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ABSTRACT

A NON-INVASIVE DIAGNOSTIC SYSTEM FOR EARLY ASSESSMENT OF ACUTE

RENAL TRANSPLANT REJECTION

Mohamed Nazih Mohamed Ibrahim Shehata

July 15, 2016

Early diagnosis of acute renal transplant rejection (ARTR) is of immense impor-

tance for appropriate therapeutic treatment administration. Although the current diagnostic

technique is based on renal biopsy, it is not preferred due to its invasiveness, recovery time

(1-2 weeks), and potential for complications, e.g., bleeding and/or infection.

In this thesis, a computer-aided diagnostic (CAD) system for early detection of

ARTR from 4D (3D + b-value) diffusion-weighted (DW) MRI data is developed. The

CAD process starts from a 3D B-spline-based data alignment (to handle local deviations

due to breathing and heart beat) and kidney tissue segmentation with an evolving geometric

(level-set-based) deformable model. The latter is guided by a voxel-wise stochastic speed

function, which follows from a joint kidney-background Markov-Gibbs random field model

accounting for an adaptive kidney shape prior and for on-going visual kidney-background

appearances. A cumulative empirical distribution of apparent diffusion coefficient (ADC)

at different b-values of the segmented DW-MRI is considered a discriminatory transplant

status feature. Finally, a classifier based on deep learning of a non-negative constrained

stacked auto-encoder is employed to distinguish between rejected and non-rejected renal

transplants. In the “leave-one-subject-out” experiments on 53 subjects, 98% of the subjects

were correctly classified (namely, 36 out of 37 rejected transplants and 16 out of 16 non-

rejected ones). Additionally, a four-fold cross-validation experiment was performed, and
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an average accuracy of 96% was obtained. These experimental results hold promise of the

proposed CAD system as a reliable non-invasive diagnostic tool.
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CHAPTER I

EXISTING TECHNIQUES FOR THE ASSESSMENT OF RENAL REJECTION: A
SURVEY

The kidney is a very important complicated filtering organ of the body. Many com-

plications and diseases can arise in this organ. One such disease is chronic kidney disease

(CKD), which is a gradual loss of function of the nephrons. When the kidney reaches stage

5 chronic kidney disease, end stage renal failure, the preeminent therapy is renal trans-

plantation. Although it is the best form of treatment, the dearth of kidney donors is still

challenging. Therefore, all efforts should be employed to prolong the survival rate of the

transplanted kidney. However, graft dysfunction (e.g., acute rejection) is one of the serious

barriers to long term kidney transplant survival. Currently, graft dysfunction’s gold stan-

dard of diagnosis is renal biopsy. Although renal biopsy is helpful, it is not preferred due to

its invasive nature, high morbidity rates, and expensiveness. Therefore, noninvasive imag-

ing techniques have become the subject of extensive research and interest, giving strong

promise to replace, or at least to decrease, biopsy usage in diagnosing graft dysfunction.

This chapter will discuss not only the kidney anatomy, chronic kidney disease, treatment,

and current diagnosis but also the state-of-the-art imaging techniques in diagnosing graft

dysfunction.
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A. Introduction

The kidney is a very important organ. It is the main filtration organ in the human

body, keeping the nutrients that the body needs in and expelling the waste that can become

toxic. Maintaining the health of this organ is critical. There are diseases that can cause

the kidney to decrease in function such as diabetes, hypertension, glomerular disease, and

polycystic kidney disease [3]. These can cause a gradual loss of function in the kidney lead-

ing to waste build up in the body and the patient to develop chronic kidney disease (CKD).

CKD affects about 26 million people with 17,000 transplants being performed each year

in the U.S. [4, 5]. Though this has greatly improved the outcome of patients diagnosed

with stage 5 CKD, complications can still arise. One of the main concerns is graft dys-

function. Routine post-transplantation clinical evaluation of kidney function is of immense

importance to prevent the graft loss. The diagnostic technique currently recommended by

the National Kidney Foundation (NKF) to measure overall kidney function is Glomerular

Filtration Rate (GFR), which is based on measuring the serum creatinine level. However,

this test has low sensitivity and is a late marker for renal dysfunction (a significant change

in serum creatinine level is detectable only after the loss of 60% of renal function), and

it does not assess the function of individual kidneys. The current gold standard for diag-

nosing different types of kidney dysfunction is needle biopsy [6]. However, this can be

difficult, costly, and time-consuming. Renal biopsy can also result in complications such as

infections, bleeding, and at times, death. With the evolution of computer-aided diagnostic

(CAD) systems, we hope to non-invasively diagnose different types of graft dysfunction,

saving time and money. This chapter will give an overview on how CKD is treated and

kept viable in post-transplantation when it is affected by graft dysfunction. Thus, the need

for new noninvasive techniques which have the capability to provide accurate diagnosis of

kidney dysfunction is of great clinical importance.

This chapter presents an overview of current clinical techniques for renal transplant

function evaluation as well as an examination of new ways to improve the detection of

graft dysfunction using image-based technology [7]. The rest of this chapter is organized
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as follows: Section I.B provides a brief overview of the anatomy and function of the kid-

ney. Section I.C takes a closer look at who is more at risk for developing CKD and some

symptoms associated with it. In addition, an overview of the treatment options for people

that develop stage 5 CKD will be given, concentrating on transplantation as a definitive

therapy. Section I.D takes a look at follow-up post transplantation care, which includes

possible complications that could arise with a concentration on graft dysfunction. Sec-

tion I.E will concentrate on tests that are performed to detect graft dysfunctions including

the traditional methods such as blood, urine, and renal biopsy. This is followed by the

image based techniques such as ultrasound, and magnetic resonance imaging (MRI).

B. Kidney Anatomy and Function

As stated before, kidneys are the main filtration system in the body. Kidneys are

able to keep nutrients like salts, sugar, and protein in, while at the same time expelling

excess nutrients, water, and waste such as urea and ammonia out of the body. Kidneys

keep human bodies in a homeostatic state. They regulate the blood’s pH, blood pressure,

and osmolality. Osmolality is the amount of particles of solutes that are dissociated in a

solvent [8]. Each kidney is shaped like a bean and is about the size of a fist [9] and weighs

about 150 g [10]. They are located in the lower back below the rib cage.

As shown in Figure 1, the kidney is composed of an outer ”shell”, which is the renal

cortex; an inner layer, the renal medulla; and a hollow area where the urine is collected,

the renal pelvis [10] . Inside the cortex and medulla are the filtration units known as the

nephrons (see Figure 2), which are then made up of smaller subunits such as the glomerulus,

vasa recta, and loop of Henle [10]. Since the kidneys must filtrate the blood, they must be

connected to veins and arteries. The kidneys are connected to the renal artier and vein

which are connected to the iliac artery and vein, respectively. That is the general overview

of the anatomy of the kidneys, now this chapter will trace the filtration pathway of the

blood. The blood enters the kidney by way of the renal artier. Once there, the blood moves

to the nephrons of the cortex where the blood then enters the afferent arteriole which allows

3



FIGURE 1: Coronal cross-section of a normal kidney with labeled anatomy.

the blood to enter in the glomerulus. The glomerulus is then able to filter out waste through

the assistance of blood pressure. This waste is filtered into the Bowman’s capsule. From

the Bowman’s capsule the waste moves to the proximal tubule then to the Loop of Henle

and thin segment, which can be found in the medulla. At these places in the nephron, more

filtration can be done. From here, waste moves to the distal tubule then the collecting tubule

and finally into the renal pelvis. The waste that ends up in the renal pelvises will then move

through the ureter to the bladder and then out of the body by way of the urethra. The clean

blood exits the glomerulus by way of the efferent arteriole. Once there, more filtration can

be done in the Peritubular capillaries where the blood could also move down the Vasa recta

in the medulla; nutrients that were filtered out by the loop of Henle and thin segment can

be resorbed there. The blood then exits through the venules and then through the arcuate

veins, and finally leaves the kidney through the renal vein. The clean blood can then travel

4



FIGURE 2: A nephron structure with labeled anatomy and pathway of filtration.

back to the heart [10]. As one can see, this organ is very complex and with this complexity

many problems can arise. In the next section this chapter will discuss what can go wrong

and who is at risk of developing these complications.

C. Renal Problems/Symptoms and Treatment

The renal system is a very complex system, in which various complications and

diseases can arise pertaining to it, especially with the kidney. There are multiple condi-

tions and/or diseases that can arise in the kidney such as kidney stones, injury, infections,

and cancer. The focus of this chapter will be on CKD, the 9th leading cause of death in

America [11]. CKD is a gradual loss of function of the kidney, where the nephrons become

compromised [4]. To date, 26 million people in the U.S. are living with CKD [4]. The

risk of developing CKD could be increased due to a few different factors such as various

physiological conditions, diseases, age, race, lifestyle, and family history. Conditions that
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increase the likelihood of developing CKD include diabetes, high blood pressure, heart dis-

ease, and high cholesterol [12]. People with the following diseases are at increased risk of

CKD; HIV, Hep C, Metabolic syndrome, cancer, and sickle cell trait [13]. Individual 65

years or older are also more at risk. African Americans tend to also have a greater risk com-

pared to the rest of the population [12]. Lifestyles that increase risk include obesity [14]

or smoking [12]. The last risk factor is family history; if a patient has a parent or family

member with CKD they have a greater chance of developing the disease [12]. People with

these risk factors should be aware and contact their doctor if any of the following symptoms

become present. In early stage CKD the patient may be asymptomatic but as the disease

progresses, kidney function will worsen and symptoms will develop. Symptoms can in-

clude change in urination, whether it changes in frequency, feeling, color, or texture. The

urine can also start to contain blood [15]. Apart from the change in urination, symptoms

can include limb swelling, iron build up that can cause nose bleeds and bad breath [15]. As

the disease progresses infection-like symptoms can arise [16]. CKD can have an effect not

only on the body but also on mental state and activity level. These symptoms can include

fatigue, generalized weakness, decreased libido, change in memory [16], and a decline in

mental function [15]. More rare but more serious symptoms may include rash, generalized

pain, chest pain, and shortness of breath [15–18]. If a patient should have any of these last

symptoms, he/she should seek immediate medical attention. Every patient is different and

there is no set relationship between symptoms and the stage of the patient’s kidney disease

[16]. As stated before, if one should develop any of these symptoms, he/she should talk to

their doctor about checking for CKD. If left untreated, symptoms could worsen and kidney

failure will advance to stage 5 CKD. The untreated patient with stage 5 CKD could die due

to the build up toxins in the body. To prevent this from happening, the patient should be

treated with dialysis or transplantation.

Luckily, there have been developments in treatments for patients with stage 5 renal

failure. Those treatments include blood dialysis or renal transplant. Blood dialysis is when

one’s blood is filtered of waste or excess water, either with use of a machine outside the

body (hemodialysis) or chemically inside the body (Peritoneal Dialysis) [19]. Though
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dialysis is a helpful treatment, a more long term treatment would be kidney transplantation.

This is where a donor’s kidney is surgically inserted into the CKD patient. That new kidney

should improve filtration for the patient. Since transplantation is the definitive therapy

for End-Stage Renal Disease (ESRD), the following describes in more detail the kidney

transplantation procedure and associated complications and diseases.

As previously stated, renal transplantation is a surgical procedure where a donated

kidney is placed inside the patient with CKD. However, it does not mean that a nephrectomy

(i.e. removal of the malfunctioned kidney) is performed on the patient with CKD. The

patient with CKD usually gets to keep both of the kidneys, unless those kidneys are causing

pain or other complications [20]. This means that the patient will have three kidneys after

the procedure. The donated kidney also has its own ureter, renal artery, and vein intact.

The donated kidney is placed below (distal of) the native kidneys with the donated ureter

connecting to the bladder, and the renal artery and vein connecting to the iliac artery and

vein of the patient, respectively [21]. Figure 3 demonstrates the entire anatomy of a patient

renal system after transplantation.

This procedure seems fairly simple in concept. However, the process to find that

donor can be fairly complicated not only medically and logistically but also due to legal

hurdles. There are two different types of donors that can be used for CKD; cadaver and

living donors. Only one third of the transplantations are from living donors while two thirds

of the transplantations are from cadaver donors [22]. Often, the physician and the CKD

patient must decide whether to use a living or a cadaver kidney. Often a more desirable

choice would be to have a living donor give one of their kidneys. However, this is not

without its complications. The donor must meet all criteria such as being HLA (+or−)

and/or ABO compatible, physically in good health, and be in no way coerced against their

will to donate [22, 23]. This means that the donors can back out at any time. This is why

even if there is a willing living donor the physician may persuade the patient to get on the

United Network of Organ Sharing (UNOS) [24]. Depending on where the patient is on the

list determines if and when they will receive a donor. The donated kidneys from this list

are from cadaver donors. In order for the cadaver’s kidney to be viable the kidney must
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FIGURE 3: Anatomy of renal system of a patient after kidney transplant.

be functioning before death and the manner of death must not damage the organ. Also the

time and location of death may play a part since the kidney must not decompose before the

kidney can be donated [22]. In the United States, the living donors must be willing to give

up their kidney, cadaver donors must also make it clear that they are willing to be a donor

after death. With all of these criteria, it is no wonder that although there are about 17,000

kidney transplants performed annually in the United States, there are still about 100,800

people waiting for a kidney. With this in mind, it is very important that the transplanted

kidney is kept viable as long as possible so that a nephrectomy and repeat transplantation do

not have to be performed [5]. In the following section, an overview on what happens during

post-transplantation care should be given, which in turn should improve the viability of the

organ post-transplantation. This includes follow up procedures and the complications that

arise for transplant patients.
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D. Post-Transplant Follow-Ups and Complications

Just as with any medical procedure complications can arise such as infection and

bleeding. so one must remain in constant care of one’s physician. They must continue

follow ups to insure that the new kidney is functioning and that new complications do not

arise. To prevent new complications from arising, the patient should follow the instructions

of their physician by taking their anti-rejection medications and visiting their physician as

directed [25]. The frequency at which a patient has to visit their physician will decrease as

time after transplantation increases. Once the patient has reached 210 days post-operatively,

they should be seeing their physician monthly or if abnormalities arise [26]. During those

clinical visits various tests such as examining the patient’s weight, blood pressure, and

temperature will be done to assess both the overall health of the patient and the health of

the kidney. The urine and the blood tests will be discussed later in this chapter. If these

tests appear abnormal, the physician may order a renal biopsy and/or scans [27]; both will

be discussed in greater detail later on in the chapter. For now, this chapter will concen-

trate on the complications that can arise during these tests, specifically those complications

that are associated with (renal) transplants. This Section will take a look at those types

and concentrate specifically on graft dysfunction. First, this chapter will explain types of

complications other than graft dysfunction.

1. Types of Complications

There are six categories of complications including: urological complications, vas-

cular complications, fluid collection, neoplasms, recurrent native renal disease, and graft

dysfunction. This section will take a short look at the first five complications then the

next section will go a little more in depth for graft dysfunctions. The term urological

complications generally refers to uncontrolled or obstructed urine flow [28, 29]. Vascular

complications are complications that are associated with the vascular system of the renal

system, i.e. renal or iliac artery/vein. Vascular complications can include narrowing, block-

age or formations of holes in the vascular system [30]. Fluid collection is closely related
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to urological complications and/or vascular complications in that if there is a urological or

vascular complication, fluid such as blood or urine will collect in areas where they are not

supposed to be collecting. This will create urinomas hematomas, abscesses, or lymphoce-

les [29–31]. Neoplasms are abnormal growth such as tumors that grow on the renal system

and other areas. This is said to be caused by the prolonged exposure to immune repressor

drugs [30, 32, 33]. Lastly, recurrent native renal disease is when the disease that caused the

patient to develop CKD in the first place, such as diabetes, is now affecting the donated

kidney [34, 35]. It is possible for the patient to develop a combination of these complica-

tions. It is important that for any of these complications, diagnosis and treatment are done

as soon as possible. Most of these complications are usually easier to detect as compared

to graft dysfunction. This is because these complications can be detected using various

imaging techniques such as ultrasounds and MRIs [36]. These imaging techniques will

be discussed later on in this chapter but the concentration will be more on graft dysfunc-

tion. The complication and cause that is more challenging to diagnose is graft dysfunction,

which shall be examined next.

2. Graft Dysfunction

Graft dysfunction simply means that the newly transplanted organ is no longer func-

tioning, toxins then build up, and the body rejects the transplanted organ [30]. It was cal-

culated that within the first five years post transplantation, 15% of patients will experience

graft dysfunction [37]. There are three classes of graft dysfunction: hyperacute, acute, and

chronic. The type of graft dysfunction is differentiated by the mechanism and somewhat

by the time of dysfunction onset [38]. Hyperacute rejection is relatively rare nowadays.

This class of rejection is caused by antibodies attacking the donated organ due to the donor

organ having the wrong HLA (+or−) and/or ABO blood antigen and will present itself

within in minutes or hours after transplantation [23]. There is no cure for hyperacute re-

jection [39]. Chronic kidney rejection’s mechanism is not well understood but appears to

present itself after five years post-transplant [23]. The main concentration in this chapter
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will be on Acute Kidney Rejection (AKR). Just as there are different types of complica-

tions in renal transplant, there are different causes of graft dysfunction. This can provide

somewhat of a challenge in diagnosis and treatment. This is due to the fact that there is

a different treatment for each cause of graft dysfunction. There are four different causes

of graft dysfunction; they include: acute tubular necrosis (ATN) antibody-mediated re-

jection, T-cell mediated rejection, immunosuppressive toxicity (ITox), and viral infection

(VI). ATN is when the antibodies of the patient recognize the newly donated kidney as a

foreign body causing the tissue to become necrotic and die. It is treated with a drug therapy

regimen that may include plasmapheresis, mycophenolate mofetil, and tacrolimus [40–42].

T-cell is when killer T-cells attack the donated organ causing apoptosis in the tissue [38].

The treatment for T-cell mediated rejection includes drugs such as corticosteroids, antithy-

mocyte globulin, and immunosuppression therapy. If the patient has antibody-mediated

rejection, they may not respond to the T-cell mediated rejection treatment [43–45]. Im-

munosuppressive toxicity is when the immunosuppressive drugs that are supposed to be

preventing the immune system from rejecting the donated kidney actually cause renal fail-

ure since these drugs can be nephrotoxic. Treatment for this would be to cease or change

the medication, cease, or to reduce the dose of the nephrotoxic drug such as Cyclosporine

and tacrolimus [46–48].VI is when viruses such as Cytomegalovirus or Herpes simplex

virus enters the body and damages the kidney [49]. Treatments for VI may include admin-

istering immunosuppressant and/or antiviral medications [40]. The causes of AKR can be

presented singularly or in combination, which can add to the difficulty in diagnosing the

cause of AKR. How the cause of these graft dysfunctions are diagnosed will be discussed

in the next section of this chapter.

E. Detection/Assessment of Renal Rejection

It is important that the patient keeps regular visits with their physician in order to

ensure that their newly transplanted organ is in working order. The post-transplantation

follow-ups’ main concern is to keep the graft viable for as long as possible. If the patient
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continues regular follow-ups and notifies the physician of any symptoms that arise, it is

possible that they can catch the problem early and save the donated organ. This chapter will

give an overview of the existing techniques/methods for diagnosing graft dysfunction. This

includes both traditional, non-imaging, clinical methods, and the imaged-based techniques

that are in use but are still being developed and/or improved for use. More details about

both methods are given below.

1. Traditional Methods

Traditionally, during a routine follow-up a blood and urine analysis will be imple-

mented. If there are any abnormal results in either of these, the physician may order a renal

biopsy to get a definitive diagnosis. This diagnosis should also tell the physician what

is causing the kidney malfunction. This next section will show how these diagnoses are

determined. First, this chapter will discuss urine testing.

a. Urine Tests This method is very simple in use. It can test for multiple sub-

stances and is non-invasive. Using the patients urine, the physician is able to measure a

number of biomarkers to determine GFR. Most often the biomarker used to calculate GFR

is serum creatinine. To calculate GFR, the concentration of creatinine found in the urine

sample is placed into an equation which has constants that change based on sex, race,

and age. Using the calculated GFR, one is able to determine what stage of function the

kidney(s) are in, 0 being at an increased risk and 5 being end stage renal failure [50, 51].

This diagnostic technique is currently recommended by the NKF to measure overall kidney

function. However, this test has low sensitivity and is a late marker of renal dysfunction (a

significant change in serum creatinine level is detectable only after the loss of 60% of renal

function), and it does not assess the function of individual kidneys [6]. The next test that

shall be discussed will be a blood test.

b. Blood Test/Works This method is similar to urine in that it measures esti-

mated GFR using serum creatinine. However, since it does pierce the skin when obtaining

the blood, this test is slightly more invasive. A complete blood count and differential count

12



(CBC and diff) [52] measure more substances than urine including detecting the presence

of burred blood cells which can be present in patients with CKD. Burr cells are blood cells

that appear almost gear like. They appear when there is an excess amount of waste in

the body, which is likely to happen in patients with CKD [53, 54]. Though it has slightly

more benefits than a urine test, it has the similar setback in that the test has low sensitivity

and is a late marker of renal dysfunction and it does not assess the function of individual

kidneys [6]. The last traditional method that shall be discussed is a renal biopsy.

c. Biopsy (Gold Standard) Renal biopsy is a traditional method for the graft

function assessment that is by far the most invasive, but to date is considered the gold

standard. This procedure is performed using a renal biopsy needle that is inserted into the

patient’s back and kidney while being guided by a camera, ultrasound, or x-ray, as shown

in Figure 4 [52]. The tissue that is obtained is read using a microscope [55]. The patient is

fully conscious and asked to hold their breath and to not move [52]; if one should breathe

or move, they run the risk of piercing other organs. Along with the risk of piercing other or-

gans the patient also runs the risk of excessive bleeding and infections. Excessive bleeding

can present itself more so in a patient who is on blood thinners. Infections are likely to oc-

cur since the patient is more than likely on an immunosuppressive therapy regimen [37, 56].

These complications can lead to nephrectomy or even death; both occur in 1 in every 1,000

renal biopsies [37].

Along with the invasiveness of the procedure, there are multiple setbacks that are

associated with this procedure. Renal biopsies, although a useful tool, have the tendency to

give a missed diagnosis or inaccurate estimate of the extent of the problem. This is because

it is only sampling a small portion of the kidney and if off target in the slightest can miss

an effective portion of the kidney and give a false negative. This would mean that a repeat

biopsy may have to be performed causing the patient more pain and precious time lost in

order to save the graft. On the subject of time, the time it takes to obtain the results can

take up to two weeks [57]. That time which could be used for treatment is wasted and

can result in failure of the donated kidney. On top of these setbacks, the financial cost of

the procedure can reach over ($20,000) [58]. So this test cannot only cause physical pain
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FIGURE 4: Illustration of ultrasound-guided renal biopsy procedure.

but also create more of a financial burden. Though these tests have been routinely used

for transplant assessment and have helped in improving graft survival, one can see that

there needs to be a better way to diagnose and differentiate the cause of graft dysfunction.

Additionally, existing techniques, i.e. GFR and biopsy, for diagnosis of renal rejection

are late biomarkers. Moreover, renal biopsy has significant morbidity, is very expensive,

takes up to two weeks to get the final report, and can result in over- or under-estimation

problems by only sampling small areas of the kidney. Therefore, the development of non-

invasive tests to monitor kidney transplant rejection status is of immense importance. This,

in turn, will allow doctors to intervene early to prevent rejection and the damage it causes,

which will improve long-term outcomes. The following section will overview existing

non-invasive imaging techniques and their possible use for assessing renal function and

diagnosing graft dysfunction. In this chapter, the imaging techniques that will be discussed

are ultrasound and MRI.
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2. Image-Based Techniques for Renal Transplant Evaluation

The development of computer-aided diagnosis (CAD) systems for renal transplant

assessment using different imaging modalities is an ongoing area of increased research.

Non-invasive imaging-based techniques have been clinically used to assess transplanted

kidneys with the advantage of providing information on each kidney separately. For exam-

ple, radionuclide imaging (also called scintigraphy), the traditional method in renal imag-

ing, is an excellent modality for evaluating graft function, both qualitatively and quanti-

tatively, while also screening for common complications [59]. However, this technique

fails to show accurate anatomical details due to its limited spatial resolution, so functional

abnormalities inside different parts of the kidney (such as cortex and medulla) cannot be

discriminated precisely [60]. Furthermore, radionuclide imaging includes radiation expo-

sure [61], thus limiting the range of its applications, especially in monitoring such dis-

eases as ATN or cyclosporin [62]. Computed tomography (CT) is a commonly available

technology that uses contrast agents that allows accurate evaluation of various diseases in

renal transplantation and with lower costs than magnetic resonance imaging (MRI) [63].

However, information gathered by CT to detect renal acute rejection is unspecific and the

contrast agents used still are nephrotoxic. Therefore, currently CT has a limited role in di-

agnosing acute renal rejection [64]. In contrast to these radionuclides and CTs, ultrasound

(US) and MRI are the most popular imaging modalities used for the diagnosis of kidney

diseases. In the following sections, an overview of different CAD systems for the diagnosis

of acute renal rejection using these two imaging modalities is given.

3. Ultrasound (US) Imaging

Ultrasound (US) imaging is usually used for the early assessment of renal allografts

functionality in the postoperative period as well as for the assessment in the long-term

follow-up thanks to being a relatively easy to be performed and repeated, inexpensive, and

non-nephrotoxic imaging modality. [9]. Pulsatility index (PI) and resistance index (RI) are

the most common measurements to assess renal functionality using US. Some recent stud-
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ies that assessed renal transplants using different forms of ultrasound (e.g., power doppler

(PD), color doppler (CD), contrast enhanced (CE), etc.), please see Figure 5) are discussed.

FIGURE 5: An example of different ultrasounds.

In an investigation to characterize the factors that influence PI and RI in patients

with immediate (IGF), slow (SGF), or delayed (DGF) kidney graft function, Chudek et

al. [65] observed that ischemic injury which occurred mainly prior to organ harvesting

played a dominant role in determining intra-renal resistance in the early post-transplant

period. A study by Saracino et al. [66] investigated whether the long-term renal func-

tionality could be predicted using RI measurements taken early after kidney transplant.

On the other hand, Kramann et al. [67] concentrated in their study on evaluating the po-

tential of RI measurements to predict renal allograft survival. They concluded that, for

prediction of long-term allograft survival, RI measurements should be taken 12-18 months

post-transplantation. Krejčı́ et al. [68] utilized a composite gray-scale, CD imaging, and

PD imaging to examine the power of US for early detection of a subclinical acute rejection.

A significant difference between the four different groups in their study was obtained. In

another study by Damasio et al. [69], the ability of doppler US to differentiate between dual

and single kidney transplantation (DKT) and (SKT), respectively, was exploited. After the

measurement of RI parameters for both DKT and SKT groups, they concluded that those

patients with DKT had higher RI and lower kidney volumes than those with (SKT).

A study by Shebel et al. [70] investigated the ability of PD in the differentiation

between acute rejection (AR) and ATN. Their study included 67 renal transplant recipients

in the early post-transplantation period. After a manual placement of regions of interest

16



(ROIs), cortical perfusion (CP) and RI were measured for all recipients and CP was tested

with respect to serum creatinine (SCr) and RI. Upon their own CP grading scale system,

they found a statistical significant correlation between their CP grading and SCr (P <

0.01) and between CP grading and RI (P < 0.05). They concluded that the PD using CP

grading is more sensitive in the detection of early AR compared to RI and cross-sectional

measurements.

Fischer et al. [71] proved the superiority of ultrasound contrast media (USCM) to

conventional US that uses the RI indicator in the diagnosis of early allograft dysfunction. In

addition, Benozzi et al. [72] found that both US and CEUS could identify grafts with early

dysfunction, but only some CEUS derived parameters could differentiate between ATN and

AR. Schwenger et al. [73] exploited the power of CE sonography (CES) in early prediction

of long-term renal transplant functionality compared to CD ultrasonography (CDUS). In

their study, 68 renal transplants were investigated using both CES and CDUS one week

after transplantation. Renal blood flow (RBF) and RI were measured for all transplant

recipients and were correlated with the recipients’ clinical data represented by glomeru-

lar filtration rate (GFR) in a post-transplantation period from one week to one year. They

concluded from their observations that RBF measurement using CES was significantly cor-

related with kidney functionality in the aforementioned period after transplantation, in con-

trast with RI measurement using CDUS. Another study was explored by Göcze et al. [74]

to differentiate between acute kidney injury (AKI) stages using CEUS based on the quan-

tification of blood perfusion. Instead of generating time-intensity curves (TIC), they used

another quantification method called arrival time parametric imaging (ATPI). Their study

included 10 patients who underwent CEUS, of which four patients had no evidence of AKI,

one with stage AKI, and five with stage 2 or 3 AKI. Color-maps based on inflow time (IT)

of the contrast agent were generated using the CEUS-ATPI quantification method and were

divided into six major categories based on their values. Then, these ITs were assessed for

different poles of kidney cortex (i.e. lower, middle, and upper) and the total IT was the sum

of all arrival times of these three poles for each kidney. They observed that patients with

stage 2 or 3 AKI have more delayed ITs than those of the other groups. They concluded
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that CEUS-ATPI technique may help in detecting different stages of AKI. Recently, Jin et

al. [75] assessed renal allografts using CEUS. In their study, 57 renal transplant patients

underwent CEUS. Then, they were divided into three groups: 23 patients with AR (group

1), 10 patients with ATN (group 2), and 24 patients with normal allografts (group 3). After

a manual placement of ROIs, a new index to detect AR called rising time (RisT) was mea-

sured instead of arrival time (AT). In addition, time to peak (TTP) and delta time among

ROIs (∆RisT and ∆TTP) were measured, analyzed, and correlated with clinical data (e.g.,

GFR). They found that RisT, TIP, and (∆RisT and ∆TTP) were significantly higher in group

1 as compared to those in group 2 and group 3.

Although several studies utilized US to evaluate and assess renal functionality pre-

and post-transplantation by evaluating conventional ultrasound parameters such as the PI

and RI, two contradictory studies [76, 77] concluded that RI is not an exact indicator of

renal graft dysfunction, and it could only provide a prognostic marker of the graft. More-

over, doppler US may give high PI and RI values (>0.8), which is an indication similar to

those of ATN [78, 79]. These contradictions led researchers and investigators to examine a

different imaging modality to asses renal functionality (e.g., MRI). In the next section, the

state-of-the-art studies utilizing different MR imaging modalities are discussed.

4. Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) has become the most powerful and central non-

invasive tool for clinical diagnosis of diseases [80]. The main advantage of MRI is that it

provides excellent morphological information and offers the best soft tissue contrast among

all imaging modalities (e.g., US and CT), which allows advanced analysis of different as-

pects of renal function. However, structural MRI lacks functional information. On the

other hand, other MRI modalities, such as dynamic MRI, BOLD MRI and diffusion MRI

are frequently used for renal function evaluation. Next, the state-of-the-art studies utilizing

these MRI modalities for renal transplant assessment are overviewed.
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a. Dynamic Contrast Enhanced (DCE) MRI: Dynamic MRI of the kidney has

gained considerable attention in assessing renal function due to its ability to characterize

tissue-specific functional changes, and potential to measure both total and cortical volume,

and other functional parameters such as RBF, GFR, and renal plasma flow (RPF). There-

fore, in recent years several studies have exploited DCE-MRI to non-invasively analyze

kidney function in both native and transplanted kidneys. Figure 6 shows an example of

DCE-MRI before, during, and after the administration of contrast to the kidney.

FIGURE 6: Illustrative example of a DCE-MRI sequence with pre-, post-, and late-

contrast.

In particular, a study by de Priester et al. [81] utilized dynamic MR enhancement

curves to qualitatively evaluate diseased (27 patients) and nondiseased (8 patients) renal

transplants. Cortical and the medullary enhancement parameters were obtained from a

physiological model that was fitted to the raw data. Cortical arterial blood volume and

medullary wash-out rates were found as the main discriminatory parameters between dis-

eased and nondiseased patients. Yuksel [82] introduced a DCE-MRI-based CAD system

for the evaluation of transplant function, which employed deformable image segmentation,

kidney registration, and cortical perfusion construction. After kidney segmentation, a man-

ual cortical ROI is used to construct the perfusion curve from the co-aligned images and the

kidney function is evaluated visually based on the pattern of the constructed curves. Au-

tomated CAD system for early diagnosis of acute transplant rejection by Farag et al. [83]

and El-Baz et al. [84–86] included parametric deformable model segmentation, nonrigid

alignment, and classification of the kidney status using empirical parameters. Their frame-

works were tested on 30 data sets and classified kidney status of each patient using four
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indexes: the peak signal intensity, the time-to-peak, the wash-in slope (slope between the

peak and the first minimum), and the wash-out slope (peak and the signal measured from

the last image in the sequence), calculated from the MRI signal for the kidney cortex. A

supervised Bayesian classifier was employed and the system classified 13 out 15 and 15

out of 15 correctly for both training and testing, respectively. Similar approaches were

proposed in [87–89]. The study utilized a global alignment step of the MR images ex-

ploiting a special Gibbs energy function, and the perfusion curves were estimated from the

whole kidney rather than only the cortex. The latter CADs were tested on a larger cohort

of 100 patients and achieved a 94% diagnostic accuracy using Bayesian supervised clas-

sifier. A semiautomated approach by Rusinek et al. [90] assessed cortical and medullary

functional parameters (RPF, GFR, vascular volumes of the cortex and medulla, and rate

of water absorption) using compartmental modeling for both simulated and in-vivo data.

Their framework employed an initial rigid alignment (translation only) step followed by a

graph-cut based segmentation approach. The system was tested on 22 clinical data sets and

the study concluded that the accuracy and precision in RPF and GFR are acceptable for

clinical use.

Zikic et al. [91] evaluated kidney kinetic parameters after motion correction using

template-matching based registration and normalized gradient field (NGF), as the contrast-

invariant similarity measure. However, the kidney was segmented manually, and the eval-

uation of perfusion parameters (plasma volume and tubular flow) was performed visually

by trained physicians for 10 data sets of healthy volunteers. Semi-automated evaluation of

renal function for both native and transplanted kidneys was explored by De Senneville [92]

using rigid-body registration to handle kidney motion inside a user-defined ROI. The renal

cortex was segmented manually, and the GFR was estimated with Patlak-Rutland tracer

kinetic model. The study demonstrated a significant uncertainty reduction on the com-

puted GFR for native kidneys (10 healthy volunteers), but not the transplanted ones (10

transplant patients). Aslan et al. [93] developed an automated CAD system to classify

normal kidney function from kidney rejection using DCE-MRI. Following kidney segmen-

tation, three classification methods (least square support vector machines (LS-SVMs), Ma-
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halanobis distance, and the Euclidean distance) were compared to assess transplant status

based on medullary perfusion curves. On a cohort of 55 clinical data sets, they a achieved a

diagnostic accuracy, sensitivity, and specificity of 84%, 75%, and 96%, respectively using

the Mahalanobis distance-based classifier. Anderlik et al. [94] proposed a framework for

quantitative assessment of kidney function using a two-step motion correction and pharma-

cokinetic modeling. The GFR was estimated from the time-intensity curves using Sourbron

et al. [95] compartment model. Their framework has been tested on 11 data sets. Zöllner et

al. [96] employed a non-rigid registration using B-splines and mutual information (MI) as

a similarity metric. Functional information was extracted regionally using k-means cluster-

ing [97]. This system was tested on only 4 DCE-MRI data sets and the evaluation of kid-

ney regions was assessed qualitatively according their mean signal intensity time courses.

Wentland et al. [98] utilized MRI-based intrarenal perfusion measurement to differentiate

between normal-functioning kidney allografts and allografts with ATN or AR on a cohort

of 24 biopsy proven patients. The study concluded that the cortical and medullary blood

flow is significantly reduced in grafts experiencing AR, as compared with normal grafts.

Additionally, AR patients demonstrated medullary blood flow reduction as compared with

ATN patients.

Recently, a study by Abou El-Ghar et al. [99] explored the feasibility of DCE-MRI

in evaluation of renal allograft dysfunction. Their CAD system employed computer based

techniques for motion correction and creation of renographic curves. Functional evaluation

on 55 patients using the mean medullary intensity a achieved sensitivity, specificity and

accuracy of 75%, 96% and 84%, respectively, to separate of normal kidneys from impaired

ones. Yamamoto et al. [100] utilized dynamic MRI to prospectively assess its ability to

identify the cause of acute graft dysfunction. Their study employed 60 patients, 31 of which

had normal function and 29 had acute dysfunction due to AR. Their study employed a mul-

ticompartmental tracer kinetic model to estimate the GFR and mean transit time (MTT)

at different compartments of the kidney. The study document differences in the fractional

MTT values between normal grafts or grafts undergoing AR or ATN; however, substantial

overlaps among these groups and with normal kidneys were observed. Semi-automated
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estimation of renal parameters was performed by Hodneland et al. [101]. A viscous fluid

model combined with an NGF-based cost function was used for elastic kidney registra-

tion. However, the kidney was segmented interactively with the nearest neighbor approach,

the framework was tested only on 4 data sets of two healthy volunteers, and the reported

GFR measurements were slightly underestimated relative to the creatinine reference values.

Positano et al. [102] proposed a CAD system for the estimation for renal parameters, which

included a two-step rigid registration, and adaptive prediction of kidney position over the

course of the respiratory cycle. The perfusion indices (peak signal intensity, MTT, initial

up-slope, and time to peak) were evaluated on perfusion curves extracted from the automat-

ically and manually registered data sets and were similar as well. An automated framework

for the classification of kidney transplant status was proposed by Khalifa et al. [103, 104].

In their framework, the kidney was segmented using a stochastic geometrical deformable

model approach and the local motion of the kidney was corrected for by a Laplace partial

differential equation-based nonrigid alignment method [105, 106]. Their initial study [103]

included only 26 data sets, and a K-nearest neighbor classifier was used. Their system

achieved a 92.31% correct classification using the time-to-peak and wash-out slope empir-

ical parameters that are estimated from the agent kidney kinetic curves. Their framework

was extended in [104] by using four augmented empirical parameters (peak intensity value,

time-to-peak, up-slope and average plateau) by the genetic algorithm [107]. Unlike [103],

the parameters were derived from the cortex rather than from the whole kidney and the

system was tested on 50 patients, and the overall diagnostic accuracy increased to 96%

Another study by Khalifa et al. [108] extended the work in [103, 104] by using analytical

function-based model to fit agent cortical kinetic curves. For the classification of kidney

status, five features (three were derived from the gamma-variate functional model and two

are from the perfusion data, namely the time-to-peak and average plateau) were chosen and

the study included 50 transplant patients.

Although DCE-MRI has been employed as a widespread imaging technique to de-

velop several CAD systems for renal transplants assessment purpose, the contrast agents

may implicate nephrogenic systemic fibrosis; thus, many medical centers are reluctant in
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applying the DCE-MRI to patients with renal disease [109]. In order to circumvent this

major drawback, DW-MRI and BOLD-MRI have been recently exploited to assess renal

transplants as they do not involve any use of contrast agents, like DCE-MRI. A brief dis-

cussion of recent renal transplant assessment studies using BOLD-MRI follows as well as

a discussion on other studies that utilized DW-MRI to assess renal transplants.

b. Blood Oxygen Level Dependant (BOLD) MRI: In addition to DCE-MRI,

another imaging technique, called BOLD-MRI, has been utilized to study renal rejection

using the amount of oxygen diffused blood (i.e. oxygen bioavailability) in the kidney to

determine whether it is functioning properly. Specifically, the amount of deoxyhemoglobin

is measured by the apparent relaxation rate (R2*) parameter [110]. Figure 7 shows grey

images and R2* color-maps for a normal kidney and a kidney with graft dysfunction.

FIGURE 7: A simple demonstration of grey and R2* colored images for a normal kidney

and a kidney with graft dysfunction.

In particular, Djamali et al. [111] investigated the ability of BOLD-MRI to assess
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renal allografts. In their study, 23 patients underwent BOLD-MRI scans, of which 5 were

normal allografts and 18 had acute allograft dysfunction (5 with ATN and 13 with AR).

Medullary and cortical ROIs were placed, and mean cortical (CR2*), medullary (MR2*),

and medullary to cortical (MCR2*) were calculated. They found that MR2* and MCR2*

values of patients with ATN and AR were significantly decreased more than those with

normal allografts. However, no differences in CR2* values between the different groups

were observed. In a similar study by Han et al. [112], BOLD-MRI was conducted to

differentiate between patients with AR and ATN after transplantation. Their study included

110 patients, 82 with normal allografts (group 1) and 28 with kidney dysfunction, including

21 with AR (group 2) and 7 with ATN (group 3). Group 2 was divided into two subgroups:

13 patients with T-cell-mediated rejection (TMR) and 8 patients with antibody-mediated

rejection (AMR). Manual ROIs were placed in the cortical and medullary regions, and

CR2*, MR2*, and MCR2* were compared between different groups. They performed a

statistical analysis, and they found that values of CR2*, MR2*, and MCR2* of group 2

were reduced compared to those of the other two groups. Contradictory to the Djamali

et al. [111] study, they found that values of MR2* of group 3 were higher than those of

group 1. However, no significant difference was observed between the TMR and AMR

subgroups.

Sadowski et al. [113] employed BOLD-MRI to assess kidney transplants. Manual

cortical and medullary ROIs were placed on 17 patients who underwent BOLD-MRI scans,

and these patients were divided into three groups: 5 patients with normal allografts (group

1), 4 with ATN (group 2), and 8 with AR (group 3). The MR2* and CR2* were calculated

in the same way as was done in their previous study [111], and compared between the

different groups. Specifically, MR2* values of group 3 allografts were decreased compared

to those of group 1 and group 2, while no significant difference was observed in MR2*

values between group 1 and group 2. However, no difference was detected in CR2* values

among the three groups. Another interesting study by Liu et al. [110] was investigated to

detect renal allograft rejection using BOLD-MRI. A total number of 50 patients with renal

allografts were included and divided into three groups as 35 patients with normal allografts
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(group 1), 10 patients with AR (group 2), and 5 patients with ATN (group 3). After cortical

and medullary ROIs placement, CR2* and MR2* were measured to assess the three groups.

Group 2 had the lowest MR2*, while no significant difference was detected in CR2* values

among the three groups.

Although BOLD-MRI is a valuable imaging technique that has been investigated

by some researchers in detecting renal allografts dysfunction, BOLD-MRI remains chal-

lenging, not only because of the low signal-to-noise ratio (SNR) and the weakness of the

electromagnetic fields [114], but also the limited applicability of renal BOLD-MRI due to

kidney motions and susceptibility induced by bowel gas which may lead to impaired image

quality [115].

c. Diffusion-Weighted (DW) MRI: Recently, DW-MRI has become a subject of

extensive research as an emerging imaging modality for renal function assessment thanks

to DW-MRI’s ability to provide both anatomical and functional information, while avoiding

radiation exposures (like CT) and contrast agents administration (like DCE-MRI). For DW-

MRI, its functional parameter, called apparent diffusion coefficient (ADC), is estimated

from different gradient field strengths and duration (b-values), as shown in Figure 8, to

describe the unique tissue characteristics of inner spatial water behavior [115]. Therefore,

several studies have utilized DW-MRI to assess renal functionality by measuring the ADC

values, but the results have varied [110].

FIGURE 8: A demonstration of a DW-MRI sequence at different b-values.

Eisenberger et al. [116] investigated the manually placed ROIs in the upper, middle,

and lower poles of the cortex and medulla on several slices to cover large regions of the al-

lograft. Means and standard deviations of the ADC from all b-values were measured. The
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ADC combines the perfusion free ADC and microcirculation parameters, quantified with

perfusion fraction, Fp. These parameters were significantly reduced in the cortex and the

medulla for the AR and ATN cases, and their values correlated with the creatinine clearance

(CrCl). Similarly, a recent study by Hueper et al. [117] included 64 patients with renal al-

lografts, of which 33 were patients with initial graft function (IniGF) and 31 were patients

with DGF. These patients underwent DW-MRI scans at two b-values (0 and 600 s/mm2).

After placement of manual ROIs and estimation of renal diffusion parameters, including

ADC and Fp, they concluded that renal diffusion parameters were significantly reduced in

patients with DGF and their values well correlated with renal function and renal allograft

fibrosis in biopsy specimens. The feasibility of diagnosing the acute renal transplant re-

jection (ARTR) from the DW-MRI was evaluated by Xu et al. [118] on 26 biopsy-proven

rejection and 43 non-rejection patients. The non-rejection patients showed higher ADCs

than those of the rejection group, and also demonstrated the best sensitivity and specificity

at the b-value of 800 s/mm2, as was evinced by the ROC curve. Palmucci et al. [119]

evaluated functionality of 21 transplanted kidneys by comparing the estimated ADCs and

true diffusion (TD) with renal function indices. Patients were divided into three groups by

their CrCl values. The cortical ADC and TD were evaluated in a user-defined ROI of the

transplanted kidney for the three groups. A moderate positive correlation between the CrCl

and both the ADC and TD, as well as no difference between the ADC and TD values for

the adjacent groups, has been found. The subsequent extension [120] of these evaluations

to 35 patients revealed a slightly smaller positive correlation than the previously reported

one [119]. However, acute rejection responses after transplantation could not be detected.

Vermathen et al. [121] assessed renal functionality by determining long-term (3

years) stability and potential changes for renal allograft recipients. After selecting cortical

and medullary ROIs, the ADC had been calculated from all b-values. For good allograft,

a significant correlation between different ADC components was observed, whereas for

reduced allograft, the Fp values were the highest, and the medullary Fp had the greatest

changes. Katarzyna et al. [122] investigated possible relations between the selected labora-

tory results and diffusion parameters in the early period after kidney transplantation by mea-
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suring additional exponential ADCs to overcome the DW-MRI T2-“shine-through” [123].

The measurements were conducted in the kidney’s cortex and medulla over multiple user-

defined ROIs at the b-values of 600 and 1000 only. According to relative variability of

results and SNR, the best-quality ADC measurement in the renal cortex was at the b-value

of 1000 s/mm2. Also, there were strong dependencies between the ADC and exponen-

tial ADC, measured in the renal cortex at b1000 s/mm2, and the estimated GFR. Kaul et

al. [124] assessed the renal dysfunction with cortical and medullary ADC maps. They re-

ported a significant decrease in the ADC values of medullas compared to those of cortexes

in normal donor kidneys and normally functioning transplanted kidneys. Both the medulla

and cortex ADCs decreased or increased significantly for a rejection or the recovery from

the rejection itself, respectively. A recent study by Abou-El-Ghar et al. [125] included 70

renal allograft patients who underwent DW-MRI scans at two b-values (0 and 800 s/mm2).

In this case, 49 patients had stable renal allograft function (group 1) and 21 patients had

acute graft impairment (group 2: 10 acute cellular rejection (ACR), 7 ATN, and 4 ITox re-

jection types). An ROI was placed at the middle of the kidney in a single cross-section and

a pixel-wise ADC was calculated. They have shown that the ADC values of group 1 were

significantly higher than those of group 2, and no overlap was detected between the ADCs

of group 1 and the ATN patients of group 2. However, the minimal overlap was observed

between the ADCs of group 1 and the patients with the ACR and IT of group 2. Recently,

Liu et al. [110] detected an early renal allograft dysfunction caused by AR and ATN using

the DW-MRI and BOLD-MRI with manually selected cortical and medullary ROIs. Their

study revealed lower values of both the measured apparent relaxation rates and ADC for

the AR group than for the control groups, and no difference in the ADC values for the AR

and ATN groups. A similar earlier study was conducted by Thoeny et al. [126].
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F. Chapter Summary

Though the treatment of chronic kidney disease has improved greatly with the use

of transplants, there are still challenges such as graft dysfunction that provide a challenge

in maintaining survival of the new organ. In the future, the use of image-based diagnosis

will be improved and implemented in the diagnosis of both pre- and post-transplantation. It

is hoped that by having these improved imaged based CAD systems that diagnosis of graft

dysfunction, along with the cause of graft dysfunction, will be less invasive, more accurate,

time saving, and inexpensive compared to renal biopsies and other traditional methods of

diagnosis. By having all of these advantages it is expected that graft survival will improve

in cases of graft dysfunction.

G. Thesis Organization

This thesis is presented in three chapters. The scope of each chapter is summarized

as follows:

1. Chapter I

This chapter overviews the existing traditional clinical methods and the current

image-based techniques which are used to evaluate and assess renal transplants function-

ality and to detect early signs of graft dysfunction. Additionally, a brief overview is given

in this chapter including: kidney anatomy and functionality, the risk of developing chronic

kidney disease (CKD) and some symptoms associated with it, an overview of the treat-

ment options for people that develop stage 5 CKD, transplantation procedure as a definitive

therapy for these people with stage 5 CKD, and post transplantation follow-ups which in-

cludes possible complications that could arise with a concentration on graft dysfunction.

This is followed by the traditional tests that are performed to detect graft dysfunctions

such as blood, urine, and renal biopsy. Finally, the state-of-the-art image based techniques

which are used in renal transplants’ evaluation and assessment are discussed. These im-
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age techniques include: ultrasounds (US) (e.g., conventional, power doppler (PD), color

doppler (CD), contrast enhanced (CE), etc.) , and magnetic resonance imaging (MRI)(e.g.,

dynamic contrast enhanced (DCE), blood oxygen level-dependent (BOLD), and diffusion-

weighted (DW)).

2. Chapter II

This chapter presents a new computer-aided diagnostic (CAD) system for the early

detection of acute renal transplant rejection (ARTR) using diffusion-weighted (DW) MRI.

The developed CAD system demonstrates multiple novelties including: (i) segmenting kid-

neys from the DW-MRI data in a fully automated mode using geometric deformable mod-

els; (ii) describing kidney functionality with the cumulative distribution function (CDF) of

the ADCs; and (iii) discriminating between rejection and non-rejection renal transplants

with a deep neural network learned by stacking layers of several auto-encoders with non-

negativity constraint (NCAE).

3. Chapter III

This chapter concludes the thesis, highlights the main contributions and obtained

results, and discusses the trend for possible future avenues to be handled.
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CHAPTER II

COMPUTER-AIDED DIAGNOSTIC SYSTEM FOR EARLY DETECTION OF ACUTE
RENAL TRANSPLANT REJECTION USING DIFFUSION-WEIGHTED MRI

A. Introduction

Due to the fact there are up to 17,000 renal transplants per annum in the U.S. and

a limited number of donors [127], the salvage of a transplanted kidney is of serious clin-

ical concern. The immunological response of a patient’s body to a transplanted kidney,

called the acute renal transplant rejection (ARTR), is considered to be the leading cause of

renal dysfunction [127] after the transplantation. An early detection of renal dysfunction

increases the survival rate of the transplanted kidney [110, 125], as confirmed by clinicians.

Therefore, calling for essential medical biomarkers to assess renal transplants, especially at

an early stage, (i.e. before major changes in creatinine clearance (CrCl) and serum plasma

creatinine (SPCR) are detected), is very necessary to distinguish the ARTR from other

diagnoses, including the acute tubular necrosis (ATN) and immune drug toxicity.

Traditional blood tests and urine sampling to evaluate renal transplant dysfunction

cannot assess function of individual kidneys. The glomerular filtration rate (GFR) is based

on measuring the serum creatinine level and has been approved by the National Kidney

Foundation (NKF) to evaluate the overall kidney function. The GFR is a relatively impre-

cise and late marker for renal dysfunction (a significant change in creatinine levels is only

detectable after losing 60% of renal function) [6]. Biopsy, which remains the gold standard

for renal transplant assessment, is an invasive procedure with a high cost and morbidity rate,

and relatively small needle biopsy samples may over- or under-estimate an inflammation

extent in the entire graft [127]. More favorable non-invasive imaging tests provide sepa-

rate information on each kidney. However, the most frequent scintigraphy, preferred for
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its good functional information, has too low spatial resolution [128] and exposes patients

to a small dose of radioactivity because of reliance on gamma-cameras [129]. Computed

tomography provides superior functional and anatomical information, but uses nephrotoxic

contrast agents and exposes patients to radiation as well [128]. These shortcomings have

been circumvented recently by evaluating kidney functions with magnetic resonance imag-

ing (MRI). For example, the dynamic contrast-enhanced (DCE) MRI has been exploited for

renal function assessment due to providing both anatomical and functional kidney informa-

tion [91, 92, 96, 109]. However, because the contrast agents may cause the development

of nephrogenic systemic fibrosis, many medical centers are reluctant in applying the DCE-

MRI to patients with renal disease [101].

In order to circumvent this major drawback, diffusion-weighted (DW) MRI has been

exploited as an emerging imaging modality for renal function assessment. The DW-MRI

measures unique tissue characteristics of inner spatial water behavior, namely, its apparent

diffusion coefficients (ADC). In this chapter, a CAD system for the early detection of ARTR

using DW-MRI is developed, thanks to DW-MRI’s ability to provide both anatomical and

functional information, exposes patients to no radiation, and needs no contrast agents, like

the DCE-MRI. The proposed CAD system demonstrates multiple novelties including: (i)

segmenting kidneys from the DW-MRI data in a fully automated mode (Section II.B.1);

(ii) describing kidney functionality with the cumulative distribution function (CDF) of the

ADCs (Section II.B.2); and (iii) discriminating between kidney rejection and non-rejection

with a deep neural network learned by stacking layers of several auto-encoders with non-

negativity constraint (NCAE) (Section II.B.3). Section II.A.1 below briefly outlines state-

of-the-art techniques in DW-MRI segmentation, followed by Section II.A.2 which reviews

the prior work on assessing the renal transplant function using the ADCs.

1. Prior Work on DW-MRI Segmentation

The process of segmenting kidneys from the DW-MRI has not been addressed yet.

In literature, only known applications to other anatomical structures, such as the brain, the
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prostate, and the liver, can be reviewed.

Brain segmentation. To segment the brain tissue in a fully automated mode, Yap et al. [130]

used voxel-wise compartmental coexistence modeling of various diffusion features. After

possible signal contributions from different brain tissues are assigned to each voxel using

diffusion exemplars, each voxel is classified in accordance with the least fitting residual.

Mujumdar et al. [131] segmented stroke lesions by using the Chan-Vese [2] deformable

boundary guided with the Mumford-Shah functional. An automated window-based noise

suppression at high b-values was conducted to enhance local contrast of the candidate le-

sions. Automated region growing by Saad et al. [132, 133] integrated homogeneity criteria

and simple statistical regional features, such as the mean signal intensity and the number of

pixels. However, both this approach and its semi-automated variant could not fully charac-

terize the tumor lesion. Saad et al. [134] explored an automatic brain lesion segmentation,

which starts from the DW-MRI normalization, background removal, and enhancement.

Then both regional and boundary information, combined with statistical texture descrip-

tors extracted from a collected gray level co-occurrence matrix, were used to guide the

segmentation of brain lesions (e.g., hyperintense or hypointense). To segment near-tubular

fiber bundles from the DW-MRI, Niethammer et al. [135] performed global statistical dif-

fusion orientation modeling that utilized optimal paths or simple streamlining to obtain

geometric information. Convex approximation of the probabilistic Chan-Vese energy [2]

was employed using region-based directional statistics.

Prostate segmentation. McClure et al. [136] used geometric (level-set-based) deformable

boundaries and nonnegative matrix factorization (NMF) for an automated prostate seg-

mentation from the DW-MRI. The NMF integrated the DW-MRI intensity, a prostate shape

prior, and pairwise spatial interactions between the prostate voxels. The like segmentation

and maximum a posteriori decisions were used by Firjani et al. [137] for early detection of

prostate cancer. An unsupervised level-set-based prostate segmentation by Liu et al. [138]

applies a shape penalty term described by an elliptical deformable boundary to initialize

and constrain the level-set function. The latter is then refined by connectivity and morpho-

logical analysis. Subsequently, their framework was extended to account for the 3D ADC
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images derived from the original DW-MRI [139]. After an initial coarse segmentation,

a shape prior weighting parameter is selected automatically, and refining morphological

operations are performed to obtain the final segmentation map. Ozer et al. [140] tuned

thresholds of support vector machines (SVM) and relevance vector machines (RVM) to

classify “multispectral” MRI data, e.g., dynamic MRI, quantitative T2 MRI, and DW-MRI,

for automated prostate segmentation in accordance with an user-defined performance cri-

terion, such as optimal accuracy, maximal sensitivity, etc. Then, the best performance was

obtained by using a first-order polynomial kernel in the SVMs and RVMs. A fuzzy Markov

random field (MRF) modeling of the like multispectral MRI prostate data allowed Liu et

al. [141] to simultaneously perform an unsupervised prostate segmentation and MRF pa-

rameter estimation.

Liver segmentation. Veeraraghavan et al. [142] applied simultaneous segmentation and it-

erative registration to the liver DW-MRI data. At each iteration, the rigid global affine

registration is followed by the the fine non-rigid B-spline-based registration. A sequence

of transformations is used to most accurately align the individual b-value images to the

reference image, the modified Housdorff distance (MHD) being a similarity metric. Then,

a GrowCut optimization segments the whole volume of interest after one or more 2D slices

were manually segmented in the reference image. Stephen et al. [143] developed a semi-

automated lesion segmentation and ADC estimation. For every given set of patient images,

a large rectangular ROI is created only once manually by the analyst in one of the images,

ensuring that the lesion is within the ROI in all of the images for all the b-values and some

pixel within the lesion region is marked as a seed. For each image, an empirical proba-

bility distribution pixel intensities inside the ROI is approximated with a finite Gaussian

mixture (FGM), a Markov-Gibbs random field (MGRF) model is built to quantify spatial

pixel-to-pixel dependencies (interactions), and these two statistical descriptors are com-

bined to segment the lesion within the ROI for each image. To improve the segmentation,

geometric convexity constraints of a lesion are taken into account. A semi-automated joint

liver segmentation and alignment framework by Veeraraghavan and Do [144] begins from

a sequential least-squares alignment of the images. Then various structures in a randomly
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selected reference image are manually segmented, starting from user-drawn lines on these

structures. The closest image, selected with mean-shift tracking and aligned to the refer-

ence image using non-rigid B-spline-based deformations, is selected as the new reference

image, and the process is repeated for all remaining images in the sequence. Jha et al. [145]

developed an automated statistical clustering approach for segmenting liver lesions. The

DW-MRI intensity distribution is approximated by an FGM, such that its number of Gaus-

sian components (classes) is determined by measuring the approximation error, and an

MRF model is used to quantify spatial pixel interactions, as well.

2. Prior Work on Renal Function Assessment

Prior related work on renal function assessment using DW-MRI has been cov-

ered in details in Chapter I (Section I.E.4.c).

In total, several clinical studies have been conducted for the assessment of renal

function. However, they have some limitations. All the approaches employ manual delin-

eation of the kidney using 2D ROIs, which is subjective and depends on user knowledge of

anatomy. In addition, these methods did not compensate for the kidney motion since they

did not account for the entire kidney. Furthermore, several of these studies performed only

statistical analysis to investigate the significant difference between pairs at certain b-values

and did not integrate all the analysis steps into a whole framework to build a fully auto-

mated CAD system. Finally, the studies mentioned above did not investigate the fusion of

ADCs at multiple low and high b-values.

As an initial idea to overcome these limitations, a recent study to distinguish be-

tween rejection and non-rejection renal transplants was made by [146]. Their study in-

cluded 36 renal transplants of which 6 were non-rejection and 30 were rejection. Af-

ter DW-MRI data motion correction using a 2D B-splines approach, they segmented the

largest coronal cross-section of the kidney using a fully automated level sets segmentation

approach. Then, they calculated the ADCs at different b-values from the segmented coro-

nal cross-section for each subject. By using a leave-one-subject-out scenario along with
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a KStar classifier, they got a 87% total classification accuracy. In addition, they depicted

color-maps from the calculated ADCs for the visualization purpose at different b-values.

However, this study did not compensate for kidney motion as as it did not account for the

entire kidney volume. In addition, it did not investigate the fusion of multiple ADCs at

multiple low and high b-values for the entire kidney volume.

These initial promising diagnostic results obtained by [146] was the trigger to ex-

tend this work to overcome all of the aforementioned shortcomings. Therefore, a 4D (3D

+ b-value) fully automated CAD system has been developed [147, 148], shown in Fig-

ure 9, which is able to: (i) delineate the whole kidney and handle its motion; (ii) fuse the

ADC values calculated from the segmented DW-MRI data sets acquired at multiple low

and high b-values; (iii) describing kidney functionality with the CDFs of the ADCs; and

(iv) discriminating between kidney rejection and non-rejection with a deep neural network

learned by stacking layers of several auto-encoders with non-negativity constraint (NCAE).

Experimental results hold promise for the developed CAD system as a reliable non-invasive

diagnostic tool.

FIGURE 9: Proposed CAD system for detecting renal rejection from 4D DW-MRI.
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B. Methods

Given an input 4D (3D + b-value) DW-MRI, the proposed CAD system, shown in

Figure 9, performs the following steps: (i) segments kidneys from surrounding abdomi-

nal structures (Section II.B.1); (ii) estimates voxel-wise functional parameters (ADCs) to

form a 3D parametric map for detecting status of the transplanted kidney (Section II.B.2);

and (iii) classifies acute rejection or non-rejection transplant status in order to evaluate the

system as a diagnostic test (Section II.B.3).

1. 3D Kidney Segmentation

Since the segmentation is a key step in developing any CAD system, the presented

CAD starts with segmenting the kidney from the surrounding tissues using DW-MRI. How-

ever, accurate kidney segmentation is a challenging task for many reasons, including: kid-

ney motion due to breathing and heart beating; kidney shape changes due to inter-patient

anatomical differences; low contrast between the kidney and other abdominal structures,

especially, at the higher gradient strengths and duration, or b-values (Figure 10); low SNR

and artifacts that complicate image alignment [149, 150]; and geometric distortions due to

long acquisition time [130].

(a) (b) (c)

FIGURE 10: Coronal cross-sections of raw DW-MRI samples showing (a) similar intensi-

ties of kidney and surrounding tissues (e.g., at b0), (b) inter-patient anatomical differences

(e.g., at b0) compared to the cross-section (a), and (c) image noise, especially, at higher

gradient strengths and duration (b-values) (e.g., at b1000).
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To overcome these challenges, the proposed segmentation technique [146, 151–153]

relies on multiple image features to accurately delineate the kidney and thus facilitates fur-

ther analysis of transplant status. Basic notations and details of the proposed segmentation

approach are outlined below.

For describing these processing steps, let p = (x, y, z) denote a voxel at position

with discrete Cartesian coordinates (x, y, z) and let R = {(x, y, z) : 0 ≤ x ≤ X − 1; 0 ≤ y ≤

Y − 1; 0 ≤ z ≤ Z − 1} be a finite 3D arithmetic lattice of unit voxels, which has the size

of XYZ and supports both grayscale images and their parametric or region (segmentation)

maps. A grayscale image, g = {gp : p ∈ R; gp ∈ Q}, takes voxel values from a finite

set, Q = {0, 1, . . . ,Q − 1}, of Q integer gray levels, i.e. g : R → Q. A region map,

m = {mp : p ∈ R; mp ∈ L}, takes voxel values from a binary set of region labels, L = {0, 1},

where 0 and 1 indicate background and object (kidney), respectively, i.e. m : R→ L.

A 3D geometric, or level-set-based deformable boundary, is employed in the pro-

posed CAD system for the DW-MRI kidney segmentation. Such a tool is common and

successful in a wide range of applications, including various medical imaging tasks, e.g.,

segmenting brain, prostate, liver, kidney, etc. [104]. Compared to alternative parametric

deformable boundaries, the geometric ones are more popular due to their simplicity, flexi-

bility, and ability to handle complex geometries and topological changes independently of

surface parameterizations. Points of an object-background boundary at each time instant t

are specified implicitly as a zero-level set, Bt = {p : p ∈ R; Φ(p, t) = 0}, of arguments of

a specific higher-dimensional function Φ(p, t), being supported by the lattice R and often

called a signed distance map:

Φ(p, t) =


d(p, Bt) if p is inside the boundary Bt;

0 if p is at the boundary Bt, and

−d(p, Bt) if p is outside the boundary Bt

Here, d(p, Bt) = minb∈Bt d(p,b) denotes the distance from the point p to the boundary Bt,

and d(p,b) is the Euclidean distance between the lattice points p and b, as illustrated in

Figure 11.
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FIGURE 11: 3D zero-level set of a function Φ(p = [x, y, z], t).

The functionΦ(p, t) evolves in discrete time t = nτwith a fixed step, τ > 0, as [154]:

Φ(p, (n + 1)τ) = Φ(p, nτ) − τFn(p)|∇Φ(p, nτ)| (1)

where n = 0, 1, 2, . . ., is the time index; ∇Φ(p, nτ) is the spatial gradient of Φ(p, nτ):

∇Φ(p, nτ) =
[
∂Φ(p, nτ)
∂x

,
∂Φ(p, nτ)
∂y

,
∂Φ(p, nτ)
∂z

]
;

|a| denotes the magnitude of the vector a, and Fn(p) is a speed function guiding the evolu-

tion of an initial boundary B0, which was defined at the starting instant t = 0 (i.e. n = 0).

Most of the conventional speed functions quantify visual appearance differences

between the object and its background in terms of mean values and variances of image in-

tensities, intensity edges or gradient vector flow, and similar regional signal characteristics.

Thus, their guidance may fail if images to be segmented are noisy and/or object-background

contrast is low. To accurately segment the kidneys from the noisy and low-contrast DW-

MRI, the developed guiding function accounts for not only regional kidney-background

appearance, but also for a kidney shape prior and spatial relationships of the goal region

map. To provide the voxel-wise guidance for the evolving boundary, all the employed

appearance and shape descriptors are combined into a joint MGRF model of a DW-MR

image, g, and its binary kidney-background region map, m. The model is specified by

a joint probability distribution P(g,m) = P(g|m)P(m), where P(g|m) and P(m) denote

a conditional probability distribution of images given a map and an unconditional distri-

bution of region maps, respectively. The latter distribution is factored into two terms:

P(m) = Psp(m)PV(m), where Psp(m) denotes an appearance-based adaptive shape prior
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and PV(m) is a second-order Gibbs probability distribution with potentials V of multiple

nearest-neighbor pairwise dependencies, which specifies a simple spatially homogeneous

MGRF model of region maps. These components of the joint image-map model are out-

lined in the following Sections.

a. Appearance-Based Shape Prior: In addition to the distinct visual appear-

ances, the well-known geometric shapes of medical structures can enhance the segmenta-

tion accuracy. To rely on this fact, an adaptive model of the expected kidney shape is used

to both handle kidney motions, e.g., due to breathing and/or heart beating, and account

for the kidney’s variability due to inter-patient anatomical differences. In addition, the

kidney DW-MR images are very noisy, especially at high b-values, and have low contrast

between the kidney tissue and other abdominal structures. The noise and inconsistencies

due to low-frequency non-uniformity, or heterogeneity of intensities, are suppressed in part

by preprocessing, namely, histogram equalization with nonparametric bias correction by

Tustison [155] shown in Figure 12.

(a) (b)

FIGURE 12: Raw coronal DW-MRI cross-section before (a) and after (b) its preprocessing.

To build the shape prior, a shape database is created from a training set of manually

delineated kidney images from different subjects by co-aligning these images using a 3D B-

spline-based non-rigid transformation [156]. The alignment minimizes the sum of squared

voxel-wise intensity differences between the two kidney images, and kidney/background

labels of the co-aligned region maps are used to learn the shape prior. Figure 13 illustrates

the co-alignment of the training DW-MRI with respect to a single reference image.
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FIGURE 13: 3D co-alignment of training DW-MRI to a single reference: grayscale images

before (a) and after (b) their alignment and overlapped 3D binary volumes before (c) and

after (d) alignment, the reference image and targets being in yellow and red, respectively.

In the performed experiments, the shape database contained 53 data sets (b0-scans)

manually segmented by an MRI expert and then co-aligned. Adapting the shape prior to

each input DW-MR image to be segmented is guided by visual appearance of the latter

image. The probabilistic shape prior is built as a spatially variant independent random field

of region labels Psp(m) =
∏

p∈R Prp(mp), where Prp(l) is the marginal empirical probability

of the label l ∈ L in the voxel p;
∑

l∈L Prp(l) = 1. Algorithm summarizes estimating and

updating the appearance-guided shape prior for each test DW-MR image to be segmented

(the test images are first removed from the training set).

b. Second-Order MGRF Model of Region Maps: In order to increase the seg-

mentation accuracy, 3D pairwise dependencies between the region labels are additionally

incorporated in the proposed model by using a popular Potts MGRF [157]. Here, it is a

spatially homogeneous binary field with the nearest 26-voxel neighborhoods and analyti-

cally estimated bi-valued Gibbs potentials depending only on whether or not the nearest

pairs of labels are equal. Let feq denote the empirical marginal probability of equal labels
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Algorithm 1 Creating / Updating the Shape Prior.
1 Preprocess the training DW-MR images by bias correction and histogram equalization.

2 Construct the shape database by applying the co-alignment by Glocker et al. [156] to

the preprocessed DW-MR Images.

3 Preprocess the DW-MR image for a test subject and co-align with the shape database.

4 For each voxel, p ∈ R, in the test DW-MR image, gtest, calculate its prior shape proba-

bilities, Prp(l); l ∈ L, as follows:

A Use the co-aligning deformation field to relate the voxel p of the test image to the

shape database lattice.

B Construct a 3D window with initial size of N1 × N2 × N3, centred at the related voxel

in the shape database lattice.

C Find within the window all the voxels with the corresponding intensity, gtest:p, in all

the training images.

D If necessary, increase the window size and repeat Steps 4B to 4D until a non-empty

set of such corresponding training intensities is found.

E Estimate label probabilities based on relative occurrences of each label in all the

training voxels found.

in the neighboring voxel pairs (p,p + δ) ∈ R2; δ ∈ N26 = {(±1, 0, 0), (0,±1, 0), (0, 0,±1),

(±1,±1, 0), (±1, 0,±1), (0,±1,±1), (±1,±1,±1)}. Given a region map m (e.g., after an ini-

tial rough segmentation), the maximum likelihood estimates of the potentials

V(mp,mp+δ) =


Veq if mp = mp+δ

Vne if mp , mp+δ

; p ∈ R; δ ∈ N26; Veq + Vne = 0

are analytically approximated [158] as follows: Veq = −Vne ≈ 2 feq(m) − 1. This approxi-

mation is used for computing the voxel-wise probabilities PrV:p(l) of each label; l ∈ L.

c. First-Order Kidney/Background Appearance Model: To accurately model

the DW-MRI appearance, the empirical marginal probability distribution of intensities is

approximated with a linear combination of discrete Gaussians (LCDG) [159]. The LCDG

with two positive dominant components (one each for the kidney and background) and
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multiple sign-alternate subordinate components allow for separating the mixed marginal

of the DW-MRI voxel-wise intensities into the two distinct LCDGs, each associated with

the kidney or background label. This LCDG model adapts the segmentation to changing

appearance, such as non-linear intensity variations caused by patient weight and the data

acquisition system, and it separates individual submodels of the kidney and background

intensities more accurately than a conventional mixture of only positive Gaussians. This

adaptation yields a better initial region map after the voxel-wise classification of only the

image intensities with no account for the kidney shape.

d. Appearance- and Shape-Guided Deformable Model: Adaptation to both the

kidney-background visual appearance, shape prior, and statistical spatial dependencies be-

tween kidney labels is one of the main advantages of the proposed segmentation framework.

Estimated directly from the input image and a given shape database, these properties guide

the evolving deformable boundary by defining, for each voxel p with intensity gp = q, the

speed function [104] of Equation (1), Fn(p) = κϑp, where κ is the mean contour curvature

and ϑp specifies the magnitude and direction of moving that voxel:

ϑp =


− Prp(1) if Prp(1) > Prp(0) = 1 − Prp(1); i.e. Prp(1) > 0.5;

Prp(0) otherwise
(2)

Here, Prp(0) and Prp(1) are the voxel-wise background and kidney probabilities, respec-

tively:

Prp(1) = Ωkd:p
Ωkd:p+Ωbg:p

; Prp(0) = Ωbg:p
Ωkd:p+Ωbg:p

= 1 − Prp(1)

where the variables Ωkd:p and Ωbg:p for the kidney and background, respectively, depend on

the voxel-wise probabilities Pr(q|l); l ∈ L, for the LCDG submodels of the kidney (l = 1)

or background (l = 0) appearance and on the kidney label probability in the MGRF spatial

region map model, PrV:p(1), and in the adaptive shape prior, Prsp:p(1), respectively:

Ωkd:p = Pr(q|1) PrV:p(1) Prsp:p(1); Ωbg:p = Pr(q|0)(1 − PrV:p(1)(1 − Prsp:p(1))

Algorithm summarizes the basic steps of the 3D level-set-based kidney segmentation.

42



Algorithm 2 DW-MRI Segmentation by Geometric Deformable Boundary
1 Update the shape prior probability using Step 4 of Algorithm .

2 Approximate the marginal of DW-MRI intensities with the LCDG [159] with two dom-

inant components.

3 Form an initial region map, mini, using the estimated shape prior and LCDG submodes

of kidney and background appearances.

4 Estimate the Gibbs potentials for the spatial MGRF map model from mini.

5 Find the above speed function [104], Fn(p), using results of Steps 2 to 4.

6 Segment the input image, g, by evolving the level-set function, Φ(p, nτ), of Equation (1)

with the speed function found in Step 5.

2. Estimating and Depicting Diffusion Parameters

After segmenting the kidneys, their discriminatory functional features are estimated

from the images and used to distinguish between rejection and non-rejection of kidney

transplants. In this chapter, the ADC defined by Le Bihan [160] is used as a transplant

status feature. This voxel-wise ADC is defined as:

ADC =
1

b0 − b
ln

(
gb:p

g0:p

)
=

ln gb:p − ln g0:p

b0 − b
(3)

where the segmented DW-MR images g0 and gb were acquired with the b0 and a given

different b-value, respectively. To reduce the noise effects on ADC estimation, the ADC at

each voxel p (3D location of the DW-MRI data) is calculated using a 3× 3× 3 cube around

p, and g0:p and gb:p are represented by the average signal intensity of that cube.

It is worth noting that conventional classification methods that deal directly with the

voxel-wise ADCs of the entire kidney volume as discriminative kidney features encounter

two difficulties: (i) varying input data size requires either data truncation for larger kidney

volumes or zero padding for smaller ones and (ii) large data volumes lead to considerable

time expenditures for training and classification. In order to overcome the above chal-

lenges, the entire 3D ADC maps, collected for each subject at the 11 different b-values,

is characterized by the CDFs of the ADCs, as shown in Figure 14. These descriptors are

independent of the initial data size and can be quantified in accordance with the actual ac-
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curacy (signal-to-noise ratio) of the ADCs. Preliminary experiments have shown that the

1%-accuracy of measuring the ADC to within a range between the maximum and minimum

ADCs for all the b-values and subjects is sufficient, as regarding the final classification ac-

curacy. Comparing to the empirical probability distribution functions (PDFs) of the ADCs,

the CDFs allow better differentiation between the PDFs across the whole range of the ADC

values. The training CDFs are used for deep learning of a stacked NCAE (SNCAE) clas-

sifier detailed in Section II.B.3. Fixing the input data size to 11 for such CDFs helps to

overcome the above challenges for arbitrary sizes of the original ADCs and notably ac-

celerates the classification. Also, the estimated 3D ADCs can be displayed as voxel-wise

parametric maps to be visually assessed by the radiologists.

FIGURE 14: Empirical ADC distributions and their CDFs for one subject at different b-

values.

3. Autoencoding and Deep Learning-Based Classifier

A rich variety of learnable classifiers with shallow structure [161–164] have been

used in the CAD systems for organ transplantation prediction using clinical and demo-

graphic data of patients, including (but not limited to) artificial neural networks (ANN),

support vector machines (SVMs), regression trees, random forests (RFs), decision trees

(DTs), k-nearest neighbor (kNN), etc. However, the aforementioned popular learnable

classifiers and predictors have some limitations [165, 166]: (i) some of them (e.g., RFs and

DTs) cannot deal with very large scale amounts of data, which are typical for DW-MRI;

(ii) some of them (e.g., SVMs) depend mainly on the selection of the kernel function and
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its parameters; (iii) many classifiers (e.g., SVMs, RFs) are of high algorithmic complexity

and require extensive memory.

Recent advances in deep learning of the ANNs [167] allow for overcoming these

drawbacks of the classical shallow models: (i) by automated dimensionality reduction of

large scale data [168]; (ii) and automatic extraction of more discriminatory features be-

tween classes through hierarchical feature extraction. In this case, the high level (global)

features are derived from the low level (local) features for model training [168–171];

(iii) and flexibility compared to the classical shallow models, i.e. a classifier (e.g., a

softmax-based or SVM-based) can be built on the extracted features from the deep learning

ANN [168, 172].

Due to the aforementioned advantages, the proposed fully automated CAD sys-

tem utilizes deep learning and auto-encoders with non-negativity constraint (NCAE) as a

core ANN architecture for pre-training and classification to distinguish between the non-

rejection and acute rejection of kidney transplants. In particular, the presented CAD system

employs a deep neural network with a stack of auto-encoders (AE) before the output layer

that computes a softmax regression, generalizing the common logistic regression to more

than two classes. Each AE compresses its input data to capture the most prominent varia-

tions and is built separately by greedy unsupervised pre-training [173]. The softmax output

layer facilitates the subsequent supervised back-propagation-based fine tuning of the entire

classifier by minimizing the total loss (negative log-likelihood) for a given training labeled

data. Using the AEs with a non-negativity constraint (NCAE) [174] yields both more rea-

sonable data codes (features) during its unsupervised pre-training and better classification

performance after the supervised refinement.

Let W = {We
j,W

d
i : j = 1, . . . , s; i = 1, . . . , n} denote a set of column vectors of

weights for encoding (e) and decoding (d) layers of a single AE in Figure 15. Let T denote

vector transposition. The AE converts an n-dimensional column vector u = [u1, . . . , un]T

of input signals into an s-dimensional column vector h = [h1, . . . , hs]T of hidden codes

(features, or activations), such that s ≪ n, by a uniform nonlinear transformation of s
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weighted linear combinations of signals:

h j = σ
((

We
j

)T
u
)
≡ σ

 n∑
i=1

we
j:iui



FIGURE 15: Block-diagram of an NCAE (a) and an SNCAE (b) classifier.

where σ(. . .) is a certain sigmoid, i.e. a differentiable monotone scalar function

with values in the range [0, 1]. Unsupervised pre-training of the AE minimizes total devia-

tions between each given training input vector uk; k = 1, . . . ,K, and the same-dimensional

vector, ûW:k reconstructed from its code, or activation vector, hk (Figure 15(a)). The total

reconstruction error of applying such AE to compress and decompress the K training input

vectors integrates the ℓ2-norms of the deviations:

JAE(W) =
1

2K

K∑
k=1

∥ ûW:k − uk ∥2 (4)

To reduce the number of negative weights and enforce sparsity of the NCAE, the recon-

struction error of Equation (4) is appended, respectively, with quadratic negative weight

penalties, f (wi) = (min{0,wi})2; i = 1, . . . , n, and Kullback-Leibler (KL) divergence,

JKL(hWe; γ), of activations, hWe , obtained with the encoding weights We for the training
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data, from a fixed small positive average value, γ, near 0:

JNCAE(W) = JAE(W) + α
s∑

j=1

n∑
i=1

f (w j:i) + βJKL(hWe; γ) (5)

Here, the factors α ≥ 0 and β ≥ 0 specify relative contributions of the non-negativity and

sparsity constraints to the overall loss, JNCAE(W), and

JKL(hWe , γ) =
s∑

j=1

hWe: j log
(
hWe: j

γ

)
+ (1 − hWe: j) log

(
1 − hWe: j

1 − γ

)
(6)

The classifier is built by stacking the NCAE layers with an output softmax layer,

as shown in Figure 15(b). Each NCAE is pre-trained separately in the unsupervised mode

by using the activation vector of a lower layer as the input to the upper layer. Here, the

initial input data consisted of the 11 CDFs, each of size 100, i.e. n = 1100. In other words,

for quantizing the ADCs, the range between the minimum and maximum ADCs for all the

input data sets (i.e. all the sets for 11 b-values and 53 subjects) was divided into 100 steps

to keep the chosen 1%-accuracy of initial ADC measurements. The PDFs and then CDFs

of the ADCs were built for these quantized values. The bottom NCAE compresses the

input vector to s1 first-level activators, compressed by the next NCAE to s2 second-level

activators, which are reduced in turn by the output softmax layer to s◦ values. The number

of the NCAE layers and successive data compression ratios for each layer were chosen

empirically, on the basis of comparative experiments.

Separate pre-training of the first and second layers by minimizing the loss of Equa-

tion (5) reduces the total reconstruction error, as well as increases sparsity of the extracted

activations and numbers of the non-negative weights. The activations of the second NCAE

layer, h[2] = σ(We
[2]

Th[1]), are inputs of the softmax classification layer, as sketched in Fig-

ure 15(b) to compute a plausibility of a decision in favor of each particular output class,

c = 1, 2:

p(c; W◦:c) =
exp(WT

◦:ch[2])
exp(WT

◦:1h[2]) + exp(WT
◦:2h[2])

; c = 1, 2;
2∑

c=1

p(c; W◦:c; h[2]) = 1.

Its separate pre-training minimizes the total negative log-likelihood J◦(W◦) of the known

training classes, appended with the negative weight penalties:

J◦ (Wo) = − 1
K

K∑
k=1

log p(ck; W◦:c) + α
2∑

c=1

s2∑
j=1

w◦:c: j (7)
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Finally, the entire stacked NCAE classifier (SNCAE) is fine-tuned on the labeled

training data by the conventional error back-propagation through the network and penal-

izing only the negative weights of the softmax layer. In the performed experiments, the

network was trained and tested based on a leave-one-out scenario, so that the 53 (by the

number of subjects) test accuracies were averaged to estimate the overall accuracy of the

classifier. These experiments were conducted for different structures and parameters of the

classifier. At this point, the two-layer SNCAE classifier with the following parameters:

s1 = 50, s2 = 5, s◦ = 2, α = 3 ∗ 10−5, β = 3, and γ = 0.1, is considered to give the best

accuracy and was accepted as the final choice. Algorithm summarizes classification of

kidney transplant status and generation of color ADC maps.

Algorithm 3 Kidney Transplant Status Classification and ADC Color Mapping
1 Calculate, using Equation (3), the ADCs at different b-values for the entire transplanted

kidney of each subject.

2 Classification:

A Construct the CDFs of the calculated ADCs over the entire kidney volume at different

b-values.

B Use a SNCAE-based deep ANN classifier trained by unsupervised pre-training and

supervised fine tuning together with a leave-one-subject-out approach to discriminate

rejection from non-rejection status and get the final diagnosis.

3 Generation of color ADC maps: Generate voxel-wise color-coded maps of the ADCs

calculated in Step 1 to demonstrate visually perceived differences between the rejection

and non-rejection states of kidney transplants at different b-values.
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C. Experimental Results

1. DW-MRI Data Collection

The proposed CAD system has been tested on DW-MRI data that has been collected

from 53 subjects (44 men and 9 women with ages between 12 and 54 years old, having a

mean age of 26±10 years). Both the rejection (37 subjects) and non-rejection (16 subjects)

groups, as a part of routine medical care after transplantation, were assessed with serum cre-

atinine laboratory values. The patient who subsequently underwent an ultrasound-guided

needle biopsy was examined, based on their clinical indication, as the gold standard. The

DW-MR images were acquired before any biopsy procedure using a 1.5 T scanner ( SIGNA

Horizon, General Electric Medical Systems, Milwaukee, WI). Coronal DW-MR images

have been obtained by using a body coil and a gradient multi-shot spin-echo echo-planar

sequence ( TR/TE, 8000/61.2; bandwidth, 142 kHz; matrix, 1.25×1.25 mm2; section thick-

ness, 4 mm; intersection gap, 0 mm; FOV, 32 cm; signals acquired, 7; water signals acquired

at different b-values of (b0, b50, b100, b200, b300, b400, b500, b600, b700, b800, b900, and b1000)

s/mm2). Approximately 50 sections have been obtained in 60 - 120 s to cover the whole

kidney.

2. Segmentation Results

Since the segmentation is an important step in developing any CAD system to as-

sess renal function, the performance of the proposed segmentation was tested first on the

collected DW-MRI data. Figure 16 shows some segmentation results for different kidney

cross-sections (coronal, axial, and sagittal) for three subjects at b0. The segmentation ac-

curacy was evaluated by two volumetric metrics, namely, the Dice similarity coefficient

(DSC) [175, 176] and absolute kidney volume difference (AKVD) and one distance-based

metric – the 95-percentile modified Hausdorff distance (MHD) [177], which character-

ize the spatial overlap and distribution of the surface to surface distances between the

49



segmented and ground truth kidneys, respectively. The ground truth kidney maps were

manually outlined by an MRI expert. For completeness, these metrics are detailed in Ap-

pendix .A.

FIGURE 16: The proposed model segmentation (red) with respect to the expert’s man-

ual ground truth (green): coronal (left column), axial (middle column), and sagittal (right

column) cross sections for three different subjects, S1, S2, and S3.

As shown in Table 1, high accuracy of the developed segmentation method is con-

firmed by means of the DSC, MHD, and AKVD statistics for all the test data sets. More-

over, the accuracy of the proposed segmentation technique was compared against three

other methods: the level-sets approach by Chan and Vese [2] (CV), the level-sets guided by

image intensity only, and the level-sets guided by combined intensity and spatial features
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TABLE 1: Segmentation accuracy of the proposed segmentation method using DSC,

MHD(mm), and AKVD(%). All metrics are represented as minimum (Min), maximum

(Max), and mean± standard deviation (SD).

Evaluation Metrics

DSC MHD (mm) AVKD (%)

Min 0.85 4.00 8.00

Max 0.96 20.00 25.00

mean±SD 0.92 ± 0.02 6.20 ± 2.00 15.00 ± 3.00

TABLE 2: Segmentation accuracy of the proposed segmentation technique against three

other level-sets methods using DSC, MHD(mm), and AKVD(%). All metrics are repre-

sented as mean± standard deviation (SD).

Evaluation Metrics

DSC MHD AVKD

Mean±SD P-value Mean±SD P-value Mean±SD P-value

Proposed 0.92±0.02% —— 6.20±2.00 —— 15.00±3.00% ——

CV [2] 0.69±0.11% < 0.0001 75.97±11.96 < 0.0001 46.05±13.18% < 0.0001

I Only 0.54±0.07% < 0.0001 29.14±5.34 < 0.0001 62.33±7.12% < 0.0001

I+S 0.63±0.05% < 0.0001 22.79±7.36 < 0.0001 53.82±5.35% < 0.0001

using the same aforementioned segmentation evaluation metrics. Table 2 shows that the

advantage of the developed segmentation approach is statistically significant with respect

to the other methods, evidenced by the P-values less than 0.05, which confirms the high

accuracy of the proposed segmentation techniques.

Figure 17 shows 3D results of the proposed segmentation method for three subjects

along with their evaluation metrics. In particular, the developed segmentation technique

proved its ability to precisely segment the kidney at higher bi values.

Figure 18 shows more coronal cross-sectional segmentation results for three differ-

ent subjects at b0 and higher bi values (b500 and b1000) which in turn emphasize the high
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FIGURE 17: The proposed 3D segmentation (red) with respect to the expert’s manual

ground truth (green) for three subjects with the associated DSC, MHD, and AKVD accu-

racy scores.

accuracy and robustness to noise of the proposed kidney segmentation technique.

(b0)

(b500)

(b1000)

FIGURE 18: Four more coronal cross-sections (columns) for the proposed kidney segmen-

tation from DW-MRI acquired at different b-values s/mm2.
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(Proposed)

(CV)

(I)

(I + S )

(a) (b) (c)

FIGURE 19: Comparative cross-sectional segmentation results for our approach, the tra-

ditional CV [2] level-set, the level-set guided by intensity alone, and intensity and spatial,

respectively, in rows for three different types of cross sections (coronal cross section in the

first column, axial cross section in the second column, and sagittal cross section in the third

column) for one subject at b0 s/mm2. The model segmentation is shown in red with respect

to the manual ground truth (green) from an expert.

The comparative accuracy of the proposed approach versus the CV method on rep-

resentative data at different types of kidney cross sections (i.e., axial, sagittal, and coronal)

53



(b300)

(b500)

(b700)

(b1000)

(a) (b) (c) (d)

FIGURE 20: A sample coronal cross-sectional kidney segmentation for DW-MRI data

acquired at b300 s/mm2 (first row), b500 s/mm2 (second row), b700 s/mm2 (third row), and

b1000 s/mm2 (fourth row) for (a) the proposed approach; (b) the CV [2] approach; (c) the

level-set guided by intensity only; and (d) intensity and spatial.

for one selected subject acquired at b0 is shown in Figure 19.

In order to assess the renal function using DW-MRI-based CAD systems, which in

turn has gained increased attention in recent years [178], the estimation of diffusion pa-

rameters (e.g., ADC) requires the accurate segmentation of the kidney on DW-MRI data

acquired at both higher and lower b-values. However, the accurate segmentation of kidney

volumes at higher b-values is a challenge compared with those at lower b-values because

of the decreased contrast between the object and the background. In spite of the aforemen-

tioned challenge, the proposed segmentation technique extracts accurately the kidney from
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diffusion data at higher b-values compared to the other three aforementioned methods as

shown in Figure 20. In contrast to the existing DW-MRI approaches, the integration of

the 3D appearance, shape, and spatial features increases the robustness of the proposed ap-

proach to overcome large image noise at higher b-values. Figure 20 demonstrates a sample

coronal cross section segmentation for four subjects at b-values of 300, 500, 700 and 1000

s/mm2 for the developed approach and the three other approaches used before. As shown

in this figure, the proposed approach produces precise segmentation of the kidney at higher

b-values compared with the other methods with respect to the ground truth segmentation.

3. Diagnostics Results

Following kidney segmentation, the developed CAD system classifies the transplant

status with the SNCAE-based classifier and CDFs as discriminatory features. A leave-one-

subject-out classification scenario applied to distinguish between the rejection and non-

rejection cases from the CDFs of the ADCs for different b-values has correctly classified

98% of the cases, namely, 36 out of the 37 rejected and 16 out of the 16 non-rejected kidney

transplants.

It is worth mentioning that fusing all the CDFs of the ADCs calculated at the 11

different b-values, totally improves the final diagnostic accuracy, as shown in Table 3, and

helps to overcome the challenge of possible artifacts due to chemical shifts, which could

occur at one or two b-values, if the artifacts exist.

TABLE 3: Diagnostic accuracy based on the input CDF of the ADC for individual b-values

and the fused CDFs of all b-values.

Classification Accuracy

b50 b100 b200 b300 b400 b500 b600 b700 b800 b900 b1000 Fused b-values

75% 85% 75% 81% 70% 77% 62% 60% 64% 62% 74% 98%

In order to evaluate the effect of the CDFs encoding step (∆) on the overall accuracy,

the CDFs of the 3D ADCs were constructed using two different ∆i (∆ = 0.02 and 0.04).
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Then, the SNCAE classifier was applied on the constructed CDFs and the results are shown

in Table 4. As demonstrated in Table 4, the overall accuracy, sensitivity, and specificity,

have been greatly reduced. This can be explained in part by the fact that increasing the value

of ∆ results in losing important data information, thus making the data not well-presented,

which in turn affects the classifier performance.

TABLE 4: Diagnostic accuracy, sensitivity, and specificity for the developed CAD system

with the SNCAE classifier using different CDF encoding steps (∆i).

Quality of classification

∆i: Accuracy Sensitivity Specificity

∆1 = 0.01 98% 97% 100%

∆2 = 0.02 85% 86% 81%

∆3 = 0.04 83% 84% 81%

Furthermore, the effect of changing the SNCAE structure on the overall accuracy

has been investigated by using different SNCAE layouts (different number of hidden layers

(l) and hidden nodes at each layer (sl)). From the results in Table 5, the network structure

with two hidden layers s1 = 50 and s2 = 5, demonstrated the highest accuracy.

TABLE 5: Diagnostic accuracy, sensitivity, and specificity for the developed CAD system

with the SNCAE classifier using different structures, i.e., different number of hidden layers

(l) and hidden nodes at each layer (sl), using the same input size of 1100 (11 CDFs each of

100 region), α = 3 ∗ 10−5, β = 3, and γ = 0.1.

Quality of classification

SNCAE Structure: Accuracy Sensitivity Specificity

s1 = 5 85% 84% 88%

s1 = 25 60% 68% 44%

s1 = 50 68% 70% 63%

s1 = 50 and s2 = 5 98% 97% 100%

s1 = 50, s2 = 25, and s3 = 5 77% 92% 44%
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In addition to the leave-one-subject-out approach, a four-fold cross-validation test

has been performed where 75% of the data was used for training and the other 25% for

testing, to further validate and justify the performance of the SNCAE classifier. As docu-

mented in Table 6, the diagnostic accuracy of the combined SNCAE classification system

is almost independent of the choice of the training and testing data sets. The four-fold

cross-validation experiment demonstrated an average accuracy of 96%.

TABLE 6: Sensitivity to a training set based on a four-fold cross-validation scenario.

Cross-validating SNCAE classifier

Testing group (25%) 1 2 3 4

Correct/All 12/13 12/13 13/13 14/14

Accuracy 92% 92% 100% 100%

Average Accuracy 96%

To evaluate capabilities of the SNCAE classifier, it has been compared with seven

well-known learnable classifiers from the Weka collection [1]: K*, IBK, Naive Bayes tree

(NBT), Multi-class classifier (MCC), Decorate, Random tree (RT), and Random forest

(RF). Table 7 presents their and the presented diagnostic accuracy in terms of the numbers

of correctly classified rejection and non-rejection cases with respect to the overall numbers

of subjects, sensitivity, and specificity. The SNCAE classifier demonstrated the best total

diagnostic accuracy of 98% with 100 % specificity, or 16 correctly classified non-rejected

transplants out of the 16 subjects, and 97% sensitivity, or 36 correctly classified rejected

transplants out of the 37 subjects.

In addition, the receiver operating characteristics (ROC) (see Appendix .A) for the

developed CAD system with SNCAE and the chosen seven Weka classifiers in Figure 21

have been constructed to test the performance. As shown in Figure 21, the area under

the curve (AUC) is the highest for the SNCAE classifier and approaches the top-most unit

value (see Table 7). These initial diagnostic results confirm that the proposed CAD system

holds promise as a reliable non-invasive diagnostic tool.

Together with the automated classification, the proposed CAD system also provides
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TABLE 7: Diagnostic accuracy in terms of correctly classified vs. true non-rejection (NR)

and rejection (R) cases, sensitivity, specificity, and AUC for the proposed CAD system with

the SNCAE classifier and seven classifiers from the Weka collection [1].

Classification Accuracy

NR R Accuracy Sensitivity Specificity AUC

K* 12/16 30/37 79% 81% 75% 0.82

IBK 15/16 36/37 96% 97% 94% 0.96

NBT 11/16 30/37 77% 81% 69% 0.79

MCC 15/16 34/37 92% 92% 94% 0.94

Decorate 8/16 34/37 79% 92% 50% 0.80

RT 10/16 29/37 74% 78% 63% 0.74

RF 9/16 35/37 83% 95% 56% 0.82

SNCAE 16/16 36/37 98% 97% 100% 0.97

FIGURE 21: ROC curves and their AUC for SNCAE and Weka classifiers [1].

voxel-wise parametric ADC maps, which can help in local visual assessment of the trans-

planted kidney. The color-coded ADC map, which depicts the estimated voxel-wise ADCs

of Equation (3), is more informative than the ADC CDFs collected over the entire kidney
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and thus hides local peculiarities of spatial behavior of the ADCs. Examples of the ADC

maps for two non-rejection and two acute rejection cases for the DW-MRI at the different

b-values in Figure 22 demonstrate some expected relations between the local ADCs, which

could be helpful for assessing the transplant and detecting its non-rejection or rejection

status.

FIGURE 22: Pixel-wise parametric maps for DW-MRI at different b-values (b50 to b1000)

s/mm2 and their average value for two non-rejection (S 1, S 2) and two rejection (S 3, S 4)

subjects.

D. Chapter Summary

The developed CAD system for early detection of renal transplant rejection from 4D

DW-MRI data combines existing and new techniques for non-rigid image alignment, kid-

ney segmentation with a deformable boundary, estimation of spatial diffusion parameters

(ADCs), and an SNCAE classification of the transplanted kidney status using CDFs of the

ADCs as integral status descriptions. In a test on a biopsy-proven cohort of 53 participants,

the devloped system showed an overall accuracy of 98% in detecting rejected and non-

rejected kidney transplants. These experimental results make the proposed non-invasive

framework a reliable early renal diagnostic tool. In the future, the test sets of both non-
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rejection and rejection kidney transplants will be increased in order to further validate the

accuracy and robustness of the proposed framework in both segmentation of the DW-MRI

and diagnosis. Also, new kidney transplant data sets, which are acquired at lower b-values,

will be used to explore the ability of the proposed framework to determine the type of kid-

ney transplant rejection, such as anti-body mediated rejection, T-cell or cellular rejection,

or other causes of acute kidney dysfunction such as drug toxicity and viral infection.
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CHAPTER III

CONCLUSIONS AND FUTURE WORK

This thesis has presented a novel computer-aided diagnostic (CAD) system coupled

with diffusion-weighted magnetic resonance imaging (DW-MRI) for the early detection of

acute renal rejection after transplantation. Fortunately, the presented work in this thesis

confirms the power of DW-MRI as an emerging imaging modality, with great thanks to

its ability to provide both anatomical and functional information about both original and

transplanted kidneys without exposing patients to any radiation, and with no need for con-

trast agents administration like the DCE-MRI. Therefore, a fully automated CAD system

for early detection of acute renal transplant rejection was coupled with DW-MRI utilizing

the aforementioned merits of DW-MRI. The developed CAD system for early detection of

renal transplant rejection from 4D DW-MRI data combines existing and new techniques

for non-rigid image alignment, kidney segmentation with a deformable boundary, estima-

tion of functional diffusion parameters, called apparent diffusion coefficients (ADCs), and a

stacked nonnegativity constrained autoencoder (SNCAE) classification of the transplanted

kidney status using cumulative distribution functions (CDFs) of the ADCs as integral status

descriptions.

A. Summary of Contributions

The main findings and contributions of this thesis can be summarized as follows:

• A new fully-automated computer-aided diagnostic (CAD) system using 4D (3D +

b-value) diffusion-weighted magnetic resonance imaging (DW-MRI) for early deter-

mination of the transplanted kidney status as nonrejection or rejection.

• Fusion of the apparent diffusion coefficients (ADCs) at multiple low and high gra-
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dient field strengths and duration (b-values) estimated from the segmented kidneys

(subjects) using the proposed segmentation approach. The segmentation is done after

a non-rigid image alignment for all subjects to a single reference subject.

• Exploring new discriminatory features to distinguish between nonrejected and re-

jected kidney transplants. These features are based on constructing cumulative dis-

tribution functions (CDFs) from the estimated ADCs at different b-values form b0 to

b1000 s/mm2 for all segmented kidneys. It is worth mentioning that, the use of those

CDFs instead of the voxel-wise ADCs of the entire kidney volume helps in mak-

ing the data well-presented and mainly solves three important challenges of different

kidney volumes: (i) loss of important information by data truncation for large kidney

volumes; (ii) addition of nonexisting information by zero padding for small kidney

volumes; and (iii) considerable time expenditures for training and classification for

large kidney volumes.

• The use of stacked autoencoders with nonnegativity constraint (SNCAE) classifier

for the purpose of discriminating nonrejected from rejected transplanted kidneys. Af-

ter fusing all the constructed CDFs at different b-values for each subject, the SNCAE

is trained and tested with these fused CDFs for all subjects by using a leave-one-

subject-out approach and a four-fold cross-validation scenario as well.

B. Future Avenues

Several future trends that can be deeply investigated include but are not limited to

the following avenues:

• Exploiting a new segmentation technique using a nonnegative matrix factorization

(NMF)-guided active contour model to enhance and improve the segmentation accu-

racy. Some initial promising segmentation results have been obtained [179]

• After differentiating rejection from nonrejection kidney transplants, the next step is

to obtain new DW-MRI data volumes at lower b-values and to investigate in-depth

62



the ability of the proposed CAD system to differentiate between different types of

rejection (e.g., T-cell mediated rejection, anti-body mediated rejection, immunosup-

pressive toxicity, and viral infection) as it is a very important step for therapeutic

purposes and for the determination of the appropriate treatment. Preliminary results

for differentiating between different types of rejection are preferably found in [180]

• A new trend to be investigated is considering the fusion of multiple discriminating

features extracted from images (e.g., CDFs of ADCs) with clinical data such as crea-

tinine clearance (CrCl) and serum plasma creatinine (SPCR) to enhance and support

the classification process with the clinical data as well, which in turn can provide a

meaningful coupling of information provided by imaging and clinical information.

Please see [181] for some initial results.

• Constructing a new two-cascaded stages CAD system utilizing the fusion of image-

based with clinical-based biomarkers with the ability to differentiate nonrejection

kidney transplants from transplanted kidneys with abnormalities (graft dysfunction)

in the first stage. Then, classifying these abnormal kidneys as kidneys with early

rejection and kidneys with other diseases (e.g., tubular inflammation, acute tubular

injury, graft amyloidosis, etc.). Preliminary results of the suggested idea can be found

in [181].

• Conducting a new study to investigate the ability of the proposed segmentation ap-

proach to extract the prostate from the surrounding tissues using DCE-MRI and DW-

MRI [182–195].

• Extending the developed segmentation approach to segment the heart left/right ven-

tricle wall by using contrast enhanced cardiac magnetic resonance images [196–218].

• Exploring the ability of the proposed CAD system to detect other organ diseases like

lung cancer using contrast enhanced computed tomography (CECT) images [219–

267].
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• Investigating the capability of the developed CAD system to detect brain disorders

and abnormalities (e.g., dyslexia, autism, etc.) [159, 268–311].
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APPENDIX

A. Evaluating Segmentation Accuracy

Performance of the proposed segmentation was evaluated by using three accuracy

metrics: (i) the Dice similarity coefficient (DSC) [175, 176], (ii) the 95-percentile modified

Hausdorff distance (MHD) [177], and (iii) the absolute kidney volume difference (AKVD),

which are detailed below.

The Dice similarity coefficient (DSC), shown in Figure 23, measures the relative

overlap between the segmented and ground truth kidney in terms of true positive (T P),

false positive (FP), and false negative (FN) absolute volumes of the correctly segmented

kidney voxels, background voxels segmented as the kidney, and kidney voxels segmented

as the background, respectively:

DS C =
2T P

2T P + FP + FN
; 0 ≤ DS C ≤ 1 (A-1)

FIGURE 23: 2D illustration of segmentation errors calculation between the segmented and

ground truth objects for the DSC determination.

The higher the DSC, the better the segmentation (zero and unit DSC indicate no

overlap and ideal overlap, respectively).
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The modified Hausdorff distance (MHD), shown in Figure 24, measures the largest

surface-to-surface distance between the segmented and ground truth kidney borders. The

conventional asymmetric Hausdorff distance (HD) [177] from a set of points A1 to a set of

points A2 is defined as the maximum Euclidean distance d(p1,p2) between the points p1 of

A1 to their nearest points p2 in A2:

HD(A1, A2) = max
p1∈A1

{
min
p2∈A2
{d(p1,p2)}

}
(A-2)

Generally HD(A1, A2) , HD(A2, A1). Therefore, the symmetric bidirectional HD (BHD)

is defined as BHD(A1, A2) = max{HD(A1, A2),HD(A2, A1)}.

FIGURE 24: 2D schematic illustration for the HD calculation.

To escape possible outliers, affecting both the HD and BHD, and measure more ro-

bustly the segmentation accuracy, the 95-percentile BHD, called the modified HD (MHD),

is used in this paper. In this case, the maximum distance in Equation (A-2) is replaced with

the 95-percentile of all the point-to-point distances d(p1,p2).

The absolute kidney volume difference (AKVD), shown in Figure 25, measures the

relative volumetric difference between the segmented and ground truth kidney (their abso-

lute volumes are equal to Vsegm = T P + FN and Vtrue = T P + FP, respectively):
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AKVD = 100
|Vsegm| − |Vtrue|
|Vtrue|

% (A-3)

FIGURE 25: 3D schematic illustration for the AKVD estimation.

The receiver operating characteristic (ROC) [312] is an alternative metric to fur-

ther test the classification accuracy and robustness of a CAD system compared to other

classifiers. The sensitivity and discriminability of a classifier is evaluated in a Cartesian

plane of relative true positive and false positive rates by its ROC curve for different op-

erating points, e.g., various decision thresholds. The area under the ROC curve (AUC)

characterizes the classification accuracy, namely, the probability of the correct renal trans-

plant status detection for a randomly chosen pair of patients.
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B. List of Abbreviations

TABLE 8: List of abbreviations that have been used in this thesis.

Abbreviation Full Definition

CKD Chronic Kidney Disease

NKF National Kidney Foundation

GFR Glomerular Filtration Rate

MRI Magnetic Resonance Imaging

UNOS United Network of Organ Sharing

AKR Acute Kidney Rejection

ATN Acute Tubular Necrosis

ITox Immunosuppressive Toxicity

VI Viral Infection

CT Computed Tomography

US Ultrasound

PI Pulsatility Index

RI Resistance Index

PD Power Doppler

CD Color Doppler

CE Contrast Enhanced

IGF Immediate Graft Function

SGF Slow Graft Function

DGF Delayed Graft Function

DKT Dual Kidney Transplantation

SKT Single Kidney Transplantation

AR Acute Rejection

ROI Regions of Interest

continued on the next page . . .
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Table 8 – continued from the previous page

Abbreviation Full Definition

CP Cortical perfusion

SCr Serum Creatinine

USCM Ultrasound Contrast Media

CEUS Contrast Enhanced Ultrasound

CES Contrast Enhanced Sonography

CDUS Contrast Enhanced UltraSonography

RBF Renal Blood Flow

AKI Acute Kidney Injury

TIC Time-Intensity Curves

ATPI Arrival Time Parametric Imaging

IT Inflow Time

RisT Rising Time

AT Arrival Time

TTP Time to Peak

DCE-MRI Dynamic Contrast Enhanced MRI

RBF Renal Plasma Flow

NGF Normalized Gradient Field

LS-SVM Least Square Support Vector Machine

MTT Mean Transit Time

BOLD-MRI Blood Oxygen Level Dependant MRI

R2* Apparent Relaxation Rate

CR2* Cortical R2*

MR2* Medullary R2*

MCR2* Medullary to Cortical R2*

SNR Signal-to-Noise Ratio

continued on the next page . . .
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Table 8 – continued from the previous page

Abbreviation Full Definition

DW-MRI Diffusion-Weighted MRI

ADC Apparent Diffusion Coefficient

CRCL Creatinine Clearance

IniGF Initial Graft Function

ARTR Acute Renal Transplant Rejection

TD True Diffusion

ACR Acute Cellular Rejection

CAD Computer-Aided Diagnostic

SPCR Serum Plasma Creatinine

CDF Cumulative Distribution Function

NCAE Non-negativity Constrained Autoencoder

NMF Nonnegative Matrix Factorization

SVM Support Vector Machine

RVM Relevant Vector Machine

MRF Markov Random Field

MHD Modified Housdorff Distance

MGRF Markov-Gibbs random field

FGM Finite Gaussian Mixture

LCDG Linear Combination of Discrete Gaussians

PDF Probability Distribution Function

SNCAE Stacked Non-negativity Constrained Autoencoder

ANN Artificial Neural Network

RF Random Forest

DT Decision Tree

kNN K-nearest Neighbor

continued on the next page . . .
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Table 8 – continued from the previous page

Abbreviation Full Definition

AE Auto-encoder

KL Kullback-Leibler

DSC Dice Similarity Coefficient

AKVD Absolute Kidney Volume Difference

BHD Bidirectional Hausdorff Distance

NBT Naive Bayes Tree

MCC Multi-class Classifier

RT Random Tree

ROC Receiver Operating Characteristic

AUC Area Under the Curve
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