8-2016

Vinyl chloride-diet interactions in liver disease: potential roles of autophagy and energy management.

Anna L. Lang

University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Biochemical Phenomena, Metabolism, and Nutrition Commons, and the Disorders of Environmental Origin Commons

Recommended Citation
https://doi.org/10.18297/etd/2529

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.
VINYL CHLORIDE-DIET INTERACTIONS IN LIVER DISEASE:
POTENTIAL ROLES OF AUTOPHAGY AND ENERGY MANAGEMENT

By

Anna L. Lang
B.S Northern Kentucky University, 2013

A Thesis Submitted to the Faculty of the
School of Medicine of the University of Louisville
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science
In Pharmacology and Toxicology

Department of Pharmacology and Toxicology
University of Louisville
Louisville, KY

August 2016
VINYL CHLORIDE-DIET INTERACTIONS IN LIVER DISEASE:
POTENTIAL ROLES OF AUTOPHAGY AND ENERGY MANAGEMENT

By

Anna L. Lang
B.S., Northern Kentucky University, 2013

Thesis Approved on
May 12, 2016
By the following Thesis Committee

Juliane Arteel, Ph.D.

Gavin Arteel, Ph.D.

Matt Cave, M.D.

John Wise, Ph.D.

Jonathan Freedman, Ph.D.

Russell Prough, Ph.D.
ACKNOWLEDGMENTS

First, I would like to thank my mentor, Dr. Juliane Arteel, for her encouragement and guidance over the past two years. I would like to thank her for encouraging me to think independently as a scientist and her continued support in my graduate career. I would like to thank Dr. Gavin Arteel for constantly pushing me to do my best. I would like to my undergraduate mentor, Dr. Christine Curran, for cultivating in me the scientific curiosity that led to where I am today.

I would also like to thank my parents, Frank and Linda Lang, for their constant love, support, and understanding.
ABSTRACT

VINYL CHLORIDE-DIET INTERACTIONS IN LIVER DISEASE:
POTENTIAL ROLES OF AUTOPHAGY AND ENERGY MANAGEMENT

Anna L. Lang

May 12, 2016

Vinyl chloride (VC) is a prevalent environmental toxicant that has been shown to cause liver injury at high, occupational exposures. However, most studies have not addressed interactions of low doses with risk-modifying factors. This study aims to explore low-level VC metabolite exposure interactions with other potential risk-modifying factors and their effect on underlying liver disease. We examined sub-hepatotoxic effects of a VC metabolite (chloroethanol, CE) in two murine models of liver injury using ethanol and lipopolysaccharide (LPS). In both, CE significantly enhanced liver injury when compared to either ethanol or LPS alone. Previous studies have shown an increase in mTOR activity with CE alone. Here, we used a pharmacologic inhibitor of mTOR, rapamycin, to study its effect on injury progression. Indeed, the addition of rapamycin significantly attenuated liver injury, hepatic steatosis, and inflammatory markers in the CE + LPS model.
TABLE OF CONTENTS

Acknowledgements ... iii
Abstract ... iv
List of Figures .. vi

Introduction ... 1
Materials and methods ... 13
 Animals and treatments ... 13
 Biochemical analysis .. 16
 Histology ... 16
 Immunoblots ... 18
 RNA isolation and real time RT-PCR .. 18
 Statistical analyses ... 18
Results .. 20
Discussion ... 33
Strengths of this work ... 41
Pitfalls and future directions .. 42
Conclusions .. 43
References .. 44
Appendix .. 52
Curriculum vitae ... 53
LIST OF FIGURES

1. Scheme of autophagic pathway...10
2. Timelines of experiments..15
3. CE enhances ethanol-induced liver injury...21
4. CE's effect on ethanol-induced steatosis..23
5. Rapamycin's effect on mTOR activity...24
6. Rapamycin blunts liver injury caused by CE + LPS..................................25
7. Rapamycin blunts number of TUNEL-positive cells...............................27
8. Rapamycin's effect on lipid and glycogen stores....................................28
9. Rapamycin's effect on inflammatory cytokines.......................................30
10. Rapamycin’s effect on autophagy markers..32
11. Scheme of working hypothesis..40
INTRODUCTION

I. Vinyl Chloride

Vinyl chloride monomer (VC) is a pervasive environmental organochlorine toxicant. It is ranked #4 on the CDC’s Agency for Toxic Substances and Disease Registry (ATSDR) Substance Priority List; (1) with an annual production recently estimated at 27 million metric tons (2). VC is used in industry to produce polyvinyl chloride (PVC), a plastic involved in commercial production. Facilities that manufacture PVC products emit VC gas into the air as a waste product. VC is also present as a solvent at many EPA Superfund sites across the United States. Aside from being a direct contaminant at these sites, VC is a degradation product of other chlorinated chemicals such as trichloroethylene (TCE; ATSDR rank #16) tetrachloroethylene (PCE; ATSDR rank #33) and dichloroethene (DCE; ATSDR rank #216) via soil microorganisms (3). Owing to its widespread prevalence, VC is present in landfill leachates and many military Superfund sites across the country. For example, up to 1,000,000 military, civilian personnel, and their families were exposed to VC at Camp Lejeune, NC alone (3). Additionally, more than 80,000 American chemical workers have been occupationally exposed to VC (4, 5).

VC is present in the air surrounding production facilities at significant concentrations. A major route of environmental exposure stems from
contaminated groundwater. Residential areas surrounding both manufacturing and Superfund sites are susceptible to VC migrating through soil and home foundations where it readily volatilizes to enter showers, basements, and living spaces where these vapors can recirculate (4, 5). Due to the high risk of low-level human exposure in residential areas around VC-using facilities, understanding the effects of this toxicant on human health is necessary, but current knowledge is sparse on low-level VC exposure.

The major target of VC exposure is the liver. VC is a known hepatotoxicant and at high, occupational levels of exposure, VC can cause steatosis (fat accumulation), inflammation (steatohepatitis), fibrosis, and necrosis (6). Recently, a pathology unique to VC exposure has been described, toxicant-associated steatohepatitis (TASH), in chemical plant workers occupationally exposed to VC (7, 8). These individuals showed most of the typical clinical signs of liver injury. Within that cohort, 84% of patients exhibited hepatic steatosis and 85% exhibited steatohepatitis. However, of the patients with steatohepatitis, only 55% went on to develop fibrosis. Interestingly, plasma transaminase levels, which are typically elevated with liver injury, were at normal levels in these individuals (8). Although the effects of high level VC exposure have been studied, the effects of low level exposure and its interactions with other risk-modifying factors, such as diet or alcohol consumption, on hepatic and overall health have not been determined. Therefore, it is crucial that these knowledge gaps are filled.

II. Liver Diseases
The liver is a major site of nutrient metabolism, detoxification, and is crucial to maintaining a healthy digestive system. Liver function is determined not only by genetics, but by diet, alcohol consumption, and toxicant exposure. As such, the liver is susceptible to injury from a variety of agents. The most common manifestation of liver damage is fatty liver disease (FLD), which is characterized by an accumulation of triglycerides in the liver (9). Depending on the source of the insult, it can be termed alcoholic liver disease (ALD) or non-alcoholic fatty liver disease (NAFLD). Both diseases share similar pathological manifestations, but have unique etiologies. In general, liver disease is a spectrum of pathologies ranging from benign steatosis to active inflammation (steatohepatitis) to fibrosis, cirrhosis (10), and potentially, hepatocellular carcinoma (11, 12). Processes hypothesized that contribute to the initiation and progression of FLD include lipotoxicity, (13) oxidative stress (13, 14) and inflammation (15, 16).

Although many people have FLD, only a fraction of that population will progress from steatosis to a more severe form of the disease, such as steatohepatitis (17, 18). Many factors play a role in determining severity of disease and its progression, including genetics and environmental agents. Due to an increase in triglycerides within hepatocytes, regular fatty acid metabolism is disrupted, leading to alterations in other metabolic pathways such as protein and carbohydrate metabolism (19). These changes on a molecular level cause the liver to be more susceptible to insult from a second agent, such as VC. The effects of low-level VC exposure on underlying liver injury have not been studied.
It is known that the liver becomes susceptible to injury from a second agent after changes occur in response to a first agent (20, 21). For example, Yang et al. (21) demonstrated that livers from genetically obese (fa/fa) rats have enhanced sensitivity to inflammation produced by the injection of bacterial lipopolysaccharide (LPS) compared to their lean littermates; this exacerbation of liver damage is characterized by a more robust inflammatory response and enhanced cell death. Recent studies from our group have demonstrated that sub-hepatotoxic doses of a major VC metabolite, chloroethanol (CE), enhanced liver injury in response to LPS administration in a murine model (22). In that study, animals who received CE alone showed no histological changes in their liver tissue morphology. However, on a protein level, many key metabolic enzymes were altered. There was also an increase in steatosis and a decrease in glycogen stores, indicating alterations in lipid and carbohydrate metabolism. The combination of both CE and LPS caused enhanced damage when compared to either exposure alone as characterized by enhanced inflammatory cytokine expression, histology and gross liver damage (22). This study demonstrates a proof-of-concept that low levels of a VC metabolite can enhance liver injury caused by LPS administration. Alterations in hepatocyte metabolic enzymes and pathways that are not overly toxic can sensitize the liver to be more susceptible to an insult from another agent. Although the hypothesis of multiple “hits” in liver injury progression is not a new one, the application of this paradigm to explore low-level VC exposure and underlying liver damage is novel.

A. Alcohol and the liver
Millions of people worldwide consume alcoholic beverages. According to the World Health Organization (WHO), 3.3 million (5.9%) of deaths worldwide are due to the harmful use of alcohol (23). ALD encompasses several pathologies from mild fat accumulation (steatosis), liver inflammation (alcoholic steatohepatitis; ASH), to severe fibrosis, and cirrhosis (end-stage liver disease). Cirrhosis of the liver is the 12th leading cause of death in the United States and in 2013, nearly 50% of all liver disease-related deaths were caused by ALD (24).

As the liver is the primary location of alcohol metabolism, it is the organ most affected by alcohol-induced injury. Alcohol is metabolized via alcohol dehydrogenase (ADH1), mitochondrial aldehyde dehydrogenase (ALDH2), and CYP2E1. A majority of its detrimental effects are a result of its toxic metabolite, acetaldehyde, accumulation, induction of an inflammatory response, and oxidative stress (25).

In ALD, steatosis can be caused directly by ethanol metabolites’ disruption of the balance between NAD$^+$ and NADH, leading to inhibition of β-oxidation and an accumulation of free fatty acids (FFA) and triglycerides (25). Alcohol exposure can also alter transcription factors that mediate lipid-metabolizing enzymes. For example, acetaldehyde can directly upregulate sterol regulatory element-binding protein 1c (SREBP-1c) resulting in an increase in lipogenesis. Conversely, acetaldehyde interacts with the DNA binding domain of peroxisome proliferator activator protein alpha (PPARα), which inhibits the breakdown of FFA via β-oxidation (18). Combined, the result is an increase of lipids within the tissue. Another major mediating factor of alcohol-induced liver injury is the inflammatory
response, particularly the cytokine tumor necrosis factor alpha (TNFα). Upon stimulation by alcohol consumption, TNFα is released from the liver’s resident macrophages, known as Kupffer cells. It is upregulated and is involved in tissue damage in response to alcohol exposure (26). The production of TNFα results in recruitment of other inflammatory cells, such as neutrophils, as their infiltration into tissue results in a more pronounced inflammatory response (18).

The combination of increased hepatic lipids and increased cytokine and inflammatory cell recruitment allows for a cyclic pattern of liver damage. If alcohol consumption continues, injury worsens and is a risk factor for developing more serious injury. Due to the fact that VC and alcohol share several mechanisms of liver injury, alcohol consumption may be a risk factor for developing more serious liver disease when co-exposed with VC.

B. Obesity and the liver

Over 30% of US adults are obese (BMI ≥ 30) with another >30% being overweight (BMI = 25-30) (27). This metabolic syndrome is characterized by insulin resistance, hypertension, and dyslipidemia (28). Due to overconsumption of dietary fats, NAFLD is a major hepatic manifestation of obesity and it was recently estimated that 25% of the global population has NAFLD (29). Hepatic steatosis occurs when the balance between fatty acid synthesis and uptake is greater than its oxidation (30). This causes a disruption in energy homeostasis and an accumulation of lipid droplets to occur within the liver tissue. NAFLD is also associated with other metabolic dysfunction manifestations such as insulin
resistance and type 2 diabetes, and can be mediated by the inflammatory response (31).

Within the past decade, the perceived role of adipocytes has shifted from simple lipid storing vessels to more complex mediators of metabolic, hormonal, and inflammatory responses (32). Obesity causes an increase in the size of adipocytes within adipose tissue and immune cells, such as macrophages, are able to infiltrate into the adipose tissue and release cytokines such as TNFα and interleukin-6 (IL-6) (33, 34), which cause further stress and are able to travel through circulation and exert effects on the liver and other organs. In addition to the cytokines being released from the adipose tissue, an increase in hepatic adiposity also results in an increase in hepatic pro-inflammatory cytokine release. These cytokines, like TNFα, activate Kupffer cells, which then release more inflammatory signals and cause tissue damage (35). These metabolic changes within hepatocytes, such as lipid accumulation, make these cells more susceptible to insults from other factors and may result in exacerbated liver injury upon co-exposure with toxicants, such as VC.

III. VC Mechanism

A. VC metabolism

As mentioned previously, VC is metabolized by many of the same enzymes that are involved in alcohol metabolism. After exposure via inhalation, absorption is rapid and distribution is widespread. Due to the fact that the enzymes involved in VC metabolism are primarily located in the liver, it is the most sensitive to VC exposure. There are several pathways that VC can be metabolized into its reactive
intermediates which all follow Michaelis-Menten enzyme kinetics (36). The first pathway involves microsomal mixed function oxidases, primarily CYP2E1, which oxidizes VC to 2-chloroethylene oxide, which is then conjugated to glutathione and excreted. An alternate pathway of VC metabolism is oxidation to 2-chloroethanol. 2-chloroethanol can then enter into the same pathway as ethanol metabolism. It is transformed into 2-chloroacetaldehyde by alcohol dehydrogenase. Aldehyde dehydrogenase converts 2-chloroacetaldehyde into chloroacetic acid which is then conjugated to glutathione and excreted in urine, ultimately, as thioacetic acid (37).

VC is inhaled and absorbed through the lungs and its half-life is relatively short, being only a few hours. Therefore, it is not likely that VC gas directly damages tissue. Its two main reactive metabolites, chloroethanol (CE) and chloroacetaldehyde (CAA), are able to enter cells and cause damage. Once inside the cell, VC metabolites are able to generate reactive oxygen and nitrogen species (ROS/RNS) and form protein adducts. These then go on to further damage the cells by causing oxidative damage, increasing inflammatory cytokine recruitment (22), and increasing endoplasmic reticulum (ER) stress.

B. VC metabolites damage mitochondria

Mitochondria are essential to the health of all cells as they produce ATP and regulate major cell death pathways such as apoptosis and necrosis. Mitochondria respond dynamically to stress, nutritional status, and environmental signals. It has been hypothesized that the VC metabolite, CAA, inhibits oxidative phosphorylation in mitochondria (38, 39) and our group has recently shown that CAA is mitotoxic in vitro and ex vivo. Data from that study demonstrate that CAA
decreases mitochondrial membrane potential in a concentration-dependent manner, and with increasing concentrations, decreases plasma membrane potential as well. This finding was corroborated by cellular bioenergetics analyses that showed a decrease in ATP production and decreased oxygen consumption rate with increasing CAA concentrations (22).

Another aspect of mitochondrial damage besides impaired function is the accumulation and elimination of damaged mitochondria. This is accomplished by the complex process of autophagy.

C. Autophagy

Autophagy is the intracellular process of “self-eating” or degradation of macromolecules and organelles during times of starvation or stress to provide nutrients or to protect the cell. Autophagy is a highly conserved process and as such so are the proteins involved. Several autophagy related genes (Atg’s) have been identified along with associated proteins which aid in the degradative process (40, 41). There are four main phases of autophagy (Figure 1). The first involves initiation and formation of the autophagosome. It begins as an isolated membrane portion (the phagophore) from the ER or golgi apparatus (42). Through nucleation and expansion of the membrane, the phagophore becomes an autophagosome; a double membraned structure that engulfs targeted macromolecules, proteins, or organelles for degradation. The autophagosome matures and fuses with a lysosome, releasing its contents for enzymatic degradation (43).

Autophagy is crucial for normal cell homeostasis and has been shown to be a critical player in several models of liver disease. Its activation has been shown
Figure 1. Scheme of autophagic pathway. The main stages of autophagy are depicted. Autophagy begins with introduction or initiation of the process. This is followed by nucleation, phagophore formation, and autophagosome expansion. Finally, the autophagosome fuses with a lysosome and degradation of its contents (44).
to be protective (45-47) while its inhibition has been associated with increased liver damage (48, 49). One probable mechanism of its protective effects is the removal of damaged organelles, such as mitochondria (mitophagy) (50, 51). If the affected cells are unable to clear and degrade damaged mitochondria, their accumulation would add to the cellular injury and further impair normal cell function.

mTOR, (mechanistic target of rapamycin) is a major regulator of autophagy. With mTOR being the major sensor for nutritional status of the cell, its activation blocks initiation of autophagy while mTOR inhibition allows autophagy to proceed (52). As mentioned previously, our group recently showed that mTOR is activated in mice administered VC metabolites alone. We hypothesize that pharmacologically inhibiting mTOR with rapamycin would allow us to determine if autophagy inhibition is involved in liver damage caused by VC metabolite exposure.

IV. Overall significance

VC is present in the ambient air and ground water surrounding chemical and PVC production facilities, making residents living in those areas at risk for low-level VC exposure. Many of the at-risk areas are urbanized and of a lower socioeconomic status than more suburban residential areas. Other risk factors associated with highly urban populations are an increased risk for alcohol consumption and a high fat diet resulting in being overweight or obese. Both of these factors cause changes on the molecular level in the liver, such as steatosis, and cause these individuals to be more susceptible to a second hepatic insult.
There is a knowledge gap regarding co-exposure of underlying liver disease such as ALD or NAFLD and the effects of low-level, subclinical VC exposure. Therefore, the goals of the current work are two-fold: a) to determine whether VC exposure may be acting to enhance liver injury in underlying ALD and b) to determine the role of mTOR in liver injury progression caused by VC exposure and whether or not activation of autophagy could have protective effects in an experimental model of liver injury involving VC metabolites and LPS.
MATERIAL AND METHODS

I. Animals and Treatments

Eight week old, male C57BL/6J mice from Jackson Laboratory (Bar Harbor, ME) were housed in a pathogen-free barrier facility accredited by the Association for Assessment and Accreditation of Laboratory Animal Care, and procedures were approved by the local Institutional Animal Care and Use Committee.

A. Acute-on-chronic alcohol exposure

Mice were fed either an ethanol-containing Lieber-DeCarli diet or an iso-calorically matched control diet. Because of the relatively high caloric content of ethanol, pair-fed control animals received an iso-caloric control diet; the calories in the iso-caloric diet were matched by adding a calorie equivalent of maltose-dextrin. During the exposure period, animals were housed in pairs in shoebox cages in a room held at 75°F. Diet was provided in vacuum tubes and replaced between 3 and 5 pm daily. Both ethanol-fed animals and their pair-fed counterparts received control diet for the first five days of liquid diet feeding to allow acclimation to the liquid diet feeders. On the sixth day, ethanol-fed animals received diet containing 5% (vol/vol) ethanol. They continued to receive the ethanol-containing diet for 10 days. On the eleventh day, the two diet groups were further separated into additional groups that either received a bolus gavage of chloroethanol (CE; 50 mg/kg) or vehicle (saline), modified from Bertola et al., (53). The concentration of CE was
determined by others to not directly cause liver damage (54) and was validated (22); mice were ethanol fasted for 4 hours prior to oral gavage and were sacrificed 4, 9, or 24 hours later (Figure 2A).

B. Rapamycin administration

Mice were administered CE (50 mg/kg) via oral gavage. One hour after, rapamycin (1mg/kg, i.p., LC Laboratories, Woburn, MA,) was administered. 24 hours after CE administration, mice were administered LPS (E. Coli, 10 mg/kg, i.p., Sigma, St. Louis, MO) and sacrificed 24 hours later (Figure 2B).

C. Sample collection

At the time of sacrifice, animals were anesthetized with ketamine/xylazine (100/15 mg/kg, i.p.). Blood was collected from the vena cava just prior to sacrifice (exsanguination), and citrated plasma was stored at -80°C for further analysis. Portions of liver tissue were snap-frozen in liquid nitrogen, embedded in frozen specimen medium (Sakura Finetek, Torrance, CA), or were fixed in 10% neutral buffered formalin.
Figure 2. Timelines of experiments. Panel A shows the NIAAA model timeline modified with the CE bolus gavage on the eleventh day. Panel B depicts the timeline for CE, rapamycin, and LPS administration.
II. Biochemical Analysis

Plasma activity levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined spectrophotometrically using standard kits (Thermotrace, Melbourne, Australia).

III. Histology

A. General Morphology

Formalin fixed, paraffin embedded liver tissue was cut at 5 μm and mounted on charged glass slides. Sections were deparaffinized with Citrisolv (Fisher Scientific, Waltham, MA) and rehydrated through addition of graded ethanol solutions. Sections were then stained with hematoxylin and eosin (H&E). After staining, samples were dehydrated through graded alcohol, washed in Citrisolv and then mounted with Permount (Fisher, Waltham, MA).

B. Neutrophil accumulation

Neutrophil accumulation in liver tissue was measured using chloracetate esterase (CAE) staining. Briefly, formalin fixed, paraffin embedded liver tissue was cut at 5 μm and mounted on charged glass slides. Sections were deparaffinized with Citrisolv (Fisher, Waltham, MA) and rehydrated through addition of graded solutions of ethanol. Tissue specimens were incubated in a solution of napthol AS-D chloroacetate (1 mg/ml) in N,N-dimethylformamide, with 4% sodium nitrite and 4% new fuchsin. The napthol AS-D chloroacetate is enzymatically hydrolyzed by chloroacetate esterase in neutrophils, liberating the napthol compound. Napthol
combines with a freshly formed diazonium salt, leaving bright pink color deposits at the site of enzymatic activity.

C. Apoptosis

Apoptosis was detected via terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL; Millipore, Billerica, MA). In brief, formalin fixed, paraffin embedded liver tissue was cut at 5 μm and mounted on charged glass slides. Sections were deparaffinized with Citrisolv (Fisher, Waltham, MA) and rehydrated through graded ethanol. Tissue samples were processed according to the TUNEL kit protocol. TUNEL-positive cells (hepatocytes and non-parenchymal cells, NPCs) were counted using Image J software and are expressed as positive cells per 1000 hepatocytes.

D. Metabolism

Lipid accumulation was detected via Oil Red-O (ORO) staining. Frozen sections of liver were cut at 10 μm and stained with Oil Red-O solution (Sigma, St. Louis, MO) for 10 minutes, washed, and counterstained with hematoxylin for 45 seconds. Samples were then mounted with Permount (Fisher, Waltham, MA). Hepatic glycogen reserves were visualized as a dark purple color using Periodic Acid-Schiff (PAS) staining. Formalin fixed, paraffin embedded liver tissue was cut at 5 μm and mounted on charged glass slides. Sections were deparaffinized with Citrisolv (Fisher, Waltham, MA) and rehydrated through graded ethanol. Sections were incubated in 0.5% Periodic Acid solution for 5 minutes, washed in water, and incubated with Schiff reagent for 15 minutes. Samples were then counterstained
with hematoxylin for 45 seconds, washed in water, dehydrated through graded
ethanol, washed in Citrisolv, and then mounted with Permount.

IV. Immunoblots

Liver samples were homogenized in RIPA buffer (55), containing protease and
phosphatase inhibitor cocktails (Sigma, St. Louis, MO). Samples were loaded onto
SDS-polyacrylamide gels (Invitrogen, Thermo Fisher Scientific, Grand Island, NY),
followed by electrophoresis and Western blotting onto PVDF membranes (Hybond
P, GE Healthcare Bio-Sciences, Pittsburgh, PA). Primary antibodies against
phosphorylated and total mTOR, total GAPDH, and total LC-3 I/II (Cell Signaling
Technology; Beverly, MA) were used. Densitometric analysis was performed using
UN-SCAN-IT gel (Silk Scientific Inc., Orem, UT) software.

V. RNA Isolation and Real-Time RT-PCR

RNA was extracted immediately following sacrifice from fresh liver samples using
RNA Stat60 (Tel-Test, Ambion, Austin, TX) and chloroform. RNA concentrations
were determined spectrophotometrically and 1 µg of total RNA was reverse
transcribed using a kit (Quanta Biosciences, Gaithersburg MD). Real-time RT-
PCR was performed using a StepOne real time PCR system (Thermo Fisher
Scientific, Grand Island, NY). Primers and probes were ordered as commercially
available kits (Thermo Fisher Scientific, Grand Island, NY). The comparative C_T
method was used to determine fold differences between the target genes and an
endogenous reference (18S).

VI. Statistical Analyses
Results are reported as means ± SEM (n = 4-8) and were analyzed using SigmaPlot 11.0 (Systat Software, Inc., San Jose, CA). ANOVA with Bonferroni’s post-hoc test (for parametric data) or Mann-Whitney Rank Sum test (for nonparametric data) were used for the determination of statistical significance among treatment groups, as appropriate. A p value less than 0.05 was selected before the study as the level of significance.
RESULTS

CE exacerbates liver injury caused by ethanol

In order to assess status of overall liver health in the given groups, plasma transaminase levels were measured as an index of liver injury. Figure 3A shows plasma transaminase levels at 4, 9, and 24 hours after CE administration. Pair-fed mice that did or did not receive CE showed no elevation in either ALT or AST at any time point. However, ethanol-fed mice who received CE show a significant increase in AST levels at the 24 hour time point. Figure 3B depicts representative photomicrographs of general liver morphology at the 9 hour time point as seen through H&E staining. Neither pair-fed control nor pair-fed CE animals showed signs of tissue damage. Ethanol-fed animals showed an increase in inflammatory cell infiltration. CE enhanced these effects, increasing inflammatory and necrotic foci as highlighted in Figure 3B with an arrow.
Figure 3. CE enhances ethanol-induced liver injury. Plasma transaminases (A) and representative photomicrographs for paraffin-embedded liver sections stained for H&E at 9 hours (B) are shown (200x). Ethanol-fed, CE administered animals show elevated AST levels at the 24 hour time point and damaged liver morphology at the 9 hour time point. a, p<0.05 compared to pair-fed controls.
CE enhances ethanol-induced steatosis

Ethanol feeding is known to enhance steatosis in models of liver injury (53). In line with this, Figure 4 depicts lipid accumulation in the liver visualized via ORO staining. Pair-fed control animals showed no increase in ORO staining and CE alone did not significantly increase ORO positive staining. However, ethanol increased ORO positive staining. CE enhanced the intensity of ORO staining in ethanol-fed animals.

Rapamycin blunts liver damage caused by CE and LPS

In order to elucidate mechanisms by which CE acts as an enhancing factor in a multiple-hit model, a more robust model of liver injury was used with CE + LPS, as previously described by Anders et al., (22). To verify that rapamycin inhibited mTOR activation, mTOR phosphorylation was analyzed via Western Blot (Figure 5). No significant differences were observed between the groups. To examine the effects of rapamycin on liver damage, plasma transaminase levels were analyzed (Figure 6A). Control, CE alone, and CE with rapamycin administered animals show normal transaminase activity. LPS alone increased ALT and AST values and CE enhanced this effect. Significantly, the addition of rapamycin attenuated both ALT and AST values. Liver morphology was examined via H&E staining and CAE positive cells were visualized as an index of neutrophil infiltration (Figure 6B). Control animals show normal morphology and little CAE positive staining. LPS caused inflammatory foci and an increase in CAE positive cells, CE enhanced this effect. Notably, rapamycin administration resulted in more normal morphology and fewer CAE positive cells.
Figure 4. CE’s effect on ethanol-induced steatosis. Representative photomicrographs are depicted for frozen liver sections stained with ORO for lipids as described in Materials and Methods (200x).
Figure 5. Western Blot for phosphorylated mTOR and GAPDH (A) are depicted and densitometry analysis was used to analyze differences amongst groups (B) as described in Materials and Methods.
Figure 6. Rapamycin blunts liver injury caused by CE + LPS. Plasma transaminase levels (A) and representative photomicrographs for paraffin-embedded livers stained with H&E and CAE (B) are shown as described in Materials and Methods. (200x). Data are reported at mean ± SEM. a, p<0.05 compared to control, b, p<0.05 compared to LPS alone, c, p<0.05 compared to CE + LPS.
Effect of rapamycin on changes in apoptosis caused by CE and LPS

The type of cell death has been shown to play an important role in many models of liver injury. Indeed, previously it has been shown that VC causes necrotic rather than apoptotic cell death (8, 22). In order to determine the cell death pathway in this model of injury, TUNEL-positive cells were visualized as an index of apoptosis and TUNEL-positive hepatocytes and non-parenchymal cells were counted. Consistent with previous work with this model, an increase of TUNEL-positive cells with LPS administration and a decrease in that number with the addition of CE was observed (22). Importantly, the administration of rapamycin significantly attenuates the number of TUNEL-positive hepatocytes as seen in Figure 7B, while it had no effect on the number of TUNEL-positive non-parenchymal cells.

Rapamycin’s effect on changes in carbohydrate and lipid metabolism caused by CE and LPS

It is known that CE alone causes alterations in hepatic metabolic pathways (22). In order to explore the effects of mTOR inhibition on lipid and glycogen levels in liver tissue, ORO staining for lipids (Figure 8A) and PAS for glycogen (Figure 8B) were visualized. LPS alone caused an increase in ORO positive staining and a depletion of glycogen reserves. The combination of both CE and LPS resulted in enhanced ORO positive staining and almost complete depletion of hepatic glycogen stores. Notably, the addition of rapamycin prevented glycogen depletion and attenuated the accumulation of lipids.
Figure 7. Rapamycin blunts number of TUNEL-positive cells. Representative photomicrographs of paraffin-embedded liver stained for TUNEL-positive cells are depicted (A) and positive cells were counted (B) as described in Materials and Methods (200x). Data are reported at mean ± SEM. a, p<0.05 compared to control, b, p<0.05 compared to LPS alone, c, p<0.05 compared to CE + LPS.
Figure 8. Rapamycin's effect on lipid and glycogen stores. Representative photomicrographs of frozen liver sections stained with ORO (top) and paraffin-embedded liver sections stained with PAS for glycogen (bottom) are depicted as described in Materials and Methods (200x).
In order to determine the effect of mTOR inhibition on the inflammatory response, hepatic mRNA expression was analyzed to determine relative levels of pro- and anti-inflammatory markers. As mentioned in the introduction, TNFα is a major cytokine involved in liver inflammation. Plasminogen activator inhibitor-1 (PAI-1), a mediator of inflammation, is involved in liver injury progression (56). IL-6 and IL-1β are pro-inflammatory cytokines involved in the acute-phase inflammatory response (57). Interleukin-10 (IL-10) is an anti-inflammatory cytokine and can be protective during liver inflammation (58). Inducible nitric oxide synthase (iNOS) is activated by pro-inflammatory cytokines and contributes to the inflammatory process (59). Across all markers, there was an increase in expression with LPS alone. As expected, the combination of CE and LPS enhanced expression of \textit{Tnfa}, \textit{Pai-1}, \textit{Il-6}, \textit{iNos} \textit{Il-1β}, and \textit{Il-10}. Rapamycin administration resulted in a significant blunting of \textit{Pai-1}, \textit{iNos}, \textit{Il-1β} and \textit{Il-10} expression, indicating an attenuation of the inflammatory response. However, no significant differences were observed for \textit{Tnfa} or \textit{Il-6} expression with rapamycin.
Figure 9. **Rapamycin’s effect on inflammatory cytokines.** Hepatic mRNA expression data for inflammatory mediators were measured by qRT-PCR are shown. Data are reported at mean ± SEM. a, p<0.05 compared to control, b, p<0.05 compared to LPS alone, c, p<0.05 compared to CE + LPS.
Autophagy marker changes with CE, LPS and rapamycin

Rapamycin’s allosteric inhibition of mTOR is known to result in an induction of autophagic processes (45-47). Several markers are indicative of autophagy progression and activation. Atg 5 is necessary for the formation and elongation of the autophagosome (60). Rapamycin and CE administered animals showed a significant increase in Atg 5 expression. LPS caused no increase in Atg 5 expression, however there was a significant increase in expression with CE and LPS with and without rapamycin. No differences were observed between those groups. Microtubule associated protein-1 light chain 3 (LC-3) is cleaved and conjugated to phosphatidylethanolamine to form LC-3 II which remains associated with the autophagosomal membrane until ultimate fusion with the lysosome (41, 61, 62), and has been used as a marker of autophagy progression. LC-3 II protein was observed via Western Blot. There were no significant differences across the groups.

A major target of autophagic degradation is cellular inflammatory machinery known as the inflammasome. Therefore, mRNA expression of a protein involved in inflammasome formation, NLR family pyrin domain containing 3 (NLRP3), was analyzed. A significant increase was observed with LPS administration. There was also a significant increase with CE and LPS with or without rapamycin, but no differences were observed amongst the groups.
Figure 10. Rapamycin’s effect on autophagy markers. LC-3 protein was analyzed by Western Blot (A) and densitometry was used to analyze differences across groups (B) as described in Material and Methods. mRNA expression of markers of autophagy (Atg5) and inflammasome activity (Nlrp3) were measured by RT-qPCR (C). Data are reported as the mean ± SEM. a, p<0.05 compared to control, b, p<0.05 compared to LPS alone.
DISCUSSION

Since the realization that high, occupational exposure to VC was hepatotoxic, workplace regulations have been implemented to avoid this severe type of exposure (63). However, PVC producing facilities still release VC as a waste product into the environment. This potentially puts the individuals around these facilities at risk for low-level, chronic VC exposure. As humans are rarely exposed to one factor at a time, other exposures, such as alcohol consumption or diet, may modify risk for developing more severe liver injury upon co-exposure with low-level VC.

CE enhances ethanol-induced liver injury and steatosis

Alcohol consumption is a common risk-modifying factor for the development of more severe liver diseases, especially upon exposure with other modifying factors, such as VC. Since alcohol abuse is common in urban areas (64), the first goal of this project was to examine the potential risk for alcohol and low-level VC co-exposure using a novel model for liver injury modified from the NIAAA acute-on-chronic model (53). In the NIAAA model, mice are given alcohol-containing diet for 10 days followed by a binge dose of ethanol on the final day in order to examine a more relevant pattern of human alcohol exposure. Here, this model was adapted for the purpose of examining a potential synergistic effect of two known liver-damaging agents, alcohol and VC. With the modified model, mice were
administered CE instead of an ethanol binge on the final day. Indeed, increased liver injury was observed when animals were exposed to both ethanol and CE (Figure 3). Chronic ethanol exposure induces its metabolizing enzyme, CYP2E1. (65). Acetaminophen toxicity is known to be enhanced in individuals who consume alcohol because the two compounds share metabolizing enzymes. Ethanol is preferentially metabolized by ADH, causing acetaminophen to be alternately metabolized to its toxic metabolite via CYP2E1, which accumulates and causes severe liver injury (66). However, in this model, CE is the toxic metabolite of VC and as such, the already induced CYP2E1 more efficiently metabolizes CE. Therefore, less accumulation of CE is not as damaging, resulting in less tissue injury and inflammation.

Serum AST levels were significantly elevated at the 24 hour time point in animals who received the ethanol diet and CE, although no differences were seen in ALT levels at any time point. AST is known to be present in both hepatocyte cytoplasm and mitochondria and its isolated elevation is attributed to release from non-hepatic tissue, particularly damaged muscle (67). However, previous data (22) gives evidence that VC metabolites damage hepatic mitochondria. Therefore, the addition of CE to already injured hepatocytes is sufficient to cause damage to those mitochondria and release AST. The ratio of AST to ALT values can be a useful tool when determining cause of liver damage. When AST and ALT values respond the same, it is indicative of an acute viral or toxicant induced liver injury due to the release of only the cytoplasmic enzymes. However, when AST values are higher than ALT values, it is indicative of alcohol-induced liver injury and due
to the release of the mitochondrial AST from necrotic cell death (68, 69). Therefore, the isolated elevated AST levels could be attributed to the ethanol-feeding alone. However, the addition of CE significantly enhanced AST levels compared to ethanol-fed control animals, suggesting a synergistic effect on liver damage.

In ALD, steatosis is seen in 90% of subjects who consume significant amounts of alcohol (70). Here, steatosis was observed in ethanol-fed animals (Figure 4). Ethanol-fed animals mainly showed evidence of macrovesicular lipid droplets, being indicative of triglyceride accumulation. However, the presence of both micro- and macrovesicular lipid droplets was seen with the addition of CE, indicating an accumulation of FFA and triglycerides, respectively. The presence of microvesicular lipid droplets and their associated FFA have detrimental effects on cellular function and sensitizes the liver to be more susceptible to more severe injury (71). FFA accumulation has also been shown to be indicative of impaired mitochondrial β-oxidation (72), which is in line with previous data that VC metabolites are damaging hepatic mitochondria. Indeed, the addition of CE in ethanol-fed animals resulted in enhanced steatosis as seen by the presence of microvesicular lipid droplets, indicative of FFA accumulation and impaired mitochondrial function in this model.

mtOR activation is critical in CE-induced liver injury

Exploring the interaction and possible multiple-hit phenomenon with ethanol and VC co-exposure resulted in interesting findings. However, we were interested in examining the mechanisms by which VC acts as a risk-modifying factor for underlying liver disease. Therefore, another model of liver injury established at the
same time in our laboratory was also employed to characterize molecular changes and mechanistic endpoints in response to VC metabolite exposure. In that model, our laboratory demonstrated that administration of the VC metabolite, CE, alone was sufficient to alter metabolic enzyme expression although no hepatic tissue damage was observed (22). With the addition of LPS administration, liver damage was enhanced in animals exposed to CE. Findings from that study include enhanced liver damage, neutrophil infiltration, oxidative stress, and metabolic dysfunction. Alterations of key metabolic enzymes were observed some which include mTOR, AMP-activated protein kinase (AMPK), and protein kinase B or AKT. Specifically, a significant activation of mTOR was observed in mice who were administered CE alone. Therefore, the second goal of this project was to investigate the role of mTOR in liver injury caused by VC metabolite exposure.

mTOR inhibition blunts CE-induced metabolic changes

mTOR activity is known to be dysregulated in several disease states (73) and its inhibition has been shown to be protective in many models of liver injury (74, 75). A common method of mTOR inhibition involves administration of rapamycin. Rapamycin has anti-proliferative and immunosuppressive effects (76). It also enhances autophagy processes by allosteric inhibition of mTOR complex I (77). The metabolic profiles of animals in this experiment were analyzed histologically through ORO and PAS stains for lipids and glycogen, respectively. The addition of rapamycin blunted the accumulation of hepatic lipids and prevented glycogen depletion, indicative of a protective effect on hepatocyte metabolism.
One possible mechanism by which rapamycin attenuated lipid accumulation is by affording mitochondrial protection from CE. Mitochondrial protection results in unhindered oxidative phosphorylation and β-oxidation. With oxidative respiration intact, the switch to anaerobic respiration (glycolysis) and subsequent glycogen depletion was not required. Additionally, Singh et al. demonstrated that autophagy is crucial for regulating lipid metabolism via an autophagic process unique to lipid droplets, lipophagy (78). Lipophagy is a specific type of autophagy in which lipid droplets are sequestered and enzymatically degraded by lysosomes (79). Lin and colleagues showed that induction of autophagy was protective against both alcohol and NAFLD-induced hepatic steatosis and reduced liver injury (80). Therefore, the results of this model of liver injury suggest that autophagic activity can blunt hepatic lipid droplet formation via lipophagy. FFA are known to be lipotoxic and preventing their accumulation would afford another mechanism of protection by rapamycin administration.

mTOR inhibition attenuates CE-induced liver injury

Upon rapamycin administration, the liver damage and inflammation observed with LPS and CE was significantly attenuated (Figures 6 and 9). Chen et al., demonstrated in a murine model of methionine-choline deficient diet induced NASH, that rapamycin decreased histological damage, decreased *Il-1β* expression, and decreased myeloperoxidase activity, indicative of less neutrophil infiltration (84). Here, rapamycin administration significantly attenuated hepatic mRNA expression of inflammatory markers such as *iNos*, *Il-10*, and *Il-1β*. A significant attenuation of both ALT and AST liver enzymes was also observed.
Histologically, a normal gross morphology and fewer CAE positive cells were observed in rapamycin-administered animals, indicating that, indeed, mTOR is crucial for VC metabolite-induced injury. VC metabolite administration causes mitochondrial damage and, consequently, a decrease in cellular energy levels leading to cell death and injury (22). ROS and RNS, produced by damaged mitochondria, mediate hepatocyte inflammation and account for the increased injury observed. The data support that rapamycin attenuates injury via mitochondrial protection by increasing mitophagy. Mitophagy alleviates the burden of injured mitochondria within the cytoplasm by their degradation, which allows for maintenance of mitochondrial homeostasis and provides protection against enhanced damage (85). Indeed, rapamycin and CE administration caused a significant increase in \textit{Atg5} mRNA expression (Figure 10C), supporting the hypothesis of the autophagic process being active in this model.

In addition to its role in mediating cellular protection, autophagy is a known negative regulator of inflammasome activity (86, 87). Inflammasomes are multi-protein complexes that assemble in the cytoplasm in response to pathogens or cellular damage (88). A major function of inflammasome formation is caspase-1 activation and IL-1β maturation (87). The inflammasome complex NLRP3 is known to be activated by ROS (89) and endogenous damage signals or damage associated molecular patterns (DAMPs) such as high mobility group box 1 protein (HMGB1) and heat shock proteins (90, 91). In this study, rapamycin significantly blunted \textit{Il-1β} expression, which suggests that enhanced autophagy and therefore
elimination of excess, active inflammasomes may be important players in injury attenuation.

Summary and conclusions

In conclusion, the current study demonstrated that VC metabolite exposure may be one factor in a “multiple-hit” phenomenon of liver damage in two different models. mTOR plays a critical role in VC metabolite-induced liver damage. Indeed, its inhibition attenuated indices of liver damage and steatosis. Moreover, mTOR inhibition caused blunting of key inflammatory mediator expression, attenuation of lipid accumulation and prevention of glycogen depletion. Autophagy may be a player in VC metabolite induced liver injury. Indeed, the data support that autophagy afforded mitochondrial protection via mitophagy and provided a more homeostatic lipid metabolic profile through lipophagy and degradation of excess, lipotoxic FFA. Attenuated IL-1β expression with the addition of rapamycin suggests that the inflammasome may be a key regulator in the progression of VC-metabolite induced liver injury. However, further studies are necessary to analyze these mechanisms in greater detail.
Figure 11. Working hypothesis. Upon exposure to VC, 1) reactive solvent intermediates form though bio activation processes and diet-induced obesity decreases their elimination. 2) Through carbonyl stress and the generation of reactive oxygen and nitrogen species (ROS/RNS), solvent metabolites cause ER stress leading to the production of proinflammatory cytokines and mitochondrial damage, which impairs oxidative phosphorylation; the cell increases flux through anaerobic glycolysis to compensate for this loss of ATP yield. The increased demand for glucose depletes glycogen stores 3) acetylCoA is being shunted to lipid synthesis (causing steatosis) rather than β-oxidation, even under conditions of ATP depletion. 4) The combined metabolic stress of solvent metabolite exposure and ATP depletion likely causes 'liponecrosis' associated with increased proinflammatory cytokines and inflammasome activation.
STRENGTHS OF THIS WORK

There are many strengths of this work. This study demonstrated that sub-hepatotoxic levels of the VC metabolite, CE, enhanced liver damage in two separate models of injury. We show that underlying liver injury caused by alcohol is enhanced with co-exposure to CE. We also show that sub-hepatotoxic levels of CE can enhance injury caused by the bacterial endotoxin, LPS. Another strength of this work is identifying a novel role of mTOR in VC-induced liver damage. The hypotheses that autophagy and the inflammasome are involved in VC-induced liver injury are novel and this work lays a foundation for ongoing research with those mechanisms.

The use of whole animal models in this work is also a strength. All of the experiments here were performed in vivo. Liver injury and its mediating factors is a complex process and as such is best observed at the level of the whole organism.
PITFALLS AND FUTURE DIRECTIONS

Further work is needed in order to identify more detailed mechanisms involved in mTOR’s inhibition in VC-metabolite induced liver injury. A major limitation of this study is the 24 hour time point used. Future studies will be conducted in order to analyze mRNA expression at 4 hours post LPS administration, in addition to the 24 hour time point from this study. The time point used yielded necessary insight for establishing this model and determining pathology. However, an earlier time point will aid in gaining mechanistic insight to injury progression. For example, it is foreseeable that we will see more pronounced changes in mTOR and LC-3 protein levels via Western Blot analysis at an earlier time point. Moreover, at the 4 hour time point, we expect to see more significant differences with the rapamycin administered mice versus CE + LPS in both mRNA and protein expression of inflammatory and autophagy markers.

Another limitation of this study was the use of the VC-metabolite, CE. Although CE is a primary metabolite of VC, it is not the parent compound and therefore may not completely recapitulate the effects seen with VC gas.

Future directions include expanding this model to exposing mice to VC gas via an inhalation chamber and a high fat diet (HFD) to induce NAFLD. This will better mimic human circumstances and exposures in the environment. We also aim to examine the effects on mitochondria in response to VC and other factors in
greater depth. Lastly, we are interested in employing rapamycin in the VC-HFD model of liver injury to validate that mTOR is directly involved in injury progression and that autophagy indeed plays a crucial role in damage.

CONCLUSIONS

A paradigm shift has occurred in the past years has been investigating the impact of low, chronic exposures in contrast to high occupational acute exposures. This approach attempts to take into account multiple factors and damaging agents that may contribute to disease status. In this context, the impact of underlying disorders that may modify risk is critical. Liver disease is not contributed to one factor, rather is modified by other mitigating conditions, such as other environmental or genetic factors. This study establishes that indeed, VC-metabolite exposure can have influence over severity of liver injury when co-exposure occurs with other modifying factors.
REFERENCES

63. Occupational Safety and Health Standards. 2016.

64. Borders TF, Booth BM. Rural, suburban, and urban variations in alcohol consumption in the United States: findings from the National Epidemiologic...

ABBREVIATIONS

VC Vinyl chloride
ATSDR Agency for toxic substances and disease registry
PVC Polyvinyl chloride
TASH Toxicant associated steatohepatitis
FLD Fatty liver disease
ALD Alcoholic liver disease
NAFLD Non-alcoholic liver disease
LPS Lipopolysaccharide
CE Chloroethanol
FFA Free fatty acids
TNFα Tumor necrosis factor alpha
IL-6 Interleukin-6
IL-10 Interleukin-10
CAA Chloroacetaldehyde
ROS/RNS Reactive oxygen species, nitrogen species
Atg Autophagy related
mTOR Mechanism target of rapamycin
ALT Alanine transaminase
AST Aspartate transaminase
H&E Hematoxylin and Eosin
CAE Chloroacetate esterase
TUNEL Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling
ORO Oil-Red O
PAS Periodic Acid Schiff
NLRP3 NLR family pyrin domain containing 3
LC-3 Microtubule associated protein-1 light chain 3
HMGB-1 High mobility group box-1
DAMP Damage associated molecular pattern
CURRICULUM VITAE

Anna L. Lang
Department of Pharmacology and Toxicology
University of Louisville
Louisville, KY 40292
Email: allang02@louisville.edu

Education

05/2013 B.S. in Biology, Genetics, Molecular and Cellular Track, Cum Laude
Northern Kentucky University, Highland Heights, KY

Present M.S/Ph.D in Pharmacology and Toxicology
University of Louisville, Louisville, KY

Professional Memberships and Activities

2011-2013 SOT Undergraduate Student Affiliate
2015-current SOT Graduate Member

Honors and Awards

2009-2013 David and Ruth B. Iler Scholarship
2012 First Place in Best Poster Presentation: Undergraduate Student. Ohio Valley Society of Toxicology, Columbus, OH
2013 Pfizer Undergraduate Student Travel Award funded travel to SOT annual meeting, San Antonio, TX
2013 Graduation B.S. (Cum Laude), Northern Kentucky University, KY
Abstracts and Presentations

Oral Presentations

1. Research seminar, 03/2015. Vinyl Chloride enhances alcohol-induced liver injury. University of Louisville, Department of Pharmacology and Toxicology, Louisville, KY

Posters

1. Poster, 09/2012 “Impaired motor function in Cyp1a1_Cyp1a2(-/-) double knockout mice” Ohio Valley Society of Toxicology, Columbus, OH.
2. Poster, 03/2013 “Impaired motor function in Cyp1a1_Cyp1a2(-/-) double knockout mice” Society of Toxicology (SOT), San Antonio, TX. (Pfizer Undergraduate Travel Award)
3. Poster, 06/2015 “Effect of vinyl chloride metabolites on alcohol-induced liver injury” Ohio Valley of Toxicology Summer Meeting, Cincinnati, OH.
4. Poster, 10/2015 “Inhibiting mammalian target of rapamycin (mTOR) via rapamycin blunts liver damage caused by VC metabolites in mice” Research! Louisville, Louisville, KY
5. Poster, 03/2016 “Inhibiting mammalian target of rapamycin (mTOR) via rapamycin blunts liver damage caused by VC metabolites in mice”, Society of Toxicology, New Orleans, LA

Abstracts

2. Anders LC, Bushau AM, Douglas AN, Lang AL, Falkner KC, Arteel GE, Cave MC, McClain MJ and Beier JI (2014) Exposure to Vinyl Chloride Metabolites Exacerbates Liver Injury Caused by High Fat Diet in Mice. Research! Louisville annual meeting, Louisville, KY. (Basic Science Research Faculty Award)
Into Vinyl Chloride-Induced Liver Injury. OVSOT annual meeting, Dayton, OH.

10. Lang AL, Kaelin BR, Yeo H, Hudson SV, McKenzie CM, Sharp CN, Poole LG, Arteel GE, and Beier JI (2015) Inhibiting mammalian target of rapamycin (mTOR) via rapamycin blunts liver damage caused by VC metabolites in mice. Research! Louisville annual meeting, Louisville, KY.

rapamycin (mTOR) in liver damage caused by VC metabolites in mice.
SOT Annual Meeting, New Orleans, LA.

Publications
