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ABSTRACT

ORDER PICKING STRATEGIES FOR HEALTHCARE WAREHOUSES

Ehsan Khodabandeh

November 22, 2016

Order picking is the process of collecting goods and items in specified quantities

from storage locations, in response to customer orders. Since many labor resources

are involved in this process, finding ways to make it more efficient have been a primary

goal for researchers and practitioners. Determining a better allocation of products to

the storage areas, finding the best route and sequence to pick multiple products, and

choosing the best picking policies to minimize congestion in the aisles are just a few

of many objectives regarding order picking process.

Due to regulatory compliances and the chance of product spoilage, additional

criteria should be taken into account when dealing with order picking in a health-

care warehouse. Following the first-expired, first-out (FEFO) principle and fulfilling

an order from a single manufacturing batch, are two of the requirements that are

considered in this research. Moreover, minimizing the traveled distance to picking

locations, minimizing the penalty or cost of using the space by depleting it quicker,

and maximizing the probability of a successful pick in the future by considering the

order size distribution are the other objectives that have been studied in this research.

The desired order picking problem is formulated and solved as a multi-objective

mixed integer programming optimization model. Assigning importance weights to

each objective and obtaining one single solution does not provide a full picture of all

possible and potentially attractive solutions. On the other hand, providing all the
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solutions is not always achievable as it is computationally expensive and most of the

time a set of rules and regulations drive decision makers toward the chosen solution.

Finally, this research focuses on solution simplicity, generality, and practicality since

the solution will be implemented by order pickers.

To achieve this goal, a novel approach using association rule mining is pre-

sented. Products are classified in different groups and some order picking rules are

derived based on the relations of these classes together. These rules are then com-

pared with the results of multi-objective optimization model to evaluate their quality.

The comparison results showed that surprisingly, some simple rules extracted from

the preferences of the decision maker, can obtain good quality solutions. For example,

in products with high order variability, it is possible to generate solutions within an

average gap of less than ±8.8% from the multi-objective optimization solutions.

The findings of this research leads to the following primary recommendations:

• Orders should be picked based on the expiration dates of the batches (FEFO

principle) unless, the amount of inventory in the location is exactly equal to the

order amount. In that case, regardless of the expiration date and the traveled

distance to the location, it is better to pick from that location and make the

space available.

• If product replenishment is not instantaneous, regardless of the expiration date

and the traveled distance to the location, it is recommended to not pick from

a location which can lead to an undesired and low amount of inventory. Due to

order variability of the product, it is better to wait until the inventory in that

location transfers to a desirable level.

• If fast replenishment of products is obtainable, then prioritizing traveled dis-

tance over the objectives linked to space usage and inventory is advisable.
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CHAPTER I
INTRODUCTION

A. Introduction

According to Eighth UPS Pain in the Chain Survey 2015, the core supply chain

issues for healthcare logistics decision makers are: 1) product security; 2) regulatory

compliance; 3) product damage and spoilage and, 4) managing logistics, warehousing,

and transportation costs where the latter is a continuing management struggle. A

big part of the warehousing costs relate to order picking problem.

Order picking, the process of retrieving items from storage in response to a

customer request, is the most labor-intensive and costly activity in almost every

warehouse comprising approximately 55% of the total warehouse operating expenses

(Tompkins et al. 2010). This is true for healthcare warehouses as well. A report by

United Parcel Service (UPS) showed that picking and order fulfillment consumes 54%

of the cost in the average healthcare distribution center (Best practices for managing

cost in the healthcare supply chain).

Order picking systems are classified as shown in Figure. 1. The most common

system, which is used in this research, is picker-to-parts, where the order picker walks

or drives along the picking locations to pick items (De Koster 2004). The major design

issues in a warehouse such as the shape and size of the warehouse, and the number

of pickers or vehicles are not of a concern here. The focus of this research is on a

set of stock keeping unit (SKU)-related criteria for order picking in a picker-to-parts

system. These criteria are location, expiration date, and stock on hand of each SKU.
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FIGURE 1 –Classification of order picking systems (De Koster 2004)

Note that SKU, refers to a specific item stored in a specific location and is considered

the most disaggregated level when dealing with inventory. It is possible to have

multiple SKUs for the same item. Throughout this research, the term batch is used

to distinguish between SKUs of an item with different expiration date.

When receiving an order, a picker, either automated or manual, is dispatched

to pick the appropriate quantity of each item from its storage location and bring them

back to the shipping area. Finding a way to minimize the distance or time traveled

by the picker is a common objective. As observed in a survey by Gu, Goetschalckx,

and McGinnis 2007, 38% of warehouse operation planning problems are related to

routing problems. But how are the storage locations selected for a pickup?

If an item type is stored in only one location, then there is no difficulty deter-

mining from which storage location to pick. However, if an item type is stored in more

than one location, the decision must be made as to which location to pick when filling

an order. Moreover, different SKUs of perishable items might be stored in different

locations as is the case in warehouses storing healthcare items. Due to food and drug

administration (FDA) regulations for the pharmaceutical and healthcare industry, an

item is retrieved based on the first-expired, first-out (FEFO) principle. This means

that for an item, SKUs with the nearest expiration dates should be picked from stock

first.

Also as part of the regulatory requirements, an order for a healthcare item

2



must be filled from a single manufacturing batch. Imagine an item is found to be

defective or spoiled. When all the units in an order are picked from a single batch,

it is easier to track down the source, investigate the causes, and remove the faulty

items from public consumption.

The storage locations for an item are not all within the same distance from

the shipping area and the SKUs, have different features. Besides, picking decisions

become more complicated by the fact that the sizes of future orders are uncertain.

Since this uncertainty, the restriction on expiration date, and also fulfilling an entire

order from a single batch will require more precise analysis, it adds to the complexity

of the decision making process.

Considering the stochastic nature of future demands and having different

batches of an item in multiple locations, one needs to decide from which location

to pick an order to optimize the desired objective. The following are a few of the

various objectives often taken into consideration in order picking optimization:

• Minimizing the order picking time

• Minimizing the overall throughput time

• Minimizing travel distance

• Minimizing total costs

• Maximizing the expected number of orders that can be completed per unit time

or equivalently, minimizing order cycle time (Jewkes, Lee, and Vickson 2004)

• Maximizing the order fill rate (Rim and Park 2008)

• Maximizing throughput rate (Pan and Shih 2008)

Examining other objectives such as minimizing the waste (i.e. amount left

in each location which might not be used for future picks) or maximizing the space

3



utilization by consuming batches completely and leaving no remainder in each loca-

tion, can be very interesting. Additionally, studying multiple objectives can make

the problem more realistic and closer to the situations happening in the healthcare

warehouses.

In this research, order picking with regard to certain constraints and multiple

objectives in a healthcare and medical warehouse is investigated. Minimizing travel

distance, minimizing waste, and maximizing space utilization along with taking into

account the FEFO principle and uncertainty of order sizes, form the structure of

objective functions. To calculate the picker’s travel distance, the distance from each

batch’s storage location to input/output (I/O) point is used. To minimize waste

and maximize space utilization, quantity of an item in different locations and also

information to estimate future demands such as distribution function for each item’s

order sizes are utilized. Finally, including each batch’s expiration date in the objective

function and trying to choose the nearest expiry one, is applying the FEFO principle

in order picking decision making process.

The goal of this research is to find simple, general, and practical order picking

strategies for healthcare warehouses. In simple terms these strategies will be in forms

of:

“If situation A happens, then pick based on strategy S1; if situation B, C, and D

happen, then pick based on S2; etc.”

So, these situations and strategies are sets of “If . . .Then . . . ” scenarios such as the

examples below:

• For high demand items, if order size is X1, then pick from the closest location

available.

• For high demand items if order size is X2, then pick from the location with the

highest stock.

4



• For items with low variability demand, first pick from the batch in a location

which expires first. In case of having one batch in multiple locations or all

batches in the acceptable range of expiration dates, then pick from a location

with average stock.

• For non-frequent items with high variance, pick from the location with least

stock.

• . . .

To achieve the goal of creating these rules, one needs to i) define the situations, ii)

determine meaningful strategies, and iii) find out ways to establish a link between

them. But how to determine the value of these rules and how good they are? How to

determine good and valuable? What are the metrics to measure such values? Is there

any reference or method that can be used for determining the goodness of the rules?

If so, what are those methods and how the comparison is made? How to model this

problem to be eligible for such comparisons?

By starting from the goal of creating order picking strategies, the problem was

broken down into series of questions that all will be addressed in this research.

B. Literature Review

Order picking has been the topic of many researches over the past few decades.

Figure. 2 shows how order picking is classified and where it is placed among the

warehouse operation planning problems (Gu, Goetschalckx, and McGinnis 2007).

While there has been much research on the general order picking problem, little

research regarding order picking for healthcare warehouses was found. The readers

may refer to Gu, Goetschalckx, and McGinnis 2010, 2007 for detailed reviews on

warehouse operation, design, and performance evaluation and also, comprehensive

review of De Koster, Le-Duc, and Roodbergen 2007 on design and control of manual

5



FIGURE 2 –Warehouse operation problems framework

order picking processes.

The literature is rich particularly in two of these warehousing functions; storage

location assignment problem (SLAP) and routing and sequencing decision in order

picking operations. SLAP determines where to store items in order to reduce material

handling cost. Routing and sequencing, on the other hand, determines the best

sequence and route of the locations for storing and picking a set of items. Gu,

Goetschalckx, and McGinnis 2007 observed that 32% and 38% of their total surveyed

literature on warehouse operation planning problems were about SLAP and routing

problems, respectively.

As mentioned above, the goal of solving SLAP is to find the best locations

for storing items in order to reduce material handling cost. Minimizing material

handling cost or equivalently, traveling cost, traveling distance, or traveling time is

one of the objectives which researchers have strongly focused on to improve order

picking efficiency. Tompkins et al. 2010 showed that in fact, half of the order picker’s

time is spent on traveling (Figure. 3). So, it is not surprising to see most of the

researches are dedicated to improving this dominant activity.

However, as mentioned before, one overlooked decision is how the picking

locations are selected in case of existing multiple storage locations. The core of this

research is in studying the effects and interactions of several factors on selecting the

pick location in healthcare warehouses. In this work, the factors, which are relevant

6



FIGURE 3 –Typical distribution of an order picker’s time (Tompkins et al. 2010)

to the location of an item, are distance from the I/O, expiration date of items, and

the quantity of items in that location. Considering expiration date of items in order

picking decisions is a rather new topic which has just been seen in a patent by Klots

et al. 2003.

Klots et al. 2003 created a set of rules for an order picking system to maximize

throughput and reduce carrying costs by reducing the number of stops in the process

of fulfilling an order. In their method, if the system found multiple locations that stock

the same item, it chose the location with sooner expiration date. If the expiration

dates were within the same period, then the system selected the location with the

fewest units of items hoping to create more available space. In case that no location

had sufficient quantity of an item, the order might be picked collectively over two or

more locations. This is one of the main differences of their work with this research

since order splitting is conditional in this research. So, order can be picked from

multiple locations as long as it is from the same batch.

As mentioned above, studying the effects of several factors simultaneously on

order picking performance is of this research interest. Regarding that matter, it is seen

that in the last decade, researchers began jointly considering multiple warehousing

7



functions and studying their interactions and effects on order picking operations. The

studies conducted by Jewkes, Lee, and Vickson 2004, Petersen and Aase 2004, Chan

and Chan 2011, Pan and Shih 2008, and Molnar and Lipovszki 2002 are just to name

a few, yet, none of them are specifically related to healthcare warehouses.

Jewkes, Lee, and Vickson 2004 determined product location, picker home base

location, and allocation of products to pickers concurrently in a multiple-picker order

picking line, to minimize the expected order cycle time. Each picker operated from

a fixed home base on a pick-to-order line in which a picker worked on one order at a

time. The authors determined the optimal policy by using a greedy approach. They

also developed a dynamic programming algorithm to determine the optimal product

allocation and picker locations in case of fixed product locations.

Petersen and Aase 2004 examined several picking, storing, and routing policies

simultaneously on a manual bin-shelving order picking operation. They used simula-

tion to determine which policy or combination of policies has the largest impact on

minimizing the total pick time for all the orders in a day. Results of the simulation

showed that batching has the greatest impact on reducing the pick time, particu-

larly for smaller order sizes. The results also showed that although class-based and

volume-based storage policies may increase picker congestion within aisles containing

the most popular items, they performed better than random policy in terms of the

amount of picker’s travel time.

Chan and Chan 2011 used simulation to compare the effects of different storage

assignment policies, routing policies, and pick densities on the overall performance of

order picking in a manual-pick multi-level rack warehouse. The performance of order

picking was measured in terms of order retrieval time and travel distance. The results

of simulation with ARENA showed that different combination of factors performed

differently under different performance indicators. The one performed better in terms

of order retrieval time resulted in longer travel distance. With regards to the total

8



travel distance, the performance of storage assignment policy changed due to an

increase in pick density. Also, they found that the use of storage assignment policy

was dependent on the type of the storage system.

Pan and Shih 2008 studied an order picking system with multiple pickers and

parallel-narrow-aisles in a picker-to-parts warehouse. They chose the throughput rate

as the performance measure for order picking operation and modeled the problem as

an open restricted queueing network. The authors used an approximation method

to calculate the throughput rate and validated the results with FlexSim simulator

output. They considered total travel time and congestion effect simultaneously and

by using simulation, they compared the efficiency of different storage assignment

policies.

Molnar and Lipovszki 2002 solved a multi-objective routing and scheduling

of order pickers in a warehouse. The objectives were creating well-built loads on

the shortest possible route. Using genetic algorithm they evaluated a number of

scenarios and determined the number of order pickers per shift and the best sequence

of releasing the pick lists to be retrieved.

As mentioned earlier, the literature regarding order picking for healthcare

warehouses is scarce. The work of Jorge et al. 2012 was the only one found on

order picking operations in a picker-to-parts pharmaceutical warehouse. They used

an agent-based model of the warehouse to simulate the activities and operations in

NetLogo modeling platform. The purpose of their simulation was trifold; to assign

the correct number of pickers for the average number of served orders, to calculate

the orders arrival rate, and to provide a tool to analyze the performance of order

picking process.

In a different path from other researchers, Rim and Park 2008 divided order

picking into two general stages, planning and execution. Planning is the stage where

it is decided which set of orders to pick among the received orders; and the execution
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stage focuses on trying to pick efficiently to minimize travel distance, order picking

time, etc. The vast majority of research targets the execution stage. Rim and Park

2008 was the only work found to address the planning stage.

As the pioneers of researching the order picking planning problem, Rim and

Park 2008 studied a situation where some orders may not be fulfilled due to the

shortage of inventory. An order is fulfilled when there are enough inventories for

satisfying all the items in that order. They determined which set of orders to pick

in order to maximize the order fill rate. They formulated the problem as a linear

programming (LP) problem and compared its performance with that of the first-come,

first-served (FCFS) rule. Simulation results showed that even though using FCFS

rule reduced the number of required pickers, the authors’ proposed LP approach,

outperformed FCFS in order fill rate which resulted in higher customer satisfaction.

Because of incorporating expiration date cost as one of the objective func-

tions, it is worth mentioning the research of Poulos et al. 2001. They developed a

Pareto-optimal genetic algorithm for solving multi-objective warehouse replenishment

problem. The objectives were the distance from the delivery points, the distance from

the collection points, the distance from the picking locations, the expiration date of

the product and its seasonal demand. To incorporate the preference of the decision

maker, the authors assigned importance weights to each attribute of the objective

function.

In the reviewed papers and in the literature, generally, it is assumed that all

the available inventory of an item is identical and there is no difference between the

inventories of an item in different locations. In reality, however, this is not always

true. One item in two different locations can have different expiration dates (like the

cases of Klots et al. 2003 and Poulos et al. 2001) or batch numbers.

As explained in the introduction section, studying multi-objective order picking

system in a healthcare and medical warehouse is of this research interest. Also, to
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the best of authors’ knowledge, this is the first time that differences between batches,

i.e. expiration date, have been considered in optimizing the order picking operation.

Furthermore, it is very common to solve multi-objective optimizations by assigning

importance weights to each objective which is not the case of this research. Because

doing so, will result in one solution and cannot provide a full picture of all the possible

solutions. This matter will be discussed in more detail in Chapter III.

It is assumed that each order is for a single type of item and every time an order

is received, all the items must be picked only from one batch. Therefore, the order

is allowed to be split between multiple locations but not between multiple batches.

In most previous studies on the order picking problems the order sizes were known.

However, it is assumed here that there is no information available on size of the

order, thus, they should be treated stochastically. Moreover, the knowledge about

the stochastic nature of the orders is utilized to deal with satisfying the future orders

and then, this information is used for determining the order picking location.

In summary, this research is different from the existing literature in several

aspects:

• Using multi-objective functions for deciding on the picking location

• Employing stochastic order sizes

• Considering expiration date in order picking decisions

• Considering the uniqueness of the batch in picking decision (no order splitting

between batches)

• Considering the probability of future order sizes in order picking operation

• Using a novel decision making approach for finding the relation between multi-

objective order picking optimization and order picking strategies (Chapter IV)
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The rest of this research is organized as follows. Chapter II discusses the

problem in more detail and introduces the multi-objective formulation for the order

picking problem. Chapter III goes into details of multi-objective optimization and

methods that are used in handling the desired problem. The solution structure and

ways to compare different solutions are explained. Chapter IV discusses the novel

approach for finding the relation between solutions in multi-objective optimization

and structuring the order picking strategies. Chapter V applies all the findings on

sample datasets and discusses the results. At the end, conclusions and the path for

future works are explained.
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CHAPTER II
PROBLEM DESCRIPTION

A. General Description

Consider a warehouse or a distribution center which holds and supplies many

items to many customers. When customers place orders, they are picked from the

available inventory and shipped to the customers. It is assumed that the items will

not be depleted during the pick cycle, i.e. there are enough inventories to cover the

orders. It is also assumed that the replenishment is instantaneous and as soon as a

storage location is empty, the replenishment happens. In other words, replenishment

follows the reorder point, order-up-to-level (s, S) policy with s = 0.

Usually in order picking, demand has been treated as given or known in ad-

vance. In this research, instead, it is assumed that the demand for each item is

unknown. However the distribution function for each item’s order sizes can be deter-

mined using previous order sizes.

Each type of item can occupy more than one location and the inventory of an

item in each location can be any non-negative number. Also the same item in different

locations can be from the same batch or different batches, i.e. a batch can occupy

more than one location. Order splitting among batches is not allowed. Therefore,

any time an order is received it has to be fully satisfied from one batch. However,

one can pick from multiple locations as long as the batches are the same. This work

addresses only single order picking operation in the warehouse when the order picker

picks one order at the time.
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There are four criteria in selecting a location in case of having multiple can-

didate locations for picking an order. In such a situation, the batch with sooner

expiration date, bigger remainder (remaining stock after an order pick), closer loca-

tion to I/O, which also can become totally depleted is preferred. The fourth criterion

is whether the location becomes empty after picking an order. So, among several

candidate locations for an order pick, the one that can be completely empty after

the pick should be the preferred one. In other words, priority should be given to a

location where its stock is equal to the order size.

Preferring a location which can become completely empty after a pick seems

reasonable, because it increases the amount of available empty space and decreases

inventory holding costs. But it contradicts the rule of giving a higher priority to a

location with bigger remainder, which is a counterintuitive rule. The reason behind

this rule is explained with an example.

Suppose, there are two locations holding item “A”, location one with an inven-

tory of 12 units and location two with an inventory of 17 units. As mentioned before,

in this research it is assumed that the order size is unknown and just its distribution

function is known. Suppose that order size for item “A” follows a normal distribution

with mean of 8 and standard deviation of 2. Now, an order of size 8 is received

and it is possible to pick this order from either of the two locations. If the order is

picked from the first location with 12 available units of item “A”, 4 units will remain

and if the pick happens from the second location with 17 units of inventory, 9 units

will remain. Based on the demand distribution function of item “A”, the chances of

receiving an order of size 4 and smaller in case of picking the order from location one

or receiving an order of size 9 and smaller in case of picking the order from location

two, are:

Probability of receiving an order of size 4 and smaller = F (4) = Φ(4−8
2 ) = 0.0228

Probability of receiving an order of size 9 and smaller = F (9) = Φ(9−8
2 ) = 0.6915
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FIGURE 4 – Illustration of the order picking rules

It is seen that if the order is picked from the first location and 4 units are left in

the inventory, the chances of having an order for 4 and fewer units in future is less

than 3% while by picking the order from the second location, 9 units are left in the

inventory which can satisfy another order of item “A” in the future with more than

69% chance. This is why selecting a location with bigger remainder after a pick has

given a higher priority.

Now the question is how much each of those four criteria should be weighted.

There is an importance weight associated with each of them. One analyst might con-

sider expiration date as the most important criterion and gives it a higher weight while

another decision maker might prioritize the picking rules differently. The following

example illustrates how these order picking criteria are evaluated in a hypothetical

situation.

Suppose there is an order of size 8 for an item which is stored in four different

locations as shown in Figure. 4. Without loss of generality it is assumed that the

expiration dates for these four batches are in the acceptable range. Also, it is assumed

that the importance weights associated to each of the order picking criteria are in

favor of complete depletion, higher remainder, sooner expiration date, and closer to

the I/O, respectively. So, for instance, the location with higher remainder is preferred

over the one closer to the I/O.

Location 1 does not have enough inventory to satisfy this order. The potential

remainder of locations 2, 3, and 4, in case the order is picked from them, is 3, 0, and

15



8, respectively. Location 3 has a remainder of zero which means it can be completely

empty and therefore it has the highest priority for order picking. After that, although

location 2 is closer to the I/O, but location 4 has a higher remainder which makes

it the second favorite location and finally location 2 becomes the third candidate

location for picking an order of size 8.

Note that, an analyst who favors closer locations more than the other criteria,

has a totally different solution for the same example (in that situation, locations 2,

3, and 4 will be the first, second, and third candidates, respectively). The conflicting

nature of these four criteria was observed in the above-mentioned example. As a

higher remainder favors location 4, complete depletion favors location 3, and closer

distance favors location 2 over others for picking an order of size 8. This contradiction

makes it necessary to use a multi-objective approach to solve the explained order

picking problem.

Therefore, the desired problem is categorized as a multiple-criteria decision

making (MCDM) problem. Typically, there is not a unique optimal solution for

such problems and the use of decision maker’s expertise in weighing the criteria and

differentiating between solutions is inevitable.

B. Problem Formulation

Here the mathematical model for the order picking problem in a warehouse is

presented. In formulating the model, the following assumptions are made:

Model Assumptions

• Demands or order sizes for each item are normally distributed

• The initial locations of items are known (no storage assignment is needed)

• Each batch can occupy multiple locations
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• Order splitting between batches are not allowed

• Order splitting between locations are allowed

• The warehouse is operated under single order picking operation (one pick per

trip).

The following notations are used in formulation of the problem:

Sets

I set of items

J set of batches

K set of locations

L set of orders

Decision Variables

qijkl := quantity of item i picked from batch j at location k for the lth order

∀i ∈ I, j ∈ J, k ∈ K, l ∈ L

sijkl := stock of item i in batch j at location k before picking the lth order

∀i ∈ I, j ∈ J, k ∈ K, l ∈ L

rijkl := stock of item i in batch j at location k after picking the lth order

∀i ∈ I, j ∈ J, k ∈ K, l ∈ L
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uijl :=


1 If lth order of item i is picked from batch j ,

0 Otherwise
∀i ∈ I, j ∈ J, l ∈ L

zijkl :=


1 If rijkl > 0,

0 If rijkl = 0
∀i ∈ I, j ∈ J, k ∈ K, l ∈ L

yijkl :=


1 If sijkl > 0,

0 If sijkl = 0
∀i ∈ I, j ∈ J, k ∈ K, l ∈ L

Parameters

sijk1 := initial stock of item i located in batch j at location k

eij := expiration date (or acceptance date) of item i located in batch j

oil := size of (number of units in) the lth order of item i

dk := distance of location k from I/O

CDF (x) := Cumulative Distribution Function of x

M := a very large number

1. Mathematical Model
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Minimize:

f1 =
∑
i∈I

∑
j∈J

∑
l∈L

eij∑
j∈J(eij)+uijl (1a)

f2 =
∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

dk∑
k∈K(dk)

yijkl (1b)

−f3 = −
∑
i∈I

∑
j∈J

∑
k∈K

CDF (rijkt)
K+ +

∑
i∈I

∑
j∈J

CDF (∑
k∈K rijkt)
J+

 (1c)

f4 =
∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

zijkl (1d)

s.t:

qijkl ≤ sijkl ∀i ∈ I, j ∈ J, k ∈ K, l ∈ L (2)∑
j∈J

uijl = 1 ∀i ∈ I, l ∈ L (3)

∑
k∈K

qijkl = oiluijl ∀i ∈ I, j ∈ J, l ∈ L (4)

rijkl = sijkl − qijkl ∀i ∈ I, j ∈ J, k ∈ K, l ∈ L (5)

Myijkl ≥ sijkl ∀i ∈ I, j ∈ J, k ∈ K, l ∈ L (6)

yijkl ≤ sijkl ∀i ∈ I, j ∈ J, k ∈ K, l ∈ L (7)

Mzijkl ≥ rijkl ∀i ∈ I, j ∈ J, k ∈ K, l ∈ L (8)

zijkl ≤ rijkl ∀i ∈ I, j ∈ J, k ∈ K, l ∈ L (9)

sijkl = sijkl−1 − qijkl−1 ∀i ∈ I, j ∈ J, k ∈ K, l ∈ L (10)

M(uijl − 1) ≤
∑
k∈K

sijkl − oil ∀i ∈ I, j ∈ J, l ∈ L (11)

∑
j∈J

eijuijl ≥ 0 ∀i ∈ I, l ∈ L (12)

zijkl, yijkl, uijl ∈ {0, 1}; sijkl, qijkl, rijkl ≥ 0 and int (13)

The objective function consists of four terms associated with expiration date, distance
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from the I/O, item’s remainder, and item’s total depletion, respectively.

Expiration date’s value function (1) calculates the remaining lifespan or age

of the item. To normalize this function, the remaining lifespan in a particular batch

is simply divided by the summation of all the remaining lifespans of that item in

every batch. So, a batch with sooner expiration date holds a smaller portion of this

fraction. Note that the positive sign in the denominator is for considering only the

not-expired items.

Expiration date function with a negative value, can be considered as an al-

ternative objective function which can be interpreted as the salvage value or selling

value of each item at any given point. Since newer items have a higher value, it is

preferred that they are kept longer (so the older items should be consumed or picked

sooner). The higher the salvage function, the better. So, its negative value can be

minimized.

The normalized value function for distance (2), the second term, is formed by

dividing the distance from the I/O by the summation of all the distances from the

I/O of that item in every location.

The value function for the item’s remainder (3) has two parts; location remain-

der and batch remainder for the final pick, t. Location remainder is the normalized

cumulative distribution function of the remainder in each location which describes

the probability of receiving an order size of equal or smaller than the remainder. The

batch remainder is defined the same but for each batch, since each batch can occupy

more than one location. Because a larger remainder is preferred, this term appears

with a negative sign in the objective function.

The last term in the objective function (4) is to describe the complete depletion

in the model. Because selecting a location that can be totally depleted upon an order

pick is preferred, any location with any remainder other than zero will be penalized.

This term can also be interpreted as the space usage as there is no cost/penalty
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associated with the empty space.

The first constraint (2) shows that an item can only be picked from the lo-

cations to which it has any stock. Constraint 3 ensures that for each new arriving

order, each item can only be picked from one batch. Constraint 4 shows the relation

between batches and locations. So if an item is picked from a batch, it can be picked

from a single or multiple locations occupied by that batch. Constraint 5 calculates

the number of remaining items in each location if an order is picked from that loca-

tion. Constraints 6 and 7 ensure that if any amount of item is left in a location, that

location can still become a candidate location for the future picks, but if no stock is

left, that location will not be visited in the future. Constraints 8 and 9 ensure that

when the stock of an item can be completely consumed in a location due to an order

pick, its depletion variable, zijkl, obtains zero. Alternatively, the depletion variable of

a location that can end up with any positive remainder after an order pick, obtains

a value of one to be penalized in the objective function. Constraint 10 ensures that

the stock of an item at each location after the pick is updated based on the stock

prior to the pick and the quantity picked from that location. Constraint 11 ensures

that for each item, there is enough stock in at least one batch to satisfy the order.

Constraint 12 makes sure that the items that are picked to satisfy an order are not

expired. Constraint 13 states that zijkl, yijkl and uijl are binary variables, sijkl, qijkl,

and rijkl are non-negative integers.

The model developed above is a multi-objective integer nonlinear programming

(MOINLP) model which is very difficult to solve. The nonlinearity of the problem is

due to the CDF function in equation 3 in the objective function. To overcome this

nonlinearity, the CDF function is approximated using a piecewise linear representation

as shown in Figure. 5. This piecewise approximation is done by introducing SOS2

variables. Special ordered set of type 2 or SOS2, is a set of variables where only two

adjacent variables of the set can be non-zero and positive in the solution.
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FIGURE 5 –CDF of normal distribution and its piecewise approximation

The piecewise approximation of the nonlinear function is defined by v points.

Here, the range of break points for CDF of normal distribution is considered to be

[−5, 5]. Defining steps of size 0.5, there are v = 21 points in this range. Each point is

shown by the tuple (g, f(g)). A point such as x which is between gb ≤ x ≤ gb+1, can

be written as the convex combination of gb and gb+1. Taking advantage of the SOS2

variables, the CDF of point x can be approximated by:

x =
∑
b∈B

gbλb (14)

f(x) =
∑
b∈B

f(gb)λb (15)

∑
b∈B

λb = 1 (16)

λb ∈ SOS2 (17)

Although after the approximation, the new model becomes a multi-objective

mixed integer linear programming problem which is easier than the MOINLP ver-

sion of the problem, it is still NP-hard. These types of problems are often handled

through the use of heuristic algorithms with the goal of obtaining approximate solu-

tions quickly with sufficient accuracy.

In the next chapter, methods for solving the above-mentioned multi-objective opti-
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mization problem is discussed.
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CHAPTER III
MULTI-OBJECTIVE OPTIMIZATION

A. Preliminaries

Multiple criteria decision making (MCDM) is one of operations research disci-

plines that evaluates a set of alternatives or solutions with respect to a set of decision

criteria or objectives. One class of MCDM problems is multi-objective mathematical

programming (MOMP) problem where the alternatives are not explicitly known. In

MOMP, an alternative (solution) can be found by solving a mathematical model. The

number of solutions can be infinite (in case of continuous variables) or very large to

count (in case of discrete variables).

The mathematical model of the desired order picking problem introduced in the

previous chapter, falls into the category of MOMP problems. These types of problems

are solved using multi-objective optimization methods. For a general introduction to

multi-objective optimization, refer to Ehrgott 2006 and Gandibleux 2006.

Before continuing any further, some of the standard terminology and defini-

tions in multi-objective optimization are described.

A multi-objective optimization problem can be stated as follows:

min
x∈X

f(x) := {f1(x), . . . , fn(x)} (18)

where n > 1 and X ⊆ Rn is the set of constraints or the feasible set in the decision

space (the space of feasible solutions). The image Y of X under vector-valued function

f = f1, . . . , fn represents the feasible set in the criterion space (the space of objective

24



function values). Mathematically speaking:

Y := f(X ) := {y ∈ Rn : y = f(x) for some x ∈ X}

To distinguish between the two spaces, the elements of the decision space are called

solutions and elements of the criterion space are referred to as points.

Typically, in multi-objective optimization problem, there does not exist a sin-

gle solution that simultaneously optimizes all objective functions, as the objective

functions are conflicting (note that if some objective functions need to be maximized,

its negative can be minimized). In this case, the notion of Pareto optimality is in-

troduced. A solution is called Pareto optimal or efficient when none of the objective

function values can be improved without degrading at least one other objective value.

The relation between Pareto optimal and feasible solutions can be described using

dominance relation.

Definition III.1. Solution x1 ∈ X is said to (weakly) dominate solution x2 ∈ X , and

is shown as x1 � x2, if and only if it is not worse than x2 in all the objectives and is

strictly better than x2 in at least one objective. Mathematically speaking:

x1 � x2 ⇐⇒


fi(x1) ≤ fi(x2) ∀i ∈ {1, 2, . . . , n}

fj(x1) < fj(x2) ∃j ∈ {1, 2, . . . , n}
(19)

Also, for x1 to strongly dominate x2:

x1 ≺ x2 ⇐⇒ fi(x1) < fi(x2) ∀i ∈ {1, 2, . . . , n} (20)

Some properties of dominance relation are as follows:

Reflexive: The dominance relation is not reflexive since by definition of dominance,

each solution does not dominate itself.
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Symmetric: The dominance relation is not symmetric because x1 � x2 does not

mean x2 � x1. But the opposite is true, i.e. if x1 � x2 then x2 � x1.

Transitive: The dominance relation is transitive. So, if x1 � x2 and x2 � x3, then

x1 � x3.

Note that if x1 � x2, it does not imply that x2 � x1.

Definition III.2. A feasible solution x ∈ X is called weakly efficient, if there is no

other x′ ∈ X such that fi(x′) < fi(x) for i = 1, . . . , n. If x is weakly efficient, then

f(x) is called a weakly nondominated point.

Definition III.3. A feasible solution x ∈ X is called efficient or Pareto optimal, if

there is no other x′ ∈ X such that fi(x′) ≤ fi(x) for i = 1, . . . , n and f(x′) 6= f(x).

If x is efficient, then f(x) is called a nondominated point. The set of all efficient

solutions x ∈ X is denoted by XE. The set of all nondominated points is denoted by

YN .

Definition III.4. A feasible solution x ∈ X is called ideal if it minimizes all the

objectives simultaneously. In other words, if x ∈ arg minx∈X fi(x) ∀i = 1, . . . , n.

Definition III.5. The point f I ∈ Rn is the ideal point if

fi
I = min

x∈X
fi(x) ∀i ∈ {1, . . . , n}

.

Definition III.6. The point fN ∈ Rn is the nadir point if

fi
N = max

x∈XE

fi(x) ∀i ∈ {1, . . . , n}

.
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The number of Pareto optimal solutions can be infinite or very large to count.

The set of Pareto optimal solutions is called Pareto optimal set, Pareto frontier,

Pareto front, or efficient front. As mentioned in Definition III.3, if x is an efficient

solution in the decision space, its image in criterion space is a nondominated point.

The set of all nondominated points is called nondominated frontier or nondominated

front.

As defined in Definitions III.5 and III.6, nondominated front is bounded by ideal point

as an array with the lowerbound of all the objective functions in the entire search

space and nadir point as the upperbound of each objective function in the Pareto

optimal set.

Definition III.7. A set ỸN ⊆ Y is called an approximation of the set YN if no point

in ỸN is dominated by any other point in ỸN . In other words, all the points in ỸN

are nondominated points.

Note that ỸN is not necessarily a subset of Y and there is no guarantee on

quality of the points or how good of an approximation ỸN is. But still, having an

approximation or approximate nondominated front is very important. The reason

is although the goal of multi-objective optimization is to find the set of nondomi-

nated points, typically this is not easy (they are NP-hard to compute). Because,

there may not exist an algorithm to find the entire front. Moreover, it may be very

time-consuming to compute the exact nondominated front, as usually the number

of nondominated points grows exponentially with the size of the problem (Boland,

Charkhgard, and Savelsbergh 2016). There were lots of effort in finding the entire

nondominated frontier such as the work of Boland, Charkhgard, and Savelsbergh 2015

on bi-objective mixed integer linear programs. For further information about exact

methods on multi-objective integer linear programming, refer to the dissertation of

Charkhgard 2016.

Although, it is impossible to exactly describe what a good approximation is in
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terms of criteria such as closeness to the nondominated frontier, diversity, etc., it is

possible to compare the quality of one approximate nondominated front with another

(Zitzler et al. 2003). To do so, there are different approaches which one of them,

namely hypervolume metric (Zitzler and Thiele 1999), will be discussed with more

detail in Section III.D.

B. MOMP Methods Classification

According to Hwang and Masud 2012, the MOMP methods can be classified

into three categories based on the involvement stage of a decision maker in the decision

making process: The a priori, the interactive, and the a posteriori or generation

methods.

In a priori methods the decision maker expresses his/her preferences in ad-

vance and before the start of the process. Methods such as weighted sum, where an

importance weight is given to each criterion, is an example of a priori methods. One

disadvantage of these methods is the difficulty of defining the weights or preferences

in advance.

In the interactive methods, the decision maker is more involved throughout the

decision making process. So, rounds of obtaining decision maker’s preferences and

calculations are done and in each step, the results are getting closer to the decision

maker’s most preferred solution. Besides requiring the decision maker to be more

involved in the process (which is not always possible or even desirable by the decision

maker), not knowing all the available options or an approximation of them are of

drawbacks of the interactive methods.

In the a posteriori methods the efficient solutions of the problem or an ap-

proximation of them are presented to the decision maker and he/she can select the

most preferred one among them. These methods provide the decision maker with all

the information and nothing is left out (as opposed to the a priori and interactive
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methods). The a posteriori methods are more computationally expensive.

The main focus in this research is on a posteriori methods. As mentioned in

section III.A, acquiring nondominated front may not be possible and thus, approx-

imation front is obtained. Therefore, heuristic and metaheuristic algorithms have

been used to solve multi-objective optimization problems. Nondominated Sorting

Genetic Algorithm (NSGA-II) of Deb et al. 2002, Pareto Archived Evolution Strat-

egy (PAES) of Knowles and Corne 2000, Strength Pareto Evolutionary Algorithm

(SPEA2) of Zitzler, Laumanns, and Thiele 2001, Multi-Objective Particle Swarm

Optimization (MOPSO) of Coello, Pulido, and Lechuga 2004, Multi-Objective Evo-

lutionary Algorithm based on Decomposition (MOEA/D) of Zhang and Li 2007, and

Archived Multi-Objective Simulated Annealing (AMOSA) of Bandyopadhyay et al.

2008 are just to name a few of the well-known multi-objective evolutionary algo-

rithms. Following a brief introduction to NSGA-II and PAES is discussed. For more

comprehensive studies, refer to:

• The book of Deb 2001 on multi-objective optimization using evolutionary algo-

rithms and the book of Coello, Lamont, and Van Veldhuizen 2007 on evolution-

ary algorithms for solving multi-objective problems.

• Jones, Mirrazavi, and Tamiz 2002 for a review of articles concerned with the

theory and application of multi-objective metaheuristics from the period 1991–

1999.

• Zhou et al. 2011 for a survey of multi-objective evolutionary algorithms up-to

2011.

• Marler and Arora 2004 for a survey of multi-objective optimization methods in

the domain of engineering up-to 2004.
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1. Multi-Objective Evolutionary Algorithms

The concepts and methodologies introduced in NSGA-II (Deb et al. 2002) and

PAES (Knowles and Corne 2000) are used in this research. Therefore, an explanation

of these algorithms is necessary.

a. Nondominated Sorting Genetic Algorithm, NSGA-II In each generation

of NSGA-II, an offspring population Qt of size N is created from a parent population

Pt of sizeN by using usual genetic operators such as selection, crossover, and mutation

(The first parent population P0 is created randomly). The two populations are then

combined to create Rt of size 2N . Then nondominated sorting procedure applies on

Rt.

The goal of nondominated sorting procedure is to rank and divide the indi-

vidual solutions into different nondominated fronts. To achieve this, two entities are

calculated for each solution: domination count np which represents the number of

solutions which dominate the solution p and Sp as a set of solutions that the solution

p dominates. Each solution p is compared with each solution q of the population. In

a minimization problem, if p ≺ q ⇒ Sp = Sp ∪ {q}, and if q ≺ p ⇒ np = np + 1.

Solutions with np = 0 belong to the first front F1. Now for each solution in the first

front, each member q of its set Sp is visited and its domination count is reduced by

one, namely nq = nq − 1. If nq of any member becomes zero, they belong to the

second front. By applying the same procedure on the second front, the third front is

identified and so on. In the worst case, the nq = N−1 and there are at most N−1 of

such solutions. Having M objectives, the overall complexity of nondominated sorting

procedure is O(MN2).

Next step after nondominated sorting ofRt, is to select a new parent population

Pt+1 of size N from Rt. So, selection begins from the solutions in the best front,

namely F1. If the size of F1 is less than N , all F1 members are added to Pt+1. This

procedure continues by selecting the remaining members from subsequent fronts in
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order of their ranking (F2, F3, and so on) until a complete front i cannot be included.

In other words the number of solutions in fronts F1 to Fi exceeds N and there is space

only for a part of front Fi. In this case, the solutions from Fi are sorted using the

crowded distance operator.

The goal of crowded distance operator is to increase diversity of solutions by

assigning a higher rank to individual solutions that are from the least crowded regions.

To compute crowding distance, first the solutions in the front are sorted according

to each objective function value in ascending order. The boundary solutions with

the smallest and largest values are assigned an infinite distance. For all the other

solutions:

Dm
i = fm

i+1 − fmi−1

fm
max − fmmin

where Dm
i is the distance of ith individual in the mth objective, fmx is the value of

the mth objective function of individual x, and fmmax and fmmin are the maximum

and minimum values of the mth objective function. The overall crowding distance

rank of a solution is the sum of the distance associated to each objective function,

thus Di = ∑
mDm

i.

Figure. 6 shows the crowding distance concept in a bi-objective problem. The

points with the same color are in the same nondominated front. The points indicated

with 0 and l are the boundary points which are assigned an infinite distance to

ensure they are always selected. To fill up the remaining space in Pt+1, the solutions

are selected in descending order of their crowding distance rank.

The complete procedure of NSGA-II is depicted in Figure. 7. The overall

runtime complexity of NSGA-II is O(MN2) which is governed by the nondominated

sorting part.

b. Pareto Archived Evolution Strategy, PAES PAES has 3 forms: (1+1)-

PAES, (1 +λ)-PAES, and (µ+λ)-PAES. The parameters in the parentheses indicate

the number of parents and offsprings, respectively. So, for example in the (µ + λ)-
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FIGURE 6 –Crowding distance calculation from Deb et al. 2002

FIGURE 7 –NSGA-II procedure from Deb et al. 2002
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PAES, λ offsprings are generated by mutating the µ parents. Here (1+1)-PAES is

explained.

PAES has three main parts: generating the candidate solution, accepting or

rejecting the candidate solution, and maintaining and archive of nondominated so-

lution. First, an initial solution is generated randomly (parent). This solution is

then mutated to create a new solution (offspring). Next, the offspring is compared

to the parent. If the parent dominates offspring, the offspring is discarded and a new

offspring is created. If the offspring dominates the parent, it is accepted and also

replaced the parent to become the new parent for generating new solutions. But if

none dominates the other, the offspring is compared with the nondominated solutions

found so far that are kept in the archive.

If any element dominates offspring, offspring is discarded and a new candidate

solution is generated. If offspring dominates any solution in the archive, it is accepted

and all the dominated solutions are eliminated from the archive. If neither of the

offspring or the archive dominate each other, then the density of the space where

offspring can reside is checked against the parent. If offspring resides in a less crowded

region, it is added to the archive and also accepted as the new parent.

In cases where the archive is reached its maximum capacity, the offspring region

needs to be compared with the most crowded region of the objective space. If it does

not reside in that region, then it is added to the archive and one of the members in

the most crowded region is discarded.

The crowding region in the PAES algorithm is maintained by recursively divid-

ing up the d-dimensional objective space where d is the number of objectives. Every

time a solution is accepted, its grid location in the objective space is determined.

This is done by repeatedly bisecting the range of each objective for finding the so-

lution’s grid. By setting l bisections of the space for each objective, the location of

the solution is recorded as a binary string of length 2l×d. If a solution’s dimension
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exceeds that of the archive, the ranges of the objective space are updated and the

grid locations of all the solutions in the archive is recalculated. Along with the gird

location of each solution, the number of solutions in each grid is also recorded to

determine the crowded regions.

The worst case complexity of PAES for N evaluations is O(aMN) where a is

the archive length andM is the number of objectives. Since the archive size is usually

chosen proportional to the population size N , the overall complexity of the algorithm

is O(MN2). The whole process is described in the Algorithm 1.

Knowles and Corne 2000 reported that PAES, particularly in its baseline (1+1)

form, is a capable multi-objective optimizer. In this research (1+1)-PAES is used as

the main algorithm for solving the desired order picking problem. Before explaining

how PAES is applied to the multi-objective mathematical model in II.B.1, first an

illustrative example is provided and then, the solution structure is explained.

C. Solution Structure

1. Order Picking Example

To illustrate how any of the objectives in II.B.1 model come to play in picking

an order, consider the following example. Assume two batches of the same item has

occupied three locations. The stock of each batch at each location are shown in the

Figure. 8. Assume, batch 1 expires 150 days later and batch 2 expires 100 days later.

Also, the relative distance from I/O for the three different locations are 10, 20, 30

feet, respectively. It is assumed that the order size follows a normal distribution with

mean of 11 and standard deviation of 2 units. Now suppose the next 5 orders for this

item are {15, 7, 10, 11, 10}. What should be the best picking plan? How many and

from which location(s) to pick to satisfy the orders while obtaining the best objective
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Algorithm 1 Pseudo-code for (1+1)-PAES
Initialization: Create a random initial solution c and add it to the archive
current solution := initial solution
while stopping criteria not met do

mutate c to create a new solution n and compare them
if c dominates n then

discard n
else if n dominates c then

replace c with n and add n to the archive
else if n is dominated by any member of the archive then

discard n
else if n dominates any member of the archive then

eliminate those members from the archive and add n to the archive
apply Test(c, n, archive) to determine the next current solution

else
apply Test(c, n, archive)

function Test(c, n, archive)
if the archive is not full then

add n to the archive
if n is in a less crowded region of the archive than c then

current solution = n
else

if n is in a less crowded region than some members of the archive then
add n to the archive and remove a member of the archive from the most

crowded region
if n is in a less crowded region than c then

current solution = n
else if n is in a less crowded region than c then

current solution = n
else

Discard m and c remains current solution
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FIGURE 8 – Illustration of multiple batches and locations of an item

TABLE 1
ORDER PICKING EXAMPLE: SOLUTION 1

Order 1 Order 2 Order 3 Order 4 Order 5
Locations 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Picking Amount 15 0 0 0 0 7 0 10 0 11 0 0 0 8 2
Remaining 15 18 15 15 18 8 15 8 8 4 8 8 4 0 6

function values, i.e. the optimal solution? To answer these questions, three different

solutions are investigated as shown in Tables 1–3.

In each table, the “Picking Amount” shows how each order is picked, i.e. how

many and from which location. The “Remaining” row shows the stock remaining in

each of the locations after the order pick. For instance in Table 1, one can see that

to satisfy the first order (order of size 15), all 15 units are picked from location 1,

nothing from location 2, and nothing from location 3. This changes the stock of the

first location from 30 to 15 and the other locations are unchanged. Note that, since

locations 2 and 3 are both from the same batch, one can split the order between these

TABLE 2
ORDER PICKING EXAMPLE: SOLUTION 2

Order 1 Order 2 Order 3 Order 4 Order 5
Locations 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Picking Amount 0 0 15 0 7 0 10 0 0 0 11 0 10 0 0
Remaining 30 18 0 30 11 0 20 11 0 20 0 0 10 0 0
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TABLE 3
ORDER PICKING EXAMPLE: SOLUTION 3

Order 1 Order 2 Order 3 Order 4 Order 5
Locations 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Picking Amount 0 15 0 7 0 0 10 0 0 0 0 11 10 0 0
Remaining 30 3 15 23 3 15 13 3 15 13 3 4 3 3 4

two locations, a case that happened in picking the last order in solution 1.

So, which one of these 3 solutions should be chosen? To answer this question,

the objective functions are evaluated. Tables 4-6, show the objective function values

for each of the solutions (f1 − f4 in the mathematical formulation of II.B.1). Note

that, f3 in the model is comprised of two terms; one for the locations and one for

the batches. These two terms are separated here and are shown by f3 − l and f3 − b,

respectively. These two terms should be maximized (or their negative be minimized)

and all the other objective functions should be minimized. Also, f1 relates to expira-

tion date which just considers the batch rather than the location. So, locations 2 and

3 which are from the same batch, has the same value for expiration date function.

The last column in the above tables, show the summation of objective function

value for the associated row. Comparing the above three solutions w.r.t the last col-

umn, it can be concluded that solution 2 dominates solution 1 (it has better objective

values in all the functions) and solutions 2 and 3 are nondominated. At this stage,

the decision maker can choose the solution based on his/her preferences.

It is worth noting that in this example, the warehouse can receive the 5 orders

during 5 days, 5 weeks, one day, or any other time period. Time period is not

important as long as the orders are picked separately. In this research if, for example,

all the orders received throughout the day, are aggregated and picked at once, it is

considered as one pick. In such situations, the lth order (in II.B.1 model) can be

interchanged with the lth time period.

In this example, three arbitrary solutions out of many possibilities were inves-
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tigated. There can be solutions that dominate either solutions 2 or 3, be dominated

by either one, or be nondominated solutions similar to them. Due to its small size,

it is possible to find all the solutions for this problem and identify the nondominated

set. However, as the size of the problem grows, it becomes harder and harder to do so.

Therefore, finding the approximate nondominated front becomes the goal of solving

this problem using PAES method. Unless noted otherwise, hereinafter, when PAES

method is mentioned, its baseline (1+1) form is of interest.

2. Solution Representation in PAES

In PAES, the first step is to create an initial solution and then mutate it

for generating an offspring solution. To create the initial solution, a schema similar

to what was shown in Table 1 is used. So for each order, the eligible batches are

identified. Eligible batches are those with enough stock to meet the received order.

Next, a batch and a location are randomly chosen. If the location’s stock is enough,

all the order is picked from there. Otherwise, the remainder is picked from another

location. Recall that order splitting between batches is not allowed but picking the

order from multiple locations is allowed as long as they all hold the same batch. This

process and evaluating all four criteria (objective functions) are repeated for each

order.

There are two cases where the order of an item cannot be satisfied. First, if

there is not enough inventory in any of the batches but the total inventory in all the

locations is more than the order size. Second, if neither of the batches’ inventory nor

the total inventory of all the locations is sufficient. In the first case, there could be

some solution(s) where the order is satisfied. So, all of the objective functions will

be penalized. In the second case, however, there is not enough cumulative inventory.

So, regardless of how and from where the previous orders have been picked, the new

order could not be satisfied and thus, no penalty is necessary here. The complete
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procedure for generating the initial solution is given in Algorithm 2.

Algorithm 2 Pseudo-code for generating initial solution in PAES
while an order left unprocessed do

eligibility = Identify_Batch(order)
if eligibility = True then

randomly choose a batch and a location
if location has enough inventory then

pick all the orders from there
else

randomly choose another location from that batch and pick the remain-
der from there

else if eligibility = penalize then
Penalize all the objective functions

else
This order could not be satisfied.

function Identify_Batch(order)
Find all the batches with enough stock to satisfy the order
if eligible batch(es) are found then

return True
else if total inventory in all the locations > order then

return penalize
else

return False

Having the initial solution, the next step is to mutate it for creating a new

solution. Offspring, child, candidate, new, and neighborhood solutions are often used

interchangeably. Several methods have been used to generate the neighborhood so-

lution.

Single Point Mutation: An order is chosen randomly and the picking batch/location

of that order is changed.

Double Point Mutation: Two orders are chosen randomly and their batch/locations

are swapped, if different.

Double Point Swap: Two orders are chosen randomly and all the sequence of

batch/locations for all the orders between these two are swapped.
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Forward Single Point Mutation: An order is chosen randomly and the picking

batch/location of that order and all the other orders following it are changed.

Random Strategy: An order is chosen randomly and out of 5 available strategies,

one is chosen randomly. The 5 strategies are:

• Single point mutation.

• Pick from the closest location.

• Pick from the oldest batch (the closest expiration date). In case of multiple

locations for the batch, select the location randomly.

• Pick from the location with the highest amount of inventory.

• Pick from the location with the lowest amount of inventory.

Forward Random Strategy: Similar to random strategy for the randomly chosen

order and all the other orders following it.

In all these mutation methods, the batch-location eligibility is conserved, i.e. only

batch-locations that have sufficient inventory are investigated. Besides the single

point mutation, all the other methods in the “Random Strategy”, aim to minimize

one of the four criteria. The closest location, oldest batch, highest amount and lowest

amount of inventory, aim at minimizing f1, f2, f3, and f4, respectively.

In this problem, due to the dependency of each order pick to the preceding

order, none of the above methods can be applied without a repair procedure. So,

when the picking location of an order is changed for creating a new solution, the

batch-location of all the following orders should be checked to ensure the feasibility

of the solution. Because it is very probable to mutate the location of one order and

make the succeeding order(s) infeasible.

For instance, consider solution 2 in Table 2 again. If order 4 is randomly

chosen, the only eligible location for picking the 11 units is locations 1 (location 2 is
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TABLE 7
ORDER PICKING PROFILE

Order 1 . . . j j + 1 j + 2 . . . n
Order Size O1 . . . Oj Oj+1 Oj+2 . . . On

Picking Location L1 . . . Lj Lj+1 Lj+2 . . . Ln
Initial Inventory I1 . . . Ij Ij+1 Ij+2 . . . In
Remaining Inventory R1 . . . Rj Rj+1 Rj+2 . . . Rn

the current solution). By picking from location 1, its remaining inventory becomes

9. Without checking all the following orders and applying the necessary changes, the

next order for 10 units which is originally picked from location 1, makes the solution

infeasible. But by means of the repair procedure, the batch-location for order 5 is

also changed (from location 1 to location 2).

For better illustration of repair procedure, consider order j in Table 7. If the

picking location Lj changes, then Rj for the current and new locations will change

as well. Remaining inventory of one order makes the initial inventory of the next

order, i.e. Ij+1 = Rj. Moreover, picking locations are chosen based on sufficiency of

inventory in a location. So, if Ij+1 changes, then Lj+1 might change. This butterfly

effect calls for an update of the initial inventories, remaining inventories, and picking

locations of all the other orders as well.

So in generating the new neighborhood solution, if after any update of initial and

remaining inventories of the orders, the picking location is still valid, it remains

unchanged, otherwise, a new picking location should be chosen. It is worth noting

that the idea of repair procedure has been appeared in other studies, such as Toledo

et al. 2009 paper too. All of the mentioned solution generator methods, search the

neighborhood randomly. The main reason, similar to the idea of the basic variable

neighborhood search (VNS) method (Mladenović and Hansen 1997), is to avoid cycling

which might occur in case of using deterministic rules. Also, randomized search of

the neighborhood, increase the diversification of search in exploring nondominated

solutions. To learn more about the principles and applications of VNS, refer to
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Hansen and Mladenović 2001.

Knowing how the initial and neighborhood solutions are generated, the rest of

the procedure is similar to the PAES algorithm explained in Algorithm 1.

Preliminary tests showed that the forward single point mutation and the for-

ward random strategy performed better and generated better quality nondominated

solutions than the others, with forward single point mutation performing slightly bet-

ter. Therefore, it is chosen as the main neighborhood solution generator method. But

how nondominated sets of different methods can be compared together? One way is

to use the hypervolume metric, which is the subject of the next section.

D. Hypervolume

As explained in Section III.A, finding the Pareto optimal set is not always

achievable in practice. Therefore, the aim of multi-objective optimization is to find

an approximate nondominated front. But it is difficult to compare the approximation

sets obtained from one algorithm with those of another algorithm. Because generally,

one nondominated set is not dominantly better than the other. So there is a need

for unary indicators or metrics to measure the quality of the solution sets. There

are several indicators that try to describe the goodness of an approximation in terms

of criteria such as closeness to the Pareto optimal set, diversity, and coverage of the

space (Zitzler et al. 2003).

Hypervolume measure, also known as the S-metric (Zitzler 1999) or Lebesgue

measure (Laumanns, Rudolph, and Schwefel 1999, and Fleischer 2003), is the best

known indicator that was first introduced by Zitzler and Thiele 1999 as “size of the

space covered”. The hypervolume metric measures the amount of objective space

that the approximation set dominates. In other words, it measures the volume of the

approximate nondominated front w.r.t a reference point. Usually, the reference point

is the worst possible point, i.e. nadir point. But the points with the worst objective
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values in a dimension, cannot contribute in that dimension, as their distances from

the nadir or reference point is zero. To avoid having a volume of zero, the worst point

can be shifted (worsen) by an appropriate amount.

Comparing approximate nondominated frontiers, the one with a higher hyper-

volume is better. Because it is a better approximation of the true nondominated fron-

tier. The hypervolume is maximized if and only if the set contains all Pareto optimal

points (Fleischer 2003). Bringmann and Friedrich 2008 showed that the calculation

of hypervolume metric is #P-hard (#P-hard of counting problems is analogous to

NP-hard of decision problems), which implies that a polynomial-time algorithm does

not exist, unless P = NP. Many researches have been done in this area to make the

calculation faster. To learn more, refer to the dissertation of Bradstreet 2011.

In this research, the Hypervolume by Slicing Objectives (HSO) algorithm

(While et al. 2006) is used for calculating the hypervolume indicator. Figure. 9 shows

the hypervolume created by 4 points (a, b, c, d) in a three-objective maximization

problem. This figure also shows how HSO sweeps along each objective and creates

cross-sectional slices. In this figure, the unfilled circles represent points in each slice

that are dominated by a point in y and z axes. Here, the reference point is the origin.

The pseudo-code of HSO algorithm reproduced from While et al. 2006 and Bradstreet

2011 is shown in Algorithm 3.

The inputs of the algorithm are the nondominated front, f , and the number

of objectives, n. Function “Depth” calculates the distance between two consecutive

points. Function “Insert” performs two tasks. First, it sweeps along the chosen

objective and makes a slice between one point to the other. For doing so, it visits the

points one at a time, skips the first objective of f , and add the points to a new list

derived from n− 1 objectives. So, it maintains a list of all the points that are visited

and contributed to the current slice.

Second, it accumulates the list of points in each slice, ensures the points are
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FIGURE 9 –HSO algorithm (While et al. 2006)

Algorithm 3 Pseudo-code of HSO
function HSO(f, n)

f = sorted f in objective 1 in descending order
if n = 2 then

return the area created by the two dimensions of n
np = empty list for keeping nondominated points
for all p ∈ f do

depth = Depth(f, p)
Insert(np, p, n− 1)
hypervolume = hypervolume + depth× HSO(np, n− 1)

return hypervolume

function Depth(f, p)
if p is a one-dimension point then

return distance from p to the reference point
return distance from p to the next point in f w.r.t first dimension

function Insert(np, p, n)
skip the first objective and insert p to np
remove any point in np that is dominated by p
ensure all the points in np are sorted in the next relevant objective

nondominated and also sorted w.r.t to the next objective. So when a new points is

added to the slice, all the points that are dominated by the new point are removed

and the remaining points are sorted by their first objective. This concept is illustrated

clearly in Figure. 9. So first, all the points are sorted in descending order of the first
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objective (along x axis). Point a is the first to be visited and added to the list. Then,

the slice from point a to point b is created (the first objective is skipped and the

remainder is the 2-dimension area created by the values of y and z axes). Then point

b is added and the slice now contains both a and b (they are nondominated w.r.t the

remaining two objectives along y and z axes). When point c is visited, it dominates

both a and b along y and z axes. So, they are removed and the slice contains only

point c. Finally, point d is visited an added to the slice. Since each slice creates a new

list of points with n− 1 objectives, its hypervolume can be calculated recursively.

The HSO pseudo-code in Algorithm 3 is for maximization problem. The ref-

erence point in the simplest form can be the nadir point. However, in maximization

problems (with all positive values), origin can be a good candidate which makes cal-

culations easier. For minimization problem, on the other hand, there are two options.

Either using the reference point, or normalizing the problem first, then inverting it

and working with the normalized and inverted problem similar to a maximization

problem. In this research, the latter approach has been used. Because it is easier to

work with similar-signed values (all positive or negative) as opposed to different signs

(which is the case in this research) and normalization takes care of this matter.

To normalize a point, a reference point is needed. Here, the reference point

is the nadir point shifted (worsen) by an appropriate amount. So in a minimization

problem, fRef > fN , where fN is the nadir point. Each point f ∈ ỸN is first

normalized and inverted as follows:

f ′ = f − f I

fRef − f I

f̄ = 1− f ′

where f I , f ′, and f̄ are the ideal, normalized, and inverted points, respectively.

Note that, although a higher hypervolume is an indication of a better ap-
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proximation, it is a point estimate. So, after having all the hypervolumes of all the

solutions, a statistical hypothesis test (such as Kruskal-Wallis non-parametric test)

is required for finding out which algorithm provided statistically significant better

results.

Knowing the hypervolume indicator and the approximate nondominated front

obtained using PAES method, one question is how they can help in generating the

order picking strategies? The goal of next chapter is to answer this question.
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CHAPTER IV
ORDER PICKING STRATEGIES

A. Why Rules?

In the previous chapter, the explanation for PAES multi-objective optimiza-

tion algorithm, which is used in this research, was provided and the hypervolume

indicator as a mean to measure the quality of approximate nondominated front (ap-

proximation) was introduced. Now assuming the MOMP model in II.B.1 is solved

and the approximation for each item is obtained (one for each item). So, how a

decision maker can decide which location should be visited for picking an order? If

there are N items and the approximation of each item has M nondominated points

(the archive size in the PAES method), then the decision maker should look at MN

points and for each item, choose one point as the answer (N final points).

To avoid such rudimentary and time-consuming task, some patterns needs to

be derived from the information in the sets of nondominated points of each item.

These patterns can make the path for creating some order picking rules. One way is

to classify items based on some common features. This results in a decrease in N .

But still for all of the classes the M nondominated points need to be investigated.

Another option is to combine item classification with static rules. In other

words, in generating the candidate solutions in multi-objective optimization algo-

rithm, using static rules for directing the search, instead of randomly searching the

neighborhood. To better understand this idea, consider the example in Figure. 8

again. This time, assume that the order size follows a normal distribution with mean
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TABLE 8
ORDER PICKING EXAMPLE: STATIC RULE SOLUTION

Order 1 Order 2 Order 3 Order 4 Order 5
Locations 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Picking Amount 0 11 0 0 6 0 16 0 0 0 0 13 13 0 0
Remaining 30 7 15 30 1 15 14 1 15 14 1 2 2 1 2

of 11 and standard deviation of 5 units (as opposed to 2). Due to this standard devia-

tion, one may consider this item a high variability item (there will be more discussion

on these classifications later). Also, suppose the next 5 orders for the item are {11,

6, 16, 13, 13}.

For finding out the picking plan, the decision maker might take into account

the high variability of the order size. Being concerned about the items expiration

dates, he/she can suggest, for instance, to first pick from the older batch and if a

batch exists in multiple location, the closest one be visited first. This rule is an

example of a static rule. Although the picking location can change based on the

stock availability in a location, but overall it gives a fixed suggestion. Based on this

rule, the picking solution looks like Table 8.

Note that static rules decrease the number of solutions as they limit the number

of choices. So, there will be fewer points in the decision space and thus, fewer points

in the criterion space, namely smaller M . By combining item classification and static

rules, there will be smaller MN combinations for the decision maker to consider. In

the example above, the static rule created one solution. Depending on the rule, the

number of solutions can be in the range of (1,M) (In this setting, one may consider

static rules as the more generic rules since random search of the neighborhood can

also be a static rule and be treated as the indifference of the decision maker towards

all the criteria, and thus, randomly selecting one for each order pick).

In this chapter, a few questions need to be addressed. How to classify the

items? How to create a static rule (hereinafter, rule)? How to measure the quality of

49



the solution(s) generated by a rule?

B. Product Classification

One intuitive way to classify the products, is based on their order profiles,

i.e. order size (volume) and order frequency, also known as popularity of product

or number of times requested. These concepts play an important role in warehouse

design and storage assignment. Decisions such as which SKUs and how many to store

in the fast-moving area of the warehouse (if one exists), depends on the volume and

frequency of a product. For example, an SKU with higher frequency, requires more

visits. So, it adds more value to store this SKU closer or in the fast-moving area. To

learn more about this, refer to the book of Bartholdi III and Hackman 2014.

Slotting decisions are not of a concern here. Slotting refers to the careful

placement of each item within the warehouse (Bartholdi III and Hackman 2014) and

it focuses on improving the efficiency of order picking. For example, an SKU that has

an annual volume of 100 units and is picked in quantities of 5 units, has a frequency

of 20 (the locations the SKU occupies, needs to be visited 20 times). Another SKU

with the same volume which is picked in quantities of 50 units, is visited twice. From

an order picking efficiency perspective, it is better that the first SKU is stored in

more accessible locations.

Although slotting is not considered in this research, the characteristics of each

SKU and each location in the warehouse are both considered. The criterion for each

location is its accessibility which is a relative term. For example, in one warehouse

this can be considered the physical position and a farther position is less favorable and

less accessible than a closer one. In another warehouse, accessibility can be defined

based on the required equipment. A closer location which needs a lift truck for higher

shelves can be considered less accessible than a farther location at waist-height of the

order picker.
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There are more criteria attached to each SKU for consideration. Some of

them are location-independent, such as the order volume, variability, and frequency.

Others, depend on the locations each SKU occupies, such as expiration date and the

inventory of the SKU in each location. Recall from Chapter I that the term batch

was used for emphasizing on different expiration dates between SKUs of an item.

It is assumed, without loss of generality, that the accessibility of a location

relates to its physical position. So, a closer location is considered more accessible

and thus, terms such as more accessible and closer are used interchangeably. It is

assumed that each batch is randomly stored in multiple locations. Due to the random

storage, it is possible to investigate more general rules. Because one batch can be

completely stored in closer or fast-moving locations and another one occupies both

close and farther away locations.

For each batch, two levels of low and high are used for classifying order vari-

ability and frequency. So 4 different classes are made. The elements of these classes

for the set of {order variability, order frequency} are:

{(low, low), (low, high), (high, low), (high, high)}.

For location-dependent criteria, three levels of expiration date, early, middle,

and late and four levels of inventory, exact, low, average, and high are considered.

Also, as explained above, a location is considered more accessible if it is closer. So,

three levels of close, middle range, and far for the relative distance from the I/O is

defined. So totally, there are 3× 4× 3 = 36 different location-dependent classes. The

elements of these classes for the set of {expiration date, distance, inventory} are:

{(early, close, exact), (early, close, low), . . . (late, far, high)}.

The specifications of each class are explained more in the next section but to

understand their purposes a little better, consider the following example. There is

an item that belongs to the class of (low, high). So, it has a low order variability

and high frequency of orders. Now this item, has two different batches (two different
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expiration dates) and it is stored in three different locations. One of the locations is

in the fast-moving area and the other two are farther away. The closer location still

has some inventory in it and both of the farther away locations are completely full.

Also, the closer location stores the batch which expires faster and the newer batch

(which expires later) occupies both of the farther locations. So, the set of {expiration

date, distance, inventory} for these three batches are:

{(early, close, low), (late, far, high), (late, far, high)}.

Now as explained in the previous section, these classifications help to decrease

the number of points for investigation and they also help in defining the order picking

rules. In the above example, the item is classified as low order variability and high

order frequency. The decision maker does not need to worry about items expiring,

because item’s storage locations are visited frequently. Also, because of low variability,

the inventory of a location will be consumed eventually (with a high probability). So,

a closer location can be visited first. This represents another sample of a rule.

Note that all these classifications are for directing to a solution in the decision

space. So, its image on all four objectives of model II.B.1 is, hopefully, in the ap-

proximate nondominated front. The specifications of each class and how to quantify

them are discussed in the next section.

C. Class Specifications

The boundaries that separate the levels of the location-independent classes

from one another, are relative to the warehouse and the products it holds. For exam-

ple, in a warehouse that keeps fresh produce, the level of high frequency items should

have a different threshold than a warehouse that stores garments. So, the boundaries

used in this research are arbitrary and they can be easily modified depending on the

products held in the warehouse. The boundaries for levels of order variability and

frequency are explained in the next Chapter.
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The order size is considered uncertain. So, to capture its variability, the coef-

ficient of variation (CV ) of the orders are used. For order frequency, the number of

times an item is ordered annually is considered. There are two things here that need

careful attention:

• CV is used to measure the variability of order size to ensure a high standard

deviation does not necessarily result in a high variability (an item with mean of

6 and standard deviation of 2 shows more variability than an item with mean

of 50 and standard deviation of 5).

• The variability indicator depends on the underlying distribution of the order

size. For example, in a normal distribution, CV can be used as a measure

of variation. But under Poisson distribution, CV is 1 which is not helpful

(assuming the sample size was so small that it could not be approximated with

a normal distribution).

Deciding on the levels of location-dependent classes are also relative to the warehouse

and products, but it can be less restrictive in general. There are three levels for

distance class. The warehouse is uniformly divided into three areas; close areas,

far areas, and the ones in between (hence, middle range areas). So, one-third of

the warehouse belongs to each of the three areas. To define the class level of a

location, the term relative distance needs to be defined. Relative distance is the ratio

of a location’s distance from the I/O to the maximum distance from the I/O (farthest

location). Any location with the relative distance of less than 1/3 is in the close range.

If the relative distance is more than 2/3, the location is in the far range, and for any

number in between the two, the location is in the middle range. Although dividing the

warehouse into these three areas of accessibility is arbitrary, it provides more generic

analysis. For example, an item with three different batches which can occupy three

different locations, can be in any of the 27 different location combinations (There are
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three areas of close, middle range, and far. Each batch can be in any of these areas:

all in close, two in close and one middle, etc. Therefore, 3×3×3 = 27 combinations).

In general, a popular strategy to increase the efficiency of order-picking pro-

cesses is to divide the warehouse area into a fast-moving or forward area and a reserve

or bulk area. The reserve area is used for replenishing the forward area and also, for

picking items that do not exist in forward area. Deciding which items and in what

quantities should be stored in the forward area, is not a trivial problem. Including an

item in the forward area reduces the labor intensity of order-picking and implies re-

plenishments from the reserve area should happen. Increasing the quantity of an item

may reduce the number of replenishments but due to limited space of forward area,

not all the items can make it there and benefit from the more accessible fast-moving

area. In the literature, this problem is referred to as the forward-reserve problem

(FRP). To learn more about FRP refer to initial works of Hackman, Rosenblatt, and

Olin 1990, Frazelle et al. 1994, Berg et al. 1998, and also the book of Bartholdi III

and Hackman 2014.

As mentioned before, slotting decisions are not of a concern and all the focus is

on order picking rules in a more general and holistic settings. The goal of dividing the

warehouse into three areas of close, middle range, and far, is to cover more warehouse

layouts. In a warehouse with forward and reserve areas, some items are just in

forward (close), some are just in reserve (middle and far), and some are in both. In

a warehouse without a defined fast-moving area, every area can be considered bulk

area. Even in this warehouse, some of those locations are closer to the shipping docks

(close) and are easier or faster to access than other areas (middle and far). The

classification in this research, works for these warehouses too.

By calculating the relative distance of a location, one can determine to which

area does the item belong. For example consider two items, A and B. Both of

them are stored in three different locations. The storage locations of item A are
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80, 100, and 150 feet away from the I/O. For item B, the distances are 200, 700,

720 feet. The maximum distance in this warehouse from the I/O (the farthest

location) is 1000 feet. So, the relative distance of the locations for item A are:

{80/1000, 100/1000, 120/1000} = {8%, 10%, 12%} which are all less than 1/3. So, the storage

locations of item A are (close, close, close). The relative distance of the locations for

item B are: {200/1000, 700/1000, 720/1000} = {20%, 70%, 72%}. The first location is less

than 1/3 and the other two locations are greater than 2/3. So, the storage locations of

item B are (close, far, far).

There are also three levels for expiration date class which are uniformly dis-

tributed between early, middle, and late levels. Dividing the levels uniformly is

arbitrary. Any other classification according to the warehouse and the importance of

each expiration date level can be used instead. For any item, first the expiration date

of each batch, e, is normalized w.r.t all the other batches of that item as follows:

e′ = e− emin

emax − emin + ε

where emin, emax, and e′ are the minimum (earliest), maximum (latest), and normal-

ized expiration date, respectively. In case the item has only one batch, denominator

can become zero. This is why a very small number, ε, is added to the denominator to

avoid such situation from happening. Then, each batch is put into the appropriate

level based on its normalized expiration date. So, if e′ ≤ 1/3, then the batch is in the

early level. If e′ ≥ 2/3, the batch is in the late level, and for any number in between

the two, the batch is in the middle level.

For both expiration date and distance classes, no knowledge of the order size is

necessary. But for inventory class, the order size should be known. It is assumed that

the order size follows a normal distribution. Even if it does not, it is assumed there is

enough historical data for order size of each item that its mean can be approximated
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with a normal distribution (according to central limit theorem). To quantify the

levels for inventory class, recall that the remaining inventory (hereinafter, remainder)

R is the amount of inventory I after picking the order O, So R = I −O.

The available inventory of a location can be in any of the exact, low, average,

and high levels. The exact level is when the inventory of a location is exactly the

same as the order size. In this case, R = 0. Low refers to situations where the

inventory is more than the order size and the demand can be satisfied but after the

pick, the probability of the remainder satisfying a future order becomes very low. By

considering a 95% confidence interval, a low level inventory can be written as:

P (R) ≤ Φ(−2)⇒ R ≤ µ− 2σ

where µ and σ are the mean and standard deviation of the order size, respectively.

Note that the 95% confidence interval in a standard normal distribution is the interval

of (Φ(−1.96),Φ(1.96)). For simplicity, (Φ(−2),Φ(2)) is used instead. Average level is

when the order can be satisfied from the inventory and after the pick, the remainder

falls into the low level. So:

Φ(−2) < P (R) & P (R− µ) ≤ Φ(−2)⇒ µ− 2σ < R ≤ 2µ− 2σ

High level is any other inventory level where the remainder becomes greater than or

equal to the average level, which means:

P (R− 2µ) > Φ(−2)⇒ R > 2µ− 2σ

Note that locations with insufficient inventory are not considered as they cannot

satisfy the order and thus, they cannot contribute in the solution. However, these

locations still occupy the space. So, they should be considered in calculating the
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space utilization (fourth objective function in model II.B.1).

The levels of each class should also be prioritized. For expiration date, the

priority should be early � middle � late since in minimizing the objective function,

it is preferred to first use the earlier expiry items (they have a lower numerical rank).

With the same logic, levels of distance class are prioritized as close � middle range �

far. The priority of inventory levels is exact � average � high � low. Because in exact

level, the order can be picked completely and the location is available. In other levels,

the location is still in use but as going from average to high to low, the speed of the

location becoming available decreases (Recall that with low, the chance of satisfying

a future order are almost less than 2% but the location is still in use).

Up to this point, 36 location-dependent (hereinafter, state) and 4 location-

independent classes (hereinafter, simply called class) are defined and their specifica-

tions are determined. Now consider an item in one of the 4 classes. Each location

that this item occupies, can be in any of the 36 states. Potentially, each state is a

solution. Because remember, the question to be answered is “from which location

should be picked” and each state is an answer to this question.

There should be at least two batches of any item. Because with only one

batch, the effect of expiration date will be canceled. For an item which occupies l

locations, 36l combinations of solutions is possible. In this research, 3 batches in 3

locations are considered, thus, 363 = 46656 possible combinations of solutions. Of

course not all these combinations are unique. For example, if all three batches are

in the state of (early, high, close), then there is no difference in choosing one batch

over the others. But if the three states are {(early, close, low), (late, far, average),

. . . (early, far, high)} then selection becomes difficult. Which of these three states

should be preferred? The first batch expires soon and is also close, but picking from

that location leaves a non-favorable remainder. The second batch expires later and is

far but it has enough inventory for the current order and the remainder may satisfy
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another future order. The batch in the third location expires soon and is far (so just

by comparing these two properties with the first batch, it is not favorable). But it

has high enough inventory to not worry about future orders. In this situation, none

of the solutions dominate the other ones (they are all nondominating regarding one

another).

It is important to find an approach to rank these solutions. That approach is

the order picking rule. So a rule that says, “pick from the earliest expiry batch and in

case of a tie, choose the one with a more reliable inventory” settles down the previous

problem with three nondominating solutions. According to this rule, the batch in the

third location is the preferred one.

Each solution is for one order pick and feeding it to the objective functions,

results in a point. By applying a rule on a few consecutive orders of an item and com-

paring the final solution and its point with those of approximation points (obtained

from applying PAES algorithm on the same problem), the quality of the rule can be

shown.

The first step is to create these rules. Some rules can be very simple such as

“picking from the closest location” or “picking based on first-expiry, first-out rule”.

The advantages of these practical rules is in their generality and simplicity. But

they do not account for all the other criteria. As mentioned above, finding a rule is

finding a way to prioritize the solutions. In other words, by finding the relation or

the pattern between different states and the chosen solution(s), one can obtain rules

in their rawest formats. Here, association rule mining is used for finding this relation.

D. Association Rule Mining

Association rule mining (ARM) is a method to find frequent patterns and

relations between sets of items which was first introduced by Agrawal, Imieliński, and

Swami 1993. ARM was initially used for market basket analysis to find the relations
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between items purchased by customers. The data is in the form of transactions sets

and each transaction contains sets of items. Consider I as the set of all items and two

itemsets X, Y ⊂ I. An association rule is an implication of the form X ⇒ Y where

X ∩Y = ∅. Every rule is composed of two items sets; the left hand side or antecedent

and the right hand side or consequent. In order to select significant rules among the

set of all possible rules, a few concepts needs to be defined.

Definition IV.1. Support (sup): Fraction of transactions that contain both X and

Y. sup = P (X, Y )

Definition IV.2. Confidence (conf): Measures how often items in Y appear in

transactions that contain X. conf = P (Y |X) = P (X, Y )
P (X)

Definition IV.3. Lift: Computes the ratio between the rule’s confidence and the

support of the itemset in the rule consequent. lift = sup(X, Y )
sup(X)sup(Y )

In a nutshell, association rules are created by analyzing data for frequent if-

then patterns and measures such as support, confidence, and lift help identifying

the most important relationships. The goal of ARM is to find all the rules with

sup ≥ minsup and conf ≥ minconf where minsup and minconf are the user-specified

threshold for support and confidence, respectively.

Support indicates frequency of appearing the items in the database. A rule

with a low support may occur simply by chance. Confidence indicates the number of

times the relation between X and Y exists and it measures the reliability of the rule.

So, the higher the confidence, the more likely it is for Y to be present in transactions

that contain X. Lift tries to rule out the random appearance of X and Y in a rule,

given their individual support. So in a way, it indicates the strength of the rule. It is

obvious from the definition of lift, that a value of 1 indicates independence of X and

Y . Regardless of support and confidence, any lift < 1 provides no value (it has less

strength even than the random occurrence of the itemsets).
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To mine the association rules, the Apriori algorithm is used. Apriori is the

best-known algorithm for mining association rules which was introduced by Agrawal

and Srikant 1994. Briefly explaining, the algorithm tries to find all the frequent

itemsets (itemsets with sup ≥ minsup) iteratively, and then generate the rules using

these frequent itemsets.

In this research, simple rules are of interest. Simple rule is a rule with a

single item as its consequent. To mine the rules, first the transactions need to be

created. Each combination of the states is a partial transaction (partial because it

is not complete and something else should be added). For example, three batches

in three states of {S1 : (early, close, low), S2 : (late, far, average), S3 : (late, far,

high)} comprise the partial transaction. Now, this transaction will be complete if the

priority of these states are known. In this example, the S1 and S2 are nondominated

and S3 � S2. So, it can be removed from consideration (pairwise comparison between

each elements of states is done. State 2 weakly dominates state 3 and is nondominated

w.r.t state 1). So, S1 and S2 can be added to the transaction list to complete it.

Here the transactions are comprised of the three states of the three batches and

the nondominated states (after the pairwise comparisons). To distinguish between

them in the transaction T , they are shown as follows:

T = {(early, close, low), (late, far, average), (late, far, high), S1, S2}.

After generating all the transactions (all the combinations of states and their pairwise

comparisons), the rules can be mined by using the Apriori algorithm. The “arules”

package in R (Hahsler, Gruen, and Hornik 2005) is used to achieve this goal. Table

9 shows the refined results of mining simple rules based on all the states for three

batches in three locations.

In this table the “order” column, is the rank of each rule and in cases of ties,

the highest rank of that group is given to all (the lower the number, the higher the

rank). The first row of the table (first rule) says, if there are three batches and at
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TABLE 9
SIMPLE RULES WITH ORDERS BASED ON CONFIDENCE

Expiration
Date

Distance Inventory Confidence Support Order

Early Close Exact 1 0.081 1
Middle Close Exact 0.944 0.076 2
Early Middle Range Exact 0.944 0.076 2
Early Close Average 0.944 0.076 2
Late Close Exact 0.890 0.072 5
Early Far Exact 0.890 0.072 5
Early Close High 0.890 0.072 5
Middle Middle Range Exact 0.838 0.068 8
Middle Close Average 0.8388 0.068 8
Early Middle Range Average 0.839 0.068 8
Early Close Low 0.839 0.068 8
Late Middle Range Exact 0.738 0.060 12
Middle Far Exact 0.738 0.060 12
Late Close Average 0.738 0.060 12
Early Far Average 0.738 0.060 12
Middle Close High 0.738 0.060 12
Early Middle Range High 0.738 0.060 12
Middle Middle Range Average 0.644 0.052 18
Middle Close Low 0.644 0.052 18
Early Middle Range Low 0.644 0.052 18
Late Far Exact 0.6 0.049 21
Late Close High 0.6 0.049 21
Early Far High 0.6 0.049 21
Late Middle Range Average 0.476 0.039 24
Middle Far Average 0.476 0.039 24
Middle Middle Range High 0.476 0.039 24
Late Close Low 0.476 0.039 24
Early Far Low 0.476 0.039 24
Middle Middle Range Low 0.333 0.027 29
Late Far Average 0.271 0.022 30
Late Middle Range High 0.271 0.022 30
Middle Far High 0.271 0.022 30
Late Middle Range Low 0.124 0.010 33
Middle Far Low 0.124 0.010 33
Late Far High 0.071 0.006 35
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least one of those batches is in the state of (early, close, exact), the pick should

happen from that batch. The confidence of this choice is 1 or 100%. So technically,

this is the ultimate winner. This one is not surprising at all. Because a batch in that

state, minimizes all the objective functions. It has the best expiration date (early),

closest location, and the inventory of the location exactly matches the amount of

order. Following the same logic, the state (late, far, low) has the worst values for all

the objectives and it will always be the loser state. This is why it does not exist in

any of the rules.

As one goes down the list, the confidence becomes smaller. So for example, if

there are three batches and one of them is in the state of (late, close, high), this is not

a clear winner but still, in 60% of the times, this batch was one of the winners (one of

the nondominated states). Recall that confidence is an indicator of the reliability of

the rule and how many time the relation exists (relation between existence of this state

as one of the three states and then, this state making it to the list of nondominated

states).

There are many more simple rules than the 35 shown in Table 9. But some of

them do not provide a great deal of insight. For instance, consider the following rule

which does not provide enough information:

“Regardless of the expiration date class, if one batch is in the state of (far, high),

then with X% confidence a batch is in the state of (close, low) exists.”

Although, support of this rule indicates the frequency of these two states appearing

together in all of the combinations of the states, but more information can be derived

from knowing about the state of each batch individually (this is an exclusive case for

the problem in this research and by no means is inclusive to all the situations that

ARM is utilized).

An astute reader may find some of the rules counter-intuitive. Why does the

state (early, close, low) have the same confidence as (early, middle range, average) and
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has a higher confidence than (middle, far, exact)? The reason for this is very simple.

All these rules are class-agnostic, as if a completely indifferent decision maker ranked

them. So if a rule weakly dominates another rule, it surely has a higher confidence.

But if not, the confidence goes to each individual element of the state. The first two

classes of the state (early, close, low) are at their best levels and the last one at its

worst. However, (middle, far, exact) has one class at its best, one at the worst and

one in between. So, although these two states are both considered nondominated

w.r.t one another, but the first has clearly more favorable states from a rule mining

perspective.

As mentioned before, these rules are in their rawest format. So to account

for various preferences of the objective functions, states, and differences between

classes of items, these rules need to be modified. The rules in Table 9 are used as the

baseline scenario. Each modified rule can then generate a point for the multi-objective

optimization problem. This point, can be compared to any other points created

by other rules and also to the approximate nondominated front for an evaluation

of its quality. Rules which could create an acceptable gap from the points of the

approximate nondominated front will become the desired order picking strategies.

There are three outcomes out of comparing the rule’s point with those of

the approximation. The rule’s point is worse (dominated by at least one point of

the approximation), it is not dominated by the approximation so it becomes one

point of the front, or it dominates some or all of the points in the approximation

front. Note that the latter might happen because there is no knowledge of the true

nondominated front and only the approximation is available through the use of multi-

objective optimization.

Tables 10 and show some customized rules. Note that, the confidence and

support are the same as those seen in Table 9 and just the orders are changed to

reflect the priorities in selecting one state over another. So, only confidence is shown
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in the tables for a reference. Table 10 shows some customized rules where the order

of priority is expiration date, distance, and inventory level, respectively. Here, the

natural ordering of each class is considered, i.e. the smaller the value, the higher the

rank. So, unlike the dominance relation explained before, a low inventory level is

ranked higher than average and high levels. Note here there is no tie in the order

column as the confidence of each row is different from its immediate follower.

Table 11 is more customized and considers the interaction between the classes.

Here, first the priority is given to all the states with the exact inventory level and

these states are ordered based on the expiration date. After reaching the average

inventory level, the early expiration date is given higher priority. Also, all the low

inventory levels are put at the end. Because picking up from low inventory locations

will leave an unpleasant remainder. But since the future orders are uncertain, they

may become an exact location. Similar to the exact level, the low inventory level

states are ordered based on the expiration date. The other states can be ordered

according to the previous states. For example, (late, close, ave) is put ahead of

(middle, close, high). Because as time passes, the first state can become (middle,

close, average) with the order of 13 and the second can become (early, close, high)

with the order of 14.

Different item classes can have an effect on the rules as well. Order frequency

of an item has more effect on the decisions regarding the distance and expiration date.

If the order frequency of an item is high, its storage locations are visited more often.

In this case, picking from the closer and faster picking areas can be more favorable

than considering how fast a location becomes empty (inventory objective) or whether

the earliest expiry batch is being selected (expiration date objective). On the other

hand, when the order frequency is low, the item may expire before the next order

comes. So, a batch with earlier expiration date will be in the focus of attention.

Order variability of an item has more effect on the decisions regarding in-
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TABLE 10
SIMPLE RULES WITH PRIORITIZED ORDERING OF EXPIRATION DATE,

DISTANCE, AND INVENTORY, RESPECTIVELY

Expiration Date Distance Inventory Confidence Order
Early Close Exact 1 1
Early Close Low 0.838 2
Early Close Average 0.944 3
Early Close High 0.89 4
Early Middle Range Exact 0.944 5
Early Middle Range Low 0.644 6
Early Middle Range Average 0.838 7
Early Middle Range High 0.738 8
Early Far Exact 0.89 9
Early Far Low 0.476 10
Early Far Average 0.738 11
Early Far High 0.6 12
Middle Close Exact 0.944 13
Middle Close Low 0.644 14
Middle Close Average 0.838 15
Middle Close High 0.738 16
Middle Middle Range Exact 0.838 17
Middle Middle Range Low 0.333 18
Middle Middle Range Average 0.644 19
Middle Middle Range High 0.476 20
Middle Far Exact 0.738 21
Middle Far Low 0.124 22
Middle Far Average 0.476 23
Middle Far High 0.271 24
Late Close Exact 0.89 25
Late Close Average 0.738 26
Late Close High 0.6 27
Late Middle Range Exact 0.738 28
Late Middle Range Average 0.476 29
Late Middle Range High 0.271 30
Late Far Exact 0.6 31
Late Far Average 0.271 32
Late Far High 0.071 33
Late Close Low 0.476 34
Late Middle Range Low 0.124 35
Late Far Low 0 36
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TABLE 11
SIMPLE RULES WITH CUSTOMIZED ORDERING

Expiration Date Distance Inventory Confidence Order
Early Close Exact 1 1
Early Middle Range Exact 0.944 2
Early Far Exact 0.89 3
Middle Close Exact 0.944 4
Middle Middle Range Exact 0.838 5
Middle Far Exact 0.738 6
Late Close Exact 0.89 7
Late Middle Range Exact 0.738 8
Late Far Exact 0.6 9
Early Close Average 0.944 10
Early Middle Range Average 0.838 11
Early Far Average 0.738 12
Middle Close Average 0.838 13
Early Close High 0.89 14
Early Middle Range High 0.738 15
Middle Middle Range Average 0.644 16
Middle Far Average 0.476 17
Late Close Average 0.738 18

Middle Close High 0.738 18
Early Far High 0.6 20
Middle Middle Range High 0.476 21
Late Middle Range Average 0.476 21
Late Close High 0.6 23
Late Far Average 0.271 24

Middle Far High 0.271 24
Late Middle Range High 0.271 24
Late Far High 0.071 27
Early Close Low 0.838 28
Early Middle Range Low 0.644 29
Early Far Low 0.476 30
Middle Close Low 0.644 31
Middle Middle Range Low 0.333 32
Middle Far Low 0.124 33
Late Close Low 0.476 34
Late Middle Range Low 0.124 35
Late Far Low 0 36
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ventory level. A high variability order brings more concern to the locations where

the remaining inventory level for the future picks are favorable. For example, (far,

far, exact) becomes more favorable than (early, close, low) regardless of the higher

confidence of the latter in the basic rules. The interaction of order frequency and

variability should also be considered in the rules. Tables 12–14 show some rules con-

sidering the effect of different item classes. Table 11 can be considered as one for low

frequency and high variability.

Aside from the rules in Table 9 which are ordered based on confidence, one can

find other rules only based on the absolute priority of one class over the others. For

example, assume the order of priority is expiration date, distance, and inventory. In

this case, if one batch’s expiration date is earlier than the other ones, then regardless

of its location and inventory level, the pick should be done from this batch. Following

the same logic, there are 3! = 6 rules solely based on the priority of one class over

the others. Although in general this may not be the case, these rules can serve as

baseline scenarios for more customized rules.

1. Evaluation of Rule Quality

Each of the introduced rules can create one point. To evaluate the quality

of a rule against another rule, one can check their dominance relations against each

other. But often time this is not sufficient as the rules can be both non-dominating

or in some cases, rules create more than one point. In these cases, it is possible to

measure the quality of each rule by calculating their hypervolume. The one with a

larger hypervolume, covers more of the decision space and therefore, generates better

solution.

In evaluating the quality of a rule’s point against that of approximated non-

dominated front of PAES algorithm, some adjustments should be taken into account

to make the comparison fair. Because here, the quality of one point is judged against
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TABLE 12
SIMPLE RULES WITH CUSTOMIZED ORDERING FOR HIGH FREQUENCY

AND LOW VARIABILITY

Expiration Date Distance Inventory Confidence Order
Early Close Exact 1 1
Middle Close Exact 0.944 2
Late Close Exact 0.89 3
Early Middle Range Exact 0.944 4
Middle Middle Range Exact 0.838 5
Late Middle Range Exact 0.738 6
Early Far Exact 0.89 7
Middle Far Exact 0.738 8
Late Far Exact 0.6 9
Early Close Average 0.944 10
Early Close High 0.89 11
Middle Close Average 0.838 12
Late Close Average 0.738 13

Middle Close High 0.738 13
Late Close High 0.6 15
Early Middle Range Average 0.838 16
Early Middle Range High 0.738 17
Middle Middle Range Average 0.644 18
Middle Middle Range High 0.476 19
Late Middle Range Average 0.476 19
Late Middle Range High 0.271 21
Early Far Average 0.738 22
Middle Far Average 0.476 23
Late Far Average 0.271 24
Early Far High 0.6 25
Middle Far High 0.271 26
Late Far High 0.071 27
Early Close Low 0.838 28
Early Middle Range Low 0.644 29
Early Far Low 0.476 30
Middle Close Low 0.644 31
Middle Middle Range Low 0.333 32
Middle Far Low 0.124 33
Late Close Low 0.476 34
Late Middle Range Low 0.124 35
Late Far Low 0 36
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TABLE 13
SIMPLE RULES WITH CUSTOMIZED ORDERING FOR LOW FREQUENCY

AND LOW VARIABILITY

Expiration Date Distance Inventory Confidence Order
Early Close Exact 1 1
Early Middle Range Exact 0.944 2
Early Far Exact 0.89 3
Early Close Average 0.944 4
Early Middle Range Average 0.838 5
Early Far Average 0.738 6
Early Close High 0.89 7
Early Middle Range High 0.738 8
Early Far High 0.6 9
Middle Close Exact 0.944 10
Middle Middle Range Exact 0.838 11
Middle Far Exact 0.738 12
Late Close Exact 0.89 13
Late Middle Range Exact 0.738 14
Late Far Exact 0.6 15

Middle Close Average 0.838 16
Middle Middle Range Average 0.644 17
Middle Far Average 0.476 18
Middle Close High 0.738 19
Middle Middle Range High 0.476 20
Middle Far High 0.271 21
Late Close Average 0.738 22
Late Middle Range Average 0.476 23
Late Far Average 0.271 24
Late Close High 0.6 25
Late Middle Range High 0.271 26
Late Far High 0.071 27
Early Close Low 0.838 28
Early Middle Range Low 0.644 29
Early Far Low 0.476 30
Middle Close Low 0.644 31
Middle Middle Range Low 0.333 32
Middle Far Low 0.124 33
Late Close Low 0.476 34
Late Middle Range Low 0.124 35
Late Far Low 0 36
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TABLE 14
SIMPLE RULES WITH CUSTOMIZED ORDERING FOR HIGH FREQUENCY

AND HIGH VARIABILITY

Expiration Date Distance Inventory Confidence Order
Early Close Exact 1 1
Middle Close Exact 0.944 2
Late Close Exact 0.89 3
Early Middle Range Exact 0.944 4
Middle Middle Range Exact 0.838 5
Late Middle Range Exact 0.738 6
Early Far Exact 0.89 7
Middle Far Exact 0.738 8
Late Far Exact 0.6 9
Early Close Average 0.944 10
Middle Close Average 0.838 11
Late Close Average 0.738 12
Early Close High 0.89 13
Middle Close High 0.738 14
Late Close High 0.6 15
Early Middle Range Average 0.838 16
Middle Middle Range Average 0.644 17
Late Middle Range Average 0.476 18
Early Middle Range High 0.738 19
Middle Middle Range High 0.476 20
Late Middle Range High 0.271 21
Early Far Average 0.738 22
Middle Far Average 0.476 23
Late Far Average 0.271 24
Early Far High 0.6 25
Middle Far High 0.271 26
Late Far High 0.071 27
Early Close Low 0.838 28
Early Middle Range Low 0.644 29
Early Far Low 0.476 30
Middle Close Low 0.644 31
Middle Middle Range Low 0.333 32
Middle Far Low 0.124 33
Late Close Low 0.476 34
Late Middle Range Low 0.124 35
Late Far Low 0 36
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FIGURE 10 –Grand hypervolume

the quality of multiple points. The idea for a fair comparison, is to first combine all

the nondominated points of both PAES algorithm and the rule to makes up the grand

approximation. This can be consisted of only PAES points (if at least one of PAES

points dominates the rule’s point), only rule’s point (if it dominates all the points

of PAES), or a combination of both (if rule’s point does not dominate all the PAES

points or when neither of them is dominating the other).

For a better illustration of this concept, consider a modification of Figure. 9

in the following example. Assume points a − d in Figure. 10 are from the PAES

algorithm and point e is from a rule. Clearly, the grand approximation is all the

points of PAES as points b and c dominate point e. Thus, grand hypervolume is the

same as PAES hypervolume (h1). So, the percentage contribution of h1 to the grand

hypervolume is 100%.

Now for a fair comparison, the hypervolume generated by point e is calculated

under the absence of dominating points. In other words, considering all the approxi-

mate nondominated points, how much point e could contribute to the hypervolume of

the space if it was part of the approximate nondominated front and non of the points

dominating it, were existed. Note that the grand approximation space is not smaller

than any of the PAES or the rule’s decision space. Therefore, in a maximization

problem,

fNgrand � fNPAES and fNgrand � fNrule
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and

f Igrand � f IPAES and f Igrand � f Irule

where fNx and f Ix are the nadir and ideal point of space x, respectively.

Recalling from the explanation of NSGA-II algorithm in Section III.B.1.a, this

means bringing the rule’s point to the first front (F1) by removing all the points in

F1 that dominates it. In cases that the rule’s point dominates at least one point of

the PAES method, it is already in F1. So the procedure for the overall calculation is

as follows:

1. Combine PAES points and the rule point and create the grand approximate

nondominated front (grand approximation).

2. Calculate the grand hypervolume (hg) using the grand approximation.

3. Calculate the percentage contribution of PAES points and the rule point to the

grand hypervolume.

• Calculate PAES hypervolume (h1) in the space of grand approximation.

• Remove any point from the grand approximation that dominates rule’s

point and calculate the hypervolume of all the remaining points (h2).

• Calculate the percentage contribution of PAES points by h1

hg
and the rule’s

point by h2

hg
.

4. The percentage gap can be calculated as the difference between the percentage

contributions, i.e. gap = h1 − h2

hg
.

If gap is positive, PAES points contribute more to the decision space, and if negative,

the rule’s point could contribute more. All of this, is calculating the gap between

the points of PAES algorithm with that of a specific rule. So, this process can be

simulated multiple times for different problems and the gap is calculated each time.
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Average of the gaps can show the average percentage gap of the rule from the PAES

frontier and serve as an indicator of a given rule’s solution quality.

2. Generating Points From The Solutions

It was mentioned earlier that each rule can generate a point for the multi-

objective optimization problem. So a solution like “picking from the batch in (early,

close, high) state”, should provide a point such that it is comparable with the values

generated by PAES algorithm. The first step in generating points from the solutions

is quantifying the states. This part is already taken care of in definition of each class.

For example, as explained in Section IV.C, any location with the relative distance

of less than 1/3 is in the close range. If the relative distance is more than 2/3, the

location is in the far range, and for any number in between the two, the location is

in the middle range.

The second step is to find the link between the three elements of each state

(distance, expiration date, inventory) and the four desired criteria (distance, expira-

tion date, space usage, remainder). For the distance objective function, the distance

of the chosen batch from I/O is considered. Space usage objective function can be

derived from the locations’ stocks. If there is any inventory in a location, it is in-use

and thus, it is considered in the calculations. Space usage is for all the batches and

not just the one selected for the pick. So, the number of all the available locations is

used for the space usage objective function.

For every pick, the expiration dates of all the batches are used in calculating

the expiration date objective function (or the negative of salvage function for that

matter). When one batch is completely depleted, it affects the state of other batches

as well. So if there are three batches with (early, early, late) expiration dates, and

the late one consumed faster, it is necessary to calculate the state of the other two

batches again to see relatively which one is early and which is late. So, for picking
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decisions, the states should be updated after each pick. But in evaluating the picking

decision, the order of the batches should be kept unchanged. In other words, the

initial states of the batches should be kept on record for evaluating the decision. The

following example clarifies this concept better.

Assume there are three batches in the states of {S1 : (early, close, high), S2 :

(early, middle range, high), S3 : (late, far, average)} and they are related to an item

with low frequency and high order variability. The inventory of these batches are 15,

35, and 10, respectively. For the sake of this example, the picks from the location are

scored 0, 1, 2, if the pick is from a batch with (early, middle, late) expiration date

level respectively. These scores are used for the expiration date objective function.

Now assume an order of size 10 is received and the third batch is selected for the pick.

The other two batches should be updated after this pick. The new update brings the

batches to the states of {S1 : (late, close, high), S2 : (early, middle, high)}. Two new

orders of sizes 5 and 10 are received and the first batch is chosen for both picks. Now

assume another picking plan where the first and second order are picked from the

first batch and third order is picked from the third batch.

The expiration date level of the batches are relative to the other batches and

after each pick they should be updated. However, in the second plan, the updates after

the picks would not change the levels for any of the batches. For scoring purposes,

however, the initial level of the batches should be used. Otherwise, in the first plan,

the total picking score is 2+2+2 = 6 and in the second plan the score is 0+0+2 = 2.

The second plan has a better score while essentially both picks are targeting the same

two batches (in the minimization problem, the smaller the score, the better). To avoid

such mistakes from happening, the initial level of each batch should be used. In that

case, both plans have a score of 2. So in summary:

The expiration date levels of the batches are updated for picking decisions,

but the initial levels of the batches are kept on record for objective function
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calculation purposes.

For the item’s remainder objective function, the inventory at each location

after the pick (hence, remainder) is considered. Having four inventory levels before

the pick, namely exact, low, average, and high, five remainder inventory at each

location after the pick can be obtained. Zero, insufficient, low, average, and high

where both average, and high can be obtained from the high level. Since considering

available inventory for the future is of interest, the zero level can be dropped from

the calculation.

Borrowing from the definition of each inventory level, the score of the remain-

ders should reflect the average number of orders they can satisfy in the future. So,

for insufficient, low, average, and high remainders, the score will be 0, 1, 2, and 3+.

Mathematically speaking:

score =
⌊
R + 2σ
µ

⌋

This relation comes from the definition of each inventory level. For example low

is an inventory level where current order can be satisfied but the probabilities of

the remainder satisfying a future order is very low. So, at least one order but not

necessarily two orders can be picked from a low inventory location. From its definition

and with basic algebra:

R ≤ µ− 2σ ⇒ R + 2σ
µ

≤ 1

By applying the same concept to all the other levels, the RHS of the above relation

gives the average number of future orders that can be satisfied. Since the inventory

of an item is an integer value, the floor of R + 2σ
µ

is used. This score is calculated

for all the available locations (i.e. locations with inventory) and its average is used

as the objective function value of item’s remainder. The higher the score (the lower

the negative score) the better.

In this chapter, the reasons for introducing the rules were discussed, rules were
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mined using Apriori algorithm, they were modified to reflect different item classes and

preferences, they were quantified and linked to the objective functions, and the ways

to evaluate their quality against PAES algorithm was explained. The next chapter

will walk through the steps of applying these rules to sample data and discuss the

results.
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CHAPTER V
COMPUTATIONAL STUDIES

In this chapter, both PAES algorithm for solving the multi-objective order

picking optimization problem (discussed in model II.B.1) and the rules generated

in the previous chapter are put into practice. First, they are applied to randomly

generated data to see what insights can be concluded from their results. Then, their

performances on some real-world problems are evaluated. The algorithms in this

chapter were coded in Visual C# and all computational runs were from a 2.50 GHz

Intel Core i7 with 16 GB of RAM.

A. Randomly Generated Data

1. Data Structure

In all of the randomly generated instances, the following parameters dictate

the size of the problem.

v := order size variability = 2

f := order frequency = 2

m := number of products in each class = 30

n := number of batches of each product = 3

p := number of locations = 90

t := number of orders = 30
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Two different classes of low and high are considered for both v and f . Since the

order sizes are following a normal distribution, all the data with a CV in the range of

(0.05, 0.2) are classified as low variability and those with CV in the range of (0.3, 0.5)

are classified in the high variability group. The order frequency was considered as the

number of times an item is ordered annually. Converting that to the daily operations,

if an item has an order frequency of more than one, it is classified as the high frequency

item, otherwise, it is classified in the low frequency group. 30 different products in each

class are introduced and it is also assumed without loss of generality that p = m×n.

So, three batches of each product are stored in three different locations. Here, t is

the number of times order picking is required and has nothing to do with the size of

the orders. So for each item, 30 trip is necessary.

The parameters for each individual product in any class are created by ran-

domly assigning:

• The distribution parameters of the order size (µ and CV of the order size which

follows a normal distribution);

• Storage locations;

• Expiration dates of each batch;

• Initial inventory in each location;

• Order volume for each individual pick.

The ranges of CV was mentioned above. For µ random numbers were generated from

two arbitrary ranges; namely (2, 10) or the range of (20, 40). Different expiration dates

were assigned randomly to each batch of any product to ensure they are different and

then, they were randomly assigned to different storage locations. For initial inventory
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of each item’s batch in each location, the following formula was used:

sik =
⌈

(µi + βσi)t
n

⌉

where sik is the inventory of item i in the kth location, µi and σi are the mean and

standard deviation of the order size for item i and β is a random number between

(1, 4).

The lth order volume of each item i was generated using the following relation:

oil = bµi + |Zα|σic

where α is a random number between (0, 1) and |Zα| is the absolute value of Z-score

(standard score) of α.

Before discussing the results, it is worth noting that some preliminary simu-

lations were performed to see whether the mean order size, µ, has any effect on the

solution quality of the order picking decisions and if so, to incorporate that as another

factor in item classifications (along with order’s CV and frequency). So, two levels of

µ, namely small and large order size, were considered as another factor in classifying

items. The results of simulations showed that mu does not have a significant effect

on item classification and thus, the quality of rules. In other words, rules do not need

to be customized to reflect the effect of average order size.

This result may seem counter-intuitive as one thinks, for example, it is better

to pick the higher volume orders (count-wise and not weight-wise) from the closer

locations to reduce the number of trips and thus, the distance objective value. This

is true when either the whole order picking cannot be completed in one trip or when

multiple orders are picked simultaneously. However, as explained in Section II.A, one

important assumption of this research is considering single order picking operation in

the warehouse. So, regardless of the order volume and its location, only one order is
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picked in each trip and it can be picked fully.

Each of the randomly generated instances of the multi-objective order pick-

ing problem, are first solved with PAES algorithm. This provides the approximate

nondominated front of each item. Then depending on the item class, different rules

are applied. Having both PAES and the rules’ results, the solution quality and the

average gap for each individual item in each class can be compared. Next section

discusses these results.

2. Results

To obtain the results of multi-objective optimization for each item class, 30

independent runs of PAES algorithm, each with 10000 iterations with the archive size

of 100 was performed (The size of PAES archive was set to 100 which means up to 100

nondominated points are stored). Then, one customized rule per item class (based

on Tables 11–14) was applied. Table 15 shows the hypervolumes of PAES and the

rules and the average percentage gap between the two. Note that column “Average

Gap” in Table 15 is the best average percentage gap of the 30 independent runs of

PAES from the rules. Columns “Min Gap” and “Max Gap” are the minimum and

maximum gap, respectively. A negative value indicates that either the rule’s point

is another point in the approximate nondominated front or it is in a higher (better)

front and thus, it increases the value of hypervolume and makes the gap negative.

Recall that the result of multi-objective optimization was an approximation.

The results in Table 15 shows that the customized rules, on average, can

provide good quality points with an acceptable gap from the PAES approximate

nondominated front. Figure. 11 depicts these results in a boxplot. To determine the

effects of variability and frequency levels on the gap, a two-way analysis of variance

(ANOVA) was conducted. As seen in Table 16, variability is the only significant factor

in α = 0.05 level (p-value < 0.05). The ANOVA was redone with the variability as
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TABLE 15
PERCENTAGE GAP BETWEEN HYPERVOLUMES OF PAES AND THE

RULES

Item Class
(Variability,
Frequency)

Average Gap (%) Min Gap (%) Max Gap (%)

Low, Low 7.24 -10.89 80.23
Low, High 14.27 -4.90 71.61
High, Low -0.42 -8.74 6.58
High, High -0.001 -8.30 4.13

FIGURE 11 –Boxplot of variability and frequency effects on percentage gap

the only factor. The results are shown in Table 17.

Although the interaction of variability and frequency was insignificant, the

interaction plot shown in Figure. 12 illustrates the effects of their level changes on

the response (percentage gap). It is seen from Figure. 12 and the ANOVA results

that in the items with higher order variability, using rules can create competitive

solution(s) with smaller gaps, thus closer, to the approximate nondominated frontier.

It is worth noting that seeing bigger gaps for items with lower order variability

relates to the inventory amount in a location. Due to lower variability, it may take

longer for these items to transfer from a low inventory level to an average or exact level.

This can cause picks from batches with later expiration dates and farther distances

while the location is used for a longer period, thus higher space cost. However, this
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TABLE 16
TWO-WAY ANOVA FOR THE EFFECTS OF VARIABILITY AND

FREQUENCY ON GAP

Df Sum Sq Mean Sq F value Pr(>F)
variability 1 0.29673 0.29673 14.9117 0.0001915
frequency 1 0.04455 0.044553 2.2389 0.1374623
variability:frequency 1 0.03835 0.03835 1.9272 0.1678943
Residuals 109 2.169 0.019899

TABLE 17
ANOVA FOR THE EFFECTS OF VARIABILITY ON GAP

Df Sum Sq Mean Sq F value Pr(>F)
variability 1 0.29673 0.29673 14.626 0.0002169
Residuals 111 2.25191 0.020287

is the case when replenishment is not instantaneous nor a new SKU is replaced the

current one. Otherwise, picking from a location with low inventory level is equally

appealing.

B. Real-World Data

To test and validate the performance of the rules, they were applied on a set

of real-world data, supplied by one of UPS-Supply Chain Solutions (SCS) health-

care compliant facilities, located in Louisville, KY. UPS-SCS, headquartered in Al-

pharetta, GA, offers transportation and freight services, logistics and distribution,

consulting, and customs brokerage services and industry solutions (UPS Supply Chain

Solutions).

The data set is from a healthcare warehouse. In this dataset, the levels of the

storage locations (close, middle range, far) are defined not only based on the physical

locations, but also the difficulty in accessibility. So, a location on a higher shelf which

requires additional tools for order picking, is harder to access and thus, considered

far (out of reach) in distance objective function. For confidentiality purposes, all the

names are replaced with arbitrary letters.
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FIGURE 12 – Interaction plot between variability and frequency

1. Healthcare Warehouse

Two files were provided for this case study; “shipping velocity” and “inventory

balance”. The order quantity and picking location for each date was extracted from

the shipping velocity file and all the other information regarding the location, batch,

expiration date, and inventory were derived from the “inventory balance” file. The

distance of each location from the I/O was calculated based on the floor layout.

The dataset was consisted of two weeks of data for 94 SKUs where 67 of them

are high order frequency SKUs (more than one order per day) which are the focus

of the evaluation. 60 of these SKUs are stored in at least two areas: One in fast-

picking area and one in reserved area. All the SKUs are from one zone, i.e. they

belong to the same client. Orders are first picked from fast-picking area and as soon

as the location becomes empty, replenishment is triggered. Because FEFO policy is

practiced, expiration date objective has a high priority. If the order is for full pallet,

it is picked from the reserved area. This can be considered as the exact inventory

level in the rules.

The distribution of the order size is required for the analysis. For most of the

SKUs the order size was very skewed (high variability) and transformation of the data
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was necessary. Assuming xi is a random variable representing the order size of SKU

i, yi = log10(xi) followed a normal distribution.

Practicing the FEFO policy and immediate replenishment of the closer area is

equivalent to keeping the batch with early expiration date close to the I/O, namely

(early, close, high) state. Also, picking full pallets from reserved area is the same as

choosing a location with exact inventory level regardless of its distance or expiration

date. In a nutshell, expiration date has the highest priority and then comes distance.

Inventory of a location only matters when it is exact and can completely fulfill the

order. The rules in Table 18 capture these preferences.

One can see from Table 18 that only states with exact inventory level are

preferred to the (early, close, high) state (average and low inventory levels happen

by picking from a high inventory location repeatedly). Because the orders have high

variability and frequency, comparing the sequence of rules in Table 18 with those of

Table 14 can highlight the situations that could be improved. Keeping the priority

order (expiration date, distance, inventory), one can conclude that the only states

which changing their sequence in Table 18 could potentially enhance the order picking

performance, are those with low inventory level.

So, as long as an empty location in closer areas is not replenished with the exact

same batch from the reserved area (i.e. the same SKU with the same expiration date),

the order picking performance (i.e. objective function values) could be improved by

not picking the batch with low inventory level. Because the variability is high, these

locations would eventually transform to an exact level. Table 19 show the sequence

of rules in such scenarios.

The rules from both Tables 18 and 19 were applied on 60 SKUs of the health-

care warehouse dataset. In all but one SKU, both tables generated the same results.

The exception happened for an SKU with similar situation as mentioned above (not

replenishing the closer location with the exact same batch). In that instance, rules
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TABLE 18
SCS RULES

Expiration Date Distance Inventory Confidence Order
Early Close Exact 1 1
Early Middle Range Exact 0.944 2
Early Far Exact 0.89 3
Middle Close Exact 0.944 4
Middle Middle Range Exact 0.838 5
Middle Far Exact 0.738 6
Late Close Exact 0.89 7
Late Middle Range Exact 0.738 8
Late Far Exact 0.6 9
Early Close Low 0.838 10
Early Close Average 0.944 11
Early Close High 0.89 12
Early Middle Range Low 0.644 13
Early Middle Range Average 0.838 14
Early Middle Range High 0.738 15
Early Far Low 0.476 16
Early Far Average 0.738 17
Early Far High 0.6 18
Middle Close Low 0.644 19
Middle Close Average 0.838 20
Middle Close High 0.738 21
Middle Middle Range Low 0.333 22
Middle Middle Range Average 0.644 23
Middle Middle Range High 0.476 24
Middle Far Low 0.124 25
Middle Far Average 0.476 26
Middle Far High 0.271 27
Late Close Low 0.476 28
Late Close Average 0.738 29
Late Close High 0.6 30
Late Middle Range Low 0.124 31
Late Middle Range Average 0.476 32
Late Middle Range High 0.271 33
Late Far Low 0 34
Late Far Average 0.271 35
Late Far High 0.071 36
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TABLE 19
IMPROVED SCS RULES

Expiration Date Distance Inventory Confidence Order
Early Close Exact 1 1
Early Middle Range Exact 0.944 2
Early Far Exact 0.89 3
Middle Close Exact 0.944 4
Middle Middle Range Exact 0.838 5
Middle Far Exact 0.738 6
Late Close Exact 0.89 7
Late Middle Range Exact 0.738 8
Late Far Exact 0.6 9
Early Close Average 0.944 10
Early Close High 0.89 11
Early Middle Range Average 0.838 12
Early Middle Range High 0.738 13
Early Far Average 0.738 13
Early Far High 0.6 15
Middle Close Average 0.838 16
Middle Close High 0.738 17
Middle Middle Range Average 0.644 18
Middle Middle Range High 0.476 19
Middle Far Average 0.476 19
Middle Far High 0.271 21
Late Close Average 0.738 22
Late Close High 0.6 23
Late Middle Range Average 0.476 24
Late Middle Range High 0.271 25
Late Far Average 0.271 25
Late Far High 0.071 27
Early Close Low 0.838 28
Early Middle Range Low 0.644 29
Early Far Low 0.476 30
Middle Close Low 0.644 31
Middle Middle Range Low 0.333 32
Middle Far Low 0.124 33
Late Close Low 0.476 34
Late Middle Range Low 0.124 35
Late Far Low 0 36
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of Table 18 emptied the location one day faster than those of Table 19 but its total

traveled distance was 8.4% higher (2435.4 feet compared to 2230.2 feet). The reason

for this was different orders of (early, close, low) and (early, far, high) states. In the

rules shown in Table 18, the orders are 10 and 18, respectively and in Table 19 they

are 15 and 28, respectively.

Although just 8.4% improvement in total traveled distance of only one SKU

out of 60, is negligible, but the potential effects of implementing a new rule cannot be

denied. Note that, the data was for two weeks, one product class (high variability and

high order frequency) and from one zone. It is speculated that more comprehensive

analysis on much bigger datasets can reveal more potential benefits of applying these

simple rules.

C. Conclusion

Much research has been done in the area of warehouse order picking. Some

of the well-studied problems in this area are (De Koster, Le-Duc, and Roodbergen

2007):

Storage location assignment problem and effects of implementing different storage

policies (such as random, dedicated, class-based) on order picking;

Forward-reserve allocation problem to find out which SKUs and in what quantity

should be stored in the fast-picking areas for more efficient order picking; and

Routing problem to find the best sequence of picking items on a pick list or routing

the order pickers in a warehouse.

Jointly considering multiple warehousing functions and studying their interac-

tions and effects on order picking operations has also received attention in the last

decade but not many studies have been done regarding multiple criteria decision mak-

ing for order picking operations in healthcare warehouses. This research aimed to fill

this gap by finding the best picking location to minimize travel distance, spoilage,
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space usage, and maximize future order’s fulfillment chance.

It was discussed that solving the multi-objective problem and presenting one

single solution to the decision maker does not provide the full picture. Also, providing

all the solutions is not always achievable as it is computationally expensive and most

of the times, a set of rules and regulations drive decision makers toward the chosen

solution. Therefore, a novel approach based on association rule mining was presented

to categorize the solutions obtained from the multi-objective optimization, recognize

a common pattern from them, and generate order picking strategies based on the

patterns and the preferences of the decision maker.

Although initial storage assignment were not of concern in this research, it is

clear that slotting decisions in the warehouse has a direct effect on the order picking

rules. What will happen to the empty locations can influence from which location

the order should be picked. Is the empty location replenished with the same SKU

or another SKU will occupy that location? If dynamic slotting is of interest to the

managers and a location should be empty for a new SKU, then depleting a location

faster and making it available is preferred. In this situation a state such as (far,

average) can be preferred over (close, high). Otherwise and in case of replenishing

the SKU, picking from the closer and more efficient state is preferred.

Finally, for inexpensive items it might be acceptable to move the insufficient

remainder to another location to empty the space for more valuable items or even

move them to some shared space with all the other inexpensive remainders (assuming

the location does not require to have special conditions), especially, if the item’s

order frequency is low. But if such moves are not possible or costly, the importance

of location’s inventory becomes more noticeable.

The results obtained from all the rules (Tables 11–14 and 18–19), boxplot in

Figure. 11, and the ANOVA table are summarized below:

• The rules evolved from classification of SKUs and the demand profile can create
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good quality solution on average.

• The best quality results are obtained when the orders have high variability.

• When the order variability is low, the solutions are more spread out (more low

quality solutions).

• Stick to the FEFO rule and pick from the locations based on their batches’

expiration dates. Unless the inventory is either in the exact or low level.

• Regardless of the expiration date and the distance, it is recommended to pick

from a location with exact inventory level and empty the space.

• If replenishment is not instantaneous, it is recommended to not pick from a

location with low inventory level, regardless of its expiration date and the dis-

tance. It is better to wait until the inventory in that location transfers to an

average or exact level.

• If fast replenishment is obtainable, prioritize distance over inventory objective.

The points generated by these rules are either in the approximate nondominated

frontier or, on average, within an acceptable gap (for high variability orders, this

gap is less than ±8.8%). It is worth noting that in a healthcare warehouse with

well-organized areas, the batches with earlier expiration dates are in the closer areas

which means two of the objectives, namely, close distance and early expiration date,

are already satisfied and the decisions narrow down to the location’s inventory and

space usage.

D. Future Work

Two main paths can be continued from this research: 1) Work on improve-

ment of multi-objective optimization algorithms and also generating better rules; 2)
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Work on combining other warehouse operations with order picking and applying this

research on other types of warehouses.

1. Improvement of MOO Algorithms and The Rules

The neighborhood solution generator of PAES can be improved. Other heuris-

tics such as variable neighborhood search can be introduced to have a hybrid method.

Also, rules can be used interactively with any MOO algorithm. So, in each iterations

and for finding a candidate solution from the current solution, the rules can be used.

In other words, instead of randomly choosing a new batch-location for the candidate

solution in each iteration, it is possible to generate the solution based on the rules

(for example state of (early, middle range, high).

In this research, (1+1)-PAES was used. Other forms of PAES such as (1 +λ)-

PAES can be implemented. By doing that, other types of neighborhood solution

generators (such as crossover of two solutions with repair procedure) can be explored.

Also, the quality of other MOO algorithms such as multi-objective particle swarm

optimization, on this type of problem structure can be investigated.

Regarding the rules, three levels of expiration date and distance, and four levels

of inventory were used in classifying the SKUs. Other levels can be introduced here to

see their effects on solution quality. For example, instead of dividing expiration date

into three categories, a threshold can be introduced to serve as a lowerbound. Then

items are categorized based on the closeness of their expiration date to this bound. A

new level can also be defined as “alarming” and if a batch gets close or reaches that

level, it has a priority over all the other criteria and the pick must be done from that

batch.
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2. Other Warehouse Operations

Single order picking was addressed in this research. An interesting and prac-

tical next step would be to investigate the batch picking where multiple orders are

picked simultaneously. Here more data training for the rules are necessary as the re-

lations between different item classes and their storage locations become significantly

important. The power of association rule mining is revealed better in these cases.

It is very clear that the initial storage assignment of items in the warehouse

matter and they affect the efficiency of order picking. The location assignment de-

cisions can be combined with the order picking strategies. For example, if an SKU

has a high order frequency, then it should be stored in closer areas to increase order

picking efficiency. Also in a single order picking warehouse, if a batch occupies more

than one location, it is better that the locations are close together. So, if the order

needs to be partially picked from one location, the other one is close enough. However

this might not be the case in a batch picking warehouse. Because depending on the

relation of different SKUs together, it might be preferred not to centralized batches

of an SKU.

To deal with such situations, a new criteria called “extra trip” can be intro-

duced. So for example, if instead of picking an order from a location in (early, close,

high) state, the pick happens from (early, middle range, high) state, the extra trip

value can increase to trigger the inefficiency in storage assignment. This can also

occur if the order is partially picked from multiple locations.
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