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ABSTRACT

STRUCTURE-FUNCTION ANALYSIS AND CHARACTERIZATION OF 

METALLOPROTEINS 

 

Sen Yao 

July 20, 2016 

 

Metalloproteins are proteins that can bind at least one metal ion as a cofactor. 

They utilize metal ions for a variety of biological purposes, and are essential for all 

domains of life. Due to the ubiquity of metalloprotein’s involvement across these 

processes across all domains of life, how proteins coordinate metal ions for different 

biochemical functions is of great relevance to understanding the implementation of these 

biological processes. One of the most important aspects of metal binding is its 

coordination geometry (CG), which often implies functional activities.  

Most of the current studies are based on the assumption of previously reported 

CG models founded mainly in a non-biological chemical context. While this general 

procedure provides us with great measures on the closest CG model a metal site adopts, it 

also biases and limits the binding ligand selection and coordination results to the 

canonical CG models examined. Thus, if a CG model exists that has never be reported 

previously or is not accounted for in a study, instances from the CG would either be 
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misclassified into an expected model and cause a high in-class variation or considered as 

outliers.  

To solve this problem, we have developed our analysis, where the less-biased 

low-variation measure, bond-length, was used determine the binding ligands and the 

higher-variation measure, angle, was used to cluster the metal shells into canonical or 

novel CGs with functional associations. This methodology is model-free, and allows us to 

derive the CG models from the data itself. Thus, we can handle unknown CGs that may 

cause problems to the classification methods. This new methodology has enabled the 

discovery of several previously uncharacterized CGs for zinc and other top abundant 

metalloproteins. By recognizing these novel/aberrant CGs in our clustering analyses, high 

correlations were achieved between structural and functional descriptions of metal ion 

coordination. 
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CHAPTER 1 

INTRODUCTION 

1.1 Metalloproteins

Metalloproteins are proteins that can bind at least one metal ion as a cofactor. 

They play various structural, functional, and signal transductional roles in proteins, and 

are essential for all domains of life [1]. Many proteins depend on metals to help hold their 

structures together [2, 3], while others require metals to directly participate in the 

biochemical reactions they catalyze [4, 5]. However, most transition metals, while 

essential in their bound state, are highly toxic in their free ionic form, which requires 

tight regulations [6]. Therefore, there are many proteins involved in the sensing, 

transporting, and storing of metal ions in biological systems in order to maintain their 

appropriate forms at levels [7]. It is estimated that roughly 30-40% of whole proteomes 

across the biosphere are metalloproteins [8, 9]. Malfunction of metalloproteins, like 

misfolding or lack of incorporation of the proper metal in its proper form, may result in 

many human diseases, such as neurodegeneration disease [10-12], diabetes [13, 14], and 

cancer [15, 16]. Individual metalloproteins have been shown to be the key factors of 

many diseases, and therefore are also important targets for drug designs [17, 18], 

providing yet another reason for their systematic study. To our knowledge, studies of 

metalloprotein’s involvement in certain types of human disease on a system level have 
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not yet been performed and reported, which will become an important extension of the 

results of this dissertation. 

Metal ions generally bind to proteins via coordination by electronegative atoms 

from the protein, such as nitrogen, oxygen, and sulfur. One of the most important aspects 

of metal binding is its coordination geometry (CG), which often relates to the 

metalloprotein’s functional activities [9, 19]. In inorganic chemistry, a metal ion can bind 

to its ligands matching to a canonical CG almost perfectly. And in this context, metal 

ions are observed and verified to adopt only a few of different canonical CGs according 

to their physiochemical properties [20, 21]. While in biology, the chemical environment 

around metal ions can be much more diverse, leading to additional novel or aberrant CGs 

[22].  

1.2 Motivation  

With the help of modern analytical technologies, more and more sequential and 

structural data are available, with the ultimate goal in understanding their biological 

function in vivo. There has be significant efforts in developing computational tools to 

better utilize these data to facilitate this purpose. As for metalloproteins, several methods 

have been developed to analyze the coordination environment and functional implication 

of the metal binding sites [23-26]. However, most of the studies are based on the 

assumption of previously reported CG models founded mainly in a non-biological 

chemical context. They also all tend to follow the same general procedure. First, the 

metal coordination shells are acquired using a simple distance cutoff. Second, the ligands 

in the shell are compared to the known ideal CGs to compute a score. Finally, the metal 
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site is classified to the CG that gives the highest score. Studies mainly differ in the 

selected canonical CG models and the way a score is computed. While this general 

procedure provides us with great measure on the closest CG model a metal site adopts, it 

also limits the results to the examined known CG models. Thus, if a CG model exists that 

has never be reported previously or is not accounted for in a study, instances from the 

new CG would either be misclassified into an expected model and cause high in-class 

variance or considered as outliers. The standard of classifying outlier is also arbitrary, 

lacking a rigid validation of the results.  

In several studies [8, 22, 24] including our own initial analysis with zinc 

metalloproteins, we observed a similar trend of either a significant number of outliers or 

abnormally high variance in classified CGs (more details can be found in Section 3.2). 

We attempted to directly handle and account for the high variability in zinc CG. As we 

explored the factors that could cause such high variance in ligand-zinc-ligand angles, we 

detected the existence of significant numbers of compressed angles due to coordination 

by bidentate ligands (i.e. two binding atoms are from the same amino acid residue), 

which prompted us to develop a new method for classifying zinc coordination 

geometries. Given this, we hypothesized that the high variability observed in zinc 

metalloproteins were due to the existence of a significant number of aberrant CGs, which 

are prevalent across all metalloproteins, and have distinct functional relationships. 

1.3 Dissertation Contributions  

In contrast to the angles, the bond-length showed very low variance in classified 

canonical CGs, which is consistent in several studies[22, 27, 28]. These observations and 
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hypothesis lead us to design new methods in analyzing the structure of metalloproteins, 

where we use the highest quality and less biased measure, bond-length, to determine the 

binding ligands and then cluster the metal binding sites using the resulting angles. This 

methodology is model-free, and allows us to derive the CG models from the data itself 

and assign each CG into these derived CG models. Thus, we can handle unknown CGs 

that may cause problems to biased classification methods. These new analysis methods 

have enabled the discovery of several previously uncharacterized CGs for zinc and other 

top abundant metalloproteins. 

1.4 Dissertation Outline 

Chapter 2 reviews the relevant concepts of structural biology and metal 

coordination in both inorganic and organic context. It begins with basic concepts such as 

primary structure, secondary structure, tertiary structure, and quaternary structure. The 

chapter then explains the theory of metal binding in inorganic chemistry, and the 

application of metal binding in biology. It also reviews most popular databases and tools 

of protein and metalloprotein structure.  

Chapter 3 reviews some recent achievements and limitations on metalloprotein 

structure study, suggesting ways to overcome the obstacles. It lays out general principles 

used in conducting this project. 

Chapter 4 describes the analysis on the structure of Zn metalloproteins. It includes 

a brief review of current studies of zinc metalloprotein structure and their limitations. The 

chapter then introduces the design, rationale, and implementation of each step of our 



 5 

methodology. It finally shows the results for evaluating the performance of the methods, 

ending with major conclusions. 

Chapter 5 describes the analysis on the structure of the five most prevalent 

metalloproteins. It starts with a brief review of the five metalloproteins. It then introduces 

the design, rationale, and implementation of each steps of the methodology. The chapter 

emphasizes major modifications to the methodology made since Chapter 4, allowing their 

application to other metalloproteins with multiple coordination numbers. Improvements 

of the methodology are highlighted, validated, and demonstrated with corresponding 

superior results. The chapter ends with major conclusions interpreted from the results. 

Chapter 6 is devoted to discussions and conclusions of the whole analysis, with 

potential pitfalls and possible solutions. Time and memory usage are analyzed. Plans for 

future steps in the application of this project to improve the functional understanding on 

metalloproteins are put forth. 
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CHAPTER 2 

BIOLOGY AND BIOINFORMATICS BACKGROUND

2.1 The Structure of Proteins 

Proteins are large biological macromolecules composed of one or more chains of 

amino acid residues. They are the fundamental components in cells, and carry out most of 

the essential functions required for all living organisms[29-31]. Proteins typically consist 

of a sequence(s) of amino acid residues that fold into one or more specific conformations 

to perform its biological activity. A fundamental principle of structural biology is that 

sequence dictates structure, which enables function. The diversity of a protein’s sequence 

and structure allows the unique arrangements of chemical groups at specific locations, 

which facilitate the occurrence of particular enzymatic reactions [32].  

In order to fully understand protein function on a molecular level, the three-

dimensional structures of a protein are often required. X-ray crystallography, nuclear 

magnetic resonance (NMR), and electron microscopy are the most common analytical 

methods providing experimental data for deriving protein structure [33]. Decades of 

structural studies have determined tens of thousands of protein structures [34] organized 

into a couple thousand structural families [35-37], providing great examples for 

understanding the principles of protein structures and how they are utilized to achieve 

protein function. Though protein structures exhibit large diversities due to the wide range 
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of functions they perform, they follow a coherent set of principles that can be ordered 

into four levels of structural complexity: primary, secondary, tertiary, and quaternary 

(Figure 2.1).  

 

Figure 2.1 The four levels of protein structural complexity [38]. From Lehninger 

Principles of Biochemistry, 6th Edition, By David L. Nelson and Michael M. Cox, 

Copyright 2013 by W.H. Freeman and Company. Used with permission by the publisher. 

 

2.1.1 Primary Structure  

2.1.1.1 Amino Acid Residues 

Amino acids are the building blocks in constructing a protein. The sequence of a 

distinct linear amino acid combination determines the ultimate three-dimensional 

structure of protein. Figure 2.2 shows the 20 standard amino acids. They have a similar 

structure containing an α-carboxyl group, an α-amino group, and a characteristic R group. 

They can be roughly grouped into three categories based on its R group chemical 
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property: polar, non-polar, and charged. Proline is special in its formation of a cyclic side 

chain structure, which hampers the flexibility of the amino acid residue and in turn the 

overall structure of the protein. Except for glycine, the α-carbon atoms of all amino acids 

are chiral. Chirality describes the geometric property of a molecule that is non-

superposable on its mirror image[39, 40]. And the L-stereoisomer is preferred in most 

proteins.  

 

Figure 2.2 The 20 standard amino acid [41]. Used with permission. 
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2.1.1.2 Primary Structure 

The primary structure of a protein is the linear sequence of amino acid residues 

known as a polypeptide chain. By ad hoc definition, proteins contain 50 or more amino 

acid residues. Two adjacent amino acid residues are linked together through forming a 

covalent peptide bond between the carboxyl group and amino group from one another, as 

shown in Figure 2.3 A. On the ends of a protein chain, there is an unbounded carboxyl 

group (C-terminal) and amino group (N-terminal), illustrated as 5-residue peptide in 

Figure 2.3 B. Determination of the protein sequence always proceeds from its N-terminal. 

The primary structure of a protein is translated from its corresponding messenger 

ribonucleic acid (mRNA), which is transcribed from its gene. It essentially determines all 

follow-up structures and ultimately the functions of a protein [42, 43]. Thus, the primary 

structure is a rich source for protein structure and function analysis.  

 

Figure 2.3. (A) Formation of a peptide bond by condensation. (B) Structure of a 5-residue 

oligopeptide. R1 - R5 can be the same or different amino acid residues.  
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2.1.2 Secondary Structure 

2.1.1.1 Αlpha-helix and Βeta-sheet 

Secondary structure is the local spatial arrangement of backbone atoms for a 

segment of protein sequence. The two most common secondary structures are α-helix and 

β-sheet, as illustrated in Figure 2.4. Figure 2.5 shows that most secondary structures have 

distinctive Φ and Ψ backbone angles, which are defined by the dihedral angle of C-N-Cα-

C and N- Cα-C-N respectively. An α-helix has approximately 3.6 residues per turn [44], 

while a β-sheet is normally 3-10 residues per strand [45]. Both the α-helix and β-sheet are 

held together by the hydrogen bond interaction between the amino acid residues. Their 

stability is greatly affected by their primary structure. Beside these two common 

secondary structures, there are also some non-repeatable and less regular structures, such 

as β-turns and loops, which are often categorized as coil. They can be the connection 

between helices and sheets, and they are often subject to more conformational flexibility. 

 

Figure 2.4 Example of α-helix (A) and β-sheet structures (B). PDB ID: 1RTQ. Structure 

figure generated in Swiss-PDBviewer (http://www.expasy.org/spdbv/) [46]. 
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Figure 2.5 Ramachandran plot for general amino acids[38]. From Lehninger Principles of 

Biochemistry, 6th Edition, By David L. Nelson and Michael M. Cox, Copyright 2013 by 

W.H. Freeman and Company. Used with permission by the publisher. 

 

2.1.1.2 Motif and Domain 

Motif and domain are two terms often used to characterize a collection of 

secondary structural elements with specific 3D relationships [32]. A motif is the 

distinguishable three-dimensional pattern of a few secondary structures together. It can be 

recurrently found in many protein structures. It does not necessarily have structural 

independency, or functional integrity[47, 48]. In contrast, a domain is an independent 

stable portion of a protein that is stable and exhibits specific functions even within 

different proteins. It normally can fold into and maintain its structure enabling specific 

function even if it is separated from rest of the protein [49].  
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2.1.3 Tertiary Structure 

Tertiary structure is defined as the overall three-dimensional structure of one 

polypeptide chain. It is a combination of protein secondary structures, motifs, and 

domains. The process of a protein converting from extended linear chains into its tertiary 

structure is often referred to as protein folding. In comparison to secondary structure, 

which is mainly defined by the local backbone interaction, the physiochemical properties 

of amino acid side chains (R-groups) greatly influence protein folding via main types of 

interactions including non-specific hydrophobic interactions with the solvent, specific 

hydrogen bonding, ionic interaction such as salt bridges, and disulfide bonds between 

cysteine residues. The folding process goes under a lot of physiochemical and biological 

regulations to achieve the final one or limited number of conformations, albeit that the 

possible folding space is almost infinite[50, 51]. Thus protein folding is a complex 

process, and has not been complete understood and modeled yet. A lot of progress has 

been made, but it is still unfeasible to predict the tertiary structures for all available 

protein sequences to the same level of accuracy as experimental methods [51-53]. 

There are three major biochemical types of tertiary structures: globular, 

membrane-associated, and fibrous[32]. Globular proteins are often composed of different 

types of secondary structure, and fold into a compact globular structure. They are often 

found in aqueous environment, and are the predominant proteins in cytoplasm and body 

fluid. Due to its easy accessibility, their structures are well studied and consist of the 

majority portion structures in wwPDB[34], the central repository of biological 

macromolecular structures. Membrane-associated proteins are very similar in the overall 

shape as globular proteins, except the surface of the protein is often hydrophobic so as to 
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fit in its environment, the membrane. They are much harder to determine experimentally, 

and therefore are poorly represented in the wwPDB. Fibrous proteins are drastically 

different from the above two proteins. They have simple repetitive component of 

secondary structures, and often function to create and sustain gross structural biological 

components. These structures are also poorly represented in the wwPDB due to their 

difficulty to be experimentally derived.  

2.1.4 Quaternary Structure 

Quaternary structure is an assembly of multi-subunits or multi-polypeptides of a 

protein[38]. It can range from a simple dimer to a very large multi-mer. The subunits are 

often individually folded, and can be either identical or different. They are normally held 

together through non-covalent bond between amino acid residues[54, 55].  

Proteins structures are complex, but there are basic principles that can guide us in 

better understanding them. The rapid developing experimental technology and 

computational tools are now available to help us determine protein structures. There are 

also projects like Protein Structure Initiative (PSI) [56] that help to make protein 

structures easily obtainable from knowledge of their corresponding DNA sequences. 

With more and more data available, more questions can be asked now from a 

bioinformatics perspective, and assist us to move forward with a deeper understanding of 

protein structures, which biochemical and biological functions they enable, and 

ultimately how these protein structures enable their specific functions. 
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2.2 Crystal Field Theory and Metal Coordination Geometry  

2.2.1 Crystal Field Theory (CFT) 

CFT is a model that explains the breaking of orbital degeneracy in transition 

metal coordination complexes due to the presence of ligands. Hans Bethe and John 

Hasbrouck van Vleck first developed this theory in the 1930s[57]. It successfully 

accounted for coordination geometry, magnetic properties, and colors of transition metal 

complexes, but it did not attempt to describe bonding itself. It was then developed further 

as ligand field theory, which explained the chemical bonding of transition metal complex. 

 

Figure 2.6 d-orbital energy splitting diagrams. 

 

Transition metals normally possess five d orbitals with the same energy level as 

shown in Figure 2.6 A. According to CFT, when there are ligands around the metal, the 

electron-electron repulsion between the metal and the ligands will cause the splitting 

between the five d orbitals[58]. The splitting pattern depends on the metal-ligand 

geometry. Figure 2.6 B shows the splitting pattern for tetrahedral, while panel C and D 

are both for octahedral. The energy difference of the splitting (Δtet and Δoct) has to do 



 15 

with the binding strength of the ligand. Strong field ligands create large splitting, as in 

Figure 2.6 C, while weak field ligands produce small splitting, as in Figure 2.6 D. The 

order of some common ligands is as follows: 

I− < Br− < S2- < Cl− < F− < OH− < H2O < NH3 < NO2
−  < CN− < CO. 

Weak-field ligand is on the left hand side. They create small splitting, and the electrons 

are prone to be in the high-spin orbital. The energy gap between the splitting then 

determines the position of the electron pairs. 

 

Figure 2.7 Energy splitting diagram for octahedral. 

 

2.2.2 Crystal Field Stabilization Energy and Metal Coordination Geometry 

The Crystal Field Stabilization Energy (CFSE) is defined as the energy of the 

electron configuration in the ligand field minus the energy of pairing electrons in one 

orbital: 

CFSE = ΔE = Eligand field - Eisotropic field          (2.1) 

In an energy splitting diagram of octahedral (shown in Figure 2.7), the CFSE of a 

4-electron low-spin (Figure 2.6.C) is: 

CFSElow = (4 * -0.4	  Δoct ) + P = -1.6Δoct + P, 

where P represents the Spin Pairing Energy. And a similar high-spin (Figure 2.6.D) is: 
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CFSEhigh = (3 * -0.4	  Δoct ) + (1 * 0.6	  Δoct) = -0.6Δoct. 

The preference of high verse low spin depends on the energy difference between Δoct and 

P, as well as the number of d-orbital electrons.  

Similarly for the splitting systems of other CGs, the favored high/low spin and its 

CFSE can be calculated based on the CG’s specific energy splitting diagram. The 

possible CGs can then be selected via the smallest CFSEs. In the factors that influence 

the CFSE, the energy difference of the splitting, Δcg, is affected by the binding strength of 

the ligand; the pairing energy, P, is a property of the metal and affected by the energy 

splitting level; and the number of d-orbital electrons is determined by the metal and its 

oxidation state. All these factors together define which CGs a metal can adopt.  

Zinc, for example, is a transition metal, and binds to proteins in its +2 states, 

which means a stable full 3d10 and empty 4s2 and 4p6 orbitals. Since the d orbital is full, 

there is no difference in the electron pairing energy and the energy from the split ligand 

field is also canceled out for any CG. As a result, the CFSE of all CGs are the same, 

which means this electron configuration allows zinc to bind four, five, and six ligands 

with roughly equal stability [59]. 

2.2.3 Ligand Field Energy (LFT) 

To further explain the bonding, orbital composition, and other properties 

of coordination complexes, the LFT was developed as an extension of the CFT. It is 

based on both the CFT and the molecular orbital theory. As shown in Figure 2.8, 

transition metal ion normally has nine outer layer orbitals, five nd, one (n+1)s, and three 

(n+1)p orbitals. In an octahedral coordination, when the ligands approach the metal from 

x, y, and z axes, some orbitals become higher in energy as anti-bonding orbitals and some 
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become lower in energy as bonding orbitals. The five d orbitals also degenerate in the 

center of the diagram as predicted by the CFT. The degenerated higher energy d orbitals, 

s orbitals and p orbitals form the M-L σ orbital together with the ligand orbitals. Six of 

them are bonding while the other six are anti-bonding. The degenerated lower energy d 

orbitals are un-affected, and become non-bonding d orbitals. They have the potential to 

form π bonding with the p orbitals from the ligands. The final interaction between the 

metal and ligands are a synergic combination of σ-bonding and π-bonding. The empty 

orbitals of the metal in Figure 2.8 can be filled with electrons according to the property of 

the metal, which follows all the rules introduced in the CFT. 

 

Figure 2.8 Ligand-Field scheme of σ-bonding in the octahedral ML6 complex. 
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2.2.4 CGs in Metalloproteins 

 

Figure 2.9 Structure of canonical CG models in metalloproteins 

 

Metal ions bind to proteins via electronegative ligands like nitrogen, oxygen, or 

sulfur atoms of amino acids in the metalloprotein. CG is defined as the geometric pattern 

shaped by the metal ion center and its surrounding atoms, and is one of the most 

important aspects of metal structure. The binding atoms are also called ligands. A metal’s 

CG identifies the set of proper ligands and their spatial orientation to the metal, and often 
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has functional implications. According to the CFT mentioned in Section 2.2.1 and 2.2.2, 

there are several major CGs that metal ions can adopt, including Tetrahedral (Tet), 

Trigonal Bipyramidal (Tbp), Octahedral (Oct), and others, as shown in Figure 2.9 (bold 

and red), where the magenta balls represent the metal ion and the white balls represent 

ligands. Due to biological variations or missing substrates, major-CG-associated minor 

CGs also have been reported [60], and structures and abbreviations of them are also 

shown in Figure 2.9. Studies have shown that different CGs exhibit very distinct ligand 

compositions and functional propensities [8, 25]. The two most important properties that 

could define a CG are ligand-metal-ligand angle (angle) and metal-ligand bond-length 

(bond-length). Also, the CGs can be classified into four-, five-, six-, seven, and eight-

ligand based on the coordination number. Different CGs have distinctive set of angles, as 

shown in Table 2.1. 

 

Table 2.1 Ideal angles of canonical CG models. 

CG Angles CG Angles 
4-ligand:  7-ligand:  
Tet 109.5 x 6 Pbp 72 x 5, 90 x 10, 144 x 5, 180 x 1  
Bva 90 x 3, 120 x 3 Hva 60 x 6, 90 x 6, 120 x 6, 180 x 3 
Bvp 90 x 4, 120 x 1, 180 x 1  Hvp 60 x 5, 90 x 10, 120 x 3, 180 x 3 
Pyv 90 x 5, 180 x 1 Sav 70.5 x 6, 82 x 6, 109.5 x 3, 143.6 x 6 
Spl 90 x 4, 180 x 2 8-ligand:  
5-ligand:  Hbp 60 x 6, 90 x 12, 120 x 6, 180 x 4 
Tbp 90 x 6, 120 x 3, 180 x 1 Sqa 70.5 x 8, 82 x 8, 109.5 x 4, 143.6 x8 
Spy 90 x 8, 180 x 2   
Tpv 70.6 x 2, 90 x 4, 131.8 x 4   
6-ligand:    
Oct 90 x 12, 180 x 3   
Pva 72 x 5, 90 x 5, 144 x 5   

Pvp 72 x 4, 90 x 7, 144 x 3, 
180 x 1  

  

Tpr 70.6 x 3, 90 x 6, 131.8 x 6   
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2.3 Available Databases And Tools Of Protein And Metalloprotein 

Structure 

2.3.1 Protein Primary Structure (Sequence) Databases 

The application of rapidly improving genomic sequencing technologies is 

generating huge amounts of gene sequence information and expression data. These 

technologies are rapidly growing both gene sequence and derived protein sequence 

databases, ranging from plain sequence repositories, which has little or no manual 

intervention and no connection to other databases, to extensively curated databases that 

analyzed, classified, annotated with functional characterization, and cross-referenced to 

lots of other databases. 

The National Center for Biotechnology Information (NCBI) Protein database 

(http://www.ncbi.nlm.nih.gov/protein/) is a simple sequences repository, with its record 

coming from several different sources, including RefSeq [61], Swiss-Prot [62], PIR [63], 

and PDB [64]. This database contains mainly the sequence information, with some 

reference to its source database, and various link to other NCBI gene and transcript 

sequence database. 

The Universal Protein Resource (UniProt) (http://www.uniprot.org/) [62] is a 

comprehensive resource for protein sequence and annotation data. It is a collaborated 

work between the European Bioinformatics Institute (EMBL-EBI), the SIB Swiss 

Institute of Bioinformatics, and the Protein Information Resource (PIR). It is composed 

of two main parts, UniProtKB/Swiss-Prot [65], which is manually curated and annotated, 

and UniProtKB/TrEMBL [66], which is uncurated, computationally generated. Records 
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in TrEMBL will be added into Swiss-Prot after experts annotate them, while more 

records in Swiss-Prot will update the algorithm to generate more annotations in TrEMBL. 

2.3.2 Protein Secondary and Super-Secondary Structure Databases 

The Structural Classification of Proteins (SCOP) database [37] is a 

comprehensive classification of all proteins of known structure, according to 

protein domains and their structural similarities. It was created in 1994 and is still 

maintained by the Centre for Protein Engineering and the Laboratory of Molecular 

Biology. Protein domains in SCOP are hierarchically classified into families, 

superfamilies, folds and classes based mainly on the composition of secondary structures 

and the shape they form. In SCOP, families contain protein domains that share a common 

ancestor, for having the same shape and similar sequence and/or function. Superfamilies 

contain protein domains that are from distinct origins, where they share the same shape, 

but have little sequence or functional similarity. Folds contain a group of superfamilies 

that process a common core structure, like Globin-like, and Long alpha-hairpin. Finally, 

depending on the type of folds, they are grouped in to all-alpha, all-beta, etc. classes. The 

last version of SCOP, release 1.75 was built from 38,221 PDB Entries (23 Feb 2009), 

with 110800 Domains. The total number for folds, superfamilies, and families are 1195, 

1962, and 3902 accordingly. 

In 2014, SCOP was discontinued, and the prototype of a new Structural 

Classification of Proteins 2 (SCOP2) database [36] has been made publicly available. 

SCOP2 inherited from SCOP. Similarly to SCOP, SCOP2 starts from proteins and 

protein domains that are available in the PDB. It uses a new approach in the classification 

of proteins, where it constructs directed acyclic graph network of nodes instead of a tree-
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like hierarchy. Each node represents a region of protein structure and sequence, and the 

network exemplifies a many-to-many relationship between protein structures. 

CATH [35] is another systematic classification of protein structures and is short 

for its four main hierarchies, protein class (C), architecture (A), topology (T) and 

homologous superfamily (H). Its latest release CATH v4.0, which was built upon PDB 

dated March 26, 2013, contains 235,858 CATH domains, 2,738 CATH superfamilies, 

and 69,058 annotated PDBs. Class is the simplest level, and basically describes the 

secondary structure composition and packing, such as all-alpha, all-beta, alpha/beta. 

Architecture summarizes the orientations and shape formed by the secondary structure 

units, such as bundles, sandwiches, and barrels. At the topology level, both structure 

orientation and sequential connectivity is taken into account. For example, barrels can be 

further classified as αα barrel, αβ barrel, β barrels and others. Superfamily is assigned 

when structures belonging to the same T-level have similar functions, sequence or be 

evolutionary support of some lever of homology. Proteins are put into different categories 

through a semiautomatic manner, where the domains identification, sequence alignment, 

and structure comparison are all computed using various of programs, and any 

unclassified structures are then manually checked and assigned. 

2.3.3 Protein Tertiary and Quaternary Structure Databases 

2.3.3.1 The Worldwide Protein Data Bank (wwPDB) 

wwPDB [34] was first launched in 1971 at Brookhaven National Laboratory as 

the Protein Data Bank archive (PDB). It has now developed into an organization that 

manages Protein Data Bank in Europe (PDBe) [67], Biological Magnetic Resonance Data 

Bank (BMRB) [68], Protein Data Bank Japan (PDBj) [69], and Research Collaboratory 
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for Structural Bioinformatics Protein Data Bank (RCSB PDB, PDB archive, or PDB) 

[64]. The RCSB PDB serves as the central repository of biological macromolecular 

structures, while all the other members also stores rich information about PDB entries, 

advanced services, and many bioinformatics tools to facilitate the global community. 

wwPDB is a collaboratory (center without walls) for bio-macromolecular structural 

research with data deposited by biologist and biochemist from all round the world. Data 

are self-deposited into the wwPDB by the scientists, and then become available to general 

public after a series of quality checks and annotation, and upon the consent of the 

depositor. Structural data are normally obtained by various experimental methods, such 

as x-ray crystallography, NMR, and electron microscopy. It is the key resource for 

structural biology, and many of other structural databases are built from it, such as SCOP 

and CATH. Structural data can be viewed on their website or in viewer programs 

individually, and can easily be downloaded in multiple formats. The database is updated 

weekly, and as of June 23, 2016, a breakdown of the PDB structures is shown in Table 

2.2.  

 

Table 2.2 PDB current holdings breakdown, June 23, 2016. 

Exp.method Proteins Nucleic 
Acids 

Protein/NA 
Complexes 

Other Total 

X-ray 100,170  1,744  5,129  4  107,047  
NMR 10,031 1,144 235 8 11,418 
Electron Microscopy 768 30 267 0 1,065 
Hybrid 90 3 2 1 96 
Other 174 4 6 13 197 
Total 111,233 2,925 5,639 26 119,823 
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The wwPDB entries contain information about the structure, including 

introduction, title, primary structure, heterogen (non-standard residues), secondary 

structure, connectivity annotation, miscellaneous features, crystallographic and 

coordinate transformation, coordinate, connectivity section, and bookkeeping sections. 

These major formats are provided: PDB, mmCIF, and PDBML (PDB XML) format. 

Different formats contain essentially the same information, and are presented to benefit 

different type of analyses and interpretors. PDB format was the first format developed, 

and has been serving as the standard in representing macromelecular structures for 

decades. The structures of some records has changed dramatically due to increasing 

bioinformatics challenges. mmCIF and PDBML format emerged recently to facilitate 

better capture and parsing of all data and metadata. They are both more modern formats, 

which are easier to parse, search, and mine in more systematic ways. The structures of 

some records between formats are dramatically different due to the changing 

bioinformatics use-cases and underlying computatation tools being utilized. 

This project used mainly the PDB format, which is illustruated in Figure 2.10. 

Records in PDB format are assigned to a range of character postion. At the beginning of 

each line is the record name. Different types of records often have a distictive layout, 

which is machine parsable, while REMARK is the most free-styled record, so that it can 

present experimental details, comments, references, and any information that cannot fit in 

other records well (Panel A). ATOM and HETAEM records shown in panel B contain all 

the coordinate information of the structure. Information is arranged into columns. From 

left to right, the data fields are record name, atom serial number, atom name, alternate 

location indicator, residue name, chain identifier, residue sequence number, code for 
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insertion of residues, orthogonal coordinates for X in Å, orthogonal coordinates for Y in 

Å, orthogonal coordinates for Z in Å, occupancy, temperature factor, element symbol, 

and charge on the element.  

 

Figure 2.10 Example of PDB format. (A) An example of PDB REMARK record. 

Information about experimental data, such as resolution range, R-values are provided. 

Contents are moderately structured and can be text-mined with regular expression. (B) 

ATOM and HETAEM record. Information is column-oriented, and contains the 

coordinate information about the structure. 
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2.3.3.2 Quaternary Structure Databases 

The coordinate data in PDB entries normally represent only one asymmetric unit 

of the structure detected in X-ray crystallography. A true biologically active quaternary 

structure may be a collection of several of the same unit together. So crystallographic 

symmetry operations and biologically assembly are required to obtain the full active form 

in biology. Information needed for this procedure, like space group and symmetry 

operations, can be found in each PDB file. Databases that compute the quaternary 

structures of protein are available, and serve as an extension of the PDB. PQS [70] is a 

protein quaternary structure file server. It performs the procedure in two main steps. The 

first step is to assemble any crystallographic and non-crystallographic symmetry based on 

information in the PDB file. The second step reexamines the quaternary complex 

determined by the first step to evaluate the likelihood of proposed protein-protein and 

protein-solvent interactions. This database later evolved into PDBePISA (Proteins, 

Interfaces, Structures and Assemblies) [71], which includes all features of PQS, while 

adding other function for searching pre-calculated results, such as accessible/buried 

surface area and presence/absence of salt bridges or disulphide bonds. 

2.3.4 Metalloprotein Structure Databases and Tools. 

Several databases are available with a focus on metalloprotein structures. Such 

databases typically use the available metalloprotein structures in wwPDB, then either 

analyze the metal structures in various different manners, or use them to build a 

predictive model and then apply to all other proteins. A non-inclusive list of these 

databases includes, Metal PDB [8], MetalS2 [72], MetalS3 [23], BioMe [27], 

CheckMyMetal [73], FindGeo [60], MetLigDB [74], MESPEUS [25], MDB [75], and 
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COMe [76]. This section will go over a couple of them in more details. 

BioMe, biologically relevant metals, is a web server that can calculate different 

statistics of metalloprotein binding sites. The statistics include ligand composition of 

metal, distribution of coordination number, ligand combination percentage, distribution 

of mono- and bi-dentation, counts of bi-metal, distribution of coordination geometry, and 

mean and standard deviation of bond-length. They used 3Å as the distance threshold for 

defining the coordination shell, then a geometric root mean square deviation (gRMSD) 

for classifying the coordination geometry. On the website, one can select from a number 

of different parameters, such as metals, ligands, coordination numbers, experimental 

methods, etc., and conduct the calculation on the selected groups. 

CHED is short for Cysteine (Cys), Histidine (His), Glutamate (Glu), and 

Aspartate (Asp), the four most common ligands of metal ions found in protein. Models 

were built from metal sites in PDB and their 95% sequence identity structures but without 

a metal. It then searches for any 3-ligand sets (triad) of amino acids composed of 4 

residue types (Cys, His, Glu, Asp) having ligand atoms within a specific distance cutoff. 

Applying this algorithm to all triads detected in the Protein Data Bank and structural 

genomics initiative found a large number of previously unknown, putative metal-binding 

sites. People can also submit their own PDB formatted structure file to detect any 

potential metal binding sites. 

Bertini and his colleagues have been one of the leading groups in studying 

metalloproteins, both experimentally and from a bioinformatics perspective. They have 

developed a series of databases/tools focusing on different aspects of metalloproteins. 

FindGeo is one of their first tools they developed, and is used for determining metal 
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coordination geometry. On this website, a user can select metal, distance cutoff, and 

specific element for detection, and a gRMSD value is computed to determine the metal’s 

coordination geometry. Results can be viewed in list with detailed information and three-

dimensional interactive structure. MetalPDB is a follow-up product of FindGeo. It first 

defines a unique term Minimal Functional Site (MFS) as the set of atoms including the 

metal ion, its ligands and any other atoms within 5Å from any ligands. MFS is designed 

to capture the local environment around the metal ion, which more than just the 

immediate binding ligands, while not have to consider the overall protein fold in which it 

is embedded. It then clusters all MFS detected in PDB into equivalent and equistructural 

sites based on sequence homology and structure similarity. Then when a user is searching 

a structure of interest, the results can return not only the characterization of the protein 

itself, but also similar proteins in the same group, which will hopefully provide functional 

implications. The database summarized over 17,000 structural clusters as of August 2012. 

MetalS2 was then released as a tool that was designed specifically to compare any given 

two MFSs. It first overlaps the two metal centers, and orients the two structures by 

aligning the metal-binding ligands. It then will calculate a best score of the backbone 

atoms between the two structures while refining the alignments between the two 

structures. MetalS3 combines both MetalPDB and MetalS2. When given a PDB ID or a 

PDB formatted file, MetalS3 could search through all structural clusters defined in Metal 

DB and use MetalS2 engine to compare and find the most similar structures. 

2.3.5 Protein Function Database 

The ultimate goal in studying protein structures is to alleviate the huge imbalance 

between the explosive data on protein sequences and limited knowledge on their 
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functions. InterPro [77] is one of the database tools that can link protein sequence to its 

functions with help from several structure databases. It first classifies proteins sequence 

into families based on sequence homology and function, and then uses them to predict the 

important domains and sites. To achieve that, it uses predictive models, which are called 

signatures, provided by its member databases or consortium, including Pfam [78], 

PRINTS [79], PROSITE [80], ProDom [81], CATH-Gene3D [82], HAMAP [83], 

PANTHER [84], PIRSF [85], SMART [86], SUPERFAMILY [87],  and TIGRFAMs 

[88]. The overall goal of InterPro is to unite individual databases and provide a single 

resource for comprehensive information about protein sequence, families, domains and 

functional sites. 
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CHAPTER 3 

CURRENT STUDIES ON THE STRUCTURE OF METALLOPROTEINS 

AND THE HYPOTHESIS OF THIS PROJECT

3.1 Current Studies on the Structure of Metalloproteins 

CG provides a bridge between the sequence space and functional space of 

metalloproteins, and therefore knowledge about them is rather valuable. The challenge is 

how to characterize a metal’s CG given its xyz coordinates, which are available from 

structural databases such as wwPDB. The prevailing methodology is to first obtain a list 

of all possible CG models from the literature, and then define and score a metal 

coordination shell for how well it matches any known CG models. The model with the 

highest score will be classified as the metal’s CG. Various studies differ in which sets of 

CG models they consider, and how they compute a comparison score of a specific CG to 

each CG model. 

Alberts et al.  [89] were among the first to classify the CGs of zinc 

metalloproteins. They manually analyzed 111 high-quality zinc sites, and only identified 

four CG models, including Tet, Tbp, Spy, and Oct. Due to the lack of description, it is 

unclear of how the classification was done. The authors summarized several of the 

detailed aspects in their study, including ligand combinations, bond-length and angle 

statistics. They observed high variance in the angle results, which is mainly due to 
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bidentate binding and multi-zinc sites. They also evaluated all zinc sites in two groups, 

structural and catalytic, using the criteria of whether or not there are solvent molecules as 

binding ligands.  

Patel et al. [24] conducted a very similar study and examined 382 PDB entries 

using in-house programs. They classified CGs into four models, Tet, Tbp, Spy, and Oct. 

They observed high angle variance as well and believed that it was cause by electron pair 

repulsions, bidentation of carboxyl group, extraneous H-bonding to secondary 

coordination sphere or solvent, and bridging ligands in multi-Zn sites. 

Liu et al. [26] developed a method to identify three-ligand and four-ligand major 

CG models of zinc by calculating a potential zinc center from the ligand coordinates and 

measuring its distance from the real zinc center. They compared the difference in 

sequence length, residue preference, secondary structures, and geometrical distance 

between 3- and 4- ligand sites. They found that the bond-length was tightly restricted, and 

can be used to predict potential zinc binding sites. 

Harding et al. [20, 21, 25, 90, 91] conducted a series of studies on several 

different metalloproteins. The data was from Cambridge Structural Database (CSD) [92], 

which is an equivalent of wwPDB, but for small-molecule organic and metal-organic 

crystal structures. Bond-length statistics in several different conditions were summarized. 

They estimated that if properly modeled in X-ray, the M-O and M-N bond-length 

standard deviation should be in the range of 0.004-0.02 Å. The larger estimated standard 

deviations from the wwPDB clearly reflect the larger errors in determining atom 

positions in proteins. The difference of the bond-length statistics from wwPDB and CSD 

could indicate some systematic error or artifact in protein structure refinement. Root 
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mean square deviation of actual angles to their ideal values was calculated to classify 

CGs. They reasoned that the high angle variance after classification might come from 

several reasons: “(i) experimental uncertainties in determination of crystal structure, (ii) 

intramolecular effects, electronic or steric, (iii) intermolecular effects, sometimes called 

`packing forces', (iv) the existence of additional partial M--L  bonds (this could be 

considered as a part of (ii) or (iii), but it is found here to be an important factor and is 

therefore listed separately).” 

Andreini et al. [60]determined given PDB entries’ metal CGs by first 

superimposing the structure to ideal CG templates, and then calculating the root-mean-

square-deviation (RMSD) value for each template. Out of all the studies, they considered 

the most complete set of CG models to compare to. They suggested a set of a uniform 

terminology of geometries with three-letter acronyms, which was what we adopted in this 

project as in Figure 2.3. They then further developed the coordination concept in to a 

Minimal Functional Site (MFS), which is defined as the combination of metal ion, its 

ligands and any atoms within 5Å from any ligand. They used MFS to reflect the local 

structural environment around the cofactor, regardless of the larger context of the protein 

fold. They then showed that this MFS has very strong functional implications. 

3.2 Limitations 

In all of these studies described above, only known major and some minor CG 

models were considered. Thus, if a previously unreported CG existed, specific instances 

from the new CG would either be misclassified into an expected model or considered as 

outliers and not classified at all. These methods all have a potential problem if there is not 
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a proper model to be classified into. There is also a tendency to underestimate the 

biological variance that may cause the average of actual structures to differ from ideal 

ones. To the best of our knowledge, no study has tried to explain the high variability after 

classification in terms of possible missing CGs. Most accepted variance and tried to 

explain it with bidentation or multi-metal, or simply remove a large number of outliers.  

To illustrate this problem, MetalPDB conducted a summary on the CGs for zinc 

metalloproteins, and the category that got the highest count is irregular (outlier), as 

shown in Figure 3.1. That is, there exist many aberrant structures in real metalloproteins 

data, and they are classified as outliers when using a threshold to capture bad scores. On 

the other hand, if those structures are forcefully classified into one of the known CGs, it 

could cause a high variance in the class variance. It is illustrated later in Chapter 4.3.2 

that the in-class angle variance is typically below 10 degrees, whi l e the real angle 

variance can get up to 24 degrees (Figure 3.2).  

 

Figure 3.1 Example shown from MetalPDB [8]. When using a score cutoff for ensuring 

good classification into known coordination geometries, the most abundant coordination 

geometry category turns out to be irr (irregular, i.e. outliers). 
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Figure 3.2 Example shown in Table 3 from Patel et al. 2007 [24]. Some angle variances 

can get at high as 24 degrees when forcefully classify every metal sites into one of the 

pre-assumed coordination geometry models. Used with permission. 

 

3.3 New Hypothesis And Methodology to Characterize the CG of 

Metalloproteins 

In our own initial analysis with zinc metalloproteins using only known CGs, we 

observed similar phenomenon of abnormally high variance in classified CGs (Table 3.1). 

We have tried to directly handle and understand the reasons for the high variability in 

zinc CG. As we explored the factors that could cause such high variance in angles, we 

detected the existence of significant numbers of compressed angles due to coordination 

by bidentate ligands (more details in Chapter 4.3.1). Thus, if forcibly classified into one 

of the known CGs, the metal sites with a compressed angle will cause the high variance 

observed in Table 3.1. 
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Table 3.1 Ligand-zinc-ligand angles statistics when forcibly classified into 
canonical CG models 

Model Count  Ideal 
Angle 
(degrees)  

Mean 
Angle 
(degrees)  

Standard 
Deviation 
(degrees)  

Coefficients 
of variation 

Tetrahedral (Tet) 10,077 109.5 109.1 8.66 0.079 
Tetrahedral Vacancy (Tev) 493 109.5 105.2 10.9 0.104 
Trigonal Bipyramidal (Tbp) 597 90 93.60 13.2 0.141 

120 116.2 13.8 0.119 
180 146.9 45.7 0.311 

Trigonal Bipyramidal 
Vacancy Axial (Bva) 

884 90 92.56 13.9 0.150 
120 115.7 19.5 0.169 

Trigonal Bipyramidal 
Vacancy Planar (Bvp) 

1,597 90 90.27 16.8 0.186 
120 120.8 10.7 0.089 
180 140.1 37.6 0.268 

Octahedral (Oct) 325 90 89.96 6.66 0.074 
180 169.4 9.02 0.053 

Square Planar (Spl) 18 90 89.80 6.30 0.070 
180 168.9 5.68 0.034 

Square Pyramidal (Spy) 632 90a  91.84 7.23 0.079 
90p 90.97 11.0 0.121 
180 164.4 19.4 0.118 

Square Pyramidal Vacancy 
(Pyv) 

1,178 90a  95.02 7.86 0.083 
90p  92.71 10.1 0.109 
180 157.0 24.2 0.154 

Trigonal Planar (Tpl) 51 120 117.1 12.1 0.103 
Overall  15,852 -  -  10.4  

 

Given this, we hypothesized that the high variability observed in 

metalloproteins are due to the existence of a significant number of aberrant or novel 

CGs, which are prevalent across all metalloproteins, and have functional 

implications. 

To the best of our knowledge, bond-length is strongly dependent on direct 

physicochemical properties of the metal and binding atom, while angles are dependent on 

both physiochemical properties and the biochemical function(s) of the bound metal. At 

the same time, the zinc bond-length showed very low variance in classified canonical 
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CGs (Table 3.2), which is consistent with several other studies. The initial results and 

other studies prompted us to develop a less biased method for classifying metalloprotein 

coordination geometries. Our methodology involves two main steps: first is to acquire the 

metal first coordination shells via statistical test using bond-length parameter only, and 

second is to cluster them based on their angle similarities, and then assign known and 

novel CGs to each cluster. This methodology is model-free, and allows us to learn and 

assign the final CGs from the data itself. Thus, we can handle unknown aberrant CGs that 

may cause problems in pure classification methods. Also, we can deal with the 

compressed group separately, so that they can be examined in more details without 

interfering normal group metal shells. 

Upon using this less biased analysis, we discovered previously uncharacterized 

CG models. As to our best knowledge, no previous study has tried to explain the high 

variability after classification in terms of possibly unknown CGs. Our efforts also include 

analyses of the functional annotation of these new structural classifications, which 

indicate distinct functional relationships for these previously uncharacterized CGs. 

 

 

 

 

 

  

Table 3.2 Zinc-ligand bond-length statistics when forcibly classified 
into canonical CG models 

Zn–X Count Mean Bond 
Distance (Å) 

Standard 
Deviation 

Coefficients 
of variation 

Zn-S 26,770 2.34 0.16 0.068 
Zn-O 25,417 2.25 0.31 0.138 
Zn-N 23,582 2.14 0.18 0.084 
Zn-Cl 354 2.38 0.33 0.139 
Zn-P 182 2.97 0.12 0.040 
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CHAPTER 4 

THE COORDINATION GEOMETRY AND FUNCTIONAL 

PROPENSITIES OF ZINC METALLOPROTEINS

4.1 Introduction 

Zinc metalloproteins are proteins that contain at least one zinc ion cofactor. They 

are the most abundant metalloproteins in living organisms composing an estimated 10% 

of the whole proteomes [19]. They participate in various biological processes and are 

crucial across all domains of life [7]. Zinc can play structural, functional, or regulatory 

roles, from holding protein structures together and participating in enzymatic reactions, to 

signaling and regulating other proteins’ activity. Due to its prevalence and importance, 

the number of studies on zinc metalloproteins keeps increasing significantly. It has also 

been a popular target for drug designs [93-95]. 

As more and more data become available on zinc metalloproteins, the need for 

bioinformatics tools and methods with the aim of gaining any kind of global perspective 

of these zinc metalloproteins has also increased significantly [96, 97]. Traditional 

bioinformatics analyses of protein sequence have uncovered the ubiquity of zinc 

metalloproteins and many of its functional roles, while structural bioinformatics can 

provide even stronger connections between zinc metalloprotein sequence and function 

[98]. The exploration of zinc metalloprotein structure-function relationships requires 
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structure-based analyses that include adequate coordination geometry (CG) 

representations. Current methodologies in characterizing the CG of zinc metalloproteins, 

however, consider only previously reported CG models based mainly on non-biological 

context. Thus, if a previously unreported CG existed, specific instances would either be 

misclassified into a canonical model or considered as outliers and not classified at all. In 

this chapter, we present a method we developed that directly handles potential exceptions 

without pre-assuming any CG models.  

4.2 Methods 

 

Figure 4.1 Workflow of Chapter 4.  
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4.2.1 Defining Zinc First Coordination Shells (Fc-Shells) 

According to several other studies and our own initial results, the bond-length has 

more stable statistics compared to the angle. Thus we developed methods to define zinc 

fc-shells, i.e. the directly coordinating ligands, primarily from bond-length statistics. 

4.2.1.1 Acquire Zinc Metalloproteins from PDB  

Structural data was acquired from the wwPDB on Mar 13, 2013. Our initial data 

filtering tools identified all PDB entries with at least one zinc atom in the HETATM 

record and removed entries with fewer than 20 amino acids in the SEQRES record. Next, 

zinc clusters were identified and removed, using two zinc atoms closer than 3 Å as the 

filter. For each of the remaining zinc sites, we generated a potential zinc ligand list from 

the non-C/H atoms within a distance cutoff between 1.3 Å to 3.2 Å of the zinc atom. 

4.2.1.2 Acquire Bond-length Statistics Via Empirical Bootstrapping (Step 1) 

For a given zinc ion and its potential ligands, our CG evaluation tools were 

applied to bootstrapping the best-fitted canonical CGs, Tetrahedral (Tet), Trigonal 

Bipyramidal (Tbp), and Octahedral (Oct). To achieve this, our tools evaluated all possible 

permutations of four, five, and six ligands as an all-to-all mapping to the ligands of an 

ideal major CG. If the potential ligand list contained four or more atoms, all non-

equivalent permutations of four were mapped to the ideal Tet four ligands, and the 

corresponding angles were compared to the ideal angles. The angle variance was 

computed as: 

𝜎  !! =   
1
𝐼

(𝑎!,! −   𝑒!,!)!
!

!!!

                (4.1) 
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where as,i is the i-th observed ligand-zinc-ligand angle in the structure for CG model s, I 

is the total number of angles (6 for Tet, 10 for Tbp, and 15 for Oct), and es,i is the i-th 

ideal (expected) angle of the corresponding CG model s (refer to Table 2.1 for ideal angle 

list). For each given zinc site, our tools calculated one variance for each permutation. The 

permutation with the smallest variance was then identified as the initial zinc fc-shell. The 

corresponding model s was assigned to the given zinc as an initial best-fitted major CG.  

Angle statistics are CG specific. For each CG model s and its angle position i, our 

tools calculated the angle statistics (mean and variance),  

𝜇!,! =
1
𝑀 𝑎!,!,!

!

!!!

   ;   𝜎!,!! =   
1

𝑀 − 1 𝑎!,!,! −   𝜇!,!
!

!

!!!

                  (4.2) 

where am,s,i is the observed angle i of CG s for fc-shell m. Bond-length statistics are 

element specific. For each element t (O, N, S, …), our tools calculated element-specific 

bond-length statistics (mean and variance),  

𝜇! =   
1
𝑁 𝑏!,!

!

!!!

   ;     𝜎!! =   
1

𝑁 − 1 𝑏!,! − 𝜇!
!

!

!!!

              (4.3) 

where bn,t is the nth Zn-t bond-length derived from all initial fc-shells and t is given 

ligand element (e.g. O, N, S, …). 

4.2.1.3 Define Best Zinc Fc-Shells Using Bond-length Statistics (Step 2) 

We then reexamined each zinc ion and its potential ligand list to define the final 

fc-shells. All non-equivalent combinations of potential ligands were considered. We 

calculated the term χ2 probability (p-value) as 1 minus the cumulative distribution 

function of a χ2 distribution. That is, P(B) = 1 - P(𝜒!(𝐵)   ≤   𝜒!,!"#! ) and B is the degrees 
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of freedom which is the same as the number of ligands in combination. The χ2 statistic 

was calculated using: 

𝜒!"#! =    (
𝑏! −   𝜇𝑡(𝑗)
𝜎!(!)

)!
!

!!!

                    (4.4) 

where bj is the jth observed bond-length with the ligand being element t, J is the number 

of ligands (4 for Tet, 5 for Tbp, and 6 for Oct), 𝜇!(!) and 𝜎!(!) are the corresponding 

means and standard deviations of ligand j’s element t as calculated in the bootstrapping 

step. This χ2 probability, P(B), was used as a goodness of fit measure in selecting the set 

of ligands to compose the final zinc fc-shell from the given potential-ligand list.  

The ligand combination with the highest χ2 probability P(B) was defined as the 

less biased best zinc fc-shell for later clustering analyses. While this approach identified 

four-, five-, and six-ligand fc-shells, we mainly explored four-ligand zinc fc-shells in this 

study, which represented the vast majority (95.7%) of the final fc-shells identified.  

4.2.1.4 Determine Non-Redundant Set Of Zinc Sites 

As the best fc-shell was defined, these ligands were first mapped to the 

corresponding SEQRES sequence by aligning ATOM record-based sequences to 

SEQRES sequences.  Then for each zinc site, we defined the binding domain as a five-

residue extension of the minimum sequence range that includes all ligands identified in 

the best fc-shell. For example, if the ligand residues positions are 11, 24, 45, and 123 on a 

protein sequence, the binding domain will be defined as residues 6-128 of the sequence. 

For ligands that are scattered over multiple chains, we extracted the sequence section of 

each chain, and consider them together. We removed all redundant domain-ligand 

combinations, and kept only one with either the best resolution or most recently deposited 
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date for each redundant group. Then for the non-redundant set, we kept those with a 

resolution better than (i.e. less than) 3 Å. 

4.2.1.5 Iterative Algorithm (IA) for the Mixture Canonical CG Models (Step 3) 

With the aim of both identifying the best fitting CG based on angle and bond-

length statistics (means and variances) as well as refining those statistics via CG 

assignment, we performed the following iterative algorithm (IA). This algorithm is in the 

spirit of an Expectation-Maximization (EM) algorithm [99]. A workflow of this IA 

process is illustrated in Figure 4.2. 

The bootstrapping step served as an initialization for the iteration process. It 

provided the first guess of the unknown parameters (𝜇!,𝜎!!, 𝜇! ,𝑎𝑛𝑑  𝜎!!). Tet, Tbp, Oct, 

and their minor CGs were used as mixture canonical models for zinc. Our IA algorithm 

employed a χ2 probability, P(k), to determine the best fitting CG at each iteration, which 

was based on the following χ2 statistic: 

𝜒!! = 𝑌 − 𝜇𝑠+𝑡
!𝐶!!! 𝑌 − 𝜇𝑠+𝑡                       (4.5) 

where Y is the observed angle and bond-length vector of a given zinc site, 𝜇!!! 

(𝜇!  𝑎𝑛𝑑  𝜇!)  is the mean vector of corresponding angles and bond-lengths generated from 

the initialization or previous iteration, and Cs is the covariance matrix of CG model s. 

This formula could handle dependency between variables, where the degree of freedom 

was derived from the defective rank of the covariance matrix term. And corresponding χ2 

probability was computed as P(k) = 1 - P(𝜒!(k)   ≤   𝜒!∗!! ), where the degrees of freedom 

k is the same as the rank of the covariance matrix. Again, all permutations of atoms in the 

initial fc-shell ligand list were considered for every zinc site. 
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Figure 4.2 Workflow of the IA process 

 

For each zinc site at every iteration, our IA tool defined a new fc-shell as the 

assigned best-fitted CG with the highest χ2 probability. Then the IA tool updated the 

means and variances of angle based on estimates from those zinc fc-shells classified into 

that CG at the given iteration and using Equations 4.2. Similarly, bond-length statistics 

were updated for each element via Equation 4.3.  

To prevent the actual CG models’ angle means drifting dramatically from the 

ideal values over iterations, we used the means of major CG, 𝜇!,!"#$%, in the χ2 

calculation for all associated minor CGs. And to prevent any of the CG models to become 

statistically greedy and attract a large number of “outliers”, a pooled angle variance  

𝜎!""#! = !!∗!!
!!

!!!
!!!

!!!
     (4.6) 
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was used for all CG models instead of their individual angle variance, where s is the total 

number of different angles from all CG models, 𝜎!! is the angle variance of angle i, and ni 

is the corresponding number of instances for angle i. The angle portion of the Cs, was 

calculated by multiplying 𝜎!""#!  with a fixed simulated correlation matrix Σs, representing 

the spatial restriction of the ideal CG model s. The bond-length portion of the matrix Cs 

was constructed using element-specific variance 𝜎!! on the diagonal and 0 for everywhere 

else, because bond-lengths are independent of each other and are also independent from 

all angle variables. The covariance matrix Cs for each CG model s was updated as the 𝜎!"!  

and 𝜎!! evolve after each iteration. Due to the existence of compressed angle, we 

restricted all ligand permutations to have a minimum angle of 68 degrees. Our IA tool 

repeated the iterative process until all statistics converged, providing each zinc fc-shell 

with a converging CG classification and final angle and bond-length statistics for later 

steps of the overall analysis. 

The angle correlation matrix (Σs) was estimated before the IA process via 

simulation using an R script and remained the same through the iteration process. One 

correlation matrix was simulated for each CG separately. Figure 4.3 shows in illustration 

of angle correlation matrix simulation for Bva. As a starting point for the simulation, our 

R simulation script set the zinc atom at O (0,0,0), and the ligands at corresponding 

positions based on bond-lengths 𝜇! from the bootstrapping and ideal angles 𝜇! for each 

CG (Chapter 4.2.1.2).  A spherical normal distribution was assumed for each ligand with 

(0, 𝜎!!) on each of the x, y, and z dimensions, where variance 𝜎!! was acquired from the 

bootstrapping as well. The simulation generated 1000 random and independent Euclidian 

points for each ligand, composing a sphere around the ideal ligand position W, X, Y, and 
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Z (Figure 4.3.B). The simulation R script then calculated correlations between angles 

from the simulated data, and arranged these correlations in a matrix. A raw correlation 

matrix is shown in Figure 4.3.C. Since angles of the form WOX/WOY/WOZ were 

structurally identical and were arbitrarily ordered in the matrix, we then smoothed all 

equivalent positions in the matrix by taking their average. The final correlation for Bva is 

shown in Figure 4.3.D. 

 

Figure 4.3 A schematic view of angle correlation matrix simulation for trigonal 

bipyramidal vacancy axial (Bva). (A) Ideal structure and angles of Bva. (B) A three-

dimensional view of 1000 simulated data at each ligand point and their angle statistics. 

(C) The raw correlation matrix. (D) The final correlation matrix after smoothing.   
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4.2.2 Separating Zinc Fc-shells into Normal and Compressed Angle Groups Using 

Random Forest (Step 4) 

Upon calculating the final fc-shells in 4.2.1.3, we obtained the smallest angle for 

each fc-shell and plotted the histogram of the smallest angles (Figure 4.3). As shown in 

Figure 4.3, there exist a large number of abnormally compressed minimum angles. We 

denote these angles significantly below 90 degrees as compressed angles (and below 38 

as super-compressed). Zinc sites with a compressed angle were treated separately to 

prevent interference between each other in clustering.  

The randomForest package in R (randomForest 4.6-7 in R version 3.0.2) [100, 

101]was employed to separate the defined final zinc fc-shells into normal, compressed 

and super-compressed groups. Features for the random forest analysis included angles, 

bidentation status, and ligands. Here is an example feature vector with elements of the 

vector separated by semicolons:  “149.3; 85.8; 90.5; 103.6; 121.4; 86.7; 000100; 

CYS.SG.S; CYS.SG.S; CYS.SG.S; HIS.ND1.N.” For four-ligand zinc CGs, the first six 

elements are angles, which are ordered in ‘largest-sorted-middle-opposite’ order: first is 

the largest angle of the six ligand-zinc-ligand angles; followed by the middle four angles, 

which share one of the two ligands composing the largest angle, sorted from smallest to 

largest; and last is the angle sharing no ligand with the largest angle. Ideal angles in this 

ordering of the four-ligand CGs can be found in Table 5.2. This ordering makes the 

largest angle and the opposite angle the discriminating angles. The next element is a 

string with six 0/1 digits corresponds to the bidentation status of the six angles, where 0 

means no bidentation, and 1 means bidentation of that angle. Ligands make up the last 

four elements, and are represented as residue.atom.element. The first two ligands 
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comprise the largest angle, ordered alphabetically. And the rest two ligands are ordered 

alphabetically as well. We sorted angles and ligands in this way so that they are 

comparable through all zinc fc-shells without introducing any artificial scrambling.  

The smallest angle was used to separate sites as super-compressed (<38 degrees), 

compressed (38-58 degrees) or normal (> 68 degrees) groups for training. The default 

settings of random forest were used to build the classifier that was then be applied to the 

overlapping part of the data, where the smallest angle is between 58° and 68°, as well as 

the training data itself.  

4.2.3 Clustering Zinc Fc-Shells Using K-Means and Assigning Known and Novel 

CGs to Each Cluster  

4.2.3.1 Determine Optimal Cluster Number K (Step 5) 

K-means [102] is one of the most popular clustering methods, and is good at 

clustering numeric data. As with all clustering methods, determining the numbers of 

clusters (k) is crucial for achieving successful and meaningful clustering results. We 

approached this problem by testing the stability and biological relevance of the final 

cluster centers while varying k. The k-means function from the stats package in R was 

used with default settings, except that iter.max was set to 30. By default, the package uses 

the Hartigan-Wong algorithm. For each value of k from k=1 to k=30, we ran 500 

repetitions of k-means clustering with different cluster initializations. For each value of k, 

we calculated the average of the sum of absolute differences of all pairwise best matching 

cluster centers: 

𝐷! =   
1

𝐾 ∗ !
!

|𝑐𝑎!",! − 𝑐𝑎!",!|
!

!!!

!

!!!

!!!

!!!

!

!!!!!

                      (4.7) 
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where i is the angle position, j is the matching cluster numbers between two repetitions, A 

is the total number of angles (A=6 for four-ligand CGs), K is the number of clusters as the 

k in k-means, p and q are the repetition numbers, R is the number of repetitions (500), 

and capj,i is the cluster center angle at position i and clustered as cluster j in repetition p. 

The sum of absolute difference measures the distance of the cluster centers from each 

other between the R repetitions. We took the max(Dk) - Dk as the final measure so that a 

larger value is preferred. 

We also measured the average Jaccard index of all the pairwise best matching 

cluster centers: 

𝐽! =   
1

𝐾 ∗ !
!

𝐽(𝑆!", 𝑆!")
!

!!!

!!!

!!!

!

!!!!!

                      (4.8) 

where Sjp is the set of zinc fc-shells clustered as cluster j in repetition p, and 

𝐽(𝑆!", 𝑆!")   =   
|𝑆!"   ∩   𝑆!"|
|𝑆!"   ∪   𝑆!"|

                  (4.9) 

The average Jaccard index measures how well the same set of zinc sites are 

clustered into the same cluster between repetitions. It can take a value between 0 and 1, 

with a smaller value indicating better performance. 

Two other metrics were used for measuring the biological relevance of the 

clusters: structure-function correlation rho and p-value, with more detailed description in 

Chapter 4.2.4. 

4.2.3.2 Clusters Assignment (Step 6) 

After the optimal number of clusters was determined for the normal and 

compressed groups separately, we re-ran k-means with the optimal k to obtain the final 

cluster results. We assigned a best-fitted CG to each cluster by 1) comparing the cluster 
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centers with ideal angles of the CG models; 2) finding the representative zinc fc-shell that 

is the closest to the cluster center, and checking its 3D structure; and 3) calculating an 

average χ2 probability for each cluster on each canonical CG model using Equation 5 and 

statistics acquired from the IA process. For zinc sites with a compressed angle, we left 

out the compressed angle in calculating the χ2 probabilities to minimize the effect of the 

compressed angle in comparing to canonical CGs. The χ2 probabilities were used as a 

mathematical characterization of each cluster to each canonical CG. Assignments of 

clusters were based on cluster centers, 3D structures, and χ2 probabilities together. 

4.2.4 Functional Analysis (Step 7) 

4.2.4.1 Acquire Functional Annotations From InterProScan 

We ran InterProScan 5.7.48.0 [103] using the current versions of its member 

databases on the non-redundant sequences previously determined. We retained only those 

results with an InterProScan (IPR) annotation mapping and overlapping at least one 

ligand.  

4.2.4.2 Derive and Evaluate Consistency of CG-Based Structure and Sequence-Based 

Function Annotation Relationships Between K-Means Clusters 

We calculated both CG-based structural and sequence-based functional distance 

matrices between pairwise k-means clusters and then compared these two matrices with 

respect to two different measures of consistency: hierarchical clustering and spearman 

correlation. To construct the CG-based structural distance matrix, we calculated a root-

mean-square-deviation-like (RMSD-like) distance matrix between each cluster based on 

angles:  
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𝑀!"#$%" =   
𝑚!! ⋯ 𝑚!!
⋮ ⋱ ⋮

𝑚!! ⋯ 𝑚!!

,𝑤𝑖𝑡ℎ  𝑚!"   =   
1
𝐴 (𝑎!",,! − 𝑎!",!)!

!

!!!

!(!)

!!!

!(!)

!!!

              (10) 

where k is the clustering number k in k-means, A is the number of angles (A=6 for four-

ligand CGs), and s(x) and s(y) are the size of cluster x and y, axp,i is the ith (1≤i≤A)  angle 

of fc-shell p in cluster x (1≤p≤s(x)). 

To construct the sequence-based function annotation distance matrix, we first 

calculated the proportional representation of functional annotation from each cluster:  

𝑝𝑟𝑜𝑝!" =   
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑒𝑛𝑡𝑟𝑖𝑒𝑠  𝑖𝑛  𝑐𝑙𝑢𝑠𝑡𝑒𝑟  𝑛  𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑  𝑎𝑠  𝑡𝑒𝑟𝑚  𝑡

𝑠𝑖𝑧𝑒  𝑜𝑓  𝑐𝑙𝑢𝑠𝑡𝑒𝑟  𝑛               (11) 

proptn is normalized across all clusters so that ∑n proptn = 1. We then constructed a k*k (k 

being the clustering number k in k-means) matrix for each annotation t:  

𝑀! =   
𝑚!! ⋯ 𝑚!!
⋮ ⋱ ⋮

𝑚!! ⋯ 𝑚!!

,𝑤ℎ𝑒𝑟𝑒  𝑚!"   = min 𝑝𝑟𝑜𝑝!"  ,𝑝𝑟𝑜𝑝!"
!               (12) 

Next, the inter-cluster values across all annotations t are summed to create the 

matrix Msim and then normalized by the max value in Msim to create Msim_norm, 

representing functional similarity between clusters.  Finally, we took 1 – Msim_norm as the 

distance matrix Mfunc.  In other words, we represented functional annotations across 

cluster members as a rational vector space of proportional functional annotations, which 

we then transformed into a pseudo-continuous metric space represented by the resulting 

distance matrix Mfunc.  This works much better than a covariance or correlation matrix, 

since the large number of zero proportions are ignored and not interpreted in terms of 

functional similarity or dissimilarity. 
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In our R script, we calculated Spearman correlations of the between-cluster 

structural and functional distances (m11 … mkk) and computed rho’s and p-values 

computed for k=3 to 30 as biological validation in selecting the optimal k. Ward's 

hierarchical agglomerative clustering was constructed using the standard hierarchical 

clustering function in the R stats package for structural and functional distance matrices 

separately. We then compared the two distance matrices’ hierarchical dendrogram and 

Spearman’s rank correlation.  

4.2.4.4 Determine Functional Enrichment of Normal and Compressed Groups 

Using the normal and compressed classification to designate a “group of interest” 

compared to all of the zinc sites with an annotation, we used a hypergeometric test to 

determine whether any of the InterProScan annotations or EC number annotations based 

on the mapping of InterProScan annotations to KEGG pathways34 were enriched in either 

group. For EC numbers, any zinc site that did not have an EC number was assigned 0. 

4.3 Results 

4.3.1 Low Variability in Bond-lengths Versus High Variability in Bond Angles 

and the Existence of Compressed Angles 
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Figure 4.4. Histogram of minimum angles with respect to: A) the number of ligands in 

the fc-shells, and B) ligand type. aa represents standard amino acid, nonaa represents 

non-standard amino acid or any substrates from the protein, and bi represents bidentation. 

 

7878 PDB entries were detected to have at least one zinc ion in the protein from 

wwPDB downloaded on Mar 13, 2013. From those entries, we identified a total of 17,135 

four-ligand, 602 five-ligand, and 169 six-ligand non-cluster zinc fc-shells. In our initial 

attempt in analyzing zinc metalloproteins assuming Tet, Tbp, Oct, and their associated 

minor models, we observed abnormally high ligand-zinc-ligand angle variances and very 

low zinc-ligand bond-length variances in classified canonical CGs at the same time, 

which was consistent with several other studies [19, 28, 89]. From these high angle 

variances it appeared there are “outlier” CGs that do not belong to any known canonical 

CGs. Also, the histogram (Figure 4.4) of smallest angles from each zinc site revealed a 

significant number of sites with compressed (< 58 degrees) angles. The peak at 109 

degrees is the contribution from Tet, and the shoulder peak at 90 degrees is from Tbp, 
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Oct and their associated minor CGs. However, none of the known CG models can 

account for the histogram peaks at 32 degrees and 53 degrees. The likelihood that these 

sites are artificial is low given that 1) there is a non-trivial number of zinc sites in this 

range, 2) the histograms around these peaks appear normally distributed, and 3) they 

occur in zinc fc-shells with 4, 5, and 6 ligands.  

In an attempt to characterize the possible source of the compressed and super-

compressed minimum angles, we characterized the two ligands comprising the smallest 

angle by bidentation status and inclusion/exclusion of the 20 standard amino acids 

(Figure 4.4.B). Bidentation occurs when two ligating atoms are from the same amino acid 

residue (e.g. the two oxygen atoms of one carboxylate from glutamate). Our analysis 

showed that 83.0% of the compressed angles could be explained by coordination by 

bidentate ligands and these bidentation patterns affect overall clustering ability with 

functional significance (Table 4.3, 4.4).  Figure 4.5 pictorially shows the common 

bidentation patterns and their frequencies observed in zinc metalloproteins.  Some of the 

bidentation patterns have been observed, such as ligation by carbonyl oxygens [104], or 

theorized to occur from simulation, such as bidentation by cysteine thiol and backbone 

carbonyl oxygen [105-107]; however, their frequency had not been systematically 

analyzed in the wwPDB.   

Classifying a zinc fc-shell with a compressed angle into any of the previously 

canonical CG models will either create an outlier or add significant variance to 

subsequent analyses. Thus, we decided to separate zinc sites containing compressed 

angles from normal zinc sites. 
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Figure 4.5 Three most prevalent zinc bidentation of standard amino acids in the zinc 

metalloprotein, with real structures on top and schematic structures on the bottom.  

  

4.3.2 Angle Correlation Matrix and IA Statistics 

The main reason for using fixed angle correlation matrix with evolving angle 

variance instead of a simple evolving angle covariance matrix is because we needed to 

use pooled variance at each round so that there is no greedy CG or angle position that 

would take over the “outlier” structures. In addition, we had to represent the angle in a 

specific ordering while the angles in an ideal CG are identical and interchangeable, the 

correlation matrix could help make sure all angles are mathematically equivalent.   
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 Since the mean and variance used for the angle matrix simulation was derived 

from bond-length statistics only, a by-product of the correlation matrices is an estimate of 

angle variance introduce by the bond-length variation mechanism. It turned out that the 

angle standard deviation is between 8 to 10 degrees, regardless of the CG and angle 

positions. The final angle statistics from the IA step are shown in Table 4.1. For most of 

the CGs, the angle standard deviations are within or below the 10 degrees limit, which 

means our IA tool effectively capture and separated the actual CGs. The only angle 

standard deviations that are a little higher is Bva and Bvp. It suggested that even after 

removing structure with angles smaller than 68 degrees (See methods 4.2.1.5), there were 

still some impurities in the data that caused a higher in-class variation. Those variations 

that cannot be explained by bond-length mechanism (intra-model variation) are most 

likely to be cause by new or aberrant CGs (inter-class variation).  

Originally, this IA process itself (without removing angles smaller than 68 

degrees) was what we used in classifying a metal’s CG. But as we realized the existence 

of compressed angle that could greatly complicate the classification, we used this step to 

acquire angle and bond-length statistics that would provide us a useful mathematical 

guidance in assigning k-means clusters in subsequent steps. For IA process, we have to 

make assumptions on the CG models upfront for the probability calculation. Thus, the 

model-free methods was developed and applied in this study to better characterize the 

structures of zinc metalloproteins. K-means clustering algorithm was to truly learn the 

structures from the data itself.  
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Table 4.2. The final zinc-ligand bond-length statistics from IA. 

Zn–X Count Mean Bond Distance (Å) Standard Deviation (Å) 
Zn-S 30846 2.34 0.14 
Zn-N 25910 2.12 0.15 
Zn-O 24270 2.17 0.24 
Zn-Cl 405 2.34 0.28 
Zn-P 218 2.97 0.09 

 

4.3.3 Separation Of Zinc Fc-Shells Into Normal And Compressed Groups  

As demonstrated above, there exists a significant amount of compressed (and 

some super-compressed) angles between zinc fc-shell ligands.  Due to the overlapping 

distribution of the normal and compressed angles and the ligand and bidentation 

 
Table 4.1 The final ligand-zinc-ligand angles statistics from IA. 

Model Count  Ideal 
Angle (°)  

Mean 
Angle (°)  

Standard 
Deviation  

Tetrahedral (Tet) 13321 109.5 109.14 8.94 
Trigonal Bipyramidal (Tbp) 564 90 90.16 7.98 

120 119.46 9.23 
180 167.39 8.18 

Trigonal Bipyramidal Vacancy 
Axial (Bva) 

1278 90 94.41 11.53 
120 118.55 14.98 

Trigonal Bipyramidal Vacancy 
Planar (Bvp) 

1261 90 91.83 10.74 
120 119.93 10.68 
180 159.06 16.34 

Octahedral (Oct) 337 90 89.95 6.42 
180 170.07 5.07 

Square Planar (Spl) 265 90 89.98 7.36 
180 161.06 7.62 

Square Pyramidal (Spy) 784 90a  91.38 6.81 
90p 89.91 7.26 
180 168.90 6.32 

Square Pyramidal Vacancy 
(Pyv) 

779 90a  94.86 7.21 
90p  91.91 8.26 
180 164.86 7.82 

Overall  18589 -  - 9.25 
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propensities of the ligands comprising these angles, we developed a random forest 

classifier to deconvolute this overlap.  Then, we used this classifier to separate zinc sites 

into normal and compressed groups based on three key factors: angles, bidentation status, 

and ligand residue type. The training data consisted of 16,375 sites (14,210 normal, 2,087 

compressed, 78 super-compressed) initially categorized based on the smallest angle. The 

out-of-bag error rate for the training data was 0.00 for the normal and compressed groups, 

and 0.06 for the super-compressed group. Importance measures showed the most 

important feature is angle 2 (with a score of 1836), followed by bidentation status (score 

859) and angle 6 (score 279). The reason that angle 2 is the most important feature is 

because it is most likely to be the smallest angle due to the ‘largest-sortedMiddle-

opposite’ ordering of angles used. Angle 1 is always the largest angle and is therefore 

nearly impossible to also be the smallest (except for special cases where all angles are 

exactly equal). Angle 6 is the angle opposite of angle 1 (e.g. has no ligand atoms in 

common with angle 1), which means the smallest angle could be in this position. So the 

smallest angle is the variable that has the most significant effect on importance, 

regardless of what position it is in. The bidentation status of ligands in the site also 

showed its importance as expected from the histogram Figure 4.3. 

Sorting the six angles by ‘largest-sortedMiddle-opposite’ makes them comparable 

across all geometries without introducing artificial scrambling. This was necessary for 

robustness in many of the analyses. As shown in Table 4 of ideal angles in this ordering, 

angle 1 and angle 6 in combination are highly distinct for different CGs. The middle four 

angles should be very close to each other except in the case of Bva.  
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After the removal of redundant sites, 6,199 four-ligand zinc fc-shells were left for 

subsequent analyses. Applying the random forest classifier resulted in 4,845, 1,303, and 

51 normal, compressed, and super-compressed fc-shells respectively. 

4.3.4 K-Means Clustering  

In an initial failed attempt to cluster zinc fc-shells using random forest (results not 

shown) the ligand type and bond-length showed very little influence in determining 

meaningful CGs, while the ligand-zinc-ligand angles and bidentation status were more 

important. Therefore, we applied k-means clustering to the angles to generate clusters of 

zinc sites. Note that clustering was performed on the normal and compressed zinc sites 

separately, otherwise the clustering was unstable to separate (Figure 4.8, Table 4.3, and 

4.4).  

Two measures were used to assess the stability of resulting clusters: sum of 

absolute differences and Jaccard index. The sum of absolute differences measures the 

differences between cluster centers over multiple times of clustering. The Jaccard index 

evaluates the agreement of the set of actual zinc fc-shells that are classified into the same 

cluster over multiple times of clustering.  The other two measured biologically validate 

the optimal k: Spearman’s rho and p-value between structural distances and functional 

distances of cluster pairs. In order to visualize the comparisons between all four values, 

we graphed the max sum of absolute differences minus each actual sum of absolute 

differences, and the negative log of the p-value. We expect the “true” k to have a local, 

simultaneous maximum for all four measures together.  Figure 4.6.A shows how these 

four measures vary with respect to k values for the normal group.  k=10 is consistent 
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local maximization of all four measures. Figure 4.6.B shows the same measures for the 

compressed group. In this case, k=8 is as the local maximization of all four measures. 

 

Figure 4.6 Four measures of k value in K-means clustering for the normal (A) and 

compressed (B) group. 
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Table 4.3 Mean/standard deviation, average χ2 probability, and CG assignment for each cluster, normal group k=10. 

Cluster Size Angle 1 Angle 2 Angle 3 Angle4 Angle 5 Angle 6 Tet Bva Bvp Pyv Spl Assignment 
1 331 150.0 ± 5.6 85.8 ± 7.0 93.8 ± 5.4 100.8 ± 4.4 109.2 ± 5.3 98.9 ± 7.1 0.028 0.090 0.193 0.265 0.125 Pyv distorted 
2 741 123.4 ± 4.2 93.8 ± 4.9 101.8 ± 3.7 108.4 ± 3.9 115.2 ± 3.8 112.4 ± 4.6 0.543 0.042 0.015 0.006 0.000 Tet 
3 213 135.5 ± 8.1 80.4 ± 7.1 91.1 ± 7.8 107.8 ± 8.2 122.3 ± 6.4 86.3 ± 9.6 0.033 0.197 0.193 0.125 0.017 Bva  
4 381 167.4 ± 6.6 81.6 ± 6.0 87.4 ± 5.0 92.6 ± 4.5 99.0 ± 6.3 90.8 ± 8.6 0.004 0.044 0.399 0.683 0.445 Pyv  
5 205 138.8 ± 6.7 84.6 ± 7.6 92.8 ± 7.1 102.5 ± 6.2 113.8 ± 8.1 120.5 ± 8.2 0.096 0.071 0.047 0.013 0.002 Tet distorted 
6 1050 116.0 ± 2.9 103 ± 3.1 106.3 ± 2.1 108.9 ± 1.9 111.8 ± 2.1 110.5 ± 3.2 0.931 0.011 0.004 0.002 0.000 Tet  
7 853 119.4 ± 3.0 100.8 ± 3.8 107.0 ± 2.9 111.2 ± 2.6 114.8 ± 2.5 101.3 ± 4.3 0.769 0.064 0.017 0.007 0.000 Tet  
8 383 168.0 ± 6.7 80.4 ± 5.7 87.7 ± 4.1 93.2 ± 3.8 100.0 ± 5.6 116.9 ± 8.5 0.071 0.373 0.685 0.424 0.097 Bvp  
9 165 166.8 ± 8.1 79.6 ± 5.6 87.1 ± 3.5 92.3 ± 3.2 99.7 ± 6.2 155.3 ± 11.0 0.009 0.063 0.461 0.585 0.564 Spl  
10 523 131.1 ± 4.9 94.9 ± 5.4 102.3 ± 3.9 108.5 ± 4.2 115.7 ± 4.8 96.7 ± 6.3 0.218 0.149 0.082 0.070 0.009 Tet  

Table 4.4 Mean/standard deviation, average χ2 probability, and CG assignment for each cluster, compressed group k=8. 

Cluster Size Angle 1 Angle 2 Angle 3 Angle4 Angle 5 Angle 6 Tet Bva Bvp Pyv Spl Assignment 

1 186 128.2 ± 8.2 53.7 ± 6.1 92.1 ± 8.7 105.6 ± 6.1 115.0 ± 6.1 90.8 ± 9.4 0.160 0.289 0.150 0.072 0.012 Bva with 
compressed 90 

2 141 155.9 ± 8.6 57.9 ± 6.4 86.6 ± 7.5 98.8 ± 6.4 112.0 ± 9.6 134.0 ± 10.3 0.092 0.229 0.206 0.149 0.064 Spl with compressed 
90 

3 275 153.0 ± 7.0 55.2 ± 5.4 88.2 ± 5.8 98.3 ± 5.2 105.7 ± 6.0 103.2 ± 9.2 0.102 0.287 0.226 0.263 0.092 Distorted Pyv with 
compressed 90 

4 84 128.5 ± 9.9 80.5 ± 7.6 92.3 ± 8.2 105.4 ± 9.5 116.4 ± 8.5 51.5 ± 4.8 0.074 0.159 0.090 0.062 0.015 Tet with compressed 
109 

5 126 130.8 ± 9.9 53.3 ± 6.3 75.2 ± 6.3 85.9 ± 6.7 100.7 ± 9.3 91.2 ± 11.9 0.031 0.146 0.154 0.184 0.060 New! 

6 91 157.1 ± 10.6 54.8 ± 7.2 77.0 ± 8.2 105.1 ± 12 129.1 ± 11.1 92.4 ± 14.5 0.042 0.073 0.061 0.056 0.027 Pyv with 
compressed 90 

7 53 159.8 ± 9.6 79.1 ± 9.0 86.7 ± 6.8 93.8 ± 6.8 103.1 ± 10.3 55.0 ± 6.3 0.022 0.313 0.313 0.362 0.330 Pyv with 
compressed 90 

8 209 139.6 ± 8.2 52.7 ± 5.6 83.4 ± 7.7 96.8 ± 7.0 111.1 ± 9.1 118.8 ± 6.7 0.112 0.133 0.197 0.050 0.005 Distorted Bvp with 
compressed 90 
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The angle statistics and average χ2 probabilities for the normal group are shown in 

Table 4.3, and one representation is chosen for each cluster that is closest to the cluster 

center (Figure 4.7). By comparing the angle means of each cluster to ideal angles, angle 1 

of cluster 4, 8 and 9 appeared to be equivalent to 180 degrees, due to the folded normal 

distribution effect. Their angle 6 was equivalent to 90, 120, and 180 degrees, 

respectively. χ2 probability serves as a mathematical characterization of the cluster with 

respect to specific canonical CGs, and the three-dimensional structure of the centroid zinc 

site is the visualization of the cluster. Based on all the evidences, cluster 4, 8 and 9 were 

assigned as Pyv, Bvp, and Spl. Similarly, cluster 1 was assigned as Pyv, but distorted. 

Cluster 3 was assigned as Bva. Clusters 2, 5, 6, 7, and 10 were all subclasses of Tet.  In 

fact, all of the canonical CGs could be assigned to the same corresponding cluster(s) by 

considering only their maximal cluster average χ2 probabilities for assignment.   

 

Figure 4.7 Three-dimensional structures of normal cluster representatives. 
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All angles have relatively tight standard deviations. According to the angle 

correlation simulation in Chapter 4.3.3, the angle standard deviation introduced by bond-

length variation itself is about 8-10Å, which is similar or larger than most of the normal 

group angle standard deviation. It indicates that the k-means clustering method 

successfully separated different CGs, as no significant inter-class variation was observed. 

Also, since many the cluster standard deviations are only half of the value from the 

simulation, it suggests that some sub-class (sub-CG) clusters were being detected. That 

agreed with our assignment as well. 

Table 4.4 shows the angle statistics and average χ2 probabilities of the compressed 

group. χ2 probabilities were assessed without considering the compressed angles, so that 

these aberrant structures could be related to canonical CGs with minimum effect from the 

compressed angles. Even by leaving out the compressed angle in calculating χ2 

probabilities, most of the average χ2 probabilities are much lower than the normal group, 

which confirmed they should not be directly classified into any of the canonical CGs.  In 

contrast to the normal group, canonical CG assignment cannot simply use the maximal 

cluster average χ2 probabilities.  In fact, such a simplistic assignment approach would 

have mis-assigned canonical CGs for five out of the eight compressed clusters. There is 

also no highest probability on Tet, because Tet is the most geometrically symmetric 

structure, and having a compressed angle tends to disrupt this balance more than others 

CGs. By using all three pieces of information, most clusters can be viewed as distorted 

forms of the canonical CGs with one of the angles compressed. As for cluster 5, it does 

not resemble any of the canonical CGs at all, except maybe a highly distorted Pyv, where 
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it has three ligands on the same plane but very close to each other, and the fourth ligand-

zinc bond perpendicular to that plane. 

When k-means is used on both normal and compressed group together instead of 

separately, stability tests show k=10 and k=14 are the potential optimal clustering 

numbers. On one hand, the Spearman rho starts from a negative number as shown in 

Figure 4.8, indicating a much weaker structure-function relationship through clusters if 

we were to combine everything together. On the other hand, angle statistics (Table 4.5, 

4.6) show that all standard deviations, especially those with a compressed angle (cluster 

4, 5, 9, and 10 in Table 4.3, and cluster 2, 3, 5, 9, and 12 in Table 4.4), are higher than 

when handling them separately. As shown in Table S6, the canonical CGs, Spv and Bvp, 

are very likely to be mixed together in cluster 8 when using k=10. Its discriminating 

position, Angle 6, is roughly the average of 90 degrees (Spv) and 120 degrees (Bvp) and 

the standard deviation is much higher compared to the other five angles. When using 

k=14 as shown in Table 4.4, Spv and Bvp can be separated into cluster 7 and 13 

respectively. But the discriminating angle 6 of both clusters have their means further 

from their ideal angles and the associated standard deviations are relatively high 

compared to when handling them separately (Table 4.1, cluster 4 and 8). Restated, more 

zinc sites are misclassified and inappropriately associated if we cluster all zinc sites 

together rather than clustering zinc sites with all normal angles or with at least one 

compressed angle separately. 
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Figure 4.8 Four measures of the unstable K-means clustering of normal+compressed zinc 

fc-shells. 

 

 

Table 4.5 Angle statistics of k-means clustering on normal+compressed zinc fc-shells, 
k=10. 

Cluster Size Angle 1 Angle 2 Angle 3 Angle4 Angle 5 Angle 6 
1 311 165.0 ± 9.0 77.0 ± 8.6 87.2 ± 4.7 93.5 ± 4.5 101.0 ± 7.3 145.5 ± 14.5 
2 483 146.5 ± 6.3 86.1 ± 6.8 94.0 ± 5.4 102.2 ± 5.3 112.4 ± 6.8 98.5 ± 9.6 
3 783 127.0 ± 5.3 95.6 ± 6.3 103.3 ± 4.8 110.3 ± 4.2 116.9 ± 4.6 95.8 ± 6.4 
4 371 135.3 ± 12.7 53.3 ± 10.4 87.4 ± 12.0 104.9 ± 8.5 117.8 ± 10.8 92.4 ± 9.8 
5 209 127.5 ± 13.1 51.9 ± 7.3 68.4 ± 11.1 84.8 ± 8.8 100.2 ± 11.1 88.6 ± 14.9 
6 1840 117.3 ± 3.3 101.9 ± 3.7 106.4 ± 2.5 109.6 ± 2.3 112.8 ± 2.4 108.0 ± 4.6 
7 684 126.7 ± 5.9 91.6 ± 6.2 100.0 ± 4.6 107.0 ± 4.6 115.1 ± 5.0 114.6 ± 6.0 
8 694 167.9 ± 6.2 80.8 ± 6.9 87.9 ± 4.6 93.2 ± 4.3 99.6 ± 5.8 99.9 ± 12.4 
9 589 149.5 ± 9.6 55.2 ± 8.0 85.0 ± 8.0 98.4 ± 7.0 110.7 ± 10.0 116.1 ± 10.7 
10 235 141.5 ± 17.5 73.2 ± 13.8 87.2 ± 11.3 101.2 ± 10.5 113.9 ± 12.2 55.8 ± 10.0 
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4.3.5 Functional Analysis 

To assess how the CG structures might influence the functional characteristics of 

zinc sites, the distances between clusters were calculated from both the ligand-zinc-ligand 

bond angles and InterProScan annotations that overlap a zinc-ligand. These distances 

were compared using Spearman’s rank correlation coefficient rho and p-value.  

For k=10 normal group, the correlation ranged from 0.6 to 0.9 depending on the 

number of ligands required in the overlap between zinc binding sites and annotation sites 

identified by InterProScan. This high level of correlation implies there is a definite link 

between the coordination geometry and the functional properties of a given zinc size. 

This is expected based on the sequence-structure-function tenet of structural biology; 

however, it is still beautiful to see.   

Table 4.6 Angle statistics of k-means clustering on normal+compressed zinc fc-shells, 
k=14. 

Cluster Size Angle 1 Angle 2 Angle 3 Angle4 Angle 5 Angle 6 
1 349 149.1 ± 5.9 87.0 ± 6.8 94.6 ± 5.0 101.3 ± 4.2 109.4 ± 5.0 98.9 ± 7.0 
2 285 130.5 ± 9.0 50.7 ± 9.3 90.4 ± 9.4 103.1 ± 6.9 113.3 ± 7.0 95.6 ± 9.8 
3 524 148.7 ± 8.9 54.8 ± 7.1 85.4 ± 7.5 97.8 ± 6.7 109.6 ± 9.4 117.4 ± 10.7 
4 257 134.4 ± 6.5 82.5 ± 7.6 94.5 ± 7.3 108.9 ± 7.0 122.1 ± 5.8 89.7 ± 8.2 
5 189 126.4 ± 12.6 51.5 ± 7.0 67.2 ± 11.0 84.2 ± 8.8 99.5 ± 10.9 86.6 ± 16.8 
6 773 126.3 ± 5.3 97.4 ± 4.5 104.3 ± 3.7 110.0 ± 3.9 115.7 ± 3.8 97.9 ± 5.5 
7 442 168.1 ± 6.3 80.7 ± 5.9 88.1 ± 4.0 93.4 ± 3.8 99.8 ± 5.4 114.2 ± 9.1 
8 951 120.9 ± 3.6 96.6 ± 4.4 103.2 ± 3.2 108.5 ± 3.4 114.0 ± 3.4 112.6 ± 3.9 
9 162 135.1 ± 15.2 75.2 ± 13.3 90.8 ± 9.2 102.5 ± 9.2 115.2 ± 9.9 52.8 ± 8.4 
10 300 134.6 ± 6.4 87.2 ± 6.8 96.3 ± 5.3 104.2 ± 5.0 115.0 ± 6.6 117.1 ± 7.6 
11 1224 116.1 ± 2.8 103.4 ± 3.1 107.3 ± 2.1 110.0 ± 2.0 112.5 ± 2.1 106.7 ± 4.1 
12 144 156.6 ± 10.0 54.6 ± 8.9 73.5 ± 11.0 106.1 ± 12.1 127.6 ± 11.5 86.8 ± 15.2 
13 385 166.1 ± 7.5 79.3 ± 8.3 87.1 ± 5.3 92.6 ± 4.6 99.4 ± 6.6 86.3 ± 10.5 
14 214 165.3 ± 8.7 76.4 ± 9.1 87.0 ± 4.7 93.6 ± 4.6 101.7 ± 7.7 152.7 ± 11.3 
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Figure 4.9. Hierarchical dendrogram (A, B) and Spearman’s correlation (C) of structural 

and functional distances for k=10 in the normal group.  

 

Figure 4.10 Hierarchical dendrogram (A, B) and Spearman’s correlation (C) of structural 

and functional distances for k=8 in the compressed group.  
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Figure 4.9 shows the comparison of the dendrograms constructed from structural 

(Panel A) and functional (Panel B) distances for the normal group. Both structural and 

functional information created a hierarchical dendrogram cluster comprising normal k-

means clusters 2 (nk2), nk5, nk6, nk7, and nk10 together, which are all Tet subclasses. 

Structurally, Bva (nk3) is the next closest k-means cluster to the Tet super-cluster; while 

functionally, Bva is closer to the core Tet super-cluster than distorted Tet (nk5), which 

shows a relationship with another distorted CG cluster (nk1). As for k-means clusters 

nk1, nk4, nk8 and nk9, distorted Pyv (nk1) and Pyv (nk4) are the first to cluster together 

in the structural dendrogram, closely followed by Bpv (nk8) and then Spl (nk9). Similarly 

in functional dendrogram, Pyv (nk4) and Bpv (nk8) are grouped together and then with 

Pyv (nk1). 

Figure 4.10 shows the same comparison for compressed group. Compressed k-

means cluster 4 (ck4) and ck7 are in a subgroup in both structural and functional 

dendrogram, and so are ck1 with ck5, and ck2 with ck8. These observations definitely 

indicate there are certain structure-function relations lying in these clusters that need to 

be further investigated. The 3D structure of ck1 looks like an inverted Tet or Bva, and 

ck5 is a completely new CG that does not even resemble any known CGs. They both 

worth further investigation as well.  

In addition to comparing the structural and functional distances directly, 

functional annotation enrichment was performed for both the normal and compressed 

zinc sites. We used hypergeometric enrichment to compare the EC annotation and IPR 

annotations that overlap a zinc site in the normal and compressed groups relative to all of 

the annotated zinc sites.  
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We trimmed the EC numbers to the second digit as annotations for enrichment 

calculations. The EC numbers are enriched in either the compressed or normal group, but 

not both. The most enriched enzyme classes in the normal group are 4.2 (carbon oxygen 

lyases), followed by 2.1 (transferases transferring one-carbon groups), 3.4 (peptidases), 

and 4.4 (carbon sulfur lyases). Comparatively, in the compressed group, the most 

enriched enzyme classes are 1.7 (oxidoreductases acting on other nitrogenous compounds 

as donors), 0 (no EC number), 3.2 (glycosylases), 1.16 (oxidoreductases oxidizing metal 

ions), and 2.4 (glycosoltransferases).  

Similarly, a number of InterPro annotations are enriched in either the normal or 

compressed group, but not both. In fact, many of the InterPro annotations in the normal 

zinc sites are not present at all in the compressed sites, but all sites are only in the normal 

group, including the most highly enriched annotations such as C2H2 zinc fingers 

(IPR015880, IPR007087) and glycoside hydrolase (IPR027291, IPR015341, 

IPR028995). Many of the other highly enriched annotations in normal have only a few 

sites in the compressed group, including carbonic anhydrase (IPR018338, IPR023561, 

IPR018443) and PHD-type zinc fingers (IPR013083, IPR019787, IPR019786).  

The compressed-specific annotations included pollen allergen (IPR001778, 

IPR002914), as well as protein of unknown function (IPR010281). Other highly enriched 

annotations include immunoglobulin domains (IPR013783, IPR007110, IPR013106), 

ferritin (IPR009078, IPR012347), superantigens (IPR016091, IPR013307), 

staphylococcal/streptococcal toxins (IPR006126, IPR006173, IPR006177).  
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These results imply that although there are many functions that can be performed 

by both normal and compressed CGs, there are some that appear to be specific to one 

type or the other. 

4.4 DISCUSSION 

Previous works have attempted to characterize zinc binding in metalloproteins by 

considering only canonical zinc CGs that have been previously observed and explained 

by coordination chemistry. However, when these expectations of canonical CGs are 

applied to zinc ions bound by proteins, many zinc sites are classified as outliers or are 

misclassified with respect to CG [8, 24].  Our analysis of ligand-zinc-ligand bond angles, 

where the best fc-shell is determined from only previously characterized zinc-ligand 

bond-lengths, showed the presence of angles below 58 (compressed) and 38 (super-

compressed) degrees. As these angles are incompatible with any previously characterized 

canonical CG, they implied the existence of unknown CGs. Many, but not all of the 

compressed and super-compressed angles appear to contain bidentate ligands (wherein 

two of the ligands to the zinc atom are from the same amino acid residue or molecule) or 

non-amino acid ligands. This points to the need for “less biased” methods for determining 

zinc CGs in proteins.  

What is especially interesting is that it is not possible to organize all of the CGs 

using only the angle information. Clustering all of the zinc sites using only the sorted 

angles does not lead to stable clusters (Figure 4.8, Table 4.3, and 4.4). This aspect of the 

CG detection methodology (in combination with using known bond-length mean and 

standard deviations) leads to our method being “less biased” than previous methods, 



 70 

however there is still a bias. The sites must still be classified as either normal or 

compressed prior to clustering on the angles. But this classification is based on direct 

observations of the angle distributions in the dataset and not on prior belief of what is in 

the dataset. 

Following the clustering of the normal and compressed zinc sites, assignment to 

canonical CGs was made based on agreement with their expected angles. The normal 

sites fit canonical CGs very well, as is expected. An attempt was made to relate the 

compressed CGs to canonical CGs using a combination of criteria including χ2 

probability calculations after removing the compressed angle to remove that as a source 

of bias. The assignment to canonical CGs in this case is still a bit of a misnomer, as most 

of these severely compressed versions of canonical CGs have not been described in the 

literature.  From this perspective they can be viewed as novel CGs. However, we took the 

conservative approach of simply describing them as large distortions of the canonical 

CGs.  We have also labeled the compressed CG (cluster 5 of the compressed group) that 

appears completely distinct from all of the other canonical CGs as truly “novel”.  

To allay suspicions that these compressed angles are the result of experimental 

artifacts, such as whether or not it is just due to the uncertainty of the X-ray experiment, 

we calculated the average of the b-factors of the ligands composing the compressed angle 

versus normal angles. As shown in Figure 4.11, there is no significant difference in b-

factors between different composing ligands. There is literature suggesting some of the 

compressed angles are a result of a phenomenon called a carboxylate shift [108], which is 

a thermodynamic mechanism enzymes employ to sustain the CG when binding and 

leaving a substrate. However no one has systematically examined this phenomenon in 
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terms of metal’s CG in wwPDB. Also, a simple mechanism could not cover all instances, 

such as the bidentation caused by ligation of cysteine’s backbone and side chain together.  

The compressed and “novel” CGs beg the question: why have they not been 

previously reported? One answer is that until recently there have not existed enough 

example structures for them to be reliably observed even with our “less biased” 

characterization methods. Figure 4.12 shows how the number of compressed zinc sites 

has increased proportionately with the growth of wwPDB. It is only within the past 10 

years that enough compressed sites existed in wwPDB for a rigorous study to observe and 

detect them. More importantly however, is the fact that even with a relatively large 

fraction of compressed sites, an analysis that considers only the canonical CGs from 

previously identified zinc coordinations and bonding structures, will remove compressed 

sites from the analysis as outliers. This is exemplified by the work of Andreini et al, 

MetalPDB22, where the summary of zinc metal showed the “outlier” category had the 

largest number of instances. Figure 4.12 shows that there should have been more than 

enough compressed sites to be detectable; however, there were no compressed sites 

reported by Andreini et al. There were a number of outliers noted in their work. Some of 

the “outliers” reported by Andreini et al were likely zinc sites with compressed CGs, but 

because their analysis considered only “normal” zinc CGs, the compressed CGs were 

overlooked and not reported. This directly underscores the need for “less biased” 

analyses of metal CGs in proteins so that these previously described CGs are not 

overlooked or merely classed as “outliers” and completely removed from an analysis. 
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Figure 4.11 B-factors for different categories. bi_bi includes the bidentate ligands in the 

compressed zinc sites; bi_nonbi includes the non-bidentated ligands in the compressed 

zinc sites; nonbi includes all ligands of the normal zinc sites. 

 

Figure 4.12 Analysis of the deposition history of the March 2013 wwPDB zinc 

metalloprotein entries with compressed angles. Publication date of the key references are 

indicated on the graph. 

Albert 1998 

Andreini: 
FindGeo 2012 

Patel 2007 
Andreini: 
MetalPDB 2013   

Liu 2013 
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These compressed sites also show enriched functionality relative to all of the 

sites, suggesting there are particular functions or enzyme classes that are preferentially 

compressed. The correspondence between CG cluster distances from angles and cluster 

distances from functional annotation further emphasize the functional importance of the 

compressed and novel CGs. However, it should also be emphasized that it is difficult 

from this work to assign functionality to particular normal or compressed clusters, as 

multiple clusters seem to share functionality.  We see two possible explanations: a) 

presence of false positives in associating function with the zinc sites and b) potential 

existence of zinc metalloproteins with multiple zinc-coordinating CG conformations, but 

where the x-ray crystal structure freezes out just one conformation. Improvements in 

functional annotation methods will be required to address these short-comings, including: 

i) the development of better annotating hidden Markov models (hmm) to better relate 

zinc binding site detected from protein sequence to specific protein functions ii) the 

development of better methods that relate overlapping protein regions with respect to 

protein functions.  Dealing with the second explanation may only be addressed by NMR 

studies [109] and/or newer combined quantum mechanical, molecular mechanical, 

molecular dynamics (QM/MM-MD) simulations [110]. 

4.5 CONCLUSION 

In this chapter, our “less biased” approach was presented for the classification of 

zinc binding sites with respect to CG that allows for the detection of novel CGs.  From 

one perspective, we have detected eight novel CGs that contain compressed angles and 
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cannot easily be classified into one of the canonical CGs.  From another perspective, 

seven of these eight novel CGs can be viewed as highly distorted versions of the 

canonical CGs; however, this perspective may be considered as simply trying to push a 

square peg into a round hole.  From either perspective, one of the compressed CGs 

appears to be truly novel and distinct from all canonical CGs by every probabilistic, angle 

comparison, and visual inspection criteria we could use. As wwPDB continues to grow, 

additional distorted or novel CGs may become detectable; however, we will only be able 

to detect these previously undetected CGs by using an unsupervised clustering approach 

such as the one described in this chapter rather than applying a supervised classification 

method based on “known” CGs which has been the method of choice up to this point in 

time.  In other words, we will only be able detect these previously undetected CGs if we 

stop assuming that we already know what a dataset contains before analyzing it. 
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CHAPTER 5 

COORDINATION GEOMETRY AND FUNCTIONAL PROPENSITY OF 

TOP FIVE METALLOPROTEINS 

5.1 Introduction

Chapter 4 demonstrated a proof of concept that our analysis pipeline works in 

characterizing zinc metalloproteins’ coordination geometry (CG). It presented a general 

CG description of single zinc ion that could be constructed based on 3D-structure and has 

a high (0.88) correlation with function. Furthermore, we showed that a large number of 

aberrant 4-ligand CGs in zinc metalloproteins with significant deviations from canonical 

CGs existed due to structural constraints from the metalloprotein. These constraints, 

mostly in the form of bidentated ligands, and associated aberrant CGs revealed unique 

functional relationships. However, these results created several new questions:  

1) Could similar functionally relevant structural descriptions of CG be constructed 

for other common metals, involving different numbers of ligands? 

2) Would similar or even new structural constraints and aberrant/novel CGs be 

detected? 

In order to address these questions, we greatly expanded our methodology to 

allow construction of CG structural descriptions with an arbitrary number of ligands. We 

also significantly improved our detection of metal binding ligands by adding several 
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quality control filters, compensating for crystallographic resolution, and by preventing 

false detection of ligands. These improvements helped to detect and structurally describe 

single metal ion CGs and their functional relationships across the five most abundant 

metalloproteins (see Table 5.3). 

 

Figure 5.1Workflow for Chapter 5. 

 

5.2 Methods 

A general workflow for this chapter is shown in Figure 5.1. It kept the main steps 

of the pipeline in Chapter 4, while added several quality control steps to remove “bad” 
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data and improve the statistics in use. The basic idea holds that the less biased bond-

length statistics was used in defining metal binding shells, while the angles were used for 

classifying the CG. Several improvements were made to reduce the error rate in ligand 

selecting. A collapsed angle space was used to increase the CG clustering efficiency.  

5.2.1 Define Metal’s First Coordination Shells (Fc-Shells) 

All released structural entries were downloaded from wwPDB on Feb 25, 2015. 

Our metalloprotein filtering tool identified all PDB entries with at least one metal atom in 

the HETATM record and removed entries with fewer than 20 amino acids in the 

SEQRES record. Next, metal clusters were identified and removed, using two metal 

atoms within 3Å as the filter. The top five abundant metals, Zn, Mg, Ca, Fe, and Na, were 

kept for the rest of the analyses in this chapter. If not specified, all analyses were carried 

out for each metal separately at first and then combined together by ligand number. The 

overall workflow is shown in Figure 5.1. Since the general procedure is similar to what 

was performed in Chapter 4, we are mainly highlighting the extensive list of 

improvements here. 

5.2.1.1 Acquire Initial Fc-Shells and Bond-length Statistics (Step 1) 

For each metal site, we generated a list of potential non-H shell ligands (including 

carbon) within a certain distance of the metal atom. The initial lower cutoff is 1.3 Å for 

all metals, and the initial upper cutoff is based on the atomic radius of the metal as shown 

in Table 5.1. To avoid the inclusion of second shell atoms due to this generous upper 

cutoff, the bond-lengths between any atom and the metal must be smaller than 1.5 times 

the bond-length of the metal to any other atoms in the cutoff, and smaller than 1.5 times 

the bond-length between the two atoms. This ‘triangular rule’ can help exclude atoms that 
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do not directly bind to the metal but are still part of the metal’s local chemical 

environment. We then used the CG evaluation tools to bootstraping the best-fitted 

canonical CGs in order to identify an initial set of binding ligands. To achieve that, all 

subsets and permutations of the ligands and the corresponding ligand–metal–ligand 

angles (angles) were computed and compared to the ideal angles of the canonical CGs, 

tetrahedral (Tet), trigonal bipyramidal (Tbp), octahedral (Oct), and pentagonal 

bipyramidal (Pbp). Several additional filters were applied to the set of atoms before 

checking against the canonical CGs: 1) only one of the alternate locations of an amino 

acid residue was allowed to be in the set; 2) if any two atoms are smaller than 1.5Å or 

greater than 6.0Å, they were marked as unreasonable atom-atom distance and eliminated; 

3) if any of the atoms are symmetry-related, unless it is from author determined 

biological units or all symmetry-related atoms are water, the binding site would be 

excluded from further analysis; 4) we also excluded the metal site if the majority of its 

ligands were water. These filters limit the inclusion of metal binding sites that may 

represent non-specific binding or crystallographic artifacts. These filters limit the 

inclusion of metal binding sites that may represent non-specific binding or 

crystallographic artifacts. The canonical CG that passed all filters and had the smallest 

angle variance to the actual structure was classified as the structure’s CG, and the set of 

atoms were considered the binding ligands.  

5.2.1.2 Update the Upper Cutoff (Step 2) 

As the initial binding ligands were identified, bond-lengths of each element type 

(O, S, N, …) were acquired. The inclusion of carbon as the binding ligands in Step 1 can 

be used to estimate the chance of having an atom accidently aligned as well as a 
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canonical CG in regard to other binding ligands. This is due to the increasing atom 

density with respect to angle space as a shell inclusion cutoff increases. A new upper 

cutoff was then set to the average between bond-length mean plus one standard deviation 

of the most abundant element and the main carbon peak. The updated upper cutoff is 

generous enough to include most of the actual binding ligands but still effective enough 

to exclude falsely detected ligand atoms. Take Zn for example, the most abundant ligand 

element is S, as shown in Figure 5.2, and the Zn-S bond-length mean and standard 

deviation are 2.341Å and 0.152Å accordingly. The main peak of the fictional Zn-C is 

3.071Å, so the middle point between them is (2.341 + 0.152Å + 3.071)/2=2.782 (Å), 

which became the updated bond-length cutoff for the ligand detection of zinc ions.  

 

Figure 5.2 Updated bond-length cutoff for zinc. 
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 The computational bootstrapping step was then carried out again using the 

updated cutoffs to obtain the list of potential shell ligands. The same triangular and other 

rules were applied. Though this time we only kept elements with a high occurrence 

(>5%), and also dismissed the carbon. After the second round of bootstrapping, the new 

tentative metal binding shells were defined. The element-specific bond-length statistics 

(means and variances) were calculated for each metal. 

5.2.1.3 Adjust Bond-Length Standard Deviation Based on X-Ray Resolution (Step 3) 

It has been known that the bond-lengths scatter more as the crystallographic 

resolution gets worse (17). Our data shows that the relationship between a bond-lengths 

standard deviation and resolution is similar regardless of the metal or the element type 

(Figure 5.3). Resolutions with more than 30 data points were kept in calculating the 

standard deviation specific to resolution. A resolution cutoff of 3.5Å was used to ensure a 

reasonable quality of the data in this step. Considering all metal-element pairs together, 

we were then able to compute the combined slope of bond-length standard deviation 

versus resolution. Then for each individual metal site, an adjusted bond-length standard 

deviation was calculated as: 

sdx = c (Rx – Ravg) + sdavg  (5.1) 

where c is the combined slope, sdavg and Ravg are the overall bond-length standard 

deviation and the average resolution of a given metal-element type, Rx is the resolution of 

the metal site to be calculated. The resulting adjusted bond-length standard deviation, sdx, 

was used for the next step.  
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5.2.1.4 Acquire the Final Metal Fc-Shell (Step 4) 

With this adjusted bond-length standard deviation, all atoms within the updated 

cutoff (5.2.1.2) were revisited and only atoms that are within 2.5 adjusted standard 

deviations of its expected value were kept. The same set of filters as in step 1 was 

employed again to check the quality of the remaining atoms. The atoms that passed all 

filters composed our final metal fc-shells for the rest of the analyses. Finally, a non-

redundant set of metal list with a resolution better than (smaller than) 3Å and an 

occupancy greater than 0.9 was also derived for clustering analysis. 

5.2.1.5 The Iterative Algorithm (IA) Process (Step 5) 

At each iteration, a χ2 probability was calculated for each CG model at each metal 

site, using a combined angles and bond-lengths vector. All combinations of the atoms 

within the updated cutoff defined in 5.2.1.2 were considered. We excluded the 

combinations if there are angles between the atoms that are below a cutoff specific to 

each metal based on its smallest angle histogram (Table 5.1). The same set of filters as in 

5.2.1.1 was also applied. All CG models in Figure 2.9 were considered. An angle 

correlation was estimated for each CG to calculate the χ2 statistics as in Chapter 4.2.1.5. 

However for Tpr, Sqa, Hbp, and their associated minor CGs, the angle correlation matrix 

has a large size and big inequality in the numbers. Thus, the inversion that is required for 

the χ2 statistics calculation is incapable of capturing the angle’s influence over each 

other. So we treated the angles as independent variables, but with a 1.5 multiplier on the 

variance to counter the effect of dependency in the χ2 statistics calculation. The CG 

model that possesses the highest χ2 probability was classified as the metal site’s CG. 

Both angle statistics of each CG and bond-length statistics of each element were 
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calculated from at the end of an iteration, and were then used in the χ2 probability 

calculation of the next iteration. The iteration continued until all statistics converged. 

5.2.2 K-Means Cluster And Assignment 

5.2.2.1 Random Forest (Step 6) 

Random Forest was used to separate the normal and compressed groups. Training 

data were composed of the main angle peaks from the smallest angle histogram. The 

cutoff for the normal and compressed training data was specific to each metal (Table 5.1). 

The smallest angle, the two ligands composing the smallest angle, and the bidentation 

status of the smallest angle are the features for training the classifier.  
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Table 5.1. Top 5 metals and their derived distance cutoffs defining the coordination shell 

Metal 
Atomic 
radius 
(pm) 

Initial 
distance 
upper 
cutoff 
(Å) 

The most 
abundant 
element 

Bond-
length 
mean of the 
most 
abundant 
element (Å) 

Bond-length 
standard 
deviation of the 
most abundant 
element (Å) 

Carbon 
mean 
peak (Å) 

Element 
included 

Updated 
distance 
upper 
cutoff 
(Å) 

IA small 
angle 
removal 
cutoff 
(Å) 

Random 
forest 
cutoff 
(degrees) 

Zn 135 3.20 S 2.340 0.152 3.071 S, O, N 2.782 68 58/68 
Mg 150 3.35 O 2.350 0.368 3.067 O, N 2.892 65 52/68 
Ca 180 3.65 O 2.481 0.271 3.432 O 3.092 60 55/65 
Fe 140 3.25 N 2.063 0.134 3.081 N, O, S 2.639 68 63/73 
Na 180 3.65 O 2.697 0.369 3.568 O 3.317 60 45/60 
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Table 5.2. 6-angle space for all CGs 

CG Largest  Sorted middle (Smallest-middle, 33-quantile-middle, 66-quantile-middle, largest-middle positions are 
in red) 

Smallest 
opposite 

Tet 109.5 109.5, 109.5, 109.5, 109.5 109.5 
Bva 120 90, 90,120, 120 90 
Bvp 180 90, 90, 90, 90  120 
Pyv 180 90, 90, 90, 90 90 
Spl 180  90, 90, 90, 90 180 
Tbp 180  90, 90, 90, 90, 90, 90, 120, 120 120 
Spy 180  90, 90, 90, 90, 90, 90, 90, 180 90 
Tpv 131.8  70.6, 90, 90, 90, 90, 131.8, 131.8, 131.8 70.6 
Oct 180 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 180, 180 90 
Pva 144  72, 72, 72, 72, 90, 90, 90, 90, 90, 144, 144, 144, 144 72 
Pvp 180  72, 72, 90, 90, 90, 90, 90, 90, 90, 90, 144, 144, 144  72 
Tpr 131.8  70.6, 70.6, 90, 90, 90, 90, 90, 90, 131.8, 131.8, 131.8, 131.8, 131.8 70.6 
Pbp 180  72, 72, 72, 72, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 144, 144, 144, 144, 144  72 
Hva 180  60, 60, 60, 60, 60, 90, 90, 90, 90, 90, 90, 120, 120, 120, 120, 120, 120, 180, 180 60 
Hvp 180 60, 60, 60, 60, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 120, 120, 120, 180, 180  60 

Cuv 180  70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 109.5, 109.5, 109.5, 109.5, 109.5, 109.5, 109.5, 109.5, 
109.5, 180, 180 70.5 

Sav 143.6 70.5, 70.5, 70.5, 70.5, 70.5, 82, 82, 82, 82, 82, 82, 109.5, 109.5, 109.5, 143.6, 143.6, 143.6, 143.6, 
143.6 70.5 

Hbp 180  60, 60, 60, 60, 60, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 120, 120, 120, 120, 120, 120, 180, 180, 
180 60 

Cub 180  70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 109.5, 109.5, 109.5, 109.5, 109.5, 109.5, 
109.5, 109.5, 109.5, 109.5, 109.5, 109.5, 180, 180, 180  70.5 

Sqa 143.6  70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 82, 82, 82, 82, 82, 82, 82, 82, 109.5, 109.5, 109.5, 109.5, 143.6, 
143.6, 143.6, 143.6, 143.6, 143.6, 143.6 70.5 
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5.2.2.2 K-Means Clustering (Step 7) 

K-means clustering was employed to cluster the metal sites based on their ligand-

metal-ligand angles. All angles were first ordered as largest angle, opposite angle, and the 

smallest opposite angle. The opposite angles are those that do not share any ligands with 

the largest angle, and the middle angles are all angles except the largest and the smallest-

opposite angle. To enable metal sites with different number of ligands to be comparable 

with each other, we reduced the all-angle space to a 6-angle space via selecting the 

following angles from all angles of a given metal site: largest angle, smallest-middle 

angle, 33-quantile-middle angle, 66-quantile-middle angle, largest-middle angle, and 

smallest-opposite angle. Shown in Table 5.2, the selected middle angles are in red. This 

reduced angle space can preserve the key information needed for separating each CG, 

while reducing the redundancy of the repeated angles. Four measures were used in 

determining the optimal number of clusters (k). The Jaccard index computes how well 

matching clusters overlap between iterations. The sum of difference indicates how close 

the cluster centers are to each other between iterations. And the rho and p-value indicate 

an average of functional propensity between clusters. For all four measures, a larger 

value denotes a better performance.  

5.2.2.3 Cluster Assignments (Step 8) 

To characterize the clusters, we check the cluster centers and calculated a χ2 

probability of each CG model for each metal site. The model that had the highest cluster-

average probability was then characterized as the cluster’s CG. 
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5.2.2 Functional Validation of The K-Means Clusters (Step 9) 

We ran InterProScan (21, 22) 5.18-57 using the current versions of its member 

databases on the non-redundant sequences previously determined. We retained only those 

results with an InterProScan (IPR) annotation mapping and overlapping at least one 

ligand residue. We derived and evaluated the consistency of CG-based structure and 

sequence-based function annotation relationships between k-means clusters. We also 

determined functional enrichment of k-means cluster. 

 

Table 5.3 Numbers of metalloproteins in wwPDB as of Feb 2015. 

Metal Number of 
PDB entries 

Number of 
total metal 
sites 

Metal 
Number 
of PDB 
entries 

Number of 
total metal 

Zn 9,360 26,788 Pb 48 152 
Mg 9,145 53,896 Gd 42 197 
Ca 7,762 24,335 Tl 40 261 
Fe 6,359 27,514 Rb 37 153 
Na 4,888 16,527 Sm 33 111 
Mn 2,266 8,138 Ir 31 48 
K 1,673 5,306 Pr 22 55 
Cu 1,134 4,397 Rh 20 46 
Ni 935 2,252 Eu 19 61 
Co 915 2,087 Pd 19 85 
Cd 758 4,289 Ag 18 75 
Hg 528 1,923 Os 14 33 
Pt 191 629 Lu 13 56 
Mo 176 664 Ho 12 35 
Al 158 351 Tb 11 32 
V 120 364 Cr 9 21 
Ba 118 311 Ga 8 10 
Sr 118 3,551 La 8 18 
Ru 99 134 Sb 5 10 
Cs 88 393 Ce 4 7 
W 76 1,443 Er 2 6 
Yb 72 177 In 2 3 
Au 64 322 Bi 1 1 
Y 53 202 Dy 1 30 
Li 52 88 Total 47,527 187,587 
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5.3 Results and Discussion 

5.3.1 Defining the Metal Fc-Shells 

The wwPDB contains a total of 106,427 structures as of Feb 25, 2015, and 47,527 

of which are metalloproteins. The number of metalloproteins and metal sites can be found 

in Table 5.3. The five most abundant metals, Zn, Mg, Ca, Fe, and Na are primarily 

considered in this chapter.   

5.3.1.1 Defining the Metal Coordination Shell Cutoff  

Determining a metal’s binding ligand is not as straightforward as one would 

anticipate, as first- and second-coordination atoms from a protein are often crowded 

together around the metal ion.  In this situation, there is no simple rule in deciding 

whether an atom is metal binding or not. This is partly due to the limitations in structural 

resolution, crystallographic artifacts, and to phenomena such as carboxylate shift (23) 

that smear the metal-ligand bond-lengths.  The determination is often achieved 

simultaneously with a metal binding site’s CG classification. The most common approach 

is to use a simple distance cutoff and then select a ligand subset that best fits one of the 

canonical CG models (15), but also sometimes takes into account the bond valence model 

(14). The dilemma of choosing the cutoff is, if it is too generous, extra atoms will be 

included, which will increase the demand for a more accurate CG fitting method. But if it 

is too strict, some of the loosely bound ligands will be excluded in the first step, which 

will hinder the fitting to the correct CG model. This methodology also precludes the 

assumption of non-canonical, aberrant CGs.   
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As Chapter 4 showed, simply matching to canonical CG models is problematic, 

which makes the accurate detection of metal binding ligands even more critical for 

detecting and analyzing CG. In this chapter, we first used an initial shell cutoff based on 

the metal’s atomic radius to detect potential ligands to canonical CGs in order to derive 

metal-ligand bond-length statistics for use in later steps. This first round of bootstrapping 

can capture the general distribution of bond-length for each ligand element. However, 

Figure 5.2 clearly shows that if this raw shell cutoff is the only criteria used, significant 

numbers of non-ligand second-shell atoms (represented by carbon) will be included due 

to the atom-angle density issue. To get rid of these non-ligand second shell atoms, we 

used carbon to estimate the false ligand metal distance distribution and then identified 

where the false ligand atoms start to appear with high probability (i.e. the highest carbon 

atom mode). In other words, we used the ubiquitous presence of carbon in protein 

structures to estimate ‘accidental’ angle alignment with other ligands to fit any canonical 

CGs.  In order to make sure that most of the actual binding ligands were included, the 

new shell cutoff was also set to ensure the inclusion of the majority of the most abundant 

ligand element. The red lines in Figure 5.2 shows the cutoffs used for Zn, which were the 

middle points between the main carbon peak and mean plus one standard deviation of 

sulfur, the most abundant element of zinc. We also included a triangular test to filter out 

any atoms that is connected to the metal through more than one bond. With these 

improved shell cutoffs (Table 5.1) and additional heuristics, we were able to generate 

improved bond-length statistics for each metal-ligand elemental combination. 
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5.3.1.2 Bond-length Standard Deviation Adjustment  

For accurately detecting the proper set of ligands, our next major improvement 

involved adjusting the bond-length standard deviation based on crystallographic 

resolution. With accurate bond-length statistics, the detection of the proper set of ligands 

can be performed independently, a single ligand at a time, via a statistical test. However, 

the bond-lengths tend to scatter (vary) more as the structure resolution gets worse (i.e. 

larger resolution value) for a specific metal-element type (17). Rather than greatly 

restricting our analyses to structure entries with only high resolution like <1.5Å, we are 

able to safely extend our analyses to structure entries with lower resolutions down to 

3.0Å by taking the crystallographic resolution into consideration in the statistical test.  In 

order to do this, we shifted all the bond-length standard deviation (bl-std) to resolution 

data points along the y-axis by its own overall metal-element bl-std. Figure 5.3 shows 

that regardless of the metal and binding element, the bl-std and resolution relationship is 

of the same proportion. Therefore, a combined slope can accurately describe this 

relationship and be used to adjust an individual metal-atom pair’s standard deviation 

according to the entry’s resolution as shown in Equation 5.1. We also tested deriving 

similar standard deviation adjustments based on R-factor and R-free and combinations of 

R-factor, R-free, and resolution (data not shown).  Combinations did not work well since 

the low density of entries prevented accurate calculation of metal-ligand bond-length 

standard deviations.  However, in the future, we may have enough structural examples to 

re-examine combinations. As of currently, the resolution-corrected bl-std provides the 

highest correlation for the resulting clusters.  
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Figure 5.3 Bond-length standard deviation vs. resolution. The trend is similar regardless 

of the bond type. A combined regression line is determined based all data points together, 

weighted on the member counts composing each data points. 

 

5.3.1.3 Voting Individual Ligand Via Statistical Test 

The bond-length histograms show an approximate normal distribution for most of 

the metal-ligand bond types. Therefore, a simple parametric test is used to detect ligands 

based on bond-length means and resolution-adjusted standard deviations. We tested a 

range of ligand detection standard deviation cutoffs from 2 to 3 bl-stds. When the stricter 

cutoffs (i.e. 2 bl-stds) are used, all downstream cluster measures tend to be higher and 
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more stable. But on the other hand, fewer ligands will be counted as binding ligands. And 

due to deviations from normality, ligands in compressed angles are disproportionately 

lost, which leads to insufficient number of compressed angle for clustering. Therefore, a 

2.5 bl-std cutoff was used for this study to compromise between the two situations. Thus, 

2.5 standard deviations ensure that approximately 98.8% of the suitable ligands will be 

included. The bond-length distributions of the final fc-shell ligands are shown in Figure 

5.4. 

Another possible way of determining the binding ligands is to use chi-squared 

probability testing for the set of potential ligands together. Compared to the chi-squared 

method, the single ligand testing does a much better job in identifying a higher number of 

ligands, as it could correctly characterize the most common number of ligands of Fe, Mg, 

and Na as six and Ca as seven, while our previously published chi-squared probability 

method tended to favor 4-ligand structures for all metals. 

5.3.1.4 Filters Used In Getting The Metal Fc-Shell Ligands 

Several additional filters were employed in several steps throughout our analysis. 

A symmetry-related filter was one of the major filters added. In Chapter 4, all structures 

were only considering what was directly reported in the PDB coordinates file, while we 

overlooked how x-ray crystallography actually works. In x-ray crystallography, the 

protein form crystals, repeated symmetric components, before being detected in the 

instrument. Especially for homomultimeric proteins, only a representative single unit will 

be deposited in the PDB file. So when considering an interaction between metal and 

ligand, especially when the metal is on the interface between the multimers of a protein, 

we need the adjacent subunits to decide what is truly binding the metal. Crystallographic 
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symmetry information within a unit cell can be found in REMARK 290 and REMARK 

350. Symmetry information of adjacent unit can be calculated from CRYST1, ORIGX, 

and SCALEX record. However, we need to be careful to distinguish a biological 

multimer from a crystallographic multimer. To accomplish that, we used the author 

provided information in PDB (REMARK 350) for the distinction. Water is an exemption 

here, as it is often the solvent, and does not belong to any multimeric protein unit even 

though symmetry-related water molecules can be calculated for different unit cells. 

 

Figure 5.4 Bond-length distribution and statistics of different metal-ligands. 
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Alternate locations may happen for an atom when there are more than one 

possible conformations captured in X-ray detection. It is often associated with the 

occupancy parameter, where one of the alternate locations is 0.6 and the other one is 0.4. 

Only one of the possible alternate locations was used for every amino acid residue. This 

was a sensible filter, but was never mentioned in any previous studies. The ‘triangular’ 

rule was employed to ensure a reasonable ligand-ligand contact. This prevented the 

selection of atoms where another ligand is intervening between the potential atom and the 

metal ion. The rational of removing metal sites that have ligand distance smaller than 1.5 

Å or greater than 6.0 Å was that any abnormal ligand-ligand distances indicate a poor 

quality of the data, and thus should be eliminated. And after the non-redundant test, a 

resolution of 3 Å or better and occupancy of 0.9 or higher filter was also employed. 

All these filters helped to eliminate non-specific binding and ensure a high quality 

of the structural data being analyzed. Table 5.4 shows the count of different number of 

final fc-shell ligand for each metal. The reason for using Tet, Tbp, Oct, and Pbp in 

bootstrapping was because they are the major CG for 4- to 7-ligand CGs, which are the 

most abundant ligand number being detected. As we analyze other metals in the future, 

more major CG may be added in bootstrapping according to the natures of the metal. 

Table 5.4 shows the count of different number of ligand for each metal after step 

4. Based on this data and the physiochemical bonding capacity of a metal ion (i.e. the 

number of ligands a metal ion can bond) [91, 111, 112]), we could estimate an error rate 

for our ligand detection analysis. The error rate was calculated as the number of ligands 

not physiochemically expected (e.g. 7 and 8 for zinc) divided by the total number of 

detected ligands for sites with the largest number of expected ligands. For example, the 
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zinc estimated ligand detection error rate is (2*2+22*1)/(2*8+22*7+1404*6) ≈ 0.00302. 

For four of the five metals, the estimated ligand detection error rate ranges from 0.018% 

to 0.50%, with an overall error rate of 0.23% across these metals.  Error estimates for Na 

ions were not included since we could not find a reliable source indicating which 

coordination numbers for Na are not aqueously, and by inference, biologically relevant 

for Na ion coordination. Thus, our analyses provide both a false positive rate (0.23%) and 

a false negative rate (~1.2%) for ligand detection, indicating a very robust method.  No 

prior protein metal binding site analysis methodology has undergone this level of 

statistical evaluation nor demonstrated this level of rigorous performance.  

 

Table 5.4 Ligand counts for the metals with an estimated error rate. 

Metal 4-
ligand 

5-
ligand 

6-
ligand 

7-
ligand 

8-
ligand 

9-
ligand Total Error rate 

Zn 12,797 3,192 1,404 22 2 - 17,417 0.00302 
Mg 5,187 4,350 6,760 191 7 2 16,497 0.00503 
Ca 1,494 2,122 5,281 6,029 1,495 24 16,445 0.00197 
Fe 1,547 5,182 6,577 7 - - 13,313 0.000177 
Na 1,908 2,435 2,673 450 70 1 7,537 0.00176 
Overall        0.00262 

 

5.3.2 The Universal Existence Of Compressed Angles Among Metalloproteins 

Upon identifying the binding ligands, the smallest ligand-metal-ligand angle of 

individual metal sites can be computed. The smallest angle histograms (Figure 5.5) show 

that there exists two types of angles, normal angles expected from canonical CGs, and 

compressed angles, the majority of which cannot be explained by expected canonical 

CGs. All metals contain both normal and compressed angles. Different metals have a 
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different number of compressed angles. Ca has the highest fraction of compressed angles 

partly due to its ability to bind 7 or 8 ligands, which increases atom density, resulting in 

increased numbers of compressed angles. Hexagonal bipyramidal and its associated 

minor CGs have expected angles of 60 degrees, but they only compose of a small portion 

of calcium’s CGs (15). Mg and Na have a much smaller proportion of compressed angles.  

The reason may be due to the fact that a large amount of their ligands are H2O, 

which cannot form a bidentation with the metal. Though water may not be a causal 

factor, the high percentage of H2O could limit the amount of the other possible ligands 

that could develop bidentation with the metal. Among the normal angles, the peaks 

around 72 degrees of Mg, Ca, and Fe can be justified by the Pentagonal bipyramidal 

(Pbp) CG, or its associated minor CGs. The peak around 90 degrees of Fe, Mg, Ca, and 

Na can be explained by Octahedral (Oct), Trigonal bipyramidal (Tbp), or their associated 

minor CGs. The 109-degree peak of Zn is from the Tetrahedral (Tet) as shown in Figure 

5.5, which matches a similar graph Figure 4.3 generated from data that is two years older. 

Whereas the compressed angles are normally less than 60 degrees, and cannot be 

explained by any known 4-, 5-, and 6-ligand canonical CGs, which are the majority 

ligand numbers for Zn, Mg, Fe, and Na. All five metals contain significant numbers of 

compressed angles and they form a normal-like distribution. If we associate the smallest 

angle based on its binding ligand’s type, like whether it is one of the 20 standard amino 

acids, water, or something else, or whether it is bidentated or not, most of the compressed 

angles consist of bidentated standard amino acid ligand residues.  
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Figure 5.5 Histogram of minimum angles for different metals, broken down by ligand 

number (left) and ligand type (right). 
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5.3.3 Angle-Space Descriptions of CG 

Instead of an all-to-all mapping of ligands followed by comparing all 

corresponding angles, we first ordered the angles by finding the largest and smallest 

opposite angles so that the basic orientation of the metal structure was anchored at the 

ends of the ordered tuple. Then the middle angles were sorted from small to large to 

prevent any scrambling that may be introduced by ligand positioning. This ordering 

allows us to compare individual metal fc-shell not only to canonical CGs, but also to 

other metal fc-shells. Thus, we were able to explore the similarity between metal 

structures. Moreover, different CG models process very distinct ordered angles and are 

easily separable by clustering algorithms. We then further reduced the full-angle space to 

a 6-angle space so that metal sites with different number of ligands are comparable to 

each other and can be analyzed together. As shown in Table 5.2, this ordered angle 

selection method tends to capture a discriminating angle profile for each CG. The largest 

angle and its smallest opposite angle are kept. The middle angles are evenly sampled 

based on their position in the ordering to preserve the key information needed for 

separating each CG while reducing the redundancy.  

In the test of using full-angle space instead of 6-angle space, we observed very 

little difference in the performance in terms of the functional tendency, especially in 5- 

and 6- ligand structures. This suggested this angle space reduction was effectively 

picking up the functional relevant angle information, while removing the noisy 

redundancy coming from the structurally equivalent repeating angles.  However, as the 

ligand number goes above 6, the collapsed 6-angle space represents less and less of the 

total angle information present.  This is not surprising since it is harder to capture 21 (7-
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ligand) and 28 (8-ligand) angles worth of information in just 6 representative angles. It is 

a fundamental problem associated with this angle representation scheme. We observed a 

slightly unstable correlation for 7- and 8-ligand Ca, which could be a synergic 

contribution from both small data size and inadequate angle space representation. Since 

the ligand number for majority of the metals in this study are 4 to 6, this effect needs 

further investigation as more high-ligand-number metals are analyzed. 

To overcome this, we could either use higher or full angle-space representation 

but giving up the ability to combined different number of ligands together, or find other 

ways in representation angles. A possible way is to plot the all angles for each metal, and 

use the angle modes to represent its angle space. If this works, this could overcome the 

fundamental issue with the current angle representation, that is, different ligand numbers 

have drastically different angle numbers, which makes the comparison between them 

rather difficult. 

5.3.4 K-Means Clustering and Assignment 

K-means clustering was conducted with respect to each metal and each number of 

ligands separately, and on combined metals and combined number of ligands as well. We 

particularly analyzed the clustering results in comparison to its counterpart in Chapter 4 

(Figure 4.5). An additional criterion was used to pick out the optimal k from Figure 5.6, 

i.e. all known canonical CGs should have at least one cluster representation. It turns out 

that when k=5, k=9, and k=11 (k that maximizes the four measures overall), all of them 

actually mixed the Bvp (120 at the last angle position), Spl (180) and Spv (90) members 

in different ways while capturing the Tet and Bva members very well. As we go up on 

the number k, it is only until k=24, the Bvp, Spl, or Spv clusters start to separate well. 
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What is interesting is there is a clear peak at k=24 on the graph, which means our method 

is pretty sensitive to the structure-function correlation signal. One explanation is that the 

analysis in Chapter 4 over-estimated the size of 4-ligand zinc metal binding sites, because 

of its ligand detecting methods and lack of the extensive quality-control filters. That is, 

bad data and members of higher ligand CGs may have differentiated the old results. And 

in order to detect a smaller size of Bvp cluster here, k needs to be bigger so that the larger 

CG clusters can be broken down into smaller sub-clusters to match the size of Bvp.  This 

unequal density of clusters is a fundamentally hard problem to solve for clustering 

algorithms [113]. We picked k=9 in this category for its moderate separation of all CGs. 

This leaded to a rho value of 0.93, which is an improvement of the results (0.88) from 

Chapter 4. 

 

Figure 5.6 Four measures for 4-ligand normal group zinc. 
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An optimal cluster number k was manually picked for each group to maximize all 

four measures and to ensure a p-value less than 0.01. For all other categories, we 

computed the cluster centers, a characteristic average probability of each cluster, as well 

as structural vs. functional dendrogram. 

Figure 5.7 illustrates that the ability to obtain good functional relevant (high rho) 

clusters is largely influenced by the size of the data to be clustered. The rho increases 

dramatically at lower counts and plateaus at higher counts. In other words, to achieve a 

stable high value of rho (~0.8), the data size should be at least 1000. Therefore, in some 

of the groups, like 4-ligand compressed zinc with a size of 241, the lack of data could 

greatly hinder our ability to detect a sensible structure-function relationship.  

 

Figure 5.7 The structure-function Pearson’s rank correlation coefficient (rho) as a 

function of the size for real data. 
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In general, combining different metals with the same number of ligand 

(combineMetal) shows a better performance than combining different ligand numbers of 

the same metal (combineNumLig), even though they both enlarge the size of the group. 

We believe this is partially due to how the 6-angle space collapses angle information 

from full angle spaces of different dimensionality. Also for a given number of ligand, 

there are only a fixed number of possible canonical CGs and thus less diversity, even 

with different metals together. It is interesting though that these different metals exhibit 

similar functional trends as long as they have similar sets of CGs. This may imply that 

different metals are somewhat interchangeable as long as the structure remains the same, 

and that the structures have higher impact on functions than the metal itself. It also 

provides evidence that we can combine metals with the same ligand numbers in 

analyzing the less abundant metals and thus have enough data to determine full structure-

function correlations (rho’s).   

A simulation on the 4-ligand normal zinc sites exhibits the same trend. A series of 

subsets of the data were sampled without replacement. The sizes of the subset sequence 

were selected as 0.5/20, 0.75/20, 1/20, 1.25/20, 1.5/20, 1.75/20, 2/20, 3/20, 4/20, … of 

the original data, and each size was repeated for 20 times. k= 9, 11, and 13 were used for 

all subsets to acquire the rho.  As shown in Figure 5.8, the average rho increases as the 

size grows regardless of the selected k. That is, in order to detect a decent correlation 

between structural and functional distance metrics, at least 1000 non-redundant metal 

binding sites is required. That is why only until the last few years, there was adequate 

structural data available to reliably detect the existence of compressed angles in CGs 

(16).   
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Figure 5.8 Simulation of rho verse size relation on 4-ligand normal-group zinc. 

 

For all categories, the cluster centers and a characteristic average probability of 

each cluster are computed, together with the metal ids in each cluster. Figure 5.9.A-C 

uses normal zinc metalloproteins as examples to illustrate the structural vs. functional 

dendrogram comparison. The average probabilities for each cluster with respect to 

appropriate canonical CG models (Figure 5.9.D-F) provides a characterization of each 

cluster with respect to canonical CG models, with the highest canonical CG model 

probability for each cluster shaded. According to the χ2 probabilities for 4-ligand zinc 

(Figure 5.9, panel A and D), clusters 2, 3, 5, 6, and 7 are all sub-classes of tetrahedral 

CG, which are also well clustered together based on both structural and functional 

distances. Cluster 1 is slightly distorted Tetrahedral CG due to its low probability in Tet. 

It is structurally closer to the other Tet clusters, while functionally closer to clusters 8 and 

9, which is a mixture of Bvp and Spv, and distorted Bva respectively. Cluster 4 shows the 



 103 

highest probability for Bvp, and is the furthest from other clusters both structurally and 

functionally. As for 5-ligand Zn metalloproteins (Figure 5.9, panel B and E), clusters 1, 5, 

7, 9, and 10 are all classified as Tbp according to the χ2 probability, and they are also 

grouped together in both structural and functional dendrograms nicely. Clusters 2 and 3 

are both identified as square pyramidal (Spy), and clusters 4 and 6 are both identified as 

trigonal prismatic vacancy (Tpv). They all show very high similarities in the 

dendrograms. Similarly for 6-ligand Zn metalloproteins (Figure 5.9, panel C and F), 

clusters 1, 4, 5, and 6 are all identified as Oct with high probability. And the lower Oct 

probability cluster 3 is grouped together with cluster 2 as it is showing a slightly bigger 

separation from the other Oct clusters, especially in functional dendrogram. All these 

figures demonstrate that our CG cluster representations have very strong functional 

implications, as the structural and functional distances were calculated independently 

from different sources of information. And it is only through the CG clusters that this 

level of similarity is observed in the dendrograms. Likewise, similar dendrograms and 

patterns can be found for the rest of the metals.  
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Figure 5.9 Three examples of structural versus functional dendrograms of clusters. (A, D) 

4-ligand normal zinc metalloproteins. (B, E) 5-ligand normal zinc metalloproteins. (C, F) 

6- ligand normal zinc metalloproteins.
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Table 5.5. Instances of highly aberrant clusters of the compressed group for different metals.  

 

 

Metal Ligand  
Number 

Cluster  
Number  

Size Angle 1 Angle 2 Angle 3 Angle 4 Angle 5 Angle 6 Tet Bva Bvp Spv Spl 

Zn 4 4 7 158.8+/-11.6 57.2+/-4.6 71.8+/-7.9 117.3+/-11 133.4+/-8.6 85.6+/-5.9 0 0.002 0.004 0 0 
Mg 4 7 13 153.5+/-9.7 55.2+/-4 74.2+/-9.4 105.2+/-14.8 131.3+/-7.3 116.6+/-10.8 0 0 0 0 0 
Fe 4 4 10 143.9+/-11.4 60.8+/-5 88.1+/-7.8 103.3+/-8.1 125.1+/-6.9 93.3+/-10.5 0 0 0 0 0 
          Tbp Spy Tpv   
Zn 5 2 75 164.5+/-5.5 55.7+/-3.9 87.9+/-4 104.4+/-3.5 124.4+/-5.5 102.8+/-5.5 0.096 0.003 0.063   
Mg 5 2 16 149.5+/-5.4 54.9+/-4 76.8+/-4.4 90+/-5.4 136.6+/-5.7 66.3+/-3.8 0 0 0.015   
Ca 5 11 17 140.9+/-7.7 55+/-5.6 73.7+/-4.4 86.3+/-5.5 129.5+/-5.3 65.3+/-6.6 0.003 0.008 0.062   
Fe 5 7 29 147.2+/-5.1 56.8+/-3.6 91.5+/-4.2 101.1+/-3.9 138.4+/-4.7 94.1+/-4.3 0 0 0.001   
          Oct Tpr Pvp Pva  
Mg 6 1 10 148.1+/-3.7 65+/-4.5 78+/-5.2 108+/-10.1 140+/-5 54.8+/-3.1 0 0.004 0.002 0.01  
Ca 6 11 12 152.2+/-11.1 53.5+/-5.4 73.1+/-5.3 99.3+/-5.6 135.1+/-4.8 61.1+/-5.8 0.007 0.007 0.036 0.068  
Fe 6 2 18 165.8+/-4.9 61.7+/-4.2 89.5+/-2.6 102.7+/-3.2 159.1+/-5.1 66.4+/-4.2 0.001 0 0 0.004  
Na 6 7 3 168.8+/-3.9 68.9+/-2.2 96.1+/-2.5 107+/-3.9 138.1+/-4.9 46.5+/-4.6 0.054 0.131 0.001 0.096  



 106 

5.3.5 Aberrant CG Clusters 

Of the 18756 non-redundant metal binding sites analyzed, roughly 24% contain 

compressed angles. While coordination geometries that contain unexpected compressed 

angles would be considered aberrant, some CG clusters are clearly highly aberrant with 

low similarity to any canonical CGs.  Table 5.5 is a compilation of such highly aberrant 

CG clusters from the full CG cluster description tables in Supplemental Material. They 

can be found in all 4- to 6-ligand metals. Some of the clusters may have a small cluster 

size, which it is mainly due to the nature of small size compress group in general. As 

more and more data is accumulated, it can be expected that an increasing amount of these 

aberrant metal sites will be detected as well, processing similar structural distortions and 

functional propensities. 7- and 8-ligand metal sites tend to be less distorted from 

canonical CGs. This is primarily due to that 7- and 8-ligand CGs have small ideal angles 

naturally because of the crowed ligand space around the metal. And thus, compressed 

angle is expected for such metal sites. 

5.4 Conclusion 

In this chapter, we further developed the methods from Chapter 4, and 

successfully applied the methodology to top five abundant metals. The compressed angle 

and aberrant CG phenomenon we observed in chapter 4 remained true for all five 

metalloproteins and all numbers of ligands. The using of a series of additional filters 

greatly benefited us in improving data quality, and resulted in an increase in detected 

structure-function correlation from 0.88 to 0.93 for 4-ligand normal zinc sites. This 

chapter showed a great effect of the data size over the detectable correlation. As we start 
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analyzing less abundant metal elements, fewer and fewer sits will be available. On one 

hand, this is a warning that as we might have to combine metals with the same number of 

ligands in future analysis. On another, this further supported our statements that no such 

analysis was feasible before simply due to inadequate data. And only until recently, as the 

structural data has been rapidly growing, we can start to evaluate the compressed angle 

from a boarder perspective, and to study its influence on proteins. 
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CHAPTER 6 

DISCUSSION

6.1 Evaluation of the Program Performance 

The mainstream analyses are composed of a sequence of individual programs. 

The bootstrapping and IA process were written in Perl, and the rest were in R. Most of 

the calculations were conducted on machines with Intel® Core™ i7-4930K Processor, 

32g RAM, and Linux system. All programs are designed to take parameters such as metal 

or distance cutoff from command line arguments, therefore the entire process can be 

accomplished via a bash script.  

6.1.1 Bootstrapping and IA Analysis 

The bootstrapping and IA steps are implemented together in an object-oriented 

style. A simplified diagram to show the relationship between the entities is in Figure 6.1. 

MPCGanalysis is the process object, and is called by the main program to fulfill the 

entire analysis. The general procedure is to first parse the PDB entries and convert each 

ATOM record into an Atom object, followed by creating the MetalShell object of the 

initial ligand set for each metal site. The collection of MetalShell is stored in 

MPCGanalysis as ‘shells’ attribute and are the object to be analyzed for the rest of the 

analysis.  They are then calculated as Coordination object for bootstrapping or IA by 
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considering all possible combinations of the ligand sets and picking the best combo from 

them. Each CG is an individual object as a child of Coordination, so that it is easy to add 

extra CGs into the analysis. 

 

Figure 6.1 The objected-oriented diagram for bootstrapping and IA analysis. 

 

For time complexity, if we denote M as the number of PDB entries, N as the 

number of total metal sites, A as the average symmetry calculation for each PDB entries, 

B as the total number CG calculations need to be computed for each metal site, and C as 

the number of iterations in the IA step before it converges.  
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The time complexity is Θ(A*M) for the parsing of the PDB files and the 

calculation of all symmetry-related coordinates. Similarly, it is Θ(A*N) time complexity 

for obtaining an initial fc-shell, as all atoms including symmetry-related ones needs to be 

scanned in order to find the set of ligands that are within a distance cutoff. A large A 

value would greatly increase the search space, so the larger the A value is, the longer both 

processes will take. M and N can be found in Table 5.3. Different metals have different A 

values, but generally are between 3 and 5. For the symmetry-related calculation in 

Chapter 5, we only considered the crystallographic symmetry if it overlaps with the metal 

shell. Often A would be over 100 instead of 3 to 5 if all possible crystallographic 

symmetries were considered. Thus, pre-filtering crystallographic symmetries before fully 

calculating them is a huge computational time saving, since factor A needs to be applied 

to all the X-ray structures of PDB entries, which is ~90% of the whole database. A can be 

considered as a coefficient in this step, but due to the uncertainty of the crystallographic 

symmetry of other metalloproteins, it is kept in the big Θ notation.  

The bootstrapping step has a time complexity of Θ(B * N). As shown in Table 6.1, 

if only considering the all-to-all mapping from potential ligands to ideal CG ligand 

positions, the number of calculations is a permutation of the number of ligands, i.e. P(n,n) 

for n-ligand CGs. Due to the internal structural symmetry of the CG, a non-redundant 

calculation required for actual calculation is shown in the third column, which can be 

denote as T. Then for a potential k-ligand shell (column), the number of different ways to 

get n ligands (row) out is C(k, n), which makes the total T*C(k, n). Column 4-8 shows the 

actual number of calculation for each number of potential ligands to compute each CG. In 

the bootstrapping step, only major CGs are considered, i.e. Tet, Tbp, Oct, and Pbp. So for 
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example, if there are seven potential ligands in the shell, the calculation number is 

35+210+105+252 = 602, according to the shaded cells in the table.  

 

Table 6.1 Number of calculations for each CGs given different potential ligand numbers in 
the metal fc-shell. 

CG All-to-all 
mapping  

Non-
redundant 
equivalent 

4 
potential 
ligands 

5 
potential 
ligands 

6 
potential 
ligands 

7 
potential 
ligands 

8 
potential 
ligands 

4-ligand: 
       Tet 24 1 1 5 15 35 70 

Bva 24 4 4 20 60 140 280 
Bvp 24 6 6 30 90 210 420 
Pyv 24 6 6 30 90 210 420 
Spl 24 3 3 15 45 105 210 

 
       5-ligand: 
       Tbp 120 10 

 
10 60 210 560 

Spy 120 15 
 

15 90 315 840 
Tpv 120 60 

 
60 360 1260 3,360 

 
       6-ligand: 
       Oct 720 15 

  
15 105 420 

Pva 720 72 
  

72 504 2,016 
Pvp 720 180 

  
180 1,260 5,040 

Tpr 720 60 
  

60 420 1,680 

 
       7-ligand: 
       Pbp 5,040 252 

   
252 2,016 

Hva 5,040 420 
   

420 3,360 
Hvp 5,040 1,260 

   
1,260 10,080 

Sav 5,040 2,520 
   

2,520 20,160 

        8-ligand: 
       Hbp 4,0320 1,680 

    
1,680 

Sqa 4,0320 2,520 
    

2,520 
 

The time complexity of the IA step is Θ (B * C * N). It is similar to the 

bootstrapping step, except the B value is generally much larger as we consider all of the 
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CGs in Table 6.1. Also, there a C portion as the number of iteration the IA process went 

through before the statistics converged. The C values for Zn, Ca, and Na are 7, 10, and 12 

respectively. As for Mg and Fe, the iteration failed to converge within 15 rounds, which 

is the maximum we allowed.  

The actual time for different types of metalloproteins varied drastically at each 

step. For the PDB parsing and ligand identification, it took Zn about five hours, while 

took Mg roughly 24 hours on the machine we used. That is mainly due to the number of 

actual Mg ions is much large and the crystallographic symmetry number is also higher for 

Mg. For the bootstrapping and IA steps, the higher the number of potential ligands, the 

larger B will be, and the longer it takes. For Ca metalloproteins, which have a higher 

number of ligands than others (Table 5.4), it took a couple of days to run one iteration of 

IA at first. So we parallelized the IA step and optimized some of the calculation, and now 

it takes Ca about six hours per iteration.  

As for the memory usage, it is greatly affected by the number of PDB entries M, 

the number of metal sites N, and the average crystallographic symmetry A. The relation 

of objects (Figure 6.1) creates some redundancy when calculating over the same 

collections of ligands repeatedly. Yet the program can normally run on a computer with 

32 gigabytes (GB) of RAM without any problems. 

Only a minimal amount of optimizations have been performed both on the time 

and the memory usage, as long as the program finished in a reasonable time with 32 GB 

of RAM. That is mainly because the focus of this project so far has been on the discovery 

of a novel phenomenon rather than providing a service. For analysis on the rest of the 

metalloprotein species, the number of PDB entries M and number of metal sites N are 
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both smaller than the top five metals. But there are the unknown factor of the 

crystallographic symmetry A and the number of potential ligands B that may cause the 

other metalloproteins to take longer time to finish. Also if we re-examine the top five 

metalloproteins using a newer set of data, M and N will be larger. Many optimization 

actions can be done to enhance the performance, such as reducing the redundancy of 

copying and storing the MetalShell object, which may become more crucial when we 

want to re-examine the top five metalloproteins after more data become available or 

when converting our work into a web-server or stand-alone tools for others to use.  

6.1.2 Other Analysis 

All other steps were based on the list of metal fc-shells bootstrapping step 

defined, which is much smaller after the additional filters and the non-redundant test. If 

we denote the number in the final non-redundant metal list to be P, most of the time 

complexities are simply Θ(P). For k-means stability test step, there is also a factor of 

iteration, which is set to be 500 in this study. For the rest of the metalloproteins with 

lower counts, these steps should be easily feasible. Though the processes that took a 

relatively long running time and large memory space can be considered for further 

optimization in order to minimize the requirement of both time and space. 

6.2 Future Directions 

6.2.1 Other Metalloproteins 

The most obvious and immediate next step is to analyze all metalloproteins in 

Table 5.3. Chapter 5 already showed the applicability of our methodology to different 

metals. The presence of a compressed angle and its influence on the complication of CG 
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classification are expected in all metalloproteins. Parameters such as the bond-length 

cutoff need to be tuned for each metalloprotein species individually to reduce the false 

positive and false negative ligand detection rates. The potential problem is that for the 

some low count metals, the data size is not large enough to achieve a detection limit 

needed for structure-function analyses. We have shown in Chapter 5 that it is possible to 

combine the same number of ligands of different metals, and they revealed strong 

structure-function correlation as well. Though this requires further assessment. We also 

need to develop more efficient filters to account for potential errors like non-specific 

binding that is more common for lower-count metalloproteins. For example, some heavy 

metal compound, involving Hg, Pt, or Au, are very common additives in helping protein 

phasing and crystallizes [114-116], and thus can be found in many protein structures but 

is not physiologically bound. So special attention is required when analyzing heavy 

metals such as Hg to make sure our filters can differentiate binding specificity. It is also 

beneficial to revisit the already analyzed metals when significantly more data is available.  

6.2.2 Functional Application 

6.2.2.1 Nucleotide Polymorphisms Affect Metalloproteins 

A Nucleotide Polymorphism (NP) is a variation in the genomic DNA sequence. 

Insertions and deletions are typically referred to as indels. The most common NP are 

single nucleotide polymorphisms (SNPs), which involve a variation in only a single DNA 

nucleotide base pair (bp), with an estimation of one SNP in about every 1200 bp [117]. 

Benign SNPs are responsible for various phenotypic differences in humans [118]. Yet 

some SNPs can cause harmful changes to proteins [119], and may lead to complex 

disorders or increase the susceptibility to disease [120-122]. SNPs that result in amino 
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acid changes in proteins are called non-synonymous SNPs (nsSNPs). They are a main 

type of SNP that can cause disease. One of the seminal tasks in NP analyses is to find the 

causal relationship between NPs and diseases.  

Since sequence dictates structure, which enables function, disease-associate NPs 

often cause changes in the manifestation of gene function via structural perturbations in a 

protein gene product. However, interpreting NPs with respect to structural perturbations 

has been very challenging. Thus, our metalloprotein analyses could provide an enhanced 

structure-function interpretation of NPs that occur near metal binding sites.  Given the 

ubiquity of metalloproteins in the human proteome, NPs in metalloproteins can help 

explain many disease-associated mutations, especially when they happen near the metal 

binding area. For example, the tumor suppressor protein p53 is crucial in regulating the 

cell cycle, and nsSNPs on p53 are found at an abnormally high frequency in many 

cancers [123-125]. A summarization of the fifty most frequent p53 cancer mutants-from 

positions of the IARC TP53 Mutation Database (Release 18) [126] is shown in Table 6.2. 

Based on our initial analysis, p53 (PDB ID: 2OCJ) contains a zinc ion with coordinating 

ligands C176, H179, C238, and C242 (red in Table 6.2), which are all found to have 

known mutations as shown in red. Moreover, if we define a binding domain as five 

additional residues around binding ligands, which is 171-184 & 233-247 (shaded), the 

binding domain of p53 may account for up to 20.13% of the total SNP occurrence while 

it only made up of 10% of the sequence length (289). Moreover, two positions 

immediately next to our defined range, R248 and R249, rank 1 and 6 respectively, and 

they count for another 10% of the SNP occurrences by themselves. 
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Figure 6.2 The construction and interpretation of pHMMs. 
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6.2.2.2 Interpret Sets of Disease-Associated SNPs via Profile Hidden Markov Models 

A Profile Hidden Markov Models (pHMM) is a position-specific probabilistic 

scoring model that captures uniformity at each sequence position [127-129]. Methods for 

building pHMMs have been well-established and used by major protein domain sequence 

databases [130, 131], many of which are included in the aggregate pHMM protein family 

database Pfam [78]. As shown in Figure 6.2, with the direct structural and functional 

associations of CG clusters and sub-clusters, we can build pHMMs for every CG 

Table 6.2 Top 50 somatic mutation positions of p53 protein based on IARC TP53 
Mutation Database (Release 18).  

Mutate  
from 

Rank Count % Mutate  
from 

Rank Count % 

R248 1 1,925 7.55 Y234 26 228 0.89 
R273 2 1,826 7.16 C238 27 226 0.89 
R175 3 1,328 5.21 S241 28 220 0.86 
G245 4 869 3.41 K132 29 213 0.84 
R282 5 751 2.95 V272 30 203 0.8 
R249 6 700 2.75 Y205 31 198 0.78 
Y220 7 469 1.84 C275 32 187 0.73 
H179 8 447 1.75 C141 33 183 0.72 
R213 9 439 1.72 D281 34 183 0.72 
C176 10 400 1.57 I195 35 179 0.70 
P278 11 320 1.26 E286 36 177 0.69 
R158 12 312 1.22 R306 37 171 0.67 
R280 13 302 1.18 Y236 38 171 0.67 
R196 14 298 1.17 P152 39 166 0.65 
V157 15 286 1.12 E258 40 161 0.63 
G266 16 268 1.05 M246 41 158 0.62 
Y163 17 260 1.02 A159 42 146 0.57 
G244 18 258 1.01 A161 43 145 0.57 
E285 19 255 1.00 Q192 44 141 0.55 
H193 20 255 1.00 L194 45 134 0.53 
C135 21 249 0.98 W146 46 133 0.52 
P151 22 243 0.95 N239 47 127 0.5 
M237 23 240 0.94 P250 48 122 0.48 
C242 24 234 0.92 T155 49 122 0.48 
V173 25 228 0.89 V216 50 121 0.47 
    Sum  17,377 68.15 
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associated with specific metal ions. Sequences of each CG structural/functional cluster 

and sub-cluster for each metal will first be aligned based on sequence similarity. We can 

use HMMER [130] to build pHMMs for each multi-alignment. We will then organize the 

constructed pHMMs by metal type, CG cluster, and functional CG sub-clusters. By 

comparing pHMMs from different categories, we can predict when nsNPs at various 

positions in metal-binding sites produce structural alterations that lead to changes in 

coordination geometry, to change of metal binding specificity, or to loss of metal binding 

ability. We can also compare results of pHMMs applied to specific disease associated 

metal binding NPs and their corresponding common NPs. These predicted, functionally 

significant positions could be further validated by biological experiments for their metal 

binding or specificity related functions. 
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CHAPTER 7 

CONCLUSION

To sum up this research, a novel methodology was developed to analyze the 

structure of metalloproteins, especially the coordination geometry, and its relationship to 

biochemical and biological functions. It was designed in a way where no prior 

assumptions of existing CG models were needed after the initial bootstrap step, allowing 

the CG models present to be derived from the data itself. The core of the methodology 

relies on the low variance of bond-length, enabling the determination of binding ligands 

via a statistical test with several additional refinements that improve the overall 

performance of the method. Our ligand detection method is statistically rigorous, 

producing a low estimated false positive rate of 0.26% and false negative rate of 1.2%. 

Metal shells were separated into normal and compressed groups, and clustered by k-

means independently. Individual clusters were examined and assigned via probabilistic 

comparison to characteristic canonical CG models. The overall clustering results were 

evaluated based on the strength (correlation) of their function-structure relationships. 

Many clusters were easily associated with a particular canonical CG via high 

probabilistic matching to the canonical CG models. Whereas, there were other clusters 

that represented either slightly distorted canonical CGs or highly aberrant or novel CGs. 

By recognizing these aberrant CGs in clustering, high correlations were achieved 
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between structural and functional descriptions of metal ion coordination. As the wwPDB 

continues to grow, additional aberrant or novel CGs may become apparent; however, we 

will only be able to detect these previously uncharacterized CGs if we stop assuming that 

we already knew what CGs a dataset contains before analyzing it. These CG clustering 

results also points the way to a future examination of the impact of SNPs on structural 

perturbations that lead to changes in protein function. 
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APPENDIX A 

LIST OF ABBREVIATIONS  

MP Metalloprotein 

CG Coordination geometry 

Tet Tetrahedral 

Bva Trigonal bipyramidal vacancy axial  

Bvp Trigonal bipyramidal vacancy planar 

Pyv Square pyramidal vacancy  

Spl Square planar  

Tbp Trigonal bipyramidal  

Spy Square pyramidal  

Tpv Trigonal prismatic vacancy 

Oct Octahedral  

Pva Pentagonal bipyramidal vacancy axial  

Pvp Pentagonal bipyramidal vacancy planar  

Tpr Trigonal prismatic 

Pbp Pentagonal bipyramidal  

Hva Hexagonal bipyramidal vacancy axial 

Hvp Hexagonal bipyramidal vacancy planar 

Sav Square antiprismatic vacancy 

Hbp Hexagonal bipyramidal 

Sqa Square antiprismatic 

FC First-Coordination  
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PDB Protein Data Bank 

IPR InterProScan 

CFT Crystal Field Theory 

LFT Ligand Field Theory 

NP Nucleotide Polymorphism 

SNP Single Nucleotide Polymorphism 

HMM Hidden Markov Model 
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