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ABSTRACT 

CARNOSINE, A THERAPEUTIC POTENTIAL FOR CRITICAL LIMB ISCHEMIA 

Adjoa Agyemang Boakye 

July 27th, 2016 

Critical Limb ischemia (CLI) is a serious manifestation of peripheral artery disease. 

Advanced CLI patients are poor candidates for vascular surgeries. Numerous 

studies have shown that hypoxia inducible factor 1α (HIF1-α) plays an important 

role in recovery from murine hindlimb ischemia (HLI). HIF1-α is regulated by 

oxygen dependent prolyl hydroxylases (PHDs). Previous studies have shown that 

inhibition of PHDs by metal quenchers and viral delivery of HIF1-α improves blood 

flow to the ischemic limb. However, clinical trials with these therapies are largely 

negative partly because they do not address the underlying chronic oxidative 

stress. Based on recent observations that endogenous histidyl dipeptides such as 

carnosine can chelate metals and quench reactive carbonyls, we hypothesize that 

supplementation of carnosine can promote revascularization to enhance wound 

healing through aldehyde quenching and metal chelation.  C57BL/6 mice were 

subjected to hindlimb ischemia (HLI) surgery by ligating the femoral artery and vein 

and supplemented with carnosine (1g/L) for 21 days.  Laser Doppler analysis 

showed that blood flow in carnosine treated mice was significantly increased 

(31±2%) compared with the non-treated mice (20±2%) after 14 and 21 days 
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(carnosine 50±6% vs non-treated 28±4%; p<0.05) of recovery from surgery. 

Vascular density measured by microfil-perfusion-microCT was significantly 

enhanced by carnosine treatment compared with non-treated HLI mice. Similarly, 

muscle regeneration and isolectin staining was significantly increased compared 

to the non-treated mice. Mobilization of endothelial progenitor cells (Flk+/Sca+) and 

VEGF expression in the ischemic limb was significantly increased by carnosine 

supplementation. Also, 4-HNE protein adduct levels were decreased in ischemic 

limbs of carnosine treated mice. Levels of carnosine in the ischemic muscle were 

increased approximately 2 fold compared with non-treated HLI mice. Pre-

treatment of C2C12 cells with carnosine and its analogue methyl carcinine, that 

lacks the ability to quench metals, resulted in  increased nuclear levels of HIF1-α  

and VEGF secretion in hypoxic carnosine treated cells compared with methyl 

carcinine treated hypoxic cells.  Collectively, our results demonstrate that 

carnosine treatment improves blood flow by increasing HIF1-α stabilization and 

endothelial progenitor cell mobilization thus, can be used as a safe therapeutic 

intervention for CLI patients 
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CHAPTER I 

GENERAL INTRODUCTION 

Epidemiology of Peripheral Artery Disease 

Recent epidemiological data estimates that non-communicable chronic diseases 

are the leading cause of morbidity and mortality worldwide [1]. This burden is 

expected to rise within the next decades because of an increase in exposure to 

risk factor for these diseases [2]. Therefore efforts have to be put in place to identify 

risk factors as well as cost-effective treatment and preventive strategies to combat 

this burden. One best example of this chronic disease condition that is often 

underdiagnosed is peripheral arterial disease.  

Peripheral arterial disease (PAD) refers to narrowing or complete atherosclerotic 

occlusion of one or more upper or lower extremity artery [3].  Although this 

definition covers arterial disorders other than the coronary vasculature, most 

reports and guidelines limit it to occlusive diseases in branches of the lower aorta 

[4]. It’s important to note that non-atherosclerotic PAD such as fibromuscular 

dysplasia and vasculitis, although rare, also exist [5].  Atherosclerotic PAD is 

estimated to affect > 200 million people worldwide and approximately 8 million 

people in the United States [2, 6].  Even though PAD represents a distinct disease 

state it is also a predisposing factor for coronary artery and cerebrovascular 

disease [7, 8].   PAD is also the leading cause of morbidity due to the associated 
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decline in limb function as well as limb loss in certain individuals [9]. Recently, the 

Institute of Medicine has listed PAD  as a high research priority area to reduce 

mortality and morbidity associated with PAD [10]. 

The classical symptom for PAD is intermittent claudication which is leg pain 

resulting from walking or exercise that is relieved at rest [7].This pain occurs 

because during walking or exercise metabolic demands of the limbs are not met 

due to the narrowing of  blood vessel  thus, limiting the capacity of the circulatory 

system [2, 11]. This deficit in blood supply exerts the same discomfort as  angina 

for coronary heart disease resulting in calf muscle cramping and fatigue [12]. Most 

patients with PAD may not exhibit any symptoms of intermittent claudication 

because they do not subject themselves to exertional exercise, or the 

atherosclerotic plaque is not sufficient to elicit any hemodynamic burden. Current 

estimates show that only 10-20% of patients presents with intermittent claudication 

and the  remainder are  either asymptomatic or present with symptoms that are 

atypical [13, 14]. This high prevalence of asymptomatic leg ischemia and exertional 

pain other than intermittent claudication may explain why PAD is often 

underdiagnosed. Progressive unabated atherosclerotic burden in PAD results in 

critical limb ischemia (CLI). CLI is the most severe form of PAD which manifests 

as ischemic rest pain, gangrene, necrosis and ulcers. CLI is associated with high 

rates for limb amputations and death  [15].   

Due to the limitations associated with using intermittent claudication as a 

diagnostic tool, ankle brachial index (ABI) is routinely used in clinical practice as a 

diagnostic tool. ABI refers to ratio of systolic pressure at the ankle to that in the 
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arm. An ABI value of <0.9 is defined as PAD while values between 0.9 and 1 

represents borderline values [7]. Values > 1 are considered normal however, in 

patients with calcified noncompressible lower extremity arteriopathy, ABI values > 

1.4 have been reported [16]. Although ABI is highly specific it has a low sensitivity 

[17]. This is partly due to the fact that ABI only becomes abnormal with significant 

hemodynamic lesions and diseases of less severity might not be detected [18]. 

Imaging techniques such as Doppler ultrasound and angiography are employed 

as diagnostic tools but each of these imaging techniques has their limitations of 

being either invasive or not providing accurate measurements of the 

atherosclerotic burden [19]. The lack of good diagnostic tools and clearly defined 

symptoms explains why for some patients the first manifestation of PAD is critical 

limb ischemia. 

 The risk factors for PAD are  same as  traditional risk factors for cardiovascular 

disease such as cigarette smoking, diabetes mellitus, hypertension, dyslipidemia 

and ageing [19-21]. Amongst these risk factors smoking is considered to be the 

strongest predictor for PAD. Studies have shown that smoking plays a prominent 

role in PAD compared to other atherosclerotic diseases and cessation of smoking 

reduces the risk of PAD associated morbidity and mortality [7, 22]. In addition to 

smoking, ageing is also a potent risk factor for PAD. Recent studies suggest that 

up to 15% of the adult population (i.e. > 45 years) have PAD [6, 23] and the 

incidence of age driven PAD is likely to increase [2]. Diabetes mellitus is another 

important risk factor for PAD. Studies with human diabetics have shown that 1% 

increase in glycosylated hemoglobin increases the incidence of PAD by 
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approximately 28% [24]. Diabetes also affects the anatomic distribution of disease 

leading to a bad prognosis in these individuals [25, 26]. Dyslipidemia and 

hypertension, though risk factors, contribute less to the pathogenesis of PAD as 

compared to other vascular events such as myocardial infarction and ischemic 

stroke [23].  Family history of PAD has also being shown to be a predisposing 

factor. This is partly due to inheritability of risk factors such as dyslipidemia and 

diabetes mellitus [18]. Further research into the genetics of PAD may reveal other 

candidate genes which may act as prognostic markers for PAD. Other risk factors 

such as obesity, homocysteinemia, C-reactive protein, race and ethnicity have not 

been studied in details but there are evidences to suggest that they  contribute to 

PAD development [7]. 

Pathophysiology of peripheral artery disease 

The pathophysiology of atherosclerotic PAD is complex involving chemokines, 

growth factors, cytokines, signaling molecules and different cell types [9, 27-29]. 

Atherosclerosis, the underlying cause of PAD, refers to buildup of fatty plaques in 

blood vessels that limits blood flow to the target organs. Exposure of vascular cells 

to lipoproteins triggers a series of reactions involving endothelial cells, vascular 

smooth muscle cells and the innate immune system. A cascade of events results 

in foam cell formation, cell death, calcification and arterial remodeling, that 

progressively leads to narrowing of the blood vessel [30, 31]. Imaging results from 

PAD patients show narrowing of lower aorta, femoral, iliac, popliteal and tibial 

arteries [12, 16]. This narrowing causes intermittent claudication in some 

individual, but majority of PAD patients are usually asymptomatic [23, 32]. The 
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hemodynamic changes associated with these occlusion are diagnosed as a 

reduction in ankle brachial index and is dependent on the location of the  occlusion 

and existence of blood vessels other than the occluded vessel linking the 

preoccluded and postoccluded sites  [9]. Ultimately, supply of nutrients and oxygen 

to the metabolically active skeletal muscle tissue distal to the site of occlusion is 

hampered resulting in tissue ischemia.  

 Prolonged ischemic insult results in skeletal muscle dysfunction that ultimately 

leads to tissue death and necrosis due to accumulation of toxic metabolites, 

decrease in intracellular pH, shift to anaerobic metabolism, and ultimately  a 

reduction in cellular energy charge [33]. Although restoring blood flow to the 

ischemic limb is essential to salvage and restore limb metabolic activity, 

reperfusion is also detrimental to the muscle [34-36].  The exact mechanisms 

involved in reperfusion injury are not clear, however, several studies have shown 

that restoration of molecular oxygen exacerbates reperfusion injury. Studies by 

Korthuis et al. showed that reperfusion with normal blood causes microvascular 

dysfunction and myocyte necrosis, however, this effect was attenuated when the 

skeletal muscle was perfused with anoxic blood [37, 38]. Similarly, studies showing 

that antioxidant enzymes such as superoxide dismutase and glutathione 

peroxidase or their mimetics and free radical scavengers exhibit protective effects 

in hindlimb ischemia and clearly demonstrate a  causal role of oxygen derived 

reactive metabolites in the pathogenesis of reperfusion injury [39-41].  

PAD patients experience several bouts of ischemia and reperfusion. During 

walking or exercise, metabolic demands of muscle exceed oxygen supply due to 
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arterial narrowing mimicking ischemia and during resting periods, reperfusion 

occurs in the ischemic limbs. Unlike the heart or brain, atherothromobotic events 

in the muscle do not cause acute conditions like myocardial infarction or stroke 

and the mechanism underlying these tissue specific responses to ischemia are not 

clear. Repeated bouts of ischemia and reperfusion results in ion pump   

dysregulation, mitochondrial dysfunction, ROS generation, inflammation and 

apoptosis. These processes if unrestricted result in damage to the muscle fibers 

[9, 23, 32].   

Ischemia reperfusion is followed by the reparative phase that involves stimulation 

of pathways to ensure repair of damaged tissue and restore organ function [42]. 

During this stage ROS production occurs in limited amounts which serve as 

signaling molecules. Minute production of ROS activate transcription of growth 

factors such as vascular endothelial growth factor (VEGF) that results in 

revascularization and tissue regeneration [43, 44].  Bone marrow derived 

mononuclear cells also play an important role in this reparative process [45-48]. 

However, these adaptive responses are hindered in patients with PAD. Although, 

most of the pathways elicited in the reparative phase are aimed to restore organ 

function, chronic activation of these reparative processes contribute to organ 

failure due to fibrosis [42]. Thus, the symptoms can progress from intermittent 

claudication to rest pain to chronic non-healing ulcers and culminate in gangrene 

and eventual amputation.  
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Ischemic Phase Injury 

Ischemic insult to a tissue results in tissue hypoxia due to limited or inadequate 

supply of oxygen. The absence of oxygen prevents aerobic metabolism through 

the mitochondria resulting in the reliance on anaerobic glycolysis for energy 

generation [49]. Due to the low efficiency of glycolysis in utilization of cellular 

energy sources, the decrease in mitochondrial metabolism depletes ATP levels 

and decreases cellular pH due to accumulation of H+ ions. Additionally, fatty acid 

catabolism is decreased due to depleted oxygen levels which results in 

accumulation of harmful lipids [50, 51]. The absence of an effective circulatory 

system not only limits the availability of oxygen but also decreases the extrusion 

of toxic metabolites from the cell. To restore pH to its normal levels, the cell 

increases extrusion of H+ leading to increased intracellular transport of Na+ through 

Na+/H+ exchanger. Because ATP production is decreased during ischemia, ATP 

regulated ion pumps such as Na+/ K+ ATPase, that maintains low intracellular Na+, 

is inhibited resulting in increased intracellular Na+ [42, 52]. The increase in 

intracellular Na+ decreases the concentration gradient across the membrane which 

increases the outward movement of Na+ through the Na+/ Ca2+ exchanger thereby 

reversing the function of this exchanger in resting membranes and increasing 

intracellular calcium (Fig. 1)  [42].  

Intracellular calcium levels are tightly regulated  by the Na+/ Ca2+ exchanger and 

Ca2+ ATPase which regulates transport across the plasma membrane. Likewise,  

the ryanodine receptors and ATP- dependent SERCA which functions to regulate 

sarcoplasmic reticulum calcium transport can affect intracellular Ca2+ levels [53, 
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54]. During ischemia Na+/ Ca2+ exchanger activity is increased, intracellular 

calcium levels are elevated and  extracellular transport through the membrane 

bound Ca2+ ATPase or transport to the sarcoplasmic reticulum through SERCA 

are both decreased due to depleted ATP levels [55]. This phenomenon of 

increased intracellular calcium concentration during ischemia is referred to as 

calcium overload. With the increase in intracellular uptake and diminished uptake 

into the calcium storing organelle (sarcoplasmic reticulum), mitochondrial transport 

of Ca2+ is increased which limits oxidative phosphorylation. The increase in 

intracellular Ca2+ also activates Ca2+ dependent proteases, phosphatases and 

phospholipases such as protease calpains which degrade cytoskeletal and 

endoplasmic reticulum proteins leading to cell death [56]. Furthermore, 

phospholipase activation leads to membrane phospholipid degradation and 

accumulation of free fatty acids such as arachidonic acid, a prostaglandin inducer.  

Since membrane phospholipids are important in maintaining membrane structure 

their degradation disrupts membrane integrity and potentiates the loss of ion 

pumps and membrane bound receptors [57].  

In addition to the above mentioned pathway, ischemia  also activates pathways 

which do not contribute directly to the ischemic phase injury but lay the foundation 

for reperfusion injury e.g., conformational changes in oxidant producing enzymes, 

such as xanthine oxidase is induced by the increase in proton generation in 

ischemia [58, 59]. 
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Figure 1 
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Figure 1: Mechanisms contributing to ischemia/reperfusion induced tissue 

injury: Ischemia resulting from arterial occlusion leads to increased anaerobic 

respiration. The ensuing acidosis and reduced ATP levels results in increased 

intracellular Ca2+. ATP hydrolysis also leads to the accumulation of hypoxanthine, 

a substrate of xanthine oxidase (XO). Dysfunctioning of electron transport chain 

(ETC) and activation of enzymes capable of producing ROS are also initiated.   

During reperfusion, the return of oxygen leads to exuberant ROS production. ROS 

could result from  xanthine oxidase (XO) which produces superoxide anion as a 

by-product of hypoxanthine catabolism. NAPDH oxidase (Nox2), and mitochondria 

represent other sources of ROS during reperfusion. ROS generation results in 

eNOS uncoupling due to decreased intraceullar BH4 levels. This leads to decrease 

levels of antiahesive NO  and subsequent invasion of phagocytic cells. 
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Reperfusion Injury 

During reperfusion, return of molecular oxygen to the ischemic tissues aggravates 

tissue injury initiated by the initial ischemic insults. Because reperfusion phase of 

the disease is amendable to treatment it represents a valuable step to study.  

Although, research over the past decades has improved our understanding of the 

molecular processes involved in this injury, the exact mechanisms are not 

completely understood. Numerous studies have shown that ROS generation 

during reperfusion is the pivotal casual factor in reperfusion injury [33, 42] . ROS 

are documented to initiate pathways that lead to leukocyte infiltration, inflammation 

and mitochondrial permeability pore transition [49, 60, 61].  

ROS can reacts with lipids to generate highly reactive lipid peroxidation product 

such as acrolein and 4hydroxynonenal (4HNE) [62]. ROS can also modify 

functional groups of proteins and can induce damage to DNA [60, 61].  Although 

extensive research has been conducted to examine the role of ROS regulators 

e.g., enzymes, mimetics, antioxidants and free radical scavengers as therapeutic 

interventions in ischemic related diseases such as PAD, the molecular 

mechanisms underlying reperfusion injury is not fully understood. 

Sources of reactive oxygen species during reperfusion 

Oxygen is like a two-edged sword that increases our efficiency in utilization of 

energy deriving substrate but also results in the generation of ROS that cause 

tissue damage. Under physiological conditions ROS are generated by enzymes 

such as  xanthine oxidase, NADPH oxidase and the electron transport chain [33].  
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Xanthine oxidase(XO) is a key enzyme of purine catabolism pathway which can 

exist in two forms; an NAD+-dependent dehydrogenase or oxygen dependent 

oxidase form [58]. During ischemia the dehydrogenase isoform is converted to the 

oxidase isoform through either proteolysis of a small portion of the enzyme or 

oxidation of a thiol residue in the enzyme [58, 63, 64]. Moreover, ischemia results 

in increased degradation of ATP to adenosine, which is deaminated into 

hypoxanthine, a substrate of xanthine oxidase [33, 65]. The increase in substrate 

availability primes the enzyme so that once molecular oxygen is provided during 

reperfusion there is an increase in its catalytic activity resulting in superoxide 

generation. Studies have shown that xanthine oxidase activity is increased during 

reperfusion [66]. Additionally, inhibition of xanthine oxidase by inhibitors such as 

allopurinol prevents reperfusion injury thus establishing a role for xanthine oxidase 

in reperfusion-induced ROS production [66]. 

During reperfusion injury NADPH Oxidase contributes to superoxide anion (O2
-) 

generation. Different isoforms of this enzyme are expressed on leukocytes, 

endothelial cells and mitochondria [67, 68]. All isoforms of this enzyme catalyze 

the formation of O2
- using NADPH as substrate [68]. Unlike the neutrophilic isoform 

which is activated during infection or tissue damage the vascular isoform, Nox 4, 

produces low amount of O2
- to maintain normal vascular tone through endothelial 

nitric oxide synthase (eNOS) activation [69]. However, under ischemic conditions  

even the vascular isoform increases the generation of O2
-  which is augmented by 

superoxide production from infiltrating granulocytes [49, 68, 70, 71].  
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Under physiological conditions oxygen is reduced to water by the electron 

transport chain however, approximately 2% of molecular oxygen is partially 

reduced which generates O2
- [42, 72]. Mitochondria contributes to 95% of ROS 

generated under physiological conditions [42]. ROS in the mitochondria are 

generated primarily from electron leaks in complexes I and III and this 

phenomenon is increased during reperfusion [42, 73, 74]. This reperfusion 

associated exuberant ROS production can result due to redox sensitive iron-

sulfurs of the mitochondria complexes undergoing oxidation/reduction reactions 

[75], nitration of complexes I and III and disruption of cardiolipin-respiratory chain 

super assemblies in complexes I – III [76-78] culminating in loss of activity of these 

complexes.  

In addition to the leaks in the electron transport chain, O2
-  is generated by 

monoamine oxidase, growth factor adapter Shc, and mitochondrial Nox 4 [42, 49]. 

These enzymes are activated through ischemia mediated increased availability of 

substrate, changes in enzyme conformation or subcellular localization [42]. 

Furthermore, mitochondrial generated O2
- can leak into cytosol, activate 

mitochondrial anion channel and result in mitochondrial permeability transition 

[79].  

In addition to these ROS generating systems endothelial nitric oxide synthase 

(eNOS) uncoupling also generates ROS during reperfusion injury. eNOS catalyzes 

the reaction that leads to the production of vasodilatory and antiadhesive 

compound, nitric oxide, and requires tetrahydrobiopterin (BH4) as a cofactor. BH4 

transfers electrons from oxygen to arginine leading to formation of L-citrulline and 
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NO. During reperfusion O2
- oxidizes BH4 [80, 81]  which diminishes BH4 shuttling 

capacity leading to eNOS uncoupling and additional O2
- production. BH4 levels are 

reduced during ischemia/reperfusion (I/R) injury and treatment with BH4 protects 

from I/R injury [80].  O2
- can also react with NO and generate highly reactive 

nitrosative product [49] Thus, increased ROS generation trigger more ROS 

production thereby increasing the oxidative stress burden.  Fig. 1 provides a 

summary of ROS sources during reperfusion. 

Mechanisms of oxidant-mediated cellular injury 

ROS can attack the entire array of biomolecules found in the body causing damage 

to these biomolecules [82]. These damaging effects can occur due to ROS induce 

peroxidation of membrane lipid, protein crosslinking or degradation, and DNA 

hydroxylation [49]. These direct effects of ROS could explain some of the 

phenotype observed during reperfusion. For example peroxidation of membrane 

lipids affects membrane fluidity and barrier functions which then leads to electrolyte 

accumulation, cell volume dysregulation, cellular edema and eventual lysis of 

myocytes [33].  Lipid peroxidation of enzymes can lead to loss of function, 

modification of enzyme function or even target the enzyme for degradation. For 

instance oxidative inactivation of the Krebs cycle enzyme aconitase results in the 

production of hydroxyl radicals by the enzyme thus, enhancing the oxidative stress 

already present [83]. In addition, second messenger generation could occur due 

to peroxidation which then disrupt cellular signaling pathways  and activates cell 

death pathways in some instances [84]. ROS can increase the frequency of 

mutations in DNA and cause changes in transcript sequences accounting for 
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aberrant protein synthesis. These changes in protein synthesis activate the 

unfolded protein response leading to endoplasmic reticulum stress and cytotoxic 

pathway activation [85]. ROS also appear to play a role in the increased 

microvascular permeability associated with reperfusion of ischemic skeletal 

muscle. This notion is supported by the observation that administration of free 

radical scavengers attenuates reperfusion induced microvascular permeability [38, 

86].  

Mitochondrial ROS generation can lead to mitochondrial permeability transition 

thereby allowing leakage of mitochondrial contents into the cytosol. For instance 

leakage of cytochrome c into the cytoplasm can activate proapoptotic signaling 

pathways [42, 49].  Mitochondrial DNA is particularly susceptible to ROS induced 

damages due to the lack of protection by histones, unavailability of adequate DNA 

repair machineries, and proximity to ROS producing sites [42]. Infiltration of 

activated neutrophils also generate ROS such as hypochlorous acid and 

superoxide in addition to secretion of hydrolytic factors which results in further 

tissue injury [33].  

Inflammation 

Inflammation refers to a complex pathologic response involving an intricate and 

highly dynamic sequence of events that occurs in affected blood vessels and 

adjacent tissues in response to an injury or infection. Both infection and injury have 

been shown to elicit a similar immune response. In the early 1990, Matzinger 

proposed the danger theory to explain an immune response that encompasses 

both the response to infection and injury. The danger theory states that an immune 
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response is triggered by danger signals released by the body’s own cells and that 

the presence of non-self is not sufficient to elicit the immune response [87]. Under 

stressed conditions such as ischemia, the immune response can be triggered by 

modification of intra-cellular components e.g. it has been shown that during 

ischemia calcium overload leads to calcium pyrophosphate complex formation. 

Also, uric acid accumulates due to xanthine oxidase activation. Both calcium 

pyrophosphate complex and uric acid have the abilities to bind and activate the 

inflammasome [88, 89]. Inflammasomes are intracellular protein complexes that 

mediate the production of cytokines such as TNF-α, activate inflammatory 

signaling pathways such as NF-kb, as well as activate proapoptotic caspases [88].  

These cytokines attract neutrophils to the site of injury.   

A large body of evidence suggests that ROS is involved in leukocyte recruitment.  

Endothelial cells or isolated blood vessels that were exposed to H2O2 became 

more adhesive to neutrophils [90, 91] which is, in part, mediated by depleted NO 

levels [92, 93]. Additionally, chemoattractant molecules such as platelet activating 

factor and leukocyte B4 receptor are upregulated by ROS [33]. Furthermore, ROS 

also activates complement system that increases  neutrophil recruitment [33]. 

Direct causal relationship between ROS production and neutrophil infiltration has 

been established by using antioxidant enzymes or ROS scavengers which 

diminishes neutrophil infiltration in both cultured cells and animal studies [33].  

Neutrophils cause injury by releasing enzymes such as collagenase and elastase 

which degrade the basement membrane of capillaries [33]. They also secrete 

oxidants such as hypochlorous acid that increases protease levels which 
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exacerbate inflammation by activating cytokine production [94, 95]. The direct 

evidence showing that neutrophils  are causal in the inflammation process is 

provided by studies showing that microvascular dysfunction is attenuated in 

animals that are rendered leukopenic [96, 97]  

 Neutrophil recruitment to ischemic tissues 

Leukocyte recruitment to the ischemic tissue is a complex series of event that 

involves a number of adhesive molecules [96, 98]. Using gain and loss of function 

studies several mediators on both the endothelial cell and granulocytes have been 

shown to play pivotal role in these processes. For instance neutralizing antibody 

against common β- subunit (CD18) on neutrophils or P-selectin on activated 

endothelial cell prevents neutrophil adhesion and migration [99].  Additionally, 

adhesive molecules such as ICAM- 1 are also important in mediating interactions 

with CD18 which provide an avenue for direct transfer of neutrophilic content to 

the muscle [100]. CD18/ICAM-1 adherence reactions contribute to microvascular 

barrier disruption, which allows transmigration of neutrophils to the skeletal muscle 

[101, 102]. This observed upregulation in the levels of pro-adhesive molecules 

occurs in the presence of decreased NO levels, which accentuates the activated 

adhesive endothelial phenotype. Studies that disrupted the adhesive interactions 

between neutrophil and endothelium have demonstrated a decline in neutrophil-

dependent cell injury. Likewise, establishment of these interactions not only allows 

the phagocytic cells to migrate to sites of inflammation but also appears to facilitate 

the destructive potential of the granulocytes [103, 104]. Neutrophil-endothelium 

interactions are therefore essential for immigration of activated leukocytes.  In 
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addition to these interactions, modifications are induced in the cytoskeletal 

structure of the endothelium which modulates the transmigration process [105]. 

This close proximity of neutrophils to endothelial cells is required for the production 

of leukocyte dependent injury since adherent neutrophil have an increased oxidant 

release capacity than suspended neutrophils [33].  

Capillary no-reflow phenomenon 

Reperfusion does not always lead to restoration of tissue perfusion but could lead 

to a condition referred to as capillary no-reflow. Capillary no-reflow is defined as a 

suboptimal tissue perfusion without any evidence of vessel obstruction due to 

atherothrombosis [49]. Although poorly understood, studies show a direct 

correlation between leukocyte numbers and the percent of no-reflow capillaries. 

Depletion of neutrophils also abolishes no-reflow in reperfused tissues [49, 102, 

106] implying that neutrophils and ROS are involved in capillary no reflow. 

This phenomenon of capillary no-reflow is initiated as a result of ROS and 

granulocyte mediated proinflammatory milieu generation and ion-pump 

dysfunction. The proinflammatory stimuli lead to modification of adhesive 

molecules on both neutrophils and endothelial cells. Leukocytes  then roll on the 

endothelial surface, get tethered and eventually egress into the underlying tissue. 

This phenomenon results in endothelial barrier dysfunction allowing enhanced 

vascular protein leakage. The ensuing increased transcapillary fluid filtration 

results in edema and increased interstitial pressure. Edema exerts physical 

compression on the vessel especially for tissues such as muscles, which cannot 

readily expand due to the presence of a restrictive fascial sheath, resulting in the 
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capillary no-reflow phenomenon [33, 49]. Altered ion pump function is partly 

responsible for edema formation and reducing edema by treatment with a 

hyperosmotic saline dextran solution prevents endothelial cell swelling [107] 

Reparative Phase 

This response phase to ischemic insult involves  activation of processes that seek 

to restore tissue perfusion and heal the damage tissue. Three key processes are 

involved in the revascularization responses namely vasculogenesis, angiogenesis 

and arteriogenesis (Fig.2). Although these processes are distinct in some aspects 

they do share overlapping mediators such as growth factors and cytokines. 

Furthermore, one process could influence the subsequent process i.e. 

vasculogenesis could lead to angiogenesis. Tissue regeneration and repair is a 

sequel of revascularization that  involves growth factors, tissue resident stem cells 

and bone marrow derived stem cells 

Angiogenesis 

Angiogenesis is a well-studied process that involves proliferation, sprouting and 

migration of endothelial cells to form new thin walled capillaries [108]. The initial 

trigger for angiogenesis is local ischemia. In 1988 Goldberg and colleagues while 

examining the expression of erythropoietin gene observed that hypoxia, cobalt 

chloride or nickel chloride increased mRNA expression of erythropoietin through a 

common pathway [109]. They  hypothesized that this common pathway involved a 

ligand dependent conformational change in a heme containing protein. Later 

Semenza et al. identified a cis-acting enhancer element in erythropoietin gene and 



20 
 

a multimeric transcriptional regulatory complex which binds directly to a 50-base 

pair hypoxia-inducible enhancer element in the 3’ region of erythropoietin gene. 

These transcription factors were referred as hypoxia inducible factor (HIF) [110, 

111]. 

The HIF family transcription factors are now known to include three constitutively 

expressed β-isoforms, whose regulations are oxygen independent, and at least 

three oxygen-dependent α-isoforms [112].  Of the three α-isoforms, HIF1-α is the 

most ubiquitously expressed whereas HIF2-α and HIF3-α are more restricted to 

specific tissues  [113]. All three isoforms have been shown to interact with the β-

isoforms and activate target gene transcription [114, 115]. However, an alternately 

spliced transcript of  HIF3-α, inhibitory Per-ARNT-Sim (PAS) domain protein, 

appears to be a negative regulator of  transcription [116]. Due to the ubiquitous 

nature of HIF1-α,  it is the most widely studied isoform.  

HIF1-α is a basic helix-loop helix (bHLH), Per-ARNT-Sim (PAS) domain containing 

protein. It contains an oxygen-dependent degradation and transactivation 

domains. The basic helix-loop helix domain is essential for its DNA binding activity 

whereas the PAS domain is involved in heterodimerization with HIF-β. The oxygen 

dependent degradation and transactivation domains regulate HIF1-α stability and 

coactivator binding respectively [113, 117].  

 Initially it was thought that the putative HIF1-α regulator was a heme iron 

containing protein, but further studies established that stabilization of HIF1-α is 

mediated by non heme containing enzymes identified as prolyl hydroxylases 

(PHDs). PHDs are iron-containing dioxygenases that require α-ketoglutarate and 
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oxygen for their activity [118]. The discovery of PHDs and HIF1-α helped us better 

understand the role of molecular oxygen in  the molecular mechanisms that are 

activated during hypoxia. In the presence of molecular oxygen HIF1-α is targeted 

for proteasomal degradation through PHD mediated hydroxylation of two essential 

proline residues in the oxygen dependent degradation domain.  The reaction 

requires Fe2+, α-ketoglutarate and oxygen and involves splitting molecular oxygen 

into two. One oxygen is used as a  substrate for hydroxylation and the other used 

for oxidation of α-ketoglutarate to succinate [119]. Hydroxylation on the proline 

residues act as a specificity determinant allowing for recruitment of the E3 ubiquitin 

ligase, von Hippel-Lindau tumor suppressor (pVHL), thereby targeting HIF1-α for 

proteasomal degradation. Each of the hydroxylation sites can independently 

interact with VHL potentially contributing to rapid degradation of HIF1-α [116]. 

However, under hypoxic conditions when oxygen becomes limiting PHD activity is 

inhibited thereby preventing proline residue hydroxylation on HIF1-α [118]. 

Furthermore, Fe2+ in the catalytic site of the enzyme is loosely bound to  2-histidine-

1- carboxylate coordinate motifs which makes Fe2+ susceptible to displacement 

[113]. Therefore, metal chelators such as deferoxamine can induce HIF1-α 

stabilization even in the presence of molecular oxygen [120, 121].  

In addition to this modification, hydroxylation of an asparagine residue in the 

transactivation domain by asparagine hydroxylase prevents interactions with 

coactivators [116].  Other posttranslational modifications such as acetylation and 

phosphorylation have been shown to occur in HIF1-α. Acetylation of a conserved 

lysine residue in the oxygen degradative domain has been shown to be important 
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in HIF1-α-pVHL interactions and stability. Also, phosphorylation by MAPK is 

reported not to affect stability or transactivation but rather increase HIF1-α 

transcriptional activity [113, 122, 123]. Other less common modifications are 

SUMOylation which activates and represses transactivation and cysteine residue 

S-nitrosation which increases transactivation [124-127]. Cytokines, ROS and 

growth factors could also activate HIF-1α in a hypoxia independent manner [113, 

117]. However, studies have shown that prolyl hydroxylation is the most important 

regulator of HIF1-  stability. 

Once  proline residue hydroxylation is inhibited under hypoxic conditions, HIF1-α 

translocate into the nucleus and interacts with its coactivators. This transcriptional 

complex is formed on genes that contain the cis-acting element that was initially  

identified in the erythropoietin gene. Using promoter analysis on  genes that are 

modified by hypoxia this consensus sequence, referred to as hypoxia response 

element (HRE), has been shown to be present in hundreds of genes involved in 

erythropoiesis, Fe2+ metabolism, angiogenesis, glycolysis, immunity, cell 

proliferation, and matrix and barrier regulation [113]. The ability of this single factor 

to regulate these diverse genes involved in almost all the adaptations to hypoxia 

makes its regulation a viable target in the treatment of ischemic pathologies. 

The genes involved in angiogenesis that are regulated by HIF1-α, include 

epidermal growth factor, platelet-derived growth factor, angiopoietin, stromal-

derived growth factor and vascular endothelial growth factor (VEGF) which  is the 

most potent endothelial specific mitogen [108, 128].  
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VEGF family of growth factors consists of seven family members named VEGFA -

F and PIGF with VEGF-A being the prototype. With the exception of VEGF-F and 

PIGF all five VEGF family members exist in mammalian cells [129]. These are a 

family of secreted proteins each containing a cysteine-knot structure with eight 

invariant cysteine-residues that are involved in inter and intra molecular disulfide 

bond formation [130]. The angiogenic effects of secreted VEGF are propagated by 

binding with the VEGF tyrosine kinase receptors. Three VEGF tyrosine kinase 

receptors designated VEGFR1-3 have been identified. Each receptor has a single 

membrane-spanning region, seven immunoglobulin-like domains in the 

extracellular region and a conserved tyrosine kinase sequence interrupted by a 

kinase insert domain [130]. VEGFR2 appears to be the most important receptor in 

VEGF-mediated proliferation of endothelial cells [131]. On the other hand VEGFR1 

is likely involved in negative regulation of VEGFR2 mitogenic effects [132]. 

VEGFR3 is usually limited to lymphatic endothelial cells and seems to regulate 

proliferation and migration of these cells. In terms of its activation it differs from the 

other two VEGFRs because it undergoes proteolytic cleavage in the extracellular 

domain into two disulfide linked polypeptides [129]. 

Binding of VEGF to VEGFR2 results in autophosphorylation of several tyrosine 

residues in the kinase-insert domain and C-terminal domain. Each of these 

autophosphorylation site mediates specific interactions between receptors and 

downstream signal transducers [129]. In human’s tyrosine1175 phosphorylation 

creates a docking site for phospholipase C-γ1 (PLCγ1), growth factor receptor-

bound protein 2 and SHC. PLCγ1 docking leads to activation of protein kinase C 
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through diacylglycerol generation from phosphatidylinositol 4, 5-bisphosphate. 

Diacylglycerol is known to  activate MAPK cascade which promotes cell survival 

and proliferation. This pathway also lead to Ca2+ signaling, prostaglandin 

production and increased vascular permeability [133]. Another signaling pathway 

which can be activated is the PI3K signaling cascade. Docking of PI3K to phospho 

tyrosine leads to activation of protein kinase B (PKB)/AKT leading to 

phosphorylation of proapoptotic caspase 9 and BAD which inhibits proapoptotic 

factors and increase proliferation and survival.  PKB/AKT pathway also increase 

eNOS activity through interaction with HSP90 and leads to increased vascular 

permeability [129, 133]. Modifications in focal adhesion proteins are also induced 

through SRC and SHB docking. This causes actin reorganization facilitating 

endothelial and smooth muscle cell migration which are necessary for 

angiogenesis. The immune/ inflammatory pathways are also activated by VEGF 

signaling through the JAK/STAT pathway [133].  Receptor activation also leads to 

production of platelet- activating factor by endothelial cells which stimulate their 

mitosis and migration [129]. Chemoattractant molecule production is also induced 

by receptor signaling which allows for monocyte recruitments [134]. By regulating 

factors involved in every step of the angiogenic process i.e. vascular cell 

permeability, migration, proliferation and sprouting, VEGF acts as a potent 

angiogenic factor. Proliferation of the vascular cells has been observed as early as 

24 hour after the induction of hindlimb ischemia in murine models and peaks at 

days 3 and 7 [135].  VEGF also works synergistically with other growth factors 

which enhance angiogenic response [136]. The increase in endothelial cell mitosis 
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also corresponds to morphological changes in smooth muscle cells which 

represents a shift from contractile to proliferative phenotype such as appearance 

of rough endoplasmic reticulum and many free ribosomes [137]. 

Vasculogenesis 

Asahara and colleagues showed for the first time in 1997 that the cells isolated 

from the blood can form new vessels thus challenging the dogma that postnatal 

vascularization is operated by proliferation of pre-existing endothelial cells. They 

showed that a subset of CD34+ (hematopoietic stem cell) population of cells in 

peripheral blood  upon culture express endothelial cell markers such as CD31 and 

these cells could be incorporated into newly formed blood vessels following murine 

hindlimb ischemia [45]. This new cell population was named endothelial progenitor 

cells (EPCs). Further studies demonstrated the existence of more than one 

endothelial cell progeny [138]. Since then other cell populations such as myeloid 

cells, side populations and tissue resident stem cells have been shown to 

differentiate or transdifferentiate into endothelial cells [139]. Due to the 

heterogeneity of these cell populations, especially in humans, no specific marker 

has been identified to describe putative EPC however, a panel of markers is 

consistently used as a surrogate marker for cells displaying vascular regenerative 

properties [139]. EPCs were originally defined as cells that were positive for the 

hematopoietic cell marker, CD34 and the endothelial cell marker, VEGFR2, but 

CD34 is not exclusive to hematopoietic stem cells. Low expression of CD34 is 

observed on matured endothelial cells. The more immature hematopoietic stem 

cell marker, CD133 is commonly used however, most studies use all three markers 
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(VEGF,CD34,CD133) [140, 141]. The stem cell antigen-1 (Sca-1), a common 

marker used to enrich hematopoietic stem cells in rodent tissues, can also be used 

in conjunction with VEGFR2 to identify EPCs [142]. 

Following  the discovery of these cells, numerous studies using different models 

of ischemia were done to test the role of EPCs in promoting neovascularization, 

and to the best of our knowledge all these studies have shown protective effects. 

The incorporation of EPCs into new vessels is dependent on ischemia because 

low incorporation rates are observed basally [143]. Moreover, under non ischemic 

conditions basal levels of circulatory EPCs are maintained while a pool of the cells 

are stored in the bone marrow microenvironment referred to as the stem cell niche. 

These cells can then egress out of the niche following ischemia [128, 144]. 

Cardiovascular risk factors such as diabetes and smoking are associated with 

decreased levels of circulatory EPCs whereas cardio protective factors such as 

exercise and drugs that reduce the levels of blood low-density lipoprotein (e.g. 

statins) increase the circulating levels [128, 139, 145]. These observations suggest 

a direct effect of EPCs on cardiovascular health and an ischemia related 

mechanism that increases the transmigration of these cells to sites of ischemia. A 

complex coordinated response involving cytokines, chemokines and proteases are 

required to enable mobilization from the bone marrow [144, 145]. 

Based on the observations that VEGF is involved in embryonic blood vessel growth 

and angiogenesis Asahara et al. tested the hypothesis that VEGF is also involved 

in post-natal vasculogenesis [146]. They showed that treatment with VEGF 

increases EPC mobilization and this effect was abolished by using neutralizing 
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antibodies against VEGF [147]. VEGF binds the VEGF receptor which leads to 

activation of PI3K/AKT pathway and increased NO production. NO directly 

activates matrix metalloproteinase 9 that cleaves membrane kit ligand into soluble 

kit ligand. C-kit expressed on the surface of EPC is a receptor for soluble kit ligand. 

The interaction between C-kit and its ligand allows EPC to egress from the bone 

marrow [128]. 

Stromal-derived factor-1 (SDF-1), a stromal protein which interacts predominantly 

with the chemokine receptor CXCR4, is also involved in EPC mobilization. EPCs 

express CXCR4 and interaction between CXCR4+ EPC and SDF-1 maintains  

EPCs in the bone marrow niche [148]. This interaction  suggests that EPCs could 

respond to increased circulatory SDF-1 level and vice versa. Because SDF-1 is a 

transcriptional target of HIF-1α, SDF-1 levels are increased in both the target tissue 

and circulation during hypoxia [117]. In addition to hypoxic tissues, matured 

endothelial cells, pericytes, platelet and EPCs can express SDF-1 to induce EPC 

chemotaxis [149, 150]. Both matrix metalloproteinase mediated disruption of SDF-

1 and EPC interactions within the stem cell niche as well as elevation of SDF-1 

within the circulation are required for mobilization. Also, the extent of EPC 

mobilization is directly proportional to blood SDF-1 levels suggesting that a 

concentration gradient created by SDF-1 act as a chemoattractant for EPC [151].  

Both SDF1 and VEGF activate the nitric oxide synthesis pathway and a  synergistic 

role of both factors has been observed to be involved in EPC mobilization even 

though deletion of each individual factor exerts substantial effect on this process 

[139].  
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Since EPCs represent a rare population of bone marrow cells, chemoattraction is 

of utmost importance in their mobilization and recruitment to injured blood vessels 

thus, SDF1 and VEGF are potent regulators of EPC mobilization. Trials with 

human patients have shown that the migratory capacity of EPCs or bone marrow 

cells towards VEGF or SDF1 respectively enhances the functional improvements 

of patients after stem cell therapy [152].  In addition to these factors, studies have 

implicated other factors such as granulocyte-colony stimulating factor, monocyte-

chemoattractant protein-1, erythropoietin, angiopoietin-1, lipid derived product 

such as sphingosine-1-phosphate and more recently estrogen [128, 139, 144, 146] 

to  increase EPC mobilization. Once in the peripheral blood, EPC homing to sites 

of ischemia occurs through adhesion and transmigration. The activity and 

expression of matrix degrading cysteine protease, cathepsin G, is required for 

tissue invasion by EPCs [144].  

Arteriogenesis 

Due to the importance of molecular oxygen in regulating aerobic metablic, aerobes 

have evolved to have  alternate pathways for blood to reach the same volume of 

tissue. These set of blood vessels supplying the same volume of tissue are 

referred to as collateral anastomoses. The process of remodeling already existing 

collateral anastomoses into larger conductance artery is referred to as 

arteriogenesis (Fig 2). The initial driving force for arteriogenesis is physical, 

however, bone marrow derived cells and tissue derived factors play additional role 

in this remodeling process [135, 153]. Arteriogenesis is essential because an 
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increase in capillary numbers without a corresponding increase in the number of 

large conductance arteries is not sufficient to ensure tissue perfusion. 

 Blood vessels regress if they are not constantly perfused and expand on chronic 

perfusion. When the perfusion rates are high, they develop thicker vessel walls 

and become highly conductant. Our circulatory system has evolved to have these 

backup routes for blood flow which are not normally perfused or perfused 

suboptimally under normal conditions known as anastomoses [28]. These blood 

vessels serve as backup system so that during ischemia when the  principle artery 

is blocked,  blood flow is not completely shut due to the availability of these conduit 

vessels. The success of  arteriogenic process is primarily dependent on the 

availability of a collateral network linking preocclusive and postocclusive circulation 

[135].   

Upon occlusion of an artery, the pressure in the distal part of  occlusion drops  

while that in the proximal site is enhanced [153]. However, if preexisting 

anastomoses exist between these two sites the steep pressure gradient generated 

allows for increase flow through these collaterals [135]. Increased flow through the 

less perfused artery increases the fluid shear stress due to the viscous drag that 

blood flow exerts on the endothelium [28]. However, this represents a relatively 

weak force and cannot fully account for the total morphological changes occurring 

in arteriogenesis, suggesting additional biological or physical factors are involved 

in increasing the blood flow [135]. Studies have shown that endothelial cells which 

are in direct contact with the blood are the first to sense this force and transduce 

the mechanical stimuli into intracellular biochemical response resulting in changes 
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in gene expression and vascular remodeling [135, 137, 154]. Using genetic 

techniques over 40 genes have been found to have shear-stress response element 

[155-157]. Through the activation of these genes, fluid shear stress is converted 

into intracellular biochemical signals mediated by an array of biomolecules 

including receptors, ion channel, and cytoskeletal proteins. Studies have shown 

that an increase in   fluid shear stress increases bradykinin B2 GPCRs activity 

[158]. Fluid shear stress can also induces cytoskeletal rearrangement, activate 

integrins, and increase calcium influx through the P2X4 purinoreceptors signaling 

all of which leads to endothelial cell activation [153, 159]. The transcription factor 

NF-κB activated during the inflammatory phase also mediates some of these 

transcriptional processes involved in arteriogenic gene expressions [160]. 

Collectively, these changes results in alterations in gene transcription and signal 

transduction [135]. Hence, the quiescent collateral endothelium is converted into 

a highly activated layer supporting infiltration and adhesion of leukocytes. Perhaps, 

the greatest modulators of the arteriogenic responses are 

monocyte/macrophages. These monocyte/macrophages have been shown to 

adhere to the luminal side of growing collaterals after coronary or femoral artery 

ligation [161, 162]. Using different methods to control circulating monocyte 

numbers after arterial ligation studies have shown that the number of circulating 

monocytes correspond to the extent of arteriogenesis [162, 163].  Specifically the 

inflammatory subsets of monocytes are responsible for arteriogenesis [47]. That 

circulating monocytes play a role suggests that there are signals that allow these 

circulating cells to be recruited to the site of injury.  Monocyte chemoattractant 
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protein 1 (MCP-1) is a chemokine whose expression is  increased by fluid shear 

stress. Upregulation of MCP-1 leads to monocyte/macrophage adhesion to the 

endothelium and subsequent accumulation in the perivascular space [161].  

Evidence for  MCP-1 and its receptor CCR2  involvement in this recruitment is 

provided by the observations that either knockout of MCP-1 or CCR2 attenuates 

arteriogenesis through diminished monocyte recruitment [163, 164]. The migration 

of monocytes is a complex process because the cells have to traverse through the 

endothelial barriers. Because monocytes generate high levels of matrix 

metalloproteinases and plasminogen activator, they are able to pass through the 

barrier by matrix degradation [165].   

In addition to these cells  another leukocyte population that has been shown to 

play a role in the arteriogenic process are the CD4+T lymphocytes. Using  CD4+ T 

lymphocyte knockout mice Stabile and colleagues showed a decreased collateral 

network formation in these mice after hindlimb ischemia [48]. This decrease in 

collaterals was attributed to diminished monocyte/macrophage recruitment in the 

knockout mice. Furthermore, CD8+ T lymphocytes and mast cells are also known 

to play a role  in the arteriogenic process [135, 166]. 

Although the role of different cells in arteriogenesis has been elucidated the exact 

contribution and the signaling pathways that are activated by each of these cell 

type is currently unknown. However, the recruited monocytes/macrophages have 

been reported to secrete growth factors such as VEGF and FGF, increase 

vasodilatory NO production, and secretes MMPs that participate in extracellular 

matrix and skeletal muscle digestion to create additional space for growing 
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collaterals [153]. This vascular remodeling process is not limited to  endothelial 

cells but proliferation and remodeling of vascular smooth muscle cells have also 

been observed. This proliferative capacity of the smooth muscle cells is mediated 

by matrix metalloproteinase degradation of the basement membrane [153]. 
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Figure 2 
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Figure 2: Mechanisms contributing to tissue revascularization after an 

ischemic event: Ischemia induced VEGF production leads to mobilization of 

endothelial progenitor cells (EPC) from the bone marrow into the circulation. The 

circulating progenitor cells then migrate to sites of ischemic injury and form blood 

island (vasculogenesis). Through further VEGF stimulation these island 

differentiate to form new blood vessel (angiogenesis). Also, existing endothelial 

cells can  migrate and proliferate through VEGF activity to form new capillary 

network (angiogenesis). In the process of arteriogenesis, the paracrine action of 

monocytes leads to remodeling of preexisting anastomoses into large 

conductance arteries 
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Treatment strategies for PAD 

Risk factor modification is important for managing PAD. Smoking cessation is 

recommended for PAD patients because smoking is the single most important 

modifiable risk factor. Smoking cessation improves functional performance, 

reduces risk for amputation and increases survival rates in PAD patients [7, 22, 

167]. Diabetes mellitus is associated with vascular abnormalities such as 

endothelial dysfunction and intensive glycemic control has been demonstrated to 

reduce microvascular complication. Hence, comorbid individuals are encouraged 

to exercise good glycemic control [168, 169]. Supervised exercise programs are 

the most effective noninvasive intervention for improving pain free walking [170]. 

Intermittent claudication results from inadequate oxygen supply to the limb. 

Exercise has been shown to improve oxygen delivery through angiogenesis and 

increase  endothelial dependent vasodilation. It can also increase mitochondrial 

biogenesis, reduce inflammation and ROS generation; which play key roles in the 

pathophysiology of PAD [171]. These beneficial effects of exercise have been 

shown to be responsible for its effectiveness in preventing intermittent claudication. 

Pharmacologically two drugs, cilostazol and pentoxifylline, are approved for 

treatment of PAD. Cilostazol is a quinolone derivative which inhibits type III 

phosphodiesterase, and pentoxifylline is a methylxanthine derivative. Cilostazol 

induces vasodilation, increase angiogenesis through peroxisome proliferator-

activated receptor-γ and cAMP pathways and suppresses apoptosis of endothelial 

cells [172, 173]. Pentoxifylline, on the other hand, prevents platelet aggregation, 

has anti-inflammatory properties and acts as a hemorrheologic agent [174].  
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All the above treatment options are important in PAD however, chronic ischemia 

and reperfusion in these PAD patients overtime culminate in critical limb ischemia 

and irreversible tissue loss. CLI has an annual incidence of 500-1000/million 

people and is present in 12% of the adult US population. The mortality rate is 25% 

within a year of diagnosis. Morbidity is high in these individuals with about 30% 

requiring amputation in the first year of diagnosis [15].  

 In patients with advanced PAD and critical limb ischemia, risk factor management 

and treatment with pharmacological agent is not sufficient to prevent limb loss. 

These patients require surgical or endovascular interventions however, majority of 

these patients are not amendable to these treatment options [175]. For instance 

patients with poorly controlled diabetes mellitus have lower vessel patency rates 

and also present with increased rate of adverse limb events when subjected to 

endovascular techniques [170]. Furthermore, in some patients the operated artery 

can be re-narrowed after the initial surgical procedure leading to multiple 

revascularization surgeries [12]. Likewise some patients may not be good 

candidates for either percutaneous or surgical treatment due to the anatomic 

distribution of the occluded arteries being so severe to permit relieve of pain or the 

presence of comorbid conditions such as end-stage renal disease [25, 176]. The 

later patient population represent the “no-option patient group” accounting for 30% 

of CLI patients [15]. Currently, no effective treatment is available for these 

individuals with amputation being the only hope for pain alleviation. In these 

patients the chronic ischemia burden exceeds the capacity of the peri-ischemic 

vessels to diffuse oxygen and nutrient to the organ as well as endogenous 
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reparative mechanisms [177]. Recent focus of therapeutic intervention to the no-

option patients has been delivery of exogenous cellular and molecular agents to 

promote revascularization. Studies using  animal models have shown that 

administration of HIF1-α and  growth factors such as VEGF and fibroblast growth 

factors (FGF)  can enhance vasculogenesis, angiogenesis and arteriogenesis in 

ischemic limbs, attenuate tissue injury, increase muscle regeneration and improve 

limb function [117, 178-181]. These preclinical studies provided basis for clinical 

trials to deliver these  exogenous agents to PAD/CLI patients. Several clinical trials 

have been conducted with these agents to elucidate their efficacy in patient 

populations.  A phase III clinical trial testing the efficacy of FGF in no-option CLI 

patients showed no change in time to amputation or death between treated and 

placebo groups [182, 183]. Similarly, trials using VEGF or HIF1-α showed no 

change in peak walking time or maximal treadmill time respectively [184, 185]. 

These trials with single agents have largely been negative or resulted in no 

measureable difference between groups despite promising preclinical, phase I and 

in some cases phase II clinical trials [182]. Like growth factors, many animal 

studies have reported a role for bone marrow derived and peripheral blood 

mononuclear cells in recovery from HLI [45, 47, 48]. Several cell types such as 

peripheral blood or bone marrow mononuclear cells or isolated cell population from 

blood or bone marrow using selective markers have been injected and tested for 

their efficacy. Over 50 clinical trials have been conducted and some are still testing 

these cell therapies [175, 177]. Modest level of efficacy have been observed in 

these studies with regard to end-points such as ankle brachial index, pain-free 
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walking, tissue perfusion etc. Most of these clinical trials with these cells did not 

yield encouraging results which could be due to the limitations in identifying the 

correct dose, mode and frequency of administration of these agents [175]. It is 

worth noting that significant improvement has been made over the past decade in 

fine-tuning these factors. Also, the patient population in the clinical setting are 

individuals with diverse cardiovascular risk factors which have been associated 

with decreased circulating progenitor cell number and function. A number of 

studies have reported impaired mobilization or increased senescence of 

endogenous EPCs   in hypertension, hypercholesterolemia, and diabetes mellitus 

[186-188].  The potential effect of these risk factors on the function and activity of 

exogenously administered progenitor cells was demonstrated by a study showing 

that diabetic impairment in angiogenesis could be reversed if progenitor cells were 

administered together with agents to promote synergism with local trophic 

pathways [189]. This suggests that agents that can target multiple deleterious 

pathways involved in PAD progression could be important treatment options for 

PAD patients. 

Project objective 

Impaired tissue perfusion secondary to atherosclerosis is the underlying cause of 

several adverse chronic conditions such as PAD [7]. Unabated ischemia resulting 

from this atherosclerotic burden results in tissue necrosis and loss in these patients 

[190]. Treatment options for these patients include use of pharmacological agents 

such as cilostazol and antiplatelet therapy in early stage disease patients to relieve 

pain. Endovascular or bypass surgery can be employed in advanced patients [12, 
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16, 170]. Use of angiogenic agents such as VEGF, FGF and hepatocyte growth 

factor have also been tested [175]. More recently autologous bone marrow or 

peripheral blood cells have been tested as treatment option for these individuals 

[177]. Although these treatments are currently  available, their efficacy have been 

marginal in part because they do not account for the complex interplay of factors 

such as ROS and chronic inflammation that underline the disease condition. 

Therefore, new therapies are needed that could  target these multiple underlying 

causes such as oxidative stress and chronic inflammation. 

Revascularization after ischemia is  tightly regulated by the transcription factor 

HIF1-α. Activation of HIF1-α leads to the expression of angiogenic genes such as 

VEGF which is essential for EPC mobilization (vasculogenesis) as well as 

sprouting and migration of endothelial cells to form new thin walled vessels 

(angiogenesis). HIF1-α can also regulate the arteriogenic response through its 

upregulation of monocyte-chemoattractant protein-1 expression thus, HIF1-α is a 

viable target for ischemic diseases [117]. HIF1-α  is negatively regulated by prolyl 

hydroxylases (PHDs) which are Fe2+ requiring enzymes. Therefore, strategies to 

inhibit PHD using either pharmacological agents or Fe2+ chelators have emerged 

as possible treatment options for these individuals. Animal studies using PHD 

inhibitors have shown protection in HLI through HIF1-α stabilization [60, 120, 180]. 

However, the use of these chelators and inhibitors could be toxic and HIF1-α gene 

therapy for CLI patients is largely negative [185].  

Recent observations have shown increased levels of reactive carbonyls in 

ischemic muscles of PAD patients [191, 192].  In addition to promoting tissue injury 
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directly through reaction with biomolecules these molecules affect the response 

involved in revascularization. At high concentrations, lipid peroxidation products 

such as 4-hydroxynonenal are reported to inhibit VEGF production [193]. Similarly 

acrolein, a highly reactive lipid peroxidation product, has been reported to inhibit 

EPC mobilization [142].  Moreover, high levels of oxidative stress has been shown 

to induce senescence of stem/progenitor cells [177, 194]. These observations 

suggest that oxidant stress may contribute in part to the defective revascularization 

process observed in PAD patients and may suggest why the administration of 

proangiogenic agents in the clinical setting was not effective. Thus, removal of 

lipid-peroxidation products in ischemia could be another strategy to  increase the 

revascularization potential and  attenuate tissue injury. 

Carnosine is an endogenous dipeptide, comprising histidine and the non-

proteinogenic amino acid β-alanine, which is synthesized by an ATP grasp domain 

containing enzyme carnosine synthase (ATPGD1) [195].  Carnosine  is present in 

high concentration in skeletal muscle, heart and brain. It is a food constituent that 

is highly abundant in chicken and beef.  Studies have shown that carnosine is a 

potent chelator of divalent metals such as Fe2+ and Cu2+ [196, 197]. Given the 

observation that Fe2 chelators such as deferoxamine can increase HIF1-α levels 

and improve recovery from HLI [198] we rationalized that carnosine can increase 

revascularization in HLI through HIF1-α stabilization. Furthermore, our lab and 

others have shown that carnosine can form conjugates with lipid peroxidation 

products thereby limiting their reactivity [199]. Given the extensive evidence that 

supports a role of lipid peroxidation product in tissue injury associated with 
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ischemia and recent evidence linking their levels to diminished progenitor cell 

levels and angiogenesis [142, 192], we postulated that quenching of reactive 

aldehydes by carnosine could be beneficial in HLI.  

In this series of investigations, we hypothesized that carnosine can promote post-

ischemic angiogenic and arteriogenc responses through metal chelation and 

aldehyde quenching. To address this hypothesis we tested the effect of oral 

carnosine supplementation on revascularization after mouse HLI. We used Laser 

Doppler imaging technique and microfil perfusion coupled with micro-CT analysis 

to determine tissue perfusion. The effect of changes in tissue perfusion on muscle 

integrity and lipid peroxidation product levels were analyzed. We  examined the 

role of carnosine on ischemia-induced EPC and immune cell mobilization and 

recruitment. We used cell culture models to analyze the molecular pathways that 

are regulated by carnosine. Results from this study shows that carnosine improves 

blood flow in the ischemic limb of the HLI mice and provides the platform to start 

clinical trials in PAD patients and determine whether supplementation with 

carnosine can improve blood flow/ABI in these patients.  
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CHAPTER II 

ORAL CARNOSINE SUPPLEMENTATION PROMOTES 

REVASCULARIZATION IN A MURINE HINDLIMB ISCHEMIA MODEL 

Introduction 

Carnosine, (β-alanyl-L-histidine), was discovered in the late 19th century by the 

Russian chemist, V. Gulewitch as a non-protein nitrogen-containing compound in 

meat; hence the name carnosine (from the Latin word carnis meaning meat/flesh) 

[200]. Currently, about 10  variants of carnosine have been identified which are 

classified into the histidyl dipeptide family [200]. All vertebrates’ tissue analyzed 

have one or more derivatives of histidyl dipeptides with mammals usually 

possessing carnosine and one methylated isoform i.e. either anserine or balenine, 

except for humans, that have carnosine only [201].  Carnosine is highly abundant 

in skeletal muscle and other excitable tissues such as heart and brain. The skeletal 

muscle concentration in humans is about 20-30mmol/kg dry weight hence 

carnosine is one of the top ten metabolites in the skeletal muscle [202]. Such high 

concentrations in muscle suggest a critical role of this dipeptide in skeletal muscle 

function thus, creating the need to understand its metabolism and function.  

Carnosine is synthesized by the enzyme carnosine synthase (ATPGD1). Recent 

work by Drozak, et al. characterized this enzyme as an ATP-grasp domain 

containing protein [195].  The enzymatic reaction involves peptide bond formation 
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between β-alanine and histidine (Fig. 3), with β-alanine being the rate limiting 

substrate [203]. β-alanine is synthesized from catabolism of uracil, decarboxylation 

of aspartic acid and oxidation of 3-aminopropanal [204-206].  In addition to these 

endogenous synthesis, β-alanine can also be taken as a supplement to increase 

tissue carnosine levels [203]. Intracellular transport of β-alanine is achieved 

through TAUT and PAT-1 transporters [207]. 

The presence of a β-amino acid in carnosine makes it resistant to tissue 

peptidases. Hydrolysis of carnosine into constituent amino acid is catalyzed by a 

specific peptidase referred to as carnosinase. Carnosinase exists in two isoforms 

that are present in the serum and cytosol respectively [201, 208]. The activity and 

expression of these degradative enzymes vary across species with humans having 

a higher serum carnosinase activity and expression than rodents [209, 210]. The 

cytosolic isoform of the enzymes is highly abundant in liver, kidney and skeletal 

muscle of humans and rodents [200, 207]. Regardless of the tissue distribution 

cytosolic isoform has a lower activity compared with serum isoform [201]. 

Carnosine is transported across the plasma through the activity of a family of 

proton coupled transporters (PHT1, PHT2, PEPT2, and PEPT1) [211-213].  

PEPT1 is highly expressed in small intestines and plays an essential role in the 

absorption of ingested carnosine into the bloodstream [213]. PEPT2 on the other 

hand is expressed on the plasma membrane of several tissues such as kidney and 

skeletal muscle. Studies with the PEPT2 KO mice have shown that PEPT2 is 

involved in the extrusion of carnosine from the skeletal muscle and import of 

carnosine to the kidney and brain [214]. However, studies by Everaert et al. 
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showed that the relative expression of PEPT2 transporters in muscle is low and 

PHT1 is the key transporter for carnosine in the skeletal muscle [207]. Because 

these transporters are non-specific it is difficult to elucidate their contribution in 

regulating intracellular carnosine levels. Although β-alanine is considered the rate 

limiting substrate, histidine is also known to affect carnosine levels [203, 215]. 

Decarboxylation of histidine to histamine by histidine decarboxylase can affect 

intracellular carnosine concentration [207]. Also, β-alanine can be transaminated 

by β-alanine-2-oxoglutarate transaminase and β-alanine-pyruvate transaminase. 

Inhibition of these transaminase enzymes increase carnosine levels in skeletal 

muscle and cardiac tissue [216]. Carnosine can be methylated to its analogues 

anserine or ophidine, decarboxylated to carcinine or acetylated to acetyl carnosine 

however, these modifications are species-specific [201, 217]. Fig. 3 provides a 

summary of factors  regulating carnosine homeostasis in rodent muscle. 

Carnosine has the ability to buffer intracellular pH, because the imidazole ring of 

histidine, has a pKa close to physiological pH that imparts buffering capacity to 

histidyl dipeptide. During intensive exercise lactic acid is accumulated which is 

decomposed to lactate and proton that leads to decreased pH thus limiting muscle 

function [217].  A direct role of carnosine in regulating proton levels was described 

by Severin et al. who showed that treatment with carnosine prevents acidification 

induced by lactic acid without affecting lactate accumulation thus, preserving 

excitation-contraction-coupling in isolated frog muscle [217, 218]. Carnosine also 

affects intracellular calcium regulation presumably through modulation of 

sarcoplasmic reticulum calcium release and increases the sensitivity of contractile 
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proteins to calcium [219]. Hence, both pH buffering and calcium handling 

properties of carnosine are essential in regulating muscle contraction. In addition 

to  pH buffering carnosine is known to exhibit antioxidant properties, [220]  quench 

highly reactive carbonyl species [199, 221] and chelate divalent metals such as 

Cu2+, Fe2+ and Zn2+  [196, 197]. Carnosine also regulates neutrophil function, 

exhibits anti-aging and anti-inflammatory functions, regulates enzymes such as 

phosphorylase a, modulates gene transcription and possibly translation through 

regulation of eukaryotic initiation factor 4E protein [222-224]. 

Based on its well-characterized role in scavenging ROS, calcium regulation, metal 

chelation and aldehyde quenching, we sought to elucidate a role for carnosine in 

recovery from hindlimb ischemia (HLI). In these studies we used a well-

characterized murine model of HLI to determine the therapeutic potential of 

carnosine in HLI.  
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Figure 3 
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Figure 3: Schematic overview of factors regulating muscle carnosine 

homeostasis in mice: Ingested carnosine can be absorbed as the intact molecule 

or degraded into constituent amino acids within the intestinal lumen. Carnosine 

can be transported to the myocyte through the activity of PHT1/2 transporters. 

Intramuscular carnosine can be degraded, methylated or stored. On the other hand 

intramuscular β-alanine transport is through TauT. In the muscle it can be used for 

carnosine synthesis or transaminated for energy generation. Histidine, although 

not the limiting substrate, can be decarboxylated to histamine 
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Experimental Procedure 

Animals and reagents: Male C57BL6J mice (16-18 weeks old) were obtained 

from Jackson Laboratory (Bar harbor, ME). Mice had access to chow ad libitum 

and were placed on a 12hr light/dark cycle. All protocols and procedures were 

approved by the Institutional Animal Care and Use Committee of the University of 

Louisville. Carnosine, hemoxylin and eosin (H&E) dyes were obtained from Sigma 

Aldrich, Microfil dye from Flow Tech Inc and isolectin antibody from Molecular 

Probes. 

Hindlimb Ischemia Surgery (HLI): The murine hindlimb ischemia (HLI) model 

used in this study involved ligation of the femoral artery and vein. The mice were 

anaesthetized using 1-3% isoflurane in 100% oxygen at a flow rate of 1L/min.  

Once fully anaesthetized, depilatory cream was applied to the right hindlimb to 

remove excess hair and expose the skin. Betadine and 70% alcohol were applied 

consecutively then a 5mm incision was made on the thigh within the femoral 

triangle. The inguinal fat pad was pulled aside to expose the underlying neuro 

vascular bundle. To obtain a good view of the vasculature, the membranous 

femoral sheath was removed followed by ligation of the femoral artery and vein at 

two points which were 2mm apart. The intervening blood vessel was excised and 

the skin closed with two discontinuous sutures. Mice were allowed to recover from 

the surgery. Sham operated mice were treated as described above except that the 

vessels were not ligated. Regarding carnosine supplementation two different 

protocols were used. In the first study mice were pre-treated with carnosine at a 

concentration of 1g/L in their drinking water for 7 days and then subjected to either 
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sham or HLI surgery.  This study group will be referred to as pre-treated mice. The 

second protocol involved  carnosine treatment after HLI surgery. Mice were 

subjected to HLI and sham surgeries and immediately supplemented with 

carnosine (1g/L) in drinking water throughout the recovery process. This latter 

group will be referred to as post-treated study. 

Laser Doppler Perfusion Imaging (LDPI): Post ischemia tissue perfusion was 

monitored using Peri Scan PIM II laser Doppler device (Perimed). These analyses 

were carried out on whole limb for the pre-treated group on post-operative day 14 

and on the feet for the post-treated group on post-operative days 7, 14 and 21. 

Mice were anesthetized as described above, placed in the supine position (for 

whole limb imaging) or prone position (for feet imaging) and body temperature 

maintained throughout the imaging by placing them on a heating pad set at 37oC. 

Blood flow in the limbs was displayed as laser frequency changes using different 

color pixels. Images were analyzed with both NIH image J and moorLDI V6 PC 

analysis software. The ratio of the flow obtained for the ligated (ischemic) and 

contralateral limb was reported as the percentage of tissue perfusion recovered. 

Vascular Casting and Micro- Computed Tomography (microCT) analysis: 

After 21 days of recovery from HLI, the post-surgery treated mice were 

intraperitoneally injected with 100 µl of 100 unit/ml heparin to prevent blood 

coagulation and sedated with pentobarbital. When the mice were fully sedated an 

incision was made in the thoracic cavity to expose the heart. A blunted 25 gauge 

needle was cannulated through the left ventricles. The mice were systemically 

perfused at a constant rate of 5ml/min with the vasodilation solution (100 µM 
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adenosine, 10 µM sodium nitroprusside and 0.05 wt. /vol bovine serum albumin). 

Undiluted microfil vascular casting agent (Flow Tech Inc, MA) was mixed with 10% 

volume of curing agent and perfused systemically until a good filling of the 

vasculature was obtained. The casting was allowed to polymerize at room 

temperature and the entire hindlimb limb deskinned. To obtain whole mount 

images of these limbs the deskinned limbs were placed in increasing concentration 

of glycerol (40%, 60%, 80% then 100%) successively for 24 hours at each 

concentration. Whole mount images were obtained from these samples by imaging 

with a digital CCD camera (Nikon). For microCT analyses the samples were further 

processed by fixing in 10% neutral buffered saline for 18-20 hours and decalcified 

with Cal EX II for 48 h. Samples were stored in 70% ethanol until imaging. MicroCT 

imaging was carried out on a MicroCAT (Siemens) using following parameters; 

80kVp, 200 µA and 2 x 2 binning to obtain a pixel resolution of 1024 x 1024 with 

34 µM voxel sizes. Following the setup of appropriate thresholds for soft tissue 

elimination, blood vessel volumes were quantified using Analyze software. Similar 

to LDPI the ratio of blood vessel volumes for the ischemic and contralateral limbs 

was used to assess the extent of arterial filling.  

Histology: Histological analyses were conducted on formalin fixed tissues for the 

hematoxylin and eosin (H&E) staining and OCT-frozen sections for isolectin 

staining.  For H&E staining, following euthanasia the hamstring muscles were 

excised, formalin fixed and paraffin embedded. Cross sections of muscles were 

made, mounted on slides and stained with hematoxylin and eosin. The muscle 

cross sections were analyzed for muscle regeneration and necrosis. For isolectin 
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staining, hamstring and gastrocnemius muscles were harvested after euthanasia, 

placed in cryomolds and covered fully with OCT compound. The molds were 

rapidly placed in cold 2-methyl butane to freeze quickly and prevent ice crystal 

formation. Cryosections were prepared and incubated with isolectin antibody 

(Molecular probes) which is already conjugated with a fluorophore. For nuclear 

staining the slides were counterstained with 4’,6-Diamidino-2-Phenylindole 

Dilactate (DAPI). Samples were imaged using Nikon Eclipse Ti microscope and 

analyzed using NIS-Element AR analysis software (Nikon). 

Metabolic phenotyping:  Limb function/physical activity of the HLI mice was 

assessed using metabolic chambers (TSE phenomaster system; Bad Homberg 

Germany). We determined mice movement (both ambulatory and fine movements) 

as a measure of limb function. In addition to these parameters we also examined 

their respiratory exchange ratio (RER), oxygen consumption, and whole body 

energy expenditure.  

Complete Blood Count Analysis: Following pentobarbital euthanasia, blood 

samples were collected by cardiac puncture. The blood samples were placed on 

ice for 30 mins. The samples were analyzed on Abbott cell-dyn system to obtain a 

complete hematological profile of the mice. 

Data analysis and statistics: All the experimental results are represented as 

mean  SEM.  For studies involving only two groups the unpaired student T- test 

was used for analysis whereas for studies involving groups that are greater than 

two one-way ANOVA was used with Bonferroni corrections. All statistical analysis 
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was done with GraphPad analysis software. A p value < 0.05 was considered 

significant. 

Results 

Limb perfusion is enhanced in the ischemic limb of carnosine treated mice: 

To test the prophalytic potential of carnosine, mice were pre-treated with or without 

carnosine at a concentration of 1g/L in drinking water for 7 days and subjected to 

HLI surgery. Carnosine treatment was continued during the recovery process. Our 

results show that tissue perfusion was significantly increased in the carnosine pre-

treated (63 ± 6%) compared to the non-treated (19 ± 3%) HLI mice (Fig. 4). Based 

on these results we investigated the therapeutic potential of carnosine in promoting 

wound healing responses. Wild type (WT) C57/BL6 mice (18 week old) were 

subjected to HLI and sham surgeries. After surgeries, mice were treated with or 

without carnosine (1g/L) in drinking water. Recovery of blood flow was monitored 

by LDPI over a period of 21 days. No difference was observed between the non-

treated and carnosine treated groups after 7 days of recovery however, 14 days 

after the surgery carnosine treated mice showed a significantly higher tissue 

perfusion (31.2 ± 2%) compared to non-treated mice (20.2 ± 1.42%). This 

increased tissue perfusion persisted after 21 days of recovery in carnosine treated 

mice (49 ± 6%) compared to (28 ± 4%) non-treated HLI mice (Fig 5). Collectively 

these results show that carnosine pre-treatment or post-treatment augments 

wound healing responses to increase blood flow in the ischemic limb. 

Carnosine supplementation augments post ischemic arteriogenesis: Three 

processes namely arteriogenesis, angiogenesis and vasculogenesis have been 
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shown to account for revascularization in post-natal life. To better understand 

which of these processes are responsible for promoting carnosine-mediated 

revascularization we performed Microfil casting coupled with microCT analysis to 

determine the vascular density and filling in the post-treated HLI mice following 21 

days of recovery. Microfil casted images showed an increase in surface 

vasculature in carnosine treated compared to the non-treated mice (Fig 6A). 

MicroCT analysis of microfil–casted samples provides a detailed view of the entire 

mouse hindlimb vasculature thereby allowing for the visualization of an extensive 

tortuous network of arteriogenic collaterals and capillary network. These analyses 

showed that vascular density in the carnosine treated HLI mice was significantly 

enhanced compared to non-treated HLI mice (Fig 6B and C) suggesting that 

supplementation of carnosine increases arteriogenesis in the ischemic limb.  

Carnosine increases muscle regeneration and neovascularization: To 

determine if the increase in blood flow induced by carnosine affects the 

morphological changes induced by ischemia, we performed histopathological 

analysis using Hematoxylin and Eosin (H&E) staining. Histological assessment of 

the hamstring muscle close to the site of ligation showed an increase in muscle 

regeneration after 7 days of recovery in the ischemic muscles of non-treated mice 

characterized by centrally located nuclei and regular polygonal shaped myofibers. 

Notably, this effect was enhanced with carnosine treatment (Fig 7). Furthermore, 

staining of skeletal muscle with endothelial cell marker isolectin B4 showed that 

carnosine treatment following HLI significantly increased capillary density 
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compared to the non-treated HLI mice (Fig 8) suggesting that  angiogenesis is 

involved in carnosine-mediated revascularization. 

Carnosine supplementation improves limb function in the HLI mice: 

Peripheral arterial disease (PAD) is considered to be one of the leading causes of 

morbidity in adults [7]. To test whether carnosine can be used as a therapeutic 

intervention to increase physical activity in PAD patients, we measured the 

ambulatory and fine movements of HLI mice in metabolic cages after 14 days of 

recovery from surgery. Our results show that there is no change in fine movements 

between the non-treated and carnosine treated HLI mice (Fig 9C). However, a 

significant increase in ambulatory movement was observed in the carnosine 

treated compared to the non-treated mice (Fig 9B).  We observed a trend towards 

an increase in total movement with carnosine treatment although this change did 

not achieve statistical significance (Fig 9A). Further, we observed that VO2 was 

significantly increased in carnosine treated (4050.9 ± 160.03) compared to non-

treated (3278.6 ± 166.02) mice. Similarly, VCO2 was increased to 3977± 133.7 in 

carnosine-treated compared to 3278.6 ± 166.02 in non-treated HLI mice (Fig 9 D 

and E). No change in respiratory exchange ratio (RER) was observed. Taken 

together, these results demonstrate that increase in blood flow by carnosine 

treatment is concomitantly followed by restored limb function. 

Complete Blood Count (CBC) analysis: To evaluate the overall health of the 

mice following ischemia and carnosine treatment we performed CBC analysis after 

3 days of recovery from HLI. We observed a trend towards a decrease in white 

blood cells, neutrophils, monocytes, eosinophils and platelets with ischemia. 
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These levels were restored to that in the sham with carnosine treatment after 

ischemia (Fig 10 A-C, E, J). Lymphocyte, red blood cells, hemoglobin and 

hematocrit levels however remained unchanged between the groups (Fig 10 D, F, 

H, I). 
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Figure 4 
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Figure 4: Carnosine pre-treatment improves tissue perfusion. WT C57/BL6 

mice (17 week old) were pre-treated with/without carnosine for 7 days and 

subjected to HLI. (A) Doppler images of control and carnosine treated mice 

following 14 days of recovery from HLI. Red represents normal perfusion, blue, a 

marked reduction in tissue perfusion and yellow and green represent a trend 

towards restoration of normal perfusion (B) Quantification of the Doppler images. 

Values are represented as a mean for n=5 mice in each group. *P<0.01 vs non-

treated mice. 
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Figure 5 
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Figure 5: Post-surgery carnosine treatment improves tissue perfusion: (A) 

Representative laser Doppler perfusion images monitoring foot perfusions on post-

operative days 7, 14 and 21 in control and carnosine treated WT C57/BL6 mice. 

Region of interest is indicated by the red boxes (B) Quantification of foot perfusion 

rates expressed as percentage of blood flow in the ischemic limb to the 

contralateral limb. n= 5-9. *p<0.01 vs control mice 
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Figure 6 
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Figure 6: Whole mount images and microcomputed tomography (micro-CT) 

angiograms demonstrating that carnosine treatment increases 

arteriogenesis. WT C57/BL6 mice subjected to HLI were allowed to recover for 

21 days with or without carnosine supplementation. (A) Representative whole 

mount images of carnosine treated and non-treated glycerol clarified microfil 

perfused limbs. Results shows increased microfil filling (increase yellow coloration) 

in ischemic limbs of carnosine-treated compared with non-treated mice.  (B) 

Representative images of micro-CT scans demonstrating increased vascular 

growth in carnosine treated compared with non-treated mice. Arrows indicate 

proximal ligation sites. (C) Quantification, represented as a percentage of vascular 

density of ligated limb to contralateral limb. n=10 mice in each group. *p<0.01 vs 

control mice. 
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Figure 7 
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Figure 7: Carnosine treatment increases muscle regeneration and attenuates 

ischemic tissue injury: H&E staining of paraffin embedded sections of the 

hamstring muscle captured under bright field conditions with 10X objective. (A)  

Representative images for non-treated and carnosine treated mice after 7 days of 

recovery from HLI surgery. Contralateral limbs are included for comparison. (B) 

Data expressed as mean  SEM for the number of regenerated myocyte (myocytes 

with centrally located nuclei) from 4-5 fields per section (4-5 sections/mouse). n=5 

for each treatment. *p<0.01 compared to non- treated HLI mice. 
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Figure 8 
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Figure 8: Neovascularization is increased with carnosine treatment: (A) 

Isolectin B4 staining of ischemic and contralateral hamstring muscles of non-

treated and carnosine-treated HLI mice following 21 days of recovery (B) 

Quantitative analysis of capillary density. n=5 for each treatment. *p<0.05 vs non-

treated ischemic limb. # p<0.05 vs non-treated contralateral limb. 
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Figure 9 
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Figure 9: Physical activity and metabolic rate is increased in carnosine 

treated mice. Measurements of (A) total movement, (B) ambulatory movement 

and (C) fine movement of carnosine treated and non-treated mice after 14 days of 

recovery from HLI were used to assess the physical activity. Metabolic state 

assessment was done by examining, (D) VO2, (E) VCO2 and (F) respiratory 

exchange ratios (RER) in the treated and non-treated HLI mice.  Data are 

presented as mean  SEM of n=5 mice in each group. *p<0.05 vs non-treated mice 

(control).  
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Figure 10 
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Figure 10: Blood cells populations and properties are not affected by 

carnosine treatment. Complete Blood Count of (A) white blood cells and the 

subpopulations of white blood cells i.e. neutrophils, monocytes, lymphocytes, 

eosinophils (B-E,G) in peripheral blood were determined along with (F) Red blood 

cells, (H) hemoglobin, (I) hematocrit, (J) platelets levels. All measurements were 

taken following 3 days of recovery from surgery.  No changes were observed in 

any of these blood cell populations. 
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Discussion 

The results from this study show that carnosine increases blood flow in the 

ischemic limb by promoting post-ischemic angiogenic and arteriogenic response. 

Our results demonstrate that carnosine supplementation increases arterial 

volume/diameter, capillary density and muscle regeneration in the HLI mice 

compared with non-treated HLI mice. Furthermore, limb function was significantly 

improved in the carnosine treated HLI mice. 

A major goal of this study was to evaluate the therapeutic potential of carnosine in 

critical limb ischemia. This is particularly important because of the high rates of 

mortality and morbidity in these individuals [15]. The model of murine HLI 

employed in this study is important in evaluating changes induced in critical limb 

ischemia and monitor efficacy of possible candidate drugs [175]. Ligation of 

femoral artery is reflective of the human disease in which occlusion of the femoral 

artery is frequently observed [12, 225].  

Laser Doppler Perfusion Imaging (LDPI) provides noninvasive recording of 

microvascular tissue perfusion allowing for longitudinal assessment of blood flow 

after occlusion [226].  Our results show that pre-treatment of carnosine in mice 

significantly increased tissue perfusion in the HLI mice compared to non-treated 

mice. Furthermore, our results showing that carnosine supplementation improves 

blood flow after HLI surgery suggests that carnosine can be used as therapeutic 

intervention for PAD patients. We did not observe any toxic effects within the doses 

that were used in this study although symptoms of paresthesia are observed in 

humans with single doses higher than 800 mg [227].   
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One of the limitations of LDPI is the limited depth of penetration thus, only surface 

vascular perfusion can be monitored. The femoral artery is fairly superficial to be 

monitored by LDPI, however, the femoral artery serves as a conduit for other 

vessels and its occlusion disrupts flow to the entire limb. Therefore, it is important 

to monitor developing collateral networks and arterioles deep within the muscle to 

evaluate the extent of damage and recovery. Microfil-perfusion coupled with 

microCT imaging, offers a more holistic assessment for evaluating vascular 

remodeling. This silicon-based radio-opaque agent once injected through the left 

ventricles form a 3-D cast of the vasculature. The mineral phase of bone, due to 

its radio-opaque nature, can interfere with micro-CT analysis. Therefore, formic 

acid decalcification is used to remove the mineral phase of bone without affecting 

the already casted vasculature [228]. With additional threshold settings to eliminate 

soft tissue extensive network of tortuous arterioles can be observed, which a 

hallmark of arteriogenesis is. Our results show an increase in the appearance of 

tortuous vessels with carnosine treatment. We also observed a significant increase 

in the arteriolar filling with carnosine treatment by using Analyze software. This 

technique cannot adequately quantify capillary density due to its low resolution and 

detection limits. Therefore, it is primarily used to quantify the extent of 

arteriogenesis thus, suggesting that carnosine treatment increases arteriogenesis 

in HLI mice. 

Angiogenesis is an important contributor to post-ischemic revascularization. Due 

to the limitation of microfil-perfusion in measuring capillary density, we used 

isolectin staining to determine the role of carnosine in angiogenesis. Isolectin 
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staining was significantly more in carnosine treated ischemic hamstring muscle 

following 3 weeks of recovery compared to non-treated mice. Interestingly, no 

difference was observed between the contralateral limb and ischemic limbs of non-

treated mice. Collectively, our results demonstrated that carnosine treatment 

increases both angiogenesis and arteriogenesis in HLI mice. 

Excessive myofiber damage has been observed in the gastrocnemius muscle of 

peripheral artery disease patients [192]. We evaluated the effect of carnosine on 

ischemia induced tissue injury. After 7 days of recovery from ischemia we 

observed an increase in the number of regenerated muscle in the ischemic muscle 

of carnosine treated compared with non-treated mice. This effect was sustained at 

14 days of recovery and tissue injury significantly reduced at this time point (data 

not shown). To further determine whether the recovery of tissue perfusion and 

restoration of muscle structure improves limb function we determined physical 

activity by monitoring their movement in a metabolic cage. These results showed 

that physical activity of carnosine treated mice was significantly improved 

compared to non-treated mice. Although, metabolic cage analysis provided 

sufficient evidence for limb function, treadmill exercise can be employed in future 

to evaluate stress-induced influences in limb function.  

In conclusion, despite the great utility of the murine HLI model some limitations 

exist. Firstly, in PAD the underlying cause is atherosclerosis while in this model 

obstruction is achieved surgically. Also, the clinical patients present with several 

other cardiovascular risk factors such as diabetes which is associated with 

microvascular dysfunction.  Future investigations examining the role of carnosine 
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in the presence of one or more of these risk factors may be important to further 

evaluate the use of carnosine for the patient population.  

In summary our results provides the first evidence that carnosine improves wound 

healing after HLI. Our results show that carnosine can regulate arteriogenesis, 

angiogenesis and attenuate tissue injury.    These results demonstrate the potential 

therapeutic utility of carnosine. However, further studies are needed to evaluate 

the optimal dose, frequency of dose and best mode of administration for the PAD 

patients.   
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CHAPTER III 

CARNOSINE IMPROVES REVASCULARIZATION BY AUGMENTING THE POST-

ISCHEMIC ANGIOGENIC RESPONSE 

Introduction 

Peripheral artery disease refers to atherosclerotic narrowing or blockage of arteries 

that supply blood to the limb. Risk factors include smoking, diabetes, ageing, 

hypertension, dyslipidemia and obesity and modification of these risk factors 

represent a viable option in the management of PAD [7, 170].  

Carnosine levels have been shown to be negatively associated with some of these 

risk factors while its supplementation is essential in modifying these risk factors. 

For instance in apolipoprotein E null mice, which are highly susceptible for 

developing atherosclerosis, carnosine was effective in preventing the development 

of atherosclerosis [229].  A decrease in carnosine levels have been observed in 

Type II diabetic humans [230]. In animal models of obesity, improved insulin 

sensitivity and reduced cardiovascular risk factors such as dyslipidemia and 

hypertension have been demonstrated with carnosine treatment [231-233]. Ageing 

in humans is also associated with a decrease in muscle carnosine content [234]. 

Interestingly exercise, an important non-invasive option for improving intermittent 

claudication and rest pain is associated with an increase in muscle carnosine 
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levels [235, 236]. These observations suggest a role of carnosine in vascular 

health and therefore a viable candidate to investigate. 

In diverse models of ischemia carnosine has been observed to play a protective role. 

Intraperitoneal administration of carnosine at a concentration of 100mg/kg attenuates 

ischemic injury induced by cerebral ischemia [237]. Similarly, carnosine treatment 

promotes recovery of cardiac function in isolated heart model of ischemia/ reperfusion 

[199, 238]. Likewise, intraperitoneal administration of carnosine protected hearts from 

Adriamycin-induced cardiotoxicity and restored cardiac function after ischemia [239]. 

Similar effects have been observed in hepatic, renal and testicular models of ischemia 

with carnosine treatment [240-244]. 

The protective effects of carnosine are mostly attributed to quenching of reactive 

aldehydes by carnosine [245]. This property of carnosine is particularly important 

because under ischemic conditions  generation of reactive aldehydes is increased 

and  pathways that remove these aldehyde are overwhelmed thus, carnosine 

supplementation is essential to compensate for this deficit [33]. Studies with cerebral 

model of ischemia have shown that carnosine supplementation imparts 

neuroprotection by improving mitochondrial function and diminishing autophagy 

[246].  Inhibitory effects of carnosine on mast cell degranulation and histamine 

release was reported in in-vitro models of ischemia [247]. Vasodilatory effects and 

regulation of myocyte contractility through modulation of calcium homeostasis are 

likely to contribute to anti-ischemic effects of carnosine.   

Although the anti-ischemic effects of carnosine are known, its regulation on the 

vascular adaptations to ischemia has not been studied. The mouse hindlimb ischemia 
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represents a good model to study vascular adaptions to ischemia and explore the 

effects of therapeutic candidates on this process. In this model the role of various 

players such as inflammatory cells, cytokines and progenitor/stem cells can be 

monitored in a temporal fashion to determine their possible causal role in the recovery 

process.  In this series of investigations we examined the effect of carnosine 

supplementation on post-ischemic angiogenic/vasculogenic response. Using flow 

cytometric analysis we evaluated ischemia induced mobilization of endothelial 

progenitor and immune cells to establish a role for carnosine in the regulation of these 

factors. We also determined whether carbonyl quenching by carnosine can be a 

potential contributor to the vascular and tissue adaptations in HLI mice.    

Experimental Procedure 

Material: Tyrosine–Histidine, anserine (Bachem), protease inhibitor cocktail, bovine 

serum albumin, nonafluoropentanoic acid and heptaflurobutyric acid (Sigma-Aldrich), 

fibrous tissue RNA isolation kit (Qiagen), VEGF (Santa-Cruz), anti-carnosine 

(Abcam), anti-4-hydroxynonenal (Cosmo Bio), avian virus reverse transcriptase, 

deoxy nucleotide triphosphate mix (Promega), primers (IDT), SYBR green (VWR),  

Pierce ECL plus (Thermo Fischer). 

Liquid chromatography / Mass spectrometry (LC/MS/MS) analysis of histidyl 

dipeptides: Hamstring muscles were homogenized in a lysis buffer; phosphate 

buffered saline, protease inhibitor cocktail and 200µM Tyr-His (internal standard; IS). 

The homogenates were sonicated and centrifuged at 16000 g. Following 

centrifugation, the supernatant was de-proteinated with 70% perchloric acid and 

centrifuged again. The resulting supernatant was neutralized with 750 mM 
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ammonium hydrochloride and diluted 1:1 with the mobile phase (90% water: 10% 

acetonitrile and 0.1% heptaflurobutyric acid). Samples were injected onto HP 1100 

LC and separated on a Polar RP column. Histidyl dipeptides (carnosine and anserine) 

were detected by using Micromass Quattro LC/MS/MS system [216]. The data for 

histidyl dipeptides were acquired by monitoring the following transitions 

226.95110.22 (carnosine); 241.1109.2 (anserine); 319 110.22 (Tyr-His). The 

peptides were quantified using the peak area ratio of histidyl-dipeptide and internal 

standard. MassLynx mass spectrometry software from Waters was used for the 

analysis. 

qRT-PCR analysis: Following euthanasia hamstring muscle of mice were harvested 

and pulverized. Total RNA was obtained using Qiagen Fibrous Tissue RNA isolation 

kit. RNA quantification and quality were obtained by taking ratio of the absorbance at 

260nm to 280nm using Nanodrop 1000A spectrophotometer (Thermo). To synthesize 

cDNA the isolated RNA and oligo dT primer mixture were heated at 70OC for 5 mins 

to allow the primers anneal with mRNA templates. dNTP’s and reverse transcriptase 

(avian virus reverse transcriptase from Promega) enzymes were added to the mixture 

and the resulting mixture was incubated at 42OC for 1 h followed by heating at 94OC 

for 5 min to denature the enzyme. Relative gene expression was analyzed by using 

cDNA, SYBR green and a pair of forward and reverse primers. The cycling conditions 

include; 5 min  at 95OC,  45 cycles of 10 seconds at 95 O C,  20 sec at 60 O C  and 25 

sec at 72 O C . Ct values were obtained in triplicates.  Hypoxanthine- guanine 

phosphoribosyl transferase 1 (HPRT1) was used as internal control gene. 

Measurements were made on Prism 7900 HT (Applied Biosystem). Fold changes in 
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mRNA expression between the groups were calculated according to the comparative 

Ct method that involves comparing the Ct values of the gene of interest and the 

internal control.  

Flow cytometry: To identify the role of leukocytes and endothelial progenitor cells 

(EPC’s) in carnosine  mediated recovery from HLI, flow cytometry analysis of 

peripheral blood, bone marrow and skeletal muscle  from HLI and sham operated 

mice were carried out on BD LSR II flow cytometer. Mice were allowed to recover for 

3 days. Following euthanasia blood was collected by cardiac puncture, and the femur, 

tibia and muscles (hamstring and gastrocnemius) were dissected. Blood samples 

were lysed, blocked by Fc and washed with 1% bovine serum albumin in PBS. The 

samples were stained for leukocyte markers using a cocktail of the following 

antibodies, CCR2, CD11b, F4/80, Gr-1, Ly6C, 7/4, CD19, CD4 and CD8.  Samples 

were stained with antibody cocktail for 30 mins, washed with BSA-PBS. For EPC’s 

identification samples were treated in the same way except stained with Flk-1+ and 

Sca1+ antibodies. 

For bone marrow analysis, femur and tibia from both the ischemic and contralateral 

limbs were flushed with Hank’s balanced salt solution (HBSS) to obtain the bone 

marrow. The bone marrow was separated by ficoll and the buffy coat was washed 

with 1% bovine serum albumin in PBS. Samples were blocked by Fc and stained for 

EPC and leukocyte markers respectively and analyzed by LSR. 

To determine the leukocyte infiltration, the hamstring and gastrocnemius muscle of 

ischemic and contralateral limbs were minced in HBSS and digested in 0.2% Type II 
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collagenase at 37OC for 1h. The digested tissues were passed through a 50 micron 

cell strained, washed with 1% BSA in PBS, Fc blocked and stained for leukocytes. 

Western blot analysis: Tissue lysates were prepared in RIPA buffer (20mM Tris-

HCl pH 7.5, 150mM NaCl, 1mM EDTA, 1mM EGTA, 1% NP-40). Protein samples 

were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE), transferred onto polyvinylidene difluoride (PVDF) membrane and blocked 

with 5% milk in Tris buffered saline (TBS) with 1%-3% Tween 20. The blots were 

incubated in primary antibodies at 4OC for overnight followed by secondary antibody 

incubation at room temperature for 1h. Horseradish peroxidase (HRP) conjugated 

secondary antibodies were used in all analysis. Membranes were developed using 

HRP substrate (ECL plus form Pierce) and scanned with Typhoon bioimager (GE 

healthcare) 

LC/MS/MS analysis of carnosine-aldehyde conjugates:  To evaluate the extrusion 

of carnosine-aldehyde conjugates in urine, mice were placed on 3% glucose and 

0.125% saccharin solution (1g /L).  Urine was collected at different time intervals (1, 

2, 3 and 12 h) after the supplementation to determine baseline conjugates levels. 

Post-surgery changes in urinary conjugates were determined by collecting urine 1, 2, 

3, and 12 h after the HLI surgery. The urine samples were centrifuged at 16000 g for 

10 min to remove debris and spiked with 30 µl of 1mM Tyr-His (internal standard) per 

500 µL of urine. The urine samples were deproteinated by centrifuged at 16000 g for 

30 mins in a 3000 Da cut off filter. The filtrates were separated on HP 1100 LC 

connected to a Polar RP column using 5mM nonafluoropentanoic acid (NFPA) as the 

mobile phase. Detection of the carnosine aldehyde conjugates and their reduced 
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forms was done on a Micromass Quattro LC/MS/MS system [199]. The ratio of peak 

intensity of conjugates and the internal standard was used for quantification. 

MassLynx mass spectrometry software was used for analysis.  

Results 

Carnosine transport to the ischemic limb is increased with carnosine 

supplementation: Based on the observations that limb perfusion and function are 

increased with carnosine treatment, we next analyzed carnosine levels in the skeletal 

muscle of carnosine treated and non-treated HLI as well as sham-operated mice. 

LC/MS/MS analysis of the hamstring muscle showed that carnosine levels were 

significantly increased in the carnosine treated HLI compared to the sham and non-

treated HLI mice (Fig. 11A). Surprisingly, no changes in carnosine levels were 

observed in the carnosine treated sham mice suggesting that carnosine transport is 

increased in the ischemic limb only (Fig 11A). To determine the factors responsible 

for increase in intra- muscular carnosine levels, we determined the expression of 

enzymes and transporters involved in maintaining homeostasis of endogenous 

carnosine levels.  We determined the expression of transporters (PHT1, PEPT1, 

PEPT2, TauT), and enzymes (ATPGD1 and CNDP2).  No differences were observed 

in the mRNA levels of ATPGD1 and CNDP2 suggesting that there is no change in 

the synthesis and degradation of carnosine by HLI surgery and carnosine treatment. 

However, the expression of carnosine and dipeptide transporters PEPT2 and PHT1 

were significantly increased in carnosine-treated HLI compared with non- treated HLI 

mice suggesting that the increased expression of transporters may be responsible for 

the increased carnosine levels in the ischemic tissue (Fig. 11B).  
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Carnosine treatment increases EPC’s mobilization: Numerous studies have 

shown that EPCs are mobilized from bone marrow to the site of ischemic injury to 

increase post-natal vasculogenesis and angiogenesis [128].  Because, we observed 

an increase in capillary density in the ischemic muscle of carnosine treated mice, we 

tested whether carnosine improves angiogenesis by increasing EPCs mobilization 

from the bone marrow to the site of injury. We determined EPCs levels in the 

peripheral blood and bone marrow using stem/progenitor cell marker Sca-1 and the 

endothelial cell marker Flk-1 (VEGFR2). Our results show that following 3 days of 

recovery from HLI there was no change in the circulating EPCs levels between the 

HLI and sham treated animals, however, a significant increase in EPCs mobilization 

was observed in the carnosine treated HLI mice (Fig. 12E). No change in EPCs 

mobilization was observed in the sham operated carnosine treated mice (Fig. 12E). 

No change was observed in the bone marrow EPCs following 3 days of recovery from 

HLI (Fig. 12 F). However, after 7 days of recovery EPC levels were significantly 

increased in the peripheral blood of HLI compared with sham operated mice. This 

increase was further enhanced in the carnosine treated mice (Fig. 12 G). Levels of 

EPC in the bone marrow of both non-treated and carnosine treated HLI mice were 

decreased compared to sham operated mice (Fig. 12H).  

Carnosine treatment does not affect the inflammatory response induced by 

ischemia: In addition to EPC’s, bone marrow derived mononuclear cells have been 

shown to regulate neovascularization and collateral growth. We therefore examined 

whether the  levels of macrophages (CD11b+, F4/80+), monocytes (CD11b+, F4/80- ), 

inflammatory monocyte subset (Ly6Chi, 7/4hi), resident monocyte subset (Ly6Clo, 
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7/4lo) B cells (CD19+), CD4+ and CD8+ lymphocyte levels were changed in the blood, 

bone marrow and skeletal muscle (NB. lymphocytes were evaluated in blood samples 

only and macrophages in the muscle samples only). The gating strategies are 

summarized in (Fig.13). All analyses were done after post-ischemia (3 days). Our 

results show that the levels of bone marrow inflammatory monocytes were increased 

in the HLI carnosine treated and non- treated mice (Fig. 14E), but no change in the 

total and resident monocyte populations (Fig. 14 D, F) were observed. In the 

peripheral blood no change was observed in the monocytic populations with HLI or 

carnosine treatment (Fig. 14 A-C). Analysis of the skeletal muscle showed that 

monocytes and macrophages levels were increased by HLI however, carnosine 

supplementation had no additive effect on these cells (Fig. 15A-D). In addition to  flow 

cytometry results, qRT-PCR analysis of the  monocyte chemo-attractant molecule 

(MCP-1/CCL2) and its receptor CCR2 showed MCP-1 and CCR2 expression were 

increased by HLI however, carnosine treatment had no additive effect (Fig. 15 E-F). 

We also examined the mRNA levels of cytokines as well as cytokine regulated 

effector molecules which affect the inflammatory response such as VCAM, Tie2, 

TNFα, Angiopoietin, and IL-6. None of these factors were changed by HLI or 

carnosine treatment (Fig. 15G). Collectively, these results demonstrate that 

carnosine treatment does not affect immune cell populations and inflammatory 

process induced by ischemia. 

Carnosine treatment increases VEGF levels in ischemic muscle: Based on our 

observations that EPC mobilization is increased by carnosine supplementation and 

previous studies showing that vascular endothelial growth factor (VEGF) regulates 
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EPC’s mobilization we determined  VEGF levels in the ischemic muscle of the non-

treated and treated mice. VEGF mRNA (Fig. 16A) and protein expression (Fig 16. C, 

D) were significantly increased in the carnosine treated mice compared to the non-

treated HLI mice suggesting that increase in VEGF levels may be involved in 

increasing EPC mobilization. No change in VEGFR2 expression was observed. 

These results suggest that the carnosine treatment increases VEGF levels in the 

skeletal muscle which concomitantly increases  EPC mobilization. 

Carnosine treatment increases extrusion of reactive aldehyde and protein 

carnosinylation: Several studies have shown that generation of reactive aldehydes 

is increased in the ischemic muscle of HLI mice and PAD patients [191, 192]. Studies 

from our lab and others have shown that carnosine has the ability to react with 

aldehydes and can also bind with the protein-aldehyde adducts to generate 

carnosinylated protein adduct [199]. We therefore determined whether carnosine 

supplementation alone can increase the urinary extrusion of carnosine-reactive 

aldehydes conjugates.  LC/MS/MS analysis showed that carnosine treatment 

increased the extrusion of carnosine-propanal (carnosine-acrolein) conjugates 

compared with non-treated mice (Fig. 17 A). The extrusion of carnosine-propanal 

conjugates was significantly increased after HLI surgery compared to the baseline. 

Notably, the extrusion of carnosine-propanal conjugates was significantly increased 

by carnosine treatment in HLI mice (Fig 17 A). Western blot analysis of the ischemic 

and contralateral tissues showed that  generation of 4-HNE protein adduct was 

increased in the ischemic tissue and carnosine treatment decreased the generation 

of these adducts (Fig 18 A, C). Similarly, generation of carnosinylated protein 
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adducts, which prevents the propagation of the free radical chain reaction initiated by 

these reactive aldehydes, was increased in the ischemic muscle of non-treated HLI 

mice and supplementation of carnosine enhanced carnosinylated protein adduct 

generation (Fig 18 B, D). These results suggest that aldehyde quenching by 

carnosine could also contribute to wound healing responses mediated by carnosine. 
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Figure 11 
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Figure 11: Oral administration of carnosine increases carnosine levels in the 

ischemic muscle. (A) LC/MS/MS analysis of carnosine in the hamstring muscle 

of non-treated and carnosine-treated HLI mice. Treated and non-treated sham 

operated mice were used for comparison.  (B) qRT-PCR analysis of the different 

enzymes and transporters that regulate carnosine levels. *p< 0.05 non-treated HLI 

mice, # p < 0.05 vs non-treated sham and $p<0.05 vs carnosine-treated sham. 

n=5 
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Figure 12 
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Figure 12: Carnosine increases EPCs mobilization. EPCs were identified as a 

subpopulation of the live lymphocytic cells that were double positive for Flk-1 and Sca-1. 

Representative dot blot of Flk-1+/Sca-1+cells in peripheral blood after 3 days of (A) Sham 

(B) Sham + carnosine (C) HLI and (D) HLI + carnosine treatment. Flk+/Sca+ cells in (E) 

blood and (F) bone marrow after 3 days of recovery.  (G and H) represents EPC  levels in 

blood and bone marrow respectively after 7 days of recovery. *p< 0.05 non-treated HLI 

mice, # p < 0.05 vs non-treated sham and $p<0.05 vs carnosine-treated sham. n= 5-10 for 

each group. 
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Figure 13 
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Figure 13: Gating strategy for evaluating immune cell regulation after HLI: To 

evaluate the effect of carnosine treatment and ischemia on the immune cell 

populations we employed the following gating strategy (A) Cells identified as Gr-

1+ were defined as granulocytes and therefore excluded from further analysis. (B) 

Monocytes were identified by using CD11b+ and Ly6C+ antibodies. (C) 

Inflammatory subset of monocytes was identified as high for both Ly6C and 7/4 

(hereby referred to as Ly6Chi). The resident monocytes are low for both Ly6C and 

7/4 (referred to as Ly6Clo). To identify the lymphocytic subpopulations we (D) 

classified the cells that were neither monocyte nor granulocyte gate as 

lymphocytes. (E) B-lymphocytes were identified as the subset of the lymphocytes 

that are positive for CD19. (F) The remaining cells were identified as being CD4+ 

or CD8+. 
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Figure 14 
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Figure 14: HLI increased inflammatory monocyte population in the bone 

marrow. Flow cytometry analysis of (A-C) blood monocyte subpopulation and (D-

F) bone marrow monocyte subpopulations following 3 days of recovery from HLI. 

Inflammatory and resident monocytes results are expressed as percentage of total 

monocytes that were either Ly6Chi or Ly6Clo. Data is presented meanSEM, 

#p<0.05 vs non-treated sham and $p<0.05 vs carnosine-treated sham, n=6-10 in 

each group.  
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Figure 15 
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Figure 15: HLI increases the inflammatory response in the skeletal muscle: 

Flow cytometry analysis of the skeletal muscle showing recruitment of (A) 

macrophages (B) monocytes (C) inflammatory monocytes and (D) resident 

monocyte in the ischemic muscles.  (E, F) qRT-PCR analysis for the expression of 

the monocyte-chemoattractant protein -1 (MCP-1) and its receptor CCR2. (G) 

Represents qRT-PCR analysis of various inflammatory cytokines in the hamstring 

muscle. Data is presented as mean  SEM, #p<0.05 vs non-treated contralateral 

limb and $p<0.05 vs carnosine-treated contralateral limb, n=5 in each group. 
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Figure 16 
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Figure 16: Carnosine treatment increases VEGF expression in the ischemic 

muscle. (A) VEGF mRNA and (B) VEGFR2 mRNA expression in the ischemic and 

contralateral muscles after 3 days of ischemia (C) VEGF protein levels in 

contralateral and ischemic muscle of carnosine treated and control mice.  (D) Data 

is presented as mean  SEM. VEGF expression normalized to tubulin. # p < 0.05 

vs non-treated contralateral limb. n=5 mice in each group. 
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Figure 17 
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Figure 17: Quenching of reactive aldehydes is increased with carnosine 

treatment. LC/MS/MS analysis of pre- and post-surgery urinary metabolite levels 

(A) carnosine-propanal and (B) carnosine-propanol. *p< 0.05 non-treated HLI 

mice, # p < 0.05 vs non-treated sham and $p<0.05 vs carnosine-treated sham.  

n=4. 
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Figure 18 
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Figure 18: Carnosine treatment decreases 4-HNE protein adducts formation 

and increases protein-carnosinylation. (A) Western blots images of 4-HNE 

protein adducts and (B) carnosinylated proteins adducts in ischemic and 

contralateral muscle following 21 days of recovery from HLI. Blots were developed 

using anti-HNE and anti-carnosine antibodies (C) Represents the analysis of 4 

HNE protein adduct and (D) carnosinylated protein adducts, data is presented as 

mean  SEM  # p< 0.01 vs contralateral and *p<0.01 vs HLI n=5 mice in each 

group. 
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Discussion 

The results from this study show that carnosine treatment results in increased 

circulating EPC. This suggests a role for neovascularization in carnosine mediated 

revascularization. Cytokine analysis showed that monocyte chemoattractant protein-

1 and its receptor CCR2 were increased by HLI however, no additive effect was 

observed with carnosine treatment. Angiogenic growth factor VEGF was significantly 

increased in carnosine treated HLI mice suggesting a possible VEGF dependent 

mechanism involved in EPC mobilization. We observed no changes in carnosine 

transporter and enzyme expression with ischemia although carnosine 

supplementation under ischemic conditions increased PHT1 transporter expression. 

4-HNE protein adducts were significantly depleted and  the extrusion of carnosine-

propanal conjugates was increased in carnosine treated HLI mice.  

 In our investigation we found that after 3 days of recovery from HLI surgery levels of 

circulating EPCs in carnosine pre-treated mice was significantly increased compared 

to non-treated mice whereas EPC levels were significantly mobilized after 7 days in 

the carnosine post-treated mice. These results suggest that carnosine enhances the 

adaptive response to ischemia which is essential because, a timely robust 

revascularization response after an ischemic insult is necessary to prevent further 

damage to the tissue. Analysis of bone marrow EPC levels from ischemic limb 

showed diminished levels in both treated and non-treated tissue after 7 days of 

recovery suggesting that the observed circulatory EPC levels may be coming from 

the bone marrow. However, it is  possible that  hypoxia could affect EPC survival in 

bone marrow niche. Future experiments using labelled  bone marrow may be 
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essential to delineate these pathways. These studies will be critical to define the effect 

of carnosine on mobilization, survival, proliferation and homing of progenitor cells. 

Surprisingly, carnosine treatment did not increase circulating EPC levels in the sham 

operated mice suggesting an ischemia mediated regulatory effect on carnosine 

metabolism. 

Ischemic injury activates the innate immune response leading to upregulation of 

cytokines and chemokines in the injured tissue. Monocyte chemoattractant protein 

(MCP-1/CCL2) that binds to the receptor C-C chemokine receptor type 2 (CCR2) is 

a potent chemokine for monocytes/macrophages. These monocytes/macrophages 

contribute to the initiation and resolution of inflammation and revascularization. 

Message levels of MCP-1 and CCR2 were increased in both carnosine treated and 

non-treated HLI mice. Recent data has shown that the inflammatory subset of 

monocytes (Ly6Chi) is involved in the recovery process. We examined monocyte 

levels in bone marrow, peripheral blood and the skeletal muscle. Our results show 

ischemia induced increases in the levels of inflammatory monocytes in both bone 

marrow and adductor muscle however, carnosine treatment exerted no additional 

effects. Other cytokines such as VCAM-1, TNF-α, IL-6 and angiopoietin-1 which are 

known to play critical roles in inflammation were not affected by carnosine treatment. 

Inflammation is like a double edge sword that can enhance revascularization but 

excessive inflammation can increase oxidative stress, myocyte apoptosis and tissue 

fibrosis [248]. Hence, that carnosine did not obliterate or augment the inflammatory 

response may be essential to ensure reparative processes without initiating 

detrimental effects of inflammation.  
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Based on our results that EPCs levels are increased in carnosine treated HLI mice, 

we next investigated carnosine metabolism in the HLI mice. No differences were 

observed in the carnosine levels and transporters between the sham and the HLI 

mice. However, levels of carnosine were significantly increased in carnosine treated 

HLI mice. Similarly, expression of carnosine transporters PHT1 and PEPT2 was 

increased in ischemic muscle of carnosine treated mice. Because these transporters 

are pH sensitive our results suggest that the change in pH by ischemia and the 

increase in carnosine levels may increase the transporter expression.  

Several studies have demonstrated that VEGF is a potent inducer of EPC 

mobilization [147]. To determine whether the increase in EPC mobilization in 

carnosine treated mice  is due to increased VEGF generation we next determined 

mRNA and protein levels of VEGF in  ischemic hamstring muscle. Our results show 

that VEGF mRNA and protein levels were significantly increased in the carnosine 

treated mice compared to the non- treated HLI mice suggesting that the increase in 

muscle carnosine by carnosine supplementation may be involved in regulating VEGF 

levels. VEGF is known to regulate endothelial cell sprouting and new vessel 

formation, thus the increase in VEGF levels by carnosine supplementation may be 

involved in increasing the capillary density through a combination of angiogenesis 

and vasculogenesis. 

Numerous studies have shown that generation of reactive carbonyls is increased in 

the gastrocnemius of PAD patients and murine models of HLI [192]. Since carnosine  

quenches reactive carbonyl we analyzed the levels of HNE adducts in the HLI mice. 

Our results shown that levels of 4-HNE protein adducts were increased with ischemia 



104 
 

and the generation of these adducts was significantly reduced in the carnosine 

treated HLI mice. Previous studies from our lab had shown that conjugates of 

carnosine-propanal forms adduct with cardiac proteins and accumulation of these 

carnosinylated proteins adducts is increased in ischemic aldose reductase-null hearts 

[199]. We therefore explored further whether carnosinylated proteins are increased 

by carnosine supplementation. Our results show that levels of carnosinylated protein 

adducts was significantly increased in the ischemic limb of the carnosine treated mice 

suggesting that the capping of aldehyde protein adducts by carnosine may prevent 

generation of high molecular weight adducts. Furthermore, we also observed that the 

extrusion of carnosine-acrolein conjugates was significantly increased by carnosine 

supplementation suggesting that the increased extrusion of reactive aldehydes by 

carnosine may attenuate ischemic injury by diminishing carbonyl stress.  

Collectively, we demonstrate that carnosine supplementation increases EPC 

mobilization, VEGF expression and aldehyde quenching in the HLI mice  
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CHAPTER IV 

MECHANISMS UNDERLYING CARNOSINE MEDIATED REVASCULARIZATION. 

Introduction  

Timely reperfusion is critical in attenuating tissue injury from critical limb ischemia, 

myocardial infarction or cerebrovascular ischemia. Vasculogenesis, angiogenesis 

and collateral artery growth account for revascularization after vascular damage to 

ensure tissue reperfusion. Our results show that carnosine level is increased in mice 

that were supplemented with carnosine after HLI surgery. This increase was 

associated with increased neovascularization, collateral artery growth, reduced 

muscle damage and improved limb function. Further we observed that mobilization 

of EPC is increased by carnosine supplementation. 

 Previous studies have shown that levels of circulating stem/progenitor cells depend 

on their ability to proliferate in bone marrow niche and be mobilized under cellular 

stress such as ischemia. Once mobilized they can home to sites of endothelial cell 

damage and incorporate into newly formed blood vessels [128]. Therefore, we 

examined key processes that can trigger mobilization of these progenitor cells from 

the bone marrow. These processes are hypoxia induced (1) Increase in nuclear HIF1-

α levels (2) VEGF transcription and (3) VEGF secretion into the extracellular space. 
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HIF1-α is a central mediator of revascularization. Its stabilization and nuclear 

translocation leads to expression of genes such as VEGF which is essential for 

mobilization of EPCs as well as sprouting, migration and proliferation of endothelial 

cells to form new thin walled vessels [113]. These effects of VEGF are primarily 

mediated through its receptor VEGFR2. This receptor tyrosine kinase once activated 

through VEGF binding can activate diverse growth stimulatory and migratory 

pathways through docking of various downstream mediators [146]. HIF1-α can also 

promote immune response which is important for arteriogenesis. Hence, HIF1-α 

regulation is a viable target for developing anti-ischemic therapeutics.  

Under normoxic conditions it is targeted for proteasomal degradation through the 

activity of prolyl hydroxylases (PHDs) which require divalent iron for their activity. 

Studies have shown that inhibition of PHDs by divalent iron chelators promote 

recovery from HLI through HIF1-α stabilization [198]. Based on our observation that 

EPC mobilization is increased by carnosine treatment and that carnosine has the 

ability to chelate divalent metals we investigated whether carnosine can stabilize 

HIF1-α and increase VEGF expression.  

To test whether carnosine can increase HIF1-α stabilization, we used murine 

myoblast cell line C2C12 cell and determined the effect of oxygen and nutrient 

deprivation on HIF1-α nuclear levels, VEGF secretion and transcription. We 

investigated the effect of carnosine and its non-hydrolysable isoform octyl-D-

carnosine on HIF1-α  nuclear levels and VEGF secretion. To determine if chelation 

of Fe2+ by carnosine was essential for increasing nuclear HIF1-α levels, we used the 

carnosine analogue, methyl carcinine, which cannot chelate Fe2+. Collectively, our 
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results demonstrate that metal chelating property of carnosine increases the activity 

of revascularization mediators. 

Experimental Procedure 

Materials: HIF 1-α (Santa-Cruz), octyl-D-carnosine and methyl carcinine (custom 

made).  

Fe2+ chelation by carnosine and its analogs: This was carried out based on the 

principle that free Fe2+ can form a polymaltose complex with ferrozine and that this 

complex can be quantified by looking at the absorbance at 560nm. In the presence 

of a chelator however, some of the Fe2+ will be chelated thereby allowing for only the 

left over Fe2+ to complex with ferrozine. Therefore, a decrease in absorbance at 

560nm signifies chelation by the compound being investigated. The experimental 

procedure is described below. Firstly, 7.5µl of 2mM FeCl2 solution was added to 

277.5µL of varying concentration of the dipeptides for 3 minutes (dipeptide solutions 

were prepared in water supplemented with 10% dimethylformamide). The reaction 

was inhibited by adding 15µL of 5mM ferrozine solution and incubating the mixture 

for 10mins at RT. Absorbance at 560nm was monitored using a spectrophotometer. 

The well characterized divalent metal chelator EDTA was used as a positive control 

in these experiments. 

In vitro hypoxia studies:  Murine myoblast cells (C2C12) were used in these 

studies. The cells were maintained in DMEM supplemented with 10% fetal bovine 

serum (FBS) and 0.1% penicillin streptomycin till they were 70-80% confluent. They 

were then allowed to differentiate by replacing the FBS with horse serum. First 
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intracellular uptake of the various peptides (carnosine, methyl carcinine, and octyl-D-

carnosine) was obtained using LC/MS/MS (described above for carnosine 

determination). To mimic ischemia in these cells, they were subjected to nutrient 

deprivation by replacing the differentiation media with a solution containing 117mM 

NaCl, 0.9mM CaCl2, 12mM KCl, 0.49mM MgCl2, 4mM HEPES, 20mM sodium lactate 

and 5.6mM L-glucose. Also oxygen deprivation was achieved by placing cells in a 

sealed humidified chamber (Billups- Rothenberg Inc) and replacing the oxygen with 

95%N2 and 5%CO2. The cells were harvested at indicated times after hypoxia into 

the appropriate buffer for either qRT-PCR or Western blot analysis. Hypoxia studies 

were carried out for non-treated, carnosine, octyl carnosine and methyl carcinine 

treated cells. 

Results 

Fe2+ chelation by different histidyl dipeptide: Based on our results that carnosine 

augments wound healing response and literature showing carnosine has the ability 

to chelate divalent metals, we next sort to delineate the contribution of metal chelation 

to wound healing. Carnosine forms stable complex with transition metals such as 

Cu2+ [249]. To determine whether carnosine can chelate Fe2+ which is essential for 

PHD activity we determined Fe2+ chelation property using the protocol established by 

Canabady et al. [197]. Our results show that carnosine exhibits metal chelation to the 

same extent as EDTA (Fig. 19D). We also synthesized methyl carcinine, a carnosine 

analogue that lacks the carboxyl group required for metal chelation and has a methyl 

group on the imidazole nitrogen (Fig. 19A). Our results show that methyl carcinine 

had little or no Fe2+ chelation property. Anserine, a naturally occurring carnosine 
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analogue also showed reduced metal chelation capacity (Fig. 19D). Glycine-glycine 

was used as a dipeptide control in this experiment. N.B. peptide structures are shown 

in Fig 19 A-C. 

Uptake of histidyl dipeptides by C2C12 (murine myoblast cells): To determine 

whether the histidyl dipeptides are taken up by these cells, we incubated C2C12 cells 

with carnosine(1mM), methyl carcinine(1mM) and octyl D-carnosine (100µM) 

respectively at indicated times  (Fig. 20 A, B). Increased intracellular concentrations 

were observed for all three peptides. Also, octyl-D-carnosine treatment resulted it’s 

de-esterification to carnosine (Fig. 20 A, B). 

Carnosine treatment increases HIF1-  nuclear levels and VEGF secretion in 

hypoxic C2C12 cells: To determine the contribution of the myocytes to the adaptive 

process, we first examined time dependent changes in VEGF secretion with hypoxia 

in C2C12 cells. We observed that VEGF levels were increased in conditioned media 

with increasing times of hypoxia (Fig 21 A). To determine the effect of carnosine 

administration on HIF1-α stabilization and signaling, we pretreated the murine 

myoblasts C2C12 cells with 1mM carnosine for 12-15 h and subjected the cells to 

different times of hypoxia. HIF-1 α nuclear level was increased after 1h of hypoxia 

and this increase in nuclear HIF1-α was significantly enhanced by carnosine 

treatment (Fig. 21B, C). VEGF secretion in the conditioned media was also increased 

by carnosine treatment compared to non-treated hypoxic cells (Fig. 21 D). These 

results clearly suggest that carnosine increases HIF1-α nuclear translocation and 

VEGF levels. 
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Octyl-D-carnosine increases HIF1-α nuclear levels and VEGF secretion: To 

determine whether the whole molecule of carnosine or its constituent amino acids 

increase HIF1-, we treated hypoxic C2C12 with the non-hydrolysable isoform of 

carnosine, ODC (100µM). VEGF secretion and mRNA expression were increased by 

ODC treatment compared with non-treated hypoxic cells (Fig 22C, D). Similarly, 

nuclear levels of HIF1-α was also increased by ODC treatment (Fig 22A, B). These 

observations suggest that the effect of carnosine on the angiogenic response is due 

to the whole molecule and not due to constituent amino acids. 

Metal chelation by carnosine contributes to VEGF secretion and HIF1-α nuclear 

content: We tested the hypothesis that the increase in VEGF secretion and HIF1-α 

nuclear levels by carnosine treatment is due to Fe2+ chelation by carnosine. To test 

our hypothesis we pretreated C2C12 cells with methyl carcinine which lacks the ability 

to chelate metals (Fig. 19D). Our results show that carnosine treatment increases 

HIF1- nuclear content whereas for cells that were treated with methyl carcinine and 

subjected to hypoxia there was no change in HIF1- levels compared to non-treated 

cells.  (Fig. 23A, B). Similarly, VEGF secretion was hindered with methyl carcinine 

treatment (Fig. 23C). Taken together these results suggest metal chelation of 

carnosine promotes angiogenenic response  
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Figure 19 
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Figure 19: Methyl carcinine (a synthetic analog of carnosine) has reduced Fe2+ 

chelation. (A) Structures of different histidine dipeptides: (A) Methyl carcinine, (B) 

anserine and (C) carnosine. (D) Fe2+ chelation properties of the different dipeptides 

monitored by taking the absorbance at 560nm for different peptide concentrations. 
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Figure 20 
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Figure 20: Time dependent increase in intracellular dipeptide levels: (A) 

LC/MS/MS analysis of intracellular carnosine concentrations in C2C12 cells treated 

with carnosine at the indicated times. (B) LC/MS/MS analysis of intracellular 

carnosine and ODC levels after in cells treated with ODC at indicated times. NT 

indicates non treated cells 
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Figure 21 
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Figure 21: Carnosine treatment results in increase HIF1-α nuclear translocation 

and VEGF secretion in hypoxic C2C12 cells. (A) Time dependent changes in 

VEGF secretion into conditioned media following hypoxia in C2C12 cells. (B) Nuclear 

HIF1-α levels in hypoxic C2C12 cells with and without carnosine treatment. (C) 

Normalization of nuclear HIF1-α levels to HDAC.  (D) VEGF levels in conditioned 

media of treated and non-treated hypoxic cells at indicated times. Experiments were 

repeated at least 3 times with n=4 for each experiment. *p <0.05 vs non-treated 

hypoxic cells n=4 
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Figure 22 
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Figure 22: Octyl-D-Carnosine (ODC) treatment increases HIF1-α nuclear levels 

with a concomitant increase in VEGF secretion and expression. (A, B) Time 

course of nuclear levels of HIF1-α with and without ODC treatment, (C) VEGF 

secretion in conditioned media of hypoxic C2C12 cells (D) VEGF mRNA expression 

in hypoxic C2C12 cells. Experiments were repeated at least 3 times with n=4 for each 

experiment. *p <0.05 vs non-treated hypoxic cells n=4 
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Figure 23 
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Figure 23: Metal chelation by carnosine promotes HIF1-α stabilization: (A, B) 

HIF1-α  nuclear levels in C2C12 cells  subjected to 1h of hypoxia with carnosine (car), 

methyl carcinine (MC) or no treatment (NT). (C) VEGF secretion in conditioned media 

of hypoxic C2C12. *p <0.05 vs non-treated hypoxic cells n=4 
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Discussion  

The major goal of this study was to identify the mechanisms by which carnosine 

regulates HIF1-α and increases VEGF levels.  Using an in-vitro model of hypoxia 

and nutrient deprivation we observed that HIF1-α nuclear levels and VEGF 

secretion was enhanced with increasing length of hypoxia and peaked at 1h and 

6h respectively. This effect was significantly enhanced by carnosine treatment 

suggesting that carnosine stabilizes HIF1-α.  

We investigated the contribution of metal chelation by carnosine to HIF1- 

stabilization. Carnosine is a multifunctional compound with functions such as metal 

chelation, pH buffering and aldehyde quenching [202]. NMR studies have shown 

that carnosine interacts with divalent metals through 2 imidazole nitrogen, peptide 

bond, carboxylic acid and primary amino group [196]. However, one imidazole 

nitrogen and the amino group are critical for pH buffering and aldehyde quenching 

respectively [250, 251]. Therefore, to prevent metal chelation without influencing 

aldehyde quenching or pH buffering, we synthesized methyl carcinine an analogue 

of carnosine without a carboxylate group and with a methyl group on imidazole 

nitrogen. Analysis of pka values shows that pH buffering was not altered 

significantly with these modifications since a pKa of 6.61 was observed for methyl 

carcinine compared to 6.75 for carnosine. Metal chelating capacity of this 

compound was significantly decreased compared to carnosine. 

Using in vitro model of ischemia we found that, HIF1-α nuclear content and VEGF 

secretion was significantly increased with carnosine treatment, whereas for 

hypoxic cells treated with methyl carcinine, no change in HIF1- levels was 
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observed compared to the non- treated cells. Our results are in line with previous 

studies showing that Fe2+ chelation promote recovery from HLI [198]. However, 

the use of carnosine has an added benefit because this dipeptide targets diverse 

pathways such as ROS-induced inflammation, lipid peroxidation and acidosis.  

Carnosine can be hydrolyzed to -alanine and histidine by carnosinase. Previous 

studies have shown that decarboxylation of histidine generates histamine [252] 

which is an important regulator of hematopoiesis, immune cells function and 

revascularization [253]. Hence, to determine the possible contribution of carnosine 

hydrolysis in hypoxic adaptation  we used a non-hydrolysable octyl D-isoform of 

carnosine (ODC).  We observed a similar effect of ODC on HIF-1α levels and 

VEGF transcription as observed with the L-isoform suggesting that histidine-

decarboxylation did not contribute to increase in HIF1-α activity. This is particularly 

important because the effect of this axis on carnosine’s anti-ischemia effect is 

conflicting [252, 254].  

In summary, our study identified that Fe2+ chelation by carnosine is important for 

regulating HIF1-α nuclear content. The increase in HIF1-α nuclear levels likely 

increases revascularization in carnosine treated HLI mice. 
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

Concluding discussion 

The purpose of this study was to investigate the therapeutic potential of carnosine, 

a naturally occurring component of food, in critical limb ischemia. Recent data from 

developed and developing countries estimated that >200 million people worldwide 

and approximately 8 million people in United States have PAD [2, 6]. Both 

symptomatic and asymptomatic PAD patients have an increased risk of mortality, 

morbidity and lower quality of life [7]. With the increasing incidence of type 2 

diabetes (T2D) and rising aging population the number of PAD patients is likely to 

increase [2]. Because PAD is an under-recognized disease, few medications are 

available to improve functional performance in these patients. Although surgical 

revascularization is an amenable treatment, low graft patency and restenosis limits 

its utility in these patients [175]. Therefore to adequately compensate these 

patients current emphasis is to increase therapeutic angiogenesis and 

arteriogenesis in the ischemic limb. This is expected to improve walking ability and 

quality of life in these patients. Hence, we tested the hypothesis that carnosine will 

promote post-ischemic angiogenesis and arteriogenesis through aldehyde 

quenching and metal chelation. To address this hypothesis, we determined 

whether carnosine supplementation would increase tissue reperfusion after 

hindlimb ischemia surgery. 
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 In Chapter II, we demonstrated by Laser Doppler perfusion imaging and microfil 

perfusion-microCT analysis that carnosine treatment increases tissue perfusion 

and vascular volume. We also showed that tissue injury was reduced, and limb 

function significantly improved by carnosine feeding. Based on these observations 

we concluded that supplementation of carnosine improves revascularization after 

limb ischemia. 

Having established that carnosine improves blood flow in the ischemic limb we 

next examined the effect of ischemia on endogenous carnosine synthesis, 

hydrolysis and transport. LC/MS/MS analysis of the ischemic limb showed that 

there was no change in carnosine levels by HLI surgery however, levels of 

carnosine were increased in the ischemic limb of mice supplemented with 

carnosine. qRT-PCR analysis demonstrated that levels of carnosine transporter, 

PHT1, was increased in the ischemic limb of carnosine treated mice. These results 

established that oral carnosine supplementation increases carnosine levels in the 

ischemic limb by increasing the expression of transporters.  

Next we evaluated the effect of this increase in muscle carnosine on the adaptive 

response to ischemia. We observed an increase in VEGF levels which was 

associated with increased levels of circulating EPCs and decreased bone marrow 

EPCs. This suggests a possible VEGF dependent mechanism regulating EPC 

exodus from the bone marrow niche.  

Urinary analysis of the mice subjected to HLI showed that extrusion of carnosine-

acrolein conjugates was increased by carnosine supplementation. Similarly, levels 

of carnosinylated proteins adduct were increased in the ischemic limb of carnosine 
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treated mice. These results suggests that increased extrusion of aldehyde 

conjugates and carnosinylation of proteins decreases carbonyl stress in carnosine 

treated mice. These reports demonstrate a direct involvement of carnosine in the 

adaptive response to ischemia and suggest a direct potential benefit of increasing 

muscle carnosine levels.  

As mentioned, ROS generation is increased in reperfusion [33, 49]. It has been 

suggested that some of the secondary and metastable products derived from ROS 

amplify their effects. In this process several highly reactive lipid peroxidation 

products are generated that can be removed by enzymes aldose reductase, 

aldehyde dehydrogenase, and glutathione S transferases. However, under 

diseased conditions these pathways are overwhelmed and thus unsaturated 

aldehydes increasingly react with amino acid residues of proteins.  Recently, it has 

been shown that carnosine administration has a sparing effect on antioxidant 

systems such as serum superoxide and glutathione peroxidase since the levels of 

these enzymes are increased with carnosine treatment [245]. We also show that 

protein-HNE adducts that were increased with ischemia were reduced when 

carnosine was administered to the ischemic mice. Although carnosine is an 

effective quencher of HNE, glutathione S-transferaseA4 also affects this highly 

reactive metabolite through the process of glutathionylation. However, recent 

studies have shown that glutathione derivative of HNE can induce excessive 

macrophage inflammation through TNF-α and NF-κB pathways. Furthermore, use 

of these enzymes by viral transduction as therapies are still in infancy. Therefore, 

our results showing that supplementation of carnosine improves revascularization 



126 
 

has a  selective advantage as a therapeutic option for ischemia [255]. Carnosine 

neither exacerbate nor attenuates the inflammatory response but still prevents 

tissue injury induced by ischemia and increases neovascularization response. 

In Chapter III we demonstrate that VEGF levels are increased in the ischemic limb 

of the carnosine treated mice. Therefore, we investigated the role of metal 

chelation by carnosine on this process. We hypothesized that metal chelation by 

carnosine will stabilize HIF1-α through prolyl hydroxylase inhibition and increase 

VEGF expression. To determine the contribution of metal chelation we synthesized 

methyl carcinine, an analogue of carnosine which has diminished metal chelation 

ability. Using in vitro model of oxygen and nutrient deprivation our results show 

that there was no change in HIF1-α nuclear levels by methyl carcinine treatment 

compared to non-treated cells. We further determined whether hydrolysis of 

carnosine by carnosinase and subsequent decarboxylation of histidine to 

histamine is involved in regulating nuclear levels of HIF1-α . We used octyl-D-

carnosine a non-hydrolysable isoform of carnosine. Our results show that octyl-D-

carnosine was equally effective as carnosine in increasing nuclear HIF1-α levels. 

Collectively our results demonstrate that carnosine increases revascularization in 

murine hindlimb ischemia. We show that HIF1-α stabilization and VEGF secretion 

may be critical for these responses. Further we established that metal chelation 

and aldehyde quenching by carnosine are critical for promoting revascularization. 
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Limitations and Future Directions 

Mechanistic Consideration 

The results from this study has revealed insights into the mechanisms by which 

carnosine can increase revascularization responses, however, other mechanistic 

questions remain to be answered. We showed that carnosine treatment increases 

nuclear levels of HIF1-α and observed an increase in VEGF levels. We therefore 

concluded that the increase in HIF1-α  could account for the increase in VEGF 

since VEGF is a transcriptional target. Although VEGF transcription is highly 

documented to be regulated by HIF1-α  we did not test this directly in our 

experiments. Pharmacological inhibition HIF1-α  or used of HIF1-α knockdown 

cells will be essential to identify if  changes in VEGF obtained with carnosine 

treatment is attributable to HIF1-α only.  

Also, we identified that Fe2+ chelation by carnosine is essential for regulating 

nuclear HIF1-α  content however, it will be important to establish which upstream 

targets are being regulated by this process. Prolyl hydroxylases involved in 

targeting HIF1-α for proteasomal degradation require Fe2+ of activity. 

Measurement of prolyl hydroxylase activity with and without carnosine treatment 

will strengthen our understanding and establish whether the increase in nuclear 

content was as a result direct inhibition of prolyl hydroxylase. Likewise using 

tagged HIF1-α we can directly measure its translocation in our model. Current 

dogma in the field states that following prolyl hydroxylase inactivation, HIF1-α is 

nuclearly translocated  and binds to hypoxia response elements to induce 
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transcription of target genes [113]. Using labelled or tagged HIF1-α we can directly 

measure its stabilization and subsequent nuclear translocation in future studies.  

 Recent evidence has documented a role for NO and ROS in HIF1-α stabilization 

in an oxygen independent manner [256]. Divalent metal chelation by carnosine can 

limit reactive oxygen and nitrogen species generation [257] thereby increasing 

HIF1-α stability. It will be important to identify which of these processes regulates 

HIF-1α stability.   

Secondly, during ischemia the increased reliance on glycolysis leads to acidosis 

due to proton accumulation from lactic acid decomposition. Since carnosine is a 

pH buffering agent, supplementation may increase glycolysis in the ischemic 

tissues. Hence evaluating the role of pH buffering of carnosine in ischemic 

adaptations will provide insight into the mechanisms by which carnosine 

attenuates wound healing responses.  

Our immunohistochemistry data shows that carnosine increases muscle 

regeneration after ischemia. Mammals have a highly orchestrated system of 

skeletal muscle regeneration. This process involves activation of muscle resident 

satellite cells through transcription factors MyoD and Myf5. Other factors such as 

Pax3 and Pax7 are also involved in regeneration [258]. Recently, signal transducer 

and activator of transcription 3 (STAT3) signaling pathway was shown to be 

involved in muscle regeneration. Studies have shown that this pathway is 

important to ensure survival, activation and proliferation of satellite cells into fully 

differentiated myotubules [259, 260].  Interestingly, carnosine has been shown to 

activate this pathway in neuronal cell after cerebral ischemia [261]. Thus, 
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understanding the regulation of this pathway by carnosine in the context of muscle 

ischemia may be important in understanding how it regulates muscle regeneration. 

Lastly, as outlined in chapter I several cell types such as endothelial, smooth 

muscle, muscle and immune cells are involved in the ischemic response. In this 

study we determined the responses in ischemic muscle which promotes recovery 

by carnosine supplementation. Future studies are needed to establish how 

endothelial cells respond to carnosine treatment e.g. assays to measure tube 

formation and scratch assay. Similarly, paracrine signaling between muscle and 

endothelial cells can be determined by treating the myoblasts with carnosine and 

treating human umbilical vascular endothelial cells (HUVECs) with conditioned 

media from carnosine treated cell to determine changes in tube formation.  

 Clinical Application 

In this study we laid the foundation for carnosine to be used as a viable therapy for 

critical limb ischemia however, several questions need to be answered before it 

can be fully translational. Further studies are needed to determine the optimal 

dose, mode and frequency of administration. One of the limitations of this hindlimb 

ischemia model is that the studies were conducted in healthy mice with no 

comorbid conditions. This clearly is not the case in the human patient populations. 

PAD patients have other diseases such as cardiovascular disease, diabetes which 

can inversely affect the reparative response. Further studies evaluating the effect 

of carnosine on revascularization in the presence of one or more of these risk 

factors will be important in elucidating the true therapeutic potential of carnosine. 
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Secondly, β-alanine is the rate limiting substrate for carnosine synthesis. This 

amino acid is predominantly obtained from pyrimidine degradative pathway. 

Diverse polymorphisms exist in human populations for the rate-limiting enzyme 

dihydropyrimidine dehydrogenase that is involved in the synthesis of β-alanine. 

These polymorphisms have been studied in the context of chemotherapy 

administration where deficiencies lead to severe toxicity and death [262]. Recent 

epidemiological work suggests that genetics could be playing an important role in 

the development of PAD however most of the candidate genes have not been 

identified [7]. Therefore, based on these established polymorphisms and the 

known benefits of carnosine and studies showing diminished carnosine levels in 

patients with cardiovascular risk factors like diabetes, it may be important to 

evaluate the possible contributions of these polymorphisms to carnosine levels. 

Also, associations between these polymorphisms and cardiovascular disease 

development may be important in predicting patients who may develop PAD and 

selecting patients which may benefit from carnosine therapy. 

 Lastly, most of the key pathways involved in muscle ischemia are similar in cardiac 

or cerebrovascular ischemia. Therefore, although this work studied carnosine in 

the context of critical limb ischemia it can also be utilized in other forms of tissue 

ischemia.  
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Figure 24 
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Figure 24: Schematic overview of mechanism by which carnosine improves 

revascularization: Carnosine supplementation increases muscle carnosine 

content. This leads to HIF-1α stabilization presumably through PHD inhibition and 

VEGF expression. VEGF acting through its receptor increases EPC mobilization 

and homing to the ischemic tissue leading to neovascularization. 
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