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ABSTRACT 

A SYSTEMS BIOLOGY APPROACH IDENTIFIES A GENE REGULATORY 

NETWORK IN PAROTID ACINAR CELL DIFFERENTIATION 

 By

 
Melissa Ann Metzler

 
January 25, 2016

 

Objective: This project sought to understand the gene regulatory networks that 

drive parotid salivary gland acinar cells to terminally differentiate, and drive 

expression of terminal differentiation genes in dedifferentiated ParC5 cells. 

Methodology: Laser capture microdissection was used to isolate acinar cells at 

multiple time points during differentiation. This important step allowed us to 

measure gene expression in a single and important cell type. A systems biology 

approach was taken to measure global mRNA and microRNA expression across 

acinar cell terminal differentiation in the rat parotid salivary gland. In ParC5 cells, 

the ER stress activator tunicamycin was used to stimulate Xbp1 activity. Results: 

Profiles of statistically significant changes of mRNA expression, combined with 

reciprocal correlations of microRNAs and their target mRNAs, suggest a putative 

network involving Xbp1 and Mist1 (BHLHA15). The network suggests that a 

molecular switch involving Prdm1, Sox11, and Pax5 progressively decreases 

repression of Xbp1 transcription, in concert with decreased translational
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repression by miR-214. Transfection studies validate each of the tested network 

interactions. Treatment of ParC5 cells with tunicamycin increases expression of 

Mist1 downstream of Xbp1. However, further downstream effectors of Xbp1 and 

Mist1 (i.e. PSP, Connexin32) remain unchanged. The Mist1 target gene Rab3D 

is repressed. However, transfection of Mist1 cDNA, increases Rab3d expression. 

Conclusion: This study identified numerous novel transcription factor 

expressionpatterns during parotid acinar differentiation, including Pparg, Klf4, 

and Sox11. Many differentially expressed microRNAs were also measured which 

have not previously been described in salivary development. Network analysis 

identified a gene regulatory network driving expression of terminal differentiation 

genes. Stimulating Xbp1 activity in ParC5 cells increases Mist1 expression as 

predicted in the network, but other factors or epigenetic changes may be required 

for full expression of the network. 
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CHAPTER 1: INTRODUCTION 
 
The major salivary glands are exocrine organs that are vital for maintaining oral 

health. Saliva components provide numerous protective functions in the oral 

cavity that are unmatched by any other artificial fluid. Millions suffer from gland 

dysfunction and destruction, and as a result have chronic hyposalivation. These 

patients generally have poor oral health and reduced quality of life. Regenerating 

or growing artificial glands for these patients requires increased understanding of 

how exocrine cells differentiate. This work takes a systems biology approach by 

measuring both mRNA and microRNA expression changes across acinar cell 

differentiation and integrating them into a model of gene regulatory interactions 

that drive differentiation. 

1.1 Salivary Gland Anatomy, Cell Types, and Function 

1.1.1 Introduction and Basic Anatomy 

In mammals, as well as in many terrestrial animals, the salivary glands are a 

constitutive source of moisture, salt, and proteins which coat the oral cavity and 

are vital for maintaining oral homeostasis [1-3]. Saliva contributes to many 

functions in the oral cavity, and as described in a later section, its loss is 

devastating to oral health and quality of life
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There are two main types of glands in mammals: major and minor. Named for 

their relative size, the major glands are much larger than the minor glands, and 

are the focus of this study. There are three major paired glands, and they secrete 

~ 90% of total saliva. They are the submandibular (SMG), the sublingual (SLG), 

and the parotid gland (PG). Their locations in humans can be seen in the 

diagram in Figure 1.1. Both the SMG and the SLG are located under the tongue, 

while the PG is found in front of and below the ear, flanking the jaw hinge [1].  

Gland epithelia can be described as secretory units that exist as clusters of 

exocrine cells (acini) which are connected by a highly branched duct system and 

drain into the oral cavity [4]. The three major glands differ slightly in morphology 

(the SMG is densely packed whereas the branches of the PG are more spaced 

out) [5, 6]. They also differ with respect to type of secretion, due to different types 

of acinar cells. The SMG contains mucosal acini which secrete a viscous saliva 

high in mucin content, while the PG have purely serous acini which do not 

contain mucins and produce more watery saliva [1, 7] that nonetheless contains 

a large number of proteins including amylase and the parotid secretory protein 

(PSP). The parotid is considered responsible for most stimulated flow [8] [9]. 

The SMG and PG are connected to the oral cavity through their own designated 

ducts. Each of the paired SMG drains into a single duct know as Wharton's duct 

under the tongue, and the PG empties into the Stensen duct found opposite the 

upper second molar in humans [1]. The SLG, on the other hand, may have more 

than a dozen ducts on the floor of the mouth. The glands are enclosed in  
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  Figure 1.1 Salivary Gland Anatomy. The locations of the three major salivary 
glands is shown in humans. Both the submandibular and the sublingual glands 
are found underneath the tongue and are connected to the oral cavity through 
ducts found on the floor of the mouth. The parotid glands are the largest in 
humans. They are located on each side of the face in front of the ear, extending 
down to the lower jaw, and overlapping the masseter muscle. The parotid duct 
connects to the oral cavity in the back of the mouth, near the upper second 
molar.  

 

Parotid Gland 

Submandibular Gland 
Sublingual Gland 

Tongue 

Masseter muscle 
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mesenchyme capsules, and are innervated by both parasympathetic and 

sympathetic fibers which control secretion [1, 2, 10]. 

Nerves, particularly parasympathetic nerves, are required for secretion. They 

control both a "resting" or basal flow rate which occurs at all times, and a short 

term stimulated flow rate where the flow of saliva can be increased 10-fold or 

more. Also, many types of receptors can indirectly stimulate this increased flow, 

including mechanoreceptors, olfactory receptors, and gustatory receptors [11]. 

Evidence suggests that not only can these stimuli alter the flow of saliva but its 

components as well. For instance saliva collected from the oral cavity after 

stimulation  with sugar has been found to contain more protein than saliva 

stimulated with citric acid [12]. This level of control makes saliva ideal for 

maintaining homeostasis of an oral cavity which may undergo many different 

types of assaults on a daily basis. 

1.1.2 Cell Types  

The acinar cells produce and secrete most of saliva's components. They are 

highly specialized terminally differentiated cells, which are vital for fully 

functioning glands. They are pyramid-shaped cells packed into clusters around a 

well-defined lumen at the end-points of the ductal branches. The apical 

cytoplasm is generally filled with electron dense secretory vesicles, and they 

have a well-developed Golgi complex and rough endoplasmic reticulum [13-15]. 

There are two types of acinar cells which can be identified by the types of 

proteins found in the vesicles: mucosal acinar cells contain large amounts of 

mucin proteins, and serous acinar cells contain densely packed proteins, 



5 
 

including many enzymes, but no mucins, and these vesicles generally appear 

darker. 

In humans, the parotid gland contains purely serous acini, and the 

submandibular is purely mucosal. The sublingual gland contains a mixture of 

mucosal and serous cells within a single acinus with mucosal acinar cells forming 

a cluster which are capped by serous demilune cells [16].  

 The acini are surrounded by myoepithelial cells which are innervated and are 

thought to aid secretion through contraction [1, 13].  

The ductal cells modify saliva as it passes from the acini, mostly by reabsorbing 

salt [13]. Saliva is hypotonic to plasma, and this is thought to contribute to taste 

[10].  

1.1.3 Exocrine Secretion 

Secretion from parotid acinar cells is fairly complex and has been found to 

involve several different pathways [17], which can be classified into two main 

types: regulated secretion, which involves stimulation from the nervous system, 

and constitutive secretion which does not.  

The regulated secretion pathways involve beta-adrenergic stimulation leading to 

accumulation of intracellular cAMP, and elevation of intracellular Ca2+ by 

muscarinic stimulation, ultimately leading to the release of protein cargo from 

secretory granules. This type of pathway accounts for 80 – 90% of protein 

secretion from the parotid [17]. These pathways involve the large secretory 

granules which are directed towards the apical membrane and densely packed 
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with protein cargo (i.e. amylase, PSP, RNaseI). The membrane of these mature 

granules also contain proteins including the SNARE VAMP-2, and two GTP-

binding proteins Rab3d and Rab26.  VAMP-2 is essential for fusion with the 

plasma membrane, and the Rab proteins have been found to be vital for granule 

maturation and recruitment to the plasma membrane [18-20]. 

1.1.4 Saliva Components and Oral Health 

Although saliva has been found to be ~90% water, it contains many protein and 

salt components which benefit the oral cavity, and make it a difficult fluid to 

replicate artificially. 

Several studies have been done to identify the complete proteome of saliva [21, 

22]. The most comprehensive analysis of the whole salivary proteome to date 

has identified over 1000 different proteins, most coming from the major salivary 

glands. Individual secretions from the submandibular and parotid gland have also 

been analyzed. Each gland contributes close to 1000 proteins, with about a 60% 

overlap between them [23]. These proteins contribute to many functions in the 

oral cavity ranging from digestion, antimicrobial protection, lubrication, taste, and 

speech.   

One of the main proteins in saliva are mucins which are supplied mostly by the 

SMG. In humans mucins are expressed from two genes: MUC5B and MUC7, 

and each gene may have many glycoforms. MUC5B is the more heavily 

glycosylated (> 80%) and is the main contributor to the viscosity of saliva, which 
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has a gel-like consistency that coats and forms a barrier on epithelial and enamel 

surfaces. It also protects against acids. 

MUC7 is smaller and does not appear to increase viscosity. It is, unlike MUC5B, 

specific to salivary glands. MUC5B coats many other surfaces such as in the 

intestines. MUC7 has been found to bind to several species of bacteria that are 

found in the oral cavity, and along with agglutinin (an anti-bacterial protein 

secreted from all three major glands), contributes to the aggregation and 

clearance of bacteria. 

Other types of antimicrobial proteins include enzymes. The most prevalent and 

probably the most well-known enzyme in human saliva is amylase. This enzyme 

is produced largely by the parotid gland, and catalyzes the alpha amylase 

reaction, the first reaction in starch digestion to produce glucose. Aside from 

aiding in digestion, breaking down starch in the oral cavity allows the taste of 

sweetness to be perceived [24]. 

In humans there are five amylase isozymes found in a gene cluster on 

chromosome 1 [25]. Three of the genes are salivary specific and the remaining 

two are produced in the pancreas. Interestingly, the salivary amylase genes have 

variable copy numbers in the human population (from 2-15 copies based on a 

survey of 50 individuals) [26]. A recent study also found a correlation between 

amylase copy number and diet, with more copy numbers in populations with a 

grain heavy diet and less in populations that relay on a low starch diet [26]. 
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A survey of amylase expression throughout the mammalian kingdom further 

suggests that salivary amylase evolves alongside diet. Pure carnivores, such as 

cats and dogs, do not produce amylase in their saliva, and ruminants such as 

sheep have very little amylase [24]. While the exact physiological significant of 

amylase activity in the oral cavity is still being investigated, the evolution of 

salivary specific amylase expression suggests it is important in animals with a 

starch heavy diet. 

Saliva has also been reported to contain chitinase activity most likely due to 

secretions from the parotid [27]. Chitin is a major component of the yeast cell wall 

and this protein could act as an anti-fungal. Lysozyme is another enzyme found 

in saliva which acts as an anti-fungal and is thought to contribute to controlling 

candida growth in the mouth. It has been suggested that the salivary glands, 

particularly the parotid, can respond to higher candida loads by secreting more 

lysozyme [28]. 

There are also many types of antimicrobial proteins in saliva such as the PLUNC 

(palate, lung, and nasal epithelium clone) family Parotid Secretory Protein (PSP, 

aka BPIFA2), which is related to the BPI (bactericidal/ permeability-increasing) 

protein. PSP has been found to have anti-inflammatory as well as antibacterial 

activity. This protein contains hydrophobic regions, and has been shown to bind 

to LPS, likely though regions with similarity to Lipopolysaccharide-Binding Protein 

(LBP) [29]. Several peptides of this protein have been shown to inhibit LSP 

stimulated secretion of TNFα from macrophages. In a mouse model of sepsis, 

co-injection of a PSP peptide with P. aeruginosa LPS increased survival 
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compared to the LPS alone. This protein also acts as an agglutinin. Incubation of 

PSP with P. aeruginosa led to the aggregation of the bacteria which has been 

shown to aid in clearance by inhibiting attachment. 

These are just a few examples of known functions for saliva components. 

Knowledge continues to grow and it is likely that proteins will have more than one 

function. It is clear that saliva has been adapted for our survival and for our diet; 

its loss would be devastating for our oral health. 

1.2 Gland Dysfunction and Oral Health 

1.2.1 Xerostomia and Oral Health 

Xerostomia (dry mouth) is a common complaint among the general population, 

with some surveys finding perceived xerostomia in more than 25% of 

respondents [30, 31]. Generally, it is reported more often by women and the 

elderly. Although the presence of xerostomia can be considered subjective, it is 

often accompanied by hyposalivation which is determined more objectively by a 

decrease in salivary flow. This is defined by a resting flow rate less than 0.1 

ml/min or a stimulated rate less than 0.7 ml/min [32]. The absence or reduction of 

saliva leads to a dramatic increase in oral health problem such as caries (tooth 

decay caused by bacteria, commonly called cavities), ulcerations, periodontitis, 

and opportunistic infections such as candida [31, 33]. Patients also experience 

discomfort, difficulty chewing, swallowing, and even speaking. This can have a 

drastic impact on quality of life. 
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There are many causes of hyposalivation, but they generally fall into three major 

categories: medication, autoimmune disorder, and radiation therapy. 

Many medications list xerostomia as a side effect. Drugs with anticholinergic 

activity are the most reported, but there are many other classes which are 

thought to reduce salivary function such as antihistamines, decongestants, 

tricyclic antidepressants, and others, though in most cases the mechanism is not 

known [33]. This mostly affects the elderly population which generally report 

taking more medications. Salivary dysfunction is rarely irreversible in these 

cases, and salivary flow usually returns to normal when patients stop taking the 

drug. 

Autoimmune disorders are cause by the immune system attacking host tissue, 

leading to damage. Disorders involving the exocrine glands affects tens of 

millions of individuals. The most common of these is Sjogren's syndrome (SS) 

which varies in prevalence from 0.1% to 4.8% of the population. This variation is 

thought to be due to ethnic and geographical differences. Onset is most common 

in women in their 40's and 50's, and is the second most common autoimmune 

disorder behind rheumatoid arthritis. It is usually considered a chronic and 

progressive disease. A characteristic of SS is immune cell infiltration, particularly 

of the salivary glands. Overtime the acinar cells atrophy and are replaced with 

fibrotic and fatty tissue, however, several studies have determined that function is 

greatly reduced long before cells are lost possibly due to production of nitric 

oxide (NO) or autoantibodies that target muscarinic receptors [34-36]. 
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Radiation therapy is also responsible for xerostomia in thousands of patients. 

Every year there are 30,000 – 40,000 new cases of head and neck cancer, and 

chronic xerostomia is considered the most common complication of treatment. 

Radiation treatment is part of the standard of care, and is sometimes combined 

with surgery and chemotherapy. Because of current limitations, the radiation field 

usually includes some healthy tissue which usually involves the salivary glands. 

For reasons not completely known, the salivary glands are especially sensitive to 

radiation [37]. Unlike many radiosensitive cells, they are not highly proliferative. 

The most recent hypothesis involves acute disruption in the plasma membrane 

which interferes with muscarinic receptor stimulation without killing the cells (this 

satisfies the observation that patients experience hyposalivation quickly after 

therapy begins (~ 1 week), but there is no observed loss of cells). Later damage, 

and loss of cells, particularly acinar cells is observed (damage can continue to 

progress for several months after treatment), and this is thought to be due to 

more "classical" radiation damage, that is, DNA damage of progenitor cells 

causes lethality when these cells try to re-enter the reproductive cycle and 

replenish gland tissue. These patients rarely recover gland tissue, and end up 

suffering from permanent chronic hyposalivation [38-40]. 

1.2.2 Treatment of Hyposalivation 

Most treatments available to patients with xerostomia involve managing 

symptoms, and preventing oral health problems. Currently, there is no way to 

regenerate or regrow functioning tissue, and patients generally face a lifetime of 

managing this disorder. 
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Commonly patients will consume more water in order the combat the feeling of 

dry mouth. However, xerostomia is usually not caused by dehydration and thus 

this is not expected to confer any long-term benefit though it may help with some 

symptoms such as discomfort, and may aid in chewing and swallowing [31]. 

There are also an array of saliva substitutes on the market featuring many 

different formulations. The base for these solutions covers a wide range of 

options including glycerol, animal mucins, and several types of methylcellulose. 

Some products contain fluoride, others lemon juice (to stimulate residual gland 

activity, citric acid is the most effective natural stimulator of salivation), though 

long-term use of an acid can lead to enamel erosion [31, 41]. Despite the long list 

of options available, few studies have compared their benefit, and there is 

currently no accepted gold standard saliva substitute. It is important to note that 

no artificial substitute contains all of the wide array of components of natural 

saliva, and so is not likely to confer all the same protective benefits. Also these 

solutions must be applied every few hours as they are easily washed away [42]. 

The American Dental Association (ADA) recommends that dentist encourage 

patients to make changes in their daily life to avoid exacerbating oral 

complications. These include tobacco cessation, alcohol-free mouth wash, and a 

reduction in dietary sugar [42]. Patients will also expect to visit a dentist more 

frequently (every 3-6 months). However, a 2007 review noted that pre-treatment 

dental consultations for patients with head and neck cancer was low, and 

compliance with oral care recommendations was poor [43]. 
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There are currently two FDA approved medications used to stimulate saliva flow 

and alleviate hyposalivation: these are pilocarpine and cevimeline hydrochloride, 

referred to as "sialogogues." They are cholinergic agonists, and are used to 

stimulate any remaining gland tissue. These medications must be taken 3 to 4 

times a day and side effects include sweating, nausea, and rhinitis. Patients vary 

in their response to these drugs, usually depending on how much healthy tissue 

remains. Those with extensive damage and loss of cells may receive no benefit 

at all [42]. 

In radiation therapy, several interventions have been developed to protect the 

salivary glands from damage in the first place. The use of intensity-modulated 

radiation therapy (IMRT) has been shown to spare the salivary glands by 

reducing their exposure to radiation, and has been shown to reduce the 

incidence of xerostomia in these patients [44]. For instance, follow up of phase 

I/II patients showed that patients receiving IMRT recovered 63% of their flow rate 

one year after treatment, compared to 3% in the patients that received 

conventional radiation (these glands received a cumulative dose of 19.9Gy or 

57.5Gy respectively, and a baseline of 26Gy is now widely considered a 

threshold for salivary gland sparing) [45, 46]. Another method to prevent damage 

is to move one of the submandibular glands out of the field of radiation in a 

procedure termed salivary gland transfer (SGT). It was developed in 2000 and 

has been used on hundreds of patients in the last decade [47]. Recent meta-

analysis has supported the claim that this treatment is effective in preventing 

xerostomia [48, 49]. 
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Although these preventative techniques may help many of the hundreds of 

thousands diagnosed with head and neck cancer every year, these measures will 

not help all patients, and there are still millions already suffering from gland 

hypofunction with little effective treatment options available. Therefore, 

considerable emphasis has been placed on developing therapeutic approaches 

based on controlling differentiation or regeneration of damaged salivary glands. 

1.3 Regenerating Salivary Glands 

1.3.1 Stem Cells 

Several recent studies have focused on identifying stem cells capable of 

differentiating into gland cells, particularly acinar cells. In the case of head and 

neck cancer patients, for instance, the stem cells could be isolated from patients 

before radiation treatment, and then transplanted back after radiation treatment. 

It has long been thought that the salivary glands themselves contain stem cells 

residing within the ducts, and are mainly responsible for maintaining gland tissue 

[50, 51]. These ductal progenitors are also thought to be the source of gland 

regeneration following ductal ligation, when most acinar cells atrophy [52, 53]. 

However, recent work has suggested that clonal expansion of acinar cells 

maintains tissue homeostasis, with little contribution from the ducts [54]. 

However, this does not exclude the possibility that there is a stem cell population 

in the glands. Many groups have identified different prospective stem cells in the 

gland, and have exploited their pluripotent potential to grow both ductal and 

acinar cells in vitro and in vivo. 
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Nanduri et. al. [55] was able to show immune-histochemical staining of several 

stem cell markers in the ductal compartment of mouse submandibular glands 

including c-Kit, CD133, CD24, CD29, and CD49f. Interestingly, culturing gland 

cells as salispheres, enriches a c-Kit+ population after several days [56]. As 

reported by Lombaert et. al. [57] initial spheres contained both ductal and acinar 

cells, as well as c-Kit- and c-Kit+ cells. After 2 or 3 days in culture, the acinar 

cells disappeared and most of the remaining cells were c-Kit+. Over the next 

several days, acinar cells began to reappear, as indicated by PAS+ staining and 

IHC for amylase, suggesting these cultures contained stem cells capable of 

differentiation into acinar cells.  

In a rescue experiment, cells from three day cultured spheres were injected into 

the glands of irradiated mice. The donor was a male expressing a GFP reporter, 

and the recipients were wild type female mice 30 days after receiving local 

radiation which destroyed their salivary glands. Glands and salivary flow were 

examined 90 days after transplantation. Mice that received the transplantation 

had significantly more salivary flow and increased acinar surface area compared 

to irradiated, non-transplanted animals. There were many GFP positive cells at 

the injection site, all ductal cells, and subsequent in situ hybridizations confirmed 

the presence of donor derived acinar cells based on hybridization with the Y 

chromosome. This indicates that these cells are differentiating and incorporating 

into the gland rather than relying solely on some paracrine affect to stimulate 

growth of existing cells.  
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c-Kit+ cells have also been identified in human submandibular and parotid 

glands. Salisphere cultures seem to behave in much the same way as the 

mouse, and c-Kit+ cells could be isolated from 3 day cultures [57]. 

Bone marrow stem cells have also been investigated for the ability to rescue 

gland function post-irradiation. As in the salivary gland stem cell experiments, 

bone marrow stem cells were isolated from a donor mouse (specifically bone 

marrow mesenchymal stem cells), and transplanted into the glands of an 

irradiated mouse. Mice that received the stem cells showed a significant increase 

in saliva production, compared to PBS controls, as well as a preservation of 

morphological features, including acinar cells. Donor cells were identified in the 

recipient gland by use of a tracking dye, and in a few cells fluorescence from the 

dye co-localized with amylase staining indicating transdifferentiation [58]. 

The use of stem cell based therapies appears promising as it could potentially 

regrow tissue for patients from their own cells. Several candidate cell populations 

have been proposed and tested in mice, and one population, c-Kit+ cells, have 

been isolated in humans. These cells have the ability to differentiate into both 

ductal and acinar cells both in vitro and in vivo. However, many patients no 

longer have progenitor or stem cells remaining, and so alternative therapies 

continue to be developed. Importantly, there is little understanding of the 

regulatory pathways which control differentiation into acinar cells. 

1.3.2 Bioengineered Glands  
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While the transplantation of individual stem cells has shown promise, there is 

also research into constructing three-dimensional structures in culture for grafting 

into patients. One method, termed the organ germ method seeks to recapitulate 

the process of development and differentiation in culture starting with isolated 

epithelial and mesenchymal cells from an embryo, and resulting in a gland germ 

in culture that can be transplanted [59]. This method has been successful in 

growing all three of the major salivary glands in mice. Transplantation of the 

submandibular gland germ in mice was also successful. The gland continued to 

grow and develop in vivo, it expressed terminal differentiation markers such and 

Aqp5, and amylase, and responded to proper nerve stimulation [60]. While the 

engineering of a working organ from gland germ cells in culture is impressive, the 

reliance on embryonic germ cells means this technique could probably not be 

developed for use on patients in the clinic. Other types of cells and three-

dimensional culturing techniques have been investigated for their use in growing 

differentiated cells in vitro, with the ultimate goal of building an implantable 

artificial salivary gland. This could aid patients with extensive gland damage that 

no longer possess progenitor cells. By using donor cells and an appropriate 

scaffold, a working gland could be constructed for them. 

The challenges of constructing an artificial gland largely stem from the fact that it 

is difficult to grow differentiated salivary cells (particularly acinar cells) in vitro. 

Primary cells are generally short lived, and are also known to transdifferentiate in 

culture [61]. There are several salivary gland cell lines, but none of them harbor 

all the characteristics of fully differentiated cells. It would be very useful to 
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develop an understanding of the regulatory pathways to drive and maintain 

differentiation in culture. 

Current work in this area has focused on the role of the culturing scaffold. In 

creating a three dimensional environment that more closely resembles the in vivo 

structure (rather than culturing cells in a 2D monolayer), several groups have 

been able to recreate some characteristics of fully differentiated cells. Several 

cell lines grown on matrigel, for instance, have become more differentiated. HSG 

cells are a neoplastic cell line derived from human intercalated duct cells from a 

submandibular gland. When grown on plastic these cells form a flat monolayer, 

do not express any tight junction (TJ) proteins, which are needed for apical/basal 

polarity and proper secretion, and do not express Aquaporin5 (AQP5) which is 

needed for fluid secretion. Culturing on matrigel leads to the formation of three 

dimensional spheres that express many TJs that are also properly localized to 

the apicolateral membrane. These cells also express AQP5, they contain 

electron dense granules, and increased expression of amylase [62]. Similarly, 

ParC10 cells (a cell line derived from primary rat parotid acinar cells, and 

immortalized with simian virus 40 (SV40)[63, 64] also organize into lumenized 

spheres on matrigel, express apically localized TJ proteins, basally localized 

muscarinic receptor, and increased expression of AQP5 [65].  

Unfortunately, matrigel cannot be used for in vivo applications as it is derived 

from a mouse sarcoma cell line [66] and several studies have found it to be 

tumorigenic [67-69]. Culturing cells on fibrin hydrogels has been investigated, but 

it has failed to produce the same three dimensional morphology [67]. As an 
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alternative technique, one group has developed precisely constructed craters 

lined with poly-lactic-co-glycolic acid (PLGA) nanofibers to mimic a basement 

membrane. Increasing the curvature of the crater was found to increase cell 

polarity and expression of AQP5 [70, 71]. 

These new techniques indicate a limited amount of control over the differentiation 

process of acinar cells, and we are still a long way from recreating fully 

differentiated cells in culture. This will take an increased understanding of 

differentiation in vivo in order to identify important factors and networks that drive 

differentiation, which could then potentially be applied in culture. 

1.4 Gland Development and Cell Differentiation 

1.4.1 Gland Development and Contribution from Outside Signaling 

 All three major glands develop by branching morphogenesis, although at 

different times. The submandibular gland is the first to develop, followed by the 

sublingual, and finally the parotid. In the rat, parotid development begins around 

embryonic day 16.5 and continues until postnatal day 25. Development can be 

characterized by five major events: formation of a prebud thickening in the oral 

epithelium, an initial bud that protrudes into the surrounding mesenchyme, 

branching morphogenesis, canalization of the ducts and end buds to form a 

continuous lumen, and cellular differentiation [1, 13]. Along with the epithelium 

and mesenchyme, endothelial and neuronal cells also grow alongside the gland. 

Signaling between these cells types has been found to control many events in 

development. 
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It has long been known that the mesenchyme is important for branching 

morphogenesis. Ex vivo studies involving the salivary glands date back to the 

1950's when Grobstein et. al. [72] was able to show that branching 

morphogenesis does not occur when salivary epithelium is mixed with the 

mesenchyme from a different source. During his experiments, he physically 

separated the epithelium from the mesenchyme using a filter and concluded that 

proper branching was due to "diffusible factors" between the two tissues.  

Later studies in knockout mice showed that Fgfr2b (fibroblast growth factor 

receptor 2b) null and Fgf10 (fibroblast growth factor 10) null mice do not have 

salivary glands. In these animals an initial bud forms, but does not undergo 

branching morphogenesis [73]. Hoffman et. al. [74] profiled the expression of 

many FGFs and FGFRs in the mouse submandibular gland during branching 

morphogenesis. They measured expression in the epithelium and mesenchyme 

separately, and found that Fgfr2b is expressed in the epithelium while Fgf10 and 

Fgf7 are expressed in the mesenchyme. In functional studies of FGFR signaling, 

ex vivo glands were incubated with soluble recombinant FGFRs in order to 

competitively bind ligands. Of all the recombinant proteins used, rFGFR2b had 

the largest effect on reducing branching morphogenesis. In a rescue experiment, 

adding exogenous Fgf10 or Fgf7 could restore proper branching [75]. This FGF 

secretion from the mesenchyme is thought to be stimulating localized cell 

proliferation at the end buds. 

Signaling from the parasympathetic ganglion (PSG) has also been shown to be 

vital for several functions during organogenesis. The PSG condenses around the 
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gland soon after the initial bud is formed. It branches and grows alongside the 

gland, and is also known to be essential for gland regeneration. In ex vivo 

studies, removal of the PSG around the time of branching morphogenesis stunts 

growth and reduces the number of branches. Removal does not affect the 

expression of genes involved in FGF signaling, indicating that the PSG 

contributes to growth via a completely separate mechanism from the 

mesenchyme. The PSG was found to contribute to growth via maintaining an 

adequate progenitor cell population through EGFR (epidermal growth factor 

receptor) signaling [76]. The PSG has also been found to control ductal cell 

polarization and lumen formation through secreting vasoactive intestinal protein 

(VIP) [77]. 

1.4.2 Acinar Cell Differentiation 

Acinar cell terminal differentiation largely occurs during postnatal development. 

From observational studies in the rat parotid, terminal clusters in the late embryo 

do not appear to have a lumen, cells contain only a few sporadically located 

electron dense granules, and the endoplasmic reticulum and Golgi are relatively 

small. Within the first 24 hours of birth, amylase expression increases along with 

the number of secretory granules, and a lumen begins to form. Over the next few 

weeks the exocrine cells become polarized with apically located secretory 

granules (which progressively increases in size and number), and basally 

localized nucleus. There is an expansion of the rough ER and Golgi. The 

expression of cargo proteins such as amylase and RNaseI progressively 

increases, while the protein DNase I is not detected until the second postnatal 
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week. The cells are considered fully differentiated around postnatal day 25 (P25) 

[78, 79]. 

Unlike the case of branching morphogenesis where many signaling pathways 

have been identified, not much is known about what drives terminal 

differentiation. Several studies points to the fact that differentiation is at least 

partially independent from morphogenesis, and most likely involves a separate 

set of pathways [6]. For instance, the heterotypic recombination of epithelial cells 

and mesenchyme that altered gland morphogenesis does not appear to change 

the cytodifferentiation of the terminal bud cells. Lawson et. al. [80] found that 

when a parotid rudiment is cultured with submandibular mesenchyme the gland 

structurally resembles the SMG which is denser and tightly packed. However, the 

acinar cells still develop amylase expression, which is a property of parotid 

epithelium, not SMG. The reverse observations can be seen when SMG 

epithelium is cultured with parotid mesenchyme [80]. In another study using the 

SMG, embryonic epithelia (16 days) was separated from the mesenchyme and 

grown in culture. Despite the fact that morphogenesis had been disrupted, the 

cells were able to differentiate and form into distinct ductal and acinar cell 

lineages. The authors do point out that if the mesenchyme was separated before 

branching occurred, then cytodifferentiation does not take place, indicating these 

two process are coupled very early in development but eventually become 

independent [81]. This also points to the fact that cytodifferentiation may be less 

dependent on signaling molecules from other tissues, and is instead intrinsic to 

the epithelial cells themselves, especially in the later stages of development. 
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Understanding the regulatory networks inside these cells that drives this process 

will aid in our understanding of differentiation, and is the primary goal of this 

dissertation. 

1.5 Systems Biology and Salivary Gland Development 

Organogenesis is a complex process involving many different pathways which 

are spatially and temporally regulated. These pathways affect many different 

cellular functions such as proliferation, migration, apoptosis, and lineage specific 

gene expression to drive the overall patterning of the organ and the 

differentiation of individual cell types. Many of these pathways are interconnected 

or occurring in parallel. The goal of systems biology is to build as inclusive a 

model as possible of all the factors that drive a particular function. These models 

can then be used as hypothesis driving tools to further test and understand the 

system. 

Cleft formation is an important part of branching morphogenesis, which occurs 

alongside proliferation and migration to form the overall shape of the organ, and 

recently systems level modeling has been used to identify controlling factors. 

Indentations, known as clefts, form spontaneously at the leading edge of the end 

buds. Once an initial cleft is stabilized it will deepen, and eventually drive the end 

bud apart into two branches. This occurs many times as the epithelium grows 

and is important for forming a multibranched structure. This process is thought to 

involve many functions including cytoskeleton arrangement, cell-cell attachment, 

and cell-matrix attachment [82]. Recently a mathematical model has been 
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developed to understand the contribution of these functions to the clefting 

process [60]. 

An important part of systems level analysis is expression profiling, where the 

expression of many molecules are measured under the condition of interest, 

which can then be used as a starting point to build a model. Several expression 

profiling experiments in the salivary gland have already increased our knowledge 

of development. In Ectodysplasin A null Eda -/- mice, for instance, salivary 

development is delayed, and the profiling of gene expression over the course of 

branching morphogenesis in the knockout versus wild type indicated a novel 

signaling pathway, possibly involving C/EPBα, which was counter to ex vivo 

observations in which Eda was predicted to work by activating the NFκB pathway 

[83]. This also highlights the importance of measuring changes within the organ 

in vivo rather than under artificial conditions. There has also been an effort to 

catalogue ex vivo gene expression at several micro anatomic regions of interest 

in the branching epithelium (i.e. main duct, secondary duct, basement of cleft, 

end bud), and these expression data have been made available to the field as a 

searchable gene expression atlas [84]. Using laser capture, these specific 

regions could be isolated and RNA expression compared between them in order 

to identify molecules involved in different spatially regulated processes. By 

comparing expression at the base of the cleft versus the end bud periphery, for 

instance, the authors identified hundreds of differentially expressed genes, 

including GSK3β which was expressed much lower in the clefts. This protein is 

involved in E-cadherin stability. Pharmacological inhibition of GSK3β lead to an 
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increase in cleft formation which did not progress to secondary ducts [85]. This 

example highlights how systems level analysis can be used to identify novel 

interacting molecules and form new hypothesis which can then be interrogated 

with more traditional approaches.  

While many studies have focused on morphogenesis, relatively little attention has 

been paid to cellular differentiation. Differentiation can be thought of as enduring 

changes in gene expression which are vital for the unique function of each 

individual cell type. For instance, salivary acinar cells acquire the expression of a 

multitude of cargo proteins as well as the cellular machinery necessary for the 

trafficking, and maturation of exocrine vesicles, and secretion in response to 

stimulation. The regulatory networks that drive expression of these genes is 

practically unknown. In order to identify multiple important genes, a systems 

biology approach could be taken, where expression is profiled across 

differentiation in order to identify differentially expressed genes in fully developed 

cells versus the immature cells in the embryo.   

Currently, most profiling studies involve measurements of tens of thousands of 

genes which is far more than current statistical and mathematical modeling 

approaches can handle as far an integrating all of these components into 

networks that can describe the whole system. Additional strategies need to be 

developed that can build hypothesis driving networks or narrow down gene lists 

to focus modeling on only important subsets. 

One way to statistically identify pathways that are involved in biological functions, 

based on large numbers of measurements, is to use a gene ontology enrichment 
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analysis [86, 87]. This is a bioinformatics approach which tests for over or 

underrepresentation of gene ontology (GO) terms in a set of expressed genes. 

The percentage of genes in each GO terms is compared to a background set 

(such as the whole genome), which is assumed not to have any bias. 

Currently there are several knowledge-based algorithms that predict interactions 

between genes or gene products based on curated databases developed from 

literature searches. These programs can be used to filter for many different types 

of interaction (i.e. enzymatic, protein binding, and transcriptional regulatory). If, 

for instance, a profiling experiment measures RNA expression changes across 

several conditions, then filtering for transcription regulatory interactions will 

probably be the most relevant to that dataset. The direction of the interaction as 

well as whether it is activating or inhibiting is also predicted. 

In these programs, gene lists of interest (i.e. differentially expressed genes) are 

uploaded and used as "seed nodes." These are the nodes from which networks 

can be built by adding "edges" between then, signifying an interaction. Several 

algorithms are available to generate networks from these nodes. For instance, 

Metacore's "Expand by One Interaction" builds a one-step network around a 

selected seed node by adding all direct upstream and downstream effectors. 

Filters can be used to only add genes based on certain criteria (i.e. interaction 

type, and membership in a gene list of interest). In this way networks can be built 

one interaction at a time from a list of differentially expressed genes [88]. 

1.6 MicroRNAs and Cell Differentiation 
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1.6.1 MicroRNAs 

MicroRNAs (aka microRNAs) are small (22-23 nt) endogenous noncoding RNAs 

which are important regulatory molecules in the cell. They work in the cytoplasm 

to post-transcriptionally repress gene expression. They act by "targeting" mRNAs 

through partial base complementarity, usually in the 3'UTR but target sites have 

also been found in the coding region and 5'UTR. Once targeted, an mRNA is 

directed to translational inhibition and increased degradation due to message 

instability. This leads to a decrease in protein expression. Analysis of the human 

genome has found that most mRNAs contain conserved microRNA target sites. 

A mRNA may be targeted by many microRNAs and a single microRNA member 

can have many potential targets, indicating that microRNA based silencing is a 

common mechanism that participates in numerous functions [89, 90]. 

MicroRNAs were first identified a little more than 20 years ago in C. elegans, and 

have since been found throughout the animal kingdom. Several thousand have 

been identified so far in humans, with most having homologous sequences in 

mice and rats. 

Processing of mature microRNAs is a multistep process that begins with the 

transcription of an initial long RNA, known as pre-microRNA [91]. This pre-

microRNA is transcribed by RNA polymerase II [92] from its own gene. There are 

also clusters of microRNAs in the genome which are expressed as a single 

polycistronic transcript. The pre-RNA is then cleaved in the nucleus by the 

RNaseIII enzyme DROSHA to become ~70bp transcripts called pri-microRNAs, 

which contain a stem-loop structure. There are also microRNAs which are 
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processed from the introns of host mRNAs. These RNAs (known as "mirtrons") 

generally bypass DROSHA processing [93]. Pri-microRNAs are then exported to 

the cytoplasm via the nucleoprotein exportin-5 [94]. The cytoplasmic pri-

microRNA is then process into a mature single stranded microRNA by another 

RNaseIII enzyme, DICER. The mature microRNA is then loaded into the RNA-

induced silencing complex (RISC), a riboprotein complex which can then target 

mRNAs for silencing. 

Interestingly, recent attention is being paid to microRNAs outside the cell. These 

small RNAs have been found in plasma, milk, and saliva, specifically they are 

mainly found in exosomes which are nano-sized membrane bound vesicles 

secreted by many different cell types into the extracellular matrix [95, 96]. These 

microRNAs have been found to be transferred between cells, and could be 

serving as some form of cellular communication, and clinically they could be 

used as biomarkers [97, 98].   

The exact mechanism(s) by which microRNAs exert their repressive functions in 

vivo are still being worked out. Uncertainty in this area stems from the fact that 

the RISC can both repress translation and facilitate mRNA instability. Some of 

the earliest studies highlighted the role of microRNAs as translational repressors. 

In fact the first microRNA discovered, lin-4, seems to work exclusively under this 

model by repressing lin-14 protein expression without any appreciable change in 

mRNA [99]. However, this has come to be viewed as the exception rather than 

the rule as many subsequent studies identified a role for microRNAs in mRNA 
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degradation, and large scale studies have found that degradation explains most 

of microRNA repression.  

In a recent model proposed by Elchhorn et. al. [100], translational inhibition and 

degradation occur sequentially with inhibition occurring first followed by 

degradation due to deadenylation. At steady state conditions degradation 

predominates, and inhibition only plays a significant role in cells where transcripts 

with short poly-A tails are stabilized. 

These observations have biological as well as experimental implications. 

Degradation means that microRNAs induce permanent changes of gene 

expression that cannot be reversed. This also means that measuring changes in 

mRNA expression will capture most of the effect of a microRNA, and large scale 

techniques such as microarrays and RNAseq can be used in identify microRNA 

targets based on their changing expression. 

Soon after microRNAs were identified, much work was done to characterize and 

predict their target sites, as this is the first step in identifying their biological 

function. Unlike plant microRNAs, animal microRNAs only share partial 

complementarity with their target making identification difficult. Extensive 

mutation studies were carried out on known microRNA:mRNA target pairs in 

order to identify necessary features. The essential element for microRNA 

targeting is the "seed" sequence located at the 5' end of the microRNA. It is 

comprised of either 6, 7, or 8 nt that are complementary to the target, although 

sometimes 3' pairing (particularly nucleotides 13-16) [101] can be used to 

compensate for a weak seed sequence [102]. Beyond sequence 
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complementarity there are several other factors that influence targeting 

efficiency. Local AU composition was found to be higher immediately 

downstream of the mRNA target sites [101]. Microarray analysis showed that GC 

rich regions were less likely to be true targets despite seed region pairing. Also, 

although target sequences have been found in many transcript regions, true 

target sites are most likely in the 3'UTR. This is thought to be due to the fact that 

the ribosome can displace the RISC as it translates the protein, rendering it 

ineffective. 

Using these rules, many algorithms have been developed to identify putative 

target sites in available genomes and refseq transcripts [103]. Along with 

sequence pairing, and AU content, many of these programs also take into 

account conservation of predicted targets across species as an indication of 

function. Despite the fact that these programs are developed around a similar set 

of principles, many of their predictions do not overlap, conclusive measurements 

of their sensitivity and specificity have not been made, and there is currently no 

gold standard prediction program [104, 105]. Because of this, data driven 

evidence is essential to supplement predictions in order to identify true target 

sites. 

1.6.2 MicroRNA Functions in Development and Differentiation 

Many studies have pointed to the role of microRNAs in cell fate decisions. 

Knockout mouse models have produced defects in both maintenance of stem cell 

identity, and in the progression of pluripotent cells into a differentiated phenotype 

[106]. For instance, global microRNA knockouts in mouse ES cells have defects 
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in differentiation (when either Dicer or the RNA binding protein DGCR8 is 

removed in ES cells, mature microRNAs can no longer be expressed). While this 

technique is not specific, it has proven useful in studying microRNA function. 

Unfortunately, knocking out single microRNAs often shows no phenotype. This is 

thought to be due to target overlap in many microRNA families (microRNAs 

which share the same seed sequence), and the fact that most mRNAs are 

thought to be targeted by many microRNAs. This redundancy often makes single 

knockouts uninformative. 

 In the microRNA knockouts, ES cells no longer express lineage specific markers 

under differentiation conditions, and they are not able to down-regulate 

pluripotency factors such as Klf4, and Oct4. Interestingly, in one study, chimeric 

mice could not be generated by injecting dicer null ES cells into wild type 

blastocysts indicating a deficiency in differentiation [106].  

Tissue specific Dicer knockouts have also been developed, and have identified 

roles for microRNAs in the differentiation of many cell types including muscle 

cells, neurons, pancreatic islet cells, osteoblasts, oligodendrocytes, and many 

others [107]. Subsequent studies, following up on these observations have been 

able to identify functions of specific microRNAs in differentiation. Studies in 

muscle, for instance, have revealed an extensive regulatory network composed 

of both microRNAs and transcription factors that control several functions in 

differentiating myoblasts, from proliferation to cell fate [108-110]. 

In the salivary glands, relatively little is known about the contribution of 

microRNAs to development or differentiation. Several profiling experiments have 
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been performed on both epithelial and mesenchymal cells during branching 

morphogenesis [111, 112] but no such studies have been done focusing on 

acinar cell differentiation. Of the profiling experiments that have been done, many 

expression changes have been measured, but functions have only been 

described for a few microRNAs. 

In the early branching epithelium of the SMG, a panel of microRNAs were 

measured in the end buds and primary duct. Expression was compared between 

the two regions under the hypothesis that microRNAs could be important for 

spatially controlled gene expression. By using antagomiRs in ex vivo cultures 

they were able to identify functions for several microRNAs. Knockdown of either 

mir-200c or miR-34a, which are both highly expressed in the end buds, increased 

the number of end buds, while knockdown of miR-204 or miR-135, both highly 

expressed in the main duct, decreased branching. 

1.7 Specific Aims 

Understanding the process of acinar cell terminal differentiation in vivo is vital to 

better control cell differentiation in vitro for the purpose of tissue regeneration and 

artificial gland construction. In the parotid gland of the rat acinar cells are a single 

type (serous). This pure cell population could be used as a model of 

differentiation in vivo. In rats, terminal differentiation occurs largely postnatal. The 

acinar cells morphological changes such as expanded Golgi complex and rough 

ER, and the accumulation of secretory granules in the apical cytoplasm. The 

mechanisms that drive these changes remain largely unstudied in the salivary 

glands, and transcription factors required to activate expression of parotid 
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specific terminal differentiation markers is unknown. Currently, the ability to 

generate gland tissue for patients suffering from hyposalivation is not available. 

Loss of acinar cells is a major factor for these patients and the ability to 

differentiate acinar cells in culture could be used to grow transplantable tissue for 

patients. 

To address this gap in knowledge, I will use a Systems Biology approach to 

model gene regulatory networks driving differentiation. I will profile mRNA and 

microRNA expression across parotid acinar cell terminal differentiation and use 

network analysis to identify putative transcription regulatory and 

microRNA:mRNA interactions. Thus I will be able to derive a network driving 

expression of terminal differentiation markers. The regulatory transcription factors 

and microRNAs in the network could then be investigated in vitro for their ability 

to control differentiation. 

Aim 1 will profile the expression of mRNAs and microRNAs across acinar cell 

terminal differentiation. Many profiling experiments in the salivary glands have 

focused on branching morphogenesis, which begins relatively early in 

development, and does not have much overlap with differentiation, particularly of 

acinar cells. In the parotid, acinar cell differentiation occurs mostly postnatal, and 

there is a dearth of knowledge about the gene expression changes that take 

place during this time period. In this study, both mRNA and microRNA 

expression was measured at multiple time points spanning terminal 

differentiation. By using laser capture, measurements were restricted to the 
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acinar cell lineage. By comparing expression between different stages, 

molecules that are important for driving differentiation can be identified. 

Aim 2 will predict a gene regulatory network driving acinar cell differentiation. 

Profiling experiments are likely to produce thousands of differentially expressed 

gene. In this aim, several strategies were employed to identify likely functions, 

predict interactions, and incorporate genes into regulatory networks. Clustering 

and regression analysis was used to identify prevailing patterns of gene 

expression, followed by enrichment analysis to identify contributing biological 

processes. Interactions between genes of interest and subsequently a gene 

regulatory network was predicted using the knowledge-based program Metacore, 

sequence-based predictions, and our own expression measurements.  

Aim 3 will validate successive edges of the regulatory network, and investigate 

the ability of network transcription factors to drive differentiation in vitro. One of 

the main goals of using systems biology to study the salivary glands is to be able 

to use the knowledge gained to control aspects of development, and to aid in 

potential clinical solutions such as regeneration or artificial gland construction. In 

this last section we address the hypothesis that interactions from the proposed 

regulatory network can be used to drive expression of terminal differentiation 

genes in de-differentiated cells. We will also use these cells to validate multiple 

steps in our network. 

In this study we were able to identify thousands of differentially expressed 

mRNAs during differentiation, and dozens of regulated microRNAs many of 

which have not been studied in acinar cell differentiation. Using these 
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measurements we developed a gene expression network model incorporating 

both transcription factors and microRNAs driving expression of terminal 

differentiation markers, genes that would need to be expressed in regenerated or 

regrown acinar cells [113, 114]. We validated several of these network 

interactions in ParC5 cells, a model of dedifferentiated parotid acinar cells. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Animals/Tissue Dissection 

Parotid tissue was obtained from Sprague Dawley rats (Harlan laboratories) at 9 

time points spanning development of the parotid gland, including embryonic day 

18 (E18), E20, postnatal day 0 (P0; which is E22), P2, P5, P9, P15, P20, and 

P25.   

Ethics Statement: This study was carried out in strict accordance with the 

recommendations in the Guide for the Care and Use of Laboratory Animals of the 

National Institutes of Health. The protocol was approved by the Institutional 

Animal Care and Use Committee of the University of Louisville (Protocol Number: 

11059).  

Timed pregnant females were used for the embryonic and early postnatal time 

points. Birth (P0) in this strain is typically on E22. All animals were euthanized by 

carbon dioxide inhalation and decapitation of embryos following IACUC-approved 

procedures. For animals older than P5 the parotid gland was removed, 

embedded in Tissue-Tek CRYO-OCT Compound (Fisher Scientific) and 

immediately frozen with a mixture of dry ice and 100% 2-methylbutane. For the 

embryonic and earlier postnatal time points, heads were divided along the 
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sagittal plane, and each half was embedded upright. All tissue blocks were 

stored at -80°C.  

2.2 Laser Capture Microdissection 

For cryosectioning, blocks were thawed to -30°C. Sections (7 µm) were taken 

with a Leica cryostat onto clean chilled slides that had been treated with 

RNaseZap (Ambion), and immediately fixed in 70% ethanol. Xylenes and 100% 

ethanol were used to remove OCT before staining. For the embryos, tissue was 

sectioned and stained with hematoxylin and eosin (H&E) until the parotid gland 

was located. All tissue sections were lightly stained with H&E to identify acinar 

cells based on the structure of the cells and local vascular landmarks, as 

validated by immunofluorescence staining of previous samples using anti-parotid 

secretory protein antibody. Stained sections were dehydrated by washing in 

100% ethanol and xylenes before being used for microdissection. 

Laser capture microdissection (LCM) was performed on an Arcturus PixCell IIe 

LCM System (Life Technologies/ Thermofisher Scientific) [115, 116]. Caps 

containing CapSure transfer film carrier were applied to the tissue and cells were 

adhered to the cap using laser pulses. The cap was then visually inspected 

under the microscope to ensure that contaminating cells were removed. Only 

caps that did not contain any detected extraneous tissue, were used in 

subsequent experiments. Because extracting intact RNA is difficult in RNaseI rich 

tissues, the aqueous staining steps were kept short (15 – 30 seconds), and no 
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more than 150 laser pulses were used when capturing tissue in the older animals 

when RNaseI expression is high.   

2.3 RNA Isolation, microarrays, and qPCR arrays 

RNA was isolated from the LCM caps using the RNaqueous micro kit (Ambion), 

per the manufacturer’s instructions. Briefly, once cells were isolated onto an LCM 

cap, lysis buffer was applied immediately. Tubes were then incubated in a heat 

block at 42°C for 30 min. The lysates were either processed immediately or 

stored at -80°C. Lysates from multiple caps of the same sample, taken on the 

same day were combined before proceeding with isolation. At least three 

independent biological samples (from separate litters) were used for isolation of 

total RNA at each of the 9 time points. Quantity and quality of the total RNA was 

assessed using a 2100 Bioanalyzer (Agilent). Samples with a RIN value of at 

least 7 were used. 

For analysis of mRNA expression, the Whole Transcriptome-Ovation Pico RNA 

amplification system (NuGen Technologies Inc.) was used to prepare amplified 

cDNA from total RNA for 9 time points of the developing parotid acinar cells. The 

biotin-cDNA was hybridized to 27 separate rat genome 230 2.0 Affymetrix 

GeneChips, having 31,099 probe sets. 

MicroRNA expression was measured by qRT-PCR at four time points during 

acinar differentiation: E20, P5, P15, and P25. A total of 372 primer pairs 

(miRCURY LNA, Exiqon) were used which amplify well annotated rodent 

microRNA sequences. Triplicate samples were run for each time point. Total 
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RNA (1 ng) was used to synthesize cDNA (Exiqon’s Universal cDNA Synthesis 

Kit). The cDNA was then applied to microRNA Ready-to-Use PCR, Mouse&Rat 

panel I, V1.M (Exiqon) per the manufacturer’s instructions. Briefly, each 20 µl 

cDNA reaction was diluted 110x in nuclease free water and then combined 1:1 

with 2x SYBR green master mix. The reactions were run on an ABI 7500 RT-

PCR system. 

2.4 Statistical Analysis of Array Data 

2.4.1 Normalization and Filtering 

The processing and analysis of the data was carried out in R, and the code used 

can be found in the supplementary material in Metzler et. al. [114]. 

mRNA: The data were normalized using the rma function in the Bioconductor 

package affy [117], with the default settings. Quality was also checked using 

PCA analysis (Partek). Probes were then filtered according to the following 

criteria: 1) required mapping to an Entrez Gene ID, 2) removal of duplicate 

probes which map to the same Entrez Gene ID. To focus on genes involved in 

the process of differentiation, probes with variability below the 50th percentile 

across all samples (as measured by the interquartile range) were removed. Data 

filtering was done using the nsFilter function in the Bioconductor package 

genefilter [118].   

microRNA: microRNAs were removed that had >50% missing data (i.e. 

expression was not detected in seven or more samples, which excluded 100 

microRNAs), missing values from remaining probes were imputed using R 
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function imputeKNN  in Bioconductor package  MmPalateMicroRNA [119](14.5% 

of values were imputed) [120]. A median sweep was performed to normalize 

delta Ct values by subtracting the global median for each array.  

2.4.2. Hierarchical Clustering 

microRNA: Differentially expressed microRNAs were clustered using the hclust 

function (hierarchical clustering) in the stats package in R. Distance d was 

calculated based on the correlation coefficient r, with d= 1-r. A heatmap was 

generated from the microRNA clusters using the heatmap_2 function in the 

Bioconductor package Heatplus  

2.4.3 Differential Expression 

mRNA: Normalized log2 values were used for analysis. One-way ANOVA was 

used to identify differential expression of mRNA, with a false discovery rate 

(FDR) correction to account for multiple tests [121]. A p-value < 0.05 was 

considered significant. Comparisons were also made between adjacent time 

points by empirical Bayes t-tests using the Bioconductor package limma [122]. 

microRNA: Normalized -ΔCT values were used for analysis of microRNA results. 

Differential expression was analyzed by one-way ANOVA and also by FDR 

corrected empirical Bayes t-tests comparing pairs of time points. 

2.4.4 Expression Patterns and Regression Analysis 

Having several time points of measurements allows the identification of dynamic 

and complex patterns of mRNA and microRNA expression over time. We 
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extended this by the independent approach of k-means clustering of the per-

gene scaled expression data (function kmeans in R package stats). In addition, 

regression analysis was used to identify genes that significantly fit into either 

linear, quadratic, or cubic trends. The trends were then grouped into clusters.  

2.5 Network Analysis 

All differentially expressed mRNAs were uploaded into Metacore (Thomson 

Reuters Inc., Carlsbad, CA). Markers of terminal differentiation with increasing 

expression (i.e. PSP, amylase) were used as initial nodes. The neighborhood 

around each of these nodes was explored using the expand function to identify 

possible regulating factors. DE genes in the neighborhood were kept for another 

round of expanding only if their expression pattern over time was consistent with 

the reported interaction (i.e., activating vs. repressing) and the pattern of the 

target gene. The expand function was used iteratively until no further DE genes 

were identified. microRNAs predicted to target any nodes were incorporated into 

the network when their expression patterns had an inverse correlation with the 

pattern of the target mRNA. 

2.6 Cell Culture: Treatments and Transfections 

ParC5 and the closely related ParC10 cells are derived from rat parotid acinar 

cells, and were obtained as a generous gift from Dr. Quissell's laboratory. These 

cells were maintained at 37°C and 5% CO2 in media as described by [63], and 

split regularly using 0.25% trypsin EDTA.  

2.6.1 Luciferase Assays 
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Promoter activation: Standard methods were used to clone the target gene 

promoters upstream of luciferase in pGL4.10 vector. Expression plasmids for 

selected transcription factors were from OpenBiosystems (Huntsville, AL) or 

Thermoscientific (Waltham, MA) or were cloned by RT-PCR of rat genomic DNA 

into pCDNA4. Luciferase reporter plasmids were transiently transfected (list of 

primers used for cloning can be found in the appendix). Lipofectamine 

(Invitrogen) was used for luciferase promoter studies. From previous optimization 

performed in the lab pertaining to ParC5 cells, a Lipofectamine to DNA ratio of 

8ul/1ug DNA was used. Cells were plated in 6-well plates at 100,000 cells per 

well and grown overnight before transfection. Cells were transfected with 

2ug/DNA per well. 1ug of luciferase reporter was used, and 50ng of the renilla 

luciferase (Rluc) expression vector PGL4.73. Several concentrations of 

expression vector containing the transcription factor of interest were used, and 

any difference in DNA amount was made up with the vector Bluescript II. The 

Mist1 transcription factor expression clone was in pcDNA4 vector, and the 

spliced Xbp1 (Xbp1-S) expression vector was pFLAG.Xbp1p.CMV2 (Addgene; 

Cambridge, MA). In all experiments, pGL4.73-Renilla luciferase plasmid was co-

transfected as an internal control for normalizing transfection efficiency. 48 hours 

after transfection, cell extracts were prepared using Passive lysis buffer 

(Promega) and assayed for both firefly and Renilla luciferase activities using the 

Luciferase Assay and Renilla Luciferase Assay Systems from Promega with a 

Berthold Lumat LB9501 luminometer. For each experiment, triplicate wells were 

used to measure normalized luciferase expression (the ratio luciferase/renilla aka 
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luc/ren) under an experimental condition (expression vector containing the 

transcription factor of interest), and a control condition (an empty vector). Each 

experiment was repeated at least three times. A student's t-test was used to test 

for differential expression between the experimental and control conditions after 

combing experiments (a p-value of < 0.05 was considered significant).Results 

are given as means ±SEM.       

3'UTR assays: microRNA mimics (Dharmacon, Lafayette, CO) were transfected 

at 10 pmols/well along with 100 ng of a luciferase reporter (PGL4.25) which 

contained either a 3'UTR of interest downstream or no 3'UTR.DharmaFeCT Duo 

(Dharmacon, Lafayette, CO).  ParC5 cells were plated in 24-well plates at 25,000 

cells/well and were grown overnight before transfection. 3'UTRs were cloned 

down-stream of firefly luciferase cDNA in PGL4.25 using XbaI and FseI. Primers 

used to clone 3'UTRs from rat DNA are listed in the appendix. Renilla luciferase 

plasmid (PGL4.73) (5ng/well) was used as a transfection efficiency control. et. al. 

For each experiment (in triplicate) luc/ren expression was measured under four 

conditions. 

Condition Treatments notes 

1 microRNA of interest + 

Pgl4.25-3'UTR 

 

2 microRNA of interest + 

PGL4.25-empty 

Expression will reflect 

any effect of the 
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microRNA on the empty 

vector 

3 Control microRNA + 

PGL4.25-3'UTR 

Expression will reflect 

the effect of microRNA 

transfection 

4 Control microRNA + 

PGL4.25-empty 

Expression will reflect 

any effect of the control 

microRNA on the empty 

vector 

In order to control for a microRNA specific effect on the empty vector, the 

following ratios were used to normalize expression. 

𝐿𝑢𝑐𝐸 =
(

𝑙𝑢𝑐
𝑟𝑒𝑛) 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1(𝑚𝑖𝑐𝑟𝑜𝑅𝑁𝐴 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝑃𝐺𝐿4.25_3′𝑈𝑇𝑅)

(
𝑙𝑢𝑐
𝑟𝑒𝑛) 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠2(𝑚𝑖𝑐𝑟𝑜𝑅𝑁𝐴 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝑃𝐺𝐿4.25𝑒𝑚𝑝𝑡𝑦)

 

Where 𝐿𝑢𝑐𝐸is the normalized luciferase expression in the experimental condition 

(transfection of a microRNA mimic that is predicted to target the cloned 3'UTR). 

𝐿𝑢𝑐𝐶 =
(

𝑙𝑢𝑐
𝑟𝑒𝑛

) 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛3(𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑚𝑖𝑐𝑟𝑜𝑅𝑁𝐴 + 𝑃𝐺𝐿4.25_3′𝑈𝑇𝑅)

(
𝑙𝑢𝑐
𝑟𝑒𝑛) 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠4(𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑚𝑖𝑐𝑟𝑜𝑅𝑁𝐴 + 𝑃𝐺𝐿4.25𝑒𝑚𝑝𝑡𝑦)

 

Where 𝐿𝑢𝑐𝐶 is the normalized luciferase expression in the control condition 

(transfection of a control microRNA that does not target the cloned 3'UTR). 
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This normalization results in measurements that are the ratio of a ratio. In order 

to test the null hypothesis that there is no difference between 𝐿𝑢𝑐𝐸 and 𝐿𝑢𝑐𝐶, a t- 

statistic was calculated as in Jacobs et. al. [123]. 

𝑡𝐿𝑢𝑐𝐸,𝐿𝑢𝑐𝐶
=

𝐿𝑢𝑐𝐸 −  𝐿𝑢𝑐𝐶

√
𝑠𝐿𝑢𝑐𝐸

2

𝑛𝐿𝑢𝑐𝐸

+
𝑠𝐿𝑢𝑐𝐶

2

𝑛𝐿𝑢𝑐𝐶

 

Where s2 is the variance and n is the number of experiments. Experiments were 

repeated at least three times, and p-values were determined from a t-statistic 

table. 

2.6.2 Tunicamycin Treatments and qPCR 

Tunicamycin was kept in a stock concentration of 2mg/ml in DMSO. ParC5 cells 

were treated with either 1µg/ml tunicamycin or an equal concentration of DMSO 

for eight hours. Media was then removed and replaced, and the cells were 

allowed to recover overnight. For siRNA pretreatment, cells were transfected with 

a siRNA pool targeting Xbp1 (Dharmacon, L-085513-02-0005) or a pool of 

control (non-targeting) siRNAs 24 hours before tunicamycin treatment. siRNAs 

were transfected at 100nM/well using 8ul of Dharmafect duo per well. 

RNA isolation was performed using Trizol. Concentration and quality were 

assessed by nanodrop. cDNA was synthesized using the High Capacity cDNA 

Synthesis Kit (ThermoFisher Scientific) per the manufacturer's instructions. 

qPCR was carried out using Taqman primer/probes (a list can be found in the 

appendix). RPLP2 was used as an endogenous control and relative expression 
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was analyzed using the 2^-ΔΔCT method [124]. Experiments were performed at 

least three times and a t-test was used to compare gene expression between the 

control condition (i.e. DMSO treatment, control siRNA) and the experimental (i.e. 

tunicamycin treatment, Xbp1 siRNA). 

2.7 Appendix 

Table 2.1: Cloning primers 

Target 

Gene 

Primers 

Sox11 

3’UTR 

For: 5' cacctctagaATAGAGTTTGCATGCCAGCG 3' 

Rev: 5' 

acaaggccggccacaattcgaaCCTCTGTGAAAAACTCCTGC 3' 

For: 5’ caccttcgaaGCATAGGCAAGGTATAGAGG 3’ 

Rev: 5’ caccggccggccGAGATCCGTCATGATACGAC 3’ 

Xbp1 

3’UTR 

For: 5’ cacctctagaTCTTAGAGATCCCCTCTGAG 3’ 

Rev: 5’ caccggccggccGCCAGGCTGAACGATAACTG 3’ 

Klf4 3’UTR For: 5’ cacctctagaATTCCACATCGTGGACATGAC 3’ 

Rev: 5’ caccggccggccTGCTTAAAGGCATACTTGGG 3’ 
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s-XBP1 

cDNA 

For: 5' CACCGCGGCCGCATGCTTGTGGTGGCAGCGG 3' 

Rev: 5' 

CACCGGGCCCGGCTCTTTAGACACTAATCAGCTGGG 3' 

Mist1 

Promoter 

-515 to 

+39 

For: 5' GGTACCGCAGCCATGTGGTTGG 3' 

Rev: 5' CTCGAGCACGGGGGACAAGGACACG 3' 

500bp 

PSP 

promoter 

-500 to + 

21 

For: 5' CACCGGTACCCATTATTGCCTCCTCCCAG 3' 

Rev : 5' GGTGCTCGAGGACAGGAAAGCCTTGTTTC 3' 

1kb PSP 

promoter 

-1041 to 

+21 

For: 5' CACCCCTTCTCTCGTCACTGAAATGTTTTC 3' 

Rev : 5' GGTGCTCGAGGACAGGAAAGCCTTGTTTC 3' 

1.5kb PSP 

promoter 

For: 5' 

CACCGGTACCGCTTGGCAGACATGAGATGGAAATCG 3' 

Rev : 5' GGTGCTCGAGGACAGGAAAGCCTTGTTTC 3' 
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Intron PSP For: 5' CAACTTGTCGACCTTGTGGTCTTGTGTGGC 3' 

Rev: 5' CATTGGTCGACAGCCCAGCTTGAAGATCC 3' 

 

Table 2.2: Taqman primers for qPCR 

Gene Taqman Primers 

Xbp1 
Rn01443523_m1 

Mist1 (aka Bhkha15) 
Rn00563466_m1 

Rab3d 
Rn00756153_m1 

Rab26 
Rn00592144_m1 

PSP Custom primers 

For: TTCCCTTCGTCAACCGTATTC 

Rev: CCCTGAATAGCACTTCCACTC 

Probe: AAACATCCTATGCCCAGTGCTCCA 

Connexin 32 
Rn01419045_m1 

Tcf3 
Rn01452748_m1 

Rplp2 
Rn01479927_g1 
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CHAPTER 3: MRNA AND MICRORNA EXPRESSION CHANGES DURING 

PAROTID ACINAR CELL DIFFERENTIATION 

3.1 Introduction 

During the postnatal period of salivary gland development, the acinar cell 

population expands and these cells mature to the fully differentiated phenotype. 

Drastic changes in cell morphology as well as gene expression occur. It is during 

this period that acinar cells gain expression of lineage specific genes such as 

salivary amylase (Amy1a) and the parotid secretory protein (PSP), which are 

recognized as terminal differentiation markers of parotid acinar cells. The 

activation of these genes is necessary for the cells to become fully differentiated, 

however, there is little knowledge about what is driving acinar-specific gene 

expression. Changing expression has only been studied for a handful of genes 

during differentiation, and very few studies have measured regulatory molecules 

such as transcription factors. No large scale profiling experiments have been 

reported during the last stages of salivary gland development, when terminal 

differentiation is occurring. 

By measuring global mRNA and microRNA expression at multiple time-points 

during acinar cell differentiation, a whole host of differentially expressed genes 

can be identified including those involved in the regulation of gene expression.
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This study also makes use of laser-capture microdissection (LCM) to specifically 

isolate acinar cells. Whole salivary glands are a mixture of many different cell 

types including both epithelial and mesenchymal. The mesenchyme cap that 

encloses the gland contains both neuronal and endothelial cells. Within the 

epithelium itself there are both ductal and acinar cells, as well as some 

myoepithelial cells. By combining histological stains with LCM, acinar cells can 

be differentiated and isolated away from the ductal cells. Acinar and immature 

pro-acinar cells can be isolated in this way from many different time points during 

differentiation. For the measuring of mRNA, cells were isolated from nine time 

points in triplicate. Two embryonic time points (E18 and E20). Based on 

morphological studies these represent very immature cells. They have very few 

electron dense granules (and many cells have none), no lumen, no cellular 

polarity, and the expression of many cargo protein is undetectable.  Six postnatal 

time points were also measured (P0, P2, P5, P9, P15, P20, and P25). 

Analysis of this data revealed thousands of differentially expressed genes, and 

complex patterns of expression. Enrichment analysis of gene clusters points to 

the role of ER signaling and the adaptive unfolded protein response in the 

expression of lineage specific genes. We also identify a novel role for the 

transcription factor PPARg, which is involved in the differentiation of other cell 

types but has not been studied in the salivary gland. 
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Dozens of differentially expressed microRNAs were also identified. By integrating 

these two data sets, microRNA:mRNA interactions were identified which could be 

important for driving differentiation. 

3.2 Results 

3.2.1 mRNA Expression 

Using laser-capture microdissection, acinar cells could be isolated from glands at 

multiple ages without any detectable contamination from ductal cells (Figure 3.3). 

High quality RNA could be obtained from these cells, as measured by 

Bioanalyzer. This was especially important to determine as the mature gland 

expresses high levels of RNaseI which could easily lead to degraded samples 

not suitable for microarray. By reducing the time spend in the aqueous phase 

during staining, and using a limited number of laser pulses per slide, a RIN (RNA 

integrity number calculated by measuring the ratio of the 18S and 28S peaks) of 

at least 7 out of a possible 10 could be obtained (Figure 3.2). This is generally 

considered suitable for microarray analysis. 

Once RNA was obtained and cDNA generated (see methods), expression was 

measured by hybridizing to the Affymetrix rat genome array 230, which contains 

> 30,000 probe clusters.  

In order to detect a potential batch effect in the microarray measurements, 

principal component analysis (PCA) was used to identify the main source of 

variation, which should be the age group of the sample and not the batch in 
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Figure 3.1 Isolation of Acinar Cells by Laser Capture Microdissection. A 
representative image is shown of a Parotid section from an embryonic day 20 
(E20) sample, and a postnatal day 25 (P25) sample. Tissue was stained with 
H&E. Panels on the left show the section before capture which contains acinar 
cells (arrow) and surrounding cell types including ductal cells (star), and 
connective tissue (arrow head). On the right the film-covered caps are shown 
after the acinar cells have been captured and the sample is now devoid of 
surrounding tissue.
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Figure 3.2 Quality RNA Could be obtained from Acinar Cells. Once acinar 
cells were isolated by LCM, RNA was extracted and quality was assessed by 
Bioanalyzer (Agilent). This figure shows representative traces for four of the time 
points isolated: embryonic day 20 (E20), postnatal day 5 (P5), postnatal day 15 
(P15), and postnatal day 25 (P25). There are four main peaks on a trace, labeled 
from left to right on the top left panel. 1.) Control peak introduced in the dye 
mixture. 2.) 5S RNA and tRNA. 3.) 18S RNA. 4.) 28S RNA. The RNA Integrity 
Number (RIN) ranging from 1 to 10 is used to assess quality. The higher the 
number the less degradation is present. A RIN of 7 or more is considered 
adequate for microarray and qPCR measurements.

1. 

2. 

3. 

4. 
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which it was run. The first three principal components for each sample were 

plotted on an x-y-z axis (Figure 3.3). The samples mostly cluster based on their 

age group, indicating that the batch had little effect on expression variation, and 

these measurements were carried forward for further analysis. 

The measurements were normalized, filtered, and used for significance testing 

(see methods for the detailed procedure). An overview of the resulting analysis is 

shown in Table 3.1. 2565 differentially expressed genes were identified by an 

analysis of variance. In order to validate these expression changes, several of 

these genes were assayed by qPCR, considered the gold standard of microarray 

validation. The three gene (Xbp1, PSP, and Nupr1) were measured in all nine 

time points, and their expression pattern correlated with the microarray 

measurements (Figure 3.4). 

 While significance by ANOVA indicates regulated expression changes between 

some of the time points measured, it does not reveal the direction or the timing of 

such changes. To identify possible temporal specific patterns across all of the 

differentially expressed genes, hierarchical clustering was used to group the 

ages based on patterns of gene expression and the resulting heatmap can be 

seen in Figure 3.5. 

From this analysis (Figure 3.5), four stages are evident during differentiation:  An 

embryonic stage (E18, E20, and P0), early postnatal stage (P2, and P5), mid 

postnatal stage (P9 and P15), and a late stage (P20 and P25). Fewer gene 

expression changes occur between time points within a stage, but there are 
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Figure 3.3 Principal Component Analysis (PCA) was used to identify 

potential batch effects in our microarray data. The first three principal 
components (PC) were plotted for each sample on an X-Y-Z axis and a view 
showing the first two PCs is shown in (A.). Points are color coordinated based on 
their age group. An arrow overlaying the points indicates the progression through 
time starting with the E18 samples (red) and ending with the P25 samples (gray). 
The samples largely cluster based on age as expected rather than batch.
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Figure 3.4 Microarray Validation by qPCR. Taqman qRT-PCR was run on 
triplicate RNA samples spanning nine time points of parotid acinar differentiation, 
using primers that amplify Psp, Xbp1, and Nupr1. Expression of Rplp2 was used 
for normalization. The expression profiles (plotted in Log base 10) replicate the 
increase in expression seen in the microarrays
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Figure 3.5 Heatmap of Differentially Expressed Genes Identifies Four 

Stages During Acinar Cell Differentiation. Hierarchical clustering was used to 
group ages based on the similarity of their gene expression profile for the 2556 
differentially expressed genes identified by ANOVA (Table 3.1). Distance was 
calculated as dissimilarity (1-r) (r=correlation coefficient). A heatmap was then 
constructed from the resulting dendrogram by scaling gene expression across 
the time points measured, and coloring them based on their relative expression 
(red=low expression, and yellow=high expression). This resulted in the 
identification of four main stages where relative gene expression (represented by 
color) remains largely constant within a stage but changes dramatically between 
stages.
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Comparison Number of Differentially Expressed 
Genes 

ANOVA (all nine time-points) 2656 
E18 vs E20 2 
E20 vs P0 3 
P0 vs P2 57 
P2 vs P5 0 
P5 vs P9 2 

P9 vs P15 13 
P15 vs P20 48 
P20 vs P25 93 

Stage 1 vs Stage 2 604 
Stage 2 vs Stage 3 124 
Stage 3 vs Stage 4 992 

 

Table 3.1: Differentially Expressed Genes during Acinar Cell Terminal 

Differentiation. The number of differentially expressed genes was determined 
between adjacent time-points and between all combinations of comparisons by 
ANOVA. We also determined the number of differentially expressed genes 
between stages as identified in Figure 3.5. Stage 1: E18, E20, and P0; Stage 2: 
P2, and P5; Stage 3: P9, and P15; and Stage 4: P20, and P25.
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many expression changes between stages. This is also evident from the pairwise 

comparisons between adjacent time points (Table 3.1). A t-test was used to 

identify both up and down-regulated genes. Only three genes are differentially 

expressed within the embryonic stage (E18vsE20 and E20vsP0), while in the 

period immediately after birth (P0vsP2) many genes are up-regulated. There are 

also many differentially regulated genes between later time points.   

We next wanted to be able to identify possible biological processes and 

pathways that contribute to gene regulation. For large unbiased datasets a 

common method is to use Gene Ontology enrichment analysis. This will identify 

over represented processes that are specific to the biological system under 

study. In order to focus the identification of processes on specific expression 

patterns the differentially expressed genes (Figure 3.5) were clustered based on 

their pattern across differentiation. This would also presumably make the 

analysis more robust, as an unclustered dataset would contain a mixture of 

expression patterns and their corresponding pathways, and ultimately the 

underlying assumption of this approach is that there is a common pathway 

regulating genes with similar expression profiles and term enrichment allows us 

to make predictions about what those pathways are. The analysis resulted in the 

identification of eight clusters (Figure 3.6). 

The majority of genes are found in the first two clusters which are linear-like 

patterns either continually decreasing (cluster #1, 1635 genes) or continually 

increasing (cluster #2, 803 genes). Several clusters only contain a few members 
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Figure 3.6 K-means Clustering Identifies Eight Patterns of Gene Expression 

during Acinar Cell Differentiation. K-means clustering was used to group gene 
expression into eight clusters. This analysis only included those genes 
determined to be differentially expressed (Table 3.1). For the above graphs, gene 
expression was standardized to a mean =0 and standard deviation =1. The red 
line traces the average pattern for the cluster, and the grey lines are each 
individual observation.  
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(clusters # 3, 5, and 8) and were not considered for subsequent analysis. 

Interestingly cluster #4 (106 genes)  contains genes which are transiently 

activated midway through differentiation, they increase in expression shortly after 

birth, peak around P5 or P9, and then decrease back to basal levels. Genes in 

cluster #6 (31) increase in expression only in the late stage, while genes in 

cluster #7 (47) decrease in the late stage. 

Enrichment analysis reveals that the genes in cluster #1 are enriched in terms 

related to mitosis and the cell cycle (Table 3.2). These genes are progressively 

decreasing across differentiation, and presumably genes promoting mitosis are 

decreasing as these cells are exiting the cell cycle and becoming fully 

differentiated. 

Cluster #2 contains many of the previously identified acinar cell lineage specific 

genes such as salivary amylase, PSP, DNase I, and Aquaporin 5 (Aqp5). 

Processes enriched in this cluster could be involved in driving lineage specific 

gene expression. Enrichment analysis on this cluster found an 

overrepresentation of genes involved in ER-nucleus signaling and the adaptive 

Unfolded Protein Response (UPR) (Table 3.4). In order to identify possible 

transcription regulators in this cluster, enrichment of transcription factor targets 

was tested. A knowledge-based program (Metacore) was used which curates 

known transcription factor targets from the literature, and like GO enrichment can 

perform an overrepresentation test on a set of genes. Three transcription factors 

were identified (Table 3.3), two of which are present in the cluster (Xbp1, and
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Enrichment by Pathway Maps 

Maps FDR 

Cell cycle_The metaphase checkpoint  6.777E-06 
Cell cycle_Sister chromatid cohesion  5.312E-04 
Cell cycle_Spindle assembly and chromosome separation  8.383E-04 
Cell cycle_Role of APC in cell cycle regulation  8.839E-04 
Development_NOTCH-induced EMT  5.959E-03 
Cell cycle_Start of DNA replication in early S phase  6.013E-03 
Development_TGF-beta-dependent induction of EMT via 
SMADs  6.066E-03 
DNA damage_ATM/ATR regulation of G1/S checkpoint  1.772E-02 

    
    

Enrichment by GO Processes 

Processes FDR 

mitotic cell cycle  1.867E-40 
cell cycle  2.114E-33 
cell cycle process  1.817E-30 
cellular component organization  1.555E-23 
cellular component organization or biogenesis  3.852E-23 
cell division  2.537E-22 
mitosis 1.751E-18 
nuclear division  1.751E-18 
cell cycle phase transition  7.557E-17 
organelle organization  1.616E-16 

 
Table 3.2: Processes Relating to Mitosis and the Cell Cycle are Enriched in 
Cluster of Down-regulated Genes. Clustering differentially expressed genes 
identified a cluster of 1635 continually decreasing genes (Figure 3.6, cluster #1). 
GO enrichment analysis of this cluster identified many terms related to the cell 
cycle. The top ten terms in GO Processes and Pathway maps is tabulated above. 
The “Processes” column lists the process name and the “FDR” column lists the 
FDR corrected p-value that DE cluster #2 is enriched in that term compared to a 
background dataset (rat genome)

http://portal.genego.com/cgi/imagemap.cgi?id=711
http://portal.genego.com/cgi/imagemap.cgi?id=708
http://portal.genego.com/cgi/imagemap.cgi?id=712
http://portal.genego.com/cgi/imagemap.cgi?id=472
http://portal.genego.com/cgi/imagemap.cgi?id=3023
http://portal.genego.com/cgi/imagemap.cgi?id=705
http://portal.genego.com/cgi/imagemap.cgi?id=2996
http://portal.genego.com/cgi/imagemap.cgi?id=2996
http://portal.genego.com/cgi/imagemap.cgi?id=426
http://portal.genego.com/cgi/process.cgi?id=-456150178
http://portal.genego.com/cgi/process.cgi?id=-1352108539
http://portal.genego.com/cgi/process.cgi?id=-2010857359
http://portal.genego.com/cgi/process.cgi?id=-1650313226
http://portal.genego.com/cgi/process.cgi?id=-458355980
http://portal.genego.com/cgi/process.cgi?id=-2006020920
http://portal.genego.com/cgi/process.cgi?id=-1643929812
http://portal.genego.com/cgi/process.cgi?id=-768622634
http://portal.genego.com/cgi/process.cgi?id=-2142753721
http://portal.genego.com/cgi/process.cgi?id=-1563455252
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Network 

Object 

Name 
Actual n R N Expected Ratio p-value z-

score Input IDs 

MIST1 

5 719 9 12845 0.5038 9.925 
5.654E-
05 6.522 1387212_at 

XBP1 

20 719 114 12845 6.381 3.134 
4.623E-
06 5.573 1371249_at 

GCR-
alpha 85 719 1004 12845 56.2 1.512 

6.645E-
05 4.118   

 
Table 3.3. DE Cluster #2 is Enriched in Targets for Mist1 and Xbp1. 

Transcription factor enrichment analysis was run in Metacore on the 803 genes 
in DE cluster #2. Enrichment is based on the number of downstream target 
genes identified in the curated Metacore database. Affymetrix rat genome array 
230 was used as the background dataset. The columns are as follows: Actual= 
number of target genes in the dataset, n= number of network objects in the 
dataset, R= number of target genes in the background set, N= number of 
network objects in the background set, Expected= number of target genes 
expected in the dataset, Ratio= Actual/Expected, p-value= FDR adjusted p-value. 

http://portal.genego.com/cgi/entity_page.cgi?term=100&id=-87250900
http://portal.genego.com/cgi/entity_page.cgi?term=100&id=4417
http://portal.genego.com/cgi/entity_page.cgi?term=100&id=4259
http://portal.genego.com/cgi/entity_page.cgi?term=100&id=4259
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Enrichment by GO Processes  

Processes FDR 

ER-nucleus signaling pathway  1.825E-04 
cellular amino acid catabolic process  3.065E-04 
response to endoplasmic reticulum stress  3.416E-04 
alpha-amino acid catabolic process  8.107E-04 
alpha-amino acid metabolic process  8.609E-04 
organonitrogen compound metabolic process  1.173E-03 
cellular amino acid biosynthetic process  1.371E-03 
endoplasmic reticulum unfolded protein response  1.458E-03 
cellular response to unfolded protein  1.568E-03 
immune response 1.947E-03 

  
Table 3.4: Processes relating to the Endoplasmic Reticulum are enriched in 
Cluster of Up-regulated Genes. Clustering differentially expressed genes 
identified a cluster of 803 continually increasing genes (Figure 3.6, cluster #2). 
GO enrichment analysis of this cluster identified overrepresentation of terms 
related to the endoplasmic reticulum. The table above lists the top ten GO 
Processes. The “Processes” column lists the process name and the “FDR” 
column lists the FDR corrected p-value that DE cluster #2 is enriched in that term 
compared to a background dataset (rat genome).

http://portal.genego.com/cgi/process.cgi?id=-449675153
http://portal.genego.com/cgi/process.cgi?id=-2052159490
http://portal.genego.com/cgi/process.cgi?id=-980271606
http://portal.genego.com/cgi/process.cgi?id=-1200078042
http://portal.genego.com/cgi/process.cgi?id=-1674371887
http://portal.genego.com/cgi/process.cgi?id=-1623636649
http://portal.genego.com/cgi/process.cgi?id=-919825058
http://portal.genego.com/cgi/process.cgi?id=-38663963
http://portal.genego.com/cgi/process.cgi?id=-546095434
http://portal.genego.com/cgi/process.cgi?id=-195107408
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 Mist1). Interestingly Mist1 null mice have a defect in acinar cell differentiation of 

both the pancreas and the salivary glands [125]. 

Cluster #4 is enriched in lipid metabolism (Table 3.4). This cluster also contains 

the transcription factor PPARg along with 19 of its known downstream effectors 

including adiponectin. This expression pattern for PPARg was confirmed by 

qPCR in a separate set of samples (Figure 3.7). While PPARg has been shown 

to be involved in the differentiation of other cell types, most notably adipocytes, it 

has never been identified in acinar cell differentiation before. 

In order to identify additional expression patterns of interest, regression analysis 

was used to identify clusters that significantly follow specific treads. Because this 

dataset included measurements at nine time-points, complex patterns could be 

identified that follow quadratic and cubic trends (Figure 3.8). 419 genes were 

identified that significantly fit a quadratic trend and these genes were clustered 

into eight patterns. Only eighteen genes followed a cubic pattern and were not 

subsequently analyzed.  

Several of the quadratic clusters were subjected to term enrichment analysis. 

Cluster #6 contains many known salivary cargo proteins such as DNase I, 

Chitinase, Prp15, and the immunoglobulin J chain Igj. It had been shown 

previously that DNase I expression is not detected in the developing salivary 

gland until the late stage of differentiation, but this adds to the list of late-

regulated genes and indicates that the full repertoire of salivary components is 

not established until the late-stage.
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Enrichment by GO Processes 

Processes FDR 

regulation of sequestering of triglyceride  1.141E-05 
acylglycerol metabolic process  6.743E-05 
neutral lipid metabolic process  6.743E-05 
lipid metabolic process  1.045E-04 
triglyceride metabolic process  4.028E-04 
glycerolipid metabolic process  5.269E-04 
regulation of lipid storage  7.446E-04 
triglyceride biosynthetic process  8.003E-04 
glycerolipid biosynthetic process  8.003E-04 
neutral lipid biosynthetic process  8.519E-04 

 
Table 3.5: Transiently Activated Gene Cluster is enriched in Processes 
Relating to Lipid Metabolism. Clustering analysis identified a cluster of 
transiently up-regulated genes during differentiation (Figure 3.6, cluster #4). GO 
enrichment analysis identified overrepresented terms relating to lipid metabolism. 
The table above lists the top ten GO Processes. The “Processes” column lists 
the process name and the “FDR” column lists the FDR corrected p-value that DE 
cluster #2 is enriched in that term compared to a background dataset (rat 
genome).

http://portal.genego.com/cgi/process.cgi?id=-1304554078
http://portal.genego.com/cgi/process.cgi?id=-513852642
http://portal.genego.com/cgi/process.cgi?id=-1029742931
http://portal.genego.com/cgi/process.cgi?id=-576535544
http://portal.genego.com/cgi/process.cgi?id=-438546479
http://portal.genego.com/cgi/process.cgi?id=-1679177641
http://portal.genego.com/cgi/process.cgi?id=-151133442
http://portal.genego.com/cgi/process.cgi?id=-144204549
http://portal.genego.com/cgi/process.cgi?id=-886734778
http://portal.genego.com/cgi/process.cgi?id=-207458316
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Figure 3.7 PPARg is Transiently Activated during Acinar Cell 

Differentiation. Cluster #4 (Figure 3.6) was shown to be enriched in genes 
related to lipid metabolism (Table 3.4) and included the transcription factor 
PPARg. A.) downstream targets transcriptionally regulated by PPARg that are 
also in cluster #4. B.) Microarray expression pattern of PPARg confirms that this 
gene is activated midway through differentiation and then returns to baseline. C.) 
This expression pattern is validated by qPCR (n=3, p-value= 0.03).
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Figure 3.8 Eight Gene Expression Clusters have a Significant Quadratic 

Trend. A.) Regression analysis was used to identify genes with a significant (adj. 
p-value= 0.05) quadratic trend. Cluster #6 contains genes which have relatively 
low expression throughout most of differentiation and then increase dramatically 
starting between P9 and P15. B.) Non-standardized profiles for genes in cluster 
#6 with at least a 4-fold change. This cluster contains many extracellular proteins 
including many saliva components (i.e. DNase I, Chia, and Prp15). 
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3.2.2 microRNA Expression 

Over the last decade microRNAs have come to be recognized as important 

regulators of gene expression in many processes including development and 

differentiation. Little is known about their expression and potential targets in 

acinar cells. To identify a potential role of microRNAs in acinar cell differentiation 

we profiled their expression across differentiation. By having both mRNA and 

corresponding microRNA expression patterns, potential target genes can be 

identified. 

As with the microarray study, LCM was used to capture acinar cells at multiple 

time points across differentiation. Following the observation from the microarray 

study that there are four stages during differentiation, cells were isolated at four 

time points in triplicate, each representing one of the four stages (E20, P5, P15, 

and P25). microRNA expression was measured by a qPCR array designed to 

amplify 375 well characterized rodent microRNAs. A summary of the analysis is 

shown in Table 3.6. 

qRT-PCR detected 271 microRNAs repeatedly. Analysis by one-way ANOVA 

identified 79 microRNAs exhibiting significant differential expression (Figure 3.9). 

Subsequent t-tests between time points (Table 3.6) identified 64 microRNAs with 

differential expression between the first (E20) and last (P25) time points. These 

64 microRNAs encompass all significantly changing microRNAs identified by 

comparing other pairs of time points. Of these, 52 microRNAs increased in 

expression and 12 decreased across acinar differentiation.



70 
 

 

Figure 3.9 Regulated microRNA Expression during Parotid Acinar Cell 

Differentiation. A.) Heatmap of differentially expressed microRNAs. Ages were 
clustered based on expression pattern as in Figure 3.5. B.) microRNAs with the 
largest fold change are shown. Expression is plotted in Log2. 
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Comparison Up-regulated microRNA Down-regulated microRNA 

E20 vs. P5 1 0 

E20 vs. P15 14 2 

E20 vs. P25 52 12 
P5 vs. P15 0 0 
P5 vs. P25 7 0 
P15 vs. P25 0 0 

 
Table 3.6: Summary of microRNA analysis. The number of differentially 
expressed microRNAs was determined by t-test using the limma package in R, 
for every possible comparison of time points. 
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Clustering identifies just two major expression profiles (Figure 3.10), either 

continuously increasing or continuously decreasing. There does not appear to be 

any microRNAs with transient activation or repression. Table 3.7 lists the ten 

microRNAs from each group with the largest fold change in expression between 

the earliest time point (E20) and the latest (P25). 

The microRNA with the largest fold change (miR-375) increases in expression 

more than 800 fold. This microRNA is nearly undetectable by qPCR in the 

embryonic stage, and progressively increases until P25 when miR-375 has the 

second highest relative expression of all the microRNAs measured (it is second 

only to miR-148a, aka miR-148b-2). 

miR-375 is one of the few microRNAs that has been previously measured in the 

adult parotid gland, and may contribute to the formation of adenocarcinoma of 

the salivary gland. Down-regulation of miR-375 is often measured in tumors, 

along with up-regulation of its target and proto-oncogene Plag1, a transcription 

factor thought to increase unregulated cell proliferation by, at least in part, 

increasing expression of Igf2 [126-128]. In order to identify whether this particular 

gene is being regulated by miR-375 during cell differentiation the expression 

profiles of each were used to identify a possible inverse correlation (Figure 3.11). 

Like its prospective targeting microRNA, Plag1 is also significantly differentially 

expressed, and is a member of cluster #1 (Figure 3.6) which is made up of 

progressively decreasing genes. Plag1 expression decreases more than 6-fold 

across differentiation. Log2 relative expression values were used to calculate a



73 
 

 

 

 
Table 3.7: microRNAs with Largest Fold Change during Differentiation. Fold 
change between the latest time point (P25) when the parotid gland is fully mature 
and the earliest time point (E20) when the acinar cells are not terminally 
differentiated was calculated for each of the differentially expressed microRNAs 
(Table 3.6). The top ten up-regulated and down-regulated microRNAs are 
tabulated above. 
  

miRname Fold change (P25/E20) miRname Fold change (P25/E20)

mmu-miR-375 895.80 mmu-miR-433 0.04
mmu-miR-148a 82.27 mmu-miR-301a 0.07
mmu-miR-145 59.62 mmu-miR-434-3p 0.07
mmu-miR-29c 25.76 mmu-miR-503 0.09

mmu-let-7b 18.13 mmu-miR-214 0.10
mmu-let-7c 15.07 mmu-miR-541 0.12

mmu-miR-200c 15.03 mmu-miR-335-5p 0.14
mmu-miR-200a 13.55 mmu-miR-376b 0.17
mmu-miR-200b 10.50 mmu-miR-127 0.18
mmu-miR-34a 9.91 mmu-miR-17 0.18

Up-Regulated microRNAs Down-regulated microRNAs
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Figure 3.10 Clustering microRNA profiles. K-means clustering was used to 
group differentially expressed microRNAs into two main clusters: either 
continually increasing or continually decreasing. For the above graphs, 
microRNA expression was standardized to a mean =0 and standard deviation =1. 
The red line traces the average pattern for the cluster, and the grey lines are 
each individual observation.  
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A. 

 

Log2 Expression 

  E20 P5 P15 P25 correlation p-value 
Plag1  7.26  6.33  5.27  4.59  1   
miR-375  -3.32  -0.08  4.00  6.49  -.99  0.0002 

B. 

 

Log2 Expression 

  E20 P5 P15 P25 correlation p-value 
Igf2bp2  10.50  8.64  6.90  6.28 1   
let-7a  1.84 2.68 3.97 4.60 -0.99  0.01 
let-7b  3.95 5.50 7.58 8.13 -0.99 0.003 
let-7c  2.08 3.44 5.13 5.99 -0.99 0.006 
let-7d  2.02 2.32 3.35 3.64  -0.97 0.03 
let-7f  2.89 3.31 4.00 4.76  -0.95 0.047 
let-7g  3.40 4.21 4.63 6.21 -0.90  0.1 
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Figure 3.11: MicroRNA Expression is Significantly Inversely Correlated with 

Known Target Genes. A.) Log2 expression of Plag1 and mir-375 from 
microarray and qPCR measurements respectively is plotted in the top panel. 
Expression data is tabulated in the bottom panel along with the Pearson 
correlation coefficient and p-value. B.) Log2 expression is plotted for Igf2bp2 and 
six members of the let-7 family of microRNAs in the top panel. In the bottom 
panel expression is tabulated along with the Pearson correlation coefficient 
between each microRNA and Igf2bp2 and p-value.
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Pearson's correlation coefficient, and a t-test used to evaluate significance. This 

analysis identified a significant inverse correlation (r = -0.9998, p-value = 0.0002) 

indicating that Plag1 is likely a target of miR-375 and that its expression is being 

progressively down-regulated by this microRNA during differentiation. 

Other microRNAs of interest include members of the let-7 family which are 

known to regulate the cell cycle. There are ten members of this highly conserved 

family in the genomes of humans and mice [129], and six of them are up-

regulated during acinar cell differentiation (Figure 3.11). Their change in 

expression ranges from 3-fold (let-7d) to more than 18-fold (let-7b). 

Differentiation and cell cycle progression are often thought of as having opposing 

roles in the cells. It has often been observed that exiting the cell cycle will 

stimulate terminal differentiation, while activating the cell cycle is an inhibitor of 

differentiation [130]. Known direct targets of the let-7 family include Igf2bp2, an 

mRNA binding protein which is known to enhance the translation of many genes 

including several oncogenes and activators of proliferation, Igf2, and c-myc [131]. 

Igf2bp2 decreases significantly across differentiation and its expression profile is 

inversely correlated significantly with five of the let-7 genes (Figure 3.11). 

Several members of the miR-200 family are also significantly up-regulated during 

differentiation. Previous work identified miR-200c as up-regulated in the end 

buds (the region of future acinar cell differentiation) during SMG branching 

morphogenesis. This microRNA was found to have anti-proliferative effects by 

regulating FGFR signaling through targeting of Vldlr [111]. In our dataset three 
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members of the miR-200 family (miR-200a, miR-200b, and miR-200c) are 

significantly upregulated (Figure 3.12). However, its direct target gene, Vldlr, is 

not differentially expressed, indicating that these microRNAs are acting on a 

different target during the later stages of gland development. 

3.3 Discussion 

For the first time, acinar cell specific gene expression was profiled across 

terminal differentiation in vivo by selectively isolating acinar cells at multiple time 

points starting with immature pro-acinar cells in the late embryo (E18), and 

ending with fully mature acinar cells at P25. By using a combination of microarray 

hybridization and qPCR, expression of > 30,000 expression probes and 375 

microRNAs were measured at nine time points in triplicate leading to the 

identification of > 800,000 gene expression measurements during differentiation 

which represents a large portion of the transcriptome. 

Analysis of these measurements led to the identification of individual differentially 

expressed genes. More than 2500 mRNAs change expression, and were used to 

cluster the ages into four stages: an embryonic stage (E18, E20, and P0), early 

postnatal stage (P2, and P5), mid postnatal stage (P9 and P15), and a late stage 

(P20 and P25). Gene expression changes relatively little between members of 

the same stage, while large changes are seen between members of different 

stages. 

In order to identify the processes involved in differentiation, the gene expression 

profiles were clustered and used for gene ontology enrichment analysis. Of 
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  E20 P5 P15 P25 correlation p-value 
Vldlr  7.07 7.24 7.44 7.24  1   
miR-200b  3.01 3.83 4.94 5.51  0.69  0.51 
miR-200c  3.83 4.17 6.34 7.02  0.64  0.56 
miR-200a  1.80 4.10 4.62 5.56  0.69  0.51 

 

Figure 3.12: Vldlr Expression is not Inversely Correlated with the miR-200 

Family. Log2 expression is plotted for Vldlr and three members of the miR-200 
family of microRNAs in the top panel. In the bottom panel expression is tabulated 
along with the Pearson correlation coefficient between each microRNA and Vldlr 
and p-value. None of the correlation coefficients are significant indicating that 
Vldlr is probably not a target of the miR-200 family during differentiation. 
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particular interest is a large cluster of increasing gene expression that contains 

many known parotid gland terminal differentiation markers including cargo 

protein and components of the regulated secretory pathway (i.e. amylase, PSP, 

Rab3d). GO enrichment identifies ER signaling as an enriched process. 

Regulation of this cluster is likely to be important for the development of the fully 

differentiated phenotype, and understanding the components involved in this 

cluster is vital to understanding how differentiation is controlled. Enrichment 

analysis using transcription factor targets identified both Mist1 and Xbp1 targets 

as over-represented, indicating that these two transcription factors could be 

important regulators of differentiation. 

Xbp1 is most known as part of the Unfolded Protein Response (UPR). It is 

activated in response to ER stress, and binds to Unfolded Protein Response 

Elements (UPREs) or ER stress elements (ERSE I/II) as a dimer with Atf6 where 

it up-regulates gene expression. Many of the targets include ER chaperones and 

members of the ER associated degradation system (ERAD), highlighting its role 

in ER homeostasis, but there are many other processes it is thought to be a part 

of. Recently, the role of Xbp1 has expanded to include development and 

differentiation particularly in cells with a high protein folding burden (i.e. acinar 

cells, plasma cells, muscle cells). It is involved in the biogenesis and expansion 

of the ER and Golgi in these cells leading to higher protein production and 

secretion. Xbp1 is necessary for differentiation of plasma cells from B cells, and 

Xbp1 -/- mice show disruptions in both salivary gland and exocrine pancreas 

development [132]. Pancreatic acinar cells show reduced expression of zymogen 
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granules and associated cargo proteins (i.e. amylase, elastase) at the mRNA 

level, suggesting disruptions in differentiation. Xbp1 is also required for 

homeostasis of pancreatic acinar cells [133]. 

Our results show that Xbp1 activity is enriched in a gene expression cluster 

containing many lineage specific and terminal differentiation associated genes. 

These genes increase in expression across differentiation and are likely 

important for the cells to attain the fully differentiated phenotype. Because we 

identified Xbp1 as a major regulator in this cluster, its activity is probably 

necessary for proper mRNA expression, and terminal differentiation. 

Mist1 (aka Bhlha15) is the other enriched transcription factor identified in cluster 

#2 (Figure 3.6). This gene is considered specific to acinar cells, and is reported 

to be directly downstream of Xbp1. Mist1 -/- mice have disruptions in salivary and 

pancreatic acinar cell morphology. These cells contain few granules, and lack a 

polarized cytoplasm (the nucleus is no longer basally located).  

In a completely novel observation, Pparg controls the expression of a transient 

gene cluster. The transcription factor Pparg and 19 of its downstream targets 

increases in expression shortly after birth, peaks around postnatal day 5, and 

decreases back to basal levels by the time the gland is fully mature. The Pparg 

targets include many genes which have not been identified in salivary gland 

development before, but at least one has been shown to affect the physiology of 

the adult gland. In our dataset, the hormone adiponectin is produced downstream 

of Pparg (Figure 3.7). Expression of this protein is mostly associated with 
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adipose tissue where it is released and acts on other tissue through its receptors 

(Adipor1 and Adipor2). It has been shown that these receptors are present on 

acinar cells of the submandibular gland, and adiponectin can increase salivary 

flow [134]. Our microarray data shows that both adiponectin receptors are 

expressed throughout differentiation in the parotid (data not shown), and so 

adiponectin could be acting as an autocrine factor to stimulate secretion for a 

short period of time postnatally. 

This analysis also identified novel microRNA expression changes. This is the first 

study to measure microRNA expression in the salivary gland during 

differentiation. 52 microRNAs showed a net increase in expression while 12 had 

a net decrease. miR-375 had the largest fold-change measured: its expression 

increased more than 800-fold between embryonic day 18 and postnatal day 25. It 

showed extremely low expression in the embryo and was undetectable by qPCR 

in some of these samples suggesting it does not play a role in early gland 

development, only differentiation. It is likely targeting Plag1 which shows inverse 

expression in our data. This interaction has been reported in salivary gland 

cancer where decreased miR-375 leads to increased expression of the 

oncogenic Plag1 [126], but this is the first report of this interaction in 

differentiation. Like many oncogenes, Plag1 could also be playing a role in 

development. For instance, it has been reported to increase proliferation in 

culture and in tumors through up-regulation of its target gene, the mitogenic IgfII 

[128, 135]. Interestingly, in a Plag1 -/- model, small organ size was reported but 

without the expected decrease in IgfII expression indicating this transcription 



83 
 

factor is controlling growth through multiple pathways [136]. In the salivary gland, 

high Plag1 expression in the embryo could be contributing to growth and cellular 

expansion. miR-375 then would be necessary during later development when 

cells are exiting the cell cycle and becoming fully differentiated. Many mitogenic 

factors inhibit differentiation, and so increased miR-375 expression could be 

promoting differentiation in parotid acinar cells. 

A miR-375 knockout mouse line exists [137], but a phenotype relating to the 

salivary glands has not been investigated. A possible future direction would be to 

measure acinar cell differentiation by measuring the expression level of salivary 

acinar cell markers such as amylase and PSP in the knockout versus the 

wildtype. 

The let-7 family of microRNAs could also be influencing proliferation. Six of the 

let-7 microRNAs increase in expression during differentiation (Figure 3.11) and 

five are significantly inversely correlated with Igf2bp2, a canonical target of let-7. 

Igf2bp2 expression decreases 18-fold during differentiation. Interestingly, like the 

miR-375 target Plag1, Ig2bp2 plays a role in regulating Igf2 expression. Where 

Plag1 increases transcription of Igf2, Igf2bp2 is an RNA binding protein which 

has been shown to stabilize Igf2 mRNA and promote translation [138]. Both miR-

375 and let-7 could be working together to down-regulate Igf2 signaling during 

differentiation, which is associated with growth and proliferation.
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CHAPTER 4: A GENE REGULATORY NETWORK DRIVING EXPRESSION OF 

TERMINAL DIFFERENTIATION GENES 

4.1 Introduction  

Terminal differentiation involves sustained changes in gene expression patterns 

as progenitor cells mature and take on the fully differentiated phenotype. These 

changes lead to the directed expression of proteins which are markers of 

terminal differentiation. In the case of salivary acinar cells, this means that cells 

acquire expression of secreted cargo proteins as well as all the molecular 

machinery needed for large scale production and regulated secretion of these 

proteins into saliva [78]. This specialized differentiation is required for proper 

saliva production and loss of these cells results in poor oral health and quality of 

life due to chronic xerostomia which is a common complaint in the general 

population [30, 32], and is currently difficult to treat. The best treatment option for 

patients would be one that addressed the underlying cause of xerostomia in 

many people: acinar cell atrophy [57]. Once destroyed by radiation or 

autoimmune disease, these cells typically do not grow back by themselves. 

Understanding the regulation of gene expression changes during differentiation 

could aid in efforts to regenerate fully differentiated cells from more naïve 

progenitors or stem cells. Also, transcription factors needed to drive expression 
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changes during differentiation could be necessary to maintain homeostasis in the 

adult gland, and these factors could be used to maintain differentiated cells in 

culture which could be used for the construction of artificial glands. 

In the previous section the global changes in mRNA and microRNA expression 

were measured across acinar cell differentiation. Transcriptional regulators 

controlling the terminal differentiation phenotype would presumably be 

upregulated during this process, and would be captured as differentially 

expressed genes in our analysis. Also the comparison of microRNA expression 

profiles with mRNA expression would identify microRNA:mRNA interactions 

during differentiation. This differential expression data could then be used to 

identify possible gene regulatory networks driving differentiation. 

MicroRNA expression is now being considered in the context of multiple 

interactions as well as indirect effects, and perturbation of their expression has 

been predicted to impact whole gene networks. This current understanding has 

led to several models of how these small RNAs could be impacting gene 

networks these include feed-back loops with transcription factor targets, or 

stabilizing gene expression in order to increase robustness in the face of outside 

perturbation. In this context microRNA expression changes during differentiation 

could be effecting entire networks down-stream. 

For this analysis we used a knowledge-based approach along with our 

expression measurements to predict transcript regulatory interactions driving the 

expression of several terminal differentiation genes. We also integrated our 
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expression data with in silico based predictions to identify novel 

microRNA:mRNA interactions. 

This analysis identified an entirely novel tripartite gene regulatory network driving 

the expression of the terminal differentiation markers PSP, Rab3d, Rab26, and 

Connexin32. In one arm of the network, pro-stem cell transcription factors 

decrease across differentiation, a genetic switch activates Xbp1 expression by 

inhibiting the repressor Pax5, and a pro-differentiation arm activates expression 

of terminal differentiation genes. 

This network also includes several novel microRNA:TF-mRNA interactions. Pro-

stem cell TF Klf4 is targeted by miR-200c, and miR-29c. Sox11, another TF 

involved in stem cell maintenance, is targeted by miR-200a, and miR-30a, and in 

vitro testing of these interactions suggests that these microRNAs are acting 

cooperatively to decrease expression.  

4.2 Results 

4.2.1 Knowledge-based Predictions: Regulators of PSP and Amylase 

Little is known about the transcriptional regulation of acinar cell lineage-specific 

genes during terminal differentiation. As we and others have noted, salivary 

specific cargo proteins such as amylase, PSP, and DNase I are dramatically 

upregulated during postnatal differentiation [139], but little information has been 

available regarding the expression of transcription factors which could be 

necessary for promoter activation. PSP in particular is essentially parotid-
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specific, and is one of the most abundant proteins in saliva [140, 141]. In our 

approach, we measured a large portion of the transcriptome across 

differentiation, and identified >2500 differentially expressed genes (Figure 3.5), 

many of which had not been described in parotid development before, including 

>500 transcription factors (Figure 4.1). 

A knowledge-based approach, which uses interactions curated from 

comprehensive literature searches, was used to predict transcription factors 

upstream of salivary-specific cargo proteins. Our transcriptome data could then 

be incorporated to identify differentially expressed transcription factors with 

expression patterns that correlated with the predicted target gene, indicating a 

possible interaction with the gene promoter. These genes (e.g. amylase, PSP) 

were uploaded as seed nodes for network analysis. A network is expanded 

around a seed node according to selected filters and criteria. Because our data 

consisted of changes in mRNA expression, edges (interactions between genes) 

were filtered for transcription regulatory interactions up-stream of the selected 

seed node. This results in the addition of mostly transcription factors that have at 

least one literature source supporting direct regulation of the target of interest. 

Using this algorithm, up-stream regulators of the amylase enzyme were predicted 

(Figure 4.2). There are two amylase genes up-regulated during parotid 

development, Amys (salivary), and Amyp (pancreatic). Up-stream from these 

genes there are six predicted regulatory transcription factors. Only one is 

predicted to activate transcription (Gata6), as indicated by a green arrow, and for 

the others the direction of regulation is unknown (grey arrow). None of these 
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Figure 4.1 Hundreds of Transcription Factors are regulated during Acinar 

Cell Differentiation.  A Heatmap was generated as is Figure 3.5. Using the 
expression data for 550 transcription factors that were identified in the dataset of 2656 
differentially expressed genes (Table 3.1).
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Figure 4.2: mRNA Expression of Knowledge-based Amylase Regulators 

does not Change during Differentiation: The knowledge-based network 
analysis software Metacore was used to build a prospective gene regulatory 
network using the enzyme, and parotid terminal differentiation marker amylase 
as a seed node. Edges (depicted as arrows) were incorporated by the algorithm 
based on a comprehensive literature search for up-stream transcription 
regulators. A green arrow indicates an activating interaction while grey arrows 
indicate that the direction of interaction is unknown. A circle next to the gene icon 
indicates that it is significantly differentially expressed as measured by 
microarray (Figure 3.7). A red circle indicates that net expression increases while 
a blue circle means expression decreases. Of all the genes in the generated 
network, only the two amylase genes are differentially expressed.
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transcription factors is differentially regulated at the mRNA level. Parotid 

secretory protein (PSP) is a highly expressed parotid-specific terminal 

differentiation marker. Three transcription factors are predicted up-stream (Figure 

4.3), two of which are up-regulated during differentiation: Elf5 and Ese3. Elf5 

expression increases modestly, 1.6-fold, during differentiation, and Ese3 

expression increases 3.6-fold. Elf5 is predicted to activate PSP expression 

(green arrow) while the direction of Ese3 regulation is not known (grey arrow). In 

order to expand the network to incorporate other potential regulators, Elf5 was 

used as a seed node with the same filters applied. Stat5a, which is up-regulated, 

is predicted to up-regulate Elf5 expression. This two-step network predicts PSP 

regulation through Stat5a and Elf5. Possible microRNA regulation was also 

investigated, but none of the network genes were predicted targets (based on in 

silico predictions; Targetscan) of any differentially expressed microRNAs.  

4.2.2 Novel Regulator of PSP Expression 

Because both Elf5 and Ese3 expression increases modestly compared to PSP 

expression we hypothesized the existence of novel regulators during 

differentiation. Also, because this is the first large scale expression study of 

salivary acinar cell differentiation, there are probably novel cell type specific 

interactions which would not be identified by a knowledge-based approach. In 

order to identify new transcription factor interactions, the salivary specific region 

of the PSP promoter was surveyed for predicted consensus sequences. Two 

Xbp1 binding sites (CCACG) were identified close to the transcription start site 
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Figure 4.3: Elf5 is a Possible Regulator of PSP during Differentiation. 
Network shows knowledge-based algorithm predictions of upstream transcription 
regulators of the parotid secretory protein (PSP, aka Bpifa2). ELF5 is a 
transcription factor commonly expressed in glandular epithelia, and it is 
significantly up-regulated across differentiation (Log2 fold change 0.68 between 
E18 and P25). It is predicted to activate PSP expression (green arrow). No 
differentially expressed microRNAs targets members of the network.
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(-31nt to -35nt, and -44nt to -48nt). Xbp1 expression increases 6.5 fold over the 

course of terminal differentiation, along with many of its known down-stream 

effectors. Its targets are significantly enriched in DE cluster #2 (Figure 3.6). 

Together, this indicates that Xbp1 transcriptional activity is also increasing over 

this time span. 

Luciferase reporters were constructed containing either 500bp or 1000bp of the 

PSP promoter immediately up-stream of a luciferase gene. Both versions of the 

promoter showed strong dose dependent induction following co-transfection with 

an Xbp1 expression vector in ParC5 cells (Figure 4.4). This indicates that Xbp1 

could be part of a new transcription regulatory network activating PSP expression 

during terminal differentiation. 

4.2.3 Transcription Regulatory Network Driving PSP Expression through Xbp1 

To investigate a possible network, Xbp1 was included with PSP as seed nodes 

for network analysis, and an interaction between the two genes was added. 

Using the filtered algorithm, multiple steps of predicted edges were evaluated 

sequentially up-stream and down-stream of Xbp1 for those with expression 

changes correlating with the proposed interaction which were then incorporated 

into the network (Figure 4.5). This led to the identification of multiple steps of 

transcription regulatory interactions which lead to the expression of acinar cell 

specific genes. In the network diagram, the terminal differentiation genes are 

shown at the bottom with each up-stream step acting from above. In the context 

of this time course experiment, expression changes at the top of the network 
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                  “ccacg” boxes 
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Figure 4.4: Transcription Factor Xbp1 Activates the PSP Promoter: A.) The 
PSP promoter contains two consensus binding sites for Xbp1 (the CCACG box) 
just up-stream of the TSS. B.) The PSP promoter was cloned up-stream of a 
luciferase reporter, and co-transfected into ParC5 cells with an expression vector 
containing the spliced isoform of Xbp1 (Xbp1-s). Expression was normalized to a 
renilla control. Xbp1-s activated expression from both the 1kb and 500bp region 
of the PSP promoter (n=3). 

TSS 
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Figure 4.5 Transcription Factor Network. A knowledge-based algorithm was 
used to add transcription regulatory interactions up-stream and down-stream of 
Xbp1. Nodes were added if they were differentially expressed (Figure 3.5), and if 
their expression profile was consistent with the predicted interactions. A green 
arrow indicates an activating interaction and a red line indicates an inhibiting 
interaction.
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would be required early in differentiation with each subsequent level occurring as 

time proceeds to drive the network forward to the lineage specific phenotype. In 

order to develop a comprehensive network from our data, microRNAs were next 

included based on predicted targeting of network transcription factors. By having 

expression data for both mRNAs and microRNAs context specific interactions 

can be predicted. In silico predictions alone (based on sequence 

complementarity and conservation) often lead to the identification of hundreds of 

potential targets per microRNA. Many of these genes may not even be 

expressed in the system under study, or multiple targets expressed each with 

different (and unknown) affinities for the microRNA leading to competitive 

binding, the results of which could only be resolved by measuring gene 

expression under conditions of microRNA perturbation. There are also several 

pseudogenes that have been identified which contain microRNA binding sites, 

and have been reported to act as sponges, sequestering microRNAs, and 

inhibiting them from binding protein coding genes. By having expression data, 

true interactions during differentiation can be identified from sequence based 

predictions. 

The prediction algorithm Targetscan [142] was used to identify microRNA targets 

for the 64 differentially expressed microRNAs (Figure 3.9), leading to the 

identification of 5184 potential target sites in 851 unique mRNAs. Importantly, 

these genes are significantly enriched in DE cluster #1, and deficient in DE 

cluster #2 (Figure 3.6) (Fisher's exact test p-value < 0.05) Table 4.1 indicating 

that microRNAs may have an important impact on overall gene expression trends 
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Targets of DE microRNAs are 
 over represented in cluster #1 and under represented in cluster 

#2 
DE cluster (Figure 

3.6) odds.ratio p.value.greater p.value.less 
clust1 1.21 0.01 0.99 
clust2 0.83 0.99 0.02 

clust3 0.00 1.00 0.33 
clust4 0.73 0.94 0.09 
clust5 0.68 0.85 0.29 
clust6 1.21 0.34 0.77 
clust7 1.47 0.09 0.95 
clust8 0.45 0.89 0.39 

 
Table 4.1: microRNA Target Genes in Enriched in Cluster of Up-regulated 
Genes during Differentiation. Using Targetscan, target genes were predicted 
for each differentially expressed (DE) microRNA. A Fisher's exact test was used 
to test for over or under representation of a gene cluster (Figure 3.6) in the list of 
predicted targets. There are three data columns. Odds.ratio: odds of drawing a 
gene from that cluster in the list of interest (predicted targets) compared to a 
background list (rat genome), p.value.greater: probability that the genes in that 
cluster are over represented in the list of interest, p.value.less: probability that the 
genes in that cluster are underrepresented in the list of interest. 
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during differentiation. Of the genes in DE cluster #1 (which have progressively 

decreasing expression), 32% are predicted to be direct targets of microRNAs that 

are part of DE cluster #2 (progressively increasing).   

microRNA target predictions were then filtered for only those interactions that 

involved genes in the regulatory network, and microRNAs were incorporated into 

the network if their expression profile was inversely correlated with the predicted 

target mRNA (Figure 4.6). This lead to the identification of eight 

microRNA:mRNA interactions involving seven microRNAs and four genes. 

The hypothetical network (Figure 4.6) suggests that expression of Egr1 early in 

development maintains expression of Klf4 [143]. Similarly to the parotid, Egr1 is 

highly expressed in hematopoietic stem cells and decreases on differentiation 

[144].  Klf4 is involved in stem cell maintenance and inhibits terminal 

differentiation [145]. As development proceeds, the observed increases of miR-

29c, miR-375, miR-148, and miR-200c may drive the observed decreased 

expression of Klf4 mRNA. Sox11 is initially strongly expressed, and is an 

activator of the Pax5 gene, which is an inhibitor of Xbp1 transcription factor gene 

expression [146]. Increasing expression of miR-200a and miR-30a may combine 

to repress expression of Sox11, thereby decreasing stimulation of Pax5. Prdm1 

(Blimp1) mRNA increases transiently during mid-differentiation, which may inhibit 

Pax5. The Prdm1-Pax5-Xbp1 genes are reported to form a genetic switch which 

regulates the timing of differentiation of antibody secreting plasma 
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Figure 4.6: Gene Regulatory Network Driving Expression of Terminal 

Differentiation Genes. Network containing predicted edges from both 
knowledge-based resources and in silico based predictions of microRNA:mRNA 
interactions. Edges connecting nodes are either a green arrow indicating 
activation or a red line indicating repression. A small graph next to each node 
plots the relative expression for that gene across differentiation. The network is 
divided into three main arms, a stemness arm on the right, a genetic switch in the 
middle, and a differentiation arm of the left where transcription factors such as 
Xbp1 and Mist1 drive expression of differentiation markers such as PSP.
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B cells [147, 148]. This genetic switch has not previously been seen in parotid 

differentiation, and may contribute to the observed increase of Xbp1 mRNA.  

The observed decrease of miR-214 which may target Xbp1 mRNA, combined 

with the positive feedback loop between Xbp1 and Atf6 alpha [149, 150], would 

help maintain the observed elevated expression of Xbp1. Down-stream of Xbp1, 

along with PSP, is Mist1 (Bhlha15). Xbp1 is known to regulate the expression of 

transcription factor Mist1. This basic helix-loop-helix family member is highly 

expressed in serous acinar cells as well as other protein secreting cells, such as 

plasma cells. Mist1 is considered necessary for plasma cell differentiation, and in 

knockouts acinar cell maturation is impaired during development leading to 

disorganized cells that lack cytoplasmic and plasma membrane polarity, and 

contain far fewer secretory granules [125, 151, 152]. Among Mist1 target genes 

are Rab3d and Rab26 which are necessary for secretory vesicle maturation. All 

three of these genes (Mist1, Rab3d, and Rab26) significantly increase (at the 

mRNA level) during differentiation. 

4.2.4 Testing Transcription Factor and MicroRNA Interactions 

Several of the proposed regulatory interactions (edges) of this network were 

directly tested by transfection experiments. According to the network, Xbp1 is 

directly up-stream of Mist1 (Bhlha15) [153] [132]. Mist1 and Xbp1 in vivo 

expression increases 21-fold and 6.5-fold respectively between the earliest and 

latest time points (Figure 4.7). Their expression pattern was significantly 

correlated across the time points measured 
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Figure 4.7: Xbp1 regulates Mist1 Expression. A.) Both Xbp1 and Mist1 
increase expression significantly during acinar cell differentiation. B.) Mist1 and 
Xbp1 expression is significantly correlated. C.) The Mist1 promoter was cloned in 
front of a luciferase vector and co-transfected in ParC5 cells with an expression 
vector containing the spliced version of Xbp1 (Xbp1-s). Activity significantly 
increased with increasing concentration of Xbp1-s (n=3).
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(correlation coefficient= 0.97, p-value= 1.4*10-5) (Figure 4.7). Transfections of a 

Mist1 promoter (-500 - +15) luciferase construct into immortalized rat parotid 

acinar cells (ParC5 cell line) confirmed direct activation of the Mist1 promoter by 

the spliced (activated) form of Xbp1 (Figure 4.7). This experimentally supports 

the predicted interaction in this network. Possible regulation of the Psp gene by 

the Mist1 transcription factor was also investigated. This interaction was not 

predicted by a knowledge-based algorithm, but to further identify novel 

interactions with terminal differentiation markers, a region of the PSP gene 

containing two E-box sites was cloned into a luciferase reported in order to test 

activation. These two consensus sequence sites are not in the promoter region. 

Though the promoter is the most common binding site, transcription factors have 

also been shown to regulate gene expression through binding sites within 

introns. Co-transfection of Mist1 cDNA did not lead to activation of the Psp 500 

bp promoter  alone(not shown), nor did it activate a 1.5 kb Psp promoter 

construct even in the presence of the Mist1 dimerization partner Tcf3/E2A [154] 

(Figure 4.8). The E-box regions flank exon three in the PSP gene, and this 

promoter+intron/exon construct was significantly activated 2.3-fold by co-

transfection with Mist1 and Tcf3 cDNAs (p=0.0227), whereas the 1.5 kb Psp 

promoter was not activated (Figure 4.8). Neither Tcf3 nor Mist1 alone 

significantly activated the Psp reporter construct (not shown). Tcf3 was included 

in these experiments as a heterodimerization partner with Mist1. Since Tcf3 

mRNA was not differentially expressed (p=0.25), it is not included in the 

proposed regulatory network, however, it is constitutively expressed throughout
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Figure 4.8: Mist1 and Tcf3 Activate PSP Expression from the Introns. A.) 
The promoter region of PSP does not contain a Mist1 consensus sequence, 
however, there are two E-box sites in the introns flanking exon 3.B.) Two regions 
of the PSP gene were cloned up-stream of a luciferase reporter. In the first clone, 
only 1.5kb of the promoter was used (PSP 1.5kb promoter), and in the second, 
regions of the PSP gene containing the introns of interest were included (PSP 
1.5kb promoter + introns). These clones were co-transfected with expression 
vectors containing Mist1 and Tcf3. These transcription factors activated 
expression only in the clone containing the introns (n=4, p-value = 0.26).
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 acinar cell differentiation. While Tcf3 is typically present in most cell types, it 

apparently has inadequate levels in the ParC5 cells used for transfections. 

Overall, these experiments indicate that the increase of Mist1 expression during 

acinar differentiation contributes to the increase of Psp gene expression through 

binding sites flanking exon 3. Several microRNA:mRNA interactions were also 

tested using a luciferase reporter. Four microRNAs, which increased expression 

late in differentiation, are predicted to target Klf4 mRNA. Figure 4.9 shows the 

Log2 relative expression of miR-29c during acinar differentiation compared to 

that of Klf4 mRNA. Klf4 does not decrease in expression until stage 3 in 

postnatal development when miR-29c increases. Expression of these two genes 

are negatively correlated across acinar differentiation (Pearson’s r= -0.79; p = 

0.011). In order to test potential microRNA target genes, cells were co-

transfected with a microRNA mimic and a luciferase expressing plasmid 

containing a 3'UTR of interest. Transfection experiments confirmed repression of 

rat Klf4 by miR-29c (Figure 4.9). Several other microRNAs are predicted to target 

Klf4, among them miR-200c, which has relatively low expression in the embryo 

and early postnatal gland but significantly increased in expression by P15. It has 

been shown that Klf4 is targeted by miR-200c [155, 156], and luciferase assays 

confirmed this interaction in a parotid cell line (Figure 4.9).  

Xbp1 mRNA increased expression 6.5-fold across differentiation, while its 

targeting miR-214 decreased more than 10-fold (Figure 4.9). Xbp1 3'UTR 

contains a known miR-214 binding site in humans [157]. Although this sequence 

is not conserved in rats, the rat 3'UTR contains an alternate miR-214 predicted 
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Figure 4.9: Several microRNAs Target Transcription Factors in the Network. 

A.) log2 expression is plotted for five of the network microRNAs (Mir-214, miR-
200c, miR-29c, miR-200a, and miR-30a) and their corresponding predicted target 
(Xbp1, Klf4, and Sox11) respectively. Each of the microRNA:mRNA pairs is 
inversely correlated. B.) Each of the 3’UTRs containing the microRNA target was 
cloned downstream of a luciferase reporter, and was co-transfected in ParC5 
cells with a microRNA mimic. Expression was normalized to renilla and to an 
empty (no 3’UTR) luciferase vector as in Jacobs et. al. [123]. Neither miR-200a 
nor miR-30a alone down-regulated expression from the Sox11 3’UTR but 
expression was inhibited when both were transfected together (n=3 for miR-29c, 
miR-200a, miR-200c, and miR-200a/30a) (n=4 for miR-30a and miR-214) (p = 
0.014, 0.012, 0.025, 0.28, 0.23, and 0.017 respectively). 
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binding site, which was cloned into a reporter, and co-transfection experiments 

demonstrate repression of rat Xbp1 by miR-214 (Figure 4.9). 

 Sox11 expression decreased significantly after birth, and it is predicted to be 

targeted by several differentially expressed microRNAs. Assays with miR-200a, 

and miR-30a did not show any repression of the reporter, however, a construct 

containing binding sites for both miR-200a and miR-30a was repressed when co-

transfected with both microRNAs (Figure 4.9), indicating that these microRNAs 

are acting cooperatively to repress expression. Taken together, these microRNA 

transfection experiments provide experimental support for five of the edges in the 

proposed network. 

4.3 Discussion 

In this section expression measurements spanning nine time-points during acinar 

cell differentiation were integrated into gene regulatory networks containing both 

transcription factors and microRNAs. These networks were used to identify 

factors important for the regulation of terminal differentiation markers. 

Our knowledge-based approach identified several transcription factors regulating 

the cargo protein gene PSP. Both Elf5 and Ese3 have been reported to activate 

the PSP promoter [158], but our data shows their expression changes are 

modest in the mature acinar cells compared to the embryo.  

In order to identify major regulators of PSP, we predicted and validated several 

novel interactions activating the PSP promoter. Both Xbp1 and Mist1 activate 
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PSP expression, and, as shown in the last chapter, these two transcription 

factors increase significantly during differentiation. 

Using these novel and knowledge-based transcription interactions along with in 

silico based microRNA target predictions, gene regulatory interactions driving 

expression of terminal differentiation genes were predicted. When expression co-

variance supported the interaction, it was included in a network, leading to the 

identification of a gene regulatory network which drives the expression of several 

differentiation markers such as PSP, connexin32, Rab3d, and Rab26 (Figure 

4.6). 

This putative network provides a context for changes in transcription factors 

which regulate differentiation. The network identifies two main branches; initial 

expression of stemness factors (Sox11, Klf4, and EGR1, none of which have 

been describe before in parotid differentiation) which inhibit differentiation, and 

subsequent switch to an Xbp1 pathway which drives and maintains markers of 

terminal differentiation. Our network suggests that Klf4 is initially stimulated by 

Egr1 and, remarkably, subsequently repressed by 4 different microRNAs which 

increase strongly in the late stages. We demonstrate that either miR-200c or 

miR-29c can down-regulate the expression of Klf4. By affecting its expression, 

these microRNAs could be important drivers of terminal differentiation. This is 

one example of the broad observation that microRNAs have extensive roles 

driving parotid differentiation. 
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 Sox11 expression was elevated in embryonic stage acinar cells, decreasing 

dramatically immediately after birth apparently due to concerted action by both 

miR-200a and miR-30a. Sox11 is important in neurogenesis and involved in stem 

cell survival [58], and its down-stream factor, Tead2, is involved in maintaining 

ES cell identity and inhibiting differentiation [159]. In our mRNA profiles, Tead2 

directly parallels Sox11 expression across parotid differentiation. Hence, 

repressing Sox11 promotes differentiation and also diminishes a stemness 

program. Sox11 directly activates transcription of the Pax5 gene [146]. Sox11 is 

not expressed in normal lymphoid progenitor cells, however, in mantle cell 

lymphoma tumors it activates Pax5 thereby blocking differentiation [146]. While 

Pax5 probes were not present in the microarray used in the current experiments, 

we infer that its expression decreases downstream of Sox11 expression 

changes. Pax5 is a transcriptional inhibitor of Xbp1, and decreasing its 

expression would contribute to Xbp1 activation. The Prdm1-Pax5-Xbp1 genetic 

switch is well characterized in differentiating immune plasma cells [147, 148], and 

we suggest is active in parotid acinar cells, with the additional regulation by 

Sox11.          

Parotid acinar expression of Xbp1 is apparently maintained low in the embryo by 

dual repression entailing both direct repression by miR-214, and indirectly by 

Sox11 activating the Pax5 repressor. 

Downstream of Xbp1, the serous exocrine specific transcription factor Mist1 is 

up-regulated. We confirm direct regulation of the Mist1 promoter by Xbp1 in a 

parotid cell line (Figure 4.7). Xbp1 and Mist1 likely work as 'scaling' factors, a 
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concept developed by Mills et. al. [160] which contributes to quantitative 

differentiation. 
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CHAPTER 5: GENE REGULATORY NETWORK AND DIFFERENTIATION IN 

VITRO 

5.1 Introduction 

In the previous section single edges of a gene regulatory network were validated 

in vitro. In this section multiple successive interactions (edges) will be tested in a 

cell culture model of parotid acinar cells. 

The ParC5 cell line was derived from rat parotid acinar cells [63], and have since 

lost expression of many terminal differentiation genes (Figure 5.1). This ability to 

spontaneously de-differentiate in culture has made acinar cells difficult to 

maintain. The ability to drive differentiation in culture would be beneficial towards 

the goal of maintaining the acinar cell phenotype in culture and using these cells 

to construct artificial glands. 

Work with the similar cell line ParC10 has shown increased differentiation when 

cultured on matrigel. The 3D spheres that form express polarized tight junction 

(TJ) proteins, and increased expression of aquaporin5 (Aqpr5). However this 

does not translate into other three dimensional culture matrices such as fibrin 

hydrogels, which have been used in the formation of artificial organs (because 

matrigel is tumorigenic it cannot be used for this purpose). The ability of 
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transcription factors to drive differentiation in these cells has not been 
investigated.
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Figure 5.1: ParC5 Cells are No Longer Terminally Differentiated. Gene 
expression was compared between ParC5 cells and an adult parotid gland (rat) 
by qPCR. Expression was normalized to Gapdh. Relative expression is plotted in 
a log10 scale. Both Amylase and PSP are reduced more than 100,000-fold and 
Mist1 more that 10,000-fold while the ubiquitous transcription factor Tcf12 
remains unchanged.
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The gene regulatory network from the previous section includes transcription 

regulatory interactions that drive the expression of terminal differentiation genes. 

The TF Xbp1 and Mist1 seem to be especially involved in acinar cell specific 

expression in vivo, and this section addresses the hypothesis that they can also 

drive expression in vitro. 

A method for activating Atf6 and Xbp1 was investigated in ParC5 cells. Both are 

activated as part of the unfolded protein response (UPR). Atf6 protein is cleaved 

into an active form which can then up-regulate transcription. Xbp1 has a unique 

mechanism of activation. It is actually ubiquitously transcribed in cells and is 

translated into a weakly activating transcription factor. However, when the 

endoribonuclease Ire1 is activated in response to ER stress, 26nt of Xbp1 mRNA 

is spliced out in the cytoplasm leading to the translation of a highly active 

transcription factor. In our study we used the ER stress agonist tunicamycin to 

induce splicing of endogenous Xbp1and activation of Atf6 in all cells which 

should lead to a robust response (Figure 5.2).  

Measurements of down-stream effectors showed that Xbp1 can robustly induce 

expression of Mist1. Other genes further down-stream in the network such as 

PSP, Connexin32, and Rab3d are not induced upon Xbp1 activation suggesting 

there are additional unknown factors, possibly epigenetic, that are regulating 

transcription of differentiation genes.
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Figure 5.2: Tunicamycin Treatment will Activate Endogenous Transcription 

Factors in the Differentiation Arm of the Network: Tunicamycin is an activator 
of the unfolded protein response. It will activate the transcriptional activity of Atf6 
to increase Xbp1 expression and the RNase activity of IreI which will cleave 
Xbp1 mRNA into the active form. Based on our network model (Figure 4.6) this 
will increase the expression of differentiation markers down-stream.
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5.2 Results 

5.2.1 Tunicamycin Treatments 

ParC5 cells were maintained in supplemented DMEM/F12 media as described by 

Quissell et. al. [63]. After 8 hours of 1 ug/ml tunicamycin treatment (or DMSO for 

controls), cells were allowed to recover overnight (~ 16 hours) before RNA was 

extracted and gene expression was measured by qPCR. The 2^-ΔΔCT method was 

used to calculate normalized relative gene expression [124]. Rplp2 was used for 

normalization as its expression was found to be the most stable of a selected 

panel of housekeeping genes. Differential expression was evaluated using a t-

test with a p-value < 0.05 considered significant. 

Both Xbp1 and Mist1 expression increases significantly after tunicamycin 

treatment (Figure 5.3). Total Xbp1 mRNA amount increases ~4-fold, and its 

activity as a transcription factor is most likely increasing much higher due to the 

fact that tunicamycin not only increases Xbp1 transcription (through activation of 

Atf6), but also its splicing to an active form (through activation of the 

endoribonuclease Ire1). Downstream of Xbp1, Mist1 expression increases more 

than 100-fold. Knock down of Xbp1 by siRNA, confirms that it regulates Mist1 

expression in ParC5 cells (Figure 5.4). The dramatic > 100-fold increase of Mist1 

during tunicamycin treatment is completely dependent on Xbp1 increase. 

Cells were pretreated with siRNA targeting either Xbp1 or a non-targeting control 

before treatment with tunicamycin or DMSO. Xbp1 expression was reduced 80% 

by the siRNA regardless of treatment with either tunicamycin or DMSO. Mist1 
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Figure 5.3: Tunicamycin Dramatically Increases Xbp1 and Mist1 but not PSP, 
Rab26, or Connexin32. ParC5 cells were treatment with 1µg/ml tunicamycin for 8 
hours, and gene expression was measured 16 hours later. Expression was normalized 
to Rplp2. A.) Both Xbp1 and Mist1 expression increased after treatment compared to a 
DMSO control (n=3, p-values= 0.03, and 0.025). Mist1 expression increased more than 
100-fold. B.) Neither PSP nor Rab26 showed any change in expression after 
tunicamycin treatment. (n=3, p-values= 0.18, and  0.3) C.) Connexin32 was not 
detected by qPCR under any treatment. Along with tunicamycin cells were also 
treated with 5-Aza-2′-deoxycytidine, a DNA methyltransferase inhibitor which has 
been shown to restore expression of some genes silenced by promoter 
methylation.
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expression was reduced 80% by the siRNA, but only in cells that also received 

tunicamycin treatment. In the DMSO treatment group, Mist1 expression did not 

change when pretreated with siRNA targeting Xbp1 (Figure 5.4). This indicates 

that the increase in Mist1 expression after tunicamycin treatment is due to 

promoter activation by Xbp1, and there is also a low basal level of Mist1 

expression that is independent of Xbp1. 

Several genes down-stream of Xbp1 and Mist1 were also measured after 

tunicamycin treatment. The cargo protein and terminal differentiation marker PSP 

did not change expression, and the gap junction protein connexin32 was 

undetectable by qPCR in either condition (Figure 5.3). This indicates there are 

other factors needed for promoter activation. In the case of Connexin32. We also 

investigated the possible role of epigenetics. 

Epigenetic markers have long been known to control lineage specific gene 

expression. Histone modifications, largely at the promoter, can control DNA 

availability leading to either silencing or activation, and DNA methylation can 

silence nearby genes. The promoter of connexin32 has been shown to contain a 

CpG island, and in the liver its expression can be silenced through methylation 

[161]. Treatment of ParC5 cells with DNA methyltransferase inhibitors (DNMTi) 

was investigated as a means to reverse silencing of terminal differentiation 

genes.  

 5-Aza-2′-deoxycytidine (5-Aza) is a cytosine analog that is incorporated into 

DNA, and will inhibit the methyl transferase enzyme by covalently trapping it to 
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Figure 5.4 Mist1 is Regulated Downstream of Xbp1 in Cells Treated with 

Tunicamycin not DMSO. Cells were pre-treated with a siRNA targeting Xbp1 or 
a non-targeting control before tunicamycin or DMSO. A.) Xbp1 expression was 
measured by qPCR. Expression is significantly reduced after pre-treatment with 
the Xbp1 siRNA compared to a control siRNA regardless of whether the cells 
were subsequently treated with DMSO or tunicamycin (p-values= 0.00004, and 
0.003). B.) Mist1 expression was measured by qPCR. Expression is significantly 
reduced after pre-treatment with Xbp1 siRNA compared to control siRNA only 
when cells were subsequently treated with tunicamycin (right panel). Expression 
remained unchanged in cells treated with DMSO following siRNA (left panel).  (p-
values=  0.086, and 0.0025)
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the DNA. While this has been shown in many cell types to produce a 

hypomethylated genome, it has the potential to be toxic due to the formation of 

DNA lesions during replication. 

 ParC5 cells were treated with 0.25 µM of 5-Aza over 24 hours, and then were 

treated with tunicamycin. Expression of Connexin32 was measured by qPCR. As 

seen in Figure 5.3, Connexin32 remained undetected in all conditions. 

Because of the sensitivity of these cells to 5-Aza, relatively low concentrations 

and a short duration of treatment was used. DNA methylation is generally not 

occurring continuously, but only during DNA replication and so several replication 

cycles of treatment is needed to induce a hypomethylated genome. The non-

responsiveness of the genes measured could be due to the inability of this short 

treatment to induce hypomethylation. 

Surprisingly, treatment with tunicamycin resulted in decreased Rab3d expression 

(Figure 5.5), and no change in Rab26 (Figure 5.3). Rabs are proteins on the 

cytosolic side of the secretory vesicle which direct the secretory pathway. Our 

network predicts that Mist1 activates expression of Rab3d and Rab26 in acinar 

cells, and that these gene products are necessary for the differentiated 

phenotype. The ability of tunicamycin to drastically increase Mist1 expression 

suggests that it should also increase expression of downstream effectors, but this 

does not seem to be the case in ParC5 cells. 

The possibility of Mist1 acting as a repressor in these cells was next investigated. 

Though Mist1 commonly activates gene expression, it has also been shown to 
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Figure 5.5: Rab3d and Tcf3 Expression is Down-regulated by Tunicamycin. 
A.) ParC5 cells were treatment with 1µg/ml tunicamycin for 8 hours, and gene 
expression was measured 16 hours later. Expression was normalized to Rplp2. 
Rab3d and Tcf3 expression is significantly down-regulated after treatment with 
tunicamycin (n=3. P-value = 0.006, and 0.03). B.) Tcf3 expression during 
differentiation by microarray.
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repress expression in some contexts, but the exact mechanism is unknown[152]. 

ParC5 cells were transfected with an expression vector containing the Mist1 

coding region, and qPCR was used to measure the expression of Rab3d and 

Rab26. Both Rab3d and Rab26 expression was increased after transfection of 

Mist1 (Figure 5.6) indicating that it is acting as a transcriptional activator and not 

a repressor. 

We next examined the possibility that Mist1 must form a heterodimer in order to 

activate transcription. Mist1 is a member of the basic helix-loop-helix family of 

transcription factors which commonly bind DNA as heterodimers. Mist1 has been 

shown to form a dimer with Tcf3 which can bind E-box regions of DNA, and our 

work suggests that a Mist1/Tcf3 dimer activates PSP expression (Figure 4.5). 

However, the functions of this dimer remain largely untested in the literature. 

Tcf3 expression was measured by qPCR, and was shown to decrease after 

treatment with tunicamycin (Figure 5.5). If a Mist1/Tcf3 heterodimer is required to 

activate Rab3d expression then decrease in Tcf3 expression could result in 

decreased dimer formation regardless of the expression increase in Mist1, and 

this could be causing the reduction in Rab3d expression. 

Our in vivo microarray measurements show that Tcf3 is moderately expressed at 

every time point measured during differentiation (Figure 5.5) indicating that a 

Mist1/Tcf3 dimer could be biologically relevant for in vivo development. 

Tcf3 either alone or with Mist1 was transfected into ParC5 cells and Rab3d 

expression was measured by qPCR (Figure 5.7). Transfection of Tcf3 alone did 
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Figure 5.6: Mist1 is not acting as a Repressor in ParC5 Cells. 

An expression vector containing Mist1 was transfected into ParC5 cells. Gene 
expression was measured by qPCR 24 hours later. Expression was normalized 
to Rplp2. Both Rab3d and Rab26 expression increased in cells transfected with 
Mist1 compared to an empty vector. (Fold-change= 2, and 1.4 respectively, n=3, 
p-values= 0.016, and  0.008).
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Figure 5.7: Tcf3 does not contribute to Mist1 Activation of the Rab3d 

Promoter. A.) ParC5 cells were transfected with an expression vector containing 
the transcription factor Tcf3 and expression was measured by qPCR 24 hours 
later. Rab3d expression was not changed significantly by Tcf3 transfection alone 
(n=3, p-value= 0.4). B.) Mist1 and Tcf3 were co-transfected into ParC5 cells, and 
expression of Rab3d was measured by qPCR 24 hours later. Rab3d expression 
increased significantly. (Fold-change =1.4, n=3, p-value = 0.05), but its 
expression did not increase anymore that with Mist1 alone (Figure 5.6). 
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not alter Rab3d expression which could be due to the low basal levels of Mist1 in 

untreated cells. When co-transfected, Rab3d expression did not increase more 

than Mist1 alone, indicating that heterodimer formation is likely not necessary for 

promoter activation of Rab3d. Mist1 could be acting as a homodimer as it has 

been reported to do in the pancreas [162]. 

Rab3d expression decrease could be due to other factors that are impacted by 

tunicamycin treatment. Tunicamycin disrupts protein folding by inhibiting n-linked 

glycosylation, and this triggers the ER stress response which activates Xbp1. 

However, inhibition of glycosylation by tunicamycin is also known to alter the 

activity of glycosylated transcription factors (e.g. SP1) [163, 164]. This is not 

likely having an impact of Mist1 activity, which has no known or predicted 

glycosylation sites, but there could be other transcription factors acting on the 

Rab3d promoter which are impacted by altered glycosylation states. 

5.3 Discussion 

In this section, several successive edges of the network were validated in a cell 

culture system. Treatment of ParC5 cells with the UPR activator tunicamycin 

activated the transcription of both Xbp1 and Mist1, transcription factors that we 

identified in the previous sections as important for acinar cell differentiation. 

Overall, this sections validates both Xbp1 and Mist1 activation downstream of 

Atf6 in our predicted network, and shows that Mist1 activation after stimulation is 

due nearly entirely to Xbp1. This supports our hypothesis that Xbp1 is the main 

driver of Mist1 expression during differentiation. We showed that Xbp1 is capable 
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of strong Mist1 induction, which is what we observe from our in vivo 

measurements.  

There also seems to be a low baseline Mist1 expression that is Xbp1 

independent suggesting the presence of other minor regulators. These regulators 

may or may not be involved in Mist1 expression in vivo but they could be used to 

explain the different acinar phenotypes that are seen in Mist1 -/- mice,, where the 

parotid acinar cells lack polarity and are completely disorganized [151], and Xbp1 

-/- mice where acinar cells in the salivary glands are smaller than wild type but are 

not structurally any different [165]. Measuring Mist1 expression in Xbp1 -/- cells 

could help to establish alternative regulation. 

Genes further downstream in the network (i.e. PSP, Connexin32) were not 

activated by tunicamycin treatment. This is probably due to unknown factors that 

are involved in full expression of the network. While our microarray and qPCR 

data allowed us to measure gene expression changes on a large scale, it does 

not capture all the information about gene expression activation. Our dataset 

does not contain information about epigenetic changes during differentiation, any 

signaling pathways coming from outside the cell, or any post-transcriptional 

modifications that could change transcription factor activation. A combination of 

these factors is most likely involved in the gene regulatory network (Figure 3.6) 

during differentiation.
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CHAPTER 6: SUMMARY 

This is the first study to measure comprehensive changes in gene expression 

during parotid acinar cell differentiation. The control of this cell type's 

differentiation is poorly understood, and this study increases our knowledge 

greatly. The networks identified could potentially be used as drivers of 

differentiation in progenitor cells, which would be a step forward in being able to 

regenerate salivary gland for patients suffering chronic xerostomia. 

In the first results chapter (chapter 3), both mRNA and microRNA expression 

were measured at several time-points spanning differentiation. This allowed the 

identification of complex expression patterns, including the novel involvement of 

Pparg, as well as the identification of mRNA:microRNA interactions which had 

not been studied in the salivary gland differentiation before.  

One of the main goals of Systems Biology is to use big datasets to generate 

novel hypothesis. By integrating mRNA and microRNA data, we were able to 

identify two separate microRNAs families targeting the pro-mitogenic, IGF2 at 

different levels of expression, leading to the hypothesis that microRNA 

expression controls cell cycle exit which could be necessary for driving 

differentiation. miR-375 represses the transcription factor Plag1, which is an 

activator of the IGF2 promoter, and several members of the let-7 family repress
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IGF2BP2 an mRNA binding protein that promotes IGF2 translation. This 

hypothesis could be tested in vivo using microRNA knockout mice, or a 

constitutively active IGF2 transgene, and potentially these microRNAs could be 

used to study differentiation in vitro. 

This study is the first to identify stages specifically in the acinar cell lineage, 

indicating that large gene expression changes occur rapidly in these cells at 

specific time points as they differentiate. Importantly, strong changes of gene 

expression were observed even several weeks after birth, the late stage of 

differentiation, emphasizing the prolonged nature of parotid differentiation.  

Clustering differentially expressed genes, combined with GO and transcription 

factor enrichment identified for the first time the prevailing pathways and 

regulatory genes during differentiation. Surprisingly, a novel role was predicted 

for the transcription factor PPARg. Its expression, along with 19 of is downstream 

effectors were transiently up-regulated mid-way through differentiation. The 

transcription factor targets of both Xbp1 and Mist1 are enriched in a cluster of 

genes that increase during differentiation.  

64 microRNAs are differentially expressed during differentiation (52 are up-

regulated and 12 are down-regulated). These include miR-375 which increases 

more than 800-fold, and likely inhibits Plag1 expression, making it an important 

regulator of proliferation in the postnatal period and possibly of differentiation by 

inhibiting mitogenic factors.  
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In chapter 4, mRNA and microRNA expression measurements were integrated 

into a model gene regulatory network driving the expression of terminal 

differentiation markers PSP, Rab3d, Rab26, and Connexin32. This network 

incorporates three main arms. 

In the pro-stemness arm, pro-stem cell transcription factors such as Klf4 and 

Sox11 are expressed relatively highly in the embryo, and decrease during 

differentiation due to targeting by several microRNAs. As shown in chapter 3 with 

the let-7 family, several microRNAs are acting together to regulate a target gene. 

In the genetic switch, expression of Pax5 decreases across differentiation due to 

decreased expression of Sox11 and transient up-regulation of Prdm1 which 

represses expression. Finally, in the pro-differentiation arm, Xbp1 expression 

increases due to decreased repression by Pax5 and miR-214. At the same time, 

Xbp1 expression is activated by increasing Atf6. Terminal differentiation markers 

are activated downstream of Xbp1 and Mist1. 

These transcription regulatory networks are likely necessary for promoting 

differentiation in a progenitor cell or a stem cell, and would need to be activated 

in cells used for salivary regeneration. This network provides several prospective 

targets which could be activated (Xbp1, Mist1) or repressed (Klf4, Sox11) in 

order to drive differentiation in culture and regrow acinar cells for transplantation. 

Individual interactions from the network were validated in vitro by luciferase 

assay, and in chapter 5, multiple steps of the network were tested at once in a 

cell culture model. Using tunicamycin, transcription of Xbp1 and Mist1 was 
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activated, but genes further downstream (PSP, Rab3d, Connexin32) were not. 

This could be due to epigenetic changes in the cell line used, or the absence of 

extracellular signaling that could be involved in differentiation in vivo such as 

signaling between the epithelium and that mesenchyme or the parasympathetic 

ganglion. 

Future work is needed to expand this network to incorporate factors not included 

in the current design such as extracellular signaling pathways and epigenetic 

changes which are important for differentiation. Nonetheless, the genes identified 

in this network and in the analysis of expression changes during differentiation, 

provide additional targets and markers for research into bioengineering or 

regeneration of salivary glands. 



130 
 

REFERENCES 

1. Tucker A, editor Salivary gland development. Seminars in cell & developmental biology; 
2007: Elsevier. 
2. Amano O, Mizobe K, Bando Y, Sakiyama K. Anatomy and Histology of Rodent and 
Human Major Salivary Glands:—Overview of the Japan Salivary Gland Society-Sponsored 
Workshop—. Acta histochemica et cytochemica. 2012;45(5):241. 
3. Amerongen AV, Veerman EC. Saliva--the defender of the oral cavity. Oral Dis. 
2002;8(1):12-22. Epub 2002/04/09. PubMed PMID: 11936451. 
4. Nicolescu MI, Bucur A, Dinca O, Rusu MC, Popescu LM. Telocytes in parotid glands. Anat 
Rec. 2012;295(3):378-85. 
5. Ball WD. Development of the rat salivary glands. III. Mesenchymal specificity in the 
morphogenesis of the embryonic submaxillary and sublingual glands of the rat. Journal of 
Experimental Zoology. 1974;188(3):277-88. 
6. Denny P, Ball W, Redman R. Salivary glands: a paradigm for diversity of gland 
development. Critical Reviews in Oral Biology & Medicine. 1997;8(1):51-75. 
7. Jaskoll T, Zhou YM, Chai Y, Makarenkova HP, Collinson JM, West JD, et al. Embryonic 
submandibular gland morphogenesis: stage-specific protein localization of FGFs, BMPs, Pax6 and 
Pax9 in normal mice and abnormal SMG phenotypes in FgfR2-IIIc(+/Delta), BMP7(-/-) and Pax6(-
/-) mice. Cells Tissues Organs. 2002;170(2-3):83-98. PubMed PMID: 11731698. 
8. Pattipati S, Patil R, Kannan N, Kumar BP, Shirisharani G, Mohammed RB. Effect of 
transcutaneous electrical nerve stimulation induced parotid stimulation on salivary flow. 
Contemporary clinical dentistry. 2013;4(4):427. 
9. Milne R, Dawes C. The relative contributions of different salivary glands to the blood 
group activity of whole saliva in humans. Vox sanguinis. 1973;25(4):298-307. 
10. Proctor GB, Carpenter GH. Regulation of salivary gland function by autonomic nerves. 
Autonomic Neuroscience. 2007;133(1):3-18. 
11. Hector MP. Reflexes of salivary secretion. 1999. 
12. Mackie D, Pangborn R. Mastication and its influence on human salivary flow and alpha-
amylase secretion. Physiology & behavior. 1990;47(3):593-5. 
13. Patel VN, Hoffman MP, editors. Salivary gland development: a template for 
regeneration. Seminars in cell & developmental biology; 2014: Elsevier. 
14. Tamaki H, Yamashina S. Structural integrity of the Golgi stack is essential for normal 
secretory functions of rat parotid acinar cells: effects of brefeldin A and okadaic acid. Journal of 
Histochemistry & Cytochemistry. 2002;50(12):1611-23. 
15. Doine AI, Oliver C, Hand AR. The Golgi apparatus and GERL during postnatal 
differentiation of rat parotid acinar cells: an electron microscopic cytochemical study. The 
journal of histochemistry and cytochemistry : official journal of the Histochemistry Society. 
1984;32(5):477-85. PubMed PMID: 6143779. 
16. Yamagishi R, Wakayama T, Nakata H, Adthapanyawanich K, Kumchantuek T, Yamamoto 
M, et al. Expression and Localization of α-amylase in the Submandibular and Sublingual Glands 
of Mice. Acta histochemica et cytochemica. 2014;47(3):95.



131 
 

17. Gorr S-U, Venkatesh S, Darling D. Parotid secretory granules: crossroads of secretory 
pathways and protein storage. Journal of dental research. 2005;84(6):500-9. 
18. Nashida T, Imai A, Shimomura H. Relation of Rab26 to the amylase release from rat 
parotid acinar cells. Archives of oral biology. 2006;51(2):89-95. doi: 
10.1016/j.archoralbio.2005.06.005. PubMed PMID: 16076461. 
19. Nguyen D, Jones A, Ojakian GK, Raffaniello RD. Rab3D redistribution and function in rat 
parotid acini. Journal of cellular physiology. 2003;197(3):400-8. doi: 10.1002/jcp.10373. PubMed 
PMID: 14566969. 
20. Takuma T, Arakawa T, Tajima Y. Interaction of SNARE proteins in rat parotid acinar cells. 
Archives of oral biology. 2000;45(5):369-75. 
21. Walz A, Stühler K, Wattenberg A, Hawranke E, Meyer HE, Schmalz G, et al. Proteome 
analysis of glandular parotid and submandibular‐sublingual saliva in comparison to whole 
human saliva by two‐dimensional gel electrophoresis. Proteomics. 2006;6(5):1631-9. 
22. Hu S, Xie Y, Ramachandran P, Ogorzalek Loo RR, Li Y, Loo JA, et al. Large‐scale 
identification of proteins in human salivary proteome by liquid chromatography/mass 
spectrometry and two‐dimensional gel electrophoresis‐mass spectrometry. Proteomics. 
2005;5(6):1714-28. 
23. Denny P, Hagen FK, Hardt M, Liao L, Yan W, Arellanno M, et al. The proteomes of human 
parotid and submandibular/sublingual gland salivas collected as the ductal secretions. Journal of 
proteome research. 2008;7(5):1994-2006. 
24. Boehlke C, Zierau O, Hannig C. Salivary amylase-the enzyme of unspecialized 
euryphagous animals. Archives of oral biology. 2015. 
25. Butterworth PJ, Warren FJ, Ellis PR. Human α‐amylase and starch digestion: An 
interesting marriage. Starch‐Stärke. 2011;63(7):395-405. 
26. Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, et al. Diet and the evolution 
of human amylase gene copy number variation. Nature genetics. 2007;39(10):1256-60. 
27. Suzuki M, Fujimoto W, Goto M, Morimatsu M, Syuto B, Iwanaga T. Cellular expression of 
gut chitinase mRNA in the gastrointestinal tract of mice and chickens. Journal of Histochemistry 
& Cytochemistry. 2002;50(8):1081-9. 
28. Yeh C-K, Dodds MW, Zuo P, Johnson DA. A population-based study of salivary lysozyme 
concentrations and candidal counts. Archives of oral biology. 1997;42(1):25-31. 
29. Abdolhosseini M, Sotsky JB, Shelar AP, Joyce PB, Gorr S-U. Human parotid secretory 
protein is a lipopolysaccharide-binding protein: identification of an anti-inflammatory peptide 
domain. Molecular and cellular biochemistry. 2012;359(1-2):1-8. 
30. Villa A, Connell CL, Abati S. Diagnosis and management of xerostomia and 
hyposalivation. Therapeutics and clinical risk management. 2015;11:45. 
31. Cassolato SF, Turnbull RS. Xerostomia: clinical aspects and treatment. Gerodontology. 
2003;20(2):64-77. 
32. Sasportas LS, Hosford AT, Sodini MA, Waters DJ, Zambricki EA, Barral JK, et al. Cost-
effectiveness landscape analysis of treatments addressing xerostomia in patients receiving head 
and neck radiation therapy. Oral surgery, oral medicine, oral pathology and oral radiology. 
2013;116(1):e37-e51. 
33. Saleh J, Figueiredo MAZ, Cherubini K, Salum FG. Salivary hypofunction: An update on 
aetiology, diagnosis and therapeutics. Archives of oral biology. 2015;60(2):242-55. 
34. Bayetto K, Logan R. Sjögren’s syndrome: a review of aetiology, pathogenesis, diagnosis 
and management. Australian dental journal. 2010;55(s1):39-47. 
35. Peri Y, Agmon-Levin N, Theodor E, Shoenfeld Y. Sjögren’s syndrome, the old and the 
new. Best Practice & Research Clinical Rheumatology. 2012;26(1):105-17. 



132 
 

36. Dawson L, Fox PC, Smith PM. Sjögrens syndrome—the non-apoptotic model of glandular 
hypofunction. Rheumatology (Oxford). 2006;45(7):792-8. 
37. Grundmann O, Mitchell G, Limesand K. Sensitivity of salivary glands to radiation: from 
animal models to therapies. Journal of dental research. 2009;88(10):894-903. 
38. Dirix P, Nuyts S, Van den Bogaert W. Radiation-induced xerostomia in patients with head 
and neck cancer: a literature review. Cancer. 2006;107(11):2525-34. Epub 2006/11/02. doi: 
10.1002/cncr.22302. PubMed PMID: 17078052. 
39. Guchelaar HJ, Vermes A, Meerwaldt JH. Radiation-induced xerostomia: pathophysiology, 
clinical course and supportive treatment. Support Care Cancer. 1997;5(4):281-8. Epub 
1997/07/01. PubMed PMID: 9257424. 
40. Konings AW, Coppes RP, Vissink A. On the mechanism of salivary gland radiosensitivity. 
International Journal of Radiation Oncology* Biology* Physics. 2005;62(4):1187-94. 
41. Wolff A, C Fox P, Porter S, T Konttinen Y. Established and novel approaches for the 
management of hyposalivation and xerostomia. Current pharmaceutical design. 
2012;18(34):5515-21. 
42. Plemons JM, Al-Hashimi I, Marek CL. Managing xerostomia and salivary gland 
hypofunction: executive summary of a report from the American Dental Association Council on 
Scientific Affairs. The Journal of the American Dental Association. 2014;145(8):867-73. 
43. Brosky ME. The role of saliva in oral health: strategies for prevention and management 
of xerostomia. J Support Oncol. 2007;5(5):215-25. 
44. Hsiung C-Y, Ting H-M, Huang H-Y, Lee C-H, Huang E-Y, Hsu H-C. Parotid-sparing intensity-
modulated radiotherapy (IMRT) for nasopharyngeal carcinoma: preserved parotid function after 
IMRT on quantitative salivary scintigraphy, and comparison with historical data after 
conventional radiotherapy. International Journal of Radiation Oncology* Biology* Physics. 
2006;66(2):454-61. 
45. Bhide S, Newbold K, Harrington K, Nutting C. Clinical evaluation of intensity-modulated 
radiotherapy for head and neck cancers. The British journal of radiology. 2014. 
46. Ship J, Eisbruch A, d'Hondt E, Jones R. Parotid sparing study in head and neck cancer 
patients receiving bilateral radiation therapy: one-year results. Journal of dental research. 
1997;76(3):807-13. 
47. Jha N, Seikaly H, Harris J, Williams D, Liu R, McGaw T, et al. Prevention of radiation 
induced xerostomia by surgical transfer of submandibular salivary gland into the submental 
space. Radiotherapy and oncology. 2003;66(3):283-9. 
48. Sood AJ, Fox NF, O’Connell BP, Lovelace TL, Nguyen SA, Sharma AK, et al. Salivary gland 
transfer to prevent radiation-induced xerostomia: A systematic review and meta-analysis. Oral 
oncology. 2014;50(2):77-83. 
49. Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu H, et al. A comprehensive 
transcriptional portrait of human cancer cell lines. Nat Biotechnol. 2015;33(3):306-12. doi: 
10.1038/nbt.3080. PubMed PMID: 25485619. 
50. Man YG, Ball WD, Marchetti L, Hand AR. Contributions of intercalated duct cells to the 
normal parenchyma of submandibular glands of adult rats. Anat Rec. 2001;263(2):202-14. 
51. Denny PC, Liu P, Denny PA. Evidence of a phenotypically determined ductal cell lineage 
in mouse salivary glands. Anat Rec. 1999;256(1):84-90. PubMed PMID: 10456989. 
52. Burford-Mason AP, Cummins MM, Brown DH, MacKay AJ, Dardick I. 
Immunohistochemical analysis of the proliferative capacity of duct and acinar cells during 
ligation-induced atrophy and subsequent regeneration of rat parotid gland. J Oral Pathol Med. 
1993;22(10):440-6. PubMed PMID: 7907370. 



133 
 

53. Takahashi Y, Shiba A, Shiba K. [Differences in whole salivary total protein concentration 
and protein fractions among the groups of dentulous subjects, edentulous subjects and 
periodontitis patients]. Nihon Hotetsu Shika Gakkai Zasshi. 2004;48(5):723-32. PubMed PMID: 
15818005. 
54. Aure MH, Konieczny SF, Ovitt CE. Salivary Gland Homeostasis Is Maintained through 
Acinar Cell Self-Duplication. Dev Cell. 2015;33(2):231-7. 
55. Nanduri LS, Lombaert IM, van der Zwaag M, Faber H, Brunsting JF, van Os RP, et al. 
Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary 
gland. Radiother Oncol. 2013;108(3):458-63. doi: 10.1016/j.radonc.2013.05.020. PubMed PMID: 
23769181. 
56. Nanduri LS, Maimets M, Pringle SA, van der Zwaag M, van Os RP, Coppes RP. 
Regeneration of irradiated salivary glands with stem cell marker expressing cells. Radiother 
Oncol. 2011;99(3):367-72. Epub 2011/07/02. doi: 10.1016/j.radonc.2011.05.085. PubMed PMID: 
21719134. 
57. Lombaert I, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, et al. Rescue of 
salivary gland function after stem cell transplantation in irradiated glands. PloS one. 
2008;3(4):e2063. 
58. Gadi J, Jung S-H, Lee M-J, Jami A, Ruthala K, Kim K-M, et al. The transcription factor 
protein Sox11 enhances early osteoblast differentiation by facilitating proliferation and the 
survival of mesenchymal and osteoblast progenitors. Journal of Biological Chemistry. 
2013;288(35):25400-13. 
59. Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, et al. The development of a 
bioengineered organ germ method. Nature methods. 2007;4(3):227-30. 
60. Ogawa M, Oshima M, Imamura A, Sekine Y, Ishida K, Yamashita K, et al. Functional 
salivary gland regeneration by transplantation of a bioengineered organ germ. Nature 
communications. 2013;4. 
61. Nelson J, Manzella K, Baker OJ. Current cell models for bioengineering a salivary gland: a 
mini‐review of emerging technologies. Oral Dis. 2013;19(3):236-44. 
62. Maria OM, Maria O, Liu Y, Komarova SV, Tran SD. Matrigel improves functional 
properties of human submandibular salivary gland cell line. The international journal of 
biochemistry & cell biology. 2011;43(4):622-31. 
63. Quissell DO, Barzen KA, Redman RS, Camden JM, Turner JT. Development and 
characterization of SV40 immortalized rat parotid acinar cell lines. In vitro cellular & 
developmental biology Animal. 1998;34(1):58-67. doi: 10.1007/s11626-998-0054-5. PubMed 
PMID: 9542637. 
64. Turner JT, Redman RS, Camden JM, Landon LA, Quissell DO. A rat parotid gland cell line, 
Par-C10, exhibits neurotransmitter-regulated transepithelial anion secretion. The American 
journal of physiology. 1998;275(2 Pt 1):C367-74. PubMed PMID: 9688590. 
65. Baker OJ, Schulz DJ, Camden JM, Liao Z, Peterson TS, Seye CI, et al. Rat parotid gland cell 
differentiation in three-dimensional culture. Tissue engineering Part C, Methods. 
2010;16(5):1135-44. doi: 10.1089/ten.TEC.2009.0438. PubMed PMID: 20121592; PubMed 
Central PMCID: PMC2943407. 
66. Kibbey MC. Maintenance of the EHS sarcoma and Matrigel preparation. Journal of tissue 
culture methods. 1994;16(3-4):227-30. 
67. McCall AD, Nelson JW, Leigh NJ, Duffey ME, Lei P, Andreadis ST, et al. Growth factors 
polymerized within fibrin hydrogel promote amylase production in parotid cells. Tissue 
Engineering Part A. 2013;19(19-20):2215-25. 



134 
 

68. Ishii E, Greaves A, Grunberger T, Freedman M, Letarte M. Tumor formation by a human 
pre-B leukemia cell line in scid mice is enhanced by matrigel and is associated with induction of 
CD10 expression. Leukemia. 1995;9(1):175-84. 
69. Fridman R, Kibbey MC, Royce LS, Zain M, Sweeney TM, Jicha DL, et al. Enhanced tumor 
growth of both primary and established human and murine tumor cells in athymic mice after 
coinjection with Matrigel. Journal of the National Cancer Institute. 1991;83(11):769-74. 
70. Soscia DA, Sequeira SJ, Schramm RA, Jayarathanam K, Cantara SI, Larsen M, et al. 
Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters. 
Biomaterials. 2013;34(28):6773-84. 
71. Sequeira SJ, Soscia DA, Oztan B, Mosier AP, Jean-Gilles R, Gadre A, et al. The regulation 
of focal adhesion complex formation and salivary gland epithelial cell organization by 
nanofibrous PLGA scaffolds. Biomaterials. 2012;33(11):3175-86. 
72. Grobstein C. Inductive epithelio-mesenchymal interaction in cultured organ rudiments 
of the mouse. Science. 1953;118(3054):52-5. 
73. Knosp WM, Knox SM, Hoffman MP. Salivary gland organogenesis. Wiley Interdisciplinary 
Reviews: Developmental Biology. 2012;1(1):69-82. 
74. Hoffman MP, Kidder BL, Steinberg ZL, Lakhani S, Ho S, Kleinman HK, et al. Gene 
expression profiles of mouse submandibular gland development: FGFR1 regulates branching 
morphogenesis in vitro through BMP-and FGF-dependent mechanisms. Development. 
2002;129(24):5767-78. 
75. Steinberg Z, Myers C, Heim VM, Lathrop CA, Rebustini IT, Stewart JS, et al. FGFR2b 
signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching 
morphogenesis. Development. 2005;132(6):1223-34. 
76. Knox SM, Lombaert IM, Reed X, Vitale-Cross L, Gutkind JS, Hoffman MP. 
Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. 
Science. 2010;329(5999):1645-7. doi: 10.1126/science.1192046. PubMed PMID: 20929848; 
PubMed Central PMCID: PMC3376907. 
77. Nedvetsky PI, Emmerson E, Finley JK, Ettinger A, Cruz-Pacheco N, Prochazka J, et al. 
Parasympathetic innervation regulates tubulogenesis in the developing salivary gland. Dev Cell. 
2014;30(4):449-62. 
78. Redman RS, Sreebny LM. Morphologic and biochemical observations on the 
development of the rat parotid gland. Dev Biol. 1971;25(2):248-79. Epub 1971/06/01. PubMed 
PMID: 5562853. 
79. Lawson KA. Morphogenesis and functional differentiation of the rat parotid gland in vivo 
and in vitro. Journal of embryology and experimental morphology. 1970;24(2):411-24. 
80. Lawson KA. The role of mesenchyme in the morphogenesis and functional 
differentiation of rat salivary epithelium. Journal of embryology and experimental morphology. 
1972;27(3):497-513. 
81. Cutler LS. The dependent and independent relationships between cytodifferentiation 
and morphogenesis in developing salivary gland secretory cells. Anat Rec. 1980;196(3):341-7. 
82. Yamamoto S, Fukumoto E, Yoshizaki K, Iwamoto T, Yamada A, Tanaka K, et al. Platelet-
derived growth factor receptor regulates salivary gland morphogenesis via fibroblast growth 
factor expression. Journal of Biological Chemistry. 2008;283(34):23139-49. 
83. Melnick M, Phair RD, Lapidot SA, Jaskoll T. Salivary gland branching morphogenesis: a 
quantitative systems analysis of the Eda/Edar/NFκB paradigm. BMC developmental biology. 
2009;9(1):32. 
84. Hoffman M, Yamada K. Salivary Gland Molecular Anatomy Project  [cited 2015]. 
Available from: http://sgmap.nidcr.nih.gov/sgmap/sgexp.html. 

http://sgmap.nidcr.nih.gov/sgmap/sgexp.html


135 
 

85. Musselmann K, Green J, Sone K, Hsu J, Bothwell I, Johnson S, et al. Salivary gland gene 
expression atlas identifies a new regulator of branching morphogenesis. Journal of dental 
research. 2011;90(9):1078-84. 
86. Rivals I, Personnaz L, Taing L, Potier M-C. Enrichment or depletion of a GO category 
within a class of genes: which test? Bioinformatics. 2007;23(4):401-7. 
87. Laukens K, Naulaerts S, Berghe WV. Bioinformatics approaches for the functional 
interpretation of protein lists: From ontology term enrichment to network analysis. Proteomics. 
2015;15(5-6):981-96. 
88. Bessarabova M, Ishkin A, JeBailey L, Nikolskaya T, Nikolsky Y. Knowledge-based analysis 
of proteomics data. BMC bioinformatics. 2012;13(Suppl 16):S13. 
89. Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved 
targets of microRNAs. Genome research. 2009;19(1):92-105. 
90. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, 
indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15-20. 
91. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates 
microRNA processing. Nature. 2003;425(6956):415-9. 
92. Maniataki E, Mourelatos Z. A human, ATP-independent, RISC assembly machine fueled 
by pre-miRNA. Genes & development. 2005;19(24):2979-90. 
93. Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. 
Nature. 2007;448(7149):83-6. 
94. Kim VN. MicroRNA precursors in motion: exportin-5 mediates their nuclear export. 
Trends in cell biology. 2004;14(4):156-9. 
95. Simons M, Raposo G. Exosomes–vesicular carriers for intercellular communication. 
Current opinion in cell biology. 2009;21(4):575-81. 
96. Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum 
and saliva is concentrated in exosomes. PloS one. 2012;7(3):e30679. 
97. Lotvall J, Valadi H. Cell to cell signalling via exosomes through esRNA. Cell adhesion & 
migration. 2007;1(3):156-8. 
98. Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and Exosomal MicroRNA: Trafficking, 
Sorting, and Function. Genomics, proteomics & bioinformatics. 2015;13(1):17-24. 
99. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 
2004;116(2):281-97. 
100. Eichhorn SW, Guo H, McGeary SE, Rodriguez-Mias RA, Shin C, Baek D, et al. mRNA 
destabilization is the dominant effect of mammalian microRNAs by the time substantial 
repression ensues. Molecular cell. 2014;56(1):104-15. 
101. Grimson A, Farh KK-H, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA 
targeting specificity in mammals: determinants beyond seed pairing. Molecular cell. 
2007;27(1):91-105. 
102. Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. 
PLoS Biol. 2005;3(3):e85. 
103. Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB. Common 
features of microRNA target prediction tools. Frontiers in genetics. 2014;5. 
104. Sethupathy P, Megraw M, Hatzigeorgiou AG. A guide through present computational 
approaches for the identification of mammalian microRNA targets. Nature methods. 
2006;3(11):881-6. 
105. Witkos T, Koscianska E, Krzyzosiak W. Practical aspects of microRNA target prediction. 
Current molecular medicine. 2011;11(2):93. 



136 
 

106. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, et al. Dicer-
deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. 
Genes & development. 2005;19(4):489-501. 
107. Shenoy A, Blelloch RH. Regulation of microRNA function in somatic stem cell 
proliferation and differentiation. Nature Reviews Molecular Cell Biology. 2014. 
108. Wong RK, Sagar SM, Chen BJ, Yi GY, Cook R. Phase II Randomized Trial of Acupuncture-
Like Transcutaneous Electrical Nerve Stimulation to Prevent Radiation-Induced Xerostomia in 
Head and Neck Cancer Patients. J Soc Integr Oncol. 2010;8(2):35-42. Epub 2010/04/15. PubMed 
PMID: 20388444. 
109. Cardinali B, Castellani L, Fasanaro P, Basso A, Alema S, Martelli F, et al. Microrna-221 
and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PloS one. 
2009;4(10):e7607. 
110. Dey BK, Gagan J, Dutta A. miR-206 and-486 induce myoblast differentiation by 
downregulating Pax7. Mol Cell Biol. 2011;31(1):203-14. 
111. Rebustini IT, Hayashi T, Reynolds AD, Dillard ML, Carpenter EM, Hoffman MP. miR-200c 
regulates FGFR-dependent epithelial proliferation via Vldlr during submandibular gland 
branching morphogenesis. Development. 2012;139(1):191-202. 
112. Jevnaker A-M, Osmundsen H. MicroRNA expression profiling of the developing murine 
molar tooth germ and the developing murine submandibular salivary gland. Archives of oral 
biology. 2008;53(7):629-45. 
113. Metzler M, Venkatesh SG, Lakshmanan J, Carenbauer AL, Perez SM, Andres SA, et al. A 
Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal 
Differentiation. PloS one. 2015. doi: In production. 10.1371/journal.pone.0125153. 
114. Metzler MA, Appana S, Brock GN, Darling DS. Use of multiple time points to model 
parotid differentiation. Genomics Data. 2015. 
115. Wittliff JL. Laser capture microdissection and its applications in genomics and 
proteomics. Techniques in Confocal Microscopy, ed by PM Conn (Elsevier, Oxford, 2010). 
2010:463-78. 
116. Andres SA, Wittliff JL. Relationships of ESR1 and XBP1 expression in human breast 
carcinoma and stromal cells isolated by laser capture microdissection compared to intact breast 
cancer tissue. Endocrine. 2011;40(2):212-21. 
117. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy--analysis of Affymetrix GeneChip data at 
the probe level. Bioinformatics. 2004;20(3):307-15. doi: 10.1093/bioinformatics/btg405. 
PubMed PMID: 14960456. 
118. Gentleman R, Carey V, Huber W, Hahne F. Genefilter: Methods for filtering genes from 
microarray experiments. R package version. 2011;1(0). 
119. Brock GN, Mukhopadhyay P, Pihur V, Webb C, Greene RM, Pisano MM. 
MmPalateMiRNA, an R package compendium illustrating analysis of miRNA microarray data. 
Source code for biology and medicine. 2013;8(1):1-20. 
120. Oh S, Kang DD, Brock GN, Tseng GC. Biological impact of missing-value imputation on 
downstream analyses of gene expression profiles. Bioinformatics. 2011;27(1):78-86. 
121. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful 
approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological). 
1995:289-300. 
122. Smyth GK. Limma: linear models for microarray data.  Bioinformatics and computational 
biology solutions using R and Bioconductor: Springer; 2005. p. 397-420. 



137 
 

123. Jacobs JL, Dinman JD. Systematic analysis of bicistronic reporter assay data. Nucleic 
acids research. 2004;32(20):e160. doi: 10.1093/nar/gnh157. PubMed PMID: 15561995; PubMed 
Central PMCID: PMC534638. 
124. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time 
quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25(4):402-8. doi: 
10.1006/meth.2001.1262. PubMed PMID: WOS:000173949500003. 
125. Johnson CL, Kowalik AS, Rajakumar N, Pin CL. Mist1 is necessary for the establishment of 
granule organization in serous exocrine cells of the gastrointestinal tract. Mechanisms of 
development. 2004;121(3):261-72. doi: 10.1016/j.mod.2004.01.003. PubMed PMID: 15003629. 
126. Zhang X, Cairns M, Rose B, O'Brien C, Shannon K, Clark J, et al. Alterations in miRNA 
processing and expression in pleomorphic adenomas of the salivary gland. Int J Cancer. 
2009;124(12):2855-63. Epub 2009/04/07. doi: 10.1002/ijc.24298. PubMed PMID: 19347935. 
127. Akhtar M, Holmgren C, Göndör A, Vesterlund M, Kanduri C, Larsson C, et al. Cell type 
and context-specific function of PLAG1 for IGF2 P3 promoter activity. Int J Oncol. 
2012;41(6):1959-66. 
128. Declercq J, Van Dyck F, Van Damme B, Van de Ven WJ. Upregulation of Igf and Wnt 
signalling associated genes in pleomorphic adenomas of the salivary glands in PLAG1 transgenic 
mice. Int J Oncol. 2008;32(5):1041-7. 
129. Roush S, Slack FJ. The let-7 family of microRNAs. Trends in cell biology. 2008;18(10):505-
16. 
130. Li VC, Kirschner MW. Molecular ties between the cell cycle and differentiation in 
embryonic stem cells. Proceedings of the National Academy of Sciences. 2014;111(26):9503-8. 
131. Li Z, Gilbert JA, Zhang Y, Zhang M, Qiu Q, Ramanujan K, et al. An HMGA2-IGF2BP2 axis 
regulates myoblast proliferation and myogenesis. Dev Cell. 2012;23(6):1176-88. 
132. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, et al. XBP1 controls 
diverse cell type- and condition-specific transcriptional regulatory networks. Molecular cell. 
2007;27(1):53-66. doi: 10.1016/j.molcel.2007.06.011. PubMed PMID: 17612490. 
133. Hess DA, Humphrey SE, Ishibashi J, Damsz B, Lee AH, Glimcher LH, et al. Extensive 
pancreas regeneration following acinar-specific disruption of Xbp1 in mice. Gastroenterology. 
2011;141(4):1463-72. 
134. Ding C, Li L, Su Y-C, Xiang R-L, Cong X, Yu H-K, et al. Adiponectin increases secretion of 
rat submandibular gland via adiponectin receptors-mediated AMPK signaling. 2013. 
135. Zatkova A, Rouillard JM, Hartmann W, Lamb BJ, Kuick R, Eckart M, et al. Amplification 
and overexpression of the IGF2 regulator PLAG1 in hepatoblastoma. Genes, Chromosomes and 
Cancer. 2004;39(2):126-37. 
136. Hensen K, Braem C, Declercq J, Van Dyck F, Dewerchin M, Fiette L, et al. Targeted 
disruption of the murine Plag1 proto‐oncogene causes growth retardation and reduced fertility. 
Development, growth & differentiation. 2004;46(5):459-70. 
137. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, et al. miR-375 
maintains normal pancreatic α-and β-cell mass. Proceedings of the National Academy of 
Sciences. 2009;106(14):5813-8. 
138. Dai N, Rapley J, Angel M, Yanik MF, Blower MD, Avruch J. mTOR phosphorylates IMP2 to 
promote IGF2 mRNA translation by internal ribosomal entry. Genes & development. 
2011;25(11):1159-72. 
139. Sivakumar S, Mirels L, Miranda AJ, Hand AR. Secretory protein expression patterns 
during rat parotid gland development. Anat Rec. 1998;252(3):485-97. Epub 1998/11/12. 
PubMed PMID: 9811227. 



138 
 

140. Geetha C, Venkatesh S, Dunn BF, Gorr S. Expression and anti-bacterial activity of human 
parotid secretory protein (PSP). Biochemical Society Transactions. 2003;31(4):815-8. 
141. Poulsen K, Jakobsen B, Mikkelsen B, Harmark K, Nielsen J, Hjorth J. Coordination of 
murine parotid secretory protein and salivary amylase expression. Embo J. 1986;5(8):1891. 
142. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak seed-pairing stability 
and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nature 
structural & molecular biology. 2011;18(10):1139-46. 
143. Lai J-K, Wu H-C, Shen Y-C, Hsieh H-Y, Yang S-Y, Chang C-C. Krüppel-like factor 4 is 
involved in cell scattering induced by hepatocyte growth factor. Journal of cell science. 
2012;125(20):4853-64. 
144. Min IM, Pietramaggiori G, Kim FS, Passegue E, Stevenson KE, Wagers AJ. The 
transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem 
cells. Cell stem cell. 2008;2(4):380-91. doi: 10.1016/j.stem.2008.01.015. PubMed PMID: 
18397757. 
145. Liu X, Huang J, Chen T, Wang Y, Xin S, Li J, et al. Yamanaka factors critically regulate the 
developmental signaling network in mouse embryonic stem cells. Cell Res. 2008;18(12):1177-89. 
Epub 2008/11/26. doi: 10.1038/cr.2008.309. PubMed PMID: 19030024. 
146. Vegliante MC, Palomero J, Pérez-Galán P, Roué G, Castellano G, Navarro A, et al. SOX11 
regulates PAX5 expression and blocks terminal B-cell differentiation in aggressive mantle cell 
lymphoma. Blood. 2013;121(12):2175-85. 
147. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, et al. XBP1, 
downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases 
protein synthesis in plasma cell differentiation. Immunity. 2004;21(1):81-93. Epub 2004/09/04. 
doi: 10.1016/j.immuni.2004.06.010. PubMed PMID: 15345222. 
148. Nera KP, Kohonen P, Narvi E, Peippo A, Mustonen L, Terho P, et al. Loss of Pax5 
promotes plasma cell differentiation. Immunity. 2006;24(3):283-93. doi: 
10.1016/j.immuni.2006.02.003. PubMed PMID: 16546097. 
149. Yamamoto K, Yoshida H, Kokame K, Kaufman RJ, Mori K. Differential contributions of 
ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements 
ERSE, UPRE and ERSE-II. Journal of biochemistry. 2004;136(3):343-50. doi: 10.1093/jb/mvh122. 
PubMed PMID: 15598891. 
150. Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum 
resident chaperone genes in the unfolded protein response. Mol Cell Biol. 2003;23(21):7448-59. 
Epub 2003/10/16. PubMed PMID: 14559994; PubMed Central PMCID: PMC207643. 
151. Pin CL, Rukstalis JM, Johnson C, Konieczny SF. The bHLH transcription factor Mist1 is 
required to maintain exocrine pancreas cell organization and acinar cell identity. J Cell Biol. 
2001;155(4):519-30. Epub 2001/11/07. doi: 10.1083/jcb.200105060. PubMed PMID: 11696558; 
PubMed Central PMCID: PMC2198859. 
152. Direnzo D, Hess DA, Damsz B, Hallett JE, Marshall B, Goswami C, et al. Induced Mist1 
expression promotes remodeling of mouse pancreatic acinar cells. Gastroenterology. 
2012;143(2):469-80. 
153. Huh WJ, Esen E, Geahlen JH, Bredemeyer AJ, Lee AH, Shi G, et al. XBP1 controls 
maturation of gastric zymogenic cells by induction of MIST1 and expansion of the rough 
endoplasmic reticulum. Gastroenterology. 2010;139(6):2038-49. Epub 2010/09/08. doi: 
10.1053/j.gastro.2010.08.050. PubMed PMID: 20816838; PubMed Central PMCID: 
PMC2997137. 
154. Lemercier C, Brown A, Mamani M, Ripoche J, Reiffers J. The rat Mist1 gene: structure 
and promoter characterization. Gene. 2000;242(1-2):209-18. PubMed PMID: 10721714. 



139 
 

155. Cittelly DM, Finlay-Schultz J, Howe EN, Spoelstra NS, Axlund SD, Hendricks P, et al. 
Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. 
Oncogene. 2013;32(20):2555-64. Epub 2012/07/04. doi: 10.1038/onc.2012.275. PubMed PMID: 
22751119. 
156. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, et al. The EMT-
activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature 
cell biology. 2009;11(12):1487-95. doi: 10.1038/ncb1998. PubMed PMID: 19935649. 
157. Duan Q, Wang X, Gong W, Ni L, Chen C, He X, et al. ER stress negatively modulates the 
expression of the miR-199a/214 cluster to regulates tumor survival and progression in human 
hepatocellular cancer. PloS one. 2012;7(2):e31518. doi: 10.1371/journal.pone.0031518. 
PubMed PMID: 22359598; PubMed Central PMCID: PMC3281082. 
158. Oettgen P, Kas K, Dube A, Gu X, Grall F, Thamrongsak U, et al. Characterization of ESE-2, 
a novel ESE-1-related Ets transcription factor that is restricted to glandular epithelium and 
differentiated keratinocytes. Journal of Biological Chemistry. 1999;274(41):29439-52. 
159. Tamm C, Böwer N, Annerén C. Regulation of mouse embryonic stem cell self-renewal by 
a Yes–YAP–TEAD2 signaling pathway downstream of LIF. Journal of cell science. 
2011;124(7):1136-44. 
160. Mills JC, Taghert PH. Scaling factors: transcription factors regulating subcellular 
domains. Bioessays. 2012;34(1):10-6. 
161. Piechocki MP, Burk RD, Ruch RJ. Regulation of connexin32 and connexin43 gene 
expression by DNA methylation in rat liver cells. Carcinogenesis. 1999;20(3):401-6. Epub 
1999/04/06. PubMed PMID: 10190553. 
162. Zhu L, Tran T, Rukstalis JM, Sun P, Damsz B, Konieczny SF. Inhibition of Mist1 
homodimer formation induces pancreatic acinar-to-ductal metaplasia. Mol Cell Biol. 
2004;24(7):2673-81. 
163. Vij N, Zeitlin PL. Regulation of the ClC-2 lung epithelial chloride channel by glycosylation 
of SP1. American journal of respiratory cell and molecular biology. 2006;34(6):754-9. 
164. Fergusson D, Campo MS. PEF-1, an epithelial cell transcription factor which activates the 
long control region of human papillomavirus type 16, is glycosylated with N-acetylglucosamine. 
Journal of general virology. 1998;79(11):2753-60. 
165. Lee AH, Chu GC, Iwakoshi NN, Glimcher LH. XBP-1 is required for biogenesis of cellular 
secretory machinery of exocrine glands. Embo J. 2005;24(24):4368-80. doi: 
10.1038/sj.emboj.7600903. PubMed PMID: 16362047; PubMed Central PMCID: PMC1356340. 



140 
 

CURRICULUM VITA 

Melissa Metzler 

University of Louisville 

Graduate Student 

Department of Biochemistry and Molecular Genetics  

mametz01@louisville.edu 

 

 

Education 

2009 - present University of Louisville: doctoral candidate, department of 
Biochemistry and Molecular Biology 

2003 – 2007 Bellarmine University: B.A. in Biology, minor in Chemistry, summa 
cum laude 

 

Funding 

Sept. 2012 – Sept. 2016 NIH/NIDCR F31OGMB120151: microRNAs 
and Parotid Acinar Differentiation 

 

Research Positions 

January 2010-present: University of Louisville, PhD student under Dr. Douglas S. 
Darling, Department of Biochemistry and Molecular Biology 

  

January 2007 – July 2007: Bellarmine University, undergraduate research assistant 
under Dr. David Robbinson, Department of Biology  

 

July 2006 –November 2006: Bellarmine University, undergraduate research assistant 
under Dr. Steven Wilt, Department of Biology 

 

May 2005 – August 2005: University of Louisville Kentucky Lions Eye Center, 
undergraduate research assistant under Dr. Nicholas Delamere, Department of 
Pharmacology and Toxicology 

 



141 
 

June 2004 – August 2004: University of Kentucky, undergraduate research assistant 
under Dr. Pete Mirabito, Biology Department 

 

Awards 

2012                F31 Fellowship NIH/NIDCR 

2011               CGeMM Travel Award. University of Louisville.  

2011, Feb.      Poster award. Gordon Conference. Salivary Glands and Exocrine Biology.  

                         Hotel Galvez. Galveston TX.  

2009 – 2011  Graduate Student Fellowship, Integrated Programs in Biomedical 
Sciences,                                                     U                   University of Louisville 

2007              Dr. Korn award for excellence in research, Bellarmine University 

2004              KBRIN Fellowship, University of Kentucky 

 

Publications 

Metzler, Melissa A., Srirangapatnam G. Venkatesh, Jaganathan Lakshmanan, Anne L. 
Carenbauer, Sara M. Perez, Sarah A. Andres, Savitri Appana, Guy N. Brock, James L. 
Wittliff, and Douglas S. Darling. "A Systems Biology Approach Identifies a Regulatory 
Network in Parotid Acinar Cell Terminal Differentiation." PloS one 10, no. 4 (2015).  

Metzler MA, Appana S, Brock GN, Darling DS. (2015) Use of Multiple Time Points to 
Model Parotid Differentiation. Genomics Data.  Accepted: DOI: 
10.1016/j.gdata.2015.05.005 

Khundmiri SJ, Metzler MA, Ameen M, Amin V, Rane MJ, Delamere NA.Am J Physiol 
Cell Physiol 291: C1247-C1257, 2006. Ouabain induces Cell Proliferation through 
Calcium Dependent Phosphorylation of Akt (Protein Kinase B) in Opossum Kidney 
Proximal Tubule Cells. 

 

Posters 

Melissa Metzler, Srirangapatnam G. Venkatesh, Anne Carenbauer, Sarah Andres, 
Savitri Appana, Guy Brock, James L. Wittliff, and Douglas S. Darling. A Systems Biology 
Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal Differentiation. 
Research Louisville. University of Louisville. October 29, 2015. 

 

Melissa Metzler, Srirangapatnam G. Venkatesh, Sarah Andres, Savitri Appana, Guy 
Brock,  James L. Wittliff, and Douglas S. Darling. University of Louisville departments of 
Biochemistry & Molecular Biology, Oral Health and Rehabilitation, and Bioinformatics 



142 
 

and Biostatistics. Parotid Acinar Differentiation: Defining Important Players and 
Regulatory Steps. Research Louisville. September 24-27, 2013. 

 

Melissa Metzler, Venkatesh G. Srirangapatnam, Sarah Andres, James L. Wittliff, 
Douglas S. Darling. MicroRNA Changes During in vivo Parotid Gland Acinar 
Differentiation. Cell Symposia. Regulatory RNAs. Wyndam Hotel Chicago IL. Oct. 10 – 
12, 2011.  

 

Melissa Metzler, Srirangapatnam Venkatesh, Douglas Darling. MicroRNA Changes in 
Parotid Gland Acinar Differentiation. Gordon Conference. Salivary Glands and Exocrine 
Biology. Hotel Galvez. Galveston TX. Feb. 6 – 11, 2011. 

 

Melissa Metzler, Srirangapatnam Venkatesh, Douglas Darling. MicroRNA Changes in 
Parotid Gland Acinar Differentiation. Research Louisville. University of Louisville 2010. 

 

Melissa Metzler, Srirangapatnam G. Venkatesh, Douglas S. Darling. Acinar cell 
differentiation: Identifying Regulating Factors. Institute for Molecular Diversity and Drug 
Design. University of Louisville. 2010. 

 

Invited Talks 

 
A Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell 
Terminal Differentiation. Institute for Molecular Diversity and Drug Design. University of 
Louisville. Nov. 10, 2015 

 

Parotid Acinar Differentiation: Defining Important Players and Regulatory Steps. 
Biochemistry & Molecular Biology Retreat. University of Louisville. Aug. 23, 2013. 

 

MicroRNA Changes in Parotid Gland Acinar Differentiation. Gordon Conference. 
Salivary Glands and Exocrine Biology. Hotel Galvez. Galveston TX. Feb. 6 – 11, 2011. 

 

Teaching Activities 

 

Fall 2010       Teaching Assistant, BIOC 645/545 Biochemistry. University of Louisville. 


	A systems biology approach identifies a gene regulatory network in parotid acinar cell differentiation.
	Recommended Citation

	tmp.1469650464.pdf.d0tiw

