor mesocosms…..…………103 

Figure 3-3: Graphical summary of split-split plot design for each experimental tank....104 

Figure 3-4 Illustration of flood depth and flood duration manipulations………………105 

Figure 3-5: Daily fluctuation in temperature for soil, water and air in experimental 

mesocosms, as measured on a single date………………………………...……106 

Figure 3-6: Mean observed vs. predicted growth curves for seedlings over the duration of 

the experiment………………………………………...…………………...……107 

Figure 3-7: Stem growth response of seedlings subjected to different flooding depths for 

three days over the duration of the experiment…………………………....……108 

Figure 3-8: Stem growth response of seedlings subjected to different flooding depths for 

ten days over the duration of the experiment………………………….......……109 

Figure 3-9: Stem growth response of seedlings subjected to different flooding depths for 

seventeen days over the duration of the experiment……….………….......……110 

Figure 3-10: Mean observed vs. predicted curves for change in  seedling leaf number 

over the duration of the experiment……...………….………………….....……111 

Figure 3-11: Change in leaf  number for seedlings subjected to different flooding depths 

for three days over the duration of the experiment …….………………....……112 

Figure 3-12: Change in leaf  number for seedlings subjected to different flooding depths 

for ten days over the duration of the experiment …….…...……………....……113 

Figure 3-13: Change in leaf  number for seedlings subjected to different flooding depths 

for seventeen days over the duration of the experiment …….…………....……114 

Figure 3-14: Mean aboveground biomass for all combinations of light, flood depth and 

flood duration.…….………………………………………………………….…115 

Figure 3-15: Interaction plot showing final mean aboveground biomass of surviving 

seedlings for all combinations of light, flood depth and flood duration.……….116 

Figure 3-16: Mean belowground biomass for all combinations of light, flood depth and 

flood duration.…….………………………………………………………….…117 

 



 

xvi 

 

Figure 3-17: Mean root-shoot-ratio for all combinations of light, flood depth and flood 

duration.…….………………………………………………………………..…118 

Figure 4-1: Mean daily temperature in experimental germination chamber from days  

14-96……………………………………………………………………………136 

 

 

 

 

 

 

 

 

 

 

 

  



 

1 

 

CHAPTER I 

 INTRODUCTION 

 Wetlands, in their many forms, are recognized as some of the most important 

ecosystems in the world.  According to Costanza et al. (1997), per unit of area, wetland 

ecosystems are the most valuable terrestrial ecosystem globally, because of the multitude 

of ecosystem services they provide.  In a review of ecosystem services in urban areas, 

urban wetlands were the only ecosystem type regarded by Bolund and Hunhammar 

(1999) as providing all identified services, including air filtration, regulation of micro-

climate, regulation of rainwater drainage, waste treatment, and cultural/recreational 

values.  

 While benefits of wetlands are recognized by the scientific community, these 

ecosystems continue to be threatened as a result of both direct and indirect human 

activities.  Only 3.9% of the world’s temperate forested wetlands are protected; this is the 

lowest figure for any forest type globally (Schmitt et al. 2009).  Although legislation in 

the United States strictly regulates the development and draining of wetlands, wetland 

losses continue.  From the 1950s through the mid-80s over 9 million acres of freshwater 

forested wetlands were lost from the conterminous United States (Dahl 2016).  For 

approximately two decades thereafter, promising gains were made, and forested wetland 

area increased.  Unfortunately, from 2004-2009, this trend saw a reversal, with losses of 

over 600,000 acres (1.2%) of forested wetland.  Urbanization accounted for 
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26% of losses during this time period.  Since this type of conversion generally involves 

draining, filling and building on wetlands, these represent permanent losses of wetland 

area and their associated ecosystem services.  

 Remnant wetlands in urbanized areas face a number of threats. Urban forests are 

likely to be highly fragmented because of their association with high road densities and 

development, thus decreasing the amount of forest interior.  Wetland forest fragments in 

urbanized areas must contend with the combined threats of air, soil, and water pollution, 

invasive species, altered hydrology, and the urban heat island effect, each of which has 

the potential to affect the survival, growth, reproduction and distribution of wetland flora 

and fauna, and can affect the ability of wetlands to perform ecosystem services (Faulkner 

2004).   

 Many aspects of the urban environment mirror changes in climate, disturbance 

regimes, and species movements that are currently occurring at a global scale (Carreiro & 

Tripler 2005).  Thus, study of urban wetlands may be seen as an opportunity to “flash-

forward” and make predictions about the future condition of forests that may be 

increasingly affected by human activities, invasive species, and global climate change.   

Personal Reflections and Dissertation Objectives  

 Recognizing both the value and scarcity of forested wetlands in my local area 

(Louisville, Kentucky), my initial motivations for pursuing this topic were both scientific 

and personal.  From a scientific perspective, these systems offered the opportunity to 

explore ecological patterns along gradients of stress and resource availability.  From a 

personal perspective, I wanted to explore these locally rare—and often isolated—
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systems, documenting and describing the plant communities of these systems before they 

vanished permanently.  

 Finding and gaining access to research sites was an eye-opening experience that 

helped to shape my research goals and furthered my curiosity about these systems.  

Knowing that much of southwest Jefferson County had, at one time, been covered by 

swamp land, I was taken aback by how relatively few patches of wetland forests 

remained in the area.  Furthermore, most of these areas were privately owned, with 

uncertain prospects for the future.  One site (Site 3), was completely landlocked in a sea 

of concrete, between a shipping yard, train depot, and commercial developments.  The 

boundary between the forest and gravel was abrupt, with semi-trucks touching the tree 

branches, and frogs jumping out of puddles made by their huge wheels.   

 With this boundary between the industrial world and nature in mind, my initial 

research goals for this work were to study changes in woody plant community 

composition occurring along an edge-to-interior gradient.  Studies from upland forest 

systems showed that changes in resources availability and microclimate occurring at the 

forest edge affected ecosystem pattern (Chen et al. 1992, Cadenasso and Pickett 2001, 

Harper et al. 2005) and process (Weathers et al. 2001), but I was not familiar with as 

much work on edge effects in wetland areas.  

 After conducting a pilot study, I was somewhat frustrated by my inability to 

demonstrate what variables were most responsible for controlling important community 

patterns—such as the presence of invasive species—which did not always show the clear 

associations with edge habitats I had expected.  Adjusting my focal lens to the wetland 
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context, I realized I needed to quantify the hydrology of these systems to truly understand 

the extent of edge effects, as hydrology is of fundamental importance to wetland species 

distributions.  In Chapter II, I show the results of my field research in three forested 

wetlands, where I link species distributions within and among wetlands to both hydrology 

and proximity to edge.  Special attention is paid to the apparent influence of hydrology on 

the distribution of an invasive shrub species, Lonicera maackii (Amur honeysuckle).   

 Following this evidence, I conducted two manipulated experiments testing the 

effects of simulated flooding on L. maackii at two critical life history stages: seed and 

seedling.  In Chapter 3, the impact of flooding depth and duration, and its potential 

interaction with light levels, on L. maackii seedling growth and survival is examined in 

detail.  In Chapter 4, I conducted a germination assay of L. maackii seeds subjected to 

different treatments of simulated flooding and drawdown.  



 

5 

 

CHAPTER II 

PATTERNS OF WOODY PLANT COMMUNITIES OVER HYDROLOGIC AND 

EDGE-TO-INTERIOR GRADIENTS:  A STUDY OF THREE URBAN WETLANDS 

Introduction 

  Current policy in wetland management permits the continued loss of naturally 

occurring wetlands, a factor that undoubtedly results in a net loss of ecosystem services 

and wildlife habitat (Faulkner 2004, Mitsch and Gosselink 2007).  As a result, remaining 

forested wetland areas are often highly fragmented.  Such fragmentation may have a 

number of effects that can alter the structure and function of these forest types (Saunders 

et al. 1991). 

Urban forests, generally speaking, are threatened by fragmentation and tend to be 

smaller than rural counterparts (Medley et al. 1995).  Fragmentation increases the 

perimeter-area ratio of forests, reducing the area of interior forest, increasing the area of 

forest susceptible to edge effects, and modifying the microclimate of forest boundaries. 

Edge effects include changes in the forest microclimate—such as light, temperature, soil 

moisture—and have been demonstrated for various forest types in a number of studies 

(Matlack 1993, 1994, Chen et al. 1995, Delgado et al. 2007).  This perturbation of the 

abiotic environment has been shown to affect the distribution of individual species, as 

well as induce changes at the community level (Harper et al. 2005).  This is due both to
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 species’ individual requirements and tolerances, as well as from competitive interactions 

that may result when the resource environment is altered.  Potential differences in 

herbivore activity along edges as opposed to forest interiors (Jules and Rathcke 1999, 

Cadenasso and Pickett 2000) may also shape species distributions.   

Plant community composition and structure in edge habitats are also affected by 

species movements through or along edges.  For instance, the role of edge habitats 

facilitating forest colonization by invasive plant species has been the subject of a number 

of papers (Moran 1984, Brothers and Spingarn 1992, Hutchinson and Vankat 1997, 

Cadenasso and Pickett 2001, Honnay et al. 2002, With 2002, Pauchard and Alaback 

2004, Borgmann and Rodewald 2005, Bartuszevige et al. 2006).  This effect is thought to 

be due to the high light environment of edge habitats, and the proximity of edges to 

disturbed landscape matrices, which may foster “weedy” species.  Edges may also act as 

filters of plant propagules into a forest, the extent to which is related to the mode of seed 

dispersal, and the physical structure and composition of edge vegetation (Cadenasso and 

Pickett 2001).  

Most studies of edge effects on plant communities have been conducted in upland 

systems.  In these systems, which are defined by the presence of surface, or near-surface 

water on an intermittent or continuous basis, site hydrology is the major factor 

influencing plant distributions.  While the surrounding landscape matrix and within-site 

legacy determine the potential pool of species available to colonize wetland sites, 

hydrologic conditions are the primary filter determining which species are able to persist.  

Thus, any potential edge effects due to increased light, propagule pressure, or edaphic 

factors must be considered in the context of the hydrologic conditions.  For instance, 
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exotic wetland species from the surrounding landscape matrix may not be able to tolerate 

wetland flooding, which could offer these systems some resistance to exotic species 

invasion.  Because hydrology is the primary driver of plant species distributions in 

wetlands, any attempt to measure edge effects must quantify site hydrology and 

determine if it is affected by the proximity to the forest edge, or if it varies independently 

of this factor.   

With this in mind, the main objectives of this study were as follows: 

1) Describe the woody plant community of urban wetlands along edge-to-interior 

gradients and determine if environmental variables, edge proximity and/or 

edge orientation is associated with changes in plant community composition.   

2) Quantify variation in hydrology between and within research sites and 

determine its potential association with changes in woody plant composition 

and structure, with special consideration to the occurrence of invasive woody 

species.     

3) Determine if site hydrology varies with distance to edge. 

4) Determine which patterns in community composition (i.e. importance of 

exotic species, importance of obligate and facultative wetland species and 

species richness) appeared to be driven primarily by hydrology, and which by 

distance from the forest edge.   
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Methods 

Site Descriptions 

All study sites are contained within the boundaries of Jefferson County, Kentucky 

(total land area of 1000 km
2)

 and includes the full extent of the incorporated metropolitan 

area of Louisville, Kentucky.  The northern border of the county is formed by the Ohio 

River.  Within the county borders, the range of elevations observed is 383 to 902 feet 

above sea level.   Jefferson County land use and land cover ranges from highly developed 

at the urban core, to forest, pasture and cropland towards the county boundary.   

The majority of sites selected for this study lies in southwestern Jefferson County 

in the Pond Creek watershed.  This low-lying, 231 km
2
 watershed has large portions of 

land that are subject to frequent flooding and ponding, and historically has had the most 

wetland area in the county (MSD 2006).  The low gradient terrain that characterizes this 

area formed as a result of glacial outwashes from the Quaternary period.  In the last 

century, the creation of ditches (Northern and Southern Ditch) has aided in draining this 

area for development, which is primarily residential (MSD 2010).  However, the shallow 

elevational gradient in this area still promotes the maintenance of wetland hydrology and 

vegetation on hydric soils in certain areas.  The Louisville Metropolitan Sewer District 

(MSD) considers the destruction of wetlands in the Pond Creek watershed as a 

contributor to frequent flooding episodes and water pollution (MSD 2006). 

Table 2-1 summarizes the area and soil characteristics of all wetlands selected for 

inclusion in this study.  Study sites were identified using the National Wetlands Inventory 

(USFWS 2016), county soils data from the Soil Survey Geographic Database (SSURGO; 
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Soil Survey Staff, 2009), and high-resolution digital color imagery in ArcGIS.  All data 

sets were used together to locate potential study areas in Jefferson County, but sites had 

to be identified as meeting hydric criteria according to the SSURGO soils database to be 

considered further.  Potential sites were also disqualified for the following reasons: 1) 

Forest did not appear to be primarily closed canopy, 2) the forest did not appear to have 

well-defined north and south-facing edges, 3) forest was < 1 hectare in size, 3) forest 

consisted only of thin strips of riparian forest, or 4) landowner information obtained from 

the Jefferson County Property Evaluation Administrator (PVA) revealed that the property 

ownership was in a state of flux.  Landowner permission was obtained by phone, or mail 

using addresses on file with the Jefferson County Property Evaluation Administrator 

(PVA).  Access permission was granted by 8 out of ~ 35 landowners. Of these 8, the 

three with the largest area were chosen.   

Soil series determination from each transect location (see Sampling Design) were 

verified in the field by NRCS personnel.  Transects in Site 1 (Max Sawyer), were located 

on the Melvin soil map unit characterized as frequently flooded, silt loam. Transects in 

Sites 2 and 3 (Evangel and Trinity), were located on the Zipp soil map unit. NRCS soil 

descriptions (NRCS 2005) indicate both soil map units meet hydric criteria and have 

seasonally high water tables present at 0-0.8 feet of the soil surface.  Both soil series are 

classified as having apparent (i.e. endosaturated), rather than perched (i.e. episaturated) 

water tables, indicating that zone of soil saturation is continuous from a depth of 2 m or 

more to the top of the water table (NRCS 1999). 

 Site 1 (Max Sawyer) was located in a primarily residential area, adjacent to a 

major transportation corridor (I-65).  Based on my observations, Site 1 (later referred to 
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as the “dry” site in this chapter) had undergone the most modification and was the most 

hydrologically disconnected from the surrounding landscape. Surrounded by residential 

land use and an interstate, this area has been heavily ditched around the periphery to drain 

water away from the area (i.e. where transects were located).  However, standing water is 

still present at this site during portions of the growing season, and areas near the water 

monitoring well routinely had knee-deep water in winter and spring.  In some instances, 

the land immediately outside the forest boundary was lower than that inside the forest; 

this was most likely a result of grade alterations made in residential plots to drain water 

away from houses, towards ditches.  Although this soil series is characterized as 

frequently flooded (i.e. inundated by flowing water from stream overflow, or runoff from 

the adjacent landscape), the extent of ditching through and around the site perimeter 

appeared to limit flooding events.  For instance, drainage ditches running parallel to the 

forest edge were present at 3 out of the 4 transect locations, effectively intercepting 

runoff from the adjacent landscape at the forest edge.  Additionally, a large ditch runs 

through the middle of the wetland and drains to nearby Fishpool Creek. This feature is 

extremely incised, and I never personally observed water levels high enough to overflow 

onto the adjacent wetland areas.  Based on these observations, it appeared that the 

presence of standing water or near surface water was driven mostly by the influence of 

the water table and/or precipitation. There was frequent evidence of human disturbance in 

this site, including numerous waste items, ATV tracks and construction debris. 

 Site 2 (Evangel) was located adjacent to I-65, but was surrounded on three sides 

by a fairly large tract of undeveloped open space and pasture. Large ditches ran to the 

north and south of the site, approximately 100 m and 200 m from research areas at the 
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forest edge, respectively.  In contrast to Site 1, these ditches were further from the forest 

edge, and the elevation of the land immediately surrounding the forest edge was similar 

to the elevation within the forest.  I later will refer to this wetland as the “intermediate” 

site.  

  Site 3 (Trinity, later referred to in the paper as the “wet” site) was the most 

isolated from other forest and undeveloped spaces, being surrounded by a rail depot, 

shipping container storage yard, and commercial or industrial space.  There was minimal 

evidence of recent human activity in the wetland and minimal ditching at the forest edge 

(shallow concrete ditches were present on the north and west sides).  This was the only 

Site where I ever observed any visible sheet flow of water; this was observed near the 

sampling well in the forest interior.   

Sampling Design 

 Before establishing sampling transects, aerial imagery of each site was examined, 

and areas with well-defined north- and south-facing edges were identified.  In the field, 

segments of edge on the north and south forest with continuous canopy cover were 

identified (i.e. no large canopy gaps along the edge, or within ~100 m of the edge).  The 

boundaries of this candidate area were flagged, and a random number table was used to 

choose a point along the edge to be the starting point of the edge-to-interior transect.  

Two edge locations were flagged on both north- and south-facing edges at each site.  

Care was given to avoid locating transects within 100 m of one another on the same edge, 

or within 60 meters of an adjacent forest edge.  Aerial images of all research sites are 

included in Appendix Figures 1, 2 and 3 with the location of transects.  
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Fig. 2-1 shows the transect design and components. The edge boundary was 

marked at each of the four flagged edge points at each site. This was done by moving 

from the surrounding landscape matrix towards the forest edge until the canopy cover 

transitioned to approximately 80% cover.  A flag was placed at this point, and at 1, 5, 10, 

30 and 60 m from this point towards the forest interior, in a straight line, thus forming the 

edge-to-interior transect.   

 At each of the five marked distances along the edge-to-interior transect, a second 

set of 12 m long transects running parallel to each other were delineated.  These were 

referred to as parallel transects.  During environmental and plant sampling procedures 

(see following sections), four temporary 2 x 2 m quadrats delineated by PVC frames were 

placed 1 m apart from each other, centered along the midpoint of parallel transects.  A 

second set of 12 x 12 m plots for measuring adult trees was centered over the 6 m and 60 

m midpoints of the edge-to-interior transect. 

 To summarize, each site contained four edge-to-interior transects (two on the 

north- and two on the south-facing sides) running from the forest edge to 60 m towards 

the forest interior. Parallel transects (12 x 2 m) were established at 1, 5, 10, 30 and 60 m 

along each edge-to-interior transect.  Four 2 x 2 m quadrats were nested within each 12 x 

2 m parallel transect.   

Data Collection Dates 

 All woody plant (see Plant Data Collection, below), ground cover and elevation 

data (see Environmental Data Collection, below) were collected during the summer of 
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2010.  Dates of data collection in 2010 for each site were: August 17 to September 9 at 

Site 1, June 29 to July 19 at Site 2, and July 23 to August 13 at Site 3.   

 Hydrologic data—including surface water elevations along each edge-to-interior 

transect and groundwater level data—was collected the following summer of 2011.  

Together with ground surface elevations taken during 2010, this data was used to 

estimate the average number of days each transect was flooded (see Environmental Data 

Collection).  Although this data was not collected during the same time period as plant 

data, I felt it was valid to apply this data to characterize the flooding of each transect and 

relate to woody vegetation community data.  In systems with highly dynamic 

microtopography, this could be problematic because surface elevations could vary greatly 

year to year.  There were two reason I felt this was not an issue in these systems.  For 

one, personal observations made for three consecutive seasons indicated that that there 

was minimal disturbance of microtopography between years.  This was assessed by 

noting that large soil deposits on top of leaf litter were rare, and that observed water in all 

but one perpendicular transect was always ponded, stagnant water, with no observable 

flow.   At Site 2, transect “S2” was the only exception to this, but noticeable flow was 

minimal and occasional.  If microtopography were highly dynamic, I would have 

expected to observe frequent deposits of soil.  Based on my familiarity with these sites, I 

felt it was reasonable to estimate the number of days each transect was flooded based on 

2010 elevation data in combination with ground and surface water data obtained the 

following summer.  Furthermore, since I was dealing with woody, perennial species, 

whose distributions are reflective of long-term environmental trends, I felt it was 
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reasonable to view flooding trends in 2011 as a relative measure of overall hydrologic 

differences between transects and sites, and relate these to plant data from 2010.   

 Environmental Data Collection 

 In each sampling quadrat, the ground cover of several variables was estimated.  

These variables were: 1) percent bare soil, 2) percent leaf litter 3) percent coarse woody 

debris (widths > 10 cm, 4) percent herbaceous cover.  While bare soil and litter were 

considered mutually exclusive (additive) cover types, others were not.  For instance, 

herbaceous cover or coarse woody debris could occupy the same two-dimensional space 

as leaf litter or bare soil.  Thus, total ground cover could be greater than 100%.  In some 

instances, leaf litter was covered by a relatively thin layer of sediment (~1-4 mm) due to 

recent flooding events, but leaf litter was still clearly distinguishable underneath this 

layer; this was counted as leaf litter cover.  Bare soil was primarily evident in areas of 

relatively high relief (i.e. mounds, sides of ditched areas) where leaf litter did not 

accumulate.  Coarse woody debris was defined as woody material having an average 

diameter of 10 cm or greater.  The percent cover of each ground cover type was recorded 

as falling in one of the following classes:  < 5%, 6-25%, 26-50%, 51-75%, 76-95% or 

95+%.  The canopy closure of each transect (a proxy for light availability) was estimated 

using a spherical densiometer held ~1 m from the ground surface in each transect (Robert 

E. Lemmon, Forest Densiometers, Bartlesville, OK).   

 Hydrologic conditions in each parallel transect were quantified by combining data 

from three datasets: 1) detailed surveys of microtopography in each parallel transect 

during 2010, 2) readings of water levels in wells made throughout the growing season in 
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2011, and 3) surface water levels recorded in each transect on select dates in 2011.  The 

following paragraphs detail how this data was collected and combined to estimate 

hydrologic conditions.   

 During the summer of 2010 (when plant data was collected), detailed surveys of 

transect microtopography were conducted.  A permanent elevation benchmark (i.e. a nail 

in a tree, or piece of rebar in a high elevation area) was established at each edge-to-

interior transect (Fig.2-2).  Using a surveyor’s level and stadia rod (CST/Berger SAL 

Level), an assistant and I recorded the elevation of 10 points in each 2 x 2 m quadrat.  

These elevations were made relative to the established benchmark at each edge-to-

interior transect.  Elevation sampling points within quadrats were randomly chosen along 

lengths of PVC placed in each half of the quadrat.   

  In spring of 2011, a shallow ground water well 1 m deep was installed at each of 

the three wetland sites (Appendix Fig. 4).  Each was placed in an interior location (> 100 

m from forest edges) where flooded conditions were evident in the immediate vicinity.  

However, to avoid surface water entering the wells, wells were installed in locally high 

sites that did not appear to be frequently flooded above the soil surface.  Following 

established protocols for installing groundwater monitoring wells (Sprecher 2008), 

slotted well casings (with an unslotted riser within 35 cm of the soil surface) extended 1 

m below the soil surface.  These were surrounded with packed, coarse sand (~5 cm below 

the well bottom and to the sides).  The sand extended ~5-10 cm above the slotted portion 

of the well.  Bentonite clay was then packed around the riser to the soil surface, and a 

mixture of field soil and bentonite was mounded around the base of the well above the 

ground surface.  Above the mounded soil, wells were vented (i.e. a hole was drilled) to 
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equalize pressure between the well environment and open air pressure. The location of 

the wells in areas of slightly higher elevation than adjacent flooded areas, and the 

bentonite clay seal were intended to prevent surface water entering the wells directly, so 

that groundwater levels could be accurately measured.  PVC housing constructed for a 

water level data logger was mounted on top of each well casing, and equipped with a 

waterproof cap.  The total length of each well with the housing was 1.75 m (0.75 m 

extending above the soil surface).  Each well was equipped with a Global Water WL15 

water level data logger (Global Water, College Station, Texas).  This device uses a 

pressure transducer to measure the amount of water above the sensor.  Following 

manufacturer procedures, each device was calibrated to accurately record water levels.  

Sensors were placed at the well bottom.  Water levels in each well were recorded 

continuously on an hourly basis from 5/2/2011 to 8/26/2011, a total of 123 days.   

  Monitoring points for measuring surface water depth were established at 

approximately 10, 30 and 60 meters along each edge-to-interior transect in May 2011.  

These were lengths of PVC pipe approximately 0.75 m long that were pounded into the 

soil (Fig. 2-2).  The elevation of the top of these monitoring points was recorded relative 

to the permanent site benchmark established the previous summer.  On 3 to 4 dates, when 

surface water was present at each site, the distance between the top of the monitoring 

point and the water surface was measured.  These values were ultimately used to 

reference the elevation of the of the water surface to the site elevation datum, and 

determine the difference between the daily average water table elevation and surface 

water levels (see below).  This enabled the prediction of daily surface water levels in each 

parallel transect.   
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 A final elevation survey at each site was conducted to measure the elevation of 

permanent elevation benchmarks relative to one another, thereby registering them to the 

same datum  and one of the four permanent elevation benchmarks at each site was used 

as a reference point for the whole site.  The elevation of the top of the water monitoring 

well was also recorded during this survey.  To summarize, for each site the resulting 

dataset had all of the following information relativized to the respective site’s datum: 1) 

ground surface elevations in quadrats where plants were collected in 2010, 2) the 

elevations of surface water monitoring points, and 3) elevation of the top of the 

groundwater monitoring well.   

 Fig. 2-2 provides a visual aid for interpreting the following calculations.  Daily 

mean height of water in each well was calculated.  The average water table surface 

elevation on each day (𝑬𝒘𝒕 ) was calculated by subtracting 1.75 m (total well length) 

from the top of well elevation (𝑬𝒘𝒆𝒍𝒍) and adding the daily mean height of the water table 

above the sensor 𝒉𝒘𝒕  (Eq. 1).  For each day water surface elevations were measured (3-4 

days at each point) the elevation of the water surface (𝑬𝒘𝒔) at each monitoring point was 

calculated by subtracting the distance measured from the top of the water monitoring 

point to the water surface  (𝑫𝒘𝒔)  from the elevation of the top of the monitoring 

point (𝑬𝒘𝒎𝒑, Eq. 2).  Finally, the height difference between the water surface (in each 

transect) and the water table (∆𝑤𝑡) surface was calculated for each day water surface 

measurements were made.  This was done by subtracting the elevation of the water table 

(𝐄𝒘𝒕 ) from the water surface elevation (𝐄𝒘𝒔).  This calculation is given in Eq. 3. 

Eq. 1 



 

18 

 

𝐄𝒘𝒕 = 𝑬𝒘𝒎𝒑 − 𝟏. 𝟕𝟓 + 𝒉𝒘𝒕 

Eq. 2  

𝐄𝒘𝒔 = 𝑬𝒘𝒆𝒍𝒍 − 𝑫𝒘𝒔 

Eq. 3  

∆𝐰𝐭 = 𝑬𝒘𝒔 − 𝑬𝒘𝒕 

 Average values of ∆𝐰𝐭 were calculated for each water monitoring point, and this 

number was added to daily values of mean water table elevations to estimate the average 

elevation of the water table at each monitoring point, for each day of the monitoring 

period.  Since the water surface was not always level (e.g. because of ditching) these 

values could be very different along an edge-to-interior transect.  Water table elevations 

generated from 10 m monitoring points were applied to parallel transects at 1, 5 and 10 

m.  Water table elevations from 30 m and 60 m monitoring points were applied to parallel 

transects at their respective distances.   

 Using the ground surface elevations measured in 2010, I used predicted values of 

the water table elevation in each parallel transect to estimate how many days each ground 

surface elevation data point was flooded in 2011 (40 points/transect).  For every day of 

the monitoring period, a point was considered “flooded” if it was equal to, or lower than, 

the predicted water level.  Thus, every elevation point, in every quadrat, had a 

corresponding value for “days flooded”.  These values were averaged over a quadrat, and 

quadrats were averaged over the parallel transect.  The resulting value, describing the 

wetness of each parallel transect, is referred to as “days flooded” or “number of flooded 
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days” for the rest of the chapter.  Because this estimate incorporated elevation data, it is 

reflective of how microtopography impacts the overall “wetness” of a local area.   

 During June of 2011, leaf area index (LAI) data was recorded.  A LAI-2000 Plant 

Canopy Analyzer was used to measure LAI (LI-COR, Lincoln, Nebraska).  LAI is a 

unitless (m
2
 leaf/m

2 
ground surface) measure of foliage quantity, and commonly used as a 

measure of productivity.  This was of interest directly, and because it should be inversely 

related to light availability at the forest floor.  Standard protocols for measuring LAI were 

followed as per the manufacturer’s recommendations (LI-COR 1992).  LAI was 

measured in 4 locations per parallel transect, in the approximate quadrat locations from 

the previous season of field work.  Measurements were made away from tree trunks, as 

the sensor registers any light blocking object as leaf area.  I also used an equipped filter to 

block my own outline from the sensor, and made measurements of LAI approximately 

0.5 m from the ground surface. Sensor data was downloaded and the manufacturer 

software was used to compute values of LAI.   

Plant Data Collection 

 Plants were sampled in area units described in Sampling Design.  Adult trees were 

defined as those with a diameter at breast height (dbh) greater than 2.5 cm.  The species 

identity and dbh of all living trees in 12 x 12 m edge and interior plots was recorded (4 

edge and 4 interior plots at each site).  All other plant data was collected within 2 x 2 m 

quadrats in each parallel transect.  Woody vines falling in each quadrat were identified, 

and recorded as % cover in the following ranges: < 5%, 6-25%, 26-50%, 51-75%, 76-

95% or 95+%.  Vine cover on the ground and in the canopy above a quadrat was tallied 
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separately.  Stem counts of saplings species (< 2.5 cm dbh and > 30 cm tall) and shrub 

species in each quadrat were also recorded.  For tree seedlings, a distinction was made 

between” recent germinants” and “established seedlings”.  Recent germinants generally 

only had 1-2 pairs of leaves and/or cotyledons.  Established seedlings had some woody 

tissue formation and/or more than 2 pairs of leaves.  

For shrubs, stem counts for individual plants were tallied when possible, but this 

was difficult for clonally growing species such as Cornus foemina.  Because the growth 

habit of shrubs varied, I tried to sample stem counts in a consistent manner.  First, 

individual shrubs (or a definable clump of clonally growing shrubs) were placed into a 

height category based on the average height of plant stems.  These categories were <0.25 

m, 0.25-0.5 m, 0.5-1.0 m, 1.0-2.0 m, and over 2 m (2+ m).  The number of stems 

originating within the first 0.3 m of the ground was recorded as the stem number of the 

individual.  Finally seedlings (<0.3 m tall) were counted by species.   

The elevation of all Lonicera maackii shrubs was also recorded.  Using data from 

the ground elevation survey, each shrub was assigned an elevation rank, based on its 

relative elevation within a parallel transect.  Ranks were calculated using the 

“PERRANK” function in MS Excel, which returns a ranking of a value (range: 0-1) as a 

percentage of a range of values.  For individual plants, this function was used to calculate 

the elevation rank of all L. maackii shrubs, based on the range of sampled ground 

elevation values in a parallel transect (80 sampled elevation points).  Therefore shrubs 

near the highest sampled ground elevation point would rank close to 1, and those near the 

lowest points would rank close to 0.  In a few instances, the elevation of plants fell 

outside the range of sampled elevation points.  In these cases, the plant was assigned a 
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rank of “0” if it was lower than the lowest sampled elevation point and “1” if it was 

higher than the highest sampled elevation point.   

The intention of obtaining this data was to examine the relationship between rank 

elevations of L. maackii and the number of flooded days in parallel transects where they 

occurred. If flooding constrained the range of suitable habitat for L. maackii, I expected 

the rank elevation of shrubs to increase with the number of days flooded.   

 Data Treatments 

 Stem counts for saplings, seedlings and shrubs per quadrat were totaled over each 

parallel transect by adding quadrat level data.  Stem counts for each species and 

vegetation layer (i.e. seedlings, saplings, etc.) were converted to density in m
2
 ha

-1
.  For 

vines, values of total percent cover were determined by adding together the percent cover 

of vines on the ground and in the canopy.  Thus, it was possible for vines to have greater 

than 100% cover.  For each vegetation layer, the frequency, relative frequency, relative 

density (relative cover for vines) and importance value (IV) were calculated.    For a 

species, X, these measures were calculated as follows for each vegetation layer, in each 

parallel transect. 

Density =
total # of stems of species 𝑋 in parallel transect

16 m2
x 10,000 

m2

ha
= stems/ha 

 

Frequency =
number of quadrats containing species 𝑋

4
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Relative Frequency =
frequency of species 𝑋

sum of all species frequencies
 

Relative Density (or % Cover) =
density (or % cover)of species 𝑋

sum of all species densities (or total % cover)
 

IV =
Relative Frequency + Relative Density 

2
x 100 

 Adult basal area was calculated by summing the total cross sectional area (in m
2
) 

of species by plot and expressing it in terms of m
2
/ha.  

Basal Area =
total cross sectional area of species 𝑋 (m2)

144 (m2)
 x 10,000 

m2

ha
=

m2

ha
 

Relative basal area and IV values were then calculated as above, substituting 

basal area for “density”. 

 For ordination (see Statistical Analysis), “Exotic Vine IV” and “Exotic Shrub IV” 

were calculated by summing the total importance values of species meeting those criteria 

within each parallel transect.  “Exotic” was defined as having provenance outside of 

North America.  

Species richness was calculated by vegetation layer as the total number of species.  

Shannon diversity (Magurran 2013) was calculated according to the following equation, 

where p is the relative density or relative cover of a species.  

H = ∑ 𝑝𝑖ln 𝑝𝑖

𝑠

𝑖=1
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 Environmental variables were averaged at the parallel transect level for analyses 

listed below.   

Statistical Analyses 

 For certain variables of interest (species richness of individual plant strata and 

abundance of species of interest), I performed multiple regression using a mixed linear 

model (PROC MIXED in SAS 9.4) to test if these response variables varied with fixed 

effects of site, edge orientation, or distance from edge, and included all 2 and 3-way 

interactions between these variables.  Parallel transects represented individual samples.  

The ID of an edge-to-interior transect was included as a random blocking effect within 

site and side (i.e. north vs. south).  For count data (density or number of species) I first 

tried modeling the data using the Poisson distribution (recommended for count data) and 

the link=logit method.  In all instances, data were over-dispersed as indicated by model 

output indicating X
2
 values divided by degrees of freedom were substantially greater than 

one. In this case the negative binomial distribution was used, which is recommended for 

over-dispersed data, and the logit link.  Failure of the model to fit random effects 

indicated over-fitting of the model and the random blocking effect was removed from the 

model.  The model was then rerun with only fixed effects in PROC MIXED or PROC 

GENMOD.  When comparing the number of days flooded between sites, number of days 

flooded was treated as a continuous variable.  Model residuals were examined for 

normality and homoscedasticity. Percent cover data were modeled using the arcsine 

transform where: 

Y (Transformed) = arcsine(y
-2

) 
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Non-metric multidimensional scaling (NMS) is an ordination method often used 

to find patterns in plant community data.  I used the PC-ORD software following 

guidelines recommended in McCune et al. (2002) to run this procedure.  The species 

matrix was composed of importance values of all species, for each parallel transect 

separated by vegetation layer.  For instance, Fraxinus sp. seedlings and saplings were 

entered as separate “species”.  Adults were not included because they were sampled at a 

different scale.  Species occurring in fewer than three transects were removed from the 

matrix (~5% of transects), as recommended.  The outlier analysis function in PC-ORD 

was used to find transects that were outliers (>2 standard deviations from the mean) and 

these were removed from the analysis due to concerns over model stability.  Three 

transects from Site 3 were removed from the analysis because of this.  I used PC-ORD 

autopilot mode (“slow and thorough” method) to run the ordination and checked that 

model stress was within an acceptable range, as recommended in (McCune et al. 2002).   

Secondary matrices summarizing environmental data variables and biotic 

variables were created in Excel and imported into PC-ORD.  These data were used for 

creating biplots depicting relationships between these variables and ordination axes.  

Variables included in the environmental matrix were: days flooded, distance from edge, 

percent herb cover, percent coarse woody debris, LAI, and percent canopy closure.  

Percent bare soil was not included because it was highly correlated with percent leaf litter 

and contributed essentially no unique information.  The biotic matrix contained summary 

variables about exotic species, wetland indicator status and the total density or cover of 

plants from individual vegetation layers (i.e. saplings, tree seedlings, shrubs, vines).  

Wetland Indicator Status (WIS) information was obtained from PLANTS Database 
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(USDA 2016).  I used regional statuses for the Eastern Piedmont Region.  These 

designations indicate the association of particular species with wetland habitats.  The 

WIS for species from this study are shown in Appendix Table 16.  The total IV of species 

with facultative wetland (FACW) or obligate wetland (OBL) status was calculated for 

each vegetation layer and included in the matrix.  Other biotic variables were: exotic 

shrub IV, exotic vine IV, total seedling density, total sapling density, total vine cover, and 

total shrub stem density.   

Results 

Environmental Variables 

  Site-Level Environment 

 The three sites differed in hydrology, as shown by differences in the number of 

days flooded (X
2
(2) =28.24, p < 0.0001; Table ) and visual comparison of site 

hydrographs (Fig. 2-3). Site 1 transects had the fewest number of flooded days (i.e. days 

where surface water level was ≥  ground level, mean of 3.9±1.9 days ) with 5 out of the 

15 transects experiencing an average of zero days of flooding.  At Site 2, days flooded 

ranged from 0.4±0.2 to 71.9±4.9 days flooded, (mean of 19.9±3.7).  Site 3 transects 

experienced the highest number of flooded days, (range: 0 to 84.5±0.4; mean of 39.4±7.6 

days).  Tukey’s pairwise comparisons confirmed a significant difference in days flooded 

between Site 1 and 3 (Tukey’s adjusted p < 0.0001) and Sites 2 and 3 (Tukey’s adjusted p 

< 0.0001 for both comparisons, Table 2-2 ).  Based on these findings, Sites 1, 2 and 3 are 

hereafter referred to as the “dry”, “intermediate” and “wet” sites, respectively.  The mean 

number of days flooded for all parallel transects, edge-to-interior transects and sites is 

given in Table 2-2.   
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All values for mean days flooded, other environmental variables (averaged over 

edge-to-interior transects) and sites are given in Table 2-3. Mean LAI was highest for the 

dry site (4.42±0.12), with values of 2.76±0.12 and 3.80±3.0 for the intermediate and wet 

sites, respectively.  Percent canopy closure was similar among sites, and ranged from 

89.0±1.5% at the wet site to 91.1±1.6 at the intermediate site.  Herb cover varied greatly 

between sites, being lowest in the dry site (13.4±3.5%) and similar in the other sites 

(60.3±17.1% and 56.4±2.5%, for the intermediate and wet site, respectively).  

Environmental data at the transect scale is listed in Appendix Table 2. 

Associations among Environmental Variables 

Pearson correlations between environmental variables at the landscape scale 

(calculated by including transects from all sites) are given in Table 2-4.  Percent leaf litter 

and percent bare soil were essentially redundant variables that were highly correlated (r = 

-0.98, p < 0.0001.   Days flooded was also positively correlated with % herbaceous cover 

(r = 0.31, p = 0.023), % bare soil (r = 0.41, p = 0.008) and negatively correlated with % 

canopy closure (r = -0.3662, p = 0.006).  Herb cover and LAI were negatively correlated 

(r=-0.63, p<0.0001).  

At this scale of examination, considering transects from all sites, no 

environmental variables correlated with distance from edge.  However, because flooding 

and distance from forest edge were both expected to be important factors affecting plant 

communities, it was necessary to know if these variables were still independent of one 

another at the site level.  At the landscape scale, when transects from all sites were 

included, these variables were not shown to be related (r = 0.1160, p = 0.4).  At the 
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intermediate site, there was a marginally significant, positive correlation between days 

flooded and distance from edge (p = 0.07, r = 0.41), indicating a probable lack of 

independence between these factors at this location. At the other two sites, distance from 

edge was not correlated days flooded (r = 0.19, p = 0.49 at the dry site; r = 0.01, p = 0.96 

at the wet site).  Therefore, based on these three forested wetlands, the assumption that 

distance from edge will necessarily be correlated with hydroperiod cannot be made.   

Woody Plant Communities 

 Adult Trees 

  The total basal area of adult trees ranged from 32.5±4.1 to 47.1 m
2
 ha

-1
 in the 

wettest and driest site, respectively (Table 2-5).  Acer rubrum (red maple, FAC) adults 

had the highest IV and basal area at all three sites (Table 2-5).  At the wet and 

intermediate site, Fraxinus pennsylvanica (green ash, FACW) and Celtis laevigata 

(sugarberry, FACW) were in the top three highest importance values.  At the driest site F. 

pennsylvanica and Liquidambar styraciflua (FAC) were the second and third most 

important species, respectively.   

 Adult tree species richness was highest at the dry site (15 species, 5.8±1.0 

species/144 m
2 

plot, Table 2-6), but there was no significant difference among sites (p > 

0.8).  Total species richness of adult trees at the intermediate and wet sites was was 10 

and 12 species (4.8±0.4 and 5.3±0.6 species/144 m
2 

plot, Table 2-6), respectively.  Six 

species of trees occurred only at the dry site; of these 6 species, 5 were found in the edge 

(first 10 m) only (L. styraciflua, Liriodendron tulipifera, Ulmus rubra, Populus deltoides 

and Nyssa sylvatica; Appendix Table 3).  Of these five species, all except N. sylvatica 
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were facultative upland species.  Considering all sites, mean adult richness was higher at 

the edges (6.58±0.65 species/144 m
2
 plot) than the interior (3.92±0.08 species/144 m

2
 

plot) and this difference was significant (X
2
(1) = 7.8, p = 0.005, Appendix Table 4).  

Across sites, mean adult diversity (H) was 1.32±0.05  and 1.00±0.09 in edge and interior 

plots, respectively (Appendix Table 5).   

 Saplings 

 The total density of saplings ranged from 12,094±3273 to 4594±4593 stems ha
-1

, 

at the wet and dry sites, respectively (Table 2-7), and decreased with distance from the 

edge (Appendix Figure 5).  Mean frequencies, densities and importance values of sapling 

species at all distances from the edge, at each site, are presented in Appendix Table 7. 

 F. pennsylvanica saplings had the highest mean density of any species at all three 

sites, and the highest importance values at the wet and dry site (Table 2-7).  At the wet 

site, it had the highest density of any species at all distances from the edge, with 

importance values ranging from (mean: 35±6, range:20±11 to 50±20).   A. rubrum had 

the second highest mean density and IV at the wet site.   At the intermediate site, C. 

laevigata and F. pennsylvanica had the highest two importance values and/or densities at 

all distances.  This pattern was similar at the dry site, with those two species maintaining 

high densities and/or importance values at all distances.  Asimina triloba (pawpaw, FAC) 

was unique to the dry site and had higher densities than other species at 30 and 60 m from 

the forest edge.   

 Species richness of saplings declined with distance from the forest edge (F1,42 = 

6.8, p  = 0.013, Appendix Tables 5 and 6).  Seven species (plus one unidentified species) 
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were found exclusively in transects from 1-10 meters, while only two species were found 

exclusively in the 30 or 60 m transects.  Species found exclusively at the edge included 

FACU, FAC, FACW and OBL species, and all were fairly rare within sampled areas.  

These species included L. tulipifera saplings (FACU) and Nyssa sylvatica (FAC), which 

were only found at the wet site, but limited to the edge (5 and 10 m).  Four of these seven 

species are considered shade intolerant (L. tulipifera, Salix nigra, Platanus occidentalis 

and Sassafras albidum), while N. sylvatica is considered shade tolerant.  The other two 

species (Prunus sp. and Crategus sp.) were only identified at the genus level.  

 Seedlings 

 Total seedling density ranged from 2906±644 to 7156±1855 stems ha
-1

 for the dry 

and intermediate sites, respectively (Table 2-8).  F. pennsylvanica had the highest 

importance value and density of seedlings at all sites.  Celtis laevigata, which was the 

second most important and abundant species at the intermediate and dry site, was very 

uncommon at the wet site, despite having basal area of adults comparable to those in the 

other sites.  According to Burns and Honkala (1990), this species is intolerant of flooding 

in the seedling stage and this may explain its low abundance at this site.  No relationships 

between species richness and site, edge orientation or distance from edge were found. 

 Seedling density appeared to differ in north vs. south facing plots.  This was 

tested for significance. Mixed-model regression indicated a significant interaction 

between edge orientation and distance from edge on seedling density (F1,41 = 6.26, p =  

0.016, Appendix Table 8), with no significant effects of site.  Since seedling density did 

not appear to have a clear relationship with distance from edge (Appendix Fig. 6), the 
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significance of this interaction is most likely due to seedling density being generally 

higher in south sides at all distances except 60m, where they were approximately equal.  

As seen in figure (Fig. 2-4), F. pennsylvanica was a major contributor to high seedling 

densities in south-facing transects.  At all sites, F. pennsylvanica maintained high, if not 

the highest, importance values in the seedling layer at all distances from the edge 

(Appendix Table 9).  C. laevigata was generally the next most important species at the 

intermediate and dry site, at all distances; an exception was the intermediate site at 30 m.  

Quercus palustris (pin oak, FACW) was another relatively important seedling species 

that reached its highest densities at 30 and 60 m, but appeared to have a stable 

distribution throughout the edge zone (1-10 m) as well.   

 Two species that were present as adult trees at the intermediate site, but did not 

appear as seedlings (or saplings) were Populus deltoides (cottonwood, FAC) and 

Platanus occidentalis (American sycamore, FACW).   

 Shrubs 

 Shrub species richness differed significantly by site (F2,9 = 10.3, p = 0.005, 

Appendix Table 10) and the dry site had significantly higher species richness than the 

two other sites (Tukey adjusted p = 0.005 for dry site vs. intermediate site,  Tukey 

adjusted p = 0.03 for wet vs. dry site).  Thirteen shrub species were present at the dry site 

(Table 2-9), with four species found only at that site.  These species were: L. benzoin, 

Euonymus alatus (burning bush, an exotic species, wetland indicator status 

undetermined), Euonymus americanus (bursting-heart, FAC), and a Prunus sp.  In 

contrast, only three shrub species were present at the intermediate site: Lonicera maackii 
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(Amur honeysuckle, an invasive exotic), Rubus sp. and Cornus foemina (stiff dogwood, a 

FACW native).  Eight species of shrubs were found at the wet site, and two of those—

Cephalanthus occidentalis (buttonbush, a native wetland OBL) and Aralia spinosa 

(devil’s walking stick, FAC)—were unique to that site.   

 The shrub species with the highest importance value differed for all three sites 

(Table  2-9).  The most important shrub species at each site were: Lindera benzoin (dry 

site, IV = 41±5.3), Lonicera maackii (intermediate site, IV = 43.1±9.5) and Cornus 

foemina (wet site, IV = 40.1±8.7).  L. benzoin (spicebush) was found exclusively at the 

dry site, but the other two species were present at all sites. The stem density of these three 

shrub species at each site is compared in Fig. 2-5,   along with Rubus spp., which also 

occurred at all sites.      

 At 1 m from the forest edge, Rubus sp. had the highest stem density and/or 

importance value across sites, and tended to decline in importance with distance from the 

forest edge (Appendix Table 11).  In the wet site, C. foemina was the most important 

species at all distances from the forest edge.  In the dry site, L. benzoin was dominant 

from 5 to 60 m from the edge, with L. maackii and Rubus sp. maintaining lower, but 

relatively stable, importance values in the same areas.  At the intermediate site, L. 

maackii appeared 5 m from the forest edge, then maintained high importance values at 5, 

10  and 30 m from the forest edge (IV values of 75±15, 92±8 and 44±18, respectively), 

then substantially decreased in density at 60 m, leaving C. foemina as the dominant 

shrub. Total shrub stem density did not appear to have any relationship to distance from 

edge (Appendix Fig. 7).  Densities of L. maackii clearly declined with distance from edge 

at the intermediate site, but this trend was not seen at the other sites (Appendix Fig. 8). 
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As discussed previously, the number of days flooded increased with distance from the 

edge at the intermediate site only.  In view of this, it seems likely that hydrology, not 

proximity to the forest edge, was a more likely driver of this pattern at the intermediate 

site.   

 Density of L. maackii differed significantly between sites, with both the dry and 

intermediate sites having greater stem densities than the wet site (Tukey adjusted p = 0.01 

for both comparisons, Appendix Table 12).  The size class structure of L. maackii stems 

was similar among sites, though the dry site had a greater density of stems in the largest 

height category (>2 m tall), but this was not tested for significance (Fig. 2-6).  Because L. 

maackii has been negatively correlated with native shrub densities in other studies, I 

examined correlation values between the density of this species and the three other 

dominant shrubs.  None of these correlations was significant (p > 0.3).    

 Vines 

 The vine community at the wet and intermediate sites was dominated by 

Toxicodendron radicans (poison ivy, FAC), which had importance values of 49±8 and 

58±6 at each site, respectively (Table 2-10).  At the dry site, Lonicera japonica (Japanese 

honeysuckle, an exotic, invasive species) was the most important species (IV=38±4).  

Total vine cover generally declined towards the forest interior (Appendix Fig. 9).  Along 

edge-to-interior transects in the intermediate and dry site, T. radicans retained the highest 

importance values and percent cover at all distances from the forest edge (Appendix 

Table 14).  At the dry site, L. japonica had the highest importance values and percent 
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cover at all distances except 30 m, where Euonymus fortunei (wintercreeper, an exotic 

invasive species) was more abundant.  No vine species were unique to any one site.   

 Lonicera japonica had significantly different cover between sites.  (F2,12.5 = 7, p = 

0.009, Appendix Table 12) with coverage in the dry site being higher the two other sites.  

It also showed a pattern of decreasing cover with distance from the forest edge at all three 

sites (Fig. 2-7) and this trend was significant (F1,42 = 7, p = 0.01, Appendix Table 12).   

 NMS Ordinations: Community Patterns and Environmental Correlates 

 The initial run of the NMS used mean woody species IVs calculated from all 

parallel transects at all sites.  The solution resulted in three axes explaining 72.2% of the 

variation in the plant community composition with a final stress of 17.64.  The 

environmental biplot in Fig. 2-8 shows the position of transects and species by strata 

(vines, shrubs, tree seedling, and saplings) based on their association with the resulting 

NMS axes, as well as vectors indicating environmental variables also associated with 

these axes.  Fig. 2-9 shows transects and species by strata plotted identically as in Fig. 2-

8, but displayed with vectors indicating axis associations with biotic variables such as 

wetland indicator status, exotic status and total abundance by stratum (i.e. shrub stem 

density).  Referring to both figures, it is possible to make indirect associations between 

species distributions, environmental variables and community patterns.  Table 2-11 

summarizes the predominant species, environmental variables, and biotic variables that 

were most strongly associated with Axis 1 and 3.   

 Plotting transects in relationship to Axis 1 and 3 (Fig. 2-8) revealed clear 

compositional differences between Site 1 (dry site) and the two other sites, based on their 
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position in ordination space.  Axis 1 explained 34.5 % of the variation in the species 

matrix and had a positive correlation with the number of days flooded (r
2
=0.38) and was 

the primary dimension that separated site 1 (dry site) from the 2 others (Fig. 2-8).  The 

total IV of exotic vines and total shrub density were negatively associated with Axis 1 

(r
2
=0.44 and r

2
=0.19, respectively), while the IVs of FACW/OBL shrubs and percent 

herbaceous cover were positively associated with this axis (r
2
=0.40 and r

2
=0.34, 

respectively; Fig. 2-9).  The two species most strongly associated with Axis 1 were both 

shrubs; Cornus foemina (FACW) and Lindera benzoin (FAC) displayed positive 

(r
2
=0.34) and negative (r

2
=0.59) associations with Axis 1, respectively.  The negative 

association between Axis 1 and shrub density was probably due to the influence of 

Lindera benzoin, which achieved high densities at the “dry” site (Site 1).   Axis 3 was 

positively correlated with Celtis laevigata seedlings (r
2
=0.20), distance from forest edge 

(r
2
=0.20), and total seedling density (r

2
=0.20; Fig. 2-8).   

 Axis 2 was positively associated with percent vine cover (r
2 

= 0.21) and the IV of 

exotic shrubs (r
2 

= 0.45; Fig. 2-10), but not with any measured environmental variables. 

 The position of the three dominant shrub species in ordination space, particularly 

the strong negative and positive associations of Lindera benzoin (FAC) and Cornus 

foemina (FACW) with Axis 1, suggests that the shrub community is strongly indicative 

of current hydrologic conditions. Lonicera maackii, the exotic shrub species, did not 

relate strongly with Axis 1.  As shown in Appendix Fig. 10, stem density of L. maackii 

was generally highest at values of Axis 1 near zero.  This may indicate at preference of L. 

maackii for areas with intermediate flooding intensity, such as those at Site 2, where this 

species achieved the highest mean density.   
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Shrub Distribution and Hydrology 

 NMS results indicate that total shrub density responded negatively to increased 

flooding.  However, this relationship appeared to vary by species, with Lindera benzoin, 

Lonicera maackii and Cornus foemina occupying different regions of an apparent 

hydrologic gradient.  To directly examine the relationship between shrub density and 

days of flooding and differences in this relationship by species, I generated scatter plots 

and correlation coefficients for relationships between: 1) total shrub stem density vs. days 

flooded (Appendix Figure 11) and 2) shrub stem density (by species) vs. days flooded 

(Fig. 2-11).  Correlation data are given in Table 2-11.  Total shrub stem density was not 

significantly correlated with the number of flooded days (p=0.38).  Considering the U-

shaped distribution of data points in Appendix Fig. 11, this appears to be due entirely to 

the influence of Cornus foemina which increased in density with the number of days 

flooded (r
2
=0.13, p=0.007).  The stem density of all other species decreased with the 

number of days flooded (p≤0.05).  Of the four shrubs, Lindera benzoin persisted in the 

most narrow range of hydrologic conditions, and did not occur in transects with more 

than 28 days of flooding.  It should be noted, however, that this species only occurred at 

one site, which had the most limited range of flooded days; thus its absence from 

transects with longer flooding durations may be limited by site factors, such as dispersal 

or other edaphic conditions.  L. maackii and Rubus spp. had similar relationships with 

days flooded; they were found in transects with a relatively high number of flooded days, 

but did not increase in density with this factor.  For clarity, it should be noted that “days 

flooded” is a property of the transect, and not a measure of how long an individual plant 
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experienced flooding, because plants at higher elevations will experience fewer days of 

flooding than those at lower elevations, within a transect.  

Because the invasive species Lonicera maackii was a species of special concern, I 

further examined the rank elevation of L. maackii individuals within parallel transects, 

and its relationship with the number of days flooded.  If areas of raised elevation, in 

flooded areas, created safe sites for the establishment of L. maackii, it was expected that 

the rank elevation of plants in transects would increase with the number of flooded days. 

As seen in Fig. 2-12, plants in transects with ~0-4 total days of flooding occupied the full 

range of relative elevations within their respective transects.  Individuals in transects 

flooded for approximately 5 days or more were constrained to increasingly higher relative 

elevations as the number of days flooded increased.  Mature L. maackii plant stems (>2.0 

m tall) persisted into a transect experiencing up to 43 days of flooding (during the water 

level monitoring period) by occupying the highest recorded elevation within that transect 

(Site 3-N1-30m).  The number of flooding days in each transect where L. maackii was 

found, along with the relative elevations, stem numbers, and heights of individual plants 

are listed in Appendix Table 15. 

 

 

 

Discussion  

 The three most important tree species encountered in research sites were Fraxinus 

pennsylvanica (FACW), Acer rubrum (FAC), and Celtis laevigata (FACW).  A. rubrum 

was the dominant adult species at all three sites.  The second most important adult tree 
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species in the intermediate and dry sites were C. laevigata and F. pennsylvanica.   F. 

pennsylvanica was extremely important across sites, and had the highest densities and/or 

importance values of any species in both the sapling and seedling layers, across sites.  

The sapling and seedling layers at the two drier sites indicate a growing importance of 

Celtis laevigata, a relatively short-lived, fast-growing species (Burns and Honkala 1990).  

This species is intolerant of flooding, particularly in the seedling stage; thus, this species 

reflects the hydrology of the two drier sites.  Adult trees had higher species richness 

towards the forest edges, with most of the species unique to the edge being facultative 

upland species.   

 Findings from the NMS ordination suggest that the shrub community were most 

indicative of community differences among these three wetlands, and that these 

differences are primarily related to differences in hydrology.  Importance values of 

shrubs at each site, and the location of these shrubs in ordination space, show that each 

site is associated with a different shrub species.  L. benzoin (a native FAC shrub) and C. 

foemina (a native FACW shrub) were associated with the driest and wettest sites, 

respectively, while L. maackii (an invasive, exotic species) was associated with the 

intermediate site.  L. maackii density at the two driest sites was significantly higher than 

at the wet site. 

 It was surprising that L. maackii had higher importance values and similar stem 

densities at the intermediate, rather than dry site.  The majority of studies on L. maackii 

invasion in North America have been conducted in upland systems and I expected this 

species to be clearly associated with the driest habitat.  This study shows that L. maackii 

has the ability to invade and gain dominance in wetland habitats.  The association of L. 
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maackii with relatively higher elevations in areas subjected to greater flooding indicates 

that microtopography is an important factor in facilitating invasion.   

  Interestingly, the intermediate and dry sites had similar densities of L. maackii, 

but differed in important ways.  The driest site had a dense native shrub layer (dominated 

by L. benzoin) that persisted alongside L. maackii throughout the forest edge and interior.  

This is contrary to findings from other studies that have found a negative correlation 

between L. maackii and the diversity or species richness of other plant species.  This 

offers some evidence that L. maackii, under certain circumstances, may add to the native 

shrub community, rather than replace it. Since the stem size class structure of L. maackii 

did not appear to be different between the intermediate and dry site, there is no evidence 

of a more recent, less established invasion at the dry site.  One clue to the coexistence of 

L. benzoin and L. maackii at this site may lie in the forest canopy.  Since this study 

sought out to minimize confounding effects of light availability from sources other than 

the forest edge, I chose transect locations with relatively closed canopies.  Studies have 

shown that L. benzoin has maximum stem growth at 25% full sun photosynthetic photon 

flux density (PPFD), and that L. maackii has highest efficiency at a higher level of light 

availability (near 100%).  Thus, L. maackii is likely to outcompete L. benzoin in the 

presence of light-creating disturbances, where it can use increased light availability to 

achieve higher growth rates.  Since we avoided large gaps, I may have encountered 

environmental conditions that supported a stable coexistence between L. benzoin and L. 

maackii.  This could potentially be disrupted by the future creation of canopy gaps.   

 The importance of canopy gaps are particularly important to consider in the 

context of: 1) global climate change, where changing frequency of storms with damaging 
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winds may affect the forest canopy (Peterson 2000), and 2) Emerald ash borer infestation, 

which affects Fraxinus species such as F. pennsylvanica, a dominant species in these 

wetlands.  According to recent estimates, Emerald ash borer (EAB) infestations can kill a 

healthy ash stand with close to 100% mortality within 6 years (USFS 2007).  Healthy 

trees die within approximately 4 years of infestation.  Saplings are also attacked by this 

beetle and can be killed in a single year (Poland and McCullough 2006), and may not be 

able to replace dead ash adults quickly via gap-filling While I have not assessed the 

impact of EAB on my study sites, it is hard to imagine a scenario where it does not 

fundamentally alter the environment of these forests in many different ways (i.e. 

increased canopy openness, increased temperatures, and decreased evapotranspiration 

resulting from loss of a dominant species), with resulting shifts in plant community 

structure.     

 While the driest site had the greatest species richness and diversity in most 

vegetation layers, many of the species unique to this site (particularly in the adult tree and 

shrub layers) were exotic species or FAC/FACU species.  In other words, the greater 

number of species at the dry site did not come primarily from a greater number of native 

woody wetland species. This site also had the highest percent cover of the invasive 

woody vine, Lonicera japonica, which was the most important vine species at this site.  

There were no exotic, woody plant species that were found only at the wettest site.  The 

susceptibility of the dry site to invasion may be encouraged by its residential setting, but 

is likely permitted by drier conditions.  Although wetland systems have been cited as 

being particularly prone to the incursion of exotic, invasive plant species (Zedler and 
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Kercher 2005), my study suggests that wetland hydrology offers some degree of 

protection from invasive, woody species.   

 Wetland managers should be mindful of L. maackii and other woody invaders 

when implementing restoration strategies.  Microtopography in wetland forests is 

important because it facilitates the establishment of native species that require safe sites 

for germination in wetland areas (Battaglia et al. 2000, Blood and Titus 2010).  Thus, the 

creation of microtopography (i.e. “pits and mounds”) may be a goal of wetland 

restoration and management (Pietrzykowski et al. 2015, Kangas et al. 2016).  However, 

my results suggest that the results of these efforts must be monitored closely, particularly 

in areas with relatively open canopy conditions, which may encourage the growth and 

spread of exotic species, such as L. maackii, that can take advantage of light-creating and 

topographical disturbances.  

 There is some evidence to suggest that L. maackii, once established in wetlands, 

may alter the environment to its benefit.  A recent study by Boyce et al. (2012) suggests 

that evapotranspiration by L. maackii may cause a net soil water loss, thus drying the soil.  

In the context of wetland systems, this represents a potential positive feedback loop, 

whereby water losses via L. maackii evapotranspiration contribute to altered wetland 

hydrology, further facilitating the establishment and spread of this invasive species.   

Conclusions 

 This field study sampled plant communities over a range of hydrologic conditions 

and varying distance from the forest edge in three forested wetlands.  The shrub 

community was most indicative of differences in hydrology between sites. Based on 
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results from this study and others (Swab et al. 2008), the invasive shrub Lonicera maackii 

can be expected to be more problematic in wetlands that have undergone hydrologic 

modifications, resulting in drier conditions.  Because survival in wetland soils requires 

specialized adaptations, it is likely that wet conditions provide resistance to woody 

invaders from upland systems.  However, the availability of more elevated “safe sites” 

(sensu Grubb 1977) may facilitate the colonization of wetland sites.  Fraxinus 

pennsylvanica was a major component of the tree canopy at all study sites, and the losses 

of this species due to Emerald ash borer infestation are likely to have lasting 

consequences on plant community structure and composition in these forested wetlands. 
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Table 2-1.  Characteristics of the three research sites chosen for study, including area, soil type, soil flooding/ponding characteristics, 

and drainage class, according to the NRCS SSURGO dataset.  All information, besides size, was verified by NRCS personnel in the 

field. 

 

Site Numbers  

and Names 

Area 

(Ha) 

Soil Map Unit Flooding or 

Ponding Class 

Approx. 

Elevation (feet) 

Drainage Class Coordinates 

Site 2  

Intermediate Site 

(Evangel) 

15.1 Zipp silty clay Ponded 451 Poor 38° 8'52.57"N 

85°42'36.01"W 

Site 1  

 Dry Site 

 (Max Sawyer) 

28.5 Melvin silt loam Frequently 

flooded 

456 Poor 38° 7'26.48"N 

85°41'58.86"W 

Site 3  

Wet Site 

 (Trinity) 

31.1 Zipp silty clay Ponded 459 Very Poor 38° 7'24.58"N 

85°44'2.27"W 
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Table 2-2.  Data used in ranking sites by wetness.  Means at the scale of edge-to-interior 

transect (N=4 per site), parallel transect, and site.  Each edge-to-interior transect 

consisted of five parallel transects spaced at 1, 5, 10, 30 and 60 meters.   

  Site 1: Dry Site Site 2: Intermediate 

Site 

Site 3: Wet Site 

Edge-to-

Interior 

Transect 

Parallel 

Transect 

(m from 

edge) 

Days Flooded 

SE 

Days Flooded 

SE 

Days Flooded 

SE 

N1 1 . . 10.3 3.4 0.0 0.0 

N1 5 . . 0.4 0.2 12.2 1.4 

N1 10 . . 10.7 0.4 33.3 7.7 

N1 30 . . 1.4 1.4 42.5 11.4 

N1 60 . . 3.0 1.3 36.5 1.4 

Mean    5.2 2.2 24.9 8.1 

N2 1 0.0 0.0 14.9 4.3 40.9 6.1 

N2 5 0.0 0.0 10.9 5.1 55.0 1.6 

N2 10 0.8 0.5 17.9 1.6 52.5 4.1 

N2 30 28.1 11.3 33.5 14.1 47.6 2.8 

N2 60 10.3 7.5 71.9 4.9 23.8 1.9 

Mean  7.8 5.4 29.8 11.2 44.0 5.6 

S1 1 0.0 0.0 32.6 6.2 2.6 1.1 

S1 5 9.7 9.6 8.2 1.7 4.5 1.1 

S1 10 0.0 0.0 15.3 4.2 6.2 0.5 

S1 30 0.0 0.0 17.3 5.2 8.7 1.1 

S1 60 0.9 0.7 34.4 4.1 2.2 0.4 

Mean  2.1 1.9 21.6 5.1 4.8 1.2 

S2 1 1.5 1.5 31.5 4.9 83.2 0.5 

S2 5 4.1 1.8 5.4 1.2 84.5 0.4 

S2 10 1.1 0.5 21.4 4.5 84.3 0.6 

S2 30 0.6 0.6 33.9 3.6 84.2 0.5 

S2 60 1.2 1.2 22.3 3.5 82.6 1.3 

Mean  1.7 0.6 22.9 5.0 83.7 0.4 

SITE MEAN (±SE) 3.9
 1.9 19.9

 3.7 39.4
 7.6 
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Table 2-3.  Summary of measured environmental variables at the perpendicular transect level (N=4, within each site).  Each edge-to-

interior transect consisted of five parallel transects spaced at 1, 5, 10, 30 and 60 meters.   

Site Edge-to-Interior 

Transect 

N Days 

Flooded 

±SE 

% Herb 

Cover 

±SE 

% Bare Soil 

±SE 

% Leaf 

Litter 

±SE 

%CWD 

±SE 

% Canopy 

Closure 

±SE 

% LAI 

±SE 

1 N1 5 . . 10 3 18 10 75 11 3 2 88 1 4.60 0.16 

1 N2 5 7.8 5.4 16 4 35 17 61 15 9 5 85 2 4.62 0.12 

1 S1 5 2.1 1.9 22 10 21 16 77 16 1 1 92 0 4.09 0.15 

1 S2 5 1.7 0.6 6 2 13 4 82 4 1 1 94 1 4.38 0.11 

 SITE MEAN 4 3.9 1.7 13.4 3.5 21.9 4.7 73.7 4.6 3.5 1.7 89.6 2.0 4.42 0.12 

2 N1 5 5.2 2.2 41 12 6 2 85 7 3 1 95 1 2.51 0.18 

2 N2 5 29.8 11.2 72 6 9 3 87 4 6 5 88 2 2.63 0.17 

2 S1 5 21.6 5.1 60 13 3 1 93 2 6 2 89 1 3.02 0.35 

2 S2 5 22.9 5.0 69 14 10 4 87 5 0 0 92 1 2.88 0.22 

 SITE MEAN 4 19.9 5.2 60.3 7.1 7.1 1.7 88.0 1.6 3.8 1.4 91.1 1.6 2.76 0.12 

3 N1 5 24.9 8.1 51 15 6 3 93 3 1 1 90 2 4.13 0.38 

3 N2 5 44.0 5.6 61 11 3 0 98 0 0 0 89 3 3.89 0.11 

3 S1 5 4.8 1.2 60 9 24 13 75 13 2 1 92 1 2.93 0.41 

3 S2 5 83.7 0.4 54 17 73 9 23 9 5 3 85 2 4.24 0.21 

 SITE MEAN 4 39.4 16.8 56.4 2.5 26.2 16.1 72.3 17.0 1.8 1.0 89.0 1.5 3.80 0.30 
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Table 2-4.  Pearson correlations between environmental variables at the landscape scale (i.e. data for all transects at all sites included).  

Bold cells indicate pairs of variables with p-values <0.05.  Top values in each cell are values for the correlation coefficient r, middle 

values are p-values and bottom values indicate the sample size, n. 

 Distance 

from Edge 

Days 

Flooded 

% Herb 

Cover 

% Bare Soil % Leaf 

Litter 

% CWD % Canopy 

Closure 

LAI 

Distance from 

Edge 

1.0000 0.1160 -0.2107 0.0045 -0.0103 -0.0231 0.1039 0.0582 

 0.3992 0.1062 0.9730 0.9377 0.8607 0.4295 0.6590 

60 55 60 60 60 60 60 60 

Days Flooded  1.0000 0.3060 0.3542 -0.3274 -0.0026 -0.3662 0.1163 

  0.0231 0.0080 0.0147 0.9852 0.0060 0.3978 

 55 55 55 55 55 55 55 

% Herb 

Cover 

  1.0000 -0.0550 0.1242 -0.1817 -0.2136 -0.6284 

   0.6763 0.3443 0.1647 0.1013 <.0001 

  60 60 60 60 60 60 

% Bare Soil    1.0000 -0.9753 0.0534 -0.2422 0.2465 

    <.0001 0.6851 0.0622 0.0576 

   60 60 60 60 60 

% Leaf Litter     1.0000 -0.1585 0.2187 -0.2394 

     0.2266 0.0932 0.0654 

    60 60 60 60 

% CWD      1.0000 -0.1318 0.0956 

      0.3153 0.4673 

     60 60 60 

% Canopy 

Closure 

      1.0000 -0.1260 

       0.3374 

      60 60 

LAI        1.0000 

        

       60 
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Table 2-5. Mean density, IV and basal area ±SE  for the adult trees stratum (>2.5 cm dbh) at each of the three research sites.  This 

could not be determined for species identified to genus level only.  N=8  12  x 12 m plots at each site.  Species are organized 

alphabetically in groups first by those occurring at the wet, then intermediate, and lastly at the dry sites. WIS = Wetland Indicator 

Status (see Appendix Table 16 for categories).  Values in bold show the species with the highest IV and density at each site . 

  Site 3: Wet Site Site 2: Intermediate Site Site 1: Dry Site 

   

Species WIS 

Code 

Mean 

(stems/Ha) 

±SE 

Mean IV 

±SE 

Mean Basal 

area (m
2
/Ha) 

±SE 

Mean 

(stems/Ha) 

±SE 

Mean IV 

±SE 

Mean Basal 

area (m
2
/Ha) 

±SE 

Mean 

(stems/Ha) 

±SE 

Mean IV 

±SE 

Mean Basal 

area 

(m
2
/Ha) 

±SE 

Acer rubrum FAC 833 315 35.1 6.5 11.4 2.6 356 74 31.8 4.1 18.4 4.5 590 156 40.6 4.9 20.9 3.7 

Acer 

saccharinum 

FACW 26 18 0.9 0.7 0.2 0.1 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 

Celtis laevigata FACW 286 197 12.3 8.1 2.8 1.9 530 131 24.2 5.0 4.4 1.2 35 19 3.2 2.7 1.3 1.3 

Diospyros 

virginiana 

FAC 26 18 0.5 0.4 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 

Fraxinus 

pennsylvanica 

FACW 503 162 20.9 4.4 7.0 1.8 208 73 14.7 4.5 7.2 2.8 313 114 23.0 6.2 10.4 2.9 

Liquidambar 

styraciflua 

FAC 43 22 5.4 3.7 3.1 2.7 0 0 0.0 0.0 0.0 0.0 130 59 8.6 4.9 5.8 5.2 

Nyssa sylvatica FAC 69 69 3.3 3.3 0.4 0.4 0 0 0.0 0.0 0.0 0.0 17 17 1.1 1.1 0.6 0.6 

Populus 

deltoides 

FAC 26 18 1.1 0.7 0.3 0.2 61 36 7.6 5.1 5.7 4.6 17 11 1.0 0.8 0.5 0.5 

Quercus 

bicolor 

FACW 26 18 2.4 2.0 0.9 0.9 9 9 0.2 0.2 0.0 0.0 0 0 0.0 0.0 0.0 0.0 

Quercus 

palustris 

FACW 200 142 9.9 4.6 3.7 2.0 43 22 4.8 3.8 5.2 5.0 17 11 1.3 0.9 0.2 0.2 

Salix nigra OBL 26 26 1.9 1.9 0.5 0.5 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 

Ulmus rubra FAC 122 31 6.3 1.7 2.2 1.1 226 93 11.3 4.4 2.8 1.4 122 52 6.1 3.6 0.6 0.3 

Acer negundo FAC 0 0 0.0 0.0 0.0 0.0 17 11 0.7 0.5 0.1 0.1 0 0 0.0 0.0 0.0 0.0 

Platanus 

occidentalis 

FACW 0 0 0.0 0.0 0.0 0.0 9 9 2.5 2.5 1.5 1.5 104 37 9.6 5.2 4.2 1.9 

Quercus lyrata OBL 0 0 0.0 0.0 0.0 0.0 9 9 2.1 2.1 0.9 0.9 0 0 0.0 0.0 0.0 0.0 

Carya sp. - 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 9 9 0.2 0.2 0.0 0.0 

Cornus florida FACU 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 9 9 0.2 0.2 0.0 0.0 
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  Site 3: Wet Site Site 2: Intermediate Site Site 1: Dry Site 

   

Species WIS 

Code 

Mean 

(stems/Ha) 

±SE 

Mean IV 

±SE 

Mean Basal 

area (m
2
/Ha) 

±SE 

Mean 

(stems/Ha) 

±SE 

Mean IV 

±SE 

Mean Basal 

area (m
2
/Ha) 

±SE 

Mean 

(stems/Ha) 

±SE 

Mean IV 

±SE 

Mean Basal 

area 

(m
2
/Ha) 

±SE 

Fagus 

grandifolia 

FACU 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 9 9 0.2 0.2 0.0 0.0 

Juniperus 

virginiana 

FACU 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 17 17 0.6 0.6 0.3 0.3 

Liriodendron 

tulipifera 

FACU 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 52 34 2.6 1.7 1.6 1.1 

Ulmus 

americana 

FACW 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 17 11 1.6 1.0 0.9 0.6 

TOTAL  2188  100  32.5 4.1 1467  100  46.2 5.4 1458  100  47.1 5.1 
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Table 2-6.  Mean species richness (number of species) and Shannon-Weiner diversity 

values (H) for all vegetation layers, averaged at the site level over all parallel transects 

(16 m
2
/transect) or adult sampling plots (144 m

2
/plot).  Values in bold indicate which site 

had the highest values of richness or H occurring within each vegetation layer.  

Layer Site N Mean Richness ±SE Mean H ±SE 

Adult tree 1: Dry Site 8 5.75 1.01 1.12 0.14 

Adult tree 2: Intermediate Site 8 4.75 0.41 1.08 0.10 

Adult tree 3: Wet Site 8 5.25 0.56 1.27 0.11 

Sapling 1: Dry Site 20 3.65 0.44 1.08 0.09 

Sapling 2: Intermediate Site 20 2.75 0.32 0.73 0.10 

Sapling 3: Wet Site 20 3.40 0.42 0.82 0.11 

Tree Seedling 1: Dry Site 20 2.25 0.30 0.60 0.12 

Tree Seedling 2: Intermediate Site 20 1.85 0.27 0.44 0.10 

Tree Seedling 3: Wet Site 20 2.1 0.27 0.43 0.10 

Shrubs 1: Dry Site 20 7.25 0.68 0.79 0.08 

Shrubs 2: Intermediate Site 20 2.30 0.52 0.21 0.07 

Shrubs 3: Wet Site 20 3.35 0.80 0.31 0.08 

Vines 1: Dry Site 20 4.75 0.35 0.99 0.10 

Vines 2: Intermediate Site 20 3.25 0.32 0.52 0.08 

Vines 3: Wet Site 20 2.35 0.32 0.42 0.09 
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Table 2-7.  Tree sapling (<2.5 cm dbh, >1 m in height) abundance summaries by species for each forested wetland site.  Abundance 

data are given as mean frequency across transects within site, sapling density, and IV (±SE) at each site.  Species are organized 

alphabetically in groups first by those occurring at the wet, then intermediate, and lastly at the dry sites. WIS = Wetland Indicator 

Status (see Appendix Table 16 for categories).  Values in bold show the species with the highest IV and density at each site. 

  Site 3: Wet Site 

 

Site 2: Intermediate Site Site 1: Dry Site 

Species Name WIS Freq. 

±SE 

Density 

(stems/Ha) 

±SE 

IV 

±SE 

Freq. 

±SE 

Density 

(stems/Ha) 

±SE 

IV 

±SE 

Freq. 

±SE 

Density 

(stems/Ha) 

±SE 

IV 

±SE 

Acer rubrum FAC 0.33 0.08 1406 368 22.7 6.4 0.06 0.03 375 281 4.0 1.9 0.08 0.04 281 190 4.7 2.5 

Acer saccharinum FACW 0.01 0.01 31 31 0.2 0.2 0.01 0.01 31 31 0.2 0.2 0.01 0.01 31 31 0.3 0.3 

Celtis laevigata FACW 0.11 0.06 438 198 6.1 3.2 0.41 0.08 2500 596 37.0 6.7 0.19 0.06 563 186 15.0 4.7 

Crategus spp.  0.01 0.01 31 31 0.3 0.3 0.01 0.01 31 31 0.7 0.7 0.00 0.00 0 0 0.0 0.0 

Fraxinus 

pennsylvanica 

FACW 0.44 0.08 5844 2083 35.1 6.4 0.28 0.08 4063 2079 18.5 4.6 0.29 0.06 1250 339 22.4 3.4 

Liquidambar 

styraciflua 

FAC 0.13 0.07 1469 855 3.7 2.1 0.00 0.00 0 0 0.0 0.0 0.15 0.06 469 226 10.6 4.1 

Liriodendron 

tulipifera 

FACU 0.03 0.02 63 43 0.4 0.3 0.00 0.00 0 0 0.0 0.0 0.00 0.00 0 0 0.0 0.0 

Unidentified  0.01 0.01 31 31 0.4 0.4 0.00 0.00 0 0 0.0 0.0 0.04 0.02 94 51 1.5 1.0 

Nyssa sylvatica FAC 0.13 0.07 1094 689 3.2 1.8 0.00 0.00 0 0 0.0 0.0 0.00 0.00 0 0 0.0 0.0 

Quercus bicolor FACW 0.03 0.02 63 43 0.6 0.4 0.03 0.02 63 43 1.4 1.0 0.01 0.01 31 31 1.3 1.3 

Quercus michauxii FACW 0.03 0.02 63 43 5.2 5.0 0.00 0.00 0 0 0.0 0.0 0.06 0.03 156 77 3.5 1.6 

Quercus palustris FACW 0.29 0.06 969 254 14.0 3.4 0.20 0.06 875 322 11.0 2.9 0.13 0.04 375 160 9.1 3.1 

Ulmus rubra FAC 0.18 0.06 594 220 8.0 3.0 0.20 0.07 625 227 14.8 5.6 0.20 0.05 688 181 14.8 3.8 

Diospyros virginiana FAC 0.00 0.00 0 0 0.0 0.0 0.01 0.01 31 31 0.9 0.9 0.01 0.01 31 31 0.3 0.3 

Salix nigra OBL 0.00 0.00 0 0 0.0 0.0 0.01 0.01 125 125 1.5 1.5 0.00 0.00 0 0 0.0 0.0 

Asimina triloba FAC 0.00 0.00 0 0 0.0 0.0 0.00 0.00 0 0 0.0 0.0 0.08 0.04 469 283 7.4 4.0 

Carya spp.  0.00 0.00 0 0 0.0 0.0 0.00 0.00 0 0 0.0 0.0 0.03 0.02 63 43 1.3 0.9 

Platanus occidentalis FACW 0.00 0.00 0 0 0.0 0.0 0.00 0.00 0 0 0.0 0.0 0.01 0.01 31 31 1.7 1.7 

Prunus spp.  0.00 0.00 0 0 0.0 0.0 0.00 0.00 0 0 0.0 0.0 0.01 0.01 31 31 0.8 0.8 

Sassafras albidum FACU 0.00 0.00 0 0 0.0 0.0 0.00 0.00 0 0 0.0 0.0 0.01 0.01 31 31 0.3 0.3 

 SUM   12094  ±3273 100    8719 ±2656 90    4594 ±4593 95  
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Table 2-8. Tree seedling (<0.3 m tall) abundance summaries by research site.  Abundance data are given as mean frequency, density, 

and IV (±SE) at each site.  Species are organized alphabetically in groups first by those occurring at the wet, then intermediate, and 

lastly at the dry sites.   WIS = Wetland Indicator Status (see Appendix Table 16 for categories).  Values in bold show the species with 

the highest IV and density at each site. 
 Site 3: Wet Site Site 2: Intermediate Site Site 1: Dry Site Across Site Means 

Species Mean 

Freq. ±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean IV 

±SE  

Mean 

Freq. ±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean IV 

±SE  

Mean 

Freq. 

±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean IV 

±SE  

Mean 

Freq. ±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean IV 

±SE  

Acer spp. 0.03 0.02 63 43 3.8 2.7 0.00 0.00 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.01 0.01 21 21 1.3 1.3 

Celtis 

laevigata 

0.01 0.01 31 31 2.1 2.1 0.13 0.03 625 198 24.7 7.2 0.1 0.0 719 199 24.5 7.2 0.09 0.04 458 215 17.1 7.5 

Fraxinus 

pennsylvanica 

0.19 0.02 5188 1518 47.8 7.8 0.14 0.03 4688 2290 32.6 7.5 0.1 0.0 1188 471 25.9 7.5 0.15 0.02 3688 1258 35.4 6.5 

Liquidambar 

styraciflua 

0.05 0.02 313 154 4.5 2.2 0.00 0.00 0 0 0.0 0.0 0.1 0.0 281 147 7.5 3.6 0.03 0.02 198 99 4.0 2.2 

Nyssa 

sylvatica 

0.05 0.02 125 57 11.5 6.8 0.00 0.00 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.02 0.02 42 42 3.8 3.8 

Quercus 

palustris 

0.15 0.03 1188 505 20.2 5.3 0.11 0.03 375 105 19.5 6.2 0.1 0.0 188 102 7.0 3.7 0.10 0.03 583 307 15.6 4.3 

Ulmus rubra 0.05 0.02 250 139 5.2 2.8 0.05 0.02 281 190 4.7 2.3 0.1 0.0 156 62 9.9 5.3 0.05 0.00 229 38 6.6 1.7 

Diospyros 

virginiana 

0.00 0.00 0 0 0.0 0.0 0.03 0.02 63 43 1.9 1.4 0.0 0.0 31 31 1.0 1.0 0.01 0.01 31 18 1.0 0.6 

Prunus spp. 0.00 0.00 0 0 0.0 0.0 0.01 0.01 31 31 1.7 1.7 0.0 0.0 31 31 5.0 5.0 0.01 0.00 21 10 2.2 1.5 

Asimina 

triloba 

0.00 0.00 0 0 0.0 0.0 0.00 0.00 0 0 0.0 0.0 0.0 0.0 31 31 1.0 1.0 0.00 0.00 10 10 0.3 0.3 

Carya sp. 0.00 0.00 0 0 0.0 0.0 0.00 0.00 0 0 0.0 0.0 0.0 0.0 63 43 4.4 3.0 0.01 0.01 21 21 1.5 1.5 

Liriodendron 

tulipifera 

0.00 0.00 0 0 0.0 0.0 0.00 0.00 0 0 0.0 0.0 0.0 0.0 31 31 0.8 0.8 0.00 0.00 10 10 0.3 0.3 

Quercus 

michauxii 

0.00 0.00 0 0 0.0 0.0 0.00 0.00 0 0 0.0 0.0 0.0 0.0 94 51 3.8 2.1 0.01 0.01 31 31 1.3 1.3 

Rosaceae 0.00 0.00 0 0 0.0 0.0 0.00 0.00 0 0 0.0 0.0 0.0 0.0 31 31 1.0 1.0 0.00 0.00 10 10 0.3 0.3 

Unidentified 0.00 0.00 0 0 0.0 0.0 0.00 0.00 0 0 0.0 0.0 0.0 0.0 63 43 3.1 2.2 0.01 0.01 21 21 1.0 1.0 

SUM   7156 1855 95    6063 2431 85    2906 644 95    5375 2899   
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Table 2-9.  Shrub abundance summaries by research site.  Abundance data are given as mean frequency, stem density, and IV (±SE) at 

each site.  Species sorted alphabetically by name by those occurring in Site 3, 2, and 1, in order.  WIS = Wetland Indicator Status (see 

Appendix Table 16 for categories).Values in bold show the species with the highest IV and density at each site.   

  Site 3: Wet Site Site 2: Intermediate Site Site 1: Dry Site 

Species WIS Freq. 

±SE 

IV 

±SE 

Density 

(stems/Ha) 

±SE 

Freq. 

±SE 

IV 

±SE 

Density 

(stems/Ha) 

±SE 

Freq. 

±SE 

IV 

±SE 

Density 

(stems/Ha) 

±SE 

Aralia 

spinosa 

FAC 0.01 0.01 0.5 0.5 94 94 0.00 0.00 0.0 0.0 0 0 0.00 0.00 0.0 0.0 0 0 

Cephalanthus 

occidentalis 

OBL 0.08 0.03 6.5 3.3 281 124 0.00 0.00 0.0 0.0 0 0 0.00 0.00 0.0 0.0 0 0 

Cornus 

foemina 

FACW 0.29 0.07 40.1 8.7 6031 2842 0.15 0.06 21.0 8.0 3375 2260 0.08 0.04 3.3 1.8 1031 605 

Lonicera 

maackii 

NI 0.10 0.04 12.6 5.7 813 458 0.31 0.07 43.1 9.5 4844 1256 0.39 0.07 18.8 3.7 4406 1186 

Rosa spp. - 0.01 0.01 1.0 1.0 156 156 0.00 0.00 0.0 0.0 0 0 0.04 0.03 2.8 2.4 1031 881 

Rubus spp. - 0.10 0.06 6.5 3.7 1938 1224 0.11 0.05 16.0 7.3 1156 558 0.39 0.08 21.7 5.6 4969 1393 

Sambucus 

canadensis 

FAC 0.01 0.01 0.4 0.4 31 31 0.00 0.00 0.0 0.0 0 0 0.08 0.03 2.2 1.0 281 160 

Symphoricarpos 

orbiculatus 
FACU 0.01 0.01 0.9 0.9 31 31 0.00 0.00 0.0 0.0 0 0 0.01 0.01 0.2 0.2 31 31 

Euonymus 

alatus  

NI 0.00 0.00 0.0 0.0 0 0 0.00 0.00 0.0 0.0 0 0 0.03 0.02 1.3 0.9 313 233 

Euonymus 

americanus 

FAC 0.00 0.00 0.0 0.0 0 0 0.00 0.00 0.0 0.0 0 0 0.01 0.01 0.4 0.4 94 94 

Lindera 

benzoin 

FAC 0.00 0.00 0.0 0.0 0 0 0.00 0.00 0.0 0.0 0 0 0.71 0.08 41.8 5.3 11844 2271 

Prunus sp. - 0.00 0.00 0.0 0.0 0 0 0.00 0.00 0.0 0.0 0 0 0.01 0.01 0.4 0.4 31 31 

Unidentified  0.00 0.00 0.0 0.0 0 0 0.00 0.00 0.0 0.0 0 0 0.04 0.02 2.2 1.3 344 210 

 SUM   68.4  9375    80.0  9375    95.0  24375  
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Table 2-10.  Vine abundance summaries by research site.  Abundance data are given as mean frequency, percent cover, and IV (±SE) 

at each site.  Species are sorted alphabetically by name.  WIS = Wetland Indicator Status (see Appendix Table 16 for categories). 

Values in bold show the species with the highest IV and percent cover at each site. 

  Site 3: Wet Site Site 2: Intermediate Site Site 1: Dry Site  

Species WIS Freq. Std. 

Error 

% 

Cover 

Std. 

Error 

IV Std. 

Error 

Freq. Std. 

Error 

% 

Cover 

Std. 

Error 

IV Std. 

Error 

Freq. Std. 

Error 

% 

Cover 

Std. 

Error 

IV Std. 

Error 

Campsis 

radicans 

FAC 0.28 0.08 3.3 1.3 22.5 7.8 0.21 0.07 1.3 0.6 7.5 3.4 0.15 0.06 1.0 0.6 3.9 1.5 

Euonymus 

fortunei 

NI 0.01 0.01 0.0 0.0 0.5 0.5 0.03 0.03 0.5 0.5 0.9 0.9 0.11 0.06 3.6 3.2 3.5 2.4 

Lonicera 

japonica 

NI 0.23 0.07 3.4 2.0 10.5 3.5 0.31 0.08 5.5 2.7 8.4 2.3 0.79 0.07 19.6 3.7 37.9 4.2 

Menispermum 

canadensis 

FACU 0.00 0.00 0.0 0.0 0.0 0.0 0.03 0.03 0.2 0.2 0.5 0.5 0.09 0.04 0.4 0.2 2.4 1.3 

Parthenocissus 

quinquifolia 

FACU 0.16 0.06 0.6 0.2 5.6 2.2 0.31 0.09 4.5 2.1 9.3 2.6 0.46 0.09 1.3 0.3 9.9 2.4 

Smilax spp. - 0.01 0.01 0.0 0.0 0.2 0.2 0.03 0.02 0.1 0.0 0.8 0.6 0.28 0.05 2.0 0.9 8.4 1.9 

Toxicodendron 

radicans 

FAC 0.59 0.09 15.9 5.0 49.0 7.5 0.83 0.06 40.9 6.6 57.5 5.5 0.65 0.07 9.4 3.1 26.1 4.6 

Vitaceae - 0.08 0.03 0.2 0.1 6.7 5.0 0.26 0.06 1.6 0.9 10.1 3.1 0.28 0.06 2.2 0.9 7.9 2.1 

TOTAL  1.35  23.59  95.00  2.00  54.53  95.00  2.80  39.47  100.00  
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Table 2-11.  Summary of species, environmental variables and biotic variables associated with axes from NMS ordination of woody 

vegetation at all sites.  Species having the highest negative and positive r
2 

values with each axis are shown.  Environmental and biotic 

variables with r
2
 ≥ 0.15 for each axis are shown.  The + or – indicates the direction of the correlation.   

 

% 

Variance 

Explained 

Species r r
2
 

Environmental 

Variable 
r r

2
 

Biotic 

Variable 
r r

2
 

Axis 

1 

34.50% (-) Lindera 

benzoin 

-0.765 0.586 (+) Days Flooded 0.613 0.376 (-) Exotic Vine 

IV 

-0.665 0.442 

  (+) Cornus 

foemina 

0.585 0.342    (-) Shrub Density -0.432 0.187 

        (+) FACW/OBL 

Shrub IV 

0.634 0.402 

        (+) % Herb 

Cover 

0.582 0.339 

Axis 

2 

18.50% (+) Lonicera 

maackii 

0.674 0.454 -   (+) Exotic Shrub 

IV 

0.668 0.447 

  (-) Fraxinus 

pennsylvanica 

(saplings) 

-0.498 0.248    (+) % Vine 

Cover 

0.453 0.205 

Axis 

3 

19.20% (+) Celtis 

laevigata 

(seedlings) 

0.446 0.199 (+) Distance 

From Edge 

0.45 0.203 (+) Seedling 

Density 

0.443 0.196 

  (-) Rubus spp. -0.629 0.395       
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Table 2-12.  Pearson correlation coefficients, r
2
, and p-values for relationships between 

number of flooded days and shrub stem density by total stem density and density of 

individual species.  Data includes 55 transects from all three sites where the number of 

flooded days was estimated.   

Species n r r
2
 p-value 

Total Stems 55 -0.12 0.01 0.3737 

Cornus 

foemina 
55 0.36 0.13 0.0072 

Lindera 

benzoin 
55 -0.34 0.12 0.0107 

Lonicera 

maackii 
55 -0.29 0.09 0.0307 

Rubus sp. 55 -0.28 0.08 0.041 
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Figure 2-1.  Layout and dimensions of sampling units.  A.  An outline of an irregularly 

shaped forest patch with a hypothetical placement of edge-to-interior transects.  B.  An 

edge-to-interior transect (large dashed rectangle), with the placement of adult tree 

sampling plots.  C.  An edge-to-interior transect  containing  five 12 x 2 m parallel 

transects at 1, 5, 10, 30 and 60 m from the forest edge.  Parallel transects contained four 2 

x 2 m quadrats for collecting plant, ground cover and elevation data.  B and C both depict 

the same edge-to-interior transect, but featuring different sampling areas.



 

 

5
6
 

Figure 2-2.  Visual aid explaining terms used in quantifying site hydrology. Definitions of terms used are: Ewmp is the elevation of the 

top of the water monitoring point, Ews = elevation of the water surface, Ewt = elevation of the water table, ∆wt = distance between the 

water surface elevation and the water table elevation, Ewell  is the elevation of the top of the groundwater monitoring well, Dws 

distance between water surface and top of water monitoring point, and hwt = difference between the elevation of the water table and 

the top of the well.

Well 
Water surface elevation 

(Ews) 

 

Difference 

between water 

surface and 

water table 
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Water monitoring point elevation (top) (Ewmp) 

Distance  

to water 

surface  

Dws  

Top of well 

elevation 

(Ewell) 

 

 (hwt) 
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Figure 2-3.  Hydrographs depicting water levels in water monitoring wells in each of the 3 research sites, relative to the ground surface 

(100 cm).  
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Figure 2-4.  Seedling density in north and south-facing edges at varying distance from the 

edge.  Bars are color coded (see legend) to show density of the most abundant species. 

Species shown are Fraxinus pennsylvanica (FrPe), Quercus palustris (QuPa), Celtis 

laevigata (CeLa) and Liquidambar styraciflua (LiSt).  The density of all other tree 

seedlings combined is included in the “Other” category.   
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Figure 2-5.  Mean stem density of four shrub species at each site.  Mean values were 

calculated by pooling shrub data from all parallel transects (n=20) within each site. 

Species codes are: CoFo=Cornus foemina (FACW), LiBe=Lindera benzoin (FAC), 

LoMa=Lonicera maackii, Rubu=Rubus spp.  Sites 1, 2 and 3 are the dry, intermediate 

and wet sites, respectively.  Error bars are ±1SE.  
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Figure 2-6.  Density of Lonicera maackii stems in different height class categories at each 

site.  Site 1 = dry site, Site 2 = intermediate site, and Site 3 = wet site.  Error bars are ±1 

SE.  
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Figure 2-7.  Total percent cover of Lonicera japonica vines with distance from the forest 

edge at all three research sites.  Each bar represents the mean percent cover of L. japonica 

at four transects per site, corresponding to 1, 5, 10, 30 or 60 meters from the forest edge. 

Sites 1, 2 and 3 refer to the dry, intermediate, and wet sites, respectively.  Error bars are 

±1 SE.   
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Figure 2-8.  Biplot of NMS ordination based on woody plant species Importance Values 

(IVs) in all sampling units (parallel transects) from all three study sites.  Environmental 

variables most strongly correlated with either axis (r
2 

values of 0.15 or greater) are 

depicted in dark blue lines and letters; dark blue lines indicate the positive direction of 

the correlation.  Axis 1 and 3 explained 34.5% and 19.2% of the variation in the IV 

matrix, respectively.  IVs were computed separately for seedlings and saplings, and 

therefore are displayed as different “species” in the ordination plot.  Vegetation layers are 

coded as follows: sh = shrub, V = vine, sp=sapling, sd=tree seedling. Abbreviations for 

species are given in Appendix Table 2.   
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Figure 2-9.  Biplot of NMS ordination based on woody plant species IVs in all sampling 

units (parallel transects) from all three study sites.  Biotic variables most strongly 

correlated with either axis (r
2 

values of 0.15 or greater) are depicted in dark blue; dark 

blue lines indicate the positive direction of the correlation.  Axis 1 and 3 explained 34.5% 

and 19.2% of variation in the IV matrix, respectively.  IVs were computed separately for 

seedlings and saplings, and therefore are displayed as different “species” in the ordination 

plot.  Vegetation layers are coded as follows: sh = shrub, V = vine, sp=sapling, sd=tree 

seedling. Abbreviations for species are given in Appendix Table 2.   
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Figure 2-10.  Biplot of NMS ordination based on woody plant species IVs in all sampling 

units (parallel transects) from all three study sites.  Biotic summary variables most 

strongly correlated with either axis (r
2 

values of 0.15 or greater) are depicted in dark blue; 

dark blue lines indicate the direction of the correlation.  Axis 1 and 2 explained 34.5% 

and 18.5% of variation in the IV matrix, respectively.  IVs were computed separately for 

seedlings and saplings, and therefore are displayed as different “species” in the ordination 

plot.  Vegetation layers are coded as follows: sh = shrub, V = vine, p=sapling, sd=tree 

seedling. Abbreviations for species are given in Appendix Table 2.   
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Figure 2-11. Stem density of four dominant shrub species as it relates to the number of 

days flooded in transects.  CoFo=Cornus foemina (FACW), LoMa=Lonicera maackii, 

Rubus=Rubus spp., LiBe=Lindera benzoin (FAC). 
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Figure 2-12.  Factor –ceiling distribution of the number of days flooded vs. the rank 

elevation (a measure of the relative elevation of plants in a transect) of all Lonicera 

maackii individuals sampled.  Each point represents an individual plant.  Data across all 

sites is shown.  The distribution reveals that L. maackii was restricted to increasingly 

higher elevation microsites within transects as days flooded per year increased 
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CHAPTER III 

EFFECTS OF FLOODING DURATION, FLOODING DEPTH AND LIGHT ON THE 

GROWTH AND SURVIVAL OF LONICERA MAACKII IN AN EXPERIMENTAL 

MESOCOSM 

Introduction 

The success of invasive species has been described as being dependent on the 

match between “opportunity and opportunist” (Zedler and Kercher 2004), in which 

opportunities are determined by particular disturbance patterns.  Wetland hydrology—the 

frequency, timing, depth and duration of water level fluctuations in a wetland—may 

create opportunities, or barriers, for the establishment of invasive plant species, 

depending on plant life history traits.  Gradients of flood duration and flood depth are the 

most important factors limiting the distribution of individual species in bottomland 

hardwood forests (Kozlowski 2002).  Therefore, forested wetlands are dominated by 

woody vegetation that has physiologically evolved to withstand the anaerobic conditions 

associated with water-logged wetland soils, either through tolerance or avoidance of 

stress (Mitsch 2000).  However, even hydrophytic woody species are impeded by flood-

related stresses at early life history stage, and successful establishment of woody 

seedlings depends largely on the availability of unflooded soil.   
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Such “safe sites” are created due to both wetland drawdown and variations in 

wetland microtopography.  Microtopography interacts with wetland hydrology to create 

spatial and temporal heterogeneity in inundation patterns, increasing the diversity of 

wetland microsites, and providing refugia for the colonization of plant species with 

different requirements and physiological limitations. Thus, since microtopography 

expands the range of available regeneration niches (sensu Harper 1966), certain plant 

invaders may be able to colonize both upland and wetland ecosystems.     

 The same disturbances that create microtopography may be accompanied by 

changes in light availability.  For instance, natural tree fall creates tip-up mounds 

accompanied by canopy gaps and logged wetland forests undergo dramatic changes in 

microtopography due to heavy equipment operations (Anderson et al. 2007).  Thus, a 

number of studies have examined the interaction between light availability and 

microtopography on various measures of plant success and plant community composition 

and structure (Battaglia et al. 2000).     

In this chapter, I examine the potential of wetland microtopography and light 

availability to impact the growth and survival of Lonicera maackii seedlings.  The extent 

and impact of Lonicera spp. invasion in North American forests is a growing concern that 

has received considerable attention in recent years.  L. maackii, in particular, has been 

cited as an invader of serious concern, with the potential to reduce species diversity 

(Hartman & McCarthy, 2008) and limit recruitment of native species (Ens & French, 

2008).  In its native range, this exotic shrub occupies riparian habitat, which may be 

thought of as lying somewhere between the wetland and upland continuum. Studies 

concerning this species in eastern North America have largely been restricted to upland 
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forests, but several recent papers have studied its occurrence in bottomland hardwood 

forests (Predick and Turner 2008, Swab et al. 2008, Mills et al. 2009, Pennington et al. 

2010, Boyce et al. 2012).  However, it appears to be less successful in bottomland than 

upland habitats (Gayek and Quigley 2001).  Abiotic factors that are likely to be important 

in facilitating or restricting the recruitment and success of L. maackii in wetland forests 

include inundation duration, water depth, and light levels. 

The importance of light availability to L. maackii has been implicated in a number 

of studies.  Studies from upland forest systems indicate that successful invasion of 

Lonicera maackii is associated with high light microhabitats such as forest edges and 

canopy gaps (Luken and Goessling 1995, Luken et al. 1995, Hutchinson and Vankat 

1997).  Its success may be due, in part, to its ability to take advantage of light-creating 

disturbances to a greater degree than native shrub species  (Luken et al. 1997).  Hidayati 

et al. (2000) demonstrated that higher percentages of L. maackii germinated in light than 

dark treatments, though the effects of partial shade were not examined.  But despite being 

fairly shade intolerant (Luken et al. 1995), it has an extended leaf phenology that allows 

it to persist in the forest understory after canopy closure (McEwan et al. 2009).   

In contrast to light requirements and tolerances, little appears to be known about 

the flood tolerance of L. maackii—a factor which most certainly restricts its potential 

habitat within wetland areas.  The wetland indicator status of L. maackii has not been 

evaluated for its introduced range (NRCS 2016).  However, in its native range, L. maackii 

occupies riparian habitat, which may be thought of as lying somewhere between the 

wetland and upland continuum.  Two studies (Gayek and Quigley 2001, Swab et al. 

2008) suggest a relationship between elevation and abundance of this woody, invasive 
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shrub L. maackii. According to both papers, which examined the distributional patterns of 

honeysuckle along upland-bottomland elevation gradients in Ohio, USA, L. maackii is 

less successful at low elevations.  This was anecdotally attributed to a dense herbaceous 

understory in Gayek and Quigley (2001), which was thought to be a potential limitation 

to Lonicera sp. recruitment.  However, Swab et al. (2008) did not identify dense 

herbaceous layers in their bottomland areas, and excluded competition with herbaceous 

vegetation in their bottomland areas as a possible driving mechanism for limited Lonicera 

sp. Recruitment there, and hydrology was proposed as the most probable driving factor 

for these observed trends.  These studies strongly imply that flooding limits L. maackii  

germination, growth and/or survival.   

The aforementioned studies suggest that wetland hydrology influences the 

distributional patterns of Lonicera maackii, but to my knowledge no published studies 

have used controlled experiments to determine the flood tolerance threshold for L. 

maackii.  The importance of light availability on the success and distribution of L. 

maackii is better documented. However, no studies to my knowledge, have 

simultaneously attempted understand the combined main effects (and any interaction) of 

flooding and high vs. low light environments on any measure of L. maackii success.  In 

this study, I manipulated light availability, flooding duration, and flooding depth in a 

fully crossed mesocosm experiment with the following goals: 1) to determine the main 

effects of light and flooding treatment variables on the growth and survival of L. maackii 

seedlings, 2) to identify any significant interactions between light, flooding depth and 

flooding duration treatments, and 3) to identify thresholds of flooding that appear to 

severely impede the growth and survival of L. maackii.   
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Methods 

Experimental Design 

We examined the effects of light and flooding characteristics expected to affect 

the growth and survival of L. maackii seedlings using a split-split plot design.  The three 

manipulated, explanatory variables were: simulated canopy closure (2 levels), flooding 

depth (4 levels) and flooding duration (3 levels).  Levels of explanatory variables at the 

plot, split-plot and split-split plot level are summarized in Fig. 3-1.  Response variables 

were: change in plant height, change in leaf number, aboveground biomass (ABG), 

belowground biomass (BGB), root-shoot ratio (RSR) and days survived (see 

Experimental Timelines and Protocols).  

Plant materials, selection and maintenance 

First year seedlings were obtained from a naturalized population of L. maackii  in 

a mesic upland forest (Cherokee Park) in Louisville, Kentucky.  Seedlings were identified 

as such by presence of cotyledons or lack of woody stem tissue.  The risk of accidentally 

collecting non-target species was minimized by ensuring that no other Lonicera species 

were present in the collection area.   Seedlings of similar size (~3-6 cm) were 

transplanted into small peat pots using a common soilless potting mix (Fafard® Complete 

Potting Mix with slow-release fertilizer), and allowed to acclimate to their containers for 

approximately two weeks in an outdoor setting (part-sun/part-shade).  At this point, 

seedlings were transplanted into larger plastic pots (9 cm by 9 cm by 13 cm depth) with a 

mix of 6 parts field soil to 1 part peat moss.   The field soil was obtained from a nearby 

stand of bottomland hardwood forest in southwest Jefferson County, Kentucky, from the 
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Zipp soil map unit, which is characterized as a poorly drained silty clay loam (NRCS 

2005).  Seedlings were allowed to acclimate for an additional two weeks in the larger 

containers before the start of the experiment. 

Size differences in seedlings were apparent after this acclimation period.  In order 

to minimize the risk of confounding initial seedling height with experimental treatments, 

the following measures were taken.  The initial height (one day prior to the beginning of 

the experiment) of each seedling was determined by measuring from the stem base to the 

apical meristem.  Seedlings with signs of disease or extensive insect damage were 

discarded.  The largest 144 seedlings (ranging from 10.1-21.2 cm in height) were sorted 

into six height classes with equal numbers of seedlings.  

Each of the 24 treatment groups (2 light levels x 4 flood depth levels x  3 flood 

duration treatments= 24 treatment groups) was assigned one seedling from each of the 6 

height classes (24 treatment groups x 6 seedlings= 144 seedlings).  The six seedlings in 

each of the 24 treatment groups was randomly assigned to one of 6 experimental tanks.  

Thus each experimental tank received one seedling from each treatment group (6 tanks x 

24 treatment groups=144 seedlings), and initial seedling size did not differ significantly 

among treatment groups or blocks.   

Experimental timeline and protocols 

Each of the six experimental units consisted of a single plastic tank measuring 70 

x 45 x 20 cm (~63 L capacity).  Tanks were arranged in a single row on top of a leveled 

wood riser (Fig. 3-2A) and filled with water to a depth of approximately 15 cm from the 

city water supply, a height sufficient to achieve the intended flooding depths.  Overflow 
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holes were drilled just above this to prevent overfilling.  To prevent a water temperature 

gradient from forming on different sides of the tank, a small submersible pump was 

placed centrally in each tank to circulate water.  Each half of the tank was assigned one of 

two possible treatments, 80% or 30% canopy closure.  This was manipulated by use of a 

shade cloth suspended on a cubical PVC frame (Figure. 3-2C).   

Potted seedlings were subjected to three levels of flood duration (3 day, 10 day 

and 17 day) within each level of canopy closure.  Potted seedlings assigned to a common 

flood duration (within each canopy closure level) were housed in a single crate made of 

galvanized steel mesh.  Flooding depth was manipulated within the crates by creating 

PVC risers of 4 different heights (0 cm or no PVC, 5 cm, 10 cm, or 16 cm) such that 

potted seedlings were held at different heights relative to the tank water level:  1) Upland 

treatments entirely above water, 2) moist soil treatments with soil surface 5 cm above 

water, 3) saturated treatments with soil surface even with water, and 4) inundated 

treatments with soil surface 5 cm below water.  Upland treatments served as controls and 

were never under water.  The placement of the risers within each crate was randomized to 

avoid confounding flooding depth with any potential shading effects (e.g. a tall riser next 

to a short one could potentially cause shading to the seedling).  Fig. 3-3 summarizes the 

structure of a single experimental tank, with the hierarchically manipulated treatments.   

The experiment was initiated by placing seedlings assigned to each treatment 

group in water filled tanks, as described previously.  Flood duration was manipulated by 

raising the appropriate crate above the water line using plastic risers after the specified 

interval (3 days, 10 days or 17 days after the initiation of the experiment). For example, 

on day 3, all 3-day flood duration treatments were moved above the water line in each 
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enclosure, and remained at this position for the remainder of the experiment.  Fig. 3-4 

illustrates the position of flooding depth treatments before and after crates were removed 

from the water.  After the 17-day flood duration treatments were removed from the water, 

the tanks were emptied, and the crates were housed in the empty tank.  During the final 

recovery period, plants were allowed to grow in the enclosures for an additional 23 days 

after all the flooding treatments were completed.  The experiment lasted a total of 40 days 

from June 6 to August 15, 2010.  

Plant heights (as measured from the stem base to the apical meristem) were 

recorded at days 0 (initial plant height), and at days 3, 10 and 17, when flood duration 

treatments were manipulated, and again at day 40 (conclusion of experiment).  

Additionally, counts of all leaves greater than 1 mm in length were made.  Not all plants 

survived the 40 days of the experiment, and plants were regularly monitored for 

mortality, insect damage, and signs of stress at regular watering periods.  At the end of 

the experiment the aboveground and belowground portions of each seedling were 

separated.  Roots were cleaned by soaking them in water for several minutes, then gently 

rinsing them.  However, heavy clay content of the soil often formed hard nodules that 

were difficult to remove from the plant without the loss of some root material.  

Aboveground portions (stems and leaves) and cleaned roots were oven dried at 55 °C for 

several days and weighed.  Stems and leaves were weighed separately.  Final 

aboveground biomass (AGB) of seedlings was calculated as the sum of oven-dried stem 

and leaf weights for each seedling, and final belowground biomass (BGB) was simply the 

oven-dried weight of the dried roots.  The root-shoot ratio (RSR) of each plant was also 

calculated by dividing the root mass by the shoot mass for each individual.   
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During the experimental period, the local area experienced record-breaking 

summer heat with little rainfall.  Therefore, water was checked daily and added as needed 

to maintain water levels at 15 cm and/or to maintain the temperatures under 30 °C.  

Ambient air temperature inside a single experimental enclosure was measured 

continuously throughout the study period with a Onset HOBO temperature data logger.  

Soil temperatures were measured in the 17 day flooding duration crates in Tanks 1 and 6 

on eight dates near the beginning of the experiment.  Near the end of the flooding 

treatments, on July 23
rd

 2010, the daily soil temperature fluctuations were measured by 

recording soil temperatures in 17-day flooding duration crates, for all tanks, at 4 time 

periods (9 am, 1 pm, 3 pm and 5 pm) on a single day.  All these treatments were flooded 

according to their assigned flooding depths during this time.   

The percentage of photosynthetic photon flux density (% PPFD) reaching plants 

on either side (80% or 30% shade) of the enclosures was estimated on two days near the 

beginning and end of the experiment.  A LI-COR LI-250 photometer was used to take 

readings of photosynthetic photon flux density (PPFD in µmol m
-2

 s
-1

, a measurement of 

photosynthetically active radiation, in the 400-700 nm wavelength range) under the open 

sky above each enclosure, and under each side of all 6 enclosures.  These readings were 

taken at four times (9 am, 11 am, 1 pm, 3 pm and 5 pm) on July 23
rd

, 2010.  The 

effectiveness of shadecloth in reducing incident PPFD in enclosures was estimated by 

calculating % PPFD as  
𝑃𝑎

𝑃𝑜
 𝑥 100, where Pa  and Po  are the measurements of PPFD 

above and inside of the enclosures, respectively.  Mean % PPFD at each time period was 

calculated by averaging % PPFD across tanks (n=6) for 80% or 30% shade treatments at 
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each time period.  These values were then averaged within each light treatment to 

estimate mean % PPFD for each light treatment over the course of an entire day.   

Throughout the experiment, seedlings that were at least partially in water (moist, 

saturated and inundated treatments) did not receive additional water.  Upland treatments, 

and other treatments that had been raised out of the water, received supplemental water.  

Upland plants were initially watered to 50% soil moisture by weight (100% soil moisture 

being equivalent to the soil water holding capacity).  These plants were weighted 

approximately 3 times each week.  When soil moisture dropped below 30% (by weight), 

water was added to achieve 50% soil moisture.  After moist, saturated and inundated 

treatments had been removed from the water (at 3, 10 and 17 days), they were watered 

identically to upland treatments for the remainder of the experiment.   

There were several rainfall events during the experiment.  During some of these, 

rainfall was prevented from entering enclosures by covering them with clear plastic 

sheets.  However, eight rainfall events resulted in rain entering the enclosures.  The 

different types of shade cloth used on either side of the enclosures made it likely that 

rainfall would differ between 30% and 80% shade treatments.  To correct for this effect, 

two plastic cups were attached at opposite ends on each side of every enclosure (2 

cups/side x 2 sides/enclosure = 4 cups/enclosure).  After a rain event, the amount of water 

in each cup was weighed, and the average amount of rainfall on each side of the 

enclosure calculated.  To calculate rainfall in units of mass per ground surface area (Rsa  

in units of g/cm
2
), we used the formula  𝑅𝑠𝑎 =

𝑅𝑚

𝐴
, where Rm was the average amount (in 

g) of event rainfall in cups on each side of an enclosure, and A was the surface area of the 

mouth of the collection cup (in cm
2
).    The side of the enclosure with less rainfall was 
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determined to have a deficit, which was the difference in Rsa  between the two sides of 

each enclosure (∆𝑅𝑠𝑎 = |𝑅𝑠𝑎1
−  𝑅𝑠𝑎2

| .  The deficit of rainfall per pot (∆Rpot in g/pot) 

was calculated as  ∆𝑅𝑝𝑜𝑡 = ∆𝑅𝑠𝑎 ∗ 𝐴.   The calculated ∆𝑅𝑝𝑜𝑡 was added to each upland 

or raised treatment on the side of the enclosure with the deficit of rainfall.   

Later in the experiment, after all treatments had been raised out of the water, it 

was observed that pot weights could vary more within enclosure sides, than between 

enclosure sides, after rainfall events.  These differences were possibly due to sustained 

effects of previous flooding treatments, differences in evapotranspiration between plants, 

and effects of the experimental structures themselves.  For instance, water tended to pool 

on the surface of the 80% shade cloth, and drip selectively on certain pots.   After this 

was discovered (on the 24
th

 day of the experiment) we changed how we dealt with 

correction for rainfall.  Instead of focusing on the differences in rainfall between sides, 

we focused on minimizing the variability in pot weights within each side of the 

enclosure.  This made sense, because all plants had been removed from standing water at 

this point and we thus expected the weights of pots to be more similar.   To achieve this 

correction, we weighed all pots, and calculated the mean pot weight for each side of 

enclosures.  Pots that fell 30g or more below the mean pot weight (per light or shade 

treatment of each tank), were watered up to the mean pot weight.  This reduced the 

variance and range of pot weights immediately following rainfall events.   
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Statistical Analyses 

 Vertical Growth 

Growth curve analysis was used to test the hypothesis that the seedling growth 

response (rate of increase in plant height) is affected by light, flooding duration and 

flooding depth treatments, and to test for interactions in these effects.  This was 

accomplished by constructing a linear mixed model with repeated measures and was 

implemented with the MIXED procedure in SAS 9.4.  

To examine the effects of explanatory variables on vertical plant growth, the 

change in plant height over time was modeled as the continuous response variable (R) 

using Equation 1, where 𝐻𝑖 equals the plant height at day I and 𝐻𝑜 equals the initial plant 

height at the beginning of the experiment. 

The explanatory variables were number of days, light (shade cloth treatment), 

flooding duration, flooding depth, block, and plant ID.  Number of days was modeled as 

a continuous variable, where values of the response variable were calculated for 0, 3, 7, 

10 and 40 days.  Light was modeled as a fixed factor with two levels: simulated open 

canopy (30% shade cloth) and simulated closed canopy (80% shade cloth)).  Flooding 

duration was modeled as a continuous variable with possible values of 3, 10 and 17 days.  

Flooding depth was modeled as a continuous variable with possible values of 0, 1, 2, and 

3, which correspond, respectively, to the ranked flooding depths of upland (no flooding), 

moist, saturated and inundated described previously.  The variable, block, was treated as 

a random effect with values 1-6, each corresponding to a replicate experimental tank.  

 𝑅 = 𝐻𝑖 − 𝐻𝑜 Equation 1 
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Finally, a unique identifier for each seedling, plant ID, was modeled as the subject effect 

in a repeated measures design, using autoregressive-1 (AR(1)) covariance structure.  This 

covariance structure is commonly used with repeated-measures time series data to handle 

autocorrelation of within-subjects error terms.   

To make the analysis sensitive to a wide range of possible effects, a polynomial 

model was used.  Terms up to degree two for number of days, degree two in flooding 

depth and flooding duration (combined), and one degree in light were included in the 

initial model to allow detection of any significant non-linear responses.  Thus, no term 

exceeded degree 5.    

The full, initial model is described below (Equation 2), where R(t,u,v,w) is the 

change in plant height over time (from Equation 1) modeled as a polynomial function of 

time (t), flooding depth (u), flooding duration (v) and light treatments (w), and bi(u,v,w) 

is the coefficient of t
 
raised to the ith degree.  Since t was modelled up to degree two, 

coefficients for t and t
2
 (b1(u,v,w) and  b2(u,v,w), respectively) were modelled as defined 

in Equation 3 and Equation 4; subscripts indicate the polynomial degree of factors u, v, 

and w in each term for flooding depth, flooding duration and light treatment, 

respectively.  For instance, 𝑏1,0,0,0 (in Equation 2) denotes the coefficient of t when the 

degree of u=0, v=0 and w=0 (e.g. main effects of ndays).  Main effects of flooding 

duration, flooding depth and light were not included, because these variables can only 

affect the response variable as number of days increases. 
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 R(t,u,v,w) = b1(u,v,w)*t +  b2(u,v,w)*t
2
 

Equation 2 

 

 

 

𝑏1(𝑢, 𝑣, 𝑤) = 𝑏1,0,0,0 + 𝑏1,1,0,0𝑢 + 𝑏1,0,1,0𝑣 +

𝑏1,0,0,1𝑤 + 𝑏1,1,1,0𝑢𝑣 + 𝑏1,2,0,0𝑢2 + 𝑏1,0,2,0𝑣2 +

𝑏1,1,0,1𝑢𝑤 + 𝑏1,0,1,1𝑣𝑤 + 𝑏1,1,1,1𝑢𝑣𝑤 + 𝑏1,2,0,1𝑢2𝑤 +

𝑏1,0,2,1𝑣2𝑤  

Equation 3 

 

 

 

 

 

 

𝑏2(𝑢, 𝑣, 𝑤) = 𝑏2,0,0,0 + 𝑏2,1,0,0𝑢 + 𝑏2,0,1,0𝑣 +

𝑏2,0,0,1𝑤 + 𝑏2,1,1,0𝑢𝑣 + 𝑏2,2,0,0 𝑢
2 + 𝑏2,0,2,0𝑣2 +

𝑏2,1,0,1𝑢𝑤 + 𝑏2,0,1,1𝑣𝑤 + 𝑏2 ,1,1,1𝑢𝑣𝑤 + 𝑏2,2,0,1𝑢2𝑤 +

𝑏2,0,2,1𝑣2𝑤  

Equation 4 

 

    

 Runs of the full model produced residuals that were highly skewed to the right.  

Additionally, plots of residuals vs. predicted values revealed a dramatically wedge-

shaped pattern, indicating heteroscedasticity.  Using a transform of the response variable 

was found to produce normally distributed residuals and satisfied the assumptions of 

homogeneity of variance when residuals were plotted against explanatory variables.  This 

transform is shown in Equation 5, where  ∆ℎ is the plant height on a given day minus the 

plant height at day 0.  Since some values of ∆ℎ were negative, and the natural log is not 

defined for negative values (which occurred if the seedling became necrotic), a value of 3 

was added to ∆ℎ before taking the natural log, and then ln(3) subtracted from this value.   

  𝑅 = ln(∆ℎ + 3) − ln (3)       

Equation 5 

 

 By definition, this transform results in a response value of 0 for all plants when 

number of days = 0.  Therefore, an intercept of zero was set, and only values of 3, 10, 17 
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and 40 were used for number of days.  Positive response values when number of days=3, 

7, 10 or 40 indicate positive growth, and negative values indicate negative growth (e.g. 

dieback).   

 Backward elimination using Akaike’s Information Criterion (AIC) was used to 

reduce the number of terms and produce a more parsimonious model.  Terms of the 

highest degree were sequentially removed one at a time from the model and AIC 

computed.  A term was omitted from the model if its removal lowered AIC by 2 or more 

units.  If the removal of a term increased AIC or decreased AIC by less than 2 units, it 

was retained in a reduced model.  This reduced model was then subject to one more 

round of backward elimination using the same elimination criteria, resulting in a final 

reduced model.   

 Leaf Number Response 

A nearly identical procedure was used to develop a model testing the effects of 

the same suite of explanatory variables on the increase in leaf number over time.  Similar 

to plant height, leaf number is a continuous variable that was measured where number of 

days=0, 3, 10 17, or 40 days).  The initial, full model was identical to that shown in 

Equation 2, where the variable  R(t,u,v,w)  takes the values shown in Equation 6.  Here, ∆𝑛 

is the number of leaves at day 3, 10, 17 or 40 minus the number of leaves at day 0 (i.e. 

the change in leaf number).   In order to produce normally distributed model residuals, 

and meet the assumptions of equal variance, ∆𝑛 was transformed, and a constant (40) was 

used to avoid taking the natural log of a negative number.  The “unstructured” variance 

structure (UN) was used in place of AR(1).    



 

82 

  

 

𝑅 = ln(∆𝑛 + 40) − ln (40)         

Equation 6 

 

 Backward elimination of terms to produce a simplified model of the leaf number 

response was performed as described previously for the vertical growth model using AIC 

as the elimination criterion.   

 Biomass Data 

 The effects of light, flooding depth and flooding duration on AGB were modeled 

with a mixed-linear model using the PROC MIXED procedure in SAS 9.4.  Seedlings 

that died before the end of the experiment were omitted from this analysis; failure to 

promptly remove seedlings from the field after death made biomass data from these 

treatments unusable.   The inundated treatments were most impacted by these omissions, 

and therefore biomass data from all inundated seedlings was omitted from the analysis 

due to the large imbalance in sample size this created.  Fixed effects of light and flooding 

variables included all one-, two- and three-way interactions. Experimental block and 

initial plant height were included as random effects using the variance components 

covariance structure.  Identical specifications were used for two additional models using 

BGB and RSR as response variables.    

 Model residuals were examined for normality and homoscedasticity and the 

response variables were transformed, if necessary, to improve data fit.  BGB was 

transformed by taking the square root, and RSR by taking the natural log.   
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Results 

Environmental Factors 

 Average temperatures during the study period of 2010 (June-August) were the 

second highest on record in Kentucky (NCEI 2016).  The mean daily air temperature 

inside the monitored enclosure (from July 10
th, 

2010-August 15, 2010) ranged from 21.77 

°C to 33.42 °C, averaging 28.17±0.35 °C.    The mean daily minimum and maximum 

were 22.26±0.04 °C and 36.25±0.44 °C, respectively 

 Soil temperature displayed a temperature gradient that directly paralleled 

differences in flooding depth (see Fig. 3-5), with unflooded soils being the hottest, and 

inundated the coolest.  he most complete record of daily soil temperature variations was 

made on the fourth hottest day of the experimental period (7/23/10), when ambient air 

temperature averaged 30.89±0.59 °C (range: 25.56-37.44 °C).  Based on soil temperature 

data collected at four time points on this day, unflooded soil temperatures showed the 

greatest daily temperature variation, with the mean temperature varying 8.37 °C and 6.07 

°C for 30% and 80% shade treatments, respectively. The mean temperature of inundated 

soils fluctuated approximately 5 °C for both light treatments.   

 Photometer readings made the same day estimate mean % PPFD over the course 

of a day as 55.87±0.03% and 17.94±0.01% for 30% and 80% shade treatments, 

respectively.   
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Seedling Growth: Vertical Growth 

 No terms containing light as a factor were retained in the final model using backward 

elimination. Therefore all seedling data from both light treatments were pooled for 

subsequent analyses.  The final model retained six terms relating number of days, 

flooding depth treatment and flooding duration to change in plant height.  

Fig. 3-6 illustrates the growth curves for all treatment combinations using mean 

values of the observed and predicted response variable.  As shown, the observed growth 

response closely approximates the predicted values from the model; thus the chosen 

regression model appears to accurately describe the plant growth response.   

Table 3-1 summarizes the results of the final polynomial regression where change 

in plant height (transformed variable) was used as the response variable.  Statistically 

significant p-values for coefficients of first and second order terms for number of days 

(nDays, p<0.0001 and nDays
2
, p<0.0001) shows that seedlings exhibited an increase in 

height over time, and this response was non-linear.   

 Significant effects of flooding duration, flooding depth and interactions between 

these terms are indicated by several tests (Table 3-1).  The effects of flooding depth on 

linear growth (nDays*flood depth) were found to be significant and negative (p<0.0001).  

Additionally, the interaction effect of coefficients for number of days, flooding depth, 

and flooding duration was found to be statistically significant and negative (nDays*flood 

depth*flood duration, p=<0.0001).  This indicates that flooding depth and flooding 

duration had linear, non-additive effects on linear plant growth (change in height) over 
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the course of the experiment.  A negative coefficient for this interaction indicates that 

increasing values of flood duration or flooding depth (by level), or a combination of the 

two, have negative effects on vertical plant growth.  

The panels in Figs. 3-6 through 3-8 illustrate the effects of flooding depth at 

different flooding durations on the plant height response variable over the course of the 

experiment.  At flood durations of 3 days (Fig. 3-7), treatments of all flooding depths 

showed a positive net increase in height over the 40 day experimental run with upland 

control and moist treatments maintaining higher growth rates than saturated and 

inundated treatments.   

At longer flooding durations, the upland controls and moist treatments maintained 

positive growth, while the saturated and inundated treatments experienced periods of 

negative growth (e.g. dieback).  Despite periods of negative growth within the 10 day 

flooding treatments, the saturated seedlings showed positive net growth over the course 

of the experiment, while the inundated seedlings experienced net dieback (Fig. 3-8).    

Treatments with the longest flooding duration (17 days) showed the most 

dramatic differences in growth rate between flooding depth treatments (Fig. 3-9).  

Growth curves of these treatments clearly show the effects of the flooding gradient; 

control, moist, saturated and inundated seedlings had the highest to lowest growth rates, 

respectively.  Seedlings subjected to moist conditions for 17 days maintained positive 

growth throughout the course of the experiment, intermediate between those of upland 

controls and seedlings saturated for 17 days. 
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Seedlings saturated for 17 days, similar to seedlings saturated or inundated for 10 

days, experienced a period of average dieback from 10-17 days, but exhibited modest 

growth during the recovery period (17-41 days).  In contrast, seedlings inundated for 17 

days experienced net dieback from 10-17 days, and did not survive the recovery period.   

Two second-order terms (nDays*nDays*Flood Depth and nDays*nDays*Flood 

Duration*Flood Depth) were found to be significant and positive indicating that both 

flooding depth and the interaction between flood depth and flood duration affect the 

shape of the growth curve.  

A significant positive effect of flood duration on plant growth (nDays*Flood 

Duration, p=0.0271) was indicated by the model, but is apparent in only one case.  Plants 

receiving 10 days of moist “flooding” outperformed upland control which were never 

flooded (flood duration=0 days).  This could be explained by constant moisture providing 

seedlings with an advantage over upland seedlings during period when temperatures were 

high.  Considering the significant negative coefficient for the term 

nDays*sublevel*duration, it appears that the positive effects of increasing flooding 

duration on plant growth are overshadowed by the interaction effects between flood 

duration and flood depth.   

The subject effect (the ID of an individual seedling) was significant (p<0.0001), 

indicating that there was variation in the plant growth response due to individual 

differences in seedlings (p<0.0001).  Experimental block was not found to have a 

statistically significant effect on plant height response (p=0.07).    
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Seedling Growth: Leaf Number 

 Similar to the vertical growth model, no terms containing light were retained in 

the final model for change in leaf number. Therefore, all seedling data were pooled for 

subsequent analyses.  The final model retained five terms involving interactions between 

number of days, flood duration and flood depth (Table 3-2). 

Fig. 3-10 illustrates a close correspondence between response curves generated 

using observed and predicted values for change in leaf number, one indicator of good 

model fit.  The term nDays, but not nDays
2
, was retained in the model, and was highly 

significant (p<0.0001), indicating that change in leaf number (∆ leaf number/day) 

followed a pattern of linear increase in the absence of other variables, as can be seen for 

the unflooded control treatment in Fig. 3-10 (upper left corner, Flood Duration = 0, 

Flood Depth=0 (unflooded)).     

 As with the vertical growth models, tests of significance indicated that flood 

duration had significant positive effects on the change in leaf number over time 

(nDays*flood duration , p<0.0001), but that this effect was moderated by a negative 

interaction with flood depth (nDays*Flood Depth*Flood Duration, p<0.0001).  Thus the 

effects of flooding depth on the change in leaf number over time vary with flooding 

duration.   

Figs. 3-10 through 3-12 depict the change in leaf number over the duration of the 

experimental period for different flooding depths, within each flood duration.  As with 

the response curves for vertical growth, little difference between flooding depth 

treatments is evident with 3 days of flooding (Fig. 3-11) and the net mean change in leaf 
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number was positive for treatments of all flooding depths over the course of the 

experiment. Differences between flooding depth treatments became apparent at flooding 

durations of 10 days (Fig. 3-12).  There was a steady loss of leaves from days 3-17 in 

seedlings saturated or inundated for 10 days, while moist treatments maintained an 

increase in leaf number.  From 17-40 days, however, these seedlings showed signs of 

recovery, exhibiting a slow increase in leaf number.  It should be noted that 66% of 

seedlings subjected to 10 day inundation died before the end of the experiment (see 

following Plant Survival section); thus the estimates of change in leaf number during 

latter time points are based on a smaller sample size of surviving seedlings only.  Similar 

to 10 day flooding treatments, seedlings saturated or inundated for 17 days showed a 

steady decline in leaf number from days 3-17, with saturated seedlings showing signs of 

recovery between days 17-41 (Fig. 3-13).   

Plant Survival  

The number of days lived for moist and saturated treatment groups remained similar to 

the upland control (38.6±1.0 days), regardless of flood duration).  However, seedlings 

inundated for 10 or 17 days had noticeably shorter lifespans than all other treatments 

(29.8±2.9 and 27.2±1.5 days, respectively).  No seedlings inundated for 17 days survived 

past 17 days.  Mean days lived, proportion surviving, and other statistics are summarized 

by all combinations of flood duration and flood depth in Table 3-3. 

Biomass  

 Light levels appeared to be of primary importance in biomass determination and 

root-shoot ratio.  Light treatment was a significant predictor of AGB (p<0.0001; Table 3-
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4), with mean AGB being higher in all 30% shade treatments, at all combinations of 

flood depth and duration (Fig. 3-14).  AGB generally declined with increasing flood 

duration and depth, but this response was not monotonic, and varied with light level.  For 

instance, while AGB generally decreased with flood duration for 80% shade treatments, 

moist treatments in 30% shade showed a non-monotonic response to increasing flood 

duration (Fig. 3-15).   Thus, the relative impact of flooding variables on AGB appears to 

vary somewhat with light treatment, as indicated by significant p-values for the 

interaction terms Flood Duration*Light and  Flood Duration*Flood Depth*Light.   

 Similarly, BGB was significantly higher in 30% shade than 80% shade treatments 

(Table 3-5), and this trend was evident across all combinations of flood duration and 

depth.  However, differences between 30% and 80%  shade appeared more pronounced in 

unflooded controls that moist or saturated treatments (Fig. 3-16), which likely accounts 

for the significance interaction between flood depth and light (p=0.0234).  A significant 

negative interaction (p=0.041) between flood depth and duration indicates BGB declines 

with increasing values of either, or both of these variables, and that their combined effect 

on BGB is non-additive.   
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 The RSR of seedlings was only related to light (Table 3-6), with significantly 

higher mean RSR in 30% shade than 80% shade treatments.  This indicates a higher 

biomass allocation to belowground biomass in the higher light environment.  However, 

this trend was not consistent across all combinations of flooding depth and duration; 

treatments with moist conditions for 10 or 17 days did not show this trend (Fig. 3-17).  

Differences in RSR between light treatments were most obvious with unflooded controls.   

 Neither experimental block, nor initial plant height were significant covariates in 

any of the models.  

Discussion 

  

The results of this study are meant to serve as a starting point for gauging the 

potential success or failure of Lonicera maackii establishment in wetland areas under a 

range of hydrologic conditions.  Brief inundation or saturation of seedlings (3 days) did 

not appear to have large impacts on seedling growth curves, and did not significantly 

reduce the number of days lived.  Inundation and saturation of seedlings for 10 to 17 days 

appears to have a markedly negative effect on honeysuckle seedlings as shown by slow 

vertical growth or dieback and loss of leaves.  Seedlings exhibited some ability to recover 

from flooding stress, once drawdown had occurred; seedlings saturated or inundated for 

10 days or saturated for 17 days exhibited a net increase in height and leaf number during 

days 17-40 (no seedlings flooded during this time), after previously showing decreases in 

these variables.  Despite negative growth effects on saturated seedlings, only inundated 

seedlings demonstrated a significantly reduced lifespan compared to unflooded controls.   
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Effects of light treatments on plant growth were evident in biomass data, but not 

vertical stem growth or leaf number increase.  The lack of significant light effect on stem 

growth and leaf number was unexpected, considering results from (Luken et al. 1997) in 

which L. maackii plants were grown at three light levels (1%, 25% and 100% of PPFD).  

In their study, Lonicera plants achieved maximum relative stem growth rates and had 

higher leaf numbers at 100% PPFD, and demonstrated the ability to acclimate and 

increase photosynthetic rates with greater light availability.  Contrary to this, the 

experimental data from our study showed generally higher stem growth rates in the low 

light treatments.  The relatively short time frame of this experiment (5.7 weeks) may 

explain this apparent lack of light effect on vertical growth and leaf number.  In a 

different study by Luken et al. (1995), forest-grown seedlings were transplanted to 

shadehouses providing 5%, 25% and 100% of PPFD, with maximum stem growth 

initially associated with the 25% PPFD treatments in the first 3 weeks of the experiment.  

However, this pattern shifted later in the experiment, with seedlings attaining maximum 

stem growth in 100% PPFD treatments in weeks 3-7, as seedlings produced new leaves 

with higher carbon capture abilities.   Our experiment lasted under 6 weeks and examined 

stem growth integrated over the entire experimental period, thus we may not have had 

ample time to see a positive growth response to enhanced light.  

Both aboveground and belowground biomass were significantly higher in high 

light treatments, which agrees with findings from Luken et al. (1997, 1995).  Thus, while 

light did not  significantly impact vertical stem growth or leaf number over the 

experimental period, higher biomass and higher root-shoot ratios in high light treatments 

suggests that seedlings may have responded to higher light levels with more horizontal 
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growth and/or thicker leaves and  investment in belowground ground resources than more 

shaded seedlings.  However, we did not measure horizontal growth or leaf thickness, and 

these suggestions are speculative.  Significant main effects of light on root-shoot ratio 

indicate that seedlings grown in the more shaded environment generally allocated more 

biomass aboveground.  This finding is also confirmed by Luken et al. (1997), who 

attributed this as a “light-seeking response” by a shade-intolerant plant that contributes to 

its ability to overgrow slower growing species.  Interactions between light and flooding 

variables were significant predictors of seedling biomass (ABG and BGB) and suggest 

that flooding characteristics may moderate the relationship between plant biomass and 

light.  The lack of significant interactions between light and flooding variables RSR 

suggests that the biomass allocation of Lonicera maackii seedlings is similar across 

flooding depths and durations.   

Caveats 

Average temperatures during June-August of 2010 were the second warmest on 

record in Kentucky.  Despite measures to keep soil and water temperatures at a minimum 

(i.e. daily refreshment of tank water and surrounding pots with reflective foil), because of 

the relatively small size of the pots and tanks used, soil and water temperatures were 

likely to exceed those encountered in a natural setting—particularly during peak daylight 

hours.  This may have adversely affected plants in multiple ways.  Heat-stress can 

negatively affect nearly all aspects of plant performance, including growth, development 

and metabolism (Hasanuzzaman et al. 2013).  High microbial respiration, combined with 

high plant oxygen demand and lower dissolved oxygen solubility in warm, water-logged 

soils may also have exacerbated the anaerobic stresses typical of wetland soils.  Soil 
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pathogens also may benefit from higher soil temperatures, increasing susceptibility to 

root rot.  Since we have no basis for assessing how much these factors contributed to 

plant performance, direct extrapolation of these results to natural systems must be 

considered with caution.   

As a result of experimental design, plants with shorter flood durations had longer 

recovery periods after the simulated drawdown.  However, if the experimental design 

were altered to standardize the length of the recovery, then the experimental periods for 

different treatments would differ in length.  Alternately, standardizing the length of 

recovery and timing of drawdown would cause total experimental length to vary with 

flooding duration and force the initiation of experimental flooding to begin on different 

days.  This could potentially create experimental artifacts, since the seasonal timing of 

flooding events may influence plant growth (Robertson, Bacon, & Heagney, 2001).  

Since the effects of seasonal flood timing are not questions addressed by this study, we 

chose to synchronize flooding events, and allow recovery periods to vary in length.   

Implications 

The impact of L. maackii on regional forests appears to have broad implications 

on ecosystem functions and services, with no established solutions for its effective and 

efficient eradication on a large scale.  Due to the presence of seasonally high water tables, 

forested wetlands appear to be less susceptible to L. maackii dominance than adjacent 

upland systems. However, as seen in the last chapter, this species is capable of invading 

wetland areas and establishing itself as the dominant shrub species. Considering the 

greater variation in regional weather patterns that are predicted to occur as a result of 
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climate change, the vulnerability of these systems to L. maackii incursion may change.  

Specifically, summer drought conditions may be more frequent in this region (mid-

western United States) because of warmer summer temperatures and increasing 

variability in precipitation patterns (Field, 2007), which may potentially make a greater 

area of bottomland hardwood forest favorable for Lonicera sp. colonization.  This 

information should be relevant to restoration practitioners who seek to recreate natural 

microtopography and disturbance regimes of wetland forests, while minimizing the 

abundance of exotic invasive species.   

 There is also some limited evidence to suggest that L. maackii may enhance stand 

transpiration, and thus could contribute to shortened hydroperiods in ephemeral wetland 

areas.  In a case study comparing stand transpiration in depressional wetlands with 

relatively high and low basal area of L. maackii, (Boyce et al. (2012)) estimated that 

approximately 10% of stand transpiration was due to L. maackii.  Because L. maackii 

appeared to be adding to, not replacing, the native shrub layer, they suggested that this 

species may actually be increasing evapotranspiration in these wetlands.  This scenario 

has the potential to create a positive feedback loop where L. maackii alter wetland 

hydrology, creating drier conditions, and thus facilitating its spread in wetland systems.   

Conclusions  

The growth of Lonicera maackii seedlings in this study was negatively impacted 

by flooded (saturated or inundated) conditions in this study.   This coincides with 

previous studies indicating that the distribution of L. maackii is limited by standing water 

and that flooding has a negative impact on L. maackii in at least one life stage (also see 
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Chapter II of this manuscript).   However, seedlings exhibited some ability to recover 

from flooding stresses when subjected to saturation for up to 17 days or inundation up to 

10 days.  This was in spite of near record high air temperatures and periodically high soil 

temperatures.  These results provide evidence for some resiliency to flooding stress 

ability to become established in intermittently saturated or inundated areas.  Therefore, 

factors that may alter wetland hydrology and shorten hydroperiods can facilitate the 

invasion of this exotic species in wetland areas.  These factors include the urban heat 

island effect and climate change (which may increase stand evapotranspiration (Jackson 

et al. 2001)), as well as direct human modification of wetland areas.   



 

96 

  

Table 3-1.  Model coefficient estimates and significance values for final mixed linear 

model testing effects of linear and non-linear variable combinations on plant growth 

response (change in plant height).  Coefficient estimates are not interpretable in the 

original scale of measurement, since they are based on transformed data.   

 

  

 

 

Effect Estimate Standard 

Error 

(+/-) 

DF t Value P > |t| 

Fixed 

Effects 

nDays*Flood 

Depth*Flood Duration 

-0.0010 0.0001 532 -7.79 <.0001 

 nDays*nDays*Flood 

Depth 

0.0003 0.0000 532 7.07 <.0001 

 nDays*Flood Depth -0.0131 0.0021 532 -6.23 <.0001 

 nDays*Flood Duration 0.0008 0.0002 532 3.94 <.0001 

 nDays*nDays -0.0011 0.0001 532 -14.30 <.0001 

 nDays 0.0807 0.0038 532 21.03 <.0001 

       

  Estimate Standard 

Error 

(+/-) 

 Z 

Value 

p 

Random 

Effects 

Block 0.02797 0.01893  1.48 <.0001 

Repeated-

measures 

Subject=Plant Id   0.7558 0.02649  28.53 <.0001 
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Table 3-2  Model coefficient estimates and significance values for final mixed linear 

model testing effects of linear and non-linear variable combinations on change in leaf 

number. Coefficient estimates are not interpretable in the original scale of measurement, 

since they are based on transformed data.  

 Effect Estimate Standard 

Error 

(+/-) 

DF t Value p 

 nDays*Flood Depth* 

Flood Depth 

-0.0002 0.0006 530 -0.36 0.7184 

 nDays*Flood Depth 0.0004 0.0018 530 0.25 0.8044 

 nDays*Flood Duration 0.0008 0.0002 530 4.26 <.0001 

 nDays 0.0061 0.0008 530 7.57 <.0001 

  Estimate Standard 

Error 

(+/-) 

 Z 

Value 

p 

Random 

Effects 

Block 0.0014 0.0010  1.46 0.0724 
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Table 3-3.  Mean, minimum and maximum days lived for all combinations of flooding 

depth and flooding duration (light treatments pooled).  Proportion surviving at the end of 

the experiment (Day 40) is also shown.   

Flood 

Duration 

Flood 

Depth 

N Mean 

Days 

Lived 

Standard 

Error 

(+/-) 

Minimum Maximum Proportion 

Surviving 

0 Unflooded 

(Control) 

36 38.6 1.0 14 40 0.94 

3 Moist 12 40.0 0.0 40 40 1.00 

 Saturated 12 38.4 1.6 21 40 0.92 

 Inundated 12 40.0 0.0 40 40 1.00 

10 Moist 12 40.0 0.0 40 40 1.00 

 Saturated 12 39.8 0.3 37 40 0.92 

 Inundated 12 29.8 2.9 14 40 0.33 

17 Moist 12 36.5 2.4 14 40 0.83 

 Saturated 12 40.0 0.0 40 40 1.00 

 Inundated 12 27.2 1.5 21 37 0.00 
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Table 3-4.  Model coefficient estimates and significance values for mixed linear model 

testing effects of fixed (main and interaction effects) and random effects on aboveground 

biomass of seedlings, as measured at the end of the experiment.  Significant p-values are 

in bold.   

 Parameter Light Estimate Standard 

Error  

(+/) 

DF t Value 

 

p 

Fixed  

Effects 

Intercept   0.1337 0.1192 92.4 1.12 0.2651 

Light Light 0.3389 0.0651 88.4 5.20 <.0001 
  Shade  . . . . 

 Flood Depth   -0.0199 0.04967 88.2 -0.40 0.6903 

 Flood Duration   0.0075 0.0095 88.1 0.78 0.4372 

 Flood 

Duration*Light 

Light 0.0418 0.0144 88.6 2.90 0.0047 

  Shade 0 . . . . 

 Flood Depth*Light Light -0.0832 0.0723 88.4 -1.15 0.2525 

  Shade 0 . . . . 

 Flood 

Depth*Flood 

Duration 

  -0.0113 0.0068 88.1 -1.67 0.0976 

 Light*Flood 

Duration*Flood 

Depth 

Light -0.0225 0.0099 88.4 -2.28 0.0251 

 Shade 0 . . . . 

   Estimate Standard 

Error 

(+/-) 

 Z 

Value 

p 

Random 

Effects  

Block  0.003288 0.003515  0.94 0.1748 

 Initial Plant Height  0.002789 0.004000  0.70 0.2428 
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Table 3-5.  Model coefficient estimates and significance values for mixed linear model 

testing effects of fixed (main and interaction effects) and random effects on belowground 

biomass of seedlings, as measured at the end of the experiment.  Significant p-values are 

in bold.   

 Parameter Light Estimate Standard 

Error  

(+/) 

DF t Value 

 

p 

Fixed  

Effects 

Intercept   -2.1277 0.2237 5 -9.51 0.0002 

Light Light 0.6536 0.1257 87 5.20 <.0001 

  Shade 0 . . . . 

 Flood Depth   0.1196 0.0959 87 1.25 0.2156 

 Flood Duration   0.0219 0.0184 87 1.19 0.2383 

 Flood 

Duration*Light 

Light -0.0244 0.0290 87 -0.84 0.4020 

  Shade 0 . . . . 

 Flood Depth*Light Light -0.3222 0.1396 87 -2.31 0.0234 

  Shade 0 . . . . 

 Flood Depth*Flood 

Duration 

  -0.0270 0.0131 87 -2.07 0.0413 

 Light*Flood 

Duration*Flood 

Depth 

Light 0.0257 0.0194 87 1.32 0.1887 

 Shade 0 . . . . 

   Estimate Standard 

Error 

(+/-) 

 Z 

Value 

p 

Random 

Effects 

Block  0.003260 0.0074  0.44 0.3306 

Initial Plant Height  0.003891 0.0057  0.68 0.2477 
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Table 3-6.  Model coefficient estimates and significance values for mixed linear model 

testing effects of fixed (main and interaction effects) and random effects on the root-

shoot ratio of seedlings, as measured at the end of the experiment.  Significant p-values 

are in bold.   

 Parameter Light Estimate Standard 

Error 

(+/) 

DF t Value | 

Fixed  Intercept   -1.2244 0.1578 3.01 -7.76 0.0044 

Effects Light Light 0.3419 0.1087 89.5 3.15 0.0022 

  Shade 0 . . . . 

 Flood Duration   0.0125 0.0162 89.3 0.77 0.4404 

 Flood Depth   0.1231 0.0840 89.4 1.47 0.1463 

 Flood 

Duration*Light 

Light -0.0314 0.0243 90.5 -1.30 0.1984 

  Shade 0 . . . . 

 Flood Depth*Light Light -0.2236 0.1217 89.6 -1.84 0.0696 

  Shade 0 . . . . 

 Flood 

Duration*Flood 

Depth 

  -0.0133 0.0114 89.4 -1.17 0.2470 

 Flood 

Duration*Flood 

Depth*Light 

Light 0.0277 0.0166 89.9 1.67 0.0992 

 Shade 0 . . . . 

   Estimate Standard 

Error 

(+/-) 

 Z 

Value 

p 

Random  Block  0.00219 0.0055  0.40 0.3454 

Effects Initial Height  0.0001 0.0004  0.40 0.3454 
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Figure 3-1.  Graphical summary of split-split plot experimental design, showing nested 

structure of variables.  Four levels of flood depth are nested within three levels of flood 

duration, which are both nested within two levels of simulated canopy closure.  Each one 

of six tanks contained all these treatments.   

  

Simulated 
Canopy 
Closure 

(2 levels) 
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Figure 3-2.  Outdoor mesocosm construction. A. The six experimental tanks arranged on 

a level, wooden riser.  B. Seedlings arranged within a single experimental tank, without 

surrounding shade cloth enclosure.  Metal crates on each side of the tank (three per side) 

correspond to the three different flooding durations, each containing four seedlings (one 

of each flooding depth).  C.  A completed mesocosm with a shade cloth enclosure.  Each 

shade cloth enclosure bisected the tank into two light treatments (30% and 80% shade).   

  

A 

B C 
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Figure 3-3. Graphical summary of split-split plot design for each experimental tank 

(n=6).  This should be interpreted as a top-down view.   
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Figure 3-4. Graphical explanation showing flood depth and flood duration manipulations.  

The box on the left depicts the relative position of flooding depth treatments within a 

given crate.  Crates were assigned one of three flood durations (3, 10 or 17 days) on each 

side (30% or 80% shade) of a tank enclosure.  After the period of assigned flood duration 

had lapsed for a given crate, it was held above the water line on a plastic riser, with all 

pots sitting on the bottom of the crate.   

Plastic Riser 
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Figure 3-5.  Daily changes in temperature for soil, water and air in enclosures, as 

measured on July 23
rd

, 2010.  Panels show mean temperature curves for 30% and 80% 

shade treatments in the top and bottom panels, respectively.  Enclosure air temperature 

was gathered from a single data logger placed at the center of the enclosure (i.e. at the 

boundary of the two light treatments) in tank 3 only.  The same data for enclosure air 

temperature and water temperature is shown in both panels, to serve as a reference.  Error 

bars are ± one standard error.  Soil temperatures are means based on measurements 17 

day flooding treatments within each light treatment, in each tank (n=6 for each data 

point).  Water temperature data is identical in the top and bottom panels, and is the mean 

water temperature based on measurements in each tank (n=6 for each data point).   
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Figure 3-6.  Mean observed (solid line) vs. predicted (dashed line) growth curves for 

seedlings over the full 40 days of the experiment.  Each cell depicts the mean growth for 

treatments belonging to each combination of flooding depth and flooding duration.  

Flooding depth increases from top to bottom (see right vertical axis) and flooding 

duration increases from left to right (see top horizontal axis).   
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o  

Figure 3-7. Stem growth response of seedlings subjected to moist (1 in +), saturated (2 in 

x), and inundated (3 in ∆) flooding conditions for 3 days. The growth response of upland 

controls (never flooded) are also shown in red (0 in red circle) as a reference.  Graph 

depicts the growth response of the seedlings over the entire duration of the study.  Error 

bars are +/- 1 standard deviation.  Dates for each treatment are staggered a day or two on 

graph to permit outcomes on each sampling date to be discerned more easily. But all 

dates were: 3, 10, 17 and 40 after initial submergence treatment on day zero.      
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Figure 3-8.  Stem growth response of seedlings subjected to moist (1 in +), saturated (2 in 

x), and inundated (3 in ∆) flooding conditions for 10 days. The growth response of 

upland controls (never flooded) are also shown in red.  Graph depicts the growth 

response of the seedlings for the duration of the 40-day study.  Error bars are +/- 1 

standard deviation. Dates for each treatment are staggered a day or two on graph to 

permit outcomes on each sampling date to be discerned more easily, but all dates were: 3, 

10, 17 and 40 after initial submergence treatment on day zero.      
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Figure 3-9  Stem growth response of seedlings subjected to moist (1 in +), saturated (2 in 

x), and inundated (3 in ∆) flooding conditions for 17 days. The growth response of 

upland controls (never flooded) are also shown in red.  Graph depicts the growth 

response of the seedlings for the duration of the study.  Error bars are +/- 1 standard 

deviation. Dates for each treatment are staggered a day or two on graph to permit 

outcomes on each sampling date to be discerned more easily. But all dates were: 3 , 10, 

17 and 40 after initial submergence treatment on day zero.      
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Figure 3-10. Mean observed (solid line) vs. predicted (dashed line) curves for change in 

seedling leaf number over the full 40 days of the experiment.  Each cell depicts the mean 

change in leaf number for treatments belonging to each combination of flooding depth 

and flooding duration.  Flooding depth increases from top to bottom (see right vertical 

axis) and flooding duration increases from left to right (see top horizontal axis).   
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Figure 3-11.  Change in leaf number for seedlings subjected to moist (1 in +), saturated (2 

in x), and inundated (3 in ∆) flooding conditions for 3 days. The growth response of 

upland controls (never flooded) are also shown in red.  Graph depicts the growth 

response of the seedlings for the duration of the study.  Error bars are +/- 1 standard 

deviation. Dates for each treatment are staggered a day or two on graph to permit 

outcomes on each sampling date to be discerned more easily. But all dates were: 3, 10, 17 

and 40 after initial submergence treatment on day zero.      
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Figure 3-12. Change in leaf number for seedlings subjected to moist (1 in +), saturated (2 

in x), and inundated (3 in ∆) flooding conditions for 10 days. The growth response of 

upland controls (never flooded) are also shown in red.  Graph depicts the growth 

response of the seedlings for the duration of the study.  Error bars are +/- 1 standard 

deviation. Dates for each treatment are staggered a day or two on graph to permit 

outcomes on each sampling date to be discerned more easily. But all dates were: 3, 10, 17 

and 40 after initial submergence treatment on day zero.      
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Figure 3-13.  Change in leaf number for seedlings subjected to moist (1 in +), saturated (2 

in x), and inundated (3 in ∆) flooding conditions for 17 days. The growth response of 

upland controls (never flooded) are also shown in red.  Graph depicts the growth 

response of the seedlings for the duration of the study.  Error bars are +/- 1 standard 

deviation. Dates for each treatment are staggered a day or two on graph to permit 

outcomes on each sampling date to be discerned more easily. But all dates were: , 10, 17 

and 40 after initial submergence treatment on day zero.      

  



 

115 

  

 

Figure 3-14.  Mean aboveground biomass (AGB) for all combinations of light, flood 

depth and flood duration.  “Light” and “Shade” treatments  are 30% shade and %80 

shade, respectively.  Error bars are ±1 standard error.   
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Figure 3-15.  Interaction plot showing mean aboveground biomass for all combinations 

of light, flood depth and flood duration on Day 40, for surviving seedlings only.  Error 

bars are ±1 standard error.   
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Figure 3-16.  Mean belowground biomass (BGB) for all combinations of light, flood 

depth and flood duration, on Day 40 for surviving seedlings only.  “Light” and “Shade” 

treatments  are 30% shade and 80% shade, respectively.  Error bars are ±1 standard error.   
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Figure 3-17.  Mean root-shoot ratio (RSR) for all combinations of light, flood depth and 

flood duration on Day 40 for surviving seedlings only.  “Light” and “Shade” treatments  

are 30% shade and %80 shade, respectively.  Error bars are ±1 standard error.   
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CHAPTER IV 

EFFECTS OF SIMULATED FLOODING ON GERMINATION OF LONICERA 

MAACKII SEEDS 

Introduction   

 Gleasonian models of plant community development emphasize how species 

distributions are controlled by environmental gradients.  Within this framework, the 

environmental sieve model describes how plant species distributions are limited by the 

availability of favorable abiotic conditions that may change through time and space 

(Vandervalk 1981).   For instance, the anoxic stresses of wetland soils act as an 

ecological filter that limit successful seedling establishment to particular windows in time 

and space (Middleton 2000).  To establish a successfully reproducing population in any 

habitat, a species must pass through this filter at each critical life stage.   

 Several recent studies, including the second chapter of this dissertation, show that 

the non-native invasive shrub species Lonicera maackii has an established presence in 

riparian, floodplain and bottomland hardwood forests in the United States (Predick and 

Turner 2008, Boyce et al. 2012, White 2014).  Suitable habitat within these systems 

appears to be limited by the availability of drier, higher elevation sites (Swab et al. 2008).  

However, it is not known what life stages are most sensitive to the effects of flooding that 

limit the presence of L. maackii in bottomland hardwood forests. Because plant 
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requirements and tolerances can change with ontogeny (Blood and Titus 2010), 

examining the role of biotic and abiotic stressors at multiple life stages is critical in 

delimiting the fundamental niche of plant species (Anderson et al. 2009).     

 Chapter III demonstrated that the growth of Lonicera maackii seedlings is 

negatively impacted by durations of saturation or inundation of 10 days or more.  

However, to some extent, they show the potential to survive and recover from the stresses 

of ephemeral saturated and inundated conditions.  This chapter examines the potential of 

waterlogged conditions to impact another critical life history stage of L. maackii, seed 

germination.    

 Studies from upland systems show viable L. maackii seeds are dispersed by both 

birds (Bartuszevige and Gorchov 2006) and deer (Vellend 2002) .  Undoubtedly, these 

dispersal mechanisms are also important in wetland systems, but the occurrence of this 

species in floodplains suggests hydrochory could be another means of dispersal.  The 

fleshy red fruits of Lonicera maackii mature in late fall, and it is possible that they may 

be distributed onto floodplains during winter flooding in riparian systems. In depressional 

wetlands, seeds and fruits may be washed in from adjacent higher-elevation sites, or 

deposited through zoochory.   

 While some plants, such as Fraxinus pennsylvanica, have demonstrated the ability 

to germinate underwater (Schmiedel and Tackenberg 2013), many woody species rely on 

dispersal to higher elevation microsites, or drawdown, for successful germination in 

wetlands (Middleton 2000, Blood and Titus 2010).  Seeds distributed by hydrochory are 

generally concentrated along drift lines in bottomland hardwood forests (Nilsson et al. 
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2010).  These features mark the interface between areas of inundation and higher 

elevation microsites.  Dispersal into these areas is advantageous, as higher elevation 

microsites are generally more conducive to seed germination for most woody species 

(Middleton 2000).   Thus, while the ability of seeds to germinate under flooded 

conditions is not generally a prerequisite to wetland establishment, it is advantageous for 

seeds to remain viable under waterlogged conditions.   As a first step in understanding the 

degree to which flooding restricts the germination potential of Lonicera maackii, this 

study examines its potential seed germination under various flooding scenarios by 

quantifying the ability of Lonicera maackii seeds to germinate under various conditions 

of simulated flooding.   

Methods 

  

 The germination assay consisted of two consecutively applied manipulations 

intended to mimic different temporal flooding regimes, one during a seed stratification 

period and the other as a post-stratification event (or treatment). This transition was 

intended to mimic natural changes in hydrology that may occur in wetland soils (e.g. 

drawdown or flooding), and therefore assess the potential impact of these inundation 

fluctuations on L. maackii seed germination.   

Seed Sources and Viability Testing 

 Seed material was obtained from L. maackii plants from a single wetland site in 

Jefferson County, Kentucky, USA.  Mature fruits were collected on a single date in 

October 2011.  These were briefly stored in a refrigerator for 2 days.  Seeds were then 

separated from the fruit pulp in distilled water using a homemade macerator constructed 
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by covering the blades of a conventional kitchen blender with rubber tubing.  Recovered 

seeds were allowed to dry on paper towels until visibly dry (1-2 days), transferred to 

paper envelopes, and then placed in dry, cold storage in plastic containers until the 

beginning of the experiment.   

 Just prior to the initiation of the experiment (February 2012), samples of the 

stored seeds were tested for viability using a 1% tetrazolium (TZ) solution (10 seeds/Petri 

dish, n=5) using established protocols for Lonicera spp.  (Peters et al. 2000).  Dissected 

seeds staining bright red throughout the embryo and endosperm were recorded as viable.  

Those not staining bright red throughout both seed parts were recorded as non-viable.  

Mean (±S. D.) viability was 70.7±15.3%.  This method produces a conservative estimate 

of seed viability, as viable seeds with low vigor may not stain evenly throughout (Peters 

et al. 2000).   

Germination Assays  

The experiment was initiated on February 18, 2012 and lasted until May 23, 2012 

(a total of 95 days).  To minimize risk of microbial contamination all seeds were surface 

sterilized with a 1% sodium hypochlorite solution.  Mean viability of surface sterilized 

seeds was estimated as 65.1±23.9% using the TZ test method discussed previously.  

Additionally, all plasticware, tools and media were autoclaved.   

Some seeds of Lonicera maackii exhibit morphophysiological dormancy, 

requiring seeds to be subjected to a period of stratification under cold, moist conditions 

before germination is possible (Hidayati et al. 2000).  Seeds were cold stratified under 

one of three conditions (moist, saturated or inundated sand), then transitioned to a 
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different condition after stratification (also moist, saturated or inundated sand).  A 

constantly moist and cool treatment was also included as a control and to serve as a 

reference simulating overwintering conditions in upland systems.  Hereafter, these 

treatments are referred to as stratification treatments (i.e., the initial conditions in each 

treatment) and post-stratification treatments (e.g. treatment conditions after transition to 

different conditions), and are described in detail in the following sections.  These 

transitions corresponded to either a flooding or drawdown event and were applied 

consecutively.  The five treatments (indicating stratification to post-stratification 

transitions, respectively) were:  moist control (no transition), moist-to-inundated 

transition, moist-to-saturated transition, saturated-to-moist transition and inundated-to-

moist transition (Tab1e 4-1).   

Stratification Treatments 

Sixty 250 mL polypropylene containers were filled with 100 g of sterilized white 

aquarium sand to 1 cm depth, and randomly assigned to one of five treatment groups.  

According to Hidayati et al. (2000), stratification under light enhanced germination rates, 

and therefore each of the three refrigerator shelves was equipped with two single-strip 

24” fluorescent lighting fixtures, controlled by a timer to provide 14 hours of light each 

day.   Bulbs were 17 watts and provided light in the 7800 K spectrum.  To minimize the 

effects of any vertical variation in lighting (variation among shelves), trays holding the 

polypropylene containers were made of opaque foam board that limited the transmission 

of light from one shelf to another.   
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All containers were weighed before the addition of water.  Replicates assigned 

moist stratification treatments received 15 mL of sterile distilled water, an amount 

sufficient to thoroughly wet the 100 g of substrate.  Saturated treatments received 25 mL 

of water, raising the water level even with the sand surface.  Inundated treatments 

received 80 mL of water, an amount sufficient to raise the water level 1 cm above the 

sand surface.  These volumes of water were used as standards for moist, saturated and 

inundated conditions throughout the duration of the experiment.  Thirty seeds were 

spaced evenly on the sand surface of each replicate container.  Each container was sealed 

with a lid and weighed to the nearest 0.01 g.  

 Containers were immediately transferred to a commercial refrigerator for a cold 

stratification period.  Based on results from Hidayati et al. (2000), high germination rates 

greater than 90% were achieved after cold stratification at 5 °C with a 14-hour 

photoperiod.  Prior attempts to stabilize the refrigerator temperature at 5 °C  revealed 

limitations in temperature control, and it was not possible to maintain an even, constant 

temperature throughout the unit.  Data provided by temperature data loggers showed that 

temperature varied with both photoperiod (due to heat produced by the light fixtures) and 

vertically (due to the position of the condenser at the top of the unit).  To minimize the 

differential effects of the vertical temperature gradient, trays holding the containers were 

rotated to a different shelf every 3 days (vertical rotation).  Potential effects of horizontal 

variation in light levels (variation within a shelf) were minimized by rearranging 

replicates within a tray at each vertical shelf rotation.  Rearrangement consisted of 

shifting replicates horizontally one position over, and rotating containers within each 

replicate one position front to back.   
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Despite scheduled rotations, it was anticipated that germination of seeds would be 

somewhat asynchronous, due to the vertical temperature gradient.  For instance, if 

sufficient stratification had occurred (or if stratification was unnecessary) seeds on 

warmer shelves for 3 days between rotations would likely germinate before those on 

cooler shelves.  In order to statistically account for any variance in germination rate due 

to this factor, each shelf contained a single seed tray holding 3-4 complete replicate sets, 

and each tray was treated as an experimental block.   

Temperature of the refrigeration unit was recorded hourly for the majority of the 

experimental duration using 2-3 temperature data loggers (Hobo Pro Series, Onset).  

Temperature was monitored from 3/2/12 to 3/12/12 on the bottom and middle shelves, 

and from 3/13/12 to 3/25/12 on the top and bottom shelves.  From 3/26/12 to 5/23/12, 

temperature was recorded on all 3 shelves.  

 Seeds were examined every 2-3 days for signs of germination, defined as 

protrusion of the radicle 1 mm or greater.  It was not anticipated that seeds would show 

significant germination during the low temperature stratification period.  However, 

germination was first observed on 3/23/12, 34 days after initiation of stratification 

treatments.  Attempts to delay germination by lowering the refrigerator temperature were 

made.  Despite these efforts, germination continued at low temperatures and the decision 

was made to continue the post-stratification flooding or drawdown manipulations in the 

low-temperature environment.   
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Post-stratification treatments  

As in the stratification period, rotation of replicates within and between 

refrigerator shelves was carried out during post-stratification treatments.  Post-

stratification treatments were begun on 3/27/12 (day 38) after initial germination of seeds 

was observed on 3/23/12.  Treatments simulating transitions to flooded conditions (e.g. 

moist to saturated or moist to inundated transitions) received additional sterile distilled 

water.  Saturated treatments received 15 mL to achieve saturated conditions (~25 mL 

total of water).  Similarly, moist to inundated transitions received an additional 65 mL of 

water to achieve a total water volume of 80 mL, the standard used here for inundated 

conditions.  Because some evaporation occurred, the exact amount of water added was 

added by weight.   The target weight of each treatment was determined by adding the 

amount of water by weight (1 mL = 1 g) needed to transition moist treatments to either 

saturated or inundated conditions, based on initial container weights.  The target mass 

was calculated for each container receiving water, and sterile distilled water was added 

until the target weight was achieved within a tolerance of ±1 g.  

Simulating drawdown (e.g. saturated to moist or inundated to moist transition 

treatments) required the withdrawal of water from containers.   Using an automatic 

pipette, all water that was possible to remove with a pipette was withdrawn.   The 

accuracy of water removal in achieving intended water volumes was checked by 

comparing the target vs. actual container weights.  The target mass of each container was 

calculated by adding 10 g (the amount of water corresponding to moist conditions) to the 

initial dry container weight.  The average difference from target weight was 5.2±0.31 g 

and 5.9±1.4 g for saturated to moist and inundated to moist transitions, respectively.   
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Once germination was observed, total numbers of germinating seeds in each dish 

were recorded every 3 days until 5/3/11 (75 days after beginning of stratification), when 

all containers had achieved at least 70% germination (corresponding approximately to 

estimates of seed viability).  During the incubation, seeds showing obvious signs of 

fungal colonization were removed to prevent further contamination.  Seed germination 

for all samples between 5/14/11 (day 86) and 5/23/11 (day 95), revealed only a small 

number of new germinants gained between these two observation intervals (an average of 

less than 1 new germinant per dish), and the experiment was terminated.    

Data Analysis 

 Mean germination time and germinability were calculated for each replicate 

container according to guidelines provided in Ranal and Garcia de Santana (2006).  Mean 

germination time (𝑡̅) is a weighted mean of time to germination and was calculated as  

𝑡̅ =
∑ 𝑛𝑖𝑡𝑖

𝑘
𝑖=1

∑ 𝑛𝑖
𝑘
𝑖=1

   

(Eq. 7) 

where 𝑡𝑖 is the time (in days) when the 𝑖𝑡ℎ  observation was made, 𝑛𝑖  is the number of 

seeds germinated in the interval between the 𝑖𝑡ℎ observation and the previous observation 

and 𝑘 is the last day on which germination observations were made.  Germinability was 

calculated as the total percentage of seeds germinated in each replicate by the end of the 

experiment.   

 A mixed linear model was used to test the effects of flooding treatment on mean 

germination time (MGT) and germinability using PROC MIXED in SAS 9.4.  The 
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experimental “seed tray” (e.g. the group of replicates comprising a single seed tray) was 

treated as a random effect, and modeled using the variance components (VC) method.  

Flooding treatment was treated as a main, fixed effect.  Modeling “seed tray” as a random 

effect allowed the effects of flooding treatment on MGT or germinability to vary with 

seed tray.  The justification to treat seed tray as a random effect was made based on the 

observation of initial asynchronous timing of germination between replicates on different 

trays.  One tray began germination earlier than the other two, although the differences 

between the trays dissipated through time.  The model used the restricted maximum 

likelihood (REML) estimation method.  Germinability was modeled by converting the 

percentage to a decimal fraction and using the arcsine transform (commonly used for 

percentage data) where: 

 Y(Transformed) = arcsine(y
-2

) 

Model residuals were visually examined for normality and homoscedasticity.  

Significant differences in fixed effects at the p = 0.05 level were followed up with 

pairwise comparisons among treatment groups using the Tukey-Kramer method.    

Results 

Mean Germination Time 

 The MGTs of all treatment groups ranged from 59.8 to 64.8 days and were longer 

than the moist control and the fixed effect of flooding treatment on MGT was significant 

(p=0.012).  Post-hoc pairwise comparison of flooding treatment groups using the Tukey-

Kramer method showed a significant difference in MGT between the moist control and 

moist-to-inundated transition group (p=0.004).  No other groups significantly differed 
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from each other.  The effect of “seed tray” modeled as a random effect, was not found to 

be significant (p=0.175). 

Germinability 

 The mean germinability of all treatments was relatively high (88.3±8.50% to 

91.5±6.35%).  The fixed effect of flooding treatment on total germinability was not 

significant (p=0.73).  The mean germinability of treatments inundated during either 

stratification or post-stratification was lower than all others, but the difference was not 

statistically detectable.   

Environmental Variables: Temperature   

 As expected, a vertical temperature gradient was observed during the 

experimental period.  The difference in mean daily average temperatures between each 

shelf was approximately 2 °C  (Table 4-1), ranging from 2.3±0.5°C in the top shelf to 

6.3±0.8 °C the bottom (Fig. 4-1). The variation in mean daily temperature throughout the 

study period was close to the target temperature of 5 °C—a stratification temperature that 

yielded high germination rates in Hidayati et al. (2000).  A temperature adjustment to the 

refrigerator unit accounts for the temperature reduction seen on day 38 (see Methods).  

As seen in Fig. 4-1 temperature fluctuations became pronounced in the latter two-thirds 

of the experiment, possibly due to ambient temperature fluctuations in the surrounding 

laboratory,  

Discussion 

 This study attempted to evaluate the potential effects of flooding stress on the 

germination of Lonicera maackii by mimicking natural hydrologic transitions in a 
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controlled experiment.  These transitions corresponded to either a flooding or drawdown 

event from different initial moisture conditions during cold stratification.  A constantly 

moist treatment was also included as a reference mimicking winter moisture conditions in 

upland forested systems where flooding does not occur.  Temperatures during the 

experiment were within the range observed in soils in winter and spring in our region 

(NRCS 2015).   

 A statistically significant effect of flooding treatments on mean germination time 

was detected.  This significant effect was explained by longer mean germination times of 

treatments undergoing transitions from moist to flooded conditions compared to 

treatments experiencing consistently moist conditions.  However, there was no difference 

in total germinability between any treatments, which was high under all treatments, 

indicating that seeds have the physiological potential, under aseptic conditions, to 

germinate even when flooded at low temperatures.  

Effects of Simulated Drawdown 

These findings show that the mean germination time and germinability of 

Lonicera maackii seeds cold-stratified under inundated conditions for approximately 30 

days and transferred to moist conditions did not differ significantly from that of seeds 

incubated under constant moist conditions.  This furthers the possibility that seeds 

deposited into flooded areas may retain viability and thus be able to germinate when 

more suitable conditions for growth (drawdown at the beginning of the growing season) 

occur.   
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 The ability of L. maackii seeds to remain viable under submersion also advances 

the possibility that hydrochory may be a secondary means of dispersal.  Considering the 

origins of L. maackii from low-elevation and floodplain forests (Luken and Thieret 

1996), it seems worth considering if its retention of viability under inundation and 

potential to germinate underwater is an adaptation to its native range and habitat.  It 

should be noted that the ripe, fleshy fruits of L. maackii are not buoyant unless they have 

begun to dry (personal observation).  Fruits ripening in the fall can be retained on the 

plant into January (Luken and Thieret 1996) and the high yield of fruit makes it likely 

that many seeds will fall to the forest floor (Luken and Goessling 1995).  This timing of 

seed release would also match that of high flow conditions in floodplain systems, where 

L. maackii can be a dominant plant (White 2014).  However, even if fruit characteristics 

do not encourage lateral dispersal via floodwaters, seeds could potentially be washed 

down from adjacent higher elevation areas and deposited in floodplains or 

microdepressions, where the ability to remain viable under prolonged submersion would 

be advantageous.   

Effects of Simulated Flooding 

Seeds subjected to a cold moist stratification followed by inundation germinated 

more slowly, but ultimately to similar percentages as all other treatments.  Seeds used in 

this experiment did not germinate within 30 days, qualifying them as having either simple 

morphological dormancy (MD) or simple morphophysiological dormancy (MPD) 

(Hidayati et al. 2000, Baskin and Baskin 2001).  Seeds of L. maackii have 

underdeveloped embryos, which must elongate to break simple MD (Hidayati et al. 

2000).  It is possible that water-logging slows, but does not halt, biochemical processes 
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that break MD requirements in L. maackii seeds.  Although the water column was 

unlikely anaerobic in our experiment due to the initially sterile conditions, water still may 

limit the delivery of oxygen to developing plant embryos (Alani et al. 1985), thus 

retarding germination under field conditions.   

The conditions for breaking dormancy in MPD seeds are more stringent.  In 

addition to elongation of the embryo, seeds with MPD must also undergo physiological 

changes to break dormancy, and in L. maackii this is known to be accomplished by moist 

warm- or cold-stratification (Hidayati et al. 2000).  It is unknown what percentage of 

seeds in this experiment had MD or MPD, thus it is not possible to know if seeds were 

able to break MPD requirements while inundated.  Furthermore, since no treatments were 

consistently inundated, it is not possible to discern if consistently inundated conditions 

are sufficient to meet seed dormancy requirements and promote germination without a 

period of drawdown to moist conditions.  However, since most woody plants do not 

establish in continuously flooded areas (Kozlowski 2002), it is unlikely that these would 

be areas of suitable habitat regardless.  Finally, it is also possible that the somewhat 

underdeveloped dormancy mechanisms in L. maackii are insufficient to prevent 

germination in flooded conditions, even if these conditions are not optimal.    

Lab-to-Field Implications 

 This study shows that L. maackii can germinate under saturated and inundated 

conditions, but only indicates the potential recruitment ability of L. maackii in flooded 

soils at low temperatures.  The timing of germination in relation to seasonal hydrologic 

and climate changes is likely to restrict the establishment of new germinants.  L. maackii 
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seeds vary in their dormancy breaking requirements, and have been characterized as 

either having no dormancy (Luken and Goessling 1995), simple MD or simple MPD 

(Hidayati et al. 2000).  L. maackii seeds with MPD need moist warm- or cold-

stratification, and are likely to germinate during this shrub's growing season, which in our 

region typically begins in the first week of March and ends in late November (Trammell 

et al. 2012 and personal observation).  Freshly matured seeds with MD are capable of 

germinating in autumn after the embryo has elongated (Hidayati et al. 2000) and field 

observations from Luken and Thieret (1996) ) indicate that L. maackii seeds germinate 

year-round.  The findings of this study show the potential for additional germination 

outside the growing season, as seeds germinated under mean daily temperatures from 2.3-

6.3 °C. 

To my knowledge, it has not been determined whether this ability to germinate at 

varied temperature is advantageous, or increases the risk of seedling mortality.  If 

germination of seedlings under flooded conditions is not matched closely with 

drawdown, this may ultimately contribute to mortality.   This study demonstrated the 

potential of L. maackii to germinate soon after being transferred from cold/moist to 

cold/inundated conditions--environmental cues that signify the arrival of winter floods 

and may not be conducive to the survival of newly germinated seeds.  Recently 

germinated seeds subjected to the pressure of winter flooding must contend with low-

oxygen stress, water sheer stress, burial by sedimentation, as well as low/freezing 

temperatures.  Additionally, small seedlings may not have developed the root systems 

sufficient for tolerating harsh winter conditions.  Although soft tissues of adult plants 

have been shown to tolerate episodes of freezing temperatures (McEwan et al. 2009), the 
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resilience of young seedlings, to my knowledge, has not been studied.  Therefore, it is 

unknown whether seedlings established in autumn or winter contribute significantly to L. 

maackii recruitment in either upland or wetland habitats.  Because seeds began 

germinating after only a month, it was not possible to evaluate the potential of L. maackii 

seeds to remain viable and germinate after several months of flooding—as could occur 

with winter floods.  It is possible that more consistent and/or lower temperatures would 

have stalled the germination of seeds, allowing evaluation of viability under longer 

flooding scenarios.  However, the temperatures in this study were within the bounds of 

the normal monthly winter temperatures experienced over a significant portion of L. 

maackii’s invasion range in the United States, and thus may accurately reflect the winter 

and early spring germination potential of L. maackii in these areas (NRCS 2015).   

Vulnerability to microbes under field conditions is another variable not evaluated 

by this study, and a factor that is likely to impact the germinability and mortality of seeds 

in the field.  Relative susceptibility of seeds to infection under flooded as opposed to 

upland conditions would also need to be evaluated.  Orrock et al. (2012) found that L. 

maackii was more susceptible to seed mortality due to fungal pathogens than two native 

shrub species.  Blaney and Kotanen (2001) buried seeds of upland non-native and native 

species in wetland and upland soils, and then assessed the germination potential of these 

seeds in a greenhouse under moist conditions.  The germination of seeds buried in 

wetland soils was lower than those in upland soils, and the number of seeds germinated 

increased when fungicide was applied, implicating greater seed loss due to fungal 

infection.  Thus, fungal activity was implicated in explaining high seed mortality in 

wetland soils, and it was suggested that this might be one mechanism by which upland 
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species are excluded from wetland areas.  Studies in tropical forests also provide 

evidence for greater activity of soil plant pathogens with increasing soil moisture 

(Augspurger 1983, Augspurger and Kelly 1984).  Certainly, the longer germination time 

under flooded conditions would increase the probability of seeds being lost to microbial 

infection.  Based on these findings, it is reasonable to suspect that the high germinability 

of seeds under sterile, inundated conditions in this experiment may overestimate 

germinability in the field.    

Conclusions 

Previous studies have shown that the presence of Lonicera maackii is restricted to 

higher elevation areas in bottomland hardwood forests.  This study examined the 

potential of flooding—during or after cold stratification—to serve as an ecological filter 

limiting the passage of L. maackii past the seed stage in these environments.  Mean 

germination time, but not germinability, differed significantly between moist controls and 

treatments simulating moist to inundated transitions.  Seeds subjected to inundated or 

saturated conditions during the stratification period and followed by simulated drawdown 

had mean germination times and germinability similar to moist controls.  This finding 

advances the possibility that seeds of L. maackii seeds can remain viable in flooded areas, 

and germinate successfully after drawdown.  These results also suggest that temporary, 

winter flooding of wetland microsites may not impose a major limitation on L. maackii 

germination.   
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Figure 4-1.  Mean daily temperature in experimental chamber (refrigerator) from days 

14-96.  Error bars indicate ± 1 S.D.  The horizontal line indicates 5 °C.   Breaks in graph 

lines indicate missing data.  The black star indicates when germination was first noted at 

day 34.  On Day 38 the temperature in the unit was reduced purposely so that bottom 

shelf could be closer to the target temperature of 5 °C. Trays containing seed plates were 

rotated between shelves as described in Methods.  
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Table 4-1. Summary of stratification and post-stratification treatments for all five 

treatment groups in germination assay. 

Stratification 

Treatment 

Post-Stratification 

Treatment 

Transition simulates 

flooding/drawdown? 

Moist Moist No flooding (control) 

Moist Inundated Flooding 

Moist Saturated Flooding 

Inundated Moist Drawdown 

Saturated Moist Drawdown 
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Table 4-2.  Means of mean germination time (MGT) for all flooding treatments and moist 

controls.  Means with different letters indicate a significant difference p ≤ 0.05 between 

treatments according to the Tukey-Kramer test.   

 

  

Flooding 

Treatment 

n Mean Germination 

Time 

 (days) 

Std. 

Dev 

Minimum Maximum 

Control (Moist) 20 59.8
ac

 4.04 51.8 67.3 

Inundated  Moist 10 62.1
b
 3.57 55.1 67.5 

Moist  Inundated 10 64.8
ab

 5.87 56.4 73.8 

Moist  Saturated 10 61.5
ab

 4.10 55.6 68.6 

Saturated  Moist 10 61.3
ab

 3.90 53.5 66.4 
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Table 4-3. Means of total seed germinability of flooding treatments (as a percentage).  

Global tests of fixed effects show no significant difference between groups.  Values for n 

indicate the number of containers per treatment.  Minimum and maximum values 

correspond to the minimum and maximum values of germinability observed among n 

containers in each flooding treatment group. 

Flooding Treatment n Germinability Std. Dev Minimum Maximum 

Control (Moist) 20 91.5 6.4 80.0 100.0 

Inundated  Moist 10 88.3 8.5 76.7 100.0 

Moist  Inundated 10 88.7 7.6 70.0 96.7 

Moist  Saturated 10 90.7 3.8 83.3 96.7 

Saturated  Moist 10 90.0 7.5 76.7 100.0 
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Appendix Table 1.  Summary of all environmental variables measured for all sites.   

Site Per. 

Transect 

Parallel 

Transect 

% Herb 

Cover 

±SE 

% Bare 

Soil 

±SE 

% Leaf 

Litter 

±SE 

% CWD 

±SE 

% Canopy 

Closure 

±SE 

`LAI 

 

1 N1 1 14 8 32 6 68 6 3 3 90 1 5.23 

1 N1 5 11 9 6 3 74 24 2 1 84 2 4.32 

1 N1 10 18 15 3 0 98 0 9 8 87 3 4.4 

1 N1 30 3 0 3 0 98 0 0 0 90 3 4.59 

1 N1 60 6 3 49 12 39 14 0 0 89 2 4.44 

1 N2 1 9 4 6 3 79 6 28 3 87 1 4.92 

1 N2 5 6 3 74 6 26 6 7 3 86 2 4.62 

1 N2 10 14 8 79 6 21 6 3 2 87 2 4.85 

1 N2 30 23 9 14 8 83 7 2 1 76 6 4.23 

1 N2 60 26 6 3 0 94 3 4 2 88 2 4.49 

1 S1 1 32 6 9 4 91 4 3 2 92 2 3.83 

1 S1 5 18 7 3 0 91 4 1 1 90 2 3.75 

1 S1 10 56 18 6 3 94 3 1 1 93 1 4.08 

1 S1 30 3 0 3 0 94 3 1 1 92 2 4.58 

1 S1 60 3 0 85 0 15 0 0 0 93 2 4.23 

1 S2 1 3 0 3 0 91 4 1 0 92 1 4.76 

1 S2 5 6 3 23 9 74 6 2 2 91 3 4.31 

1 S2 10 3 0 18 7 71 13 0 0 93 3 4.43 

1 S2 30 6 3 9 4 88 3 4 2 97 1 4.17 

1 S2 60 12 3 15 0 85 0 1 1 95 2 4.21 

2 N1 1 62 17 3 0 94 3 0 0 97 1 1.96 

2 N1 5 32 6 6 3 74 6 1 1 97 1 2.35 

2 N1 10 71 13 3 0 94 3 4 2 94 1 2.51 

2 N1 30 36 16 14 8 65 18 7 4 95 1 2.97 
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Site Per. 

Transect 

Parallel 

Transect 

% Herb 

Cover 

±SE 

% Bare 

Soil 

±SE 

% Leaf 

Litter 

±SE 

% CWD 

±SE 

% Canopy 

Closure 

±SE 

`LAI 

 

2 N1 60 3 0 3 0 98 0 1 1 93 1 2.78 

2 N2 1 74 6 18 7 83 7 1 1 94 1 2.33 

2 N2 5 68 6 3 0 98 0 3 2 91 3 2.32 

2 N2 10 94 3 9 4 88 3 0 0 83 3 2.69 

2 N2 30 56 15 15 0 74 6 27 6 83 5 3.23 

2 N2 60 68 22 3 0 94 3 1 1 90 1 2.57 

2 S1 1 59 14 3 0 98 0 0 0 91 4 4.17 

2 S1 5 14 8 6 3 88 3 13 6 91 2 3.45 

2 S1 10 59 19 3 0 88 3 5 2 89 3 2.85 

2 S1 30 73 12 3 0 91 4 8 3 85 3 2.31 

2 S1 60 94 3 3 0 98 0 3 3 90 4 2.33 

2 S2 1 77 9 12 3 88 3 0 0 95 3 2.62 

2 S2 5 14 8 9 4 83 7 2 1 95 0 3.57 

2 S2 10 77 9 3 0 98 0 0 0 91 2 3.17 

2 S2 30 89 9 3 0 98 0 0 0 88 3 2.35 

2 S2 60 88 3 26 24 71 23 0 0 93 1 2.67 

3 N1 1 94 3 3 0 98 0 0 0 83 3 2.72 

3 N1 5 76 13 3 0 98 0 0 0 95 1 4.78 

3 N1 10 38 17 6 3 94 3 4 2 93 2 4.84 

3 N1 30 11 9 18 15 83 15 0 0 89 2 4.11 

3 N1 60 33 11 3 0 94 3 1 0 93 1 4.18 

3 N2 1 94 3 3 0 98 0 0 0 78 8 3.53 

3 N2 5 68 6 3 0 98 0 0 0 96 1 4 

3 N2 10 68 6 3 0 98 0 0 0 89 1 3.75 

3 N2 30 29 19 3 0 98 0 0 0 94 2 4.05 
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Site Per. 

Transect 

Parallel 

Transect 

% Herb 

Cover 

±SE 

% Bare 

Soil 

±SE 

% Leaf 

Litter 

±SE 

% CWD 

±SE 

% Canopy 

Closure 

±SE 

`LAI 

 

3 N2 60 44 11 3 0 98 0 0 0 87 6 4.12 

3 S1 1 80 10 3 0 94 3 0 0 90 4 2.19 

3 S1 5 68 11 44 24 56 24 4 3 95 1 2.52 

3 S1 10 77 9 64 21 33 22 3 2 91 2 2.66 

3 S1 30 32 20 3 0 98 0 0 0 91 2 2.76 

3 S1 60 44 11 6 3 94 3 1 0 93 3 4.52 

3 S2 1 94 3 91 4 9 4 2 1 81 1 3.45 

3 S2 5 77 9 91 4 9 4 2 1 81 5 4.36 
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Appendix Table 2.  Legend of species codes used in NMS ordination graphs. 

 

Species Code 

TREES  

Acer sp.  ACER 

Acer rubrum AcRu 

Asimina triloba AsTr 

Celtis laevigata CeLa 

Diospyros virginiana DiVi 

Fraxinus pennsylvanica FrPe 

Liriodendron styraciflua LiSt 

Nyssa sylvatica NySy 

Quercus bicolor QuBi 

Quercus michauxii QuMi 

Quercus palustris QuPa 

Ulmus rubra UlRu 

SHRUBS  

Cephalanthus occidentalis CeOc 

Cornus foemina CoFo 

Lindera benzoin LiBe 

Lonicera maackii LoMa 

Rosaceae ROSA 

Rubus sp.  RUBU 

Sambucus canadensis SaCa 

VINES  

Campsis radicans CaRa 

Euonymus fortunei EuFo 

Lonicera japonica LoJa 

Menispermum canadense MeCa 

Parthenocissus quinquifolia PaQu 

Smilax sp. SMIL 

Toxicodendron radicans ToRa 

Vitaceae VITA 
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Appendix Table 3.  Mean density, basal area and importance values for adult trees (>2.5 

cm dbh) in forest edges in interiors.  Values are averaged over four edge and interior 

12x12m plots per site (8 plots per site).   

Site Species 

Edge Interior 

Mean 

Density 

Std. 

Error 

Mean 

IV 

Std. 

Error 

Mean 

BA 

Std. 

Error 

Mean 

Density 

Std. 

Error 

Mean 

IV 

Std. 

Error 

Mean 

BA 

Std. 

Error 

1 Acer negundo 0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

1 Acer rubrum 712 265 33 4 14.7 2.5 469 182 49 7 27.0 5.8 

1 Acer 

saccharinum 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

1 Carya 17 17 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

1 Celtis 

laevigata 

35 20 1 0 0.0 0.0 35 35 6 6 2.6 2.6 

1 Cornus 

florida 

17 17 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

1 Diospyros 

virginiana 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

1 Fagus 

grandifolia 

17 17 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

1 Fraxinus 

pennsylvanica 

365 173 22 7 9.7 3.3 260 171 24 11 11.1 5.4 

1 Juniperus 

virginiana 

35 35 1 1 0.5 0.5 0 0 0 0 0.0 0.0 

1 Liquidambar 

styraciflua 

174 104 13 9 11.3 10.2 87 66 4 2 0.3 0.2 

1 Liriodendron 

tulipifera 

104 60 5 3 3.2 2.0 0 0 0 0 0.0 0.0 

1 Nyssa 

sylvatica 

35 35 2 2 1.2 1.2 0 0 0 0 0.0 0.0 

1 Platanus 

occidentalis 

104 45 5 2 2.8 1.1 104 66 14 10 5.5 3.8 

1 Populus 

deltoides 

35 20 2 2 1.1 1.0 0 0 0 0 0.0 0.0 

1 Quercus 

bicolor 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

1 Quercus 

lyrata 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

1 Quercus 

palustris 

17 17 1 1 0.3 0.3 17 17 2 2 0.0 0.0 

1 Salix nigra 0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

1 Ulmus 

americana 

17 17 1 1 0.8 0.8 17 17 2 2 0.9 0.9 

1 Ulmus rubra 226 72 12 6 1.1 0.4 17 17 1 1 0.0 0.0 

 TOTAL 1910  100  46.8  1007  100  47.4  

2 Acer negundo 17 17 1 1 0.2 0.2 17 17 1 1 0.1 0.1 

2 Acer rubrum 399 87 29 5 16.9 4.6 313 128 34 7 19.9 8.4 

2 Acer 

saccharinum 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

2 Carya 0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 
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Site Species 

Edge Interior 

Mean 

Density 

Std. 

Error 

Mean 

IV 

Std. 

Error 

Mean 

BA 

Std. 

Error 

Mean 

Density 

Std. 

Error 

Mean 

IV 

Std. 

Error 

Mean 

BA 

Std. 

Error 

2 Celtis 

laevigata 

677 187 25 5 6.1 2.0 382 174 23 9 2.7 0.9 

2 Cornus 

florida 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

2 Diospyros 

virginiana 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

2 Fagus 

grandifolia 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

2 Fraxinus 

pennsylvanica 

174 104 6 4 1.7 1.4 243 115 23 6 12.7 3.9 

2 Juniperus 

virginiana 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

2 Liquidambar 

styraciflua 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

2 Liriodendron 

tulipifera 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

2 Nyssa 

sylvatica 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

2 Platanus 

occidentalis 

17 17 5 5 2.9 2.9 0 0 0 0 0.0 0.0 

2 Populus 

deltoides 

52 33 5 5 2.2 2.2 69 69 10 10 9.2 9.2 

2 Quercus 

bicolor 

17 17 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

2 Quercus 

lyrata 

0 0 0 0 0.0 0.0 17 17 4 4 1.8 1.8 

2 Quercus 

palustris 

87 33 10 7 10.4 9.9 0 0 0 0 0.0 0.0 

2 Salix nigra 0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

2 Ulmus 

americana 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

2 Ulmus rubra 382 146 18 7 5.2 2.2 69 49 5 4 0.4 0.2 

 TOTAL 1823  100  45.5  1111  100  46.8  

3 Acer negundo 0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

3 Acer rubrum 729 454 29 8 11.3 3.8 938 500 41 11 11.5 4.2 

3 Acer 

saccharinum 

52 33 2 1 0.3 0.3 0 0 0 0 0.0 0.0 

3 Carya 0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

3 Celtis 

laevigata 

365 365 11 11 3.5 3.5 208 208 14 14 2.1 2.1 

3 Cornus 

florida 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

3 Diospyros 

virginiana 

52 33 1 1 0.1 0.1 0 0 0 0 0.0 0.0 

3 Fagus 

grandifolia 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 
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Site Species 

Edge Interior 

Mean 

Density 

Std. 

Error 

Mean 

IV 

Std. 

Error 

Mean 

BA 

Std. 

Error 

Mean 

Density 

Std. 

Error 

Mean 

IV 

Std. 

Error 

Mean 

BA 

Std. 

Error 

3 Fraxinus 

pennsylvanica 

694 235 24 6 7.0 2.7 313 205 17 6 7.1 2.6 

3 Juniperus 

virginiana 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

3 Liquidambar 

styraciflua 

69 40 3 3 0.7 0.7 17 17 7 7 5.4 5.4 

3 Liriodendron 

tulipifera 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

3 Nyssa 

sylvatica 

139 139 7 7 0.9 0.9 0 0 0 0 0.0 0.0 

3 Platanus 

occidentalis 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

3 Populus 

deltoides 

35 35 1 1 0.1 0.1 17 17 1 1 0.5 0.5 

3 Quercus 

bicolor 

35 35 1 1 0.0 0.0 17 17 4 4 1.8 1.8 

3 Quercus 

lyrata 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

3 Quercus 

palustris 

330 284 9 8 1.3 0.9 69 49 11 6 6.0 3.7 

3 Salix nigra 52 52 4 4 1.1 1.1 0 0 0 0 0.0 0.0 

3 Ulmus 

americana 

0 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 

3 Ulmus rubra 139 49 8 3 3.7 2.0 104 45 5 2 0.7 0.3 

 TOTAL 2691  100  30.1  1684  100  35.0  
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Appendix Table 4.  Results of mixed model regression testing for effects of site, side 

(north vs. south edge orientation) and position (edge vs. interior position) on adult tree 

species richness (PROC MIXED, SAS 9.4).  Shannon diversity was based on basal area 

of adults and was modeled with fixed effects only because of overfitting when random 

effects were included (see Statistical Analysis). Bolded p-values are significant at the 

0.05 level.    

Fixed Effects 

Response Effect DF Chi-

Square 

p  

Species Richness Site 2 0.39 0.8232  

 Side 1 0.23 0.6313  

 Position (Edge vs. Interior) 1 7.83 0.0051  

 Site*Side 2 0.19 0.9099  

 Side*Position 1 0.03 0.8555  

 Site*Position 2 0.79 0.6746  

 Site*Side*Position 2 0.7 0.7036  

 

  



 

   

1
5
6
 

Appendix Table 5.  Shannon-Weiner diversity index values (H) and species richness of all woody vegetation layers, across all sites 

and with distance from edge.  Values of H are based on basal area and percent cover for adult trees and vines, respectively, and stem 

density for all other vegetation layers.  For adult trees, 12 x 12 m edge plots began at the forest edge and extended 12 m in, and 

interior plots were centered at 60 m from the edge.  All other data was collected by subsampling in parallel 12 x 2 m transects centered 

at 1, 5, 10, 30 and 60 m from the forest edge, in four locations per site.  Values in bold represent the highest values of H and species 

richness within each vegetation layer and site, and across sites.   

      Site 3: Wet Site Site 2: Intermediate Site Site 1: Dry Site Across Sites 

Layer Distance 

from Edge 

n 
Mean H ±SE Mean H ±SE Mean H ±SE Mean H ±SE 

Adults EDGE 4 1.37 0.17 1.22 0.12 1.38 0.20 1.32 0.05 

Adults INT 4 1.17 0.15 0.95 0.13 0.87 0.07 1.00 0.09 

Sapling 1 m 4 0.79 0.15 0.98 0.22 1.35 0.21 1.04 0.16 

Sapling 5 m 4 1.13 0.23 0.63 0.26 1.15 0.19 0.97 0.17 

Sapling 10 m 4 1.01 0.16 0.98 0.21 0.92 0.31 0.97 0.03 

Sapling 30 m 4 0.53 0.31 0.73 0.10 0.94 0.10 0.73 0.12 

Sapling 60 m 4 0.65 0.28 0.34 0.23 1.07 0.18 0.68 0.21 

Seedling 1 m 4 0.65 0.26 0.50 0.23 0.61 0.35 0.59 0.04 

Seedling 5 m 4 0.45 0.26 0.39 0.23 0.35 0.20 0.39 0.03 

Seedling 10 m 4 0.31 0.13 0.59 0.29 0.77 0.32 0.56 0.13 

Seedling 30 m 4 0.40 0.27 0.34 0.26 0.80 0.17 0.51 0.14 

Seedling 60 m 4 0.36 0.20 0.37 0.17 0.49 0.31 0.41 0.04 

Shrubs 1 m 4 0.54 0.24 0.00 0.00 0.77 0.28 0.44 0.23 

Shrubs 5 m 4 0.26 0.15 0.37 0.21 0.73 0.25 0.45 0.14 

Shrubs 10 m 4 0.17 0.17 0.16 0.16 0.72 0.15 0.35 0.18 

Shrubs 30 m 4 0.53 0.19 0.40 0.15 0.82 0.12 0.58 0.12 

Shrubs 60 m 4 0.06 0.06 0.10 0.10 0.89 0.03 0.35 0.27 

Vines 1 m 4 0.48 0.22 0.68 0.16 1.14 0.13 0.77 0.20 

Vines 5 m 4 0.57 0.20 0.60 0.10 0.96 0.29 0.71 0.12 

Vines 10 m 4 0.61 0.25 0.44 0.24 0.64 0.22 0.56 0.06 

Vines 30 m 4 0.30 0.18 0.44 0.27 1.12 0.27 0.62 0.25 

Vines 60 m 4 0.13 0.09 0.45 0.12 1.11 0.17 0.56 0.29 
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Appendix Table 6.  Results of mixed model regression testing for significance of fixed and random effects on sapling (dbh <2.5 cm, 

>0.5 dbh) species richness.  Modeled fixed effects were site, side (north vs. south edge), position (edge or interior location), 2 and 3 

way interactions between these variables.  Edge-to-interior transect (in table as EITransect) was included as a random blocking effect, 

nested within each site and side.   

 Fixed Effects Random Effects 

 Effect Num 

DF 

Den 

DF 

F 

Value 

p Covariance Parameter Estimate Standard 

Error 

Z 

Value 

p 

Species Richness Site 2 6 0.16 0.8542 EITransect(Site*side) 0.009923 0.04221 0.24 0.4071 

Side 1 6 2.62 0.1569       

Distance from Edge 1 42 6.81 0.0125       

Site*Side 2 6 1.57 0.2824       

 Side*Distance from 

Edge 

1 42 0.08 0.7789       

 Site*Distance from Edge 2 42 0.41 0.6636       

 Site*Side*Distance from 

Edge 

2 42 0.8 0.458      
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Appendix Table 7.  Mean frequencies, densities and IV values for saplings at varying distance from the forest edge, at each site, and 

across sites.  The highest density and IV values at each distance and site (and across sites) are in bold.   

  Site 3: Wet Site Site 2: Intermediate Site 1: Dry Site Overall Means 

(Across Sites) 

Dist. Species Mean 

Freq. ± 

SE 

Mean 

Density ± 

SE 

Mean IV 

± SE 

Mean 

Freq. ± 

SE 

Mean 

Density ± SE 

Mean IV 

± SE 

Mean 

Freq. ± SE 

Mean 

Density ± SE 

Mean IV 

± SE 

Mean 

IV ± 

SE 

Mean 

Density ± 

SE 

1 Acer rubrum 0.19 0.12 625 442 5 3 0.19 0.12 1563 1362 7 4 0.25 0.18 1094 898 7 5 7 0 1094 271 

1 Acer 

saccharinum 

0.06 0.06 156 156 1 1 0.06 0.06 156 156 1 1 0.06 0.06 156 156 1 1 1 0 156 0 

1 Celtis 

laevigata 

0.00 0.00 0 0 0 0 0.44 0.19 3438 1813 15 5 0.38 0.22 1094 693 18 14 11 2 1510 1014 

1 Diospyros 

virginiana 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 1 1 0 0 52 52 

1 Fraxinus 

pennsylvanica 

0.63 0.22 13750 7548 43 17 0.81 0.19 18750 6832 46 12 0.50 0.23 2656 1452 23 8 37 7 11719 4756 

1 Liquidambar 

styraciflua 

0.25 0.25 3438 3438 8 8 0.00 0.00 0 0 0 0 0.44 0.21 1563 972 15 7 8 4 1667 994 

1 Liriodedron 

tulipifera 

0.06 0.06 156 156 1 1 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0 0 52 52 

1 Nyssa 

sylvatica 

0.19 0.19 469 469 3 3 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 1 0 156 156 

1 Platanus 

occidentalis 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 8 8 3 2 52 52 

1 Quercus 

bicolor 

0.06 0.06 156 156 1 1 0.06 0.06 156 156 2 2 0.00 0.00 0 0 0 0 1 1 104 52 

1 Quercus 

michauxii 

0.06 0.06 156 156 1 1 0.00 0.00 0 0 0 0 0.06 0.06 156 156 3 3 2 1 104 52 

1 Quercus 

palustris 

0.63 0.16 2344 822 24 10 0.31 0.19 2188 1362 10 6 0.13 0.07 313 180 10 8 15 2 1615 653 

1 Salix nigra 0.00 0.00 0 0 0 0 0.06 0.06 625 625 8 8 0.00 0.00 0 0 0 0 3 2 208 208 

1 Sassafras 

albidum 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 1 1 0 0 52 52 

1 Ulmus rubra 0.25 0.18 781 592 10 9 0.31 0.12 938 403 11 6 0.31 0.19 1250 722 9 5 10 1 990 138 

1 Unidentified 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.13 0.07 313 180 3 2 1 1 104 104 



 

   

1
5
9
 

  Site 3: Wet Site Site 2: Intermediate Site 1: Dry Site Overall Means 

(Across Sites) 

Dist. Species Mean 

Freq. ± 

SE 

Mean 

Density ± 

SE 

Mean IV 

± SE 

Mean 

Freq. ± 

SE 

Mean 

Density ± SE 

Mean IV 

± SE 

Mean 

Freq. ± SE 

Mean 

Density ± SE 

Mean IV 

± SE 

Mean 

IV ± 

SE 

Mean 

Density ± 

SE 

5 Acer rubrum 0.38 0.13 2656 1123 28 11 0.06 0.06 156 156 6 6 0.06 0.06 156 156 8 8 14 2 990 833 

5 Celtis 

laevigata 

0.25 0.25 781 781 7 7 0.38 0.24 1094 738 27 16 0.19 0.12 625 442 20 15 18 3 833 138 

5 Crategus spp. 0.06 0.06 156 156 2 2 0.06 0.06 156 156 3 3 0.00 0.00 0 0 0 0 2 1 104 52 

5 Fraxinus 

pennsylvanica 

0.50 0.23 5938 3998 31 12 0.13 0.07 313 180 10 6 0.19 0.12 781 469 16 10 19 3 2344 1802 

5 Liquidambar 

styraciflua 

0.19 0.19 2500 2500 5 5 0.00 0.00 0 0 0 0 0.13 0.07 313 180 13 8 6 4 938 786 

5 Liriodedron 

tulipifera 

0.06 0.06 156 156 1 1 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0 0 52 52 

5 Nyssa 

sylvatica 

0.25 0.25 2656 2656 6 6 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 2 1 885 885 

5 Quercus 

bicolor 

0.06 0.06 156 156 2 2 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 1 0 52 52 

5 Quercus 

michauxii 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 5 5 2 1 52 52 

5 Quercus 

palustris 

0.25 0.10 1094 534 7 2 0.13 0.07 313 180 8 4 0.19 0.06 469 156 17 7 11 3 625 239 

5 Ulmus rubra 0.25 0.18 938 744 11 9 0.25 0.25 938 938 21 21 0.19 0.12 625 361 17 10 16 1 833 104 

5 Unidentified 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 5 5 2 1 52 52 

10 Acer rubrum 0.50 0.29 1875 1112 24 15 0.06 0.06 156 156 6 6 0.00 0.00 0 0 0 0 10 3 677 601 

10 Celtis 

laevigata 

0.19 0.12 938 541 6 4 0.38 0.13 1719 738 46 11 0.06 0.06 156 156 4 4 19 12 938 451 

10 Fraxinus 

pennsylvanica 

0.50 0.23 6563 5355 32 11 0.06 0.06 313 313 7 7 0.25 0.10 938 403 22 9 20 5 2604 1987 

10 Liquidambar 

styraciflua 

0.19 0.19 1406 1406 5 5 0.00 0.00 0 0 0 0 0.06 0.06 156 156 8 8 4 2 521 445 

10 Nyssa 

sylvatica 

0.19 0.19 2344 2344 6 6 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 2 1 781 781 

10 Prunus spp. 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 4 4 1 1 52 52 

10 Quercus 

bicolor 

0.00 0.00 0 0 0 0 0.06 0.06 156 156 5 5 0.00 0.00 0 0 0 0 2 1 52 52 
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  Site 3: Wet Site Site 2: Intermediate Site 1: Dry Site Overall Means 

(Across Sites) 

Dist. Species Mean 

Freq. ± 

SE 

Mean 

Density ± 

SE 

Mean IV 

± SE 

Mean 

Freq. ± 

SE 

Mean 

Density ± SE 

Mean IV 

± SE 

Mean 

Freq. ± SE 

Mean 

Density ± SE 

Mean IV 

± SE 

Mean 

IV ± 

SE 

Mean 

Density ± 

SE 

10 Quercus 

michauxii 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.13 0.13 313 313 6 6 2 2 104 104 

10 Quercus 

palustris 

0.19 0.06 469 156 18 11 0.19 0.06 625 255 17 6 0.19 0.19 781 781 11 11 15 2 625 90 

10 Ulmus rubra 0.13 0.13 469 469 7 7 0.13 0.07 313 180 19 12 0.25 0.10 781 299 20 8 15 1 521 138 

10 Unidentified 0.06 0.06 156 156 2 2 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 1 0 52 52 

30 Acer rubrum 0.25 0.10 938 313 36 22 0.00 0.00 0 0 0 0 0.06 0.06 156 156 8 8 15 4 365 290 

30 Asimina 

triloba 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.19 0.12 1250 884 24 14 8 7 417 417 

30 Celtis 

laevigata 

0.00 0.00 0 0 0 0 0.63 0.24 4375 1943 43 16 0.19 0.06 469 156 25 9 23 6 1615 1387 

30 Fraxinus 

pennsylvanica 

0.38 0.16 1875 1112 50 20 0.19 0.06 469 156 14 6 0.19 0.06 469 156 19 7 28 4 938 469 

30 Quercus 

palustris 

0.13 0.07 313 180 8 5 0.38 0.16 1250 571 20 10 0.06 0.06 156 156 5 5 11 4 573 342 

30 Ulmus rubra 0.13 0.13 469 469 6 6 0.31 0.19 938 541 24 17 0.13 0.07 469 299 19 14 16 2 625 156 

60 Acer rubrum 0.31 0.24 938 744 20 17 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 7 2 313 313 

60 Asimina 

triloba 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.19 0.19 1094 1094 13 13 4 4 365 365 

60 Carya spp. 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.13 0.07 313 180 7 4 2 2 104 104 

60 Celtis 

laevigata 

0.13 0.07 469 299 17 14 0.25 0.10 1875 807 54 21 0.13 0.13 469 469 9 9 27 13 938 469 

60 Diospyros 

virginiana 

0.00 0.00 0 0 0 0 0.06 0.06 156 156 4 4 0.00 0.00 0 0 0 0 1 1 52 52 

60 Fraxinus 

pennsylvanica 

0.19 0.12 1094 898 20 11 0.19 0.12 469 299 17 10 0.31 0.06 1406 393 32 7 23 4 990 276 

60 Liquidambar 

styraciflua 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.13 0.13 313 313 17 17 6 5 104 104 

60 Quercus 

bicolor 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 6 6 2 2 52 52 

60 Quercus 

michauxii 

0.06 0.06 156 156 25 25 0.00 0.00 0 0 0 0 0.06 0.06 156 156 4 4 10 3 104 52 
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  Site 3: Wet Site Site 2: Intermediate Site 1: Dry Site Overall Means 

(Across Sites) 

Dist. Species Mean 

Freq. ± 

SE 

Mean 

Density ± 

SE 

Mean IV 

± SE 

Mean 

Freq. ± 

SE 

Mean 

Density ± SE 

Mean IV 

± SE 

Mean 

Freq. ± SE 

Mean 

Density ± SE 

Mean IV 

± SE 

Mean 

IV ± 

SE 

Mean 

Density ± 

SE 

60 Quercus 

palustris 

0.25 0.14 625 361 13 8 0.00 0.00 0 0 0 0 0.06 0.06 156 156 4 4 6 2 260 188 

60 Ulmus rubra 0.13 0.13 313 313 5 5 0.00 0.00 0 0 0 0 0.13 0.07 313 180 9 6 5 3 208 104 
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Appendix Table 8.  Results of mixed model regression testing for significance of fixed and random effects on species richness in the 

tree seedling stratum (dbh<0.3m).  Modeled fixed effects were site, side (north vs. south edge), position (edge or interior location), 2 

and 3 way interactions between these variables.  Edge-to-interior transect (in table as EITransect) was included as a random effect, 

nested within each site and side.  

 Fixed Effects Random Effects 

Response Effect Num 

DF 

Den 

DF 

F 

Value 

p Covariance Parameter Estimate Standard 

Error 

Z 

Value 

p 

Total 

Stems 

Site 2 6 0.51 0.6227 EITransect(Site*Side) 0.5513 0.4121 1.34 0.0905 

Side 1 6 4.37 0.0815 Scale 0.5775 0.1697 3.4 0.0003 

 Distance from Edge 1 41 3.75 0.0598      

 Site*Side 2 6 1.49 0.2985      

 Side*Distance from 

Edge 

1 41 6.26 0.0164      

 Site*Distance from 

Edge 

2 41 1.41 0.2558      

 Site*Side*Distance 

from Edge 

2 41 0.39 0.6793      

Richness  Site 2 6 0.41 0.6812 EITransect(Site*Side) 0.1098 0.1143 0.96 0.1685 

 Side 1 6 4.14 0.0881      

 Distance from Edge 1 42 0.15 0.7019      

 Site*Side 2 6 0.88 0.4617      

 Side*Distance from 

Edge 

1 42 2.23 0.1431      

 Site*Distance from 

Edge 

2 42 0.08 0.9227      

 Site*Side*Distance 

from Edge 

2 42 0.15 0.8618      
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Appendix Table 9.  Mean frequencies, densities and IV values for all tree seedlings at varying distances from the forest edge (in 

meters), at each site, and across sites.  The highest density and IV values at each distance and site (and across sites) are in bold.   

  Site 3: Wet Site Site 2: Intermediate Site Site 1: Dry Site Across Sites 

Dist. Species Mean 

Freq. ±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean 

IV 

±SE 

Mean 

Freq. ±SE 

Mean Density (stems/ha) 

±SE 

Mean 

IV 

±SE 

Mean 

Freq. ±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean 

IV 

±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean 

IV 

±SE 

1 Acer spp. 0.06 0.06 156 156 13 13 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 52 52 4 4 

1 Celtis 

laevigata 

0.06 0.06 156 156 10 10 0.13 0.07 469 299 15 8 0.13 0.07 313 180 33 24 313 90 19 7 

1 Fraxinus 

pennsylvanica 

0.19 0.06 1406 822 44 22 0.19 0.06 4063 3447 41 15 0.06 0.06 313 313 7 7 1927 1113 31 12 

1 Liquidambar 

styraciflua 

0.06 0.06 469 469 8 8 0.00 0.00 0 0 0 0 0.06 0.06 313 313 7 7 260 138 5 3 

1 Quercus 

palustris 

0.06 0.06 313 313 7 7 0.13 0.07 313 180 20 12 0.06 0.06 156 156 8 8 260 52 12 4 

1 Rosaceae 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 5 5 52 52 2 2 

1 Ulmus rubra 0.13 0.07 313 180 17 12 0.00 0.00 0 0 0 0 0.06 0.06 156 156 5 5 156 90 8 5 

1 Unidentified 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 8 8 52 52 3 3 

5 Acer spp. 0.06 0.06 156 156 6 6 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 52 52 2 2 

5 Carya sp. 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 13 13 52 52 4 4 

5 Celtis 

laevigata 

0.00 0.00 0 0 0 0 0.13 0.07 938 598 24 14 0.06 0.06 625 625 7 7 521 276 10 7 

5 Diospyros 

virginiana 

0.00 0.00 0 0 0 0 0.06 0.06 156 156 6 6 0.00 0.00 0 0 0 0 52 52 2 2 

5 Fraxinus 

pennsylvanica 

0.13 0.07 2813 2065 24 14 0.13 0.07 625 442 39 24 0.19 0.06 2656 2047 63 24 2031 705 42 11 

5 Liquidambar 

styraciflua 

0.06 0.06 469 469 5 5 0.00 0.00 0 0 0 0 0.06 0.06 156 156 13 13 208 138 6 4 

5 Nyssa 

sylvatica 

0.13 0.07 313 180 29 24 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 104 104 10 10 
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  Site 3: Wet Site Site 2: Intermediate Site Site 1: Dry Site Across Sites 

Dist. Species Mean 

Freq. ±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean 

IV 

±SE 

Mean 

Freq. ±SE 

Mean Density (stems/ha) 

±SE 

Mean 

IV 

±SE 

Mean 

Freq. ±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean 

IV 

±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean 

IV 

±SE 

5 Quercus 

michauxii 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 5 5 52 52 2 2 

5 Quercus 

palustris 

0.13 0.07 469 299 11 6 0.06 0.06 156 156 6 6 0.00 0.00 0 0 0 0 208 138 6 3 

10 Celtis 

laevigata 

0.00 0.00 0 0 0 0 0.19 0.06 1094 693 42 21 0.19 0.06 938 403 46 22 677 342 29 15 

10 Diospyros 

virginiana 

0.00 0.00 0 0 0 0 0.06 0.06 156 156 3 3 0.00 0.00 0 0 0 0 52 52 1 1 

10 Fraxinus 

pennsylvanica 

0.25 0.00 8125 3545 74 9 0.13 0.07 2031 1180 25 16 0.06 0.06 313 313 5 5 3490 2370 34 20 

10 Liquidambar 

styraciflua 

0.06 0.06 469 469 5 5 0.00 0.00 0 0 0 0 0.13 0.07 938 598 18 11 469 271 8 5 

10 Liriodendron 

tulipifera 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 4 4 52 52 1 1 

10 Quercus 

palustris 

0.19 0.06 469 156 21 8 0.13 0.07 625 361 19 14 0.13 0.07 313 180 11 7 469 90 17 3 

10 Ulmus rubra 0.00 0.00 0 0 0 0 0.13 0.07 313 180 11 7 0.06 0.06 156 156 9 9 156 90 7 3 

10 Unidentified 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 7 7 52 52 2 2 

30 Carya sp. 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 9 9 52 52 3 3 

30 Celtis 

laevigata 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.13 0.07 1094 644 18 10 365 365 6 6 

30 Diospyros 

virginiana 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 5 5 52 52 2 2 

30 Fraxinus 

pennsylvanica 

0.13 0.07 2656 1775 25 16 0.13 0.07 11094 10886 26 17 0.19 0.06 1875 988 33 14 5208 2951 28 2 

30 Nyssa 

sylvatica 

0.13 0.07 313 180 29 24 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 104 104 10 10 
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  Site 3: Wet Site Site 2: Intermediate Site Site 1: Dry Site Across Sites 

Dist. Species Mean 

Freq. ±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean 

IV 

±SE 

Mean 

Freq. ±SE 

Mean Density (stems/ha) 

±SE 

Mean 

IV 

±SE 

Mean 

Freq. ±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean 

IV 

±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean 

IV 

±SE 

30 Prunus spp. 0.00 0.00 0 0 0 0 0.06 0.06 156 156 8 8 0.00 0.00 0 0 0 0 52 52 3 3 

30 Quercus 

michauxii 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.13 0.07 313 180 14 9 104 104 5 5 

30 Quercus 

palustris 

0.19 0.06 2188 1409 41 21 0.13 0.07 469 299 33 24 0.06 0.06 469 469 16 16 1042 573 30 8 

30 Ulmus rubra 0.06 0.06 625 625 5 5 0.06 0.06 938 938 7 7 0.06 0.06 156 156 5 5 573 227 6 1 

60 Asimina 

triloba 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 5 5 52 52 2 2 

60 Celtis 

laevigata 

0.00 0.00 0 0 0 0 0.19 0.06 625 255 43 22 0.13 0.07 625 361 19 12 417 208 21 13 

60 Fraxinus 

pennsylvanica 

0.25 0.00 10938 5440 71 12 0.13 0.07 5625 3489 33 19 0.13 0.07 781 469 21 13 5781 2933 41 15 

60 Liquidambar 

styraciflua 

0.06 0.06 156 156 3 3 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 52 52 1 1 

60 Prunus spp. 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 25 25 52 52 8 8 

60 Quercus 

palustris 

0.19 0.06 2500 2089 22 7 0.13 0.07 313 180 19 12 0.00 0.00 0 0 0 0 938 786 14 7 

60 Ulmus rubra 0.06 0.06 313 313 4 4 0.06 0.06 156 156 5 5 0.13 0.07 313 180 30 24 260 52 13 9 
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Appendix Table 10.  Results of mixed model regression testing for significance of fixed and random effects on shrub species richness.  

Modeled fixed effects were site, side (north vs. south edge), position (edge or interior location), 2 and 3 way interactions between 

these variables.  Edge-to-interior transect (in table as EITransect) was included as a random effect, nested within site.  Post-hoc 

pairwise comparisons of L. japonica cover between research sites are shown at the bottom.  Adjusted P values were calculated using 

the Tukey-Kramer method.   

 Fixed Effects Random Effects 

Response 

Variable 

Effect Num 

DF 

Den DF F 

Value 

p Covariance 

Parameter 

Estimate Standard 

Error 

Z 

Value 

 

Species Richness Site 2 9 10.26 0.0048 EITransect(Site) 0.008172 0.07565 0.11 0.457 

      Scale 0.3821 0.1436 2.66 0.0039 

          

Between Site Comparisons: Differences of Least Squares Means  

  

Effect Site Site Estimate SE DF t Value p Adj P   

Site 2 1 -1.151 0.2666 9 -4.32 0.0019 0.005   

Site 2 3 -0.379 0.2813 9 -1.35 0.2105 0.4059   

Site 1 3 0.7715 0.2533 9 3.05 0.0139 0.0337   
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Appendix Table 11.  Mean frequencies, percent cover and IV values for all vine species at varying distance from the forest edge, at 

each site, and across sites.  Bold values indicate the highest mean stem density or IV at each combination of distance and site.  In the 

“Across Sites” column, the highest mean IV and stem density for species occurring at all sites is in bold.   

  Site 3 Site 2 Site 1 Across Sites 
Dist. Species Mean 

Freq. ±SE 

Mean Density 

(stems/ha) 

±SE 

Mean 

IV 

±SE 

Mean 

Freq. ±SE 

Mean Density 

(stems/ha) 

±SE 

Mean 

IV 

±SE 

Mean 

Freq. ±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean 

IV 

±SE 

Mean Density 

(stems/ha) ±SE 

Mean 

IV 

±SE 

1 Aralia spinosa 0.06 0.06 469 469 2 2 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 156 156 1 1 

1 Cephalanthus 

occidentalis 

0.13 0.07 469 299 12 10 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 156 100 4 3 

1 Cornus foemina 0.31 0.16 2031 1621 30 19 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 677 540 10 6 

1 Euonymus 

alatus 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 469 469 3 3 156 156 1 1 

1 Lindera benzoin 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.63 0.24 5313 2558 23 10 1771 853 8 3 

1 Lonicera 

maackii 

0.19 0.12 781 592 11 7 0.00 0.00 0 0 0 0 0.38 0.22 4219 2466 17 11 1667 743 9 3 

1 Rosa spp. 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 781 781 2 2 260 260 1 1 

1 Rubus spp. 0.19 0.19 5469 5469 14 14 0.25 0.14 3594 2259 50 29 0.75 0.14 12031 3639 55 16 7031 930 39 5 

1 Sambucus 

canadensis 

0.06 0.06 156 156 2 2 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 52 52 1 1 

1 Symphoricarpos 

orbiculatus 

0.06 0.06 156 156 4 4 0.00 0.00 0 0 0 0 0.06 0.06 156 156 1 1 104 52 2 1 

5 Cephalanthus 

occidentalis 

0.13 0.07 469 299 7 5 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 156 100 2 2 

5 Cornus foemina 0.50 0.14 13438 10994 85 9 0.06 0.06 469 469 3 3 0.13 0.13 2031 2031 7 7 5313 3279 32 2 

5 Lindera benzoin 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.56 0.21 7969 4659 28 12 2656 1553 9 4 

5 Lonicera 

maackii 

0.00 0.00 0 0 0 0 0.63 0.16 10000 3197 75 15 0.31 0.19 2500 1926 11 7 4167 929 29 4 

5 Rosa spp. 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.13 0.13 4375 4375 12 12 1458 1458 4 4 

5 Rubus spp. 0.19 0.19 2969 2969 8 8 0.25 0.14 1719 1180 21 14 0.19 0.12 2188 1985 9 7 2292 517 13 2 

5 Sambucus 

canadensis 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.13 0.13 781 781 4 4 260 260 1 1 

5 Unidentified 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 938 938 3 3 313 313 1 1 
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 Appendix Table 11 

(cont’d) 

Site 3: Wet Site Site 2: Intermediate Site Site 1: Dry Site Across Sites 

Dist. Species Mean 

Freq. ±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean 

IV 

±SE  

Mean 

Freq. ±SE 

Mean Density 

(stems/ha) 

±SE 

Mean 

IV 

±SE  

Mean 

Freq. ±SE 

Mean 

Density 

(stems/ha) 

±SE 

Mean 

IV 

±SE  

Mean Density 

(stems/ha) ±SE 

Mean 

IV 

±SE  

10 Cephalanthus 

occidentalis 

0.13 0.13 469 469 12 12 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 156 156 4 4 

10 Cornus foemina 0.13 0.13 625 625 13 13 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 208 208 4 4 

10 Euonymus 

americanus 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 469 469 2 2 156 156 1 1 

10 Lindera benzoin 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.75 0.18 13125 5846 58 9 4375 1949 19 3 

10 Lonicera maackii 0.00 0.00 0 0 0 0 0.56 0.12 6875 3217 92 8 0.38 0.16 3438 1624 24 11 3438 929 38 3 

10 Rubus spp. 0.00 0.00 0 0 0 0 0.06 0.06 469 469 8 8 0.19 0.19 4219 4219 10 10 1563 1335 6 3 

10 Sambucus 

canadensis 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 2 2 52 52 1 1 

10 Unidentified 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 469 469 5 5 156 156 2 2 

30 Cornus foemina 0.19 0.06 4688 3172 32 11 0.31 0.16 3906 2316 31 15 0.00 0.12 2969 2215 7 5 3854 303 24 3 

30 Lindera benzoin 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.75 0.18 16094 7673 46 15 5365 2558 15 5 

30 Lonicera maackii 0.19 0.12 1094 644 29 17 0.31 0.12 5469 2171 44 18 0.38 0.16 8125 5007 20 10 4896 1278 31 2 

30 Prunus sp. 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 2 2 52 52 1 1 

30 Rosa spp. 0.06 0.06 781 781 5 5 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 260 260 2 2 

30 Rubus spp. 0.13 0.13 1250 1250 9 9 0.00 0.00 0 0 0 0 0.56 0.16 3438 1263 23 7 1563 419 11 3 

30 Sambucus 

canadensis 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 156 156 1 1 52 52 0 0 

60 Cornus foemina 0.31 0.24 9375 9168 30 24 0.38 0.22 12500 10861 71 24 0.06 0.06 156 156 2 2 7344 3322 34 7 

60 Euonymus alatus  0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 1094 1094 3 3 365 365 1 1 

60 Lindera benzoin 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.88 0.07 16719 2880 55 2 5573 960 18 1 

60 Lonicera maackii 0.13 0.13 2188 2188 20 20 0.06 0.06 1875 1875 4 4 0.50 0.00 3750 884 22 3 2604 393 15 5 

60 Rubus spp. 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.25 0.14 2969 1829 12 7 990 610 4 2 

60 Sambucus 

canadensis 

0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.13 0.07 313 180 4 2 104 60 1 1 

60 Unidentified 0.00 0.00 0 0 0 0 0.00 0.00 0 0 0 0 0.06 0.06 313 313 2 2 104 104 1 1 
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Appendix Table 12. Results of mixed model regression testing for significance of fixed effects on the density of Lonicera maackii 

(modeled as stem counts in each parallel transect).  Modeled fixed effects were site, side (north vs. south edge), position (edge or 

interior location), 2 and 3 way interactions between these variables.  P values are based on Type 3 tests of significance.  Random 

effects (the block variable edge-to-interior transect) were omitted from this model due to concerns about over-fitting (see Methods, 

Statistical Analysis). Post-hoc pairwise comparisons of stem counts between research sites are shown at the bottom.  Adjusted p 

values were calculated using the Tukey-Kramer method.   

 Fixed Effects     

Response Effect Num 

DF 

Den 

DF 

F Value p 

L. maackii stems Site 2 48 7.28 0.0017 

 Side 1 48 0.62 0.4338 

 Distance from Edge 1 48 0.02 0.8997 

 Site*Side 2 48 0.14 0.8696 

 Side*Distance from Edge 1 48 0.11 0.7419 

 Site*Distance from Edge 2 48 1.68 0.1976 

 Site*Side*Distance from 

Edge 

2 48 1.04 0.3613 

 

Between Site Comparisons: Differences of Least Squares Means 

Effect Site Site Estimate Standard 

Error 

DF t Value p Adj P 

Site 2 1 -0.062 0.4908 48 -0.13 0.9001 0.9913 

Site 2 3 2.0785 0.5644 48 3.68 0.0006 0.0017 

Site 1 3 2.1404 0.5587 48 3.83 0.0004 0.0011 
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Appendix Table 13.  Results of mixed model regression testing for significance of fixed and random effects on total cover of  

Lonicera japonica.  Modeled fixed effects were site, side (north vs. south edge), position (edge or interior location), 2 and 3 way 

interactions between these variables.  Edge-to-interior transect (in table as EITransect) was included as a random effect, nested within 

each site and side.  Post-hoc pairwise comparisons of L. japonica cover between research sites are shown at the bottom.  Adjusted p 

values were calculated using the Tukey-Kramer method.   

 Fixed Effects Random Effects 

Response Effect Num 

DF 

Den DF F Value p Covariance 

Parameter 

Estimate Standard 

Error 

Z 

Value 

p 

value| 

Total 

 L. 

japonica 

Cover 

Site 2 12.5 7.1 0.0087 EITransect(Site*side) 0.006757 0.007803 0.87 0.1933 

Side 1 12.5 0 0.9586 Scale 0.03266 0.007126 4.58 <.0001 

Distance from 

Edge 

1 42 6.97 0.0116      

 Site*Side 2 12.5 3.64 0.0567      

 Side*Distance 

from Edge 

1 42 0 0.9988      

 Site*Distance from 

Edge 

2 42 0.25 0.7763      

 Site*Side*Distance 

from Edge 

2 42 0.79 0.4616      

Between Site Comparisons: Differences of Least Squares Means 

Effect Site Site Estimate Standard 

Error 

DF t Value p value| Adjustment Adj P  

Site 2 1 -0.2695 0.08151 6 -3.31 0.0163 Tukey 0.0153  

Site 2 3 0.0441 0.08151 6 0.54 0.6081 Tukey 0.8529  

Site 1 3 0.3136 0.08151 6 3.85 0.0085 Tukey 0.0057  
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Appendix Table 14.  Mean frequencies, percent cover and IV values for all vine species at varying distance from the forest edge, at 

each site, and across sites.  Bold values indicate the highest mean stem density or IV at each combination of distance and site.  In the 

“Across Sites” column, the highest mean IV and stem density for species occurring at all sites is in bold.   

  Site 3: Wet Site Site 2: Intermediate Site Site 1: Dry Site Across Sites 

Distance Species Mean 

Freq. ±SE 

Mean 

Percent 

Cover ±SE 

Mean 

IV 

±SE  

Mean 

Freq. ±SE 

Mean 

Percent 

Cover ±SE 

Mean 

IV 

±SE  

Mean 

Freq. ±SE 

Mean 

Percent 

Cover ±SE 

Mean 

IV 

±SE  

Mean Percent 

Cover ±SE 

Mean 

IV ±SE  

1 Campsis 

radicans 

0.25 0.25 4.69 4.69 20 20 0.50 0.23 3.59 2.05 22 15 0.19 0.19 2.81 2.81 5 5 3.7 0.5 16 6 

1 Euonymus 

fortunei 

0.06 0.06 0.16 0.16 2 2 0.00 0.00 0.00 0.00 0 0 0.25 0.14 1.41 1.03 5 3 0.5 0.4 2 1 

1 Lonicera 

japonica 

0.44 0.26 11.41 9.81 20 12 0.50 0.20 8.91 6.91 15 6 0.88 0.07 22.50 4.63 33 5 14.3 4.2 23 5 

1 Parthenocissus 

quinquifolia 

0.13 0.13 0.31 0.31 2 2 0.19 0.19 0.47 0.47 3 3 0.44 0.19 1.09 0.47 6 3 0.6 0.2 4 1 

1 Smilax spp. 0.06 0.06 0.16 0.16 1 1 0.00 0.00 0.00 0.00 0 0 0.31 0.12 0.78 0.30 5 2 0.3 0.2 2 1 

1 Toxicodendron 

radicans 

0.75 0.14 15.00 10.29 53 17 0.75 0.18 39.22 21.17 43 15 0.88 0.07 28.13 10.52 35 3 27.4 7.0 44 5 

1 Vitaceae 0.06 0.06 0.16 0.16 1 1 0.38 0.22 4.84 4.24 16 9 0.50 0.18 5.00 1.71 11 2 3.3 1.6 9 4 

5 Campsis 

radicans 

0.44 0.26 4.84 3.39 24 14 0.25 0.18 2.19 1.98 7 5 0.31 0.19 1.56 1.18 7 5 2.9 1.0 13 6 

5 Euonymus 

fortunei 

0.00 0.00 0.00 0.00 0 0 0.13 0.13 2.50 2.50 4 4 0.00 0.00 0.00 0.00 0 0 0.8 0.8 1 1 

5 Lonicera 

japonica 

0.13 0.13 1.25 1.25 10 10 0.50 0.18 5.16 2.39 12 4 0.88 0.07 25.00 12.01 50 10 10.5 7.4 24 13 

5 Menispermum 

canadensis 

0.00 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0 0 0.06 0.06 0.94 0.94 3 3 0.3 0.3 1 1 

5 Parthenocissus 

quinquifolia 

0.13 0.13 1.09 1.09 9 9 0.44 0.21 2.34 1.74 9 4 0.50 0.18 1.41 0.53 9 3 1.6 0.4 9 0 

5 Smilax spp. 0.00 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0 0 0.19 0.12 2.19 1.98 5 4 0.7 0.7 2 2 

5 Toxicodendron 

radicans 

0.56 0.21 7.97 6.54 31 13 1.00 0.00 61.25 8.69 61 4 0.81 0.12 6.09 1.88 23 2 25.1 18.1 38 11 

5 Vitaceae 0.06 0.06 0.16 0.16 25 25 0.31 0.06 0.78 0.16 7 2 0.19 0.12 0.47 0.30 3 2 0.5 0.2 12 7 
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  Site 3: Wet Site Site 2: Intermediate Site Site 1: Dry Site Across Sites 

Distance Species Mean 

Freq. ±SE 

Mean 

Percent 

Cover ±SE 

Mean 

IV 

±SE  

Mean 

Freq. ±SE 

Mean 

Percent 

Cover ±SE 

Mean 

IV 

±SE  

Mean 

Freq. ±SE 

Mean 

Percent 

Cover ±SE 

Mean 

IV 

±SE  

Mean Percent 

Cover ±SE 

Mean 

IV ±SE  

10 Campsis 

radicans 

0.25 0.18 1.41 1.21 13 8 0.31 0.16 0.78 0.39 9 4 0.00 0.00 0.00 0.00 0 0 0.7 0.4 7 4 

10 Euonymus 

fortunei 

0.00 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0 0 0.06 0.06 0.16 0.16 1 1 0.1 0.1 0 0 

10 Lonicera 

japonica 

0.19 0.12 1.41 1.03 7 4 0.31 0.16 1.56 1.16 7 3 0.75 0.25 26.56 10.84 37 12 9.8 8.4 17 10 

10 Menispermum 

canadensis 

0.00 0.00 0.00 0.00 0 0 0.13 0.13 1.09 1.09 2 2 0.13 0.07 0.47 0.30 2 1 0.5 0.3 2 1 

10 Parthenocissus 

quinquifolia 

0.25 0.14 0.78 0.47 7 4 0.31 0.24 8.28 8.07 11 8 0.50 0.23 2.03 1.26 10 5 3.7 2.3 9 1 

10 Smilax spp. 0.00 0.00 0.00 0.00 0 0 0.06 0.06 0.16 0.16 2 2 0.25 0.18 0.63 0.44 4 3 0.3 0.2 2 1 

10 Toxicodendron 

radicans 

0.63 0.16 8.75 4.60 69 12 0.94 0.06 39.69 11.14 67 11 0.69 0.19 8.59 4.66 42 20 19.0 10.3 59 9 

10 Vitaceae 0.13 0.07 0.47 0.30 4 2 0.13 0.07 0.31 0.18 2 1 0.19 0.12 0.47 0.30 3 2 0.4 0.1 3 0 

30 Campsis 

radicans 

0.31 0.19 3.91 3.13 30 24 0.00 0.00 0.00 0.00 0 0 0.06 0.06 0.16 0.16 2 2 1.4 1.3 11 10 

30 Euonymus 

fortunei 

0.00 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0 0 0.25 0.25 16.25 16.25 12 12 5.4 5.4 4 4 

30 Lonicera 

japonica 

0.19 0.12 2.66 2.45 11 9 0.25 0.25 11.72 11.72 8 8 0.81 0.19 12.03 7.16 34 11 8.8 3.1 18 8 

30 Menispermum 

canadensis 

0.00 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0 0 0.19 0.19 0.47 0.47 6 6 0.2 0.2 2 2 

30 Parthenocissus 

quinquifolia 

0.06 0.06 0.16 0.16 3 3 0.44 0.26 10.16 6.45 13 7 0.19 0.12 0.47 0.30 5 4 3.6 3.3 7 3 

30 Smilax spp. 0.00 0.00 0.00 0.00 0 0 0.06 0.06 0.16 0.16 2 2 0.31 0.06 1.56 0.74 12 4 0.6 0.5 5 4 

30 Toxicodendron 

radicans 

0.50 0.20 25.63 18.93 55 21 0.75 0.25 47.97 16.23 46 18 0.44 0.21 1.41 0.82 14 6 25.0 13.4 38 13 

30 Vitaceae 0.06 0.06 0.16 0.16 2 2 0.31 0.16 1.56 1.16 7 3 0.31 0.12 4.53 3.91 16 9 2.1 1.3 8 4 

 

  



 

    

1
7
3
 

 

  Site 3: Wet Site Site 2: Intermediate Site Site 1: Dry Site Across Sites 

Distance Species Mean 

Freq. ±SE 

Mean 

Percent 

Cover ±SE 

Mean 

IV 

±SE  

Mean 

Freq. ±SE 

Mean 

Percent 

Cover ±SE 

Mean 

IV 

±SE  

Mean 

Freq. ±SE 

Mean 

Percent 

Cover ±SE 

Mean 

IV 

±SE  

Mean Percent 

Cover ±SE 

Mean 

IV ±SE  

60 Campsis 

radicans 

0.13 0.13 1.88 1.88 25 25 0.00 0.00 0.00 0.00 0 0 0.19 0.12 0.47 0.30 6 4 0.8 0.6 10 8 

60 Lonicera 

japonica 

0.19 0.19 0.47 0.47 4 4 0.00 0.00 0.00 0.00 0 0 0.63 0.22 11.88 6.14 35 10 4.1 3.9 13 11 

60 Menispermum 

canadensis 

0.00 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0 0 0.06 0.06 0.16 0.16 1 1 0.1 0.1 0 0 

60 Parthenocissus 

quinquifolia 

0.25 0.18 0.63 0.44 7 4 0.19 0.12 1.25 0.88 11 6 0.69 0.24 1.72 0.59 19 9 1.2 0.3 12 4 

60 Smilax spp. 0.00 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0 0 0.31 0.12 4.69 4.07 16 6 1.6 1.6 5 5 

60 Toxicodendron 

radicans 

0.50 0.29 22.34 13.74 37 22 0.69 0.06 16.25 10.02 71 7 0.44 0.12 2.81 1.78 16 4 13.8 5.8 41 16 

60 Vitaceae 0.06 0.06 0.16 0.16 2 2 0.19 0.12 0.47 0.30 18 12 0.19 0.06 0.47 0.16 6 3 0.4 0.1 9 5 
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Appendix Table 15. Plant-level data for all individuals of Lonicera maackii surveyed.  

Days flooded refers to the transect, not the individual plant.  Rank elevation refer to the 

relative elevation of each plant at the transect level.  Individuals ranked as having rank 

elevations of 100 had absolute elevations equal to or greater than the highest elevation 

recorded in the ground survey of transect elevations.  Individuals ranked as having rank 

elevation of 0 had absolute elevations less than or equal to the lowest elevation recorded 

in the ground survey of transect elevations.  Transect ID is in the format: (site)-(edge-to-

interior transect ID)-(distance from edge). 

Transect 

ID 

Number 

of 

Stems 

Stem 

Height 

Rank 

Elevation 

Days 

Flooded 

(Transect 

Average) 

3-N1-30m 3 2 100 42.5 

3-N2-1m 1 0.25 99.3 40.9 

1-N2-30m 9 2.5 49.7 28.1 

1-N2-30m 3 2 72.4 28.1 

1-N2-30m 5 2.5 76.9 28.1 

2-S2-10m 3 0.5 100 21.4 

2-S1-30m 8 2 95.6 17.3 

2-S1-30m 1 0.25 58.9 17.3 

2-S1-10m 3 2 98.8 15.3 

2-S1-10m 3 2.5 91.4 15.3 

2-N2-5m 3 3 56.4 10.85 

2-N2-5m 3 3 61.5 10.85 

2-N2-5m 2 2 44.8 10.85 

2-N2-5m 4 4 87.1 10.85 

2-N2-5m 2 2 89.7 10.85 

2-N2-5m 3 1 91.4 10.85 

2-N2-5m 2 1 89.7 10.85 

2-N2-5m 2 0.5 83.8 10.85 

2-N2-5m 2 1 48.7 10.85 

2-N2-5m 5 2 92.6 10.85 

2-N1-10m 1 0.25 96.3 10.65 

2-N1-10m 3 2 100 10.65 

2-N1-10m 2 2 95.9 10.65 

2-N1-10m 2 2 96.3 10.65 

2-N1-10m 3 2 100 10.65 

2-N1-10m 4 2 97.2 10.65 

2-N1-10m 5 2 100 10.65 

2-N1-10m 3 0.25 96.9 10.65 

2-N1-10m 1 0.5 96.6 10.65 

2-N1-10m 3 1 95.3 10.65 

1-N2-60m 2 0.5 69 10.25 

3-S1-30m 3 0.5 89.7 8.7 
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Transect 

ID 

Number 

of 

Stems 

Stem 

Height 

Rank 

Elevation 

Days 

Flooded 

(Transect 

Average) 

3-S1-30m 1 0.25 92.1 8.7 

2-S1-5m 2 0.5 33.3 8.2 

2-S1-5m 5 1 84.9 8.2 

2-S1-5m 2 1 79.4 8.2 

2-S1-5m 3 1 96.2 8.2 

2-S2-5m 6 2 100 5.4 

2-S2-5m 5 1 73.6 5.4 

2-S2-5m 4 1 100 5.4 

2-S2-5m 7 2 98.3 5.4 

2-5m 9 2 0 4.05 

1-S2-5m 2 2 33.3 4.05 

3-S1-1m 2 2 100 2.6 

3-S1-1m 2 2 100 2.6 

3-S1-1m 1 0.25 100 2.6 

3-S1-60m 11 2 90.1 2.2 

3-S1-60m 3 2.5 89.4 2.2 

1-S2-60m 1 0.25 94.8 1.2 

1-S2-60m 2 1 88.2 1.2 

1-S2-60m 2 1 33.3 1.2 

1-S1-60m 3 1 32.3 0.925 

1-S1-60m 7 2 4.1 0.925 

1-N2-10m 3 0.5 100 0.8 

1-S2-30m 7 2.5 89.1 0.575 

1-S2-30m 1 1 76 0.575 

1-S2-30m 2 2.5 7.6 0.575 

1-S2-30m 7 2 38.4 0.575 

1-S2-30m 3 2 61.5 0.575 

1-S2-30m 4 2 61.5 0.575 

1-S2-30m 1 0.25 85.8 0.575 

1-S2-30m . . 85.8 0.575 

1-S2-30m . . 85.8 0.575 

1-S2-30m 3 2 87.1 0.575 

2-N1-5m 3 2 98.9 0.4 

1-S1-1m 2 1 41 0 

1-S1-1m 3 1 72.6 0 

1-S1-1m 3 1 85.4 0 

1-S1-1m 5 1 25.6 0 

1-S1-1m 2 0.5 13.6 0 

1-S1-10m 1 1 33.3 0 

1-S1-10m 5 1 56.4 0 

1-S1-10m 1 0.25 97.4 0 

1-S1-30m 1 0.25 69.2 0 
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Transect 

ID 

Number 

of 

Stems 

Stem 

Height 

Rank 

Elevation 

Days 

Flooded 

(Transect 

Average) 

1-N1-1m 1 0.25 18.6 . 

1-N1-1m 1 0.25 31.4 . 

1-N1-1m 1 0.25 48.7 . 

1-N1-1m 1 0.25 14.1 . 

1-N1-1m 1 0.25 14.1 . 

1-N1-1m 1 0.25 40.3 . 

1-N1-1m 1 0.25 40.3 . 

1-N1-1m 1 2 47 . 

1-N1-5m 1 0.5 97.9 . 

1-N1-5m 2 2.5 100 . 

1-N1-60m 2 0.5 100 . 

1-N1-60m 2 2 97.4 . 
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Appendix Table 16.  Wetland indicator status code, and species designations for species 

encountered in this study. 

Indicator Code Indicator Status Designation Comment 

OBL Obligate Wetland Hydrophyte Almost always occur 

in wetlands 

FACW Facultative Wetland Hydrophyte Usually occur in 

wetlands, but may 

occur in non-wetlands 

FAC Facultative Hydrophyte Occur in wetlands and 

non-wetlands 

FACU Facultative Upland Non-hydrophyte Usually occur in non-

wetlands, but may 

occur in wetlands 

UPL Obligate Upland Non-hydrophyte Almost never occur in 

wetlands 

NE Not Evaluated     

 

Species Form WIS 

Aralia spinosa SHRUB FAC 

Cephalanthus occidentalis SHRUB OBL 

Cornus foemina SHRUB FACW 

Euonymus americanus SHRUB FAC 

Lindera benzoin SHRUB FAC 

Lonicera maackii SHRUB NE 

Symphoricarpos orbiculatus SHRUB FACU 

Sambucus canadensis SHRUB FAC 

Acer negundo TREE FAC 

Acer rubrum  TREE FAC 

Acer saccharinum TREE FACW 

Asimina triloba TREE FAC 

Celtis laevigata TREE FACW 

Cornus florida TREE FACU 

Diospyros virginiana TREE FAC 

Fagus grandifolia TREE TREE 

Fraxinus pennsylvanica TREE FACW 

Juniperus virginiana TREE FACU 
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Liquidambar styraciflua  TREE FAC 

Liriodendron tulipifera TREE FACU 

Nyssa sylvatica  TREE FAC 

Platanus occidentalis TREE FACW 

Populus deltoides TREE FAC 

Quercus bicolor TREE FACW 

Quercus lyrata TREE OBL 

Quercus michauxii  TREE FACW 

Quercus palustris  TREE FACW 

Salix nigra TREE OBL 

Ulmus americana TREE FACW 

Ulmus rubra  TREE FAC 

Campsis radicans VINE FAC 

Euonymus fortunei VINE NE 

Lonicera japonica VINE FAC 

Menispermum canadense VINE FACU 

Parthenocissus quinquifolia VINE FACU 

Toxicodendron radicans VINE FAC 
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Appendix Figure 1.  Aerial imagery showing Site 1 (dry site) in Jefferson County, Kentucky (Louisville Metro Area).  Each tagged 

marker represents the location of an edge-to-interior transect.    
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Appendix Figure 2.  Aerial imagery showing Site 2 (intermediate site) in Jefferson County, Kentucky (Louisville Metro Area).  Each 

tagged marker represents the location of an edge-to-interior transect.   
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Appendix Figure 3.  Aerial imagery showing Site 3 (wet site) in Jefferson County, Kentucky (Louisville Metro Area).  Each tagged 

marker represents the location of an edge-to-interior transect.   

railroad tracks   
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Appendix Figure 4.  Diagram depicting general construction of the groundwater 

monitoring wells used in this study.  In this study, wells extended 1 m below the ground 

surface, with the riser and PVC housing for a data logger extending 0.75 m above the 

ground surface.  Image adapted from Sprecher (2008).  Image is not to scale. 
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Appendix Figure 5.  Total sapling stem density (stems/Ha) vs. distance from forest edge.  

Each data point represents the mean vine cover in a transect at 1, 5, 10, 30 or 60 meters 

from the forest edge.  Data from all 60 transects (20 per site) is included.   
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Appendix Figure 6.  Total seedling stem density (stems/Ha) vs. distance from forest edge.  

Each data point represents the seedling density in a transect at 1, 5, 10, 30 or 60 meters 

from the forest edge.  Data from all 60 transects (20 per site) is included.   
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Appendix Figure 7.  Total shrub stem density (stems/Ha) vs. distance from forest edge.  

Each data point represents the mean shrub density in a transect at 1, 5, 10, 30 or 60 

meters from the forest edge.  Data from all 60 transects (20 per site) is included.   
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Appendix Figure 8.  Total stem density of Lonicera maackii shrubs with distance from 

the forest edge at all three research sites.  Each bar represents the mean shrub density of 

L. maackii stems at four transects per site, corresponding to 1, 5, 10, 30 or 60 meters from 

the forest edge. Sites 1, 2 and 3 refer to the dry, intermediate, and wet sites, respectively.  

Error bars are ±1 SE.   
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Appendix Figure 9.  Total percent vine cover vs. distance from forest edge.  Each data 

point represents the mean vine cover in a transect at 1, 5, 10, 30 or 60 meters from the 

forest edge.  Data from all 60 transects (20 per site) is included.   
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Appendix Figure 10.  Density of Lonicera maackii plotted against values of Axis 1 for all 

transects that were included in the NMS ordination of woody plants species data at all 

sites.  Note that the value zero for Axis 1 is in the center of the x-axis.  Axis 1 was 

positively related to days flooded.   
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Appendix Figure 11.  Total shrub stem density as it relates to the number of days flooded 

in the 55 transects where flooding was estimated.  Only data points where values of total 

stem density were greater than zero are shown.   
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