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ABSTRACT

A CAD SYSTEM FOR EARLY DIAGNOSIS OF AUTISM USING DIFFERENT

IMAGING MODALITIES

Marwa Maher Tawfik Ismail

November 15, 2016

The term “autism spectrum disorder” (ASD) refers to a collection of neuro-developmental

disorders that affect linguistic, behavioral, and social skills. Autism has many symptoms,

most prominently, social impairment and repetitive behaviors. It is crucial to diagnose

autism at an early stage for better assessment and investigation of this complex syndrome.

There have been a lot of efforts to diagnose ASD using different techniques, such as imag-

ing modalities, genetic techniques, and behavior reports. Imaging modalities have been

extensively exploited for ASD diagnosis, and one of the most successful ones is Magnetic

resonance imaging (MRI), where it has shown promise for the early diagnosis of the ASD-

related abnormalities in particular.

Magnetic resonance imaging (MRI) modalities have emerged as powerful means

that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since

their inception in the 1980s. After the advent in the nineteen eighties, MRI soon became

one of the most promising non- invasive modalities for visualization and diagnostics of

ASD-related abnormalities. Along with its main advantage of no exposure to radiation,

high contrast, and spatial resolution, the recent advances to MRI modalities have notably
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increased diagnostic certainty. Multiple MRI modalities, such as different types of struc-

tural MRI (sMRI) that examines anatomical changes, and functional MRI (fMRI) that ex-

amines brain activity by monitoring blood flow changes, have been employed to investigate

facets of ASD in order to better understand this complex syndrome.

This work aims at developing a new computer-aided diagnostic (CAD) system for

autism diagnosis using different imaging modalities. It mainly relies on making use of

structural magnetic resonance images for extracting notable shape features from parts of

the brain that proved to correlate with ASD from previous neuropathological studies. Shape

features from both the cerebral cortex (Cx) and cerebral white matter (CWM) are extracted.

Fusion of features from these two structures is conducted based on the recent findings sug-

gesting that Cx changes in autism are related to CWM abnormalities. Also, when fusing

features from more than one structure, this would increase the robustness of the CAD sys-

tem. Moreover, fMRI experiments are done and analyzed to find areas of activation in the

brains of autistic and typically developing individuals that are related to a specific task.

All sMRI findings are fused with those of fMRI to better understand ASD in terms of both

anatomy and functionality, and thus better classify the two groups. This is one aspect of the

novelty of this CAD system, where sMRI and fMRI studies are both applied on subjects

from different ages to diagnose ASD. In order to build such a CAD system, three main

blocks are required. First, 3D brain segmentation is applied using a novel hybrid model

that combines shape, intensity, and spatial information. Second, shape features from both

Cx and CWM are extracted and an fMRI reward experiment is conducted from which areas

of activation that are related to the task of this experiment are identified. Those features

were extracted from local areas of the brain to provide an accurate analysis of ASD and

correlate it with certain anatomical areas. Third and last, fusion of all the extracted features

is done using a deep-fusion classification network to perform classification and obtain the

diagnosis report. Fusing features from all modalities achieved a classification accuracy
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of 94.7%, which emphasizes the significance of combining structures/modalities for ASD

diagnosis.

To conclude, this work could pave the pathway for better understanding of the

autism spectrum by finding local areas that correlate to the disease. The idea of person-

alized medicine is emphasized in this work, where the proposed CAD system holds the

promise to resolve autism endophenotypes and help clinicians deliver personalized treat-

ment to individuals affected with this complex syndrome.
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CHAPTER I

SURVEY ON AUTISM DIAGNOSIS USING MAGNETIC RESONANCE IMAGING

This chapter reviews recent applications of structural magnetic resonance imaging

(sMRI), diffusion tensor imaging (DTI), and functional MRI (fMRI) to study autism spec-

trum disorder (ASD). Main reported findings are sometimes contradictory due to differ-

ent age ranges, hardware protocols, population types, numbers of participants, and image

analysis parameters. The primary anatomical structures, such as amygdalae, cerebrum, and

cerebellum, associated with clinical-pathological correlates of ASD are highlighted through

successive life stages, from infancy to adulthood. This survey demonstrates the absence of

consistent pathology in the brains of autistic children and lack of research investigations in

patients under two years of age in the literature. The known publications also emphasize

advances in data acquisition and analysis, as well as significance of multimodal approaches

that combine resting-state, task-evoked, and sMRI measures. Reported findings show good

promise towards the early and non-invasive ASD diagnostics.

A. Problem Statement

Autism is a neuro-developmental disorder that has many symptoms, most promi-

nently, social impairment and repetitive behaviors. Autism is typically diagnosed at the age

of three; however, some characteristics can sometimes be observed at around 12 months

of age [1]. The main cause of autism is still unknown; however, it is believed that genetic

factors are responsible [1].

Most of the current existing methods for autism diagnosis are subjective. Pedi-

atricians often identify autism at about three years of age [2]. Several screening exams
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can be applied to children at two years of age or older. Some of these exams include the

DSM-V [3], Autism Diagnostic Observations Schedule (ADOS) [4], and Autism Diagnos-

tic Interview Revised (ADI-R) [5]. Most of these exams require having an IQ exam as

well, e.g. the Wechsler Intelligence Scale for Children (WISC) [6]. A diagnosis involves

individual examinations from child psychiatrists, behavioral and occupational therapists,

and speech language pathologists. Yet as mentioned earlier, all of these exams provide

subjective evaluations and cannot be relied upon for providing an accurate and a quantified

diagnosis.

In order to diagnose autism objectively, medical imaging modalities have been

largely incorporated recently. Magnetic resonance imaging (MRI) is the one of the most

associated modalities with such disorder due to its many advantages such as the high con-

trast and spatial resolution. Moreover, MRI modalities have emerged as powerful means

that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since

their inception in the 1980s. Multiple modalities, such as different types of the structural

MRI and diffusion tensor imaging (DTI) have been employed to investigate facets of ASD

in order to better understand this complex syndrome. Extracting significant features from

such modalities that would classify autistic and control brains remains a challenging task,

especially with infant brains.

B. Introduction

The term “autism spectrum disorder” (ASD) refers to a collection of neuro-developmental

disorders that affect linguistic, behavioral, and social skills. Autism has many symp-

toms, most prominently, social impairment and repetitive behaviors. The most severe form

of the ASDs is autistic disorder (AD), while milder forms include Asperger syndrome

(ASP), childhood disintegrative disorder, and not-otherwise-specified pervasive develop-

mental disorder (NPDD). By some estimates, the ASD affects one out of 68 eight years

of age, with males being four times more likely to develop it than females. About 30%
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of children with ASD have epilepsy at later stages [1]. Autism is typically diagnosed at

the age of three; however, some characteristics can sometimes be observed at around 12

months of age. What causes autism is yet unknown; however, it is mainly believed that

genetic and environmental factors in complex combinations are responsible [1]. No current

cure is specifically designed for autism. However, educational, behavioral, or skill-oriented

therapies were designed to remedy specific symptoms in each individual. Such therapies

can result in substantial improvement, particularly when started at a young age. Conven-

tional autism diagnostics rely on recording the patient’s reactions to varied stimuli through

periodic screening interviews. Early observations by parents can greatly reduce the false

positive rate and circumvent unnecessary referrals [7]. However, the diagnosis is subject to

human observational and perceptual errors because current diagnostic standards for autism

rely on subjective behavioral screenings A more objective computer aided diagnosis (CAD)

is a prime necessity in this field.

Recent advances in neuropathological and neuro-imaging studies have revealed a

great deal concerning the pathogenesis of autism and suggest new non-invasive ways to

automate autism detection by revealing differences between quantitative characteristics of

typically developing and autistic brains. Increases in white matter volume and brain weight

in postnatal development are proportionate as myelin contributes a significant percentage

of any brain weight change during the first years of life. Abnormalities in brain size with

widespread increases in both gray and white matter volumes suggest that the underlying

pathology in autism consists of widely distributed neuroanatomical changes. In addition to

changes in brain size, other gross morphological features of the autistic phenotype include

polymicrogyria, macrogyria and schizencephaly [8]. These changes imply a disturbance

in cell migration during the early stages of corticogenesis. More recently, The study by

Bailey et al. [9] described postmortem evidence of neocortical abnormalities in the brains

of 4 out of 6 examined autistic patients, i.e. laminar disturbances and heterotopias. The

four cases were megalencephalic. This was the first study to advocate the presence of
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pathology in widespread, disparate areas of cortex and/or their connections, as opposed to

isolated anatomical structures. The findings offered a better account for both the seizures

and higher-order cognitive deficits found in autism.

The available neuropathological and structural imaging data suggest that autism

is the result of a developmental lesion capable of affecting brain growth. One possible

explanation for this is the recent finding of minicolumnar abnormalities in autism (i.e.,

minicolumns of reduced size and increased numbers) [10]. In this initial study, measures

of minicolumnar morphometry were obtained on pyramidal cell arrays in nine autistic cases

and an equal number of controls. The feature extraction properties of the algorithms were

corrected for minicolumnar fragments, curvature of the tissue section, and 3D proportions

(stereological modeling) [11]. Later on, the same patient population was used to confirm

the presence of cortical radial abnormalities in a study using the Grey Level Index (GLI)

ratio, i.e., area covered by Nissl-stained to unstained elements in postmortem samples [12].

These studies were all at the microscopic level, where abnormalities in minicolum-

nar arrangements of the neurons were found in autistic brains. Since the minicolumn re-

iterates itself millions of times throughout the brain, those variations were predicted to

result in macroscopic changes as well. This encouraged researchers to investigate those

changes using several imaging modalities. After the advent in the nineteen eighties, MRI

soon became one of the most promising non-invasive modalities for visualization and di-

agnostics of ASD-related abnormalities. Along with its main advantage of no exposure to

radiation, high contrast, and spatial resolution, the recent advances to MRI modalities have

notably increased diagnostic certainty. The modalities, being most helpful for studying

ASD, include structural MRI (sMRI) [13–24], diffusion tensor imaging (DTI) [25, 26], and

functional MRI (fMRI) [27, 28].

In applications to ASD, sMRI helps in investigating structural brain changes in

autistic subjects. Many scan sequences of the sMRI are volumetric, i.e., allow for mea-

suring specific brain structures to calculate tissue volumes. In spite of diagnostic abilities
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found for the sMRI, the earlier published results obtained for a limited number of subjects

were often contradictory. Specific pulse sequences employed in the sMRI help to reveal

different properties of normal and abnormal brain tissues. Modifying the pulse sequence

parameters, such as repetition time (TR) and echo time (TE), may emphasize the contrast

between gray matter (GM) and white matter (WM), e.g., in the T1-weighted sMRI with

short TR and TE, or brain tissue and cerebrospinal fluid (CSF), e.g., in the T2-weighted

sMRI with long TR and TE.

The recent DTI characterizes three-dimensional (3D) diffusion of water molecules

in a biological tissue [29, 30]. The DTI has a wide range of clinical applications. In particu-

lar, it is used to examine normative white matter (WM) development, neurodevelopmental

disorders, and neurodegenerative disorders, e.g., autism, and amyotrophic lateral sclero-

sis [31].

In neurological studies, where each patient’s status can be assessed, the chosen

imaging modality should be able to clearly demonstrate the abnormalities. The conven-

tional MRI lacks sensitivity in distinguishing the abnormalities on an individual-subject

basis [26], whereas the DTI has the potential to reveal such abnormalities. This new infor-

mation comes from better image contrast, more detailed WM morphology, refined anatom-

ical locations, and more accurate connectivity analysis [26]. Additional DTI offers many

contrast-related measurements , including the widely used fractional anisotropy (FA) and

estimates of shapes and sizes of specific WM tracts, i.e., WM morphology [26]. Moreover,

DTI provides superior anatomical information for clearer identification of areas with WM

abnormalities [25]. It also provides unique brain connectivity measurements via 3D fiber

reconstruction, e.g., tractography, [32].

Many neuroimaging studies also attempted to focus on connectivity analysis in

autism. These types of studies can be referred to as functional magnetic resonance imag-

ing (fMRI). fMRI aims at localizing task-evoked blood oxygen level-dependent (BOLD)

effects in the brain, and subsequently analyzing those effects in order to find anatomical ar-
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eas of activation related to that specific task. This survey presents applications of the sMRI,

DTI, and fMRI to study the ASD (mostly, for the last two decades) in order to outline the

most important findings with these modalities across all life stages. This provides a com-

prehensive study unlike the recent surveys that either focus on one modality, [33–36], or

address a specific life stage, [35, 37]. Moreover, this survey highlights the methodologies

conducted in each study and categorizes them with respect to the approach (e.g. whether

they are volumetric-based, or surface-based in sMRI), and user’s intervention (manual, au-

tomated, semi-automated).

The survey is structured as follows: sections I.C, I.D and I.E below address the use

of the sMRI, DTI, and fMRI respectively. Findings in the reviewed publications emphasize

benefits for studies of the ASD, as well as other medical abnormalities, by acquiring and

analyzing complementary multi-modality data.

C. Studying ASD with sMRI

The earlier findings of the 1980s–1990s [8, 9, 13–24, 38–78] have many contradic-

tions. However, the much better spatial resolution and contrast of the recent advanced MRI

technology made the recent findings of the 2000s–2010s more consistent [79–81]. This

survey focuses on the latter studies and attempts to classify the reported abnormalities at

different life stages for each of the autism-related anatomical structures.

Cross-sectional or longitudinal sMRI scans, collected at different time instants for

the same individual, are studied by either region-of-interest (ROI) based volumetry, or

surface-based morphometry (abbreviated as RBV, and SBM respectively). The RBV usu-

ally focuses on the total volume or area measures for a chosen region, but requires manual

intervention by experts to delineate it. This age-sensitive and time consuming process

depends on level of automation, yet is powerful in a statistical sense. A method that is

correlated to RBV and is known as voxel-based morphometry, VBM, targets tissue density,

e.g., relative GM concentration, or volume, e.g., regional volume differences of a certain
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(a) (b)

FIGURE 1: Brain cerebellum (C), occipital (O), parietal (P), frontal (F) and temporal (T)

lobe, caudate (CA), putamen (PU), and thalamus (TH) ROIs (a) for measurements and (b)

VBM measurements (right) on cerebral WM lobes of an autistic brain (left).

tissue. The SBM addresses topological shape features, like surface curvature and fold-

ing degree, that cannot be obtained directly using the RBV on a brain sMRI. The SBM is

applied mostly to the cerebral cortex, along with its lobes and gyrification patterns.

FIGURE 2: Brain surface measurements using spherical harmonics (SH).

In the brain structures, such as corpus callosum, the SBM computes the surface

area and centerline changes (Figure 3 (b)). The intrinsic cerebral cortex topology is usually

described with shape indices, such as the mean curvature (H) [82], degree of sharpness

(S), and curvedness (C):

H = 0.5(Kmax +Kmin); C =
√
0.5(K2

max +K2
min); S = (Kmax −Kmin)

2 , (1)

where Kmax and Kmin denote the maximum and minimum principal surface curvature,
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(a) (b)

FIGURE 3: Color-coded CWM curvature map (a) of a brain mesh and measuring the

corpus callossum (CC) surface (b) for autism identification.

respectively. The curvedness C characterizes the shape of the voxel neighborhood [82] and

can distinguish between highly- and less-folded regions [83]. The folding is also quantified

by its sharpness S, being proportional to the Willmore integrand.

The ASD studies with the sMRI, including data processing tools and main abnor-

malities found in brain structures are considered below. Abnormalities found in the cerebral

cortex; posterior fossa (vermis, brain stem, and cerebellum); corpus callossum; amygdalae;

hippocampus, and thalamus, are addressed at four main life stages: infancy (0–2 years);

childhood (3–11 years); adolescence (12–18 years), and adulthood (above 18 years). The

measurements also include the total brain volume and head circumference.

1. Studying ASD impacts on anatomical structures with sMRI

a. Cerebral cortex This uppermost brain layer that plays a leading role in hu-

man intelligence and perception has been the focus of plenty of sMRI studies on ASD [84].

Changes of cortical thickness and gyrification patterns were analyzed with the SBM, whereas

the RBV and VBM measured regional differences in volumes and densities of the cerebral

GM and WM.

Infancy According to the longitudinal VBM [85] on 51 autistic children and 25 controls

(aged 18–35 months), both the cerebral GM and WM volumes increase in autistic brains.
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The longitudinal RBV on children aged 1.5 to 5 years [86] revealed no changes in the oc-

cipital lobe. On the other hand, the cerebral GM volumes were significantly enlarged in the

frontal, temporal, and parietal lobes, and in the cingulate gyrus (located in the limbic lobe)

of autistic toddlers (aged about 2.5 years). Additionally, there were more abnormal growth

profiles for females. The RBV in [87] monitored the total brain volume changes for chil-

dren aged six months to compare high risk infants to low risk ones with no autistic family

members. The fact that cerebrum or lateral ventricle volumes had no significant difference

for both groups confirmed earlier findings that the brain enlargement is a postnatal event,

occurring around 12 months of age. Another extended longitudinal study [88] pursued the

goal of identifying 6–9-month-old infants who might later develop the ASD. It was re-

vealed that the ASD causes an extra-axial fluid and is characterized by excessive CSF over

the frontal lobes at 6–9 months of age, which persists at 12–15 and 18–24 months. This

leads to large total cerebral volumes that tend to increase with age at a higher rate in males,

than females. This finding contradicts the earlier one [86], which showed more enlarge-

ment in females. This inconsistency might be caused by manual segmentation, along with

the younger ages and the 20% smaller number of participants in [88].

Childhood Volumetric, voxel-wise, and thickness changes in the cerebral cortex in chil-

dren with autism have been extensively studied in the literature. In particular, the autistic

children aged 2–3 years had 18% and 12% larger cerebral cortical WM and GM volumes,

respectively, than the control ones, while the older children did not demonstrate such en-

largement [89]. The increased frontal and temporal GM and frontal and parietal WM vol-

umes at such a young age (2–4 years) was confirmed in [90]. The increased cerebral vol-

umes in autistic children aged around 4 years and 6 years were found also in [91] and [92],

respectively. The latter study reported the increased total cerebral volume, as well as the

increased WM and GM volumes for children with both low-functioning autism (LFA) and

high-functioning autism (HFA), the total cerebral volume being significantly larger in the
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LFA group.

The VBM of the GM and WM densities on autistic children around 9 years of

age [93] has found a significant decrease in the GM density in the superior temporal sulcus

and a decrease in the WM density in the right temporal pole. This finding was supported

by [94] where the GM density was found to significantly decrease in the frontostriatal

and parietal networks, as well as in the ventral and superior temporal gyrus in autistic

children aged around 12 years. The RBV revealed the decreased GM volume in the right

lateral orbitofrontal cortex in 10-year-old boys in [95] and the decreased GM volumes in

the parietal, left temporal, and left occipital lobes bilaterally in [96]. The left and right

frontal lobes of the autistic boys had enlarged 3.6% and 5.1%, respectively, while all the

other lobes grew more significantly.

The cerebral cortices of children with autism were often studied with the SBM as

well. The atlas-based SBM in [97] monitored the cortical thickness changes in autistic

brains of children aged 10 years. The frontal or occipital lobes did not change, whereas

the temporal and parietal lobes had most prominent increases of the total cerebral sulcal

and gyral thicknesses. According to the subsequent longitudinal SBM [98] on 10-year old

autistic children, with a follow-up scan two years later, the cortical thickness in autistic

subjects has decreased in the frontal, temporal, and occipital lobes, comparing to controls.

Also, the SBM [99] on 9-year-old children with autism showed the decreased thickness

in the right entorhinal, right lateral orbitofrontal, left lateral orbitofrontal, right medial

orbitofrontal, left medial orbitofrontal cortex, and right pars triangularis. However, the

thickness also increased in the left caudal anterior cingulate cortex and left frontal pole.

Significant bilateral differences in sulcal depth in restricted portions of the anterior-insula,

frontal-operculum, and in tempoparietal junction, were found in [100]. The study by Gori

et al. [101] on 4-year-old males was based on extracting features from GM, WM, and CSF

to classify autistic and control brains. Only GM features in different subregions showed a

classification performance that reached up to 80%.
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Adolescence Volumetric and voxel-wise cerebral changes have been investigated in a

number of publications. The VBM in [102], for example, revealed the increased GM vol-

ume in the cortical lobes of 15-year-old autistic males, namely, in the right fusiform gyrus,

right temporal and occipital region, and left frontal pole. This work was extended in [103]

to investigate changes of the WM volume in 15-year-old autistic males and found that the

WM volume decreases at the left middle temporal, right middle frontal, and left superior

frontal gyri. The VBM in [104] conducted on subjects with the HFA and ASP showed the

lower cortical GM density in the right inferior temporal gyrus, entorhinal cortex, and right

rostral tip of fusiform gyrus. The RBV in [105] reported a growth of the cerebral GM in

both the HFA and LFA subjects, compared to the controls, but only non-significant changes

for people with the ASP. The VBM in [106] on 16-year-old males revealed the lesser WM

concentration in the genu, rostrum, and splenium regions in autistic brains, whereas the

RBV in [107] on a group of young adolescents has found a larger total cerebral volume of

the autistic brains. The lobe volume growth due to the GM volume enlargement was also

noticed in the frontal and temporal, but not parietal or occipital lobes. The VBM on autistic

and control males around the age of 13 in [108] has found an increase in the GM volume

in the parietal lobes, medial and dorsolateral frontal areas, and lateral and medial parts of

temporal lobes, as well as a decrease in the WM volume in the frontal, parietal, temporal,

and occipital lobes. The longitudinal RBV on 13-year-old adolescents in [109] has found a

decelerated WM growth in the frontal, temporal, parietal, and occipital lobes, together with

an abnormally accelerated GM expansion in the putamen and anterior cingulate cortex.

To monitor cortical changes in the adolescent groups due to autism, the SBM on a

group of 12-year-old autistic and control adolescents was used in [110] to measure changes

in the cerebral folding and better investigate the gyrification patterns. As was found, the

adolescents had the higher left frontal gyrification index, than the adults, as well as the

cortical folding had decreased bilaterally with age in all the autistic subjects, but not in

the controls. The SBM on a wide variety of patients including the LFA, HFA, and ASP
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subjects aged 11–13 years in [111] has found for the LFA subjects prominent shape abnor-

malities centered on pars opercularis of the inferior frontal gyrus, associated with sulcal

depth differences in the anterior insula and frontal operculum. The bilateral shape abnor-

malities in the HFA group were similar to those of the LFA group, but smaller in size and

centered more posteriorly in and near the parietal operculum and ventral postcentral gyrus.

The ASP group had the correlated with age bilateral abnormalities in the intraparietal sul-

cus. All these cortical shape abnormalities were more pronounced in the children than in

the adolescents. Two successive longitudinal studies on the same group of subjects when

their mean age was 17.4 and 19 years, respectively, in [112] demonstrated an accelerated

cortical thinning in the autistic brains with respect to the controls in two areas in the left

hemisphere, namely, in the posterior portion of the ventral temporal cortex and the superior

parietal cortex. This acceleration has happened only for the older adolescents and young

adults of the second study.

Adulthood The RBV on 16 autistic males of the average age of 22 years in [113] re-

vealed the larger mean cerebral and third ventricle volumes in the autistic subjects rather

than in the controls. The VBM in [114] gave the larger GM volume in the medial frontal

gyri, left precentral gyrus, right postcentral gyrus, and right fusiform gyrus. The more re-

cent VBM [115] showed the decreased GM volume in the medial, temporal, and fusiform

regions. The SBM in [110] explored changes of the cerebral folding in 27-year-old males.

While the left frontal gyrification index had no changes, the cortical folding decreased in

autistic adults, compared to children and adolescents. The SBM in [116] on the autistic,

ASP, and NPDD subjects aged around 33 years has shown the decreased thickness in the

inferior frontal gyrus, pars opercularis, inferior parietal lobule, superior temporal sulcus,

precentral and postcentral gyrus, inferior occipital gyrus, prefrontal cortex, anterior cingu-

late, medial parietal cortex, supramarginal gyrus, and middle and inferior temporal cortex.

The SBM in [117] on 15 autistic 22.7-year-old (on average) males has shown that the thick-
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ness increases in the frontal, temporal, occipital, cingulate, and parietal gyrus, as well as in

the fusiform gyri, but decreases in the pre- and post-central gyri and para-central gyrus.

Conclusions According to the cited studies, the cerebral cortex starts changing in the

autistic brains at the age of around 12 months, and no significant differences could be

monitored earlier, except of the recent findings in [88]. The cerebrum changes of an autis-

tic brain at such an early age include the age-proportional enlargements of the lobes and

increases of the cortical WM and GM. The growing cerebral volume, including the GM

and WM, in early childhood indicates simultaneously the decreasing GM and WM density.

Also, children with autism demonstrate significant changes in the cortical thickness. These

volumetric and thickness differences continue to increase at the later stages of life.

b. Posterior cranial fossa (cerebellum, vermis, and brain stem) This bowl-

shaped cavity in the skull includes the rearmost brain part, called the cerebellum, which

is located just above the brain stem. The latter provides for mental activities and includes

pons, midbrain, and medulla oblongata. The cerebellum mainly coordinates body move-

ments, e.g., keep equilibrium and balance [84]. Posterior cranial fossa has also been inves-

tigated in the literature for any correlates with ASD at different life stages.

Childhood Area measurements on 22 autistic children in [118] showed no abnormalities

in the total vermis, vermis lobules VI-VII, pons, and midbrain, which could be related to

autism. However, the decreased WM density in the cerebellum of children with autism

was reported in [94] and [93], and the larger by 39% cerebellar WM volume was found

in [89] for 2–3-year-old children with autism compared to controls. Autistic boys had the

lesser GM and smaller GM-to-WM ratios and vermian lobules than the normal ones. The

reduced cross-sectional areas of the vermis lobules VI-VII in autistic children were also

reported in [89, 119, 120]. The larger cerebellar WM and GM volumes and increased area

of the anterior and posterior cerebellar vermis were found in the 6-year-old children with

the LFA, HFA, and NPDD in [92].
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Multiple brain stem volume studies gave contradicting conclusions. The early areal

measurements in [18, 66] claimed reduced brain stem size, whereas the subsequent works,

such as [39, 41, 42, 49, 118] found no significant differences between the autistic and con-

trol groups. No differences in the brain stem volumes for these groups were found also

in [121, 122]. However, the recent study [123] of 10-year-old children, with a follow-up

after two years, came up with different findings: the brain stem volume was stable in the

controls over the two-year period, but the increased GM volume of an autistic brain implied

the larger entire brain stem volume, so that the autistic brain volumes eventually became

comparable to those of the 15-year old controls.

Adolescence and adulthood An increase in the GM volume in the cerebellum in [108]

is consistent with the studies of children. The cerebellar volumes of autistic children and

adolescents are also consistent with those of adults. As shown in [121] on 22-year-old

subjects, the total cerebellar volume and cerebellar hemispheres are larger in the autistic

group both with and without correction by the total brain volume. But the volumetric and

area measurements of the vermis and brain stem did not differ significantly between the

autistic and control groups. Also, the lower GM density in the frontostriatal and cerebellar

regions, along with the widespread WM differences, had been reported in [124] and the

lower brain stem and total brain stem GM volumes in the autistic adults have been found

in [125].

Conclusions The posterior fossa structures are significantly affected with the ASD from

an early age of two years and during all the subsequent life stages. Some inconsistencies

in the brain stem abnormalities found might be caused by wide age and gender differences

of the participants.

c. Amygdalae This structure is located in the temporal lobes of the brain and

contains nuclei that stimulate responses to different actions, e.g., fear and threat [84]. Its

major role in such important brain activities attracted researchers towards finding any cor-
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relates with the ASD.

Infancy So far, the amygdalar changes in the infancy period are not studied, and the

youngest subjects in such studies are around three years old.

Childhood The RBV on 29 autistic and 26 control subjects (the average age of 3.9 years)

in [91] has shown that in the autistic subjects the amygdalae are enlarged proportionally

to the overall increase of the entire cerebral volume. The more recent volumetry [126]

on a larger group of the 45 autistic subjects suggested the enlargement of only the right

amygdalar volume at the ages of 3–4 years. The longitudinal RBV in [127], which was

performed in order to precisely define the age at which the amygdalae begin to enlarge,

started with the 85 autistic subjects aged 37 months on average, and had the follow-up

scan one year later on 45 of these autistic subjects. That enlarging the amygdalar volume

was found in both the cases, although with a higher rate for the latter group, confirms

that this enlargement is present at such an early age of around three years. The volumetry

on an older population (7.5–12.5 years) in [128] demonstrated that both the right and

left amygdalae volumes were enlarged. However, the longitudinal RBV in [129], which

involved 15 autistic subjects aged 10.6 years on average and their follow-up scan after

reaching adolescence, has found no significant difference between the left, right, or total

amygdalar volumes for the autistic and control subjects. This contradiction to all other

studies might be caused by the relatively small population used.

Adolescence No significant difference in left, right, or total amygdalae volumes in the

adolescents was found in various studies, e.g., [128, 129].

Adulthood The RBV in [130] explored the hypothesis that parents of autistic children

would show similar structural changes. This study was conducted in part on the amygdalar

volumes of 15 autistic subjects (the average age of 30.3 years), 17 controls (the average
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age of 43.6 years), and 17 parents of autistic children. The amygdalae were smaller in the

autistic group than in the other two groups.

Conclusions The amygdalar volumes generally increase in autistic brains at early stage

of life, with the rate of increase being proportional to the age (the known studies started

from the 3-year-old subjects). By adolescence, no significant differences in this structure

could be found. However, at the subsequent life stages its volume decreases in autistic

brains.

d. Hippocampus This part of the cerebral cortex interlocks with the dentate

gyrus and is mainly concerned with memory actions and passing information from short-

term to long-term memory areas [84]. Hippocampus also proved to have some correlates

with the ASD from a young age.

Infancy Similar to the amygdalae, no hippocampal changes have been explored at this

period, with the youngest subjects age having been around 2.5–3 years.

Childhood The enlarged hippocampus was found in autistic children at the ages of both

3–4 [91] and 7.5–12.5 years [128], especially at the HFA group in the latter study. The

enlargement only in the right hippocampus in children aged around 10 years was reported

in [129]. The earlier study [131] suggested that the area dentata in autistic subjects was

significantly smaller than in the normal ones, with the largest deviation at the ages from 29

months to four years.

Adolescence The hippocampus was found enlarged in autistic subjects in [128]; however,

this finding differs from the more recent results in [129], where the right hippocampal

volume has increased in the autistic children, but not in the adolescents. In the latter case,

it was found that differences between hippocampal volumes in autistic and control brains

became insignificant with time.
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Adulthood The hippocampus of autistic adults was confirmed to be significantly en-

larged [130], compared to controls and also to parents of autistic children. The left hip-

pocampus was larger in both the parents of autistic children and the adults with autism,

compared to the controls. The VBM in [114] has shown an increase in the GM volume of

the left hippocampus.

Conclusion In autism, the hippocampus is enlarged at all ages.

e. Corpus callosum This largest WM structure in the brain connects the left

and right hemispheres and passes information between them [84]. Corpus callosum is

found to be correlated with the ASD. In particular, the two successive longitudinal RBV

studies [132] on 19 subjects with autism and four subjects with NPDD (first, at the age

of 10.6 years and then 13.1 years on average) have found persistent reductions in the total

corpus callosum volumes in the autistic subjects compared to the healthy controls. Only

the size of rostral body subdivision has normalized over time. The centerline length of

the corpus callosum was significantly reduced in young adults with autism compared to

controls [133].

Conclusion The corpus callosum is reduced in size in the ASD.

f. Thalamus, caudate, and putamen The symmetrical thalamus is responsible

for preprocessing information coming from other parts of the brain. The caudate nucleus,

along with the putamen, form the basal ganglia of the brain, are called the dorsal striatum,

and are heavily involved in motor control [84].

The GM volume decreases in the right thalamus of adolescent males with autism

and the thalamic volume decreases in adults with autism compared to controls, as was

found, respectively, in [102] and [134]. However, no volume differences of the basal gan-

glia, caudate, or putamen at all ages have been found in [135]. The more recent RBV by the

same research group [136] found no differences in both the right and left thalamic nuclei

between the 19-year-old, on average, control and autistic groups. Studying the older adults
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(aged 28 years on average) showed that the right caudate nucleus has a larger volume in the

autistic brain [137].

g. Total brain volume and head circumference Changes in the total brain vol-

ume and head circumference have been associated with the ASD in several publications.

Infancy As shown in [85] for 18–35 month-old infants, the total brain volume increases

in the group with autism and their normal at birth head circumference becomes significantly

larger around 12 months of age compared to the healthy group. This finding was confirmed

in [87], showing no significant difference in the head circumference at six months of age in

infants with high risk of autism.

Childhood The head circumference grows also in children with autism. The increased

brain volume and head circumference in a large group of 10-year-old children with autism

have been confirmed in [138] and supported in other studies, e.g., in [122] on 9-year-old

autistic males and in [90]. However, a more recent publication [97] reported insignificant

increases in the total brain volumes for children with autism (this contradiction to the above

findings might be due to a small number of participants). The later stages of life show no

difference between the autistic and neurotypical groups in the total brain volumes, probably

because the growth rate of the normal brains increases at these stages.

D. Studying ASD with DTI

DTI characterizes 3D diffusion of water molecules in a biological tissue with DT [29,

30]. The DTI is widely used in clinical applications, e.g., to examine a normative WM

development, neurodevelopmental disorders, like ASD, and neurodegenerative disorders,

such as amyotrophic lateral sclerosis [31]. For completeness, a review of the basic princi-

ples of DTI follows.
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1. DTI: Basic concepts

Water diffusion in biological tissues has nothing in common with physiological

motions and occurs due to a thermal-energy-caused random motion of water molecules,

also called an intra-voxel incoherent, or Brownian motion [26]. This diffusion that oc-

curs inside, outside, around, and through cellular structures is hindered by cellular mem-

branes yielding more tortuous paths. The diffusion tortuosity could be amplified by cellular

swelling or increased cellular density. Moreover, the membranes tend to restrict intracellu-

lar water, and both the hindered and restricted diffusion decrease the apparent water diffu-

sivity [139].

(a) (b)

FIGURE 4: Isotropic (a) and anisotropic (b) diffusion of a single molecule.

An unconstrained medium, such as the CSF, ensures the isotropic diffusion where

the water molecules move in a similar manner in all directions. The isotropic diffusion

is typical, e.g., for the brain ventricles, whereas the molecular diffusion in the WM is

constrained by spatial orientations of the WM tracts. The molecules can diffuse along

a fiber track more freely than across it, so that the diffusion becomes anisotropic with

a privileged direction. As a result, water diffusion patterns for the brain tissues provide

information about the underlying anatomical structures [26].

Generally, a fiber is oriented arbitrarily and has different diffusion coefficients along

different directions. Thus, unlike the isotropic diffusion specified not a single scalar dif-

fusion coefficient, the anisotropic one is characterized with a tensor, such that its matrix
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D defines variances and covariances of the 3D diffusion displacements normalized by the

diffusion time:

D =


dxx dxy dxz

dyx dyy dyz

dzx dzy dzz

 (2)

The matrix D is symmetric, dyx = dxy, dzx = dxz, and dzy = dyz, and has six degrees

of freedom, which relate to the diffusion strength and spatial orientation. Therefore, the

anisotropic diffusion is fully characterized by a diffusion ellipsoid with six independent

parameters obtained by diagonalizing the matrix D of Eq. (2): the resulting eigenvectors,

v̂1, v̂2, and v̂3, and their eigenvalues, λ1, λ2, and λ3, define the orientations and lengths of

the longest, middle, and shortest axes, respectively. Physically valid ellipsoids (Figure 5)

call for the non-negative eigenvalues.

(a) (b)

FIGURE 5: Diffusion ellipsoid: the orientations (a) and sizes (b) of its principal axes

defined by the eigenvectors and eigenvalues of the tensor matrix D.

For an isotropic medium, the diffusion ellipsoid becomes a sphere: λ1 = λ2 = λ3.

For a purely linear anisotropic medium, λ1 > 0 and λ2 = λ3 = 0, and the ellipsoid reduces

to a line along the v̂1 direction. A planar anisotropic medium, being isotropic on the plane:

λ1 = λ2 > 0 and λ3 = 0, reduces the ellipsoid to an oblate.

DT is usually specified with certain parameters at each voxel, that are usually con-

verted into maps of scalar diffusion measurements to facilitate interpreting the voxel-wise
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DTI data. The most common anisotropy and microstructural measurements include frac-

tional (FA) and relative (RA) anisotropy together with mean (MD), axial (λ∥), and radial

(λ⊥) diffusivity.

(a) (b) (c)

(d) (e) (f)

FIGURE 6: DTI-based brain anisotropy and microstructure: the reference non-diffusion

image (a) and gray-coded scalar MD (b), FA (c), RA (d), λ∥ (e), and λ⊥ (f) maps.

The orientation-independent mean diffusivity, also called the trace, measures an

overall diffusion in a voxel or region.

MD =
1

3
(λ1 + λ2 + λ3) (3)

A slightly different MD definition has been used to measure the diffusion descent in brain

ischemia [140]. Since the MD values in the CSF are higher than it is in other types of brain

tissues, the MD is recommended for the CSF-related disease studies [141].

The fractional anisotropy, described first in [142], is the most popular rotationally

invariant (i.e., orientation-independent) measure of how isotropic is the voxel- or region-

wise diffusion.

FA =

√
3 [(λ1 −MD)2 + (λ2 −MD)2 + (λ3 − MD)2]

2
[
λ1

2 + λ2
2 + λ3

2
] (4)
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The FA of a physically realizable diffusion with non-negative eigenvalues ranges from 0

to 1 in the opposite extreme complete isotropic and linear anisotropic cases, respectively.

For example, the WM appears whiter due to its higher FA. The reduced FA values usually

indicate changes in myelination or degraded axonal structures of the WM [143].

The relative anisotropy is similar to the FA and takes the range between 0 (the

complete isotropy) to
√
2 (the complete, i.e., linear anisotropy).

RA =

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

3MD2 (5)

The RA is also defined as the ratio of anisotropic and isotropic parts of the diffusion [144].

The axial, or parallel diffusivity, λ∥, measures the diffusion along the principal

axis (parallel to axons), whereas the radial, or perpendicular diffusivity, λ⊥, averages the

diffusion along the two minor axes to measure the degree of restriction due to membranes

and other effects.

These two measurements are closely connected to the WM pathology [139] and

have been used to observe developmental and pathological fiber alterations, e.g., to study

dysmyelinating disorders [145].

Main fiber trajectories are extracted from the DTI and visualized using 2D color-

coded fiber orientation maps. These maps provide unique information, which cannot be

obtained with other MRI techniques. In particular, the fiber orientations could classify and

stratify specific WM tracts in a host of medical applications that need more anatomical

details [139].

These 2D color-coded maps present the voxel-wise fiber orientations related to the

WM tracts, but cannot reveal 3D WM trajectories and connection patterns [26]. The latter

are obtained with the computer-aided 3D WM fiber tractography, recognizing and tracing

WM tracts and their connections with other WM tracts or GM structures. The tractography

is either deterministic, or probabilistic [32, 146], and constructs, respectively, only one

trajectory for each start voxel, or the most probable, or minimum-energy path between two

selected voxels or regions [26].
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(a) (b)

FIGURE 7: Reference non-diffusion image (a) and the color-coded fiber orientation map

(red, green, and blue correspond to the diffusion x-, y-, and z-axes respectively).

FIGURE 8: Full brain tractography using the “3D Slicer” software: color-coded main fiber

directions.

The deterministic (or tract propagation) fiber tractography is built by extracting

fiber orientation and propagating pathway until termination criteria are met [26]. Generally,

the local voxel-wise fiber orientations are estimated directly from planar diffusion profiles.

These estimates fail if the ellipsoid is isotropic or the diffusion profile is planar.

Image noise, patient movements, and other imaging artifacts cause uncertainty in

the fiber orientations obtained by the deterministic fiber tractography. The probabilistic

fiber tractography attempts to increase the confidence [147] by estimating probability
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(a) (b)

FIGURE 9: Discrete (black) vs. smoothed continuous (red) tracking (a) and deterministic

fiber tracts generated with the “3D Slicer” software in the corpus callosum ROI (colors

represent the FA values along the tracts).

distributions of all fiber orientations and selecting the most probable orientations. Trac-

ing many different pathways with marginally altered orientations allows for measuring the

connection probability and assessing fiber connectivity between different brain regions by

a voxel-wise connectivity index [148]. The main advantage of the probabilistic fiber trac-

tography is its ability to stratify the entire WM tracts. However, its accuracy is limited

and depends on the accuracy of the DT and estimated pathway probability distributions.

Moreover, the probabilistic tractography cannot differentiate between ante- and retrograde

along the fiber’s path [147].

2. Studying ASD impacts on anatomical structures with DTI

Recent molecular and functional ASD studies confirmed the vital importance of lo-

calizing atypical development and examining neural networks and connectivity of different

brain areas [149]. At the molecular level, the postmortem studies of brains of children with

ASD have shown more reduced and less compact minicolumns [12, 150, 151]. At the func-

tional level, examining brain connectivity with the fMRI revealed how activities of various

brain areas are organized. Most of the ASD patients have demonstrated reduced connec-

tivity between the frontal and posterior brain parts during various cognitive tasks and in a
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resting state [152]. Therefore, according to both molecular and functional studies, the brain

connectivity and the underlying WM tracts might be impaired in these patients.

However, earlier studies had limited abilities to provide sufficient morphological

information about these WM tracts and their development in a living human [149]. To

overcome this drawback, multiple noninvasive DTI-based studies of both the macro- and

microstructure (e.g., axons) of the brain WM tracts were conducted for the last decade to in-

vestigate the ASD [149]. In particular, the DTI facilitated examining microstructural prop-

erties of the WM circuitry and detecting abnormalities of the WM fiber tract integrity [153].

Below, the most important current methods of studying the ASD with the DTI (in total,

from 60 publications) are summarized by stratification into five categories: (i) the whole-

brain voxel-based analysis (VBA); (ii) the analysis of tract-based spatial statistics (TBSS);

(iii) the ROI analysis; (iv) tractography; and (iv) the classification-based analysis. Since

the DTI findings in the literature are mainly concerned with WM connectivity across mul-

tiple structures, classification here is not based on the structures, such as in Section I.C.

It is rather based on the methodology the WM connectivity and the fiber tracts through

those structures are investigated with. These methods differ in how group differences are

investigated by measuring DTI heterogeneity, e.g., the FA. The same four age stages, as in

Section I.C, i.e., infancy, childhood, adolescence, and adulthood, are considered separately

for more in-depth presentation of the ASD findings.

a. Whole-brain VBA The brain images across subjects are spatially co-aligned

in order to ensure that each individual voxel has the same anatomic location in all the

subjects. Then the voxel-wise statistics are used to find areas of significant difference

between the ASD and control patients. Due to its comprehensive examination, the whole-

brain VBA overcomes problems of possible user bias in and insufficient prior knowledge

for selecting the ROI to be analyzed. However, the VBA has drawbacks that are absent in

the ROI analysis: high sensitivity to accuracy of aligning the images and low reliability of

voxel-wise statistical decisions. In spite of these drawbacks, the VBA is still widely used
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due to its simplicity and ability to explore the whole brain.

Childhood Relationships between communication, social interaction, and repetitive be-

haviourial impairments have been investigated in [154] by the VBA of FA data for each

group of subjects. For the ASD group, the bilateral prefrontal and temporal regions had

reduced FA values, as well as lower FA along the frontal striatio-temporal pathways or

more posterior brain pathways were associated with communication and social reciprocity

impairments or repetitive behaviours, respectively. In a multi-modality study [155], the

WM abnormalities were investigated in HFA Chinese children, and the VBA showed that

the WM density decreases in the right frontal lobe, left parietal lobe and right anterior cin-

gulate. In addition, the FA values were lower in the frontal lobe and left temporal lobe.

Combining the VBA and RBV of the DTI has showed consistent WM abnormalities in the

HFA patients. Children with ASD and their unaffected siblings have been compared with

the control group in [156]. The ASD and sibling groups had the prevalent reduced FA and

λ∥ values in the frontal, parietal, and temporal lobes, especially, in the regions related to so-

cial cognition. However, no significant relationships between the WM measurements in the

ASD and sibling groups have been reported. To what extent disconnectivity of networks,

which are important for social communication, relates to behavioral impairments in chil-

dren with ASD was investigated in [157]. The VBA indicated the decreased FA values in

the uncinate fasciculus and right superior longitudinal fasciculus. The additional analysis

revealed a negative correlation between the FA values of the affected fiber tracts and the

ASD symptoms.

Adolescence An early study [158] of the WM abnormalities performed the VBA on a

small group of male HFA children and adolescents. It has found low FA values in var-

ious brain regions, mainly, in the WM adjacent to the ventromedial prefrontal cortices,

in the anterior cingulate gyri, and in the temporoparietal junctions. A similar, but larger

study [159], has investigated the WM abnormalities in a large male HFA group aged from
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10 to 35 years. The HFA subjects had lower FA values near the corpus callosum and in

the right retrolenticular portion of the internal capsule. A new tissue-specific, smoothing-

compensated (T-SPOON) VBA introduced in [160] minimizes effects of partial volume

averaging and image smoothing by applying a regional mask with the same smoothing pa-

rameters. Compared to the conventional VBA, results of the T-SPOON on a large group of

the ASD subjects and corresponding controls were more consistent with the FA obtained

by analyzing the corpus callosum and temporal lobe ROIs. The VBA of the WM of a small

group of HFA and matched controls in [161] has shown the reduced FA and λ⊥ in various

ROIs in the brain, including the left dorsolateral prefrontal cortex, cingulum bundle, arcu-

ate fasciculus, and superior longitudinal fasciculus. Social impairment scores correlated

negatively with the FA of the left dorsolateral prefrontal cortex, suggesting that the WM in

cortical regions is vital for the ASD patients development. The WM integrity of the major

fiber tracts connecting the amygdala, fusiform face area, and superior temporal sulcus in

the ASD subjects was explored in [162] by the FA-based VBA. The ASD subjects had re-

duced FA values in the investigated WM tracts, including inferior longitudinal fasciculus,

inferior fronto-occipital fasciculus, superior longitudinal fasciculus, corpus callosum, and

cingulum bundle. A multi-modality study [163] used the T1 MRI to study the brain vol-

umetrics and the DTI to investigate both the WM and GM integrity in a limited group of

HFA adolescents. There were no significant volumetric GM or WM differences between

the two groups.

Adulthood The ASP adults, examined in [164] for the WM integrity of the whole brain,

have shown lower FA of 13 WM clusters in the internal capsule, frontal, temporal, parietal,

and occipital lobes, as well as the cingulum and corpus callosum. Studying the WM abnor-

malities on a small group of young LFA men [165] indicated a positive correlation between

the FA in the uncinate fasciculus and clinical improvement, precocity, and intervention

duration.
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b. Tract-based spatial statistics (TBSS) To overcome some shortcomings of the

traditional VBA, the recent DTI-optimized analysis of TBSS [166] uses a non-linear regis-

tration to a common target to co-align the subjects’ FA maps. Following the alignment, a

mean FA skeleton is built and thresholded to exclude areas of high inter-subject variability.

Based on the corresponding FA values, each aligned subject’s FA map is projected onto

the skeleton to facilitate collecting standard voxel-wise FA statistics across all the subjects.

Generally, such tract-based analysis is more accurate than the VBA, but requires a sophis-

ticated data projection method for better results. It also does not handle partial volume

effects, is sensitive to motion distortions, has high computational complexity, and may fail

if the tracks change much at junctions or due to apparent pathologies.

Childhood The deterministic tractography and TBSS were combined in [167] to investi-

gate the corpus callosum region, including the uncinate fasciculus, in young ASD children

aged five years on average. The ASD manifests itself in lower FA, higher MD, larger

number of streamlines and voxels, and longer streamlines. There were also ASD-related

macrostructural changes in the uncinate fasciculus correlate with the popular symptomatic

scores of the GARS (Gilliam autism rating scale). The TBSS, VOI, and tractography have

been used also in [168] to investigate the WM abnormalities of very young ASD children in

several clusters within the genu and body of the corpus callosum, left superior longitudinal

fasciculus, and right and left cingulum. The FA increased in these regions as a conse-

quence of the decreased radial diffusivity, λ⊥. The tractography revealed that increased FA

was concentrated in the mid-body of the corpus callosum and in the left cingulum.

To study the integrity of the thalamic radiation of older ASD children in [169],

four DTI measurements, namely, FA, MD, λ⊥, and λ∥, were examined in the anterior

thalamic radiation, superior thalamic radiation, posterior thalamic radiation, corpus cal-

losum, uncinate fasciculus, and inferior longitudinal fasciculus by combining the whole

brain VBA analysis with the TBSS and ROI analyses. Anticipated WM abnormalities in
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the thalamo-frontal connections in the ASD children are indicated by the reduced FA and

λ∥ and Increased MD and λ⊥ across various brain regions. The TBSS, combined with a

VBA were applied in [170] to a small group of older ASD and control children. The FA

was reduced, especially, in the forceps minor, inferior fronto-occipital fasciculus, and supe-

rior longitudinal fasciculus. Regional distributions of differences between young ASD and

control children were examined in [171] using the TBSS and the whole-brain VBA. While

the FA values were reduced in various brain regions, the increased MD was found only

in the posterior ones. These small (1–2%) regional differences between both groups were

accompanied by distinct regional differences in imaging artifacts. They also demonstrated

vulnerability of the between-group differences to such artifacts, which may cause errors in

biological inferences. The TBSS and deterministic tractography were also used in [172]

to analyze young ASD children with and without mental retardation. The statistics have

detected a widespread FA increase in major WM pathways, and the tractography showed

increased FA and fiber length in the cingulum and corpus callosum. Moreover, the MD

increase was correlated with expressive language functioning in the indirect segments of

the right arcuate and left cingulum.

Adolescence Examining differences in the WM integrity between the HFA and control

subjects and its association with pictorial reasoning under various linguistic levels in [173]

indicated that visuospatial reasoning performance relates to the FA of the peripheral parietal

and superior precentral WM in the HFA subjects, but the superior longitudinal fasciculus,

callosal, and frontal WM in the controls. The whole-brain VBA followed by analyzing the

TBSS in [174] evaluated the WM in a group of ASD and control children and adolescents.

The VBA has shown the increased MD and radial diffusivity (λ⊥) in the ASD children, but

not the adolescents in the frontal WM, and the statistics analysis has revealed alterations

in the right uncinate fasciculus. The right inferior longitudinal fasciculus in the ASD case

may indicate a disrupted fronto-temporal-occipital circuit playing a significant role in social
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and emotional processing. The TBSS was analyzed in [175] to examine short- and long-

distance WM tracts in the frontal, parietal, and temporal lobes of the ASD subjects and

matched controls. The short-distance tracts had reduced FA in the ASD group, increased

MD and λ⊥ in the frontal, temporal, and parietal lobes. The age and DTI measurements

were correlated in the control, but not ASD group. As was suggested, these typical age-

related correlations were absent due to altered maturation of the short-distance tracts in the

ASD group.

The whole-brain VBA with TBSS in [176] assessed the WM tracts in the ASD

children and adolescents. The reduced FA and the higher MD and radial diffusivity have

been found for the ASD subjects in the corpus callosum, anterior and posterior limbs of

the internal capsule, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus,

superior longitudinal fasciculus, cingulum, anterior thalamic radiation, and corticospinal

tract. Moreover, the age-dependent analysis has shown no maturational changes in the

ASD subjects. The WM tracts of a relatively larger group of the adolescents were studied

in [177] by examining the TBSS after correcting the entire image, rather than a ROI, which

is more typical. As was found in the ASD group, the FA has increased, specially in the right

inferior fronto-occipital fasciculus and affected visual perception. It suggests an abnormal

information flow between the insular salience processing areas and occipital visual areas

of the ASD patients.

Adulthood A recent fMRI and DTI study [178] examined causal attribution in the ASD

and confirmed the relationship for the temporo-parietal junction that exists in the theory

of mind. The response to intentional causality showed lower activation of the temporo-

parietal junction in the fMRI of the ASD adults, and the analysis of the tract-based spatial

DTI statistics revealed reduced FA in the temporal lobe. The tract-based statistics were

used also in a more recent investigation [179] of the WM integrity in a small group of the

ASD adults and their matched controls. The ASD subjects showed significantly decreased
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FA and high radial diffusivity, λ⊥, values in the left hemisphere, mainly, in the thalamic and

fronto-parietal pathways. Moreover, the WM disturbance was higher in the left hemisphere.

c. ROI analysis These analyses depend on prior assumptions about certain brain

regions that might be impaired in the ASD subjects. The regions are extracted manually,

semi-automatically (using delineation protocols), or automatically. Manual extraction is

time-consuming and suffers from user variability, whereas automatic and semi-automatic

region segmentation are affected by registration errors, as in the VBA. The fact that the

VOI are grouped in a predefined way is the main advantage of analyzing the ROI, as the

total number of multiple comparisons is much smaller than in the VBA, statistical deci-

sions become more accurate. However, the ROI analysis cannot infer conclusions about

microstructural properties of the WM tracts. It is impractical for examining every brain

region, especially for large groups, and has limited accuracy because of low resolution and

relatively thick slices of the DTI.

Infancy Microstructural WM differentiation between the ASD and control groups of in-

fants and very young children was examined in [180]. The fact that the left hemisphere’s

frontal lobe of the ASD subjects had predominately increased FA and probability, as well

as reduced displacement supports the previous findings indicating an abnormal brain over-

growth in very young children.

Childhood The reduced FA of various cerebral WM tracts, which was found in [181],

suggests the ASD correlates with reduced connectivity in the corpus callosum, internal

capsule, and superior and middle cerebellar peduncles. The ROI analysis of the cerebel-

lar outflow and inflow pathways in [182] has shown the bilaterally decreased MD in the

superior cerebellar peduncles, together with the asymmetric FA of the middle cerebellar

peduncle and the inferior cerebellar peduncle in the ASD patients. The effect of self-

injurious behavior on cortical development of the ASD children was studied in [183] by

using both T1 MRI and DTI scans. According to the sMRI analysis, both the thickness

31



of the right superior parietal lobule and bilateral primary somatosensory cortices and the

volume of the left ventroposterior nucleus of the thalamus correlate with the self-injury

scores. The atlas-based ROI analysis has revealed that children engaged in self-injury had

significantly decreased FA and increased MD in the the left posterior limb of the internal

capsule, as well as increased radial diffusivity, λ⊥, in the bilateral posterior limbs of the

internal capsule and corona radiate. Recently, an atlas-based ROI analysis [184] was used

to investigate abnormalities in various left and right hemispheric WM regions of the HFA

children. Their significantly increased MD of the outer-zone cortical left hemisphere WM

suggested hypomyelination and increased short-range cortico-cortical connections caused

by the early WM overgrowth.

Adolescence The entire corpus callosum and its subregions (genu, body and splenium)

were explored for a large group of the HFA subjects and matched controls in [139] using

the DTI (FA, MD, λ⊥, and λ⊥) and RBV. The low-IQ HFA subgroup differed by small

corpus callosum volumes, increased MD, decreased FA, and increased λ⊥. The decreased

FA and increased MD and λ⊥ in the superior temporal gyrus and temporal stem in the HFA

subjects of the same group have been reported in [185]. Analyzing the WM over the whole

brain and in several ROIs in [186] has detected decreased FA and increased λ⊥ in both

the whole brain and corpus callosum; increased MD for the whole brain and the anterior

and posterior limbs of the internal capsule; decreased λ∥ in the corpus callossum body, and

decreased FA in the middle cerebellar peduncle of the HFA subjects.

Adulthood The fMRI and DTI have been used in [187] to determine whether the struc-

ture and function of the anterior cingulate cortex relate to a repetitive behavior in the ASD.

The ASD subjects showed an increased rostral anterior cingulate cortex activation to both

correct and erroneous responses and had reduced FA in the WM underlying the anterior

cingulate cortex. These results correlate also with ratings of the rigid, repetitive behavior.

A multi-modality study [188] used the VBM and ROI analysis to estimate the GM and WM
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volumes from the sMRI and evaluate the main WM tracts in the DTI, respectively, for the

ASP adults. The total WM volume, regional GM volume in the right parietal operculum,

and FA in the body of the corpus callosum, cingulum, and cerebellum suggested a correla-

tion between the diagnosis and subject’s gender. These findings confirmed the importance

of understanding the sex-specific brain differentiation in the ASD.

d. Tractography Tractography reconstructs virtual 3D trajectories of the WM

tracts to define the ROIs required for examining several such tracts simultaneously and

characterizes macrostructural tract properties with additional DTI measurements. The de-

terministic tractography reconstructs the WM tracts and measures their lengths, densities,

or volumes from a number of streamlines propagated between voxels with similar diffu-

sion properties. But it provides no uncertainty of the reconstructed tracks due to noise

or insufficient spatial resolution, whereas the probabilistic tractography not only estimates

the fiber tracts, but also measures their uncertainty. However, branching and false-positive

tracts affect the tractography accuracy in defining the ROIs, specifically at the ends of the

reconstructed tracts. Also, the DTI tractography fails if the DT is inadequate to describe

a region. For example, the FA is significantly lower for complex WM fiber crossings. To

meet these challenges, new diffusion models, scanning paradigms, and analysis methods

are constantly being developed.

Infancy Data from the IBIS (infant brain imaging study) group have been used for a

recent longitudinal DTI analysis [153] of how the WM fiber tract is organized from 6 to 24

months in high-risk siblings’ infants, who developed the ASD by 24 months. The FA and

axial (λ∥) and radial (λ⊥) diffusivity measured for the DTI were investigated to characterize

microstructural properties of the WM fiber tracts. The FA for the infants who developed the

ASD differed significantly from those who did not develop it in 12 out of the 15 fiber tracts

investigated, including the fornix, uncinate fasciculus, and inferior longitudinal fasciculus.

For most of the investigated ASD infants, the FA of the developing fiber tracts was higher at
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6 months, had no differences at 12 months, and decreased at 24 months of age. This study

provided evidence for the altered brain growth of the WM pathways related to manifesting

autistic symptoms for the first year of life, thus confirming the critical importance of the

longitudinal studies in revealing the age-related brain and behavior changes underlying

the neurodevelopmental disorders. The DTI tractography in [189] used the same IBIS

group, but focused on determining whether specific oculomotor functioning and visual

orienting patterns characterize 7-month-old infants diagnosed with the ASD at 24 months

and detecting neural associates of their behaviors. The measurements included an average

saccadic reaction time in a visually guided saccade procedure and the radial diffusivity,

λ⊥, of corticospinal pathways and the splenium and genu of the corpus callosum fiber

tracts. Strong association between the λ⊥ of the splenium of the corpus callosum and visual

orienting latencies in low-risk infants has been found, but this correlation was missing in

the infants having the ASD. These results confirm the potential of acquiring infant imaging

groups in identifying early ASD markers, which is critical for early clinical intervention.

Childhood Whether the deterministic tractography of the DTI can detect the WM ab-

normalities in the frontal lobe and check for short range connectivity changes in the ASD

children was investigated in [190]. The higher MD in the whole frontal lobe, as well as in

long and short range association fibers in the ASD group have been reported. The FA was

reduced in the ASD group for the short range, but not long range fibers, and the necessity

of advanced DTI technology to re-examine the short range connectivity in ASD was indi-

cated. The brain connectivity in the corpus callosum of the HFA patients was examined

in [191] by measuring both the DTI and T1 MRI. The corpus callosum volume and den-

sity extracted from the MRI were compared to the FA, MD, average fiber length, and fiber

number obtained from the DTI by deterministic tractography. The decreased WM density

in the anterior third of the corpus callosum, and the higher MD and lower fiber number

in the anterior third transcallosal fiber tracts of the HFA subjects have been found. The
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frontal lobe association pathways in the ASD children were studied in [192] by analyzing

the tract curvature, FA, λ∥, and λ⊥. This study suggested that higher curvatures and λ⊥

in the parietotemporal junction of accurate fasciculus, frontotemporal junction of uncinate

fasciculus, and the midline of the genu of the corpus callosum could be caused by larger

attenuation of the thinner axons in the frontal lobe tracts of the ASD children.

The lack of the nonverbal ASD studies was addressed in [193] by employing the

probabilistic tractography to find language-related WM tracts (arcuate fasciculus). A small

group of five nonverbal ASD children demonstrated the reversed arcuate fasciculus asym-

metry. To what extent the ASD language ability is associated with the DTI measurements

(FA and MD) of the language-related WM tracts (superior longitudinal fasciculus) and

non-language-related WM tracts (corticospinal tracts) was investigated in [194] with the

deterministic tractography. The obtained results have revealed the higher MD in the left

hemisphere temporal portion of the superior longitudinal fasciculus fiber tracts of the ASD

children with language impairment, as well as a significant negative correlation between

the MD and language ability scores. The fMRI and probabilistic tractography of the DTI

in [195] examined the functional and structural organization of neural systems overlap-

ping for language and music in the ASD children. The ASD children have demonstrated

decreased functional responses to speech stimulation in the left inferior frontal gyrus and

secondary auditory cortices in the left temporal lobe, as well as decreased FA of the left

dorsal pathway and the decreased tensor norms in the ventral tract. All the findings indi-

cated that speech and song processing functional systems are more responsive for the song

than the speech of the ASD children.

Relations between the WM microstructure and developing the morphosyntax in a

spoken narrative were examined in [196] on a small group of the older HFA children and

their matched controls. The HFA children showed abnormally increased MD in the right

inferior longitudinal fasciculus. A positive correlation between the morphological accuracy

and WM integrity in the right inferior longitudinal fasciculus was found within the HFA
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group. This study has shown that the HFA children rely on the ventral, rather than typical

pathways in their daily use of real world language. Both the sMRI and probabilistic DTI

tractography were used in [197] to investigate the GM and WM related to language ability

in the young ASD children. Compared to the control group, the ASD children had de-

creased leftward asymmetry of volume and λ⊥ of the arcuate fasciculus, but no difference

in the GM asymmetries.

Adolescence Examining the arcuate fasciculus in a group of ASD and control adolescent

subjects with the probabilistic tractography [198] showed no group differences in FA. But

atypical language laterality was more predominant in the ASD, than the control group. Ad-

vantages of volumetric DTI segmentation over tractography (its higher robustness to imag-

ing noise, better compatibility with statistical analysis, and no region-to-region analysis)

were exemplified in [199] on extracting the WM tracts to study the same arcuate fasciculus

on a group of the adolescent HFA and control subjects. The ASD group had increased MD

and λ⊥, and decreased FA. The overlap between specific LI and ASD LI in a group of the

adolescents and children has been studied in [200]. The deterministic tractography was ap-

plied to extract the superior longitudinal fascicle, and no significant differences in the FA

and MD have been revealed between the ASD LI participants and controls. However, the

FA was significantly reduced in children with the specific LI compared to their controls.

The diffusion tractography was used in [201] to investigate three association fibers, such as

the bilateral cingulum bundle, bilateral arcuate fasciculus, and bilateral uncinate fasciculus,

as well as the callosal fiber tracts. High-resolution diffusion spectrum imaging (DSI) was

applied to a small group of the HFA subjects and controls in order to assess generalized

fractional anisotropy (FA) and asymmetry patterns in the targeted fiber tracts. The HFA

adolescents showed no leftward asymmetry found in the controls, but had the significantly

reduced generalized FA in the three callosal fibers. The deterministic tractography in [202]

extracted the cingulum bundle from a larger group of children and adolescent HFA sub-
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jects and controls. Significant age group interaction for the FA and diffusivity (MD, λ⊥,

and λ∥), which is driven by reduced FA and increased diffusivity in the ASD groups, but

not in the adolescent groups, has been revealed. The fMRI and DTI probabilistic tractogra-

phy were used in [203] to examine the integrity of thalamo-cortical connectivity in children

and adolescents with the ASD. Increased MD and λ⊥ in the thalamo-cortical connections,

and decreased functional connectivity in the thalamo-cortical circuitry, as well as a nega-

tive correlation between the fronto-thalamic FA and the social and total autism diagnostic

observation schedule (ADOS) scores were reported. The cingulum bundle of a group of the

ASD and control adolescents and young adults was investigated in [204]. By applying the

probabilistic tractography, the low FA of the bilateral anterior cingulum bundle and neg-

ative correlation between this FA and the behavior rating inventory of executive function

(BRIEF) scores were also identified.

Adulthood The deterministic tractography was used in [205] to examine microstructural

integrity of the intracerebellar pathways in the ASP adults. The study revealed reduced

FA of the short intracerebellar fibers and right superior cerebellar output peduncle. It also

showed negative correlation with the autism diagnostic interview (ADI) scores. The de-

terministic tractography in [206] reconstructed the WM tracts from the amygdala to the

fusiform cortex, and the hippocampus to the fusiform cortex in the ASD and control adults.

The ASD group has shown increased λ⊥ in the bilateral amygdala fusiform connections

and left hemisphere hippocampus fusiform connections, as well as decreased λ⊥ in the

right hippocampus-to-fusiform connections, being associated with the lower face recogni-

tion scores and performance IQ. The very first study [207], which examined connections

between socio-emotional structures in the adults with ASD using the deterministic tractog-

raphy, reported an increased number of streamlines (tract volume) in the right cingulum

bundle and inferior longitudinal fasciculus of the ASP adults in contrast to their reduced

number of streamlines in the right uncinated fasciculus. Significant age-related differences
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between the autistic and control groups were found in the MD of the left uncinate fascicu-

lus. The deterministic tractography was used also in [208] to extract the intra-hemispheric

visual-association WM tracts for the HFA adults and detect their high numbers of stream-

lines in the intra-hemispheric fibers, mainly, in the left hemisphere, and a low number of

streamlines in the minor forceps and the body of the corpus callossum. A multi-modality

(sMRI and DTI) approach in [209] has examined differences in the bulk striatum vol-

ume and fronto-striatal WM integrity and their relationship with repetitive behavior and

inhibitory control of the ASD adults. Analyzing the MRI has shown a smaller WM vol-

ume, and the DTI tractography revealed reduced FA in the WM connecting putamen to the

frontal cortical areas and increased MD of the WM tracts connecting the accumbens to the

frontal cortex. The relationship between the inter-hemispheric connectivity and the brain

overgrowth in the ASD adults has been tested in [210] with the probabilistic tractography.

The estimated callosal fiber length measured the maximum brain size achieved during the

development, and compared to the size and structure of the corpus callosum extracted from

the T1-weighted MRI. In the ASD adults, the callosal fiber length correlated inversely with

the corpus callosum size and positively with the radial diffusivity, λ⊥.

e. Classification-based analysis Since the advent of their basic concept in the

mid-1980s, computer-aided diagnostic (CAD) systems remain in great demand among neu-

roradiologists [211]. Most of the present CAD systems perform data preprocessing, feature

extraction, and classification. Initial efforts to use features extracted from DTI to classify

and diagnose ASD are detailed below.

Childhood Different DT coefficients from many areas across the brain were used in [212]

to distinguish autistic children from controls. A high-dimensional nonlinear SVM has

learned an underlying ASD pattern of numerous atlas-based regional DTI features, e.g.,

FA and MD, extracted from the various brain ROIs. According to the leave-one-out (LOO)

cross validation, 84% specificity and 74% sensitivity were achieved in separating the autis-
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tic patients from the control ones.

Adolescence Shape representations of the WM tracts extracted from the DTI were uti-

lized in [213] to distinguish between the autistic and control patients. These fiber bundles

were seeded in the splenium of the corpus callosum, and the classification features were

built using 3D shape context [214]. The LOO cross-validation has resulted in an accuracy

of 75%; both the specificity and sensitivity of 71%, and an average AUC of 0.765 (the area

under the receiver operating characteristic curve). The DTI features of the ROI from the

WM of superior temporal gyrus and temporal stem brain regions, which were assumed to

have an important role in language, emotion, and social cognition development, were used

in [215] to study a large group of the HFA subjects and their matched controls. The ex-

tracted features included the FA, MD, λ⊥, λ∥, normalized DT skewness, and hemispheric

asymmetry index. Using the selected aforementioned six WM measurements, the system

was able to separate the ASD subjects from the controls with 92% accuracy; 94% sensitiv-

ity, and 90% specificity.

E. Studying ASD with fMRI

As mentioned earlier, fMRI studies attempt to focus on brain activity in autism

by detecting changes associated with blood flow, Figure 10. The fMRI studies can be

categorized based on the different task domains [27, 28]. Examples include motor tasks,

visual processing tasks, executive function tasks, auditory and language tasks, basic social

processing tasks, and complex social cognition tasks.

Motor tasks experiments in the literature [216–221] revealed that the bilateral pre-

central gyri and the inferior frontal gyri are more activated in cases with autism than they

are in neurotypicals. On the other hand, the left culmen and the right superior temporal

gyrus showed greater activation in neurotypicals. Allen et al. performed experiments in or-

der to examine cerebellar activity [216, 217], where eight autistic patients and their matched
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FIGURE 10: Localizing BOLD effects and correlating them to areas of activation in the

brain.

controls aged between 14 and 38 years performed both motor and attention tasks. A button

was pressed and activation was compared with a rest condition for the motor task. For

attention, visual stimuli were presented one at a time at fixation and subjects pressed a but-

ton to every target. Anatomic ROIs in the cerebellar cortex were then manually identified

guided by MRI atlases of the human cerebellum. Results showed high motor activation in

autistic subjects in the ipsilateral anterior cerebellar hemisphere compared to normal sub-

jects. Muller et al. [218] tested eight autistic adult males and their matched controls for

motor activity during sequence learning. After data preprocessing and normalization, the

hemodynamic effects associated with task-control cycles were statistically examined using

the general linear model (GLM). Results showed the less prefrontal activation in autism

along with the enhanced activation in the right pericentral and premotor cortex compared

to neurotypicals. The study in [221] conducted a comparison between ASD and control

young adults, which recorded activation due to a simple hand motion task. The BOLD sig-

nal activation was modeled using GLM and analyzed using SPM package. Both groups had

same areas activated as prefrontal, inferior parietal and superior temporal regions, but ASD

showed higher activation in the dorsal premotor cortex and less activation in the cuneus and

the middle temporal gyrus.
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Visual processing tasks are the sequential steps needed all the way from the visual

sensors to the cognitive processing in order to process information. FMRI studies in the

literature found that the thalamus and the medial frontal gyrus showed more activation in

autism, whereas the cingulate gyrus and the occipital region showed more activation in neu-

rotypicals [187, 222–228]. Manjaly et al. [224] examined 12 autistic adolescents and their

matched controls for visuospatial tasks, particularly, the Embedded Figures Task (EFT).

SPM tool was used to analyze the data using GLM, where specific effects were tested for

by applying linear contrasts to the estimated parameters in order to obtain contrast images.

Group analyses were then performed on the contrast images. Results showed the over-

activation in the right primary visual cortex and the bilateral extrastriate areas of autistic

patients. Takarae et al. [227] performed a visual task experiment using saccadic and pur-

suit eye movement on 13 high-functioning autistic individuals and 14 matched controls.

The study used FIASCO package to correct for motion artifacts. F-statistic maps were

then created in order to identify significant differences between groups for each task. The

maps were calculated by dividing voxel-wise chi-square values form within-group activa-

tion maps by the corresponding degrees of freedom that are appropriate for each group.

Autistic individuals showed greater activation in the dorsolateral prefrontal cortex, caudate

nucleus, medial thalamus, and anterior and posterior cingulate cortex. Clery et al. [228]

used fMRI to study the impact of unexpected visual changes on both adult ASD and typi-

cally developing groups, where the variation in BOLD signal was modeled using GLM, and

then analyzed using SPM package. In both groups, changes were detected in the occipital

and frontal regions, while autistic subjects exhibited more changes in the bilateral occipital

cortex.

Executive functions, also known as cognitive control functions, are a group of cog-

nitive processes that are responsible for many activities, including problem solving and rea-

soning. Areas of activation for executive function tasks were found to be in the left middle

frontal gyrus in autism, and in the right middle frontal gyrus and prefrontal and subcortical
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regions in neurotypicals [229–236]. In order to characterize the cognitive deficits in ASD,

Dichter et al. [229] conducted an event-related experiment in order to examine the effects

of processing directional information from faces on activity within brain regions mediating

cognitive control. Preprocessing of scans was conducted using SPM modules, followed by

random-effects analysis of the differences between conditions, e.g., incongruent vs. con-

gruent gaze stimuli w.r.t. hemodynamic responses (HDRs). t-statistic maps were then

computed at each voxel in order to quantify HDR differences between conditions. Autistic

individuals showed hypoactivation with the incongruent gaze stimuli in the bilateral mid-

frontal gyrus, bilateral intraparietal sulcus, and in the anterior cingulate. Gilbert et al. [230]

performed two executive function tests on 15 high-functioning autistic individuals and 18

matched controls. Data were analyzed using SPM2 package in a GLM that decomposes the

BOLD signal variance with a set of regressors. There were no significant differences on

the behavioral level. Also, executive function classical test showed differences between the

two groups in only the cerebellum. However, a new test of executive functions showed sig-

nificantly greater BOLD signal change in the medial rostral prefrontal cortex in autism as

well as abnormal functional organization of medial prefrontal cortex. Koshino et al. [233]

investigated brain activation of autistic individuals using a working memory task that in-

volved verbal processing, working memory maintenance, and theory of mind processing.

Data were analyzed using SPM99 package, where maps were calculated for contrasts be-

tween the experimental conditions and fixation and between the two groups. Individuals

with autism showed lower activation in the inferior left prefrontal and the right posterior

temporal areas than the control group. Lee et al. [234] examined cognitive skills for 12

autistic children and their matched controls by investigating the connectivity of the left and

right inferior frontal cortex and of other regions in the frontal, striatal, and parietal cor-

tex. Group analyses were conducted in SPM5, where fMRI responses were modeled by a

canonical HRF and activation maps for each subject were generated using a linear contrast.

As per the auditory and language tasks, studies conducted on children and ado-
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lescents in the literature showed greater activation in autism in the right precentral gyrus

region, whereas the bilateral superior temporal gyri were more activated in neurotypi-

cals [237–243]. In autistic adults, the bilateral declive was more activated than it is in

neurotypicals [244–250]. In all age groups, neurotypicals exhibited greater activation in

the left cingulate gyrus. Gomot et al. [238] investigated extreme repetitive behavior (resis-

tance to change) in 12 autistic children and their matched controls at sensory and neural

levels in order to examine auditory novelty detection and its neural basis. SPM2 pack-

age was used to analyze the data and the BOLD signal was statistically analyzed using

GLM by separate modelling of the events using a conical HRF and its first-order temporal

derivative. The right prefrontal-premotor and the left inferior parietal regions were more

activated in autistic individuals than in controls. Knaus et al. [239] conducted a study to

examine semantic functions in 12 autistic adolescents and 12 controls. Analyses were done

using Neurolens package. After applying motion correction, GLM was performed in order

to generate activation maps that would fit the task block’s time vector convolved with a

gamma variate estimate of HDR. Autistic boys showed stronger activation in Broca’s area.

Redcay et al. [240] conducted an experiment on 12 autistic children and two control groups

in order to identify brain regions involved in speech perception. Analyses were performed

using AFNI software package, and GLM was applied to fit the time series events to an

ideal HRF. Individuals with autism exhibited greater activation within the right and medial

frontal regions, which shows that there is a positive relationship between right hemisphere

frontal and temporal activity to forward speech and language skill. Lombardo et al. [243]

used fMRI to compare language sensitive superior temporal cortices activity between ASD

toddlers of good language outcome, those of relatively lower language outcome, and typi-

cally developed toddlers. Data were analyzed using SPM package, and the analysis showed

that the activation of the language sensitive superior temporal cortices in both groups of

higher language is the same, whereas less activation was detected for those of lower lan-

guage outcome. In [250], a comparison was held between first degree relatives of both
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ASD and control groups to study their HDRs for phonological processing task, where the

BOLD signal activation was modeled using GLM and analyzed using SPM package. The

HDRs for parents of ASD were higher than those of the control group.

fMRI basic social processing tasks include face processing [251–254], emotion pro-

cessing [255–261], and motion in relation to social stimuli [262–266]. Studies in the lit-

erature show that greater activation in the bilateral superior temporal gyri is exhibited in

autism, whereas neurotypicals exhibit greater activation in the left fusiform gyrus and in

the right inferior occipital gyrus. Corbett et al. [252] conducted an fMRI experiment that

involved matching facial expressions and people on children with high-functioning autism

and their matched controls. Data analyses were conducted sing GLM in SPM2 package.

Results showed that children with autism exhibited intact motion matching and showed

diminished activation of the fusiform gyrus and the amygdala. Greimel et al. [257] investi-

gated neural mechanisms of empathy in 15 boys with ASD, 11 fathers of adolescents with

ASD, and two control groups. The experiment was based on asking the participants about

the emotional state they infer from emotional faces shown to them. Analysis was conducted

using SPM5, where estimation of the model parameters was conducted using GLM and re-

alignment parameters were included into the model as regressors. Individuals with ASD

showed diminished fusiform gyrus activation compared to controls, and also showed less

congruent reactions and decreased inferior frontal gyrus activity. Also, fathers of affected

individuals showed reduced fusiform gyrus activation when inferring emotions. The study

in [261] tried to discriminate between ASD and control adults by exposing both of them to

some fearful faces and houses and compare their responses. The data were analyzed using

FSL tool and GLM to model BOLD signal, and showed that slower response was exhibited

by the autistic group. Dichter et al. [263] examined the effects of presenting highly arous-

ing pictures (both very pleasant and very unpleasant) to individuals with high-functioning

autism. Data processing was conducted using SPM modules, and epochal analysis was

applied to extract condition-specific activation time courses. The control group showed
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greater activation in the right lateral midfrontal cortex than the autistic group when shown

the high-arousal pictures.

Complex social cognition tasks include activities such as imitation, irony compre-

hension, and empathy. Autistic children and adolescents showed greater activation in the

left inferior frontal gyrus, left pre- and post-central gyri and the left superior temporal

gyrus than neurotypicals. Reduced activation in autistic children/adolescents was shown

in left superior frontal gyrus, right superior temporal gyrus and left inferior parietal lob-

ule [267–270], whereas reduced activation was encountered in the right claustrum with

autistic adults [271–273]. Uddin et al. [269] investigated brain response to images of the

subjects’ own faces and of others on children both with ASD and typically developing.

Analysis was conducted using FEAT; part of FSL package, and the BOLD signal was mod-

eled using a separate explanatory variable for each stimulus. Both groups showed activa-

tion at the right premotor/prefrontal system when identifying images. However, the con-

trol group exhibited this activation when presented both self- and others’- faces, whereas

this activation in the autistic group was exhibited mostly with their own faces. Gilbert

et al. [271] investigated spatial and verbal tasks on a group of 16 high-functioning adults

and their matched controls. Tasks manipulated attention towards perceptual versus self-

generated information, and reflection on another person’s mental state. Data were analyzed

using SPM5 package and multi-voxel similarity analyses were conducted, Abnormal func-

tional specialization was disrupted in the autistic group within medial rostral frontal cortex.

F. Limitations of existing work

The overviewed results of the widespread investigation of the sMRI and DTI modal-

ities in ASD diagnostics outline some limitations of the existing work.

Diagnosing ASD with sMRI Obviously, from the sMRI investigations completed to

date, it is clear that the brain of an autistic child is growing abnormally through early
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childhood. However, a consistent pathology amongst the autistic children is yet to be iden-

tified, and few, if any, studies include patients below two years of age. Nonetheless, early

brain overgrowth does appear to be a consistent and repetitive ASD feature, but this feature

is heterogeneous and not all autistic children have an enlarged cerebral volume. Moreover,

due to a common misconception of gender bias in the ASD, most of the studies primarily

or exclusively focused on males. Also, the statistical significance of the reported findings

are hindered due to the small population of subjects considered.

Within the literature, the effects of age on various anatomical features such as, the

dynamics of the amygdalae and cerebral volumes, tend to be contradictory. Furthermore,

multiple cross-sectional studies examining brain stem size in ASD patients have shown

inconsistent results, and no study to date specifically assesses how the brain stem develops

with age. Also, studying the brain stem should become volumetric and focus on selecting

proper planes of cut, because most of the current studies have transected the brain stem and

provided only area measurements. As a result, additional longitudinal studies are needed

before any conclusions can be drawn on the role of brainstem development in autism.

Deciphering the role of different brain regions and networks in autism may benefit

significantly from using multimodality approaches, which combine various resting state,

task-evoked, and structural MRI measurements and rely on advanced data acquisition and

analysis.

The utilization of MRI-based methods to study brain development in larger popula-

tions will likely begin to address heterogeneity in ASD patients and identify distinct autism

subtypes, each with a specific associated neuroanatomical phenotype. However, it is antic-

ipated that the maximum scientific benefit will be achieved from conducting longitudinal

studies in younger populations with additional characterization of the underlying genetic

abnormalities, along with other potential biomarkers, driving the overgrowth and onset of

autistic symptoms at a critical time in the developmental process. Hence, it is of great sig-

nificance to establish more effective biomarkers in order to facilitate diagnostics in patients
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before their conventional ASD symptoms become evident.

Future studies that include more than two time points of MRI data would be partic-

ularly helpful in the construction and comparison of ASD and normal brain development

patterns. Yet, another promising method for understanding the relationship between brain

development and ASD is to statistically analyze local 3D shapes and surfaces of the pri-

mary components of the brain and correlate these results to the common behavioral scores,

such as the social responsiveness scale (SBS). However, correlating the results will be chal-

lenging, since such scales were developed as screening tools to qualitatively describe ASD

severity, rather than to quantify the health deficits.

Diagnosing ASD with DTI The VBA, applied mostly to small and predominantly ado-

lescent groups, has shown decreased FA in the major WM tracts of patients with ASD. The

usefulness of VBA of DTI remains in doubt because this method depends on the size of the

smoothing kernel and hinders confident conclusions. The TBSS, optimizing the VBA of

DTI and thus outperforming the traditional VBA, have been used in the majority of cases

to examine the whole brain in older children and adolescents. Most of the larger studies

have reported reduced FA and increased diffusivity in the ASD groups. Also, the ROI-

based DTI studies of the older population (older children, adolescents, and adults) versus

their controls confirm the finding of decreased FA in various brain areas including the an-

terior cingulate, the superior temporal gyrus, and the temporal stem WM. However, since

the ROIs target only specific components of particular WM tracts, conclusions cannot be

drawn on the entire WM tract or other infrequently examined tracts. Nonetheless, studying

the DTI of older children, adolescents, and adults using the VBA, TBSS, and ROI methods

suggest that the ASD-related microstructural WM alterations differ depending on the age

of the individuals studied.

Mostly, the deterministic, rather than the advanced probabilistic tractography is

employed to study the DTI, and the bulk of these studies have focused on the WM ab-
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normalities in the uncinate fasciculus, the arcuate fasciculus, the cingulum bundle, the

inferior longitudinal fasciculus, and the inferior fronto-occipital fasciculus. The abnormal-

ities include lower FA and higher diffusivity (primarily, in children and adolescents) and

altered macrostructure (mainly, in adults). The only ASD-related longitudinal DTI study to

date [153] confirmed that at least during the first two years of life, a number of WM tracts

seem to be affected by a dynamic process occurring in the brains of children who develop

the ASD.

To conclude, although a variety of MRI-based studies consisting of small groups

of individuals, ranging widely in age, present diverse clinical ASD symptoms compared to

controls, these studies have yielded valuable, yet varying results. Multi-site studies with

large patient groups that comprehensively characterize the clinical, behavioral, and cogni-

tive symptoms may be one of the most important strategies for increasing the probability

for the discovery of new, effective biomarkers. Future studies of particular importance will

track brain maturation from infancy to adulthood in individuals at high risk of develop-

ing ASD by using multi-modality macro-/microstructural and functional brain images. By

studying a larger, non-gender biased population of patients, it is anticipated that the ”false

positive” rate of ASD diagnosis will decrease.

G. Motivation behind this work

From the survey conducted above and the limitations discussed, it can be inferred

that combining different imaging modalities would allow for better autism diagnosis and

more certainty.So far, no work in the literature has proposed a diagnostic system for ASD

that combined different modalities in addition to conducting analysis on local areas of the

brain.

To overcome these limitations, and in order to obtain a robust classifier between

autistic and control brains, this thesis proposes a novel CAD system that fuses the shape

features extracted from both the cerebral cortex (Cx) and cerebral white matter (CWM)

48



of structural MR brain images along with features extracted using fMRI modality. Fusion

between Cx and CWM in sMRI is conducted based on the recent findings suggesting that

Cx changes in autism are related to CWM abnormalities [274]. Adding the fMRI modal-

ity is for combining both anatomical and functional information to better classify autistic

individuals from controls. The CAD system starts with segmenting Cx and CWM using

a 3D joint model that combines intensity, shape, and spatial information. Then, to accu-

rately extract the 3D shape features of Cx, Spherical Harmonic (SPHARM) is applied to

its re-constructed meshes, from which four metrics are derived for each mesh point; nor-

mal curvature, mean curvature, gaussian curvature, and Cx surface reconstruction error. To

analyze the CWM shape, its gyri are extracted by propagating an orthogonal wave to their

surfaces using 3D fast marching method and then their distance maps are computed as a

shape feature. In addition, curvature analysis is estimated on CWM gyri surfaces using

three shape features (curvedness, sharpness, and mean curvature). Moreover, a monetary

reward fMRI experiment is conducted, and voxels that exhibited the most significant signal

activation change due to the feedback event are used as features for classification between

the two groups. Finally, all the extracted shape features are fed to a multi-level deep net-

work for feature fusion and diagnosis.

This thesis integrated features from two imaging modalities sMRI and fMRI, while

the long-term plan of the BioImaging laboratory is to integrate features from DTI with

these two modalities as well.

H. Dissertation Layout

This thesis is organized as follows:

2- Chapter 2 introduces a novel framework for 3D brain segmentation from MR

images. The framework is based on stripping the skull, followed by applying a 3D joint

model that combines shape, intensity, and spatial information for brain segmentation. The

framework has been tested on several databases that span different life stages in order to
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show its robustness.

3- Chapter 3 introduces a novel CAD system for autism diagnosis, which is the ul-

timate goal of this thesis. It is based on shape feature extraction from cerebral cortex (Cx)

and cerebral white matter (CWM) of structural MR images along with using fMRI modal-

ity for diagnosis. Finally, features from both modalities are fused for classification. Shape

features from both structures were fused based on studies suggesting that neuropathologi-

cal findings in regards to a putative minicolumnopathy and dysplastic Cx changes tend to

magnify themselves by abnormal connections of CWM.

4- Chapter 4 concludes the dissertation and outlines possible points for future work.
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CHAPTER II

SEGMENTATION OF MR BRAIN IMAGES USING ADAPTIVE SHAPE PRIOR AND
HIGHER-ORDER MGRF

This chapter introduces a new framework for the segmentation of different brain

structures from 3D MR brain images at different life stages. The proposed segmentation

framework is based on a shape prior built using a subset of co-aligned training images that is

adapted during the segmentation process based on first- and second-order visual appearance

characteristics of infant MRIs. These characteristics are described using voxel-wise image

intensities and their spatial interaction features. To more accurately model the empirical

grey level distribution of brain signals, especially for infant brains, a Linear Combination

of Discrete Gaussians (LCDG) model having positive and negative components is used.

To accurately account for the scan inhomogeneities, especially with infant brain MRIs,

a higher-order Markov-Gibbs Random Field (MGRF) spatial interaction model that inte-

grates third- and fourth- order families with a traditional second-order model is proposed.

The proposed approach was tested and evaluated on 102 3D MR brain scans using three

metrics: the Dice coefficient, the 95- percentile modified Hausdorff distance, and the abso-

lute brain volume difference. Experimental results promise more accurate segmentation of

MR brain images compared to current open source segmentation tools.

A. Introduction

Accurate delineation of brain tissues from Magnetic Resonance (MR) images is an

essential step in clinical diagnostics, therapy evaluation, human brain mapping, and neuro-

science [275]. In particular, segmenting a brain MR image contributes much to the analysis

and treatment of brain injuries and disorders [276]. However, the brain MRI segmentation
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meets with challenges stemming from image noise, inhomogeneities, artifacts, such as par-

tial volume effect and the discontinuities of boundaries due to similar visual appearance

of adjacent brain structures. This work addresses brain MRI segmentation at different life

stages, having the infancy stage the most complicated one due to many challenges such as

reduced contrast, higher noise [277], and inverse contrast between the White Matter (WM)

and Gray Matter (GM) in the infant brain MRIs [278], Figure 11. Segmentation of the brain

at later stages may be based on only image intensity, because the contrast between different

types of tissues is much better and the signal-to-noise ratios are improved, Figure 11.

(a) (b)

FIGURE 11: Example for a T1-weighted MRI for an adult (a) and an infant (b) brain.

Lower contrast between infant brain tissue classes stems from the fact that most of

the WM is unmyelinated yet and its water content is close to the GM one. Moreover, both

the WM and GM have the same intensity at about nine months of age [279]; hence, it is dif-

ficult to classify the infant brain tissues using only the intensity. Additionally, major partial

volume effects occur due to the contrast inversion between the WM and GM compared to

the adult brain MRI. The unmyelinated WM intensity is just between intensities for the GM

and Cerebrospinal Fluid (CSF) tissues, so that partial volume averaging often misclassifies

the average between the latter two tissues as the unmyelinated WM [278]. Furthermore,

the MRI factors, such as long scan duration, small voxel size, and low signal-to-noise ra-

tio (SNR) also hinder the infant brain imaging. High-resolution images are essential to
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show the infant brain structure because of its much smaller size compared to the adult

brains [276]. However small-size voxels lead to noisy infant MRI with reduced contrast,

i.e. with low contrast-to-noise ratio (CNR). To improve the CNR, the scan duration has to

be increased; however, it is too risky for an infant to be anesthetized for a long period. As

it is important to minimize scan times, usually infants are being fed and then wrapped to

prevent movement [280]. One may expect that new imaging technologies such as parallel

imaging or next-generation multi-channel imaging coils will decrease the scan time and

increase the CNR and SNR. A large variety of segmentation techniques has been devel-

oped over the last two decades in order to address the brain MRI segmentation challenges.

These techniques can be roughly classified into three main categories: (i) probabilistic,

or statistical methods, (ii) atlas-based methods, and (iii) techniques based on deformable

models.

1. Probabilistic segmentation

These algorithms involve prior models that describe the signal distributions of each

brain structure. Ng et al. [281] segmented MR brain images using the unsupervised K-

means clustering of signals and an improved watershed algorithm. Signal clustering to

produce an initial image segmentation before applying the improved watershed transform

helped overcome the basic weaknesses of the latter, such as over-segmentation and sen-

sitivity to false edges. A similar approach by Xue et al. [278] employed a parametric

Gaussian density estimation with an Expectation-Maximization (EM) algorithm and con-

strained spatial homogeneity of the MR images with a Markov random field (MRF) prior.

Partial volume averaging effects have been eliminated by predicting the misclassification

(e.g., of an ’averaged’ CSF and GM into an intensity similar to WM). Song et al. [282]

proposed a probabilistic neural network (PNN) for segmenting the brain MRI. Probability

density functions of the brain tissues were estimated from reference vectors generated by

a self-organizing map (SOM). To reduce the partial volume averaging effects, weighting
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factors were added to the summation layer’s patterns in a weighted probabilistic neural

network (WPNN) and soft labeling was performed by a supervised Bayesian classifier.

An automated MRI brain segmentation method by Mayer et al. [283] combined spatial

and intensity features into a high-dimensional feature space. An adaptive mean-shift clas-

sifier extracted a set of convergence modes, i.e. high-density points of a feature space,

being good candidates for intensity-based classification. Brain tissues were classified by

an intensity-based mode clustering. This approach was very effective with non-convex

clustering. Fang et al. [284] developed a tree metrics (TM)-based graph cut algorithm to

segment the MRI brain tissues. After a brain MR image is classified using the TM, the

goal labeling is inferred by “tree-cutting”. In contrast to most of conventional iterative

methods like the EM-based ones, which produce only locally optimal labeling, this algo-

rithm needs no more than one sweep to generate the globally optimal labeling with respect

to the TM. An automated segmentation approach by Ortiz et al. [285] classified the brain

tissue with no prior information. The segmentation consisted of feature extraction and

classification. Extracted first order (pixel/voxel-wise), second order (pair-wise), moment,

and scale-invariant features were classified by growing hierarchical SOMs (GHSOM). A

method was proposed by Patenaude at al. [286] that used manually labeled image training

data. It utilized the principles of both the active Shape and appearance models within a

Bayesian framework, allowing probabilistic relationships between shape and intensity to

be fully used. Li et al. [287] proposed a 3D MGRF model for the segmentation of brain

MR images to avoid the shortcomings of the 2D model which is not able to fully capture the

spatial information, especially among the slices. An initial segmentation was first obtained

by k-means clustering in order to reduce the extensive computations required by the MGRF

model. The Iterated Conditional Modes (ICM) algorithm was finally applied to obtain the

optimal solution under maximum a posteriori (MAP) criterion. A non-parametric adaptive

mean-shift algorithm was proposed by Janney et al. [288] for brain tissue segmentation. It

clustered the joint spatial-intensity feature space, followed by a phase of intensity-based
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mode clustering into the brain tissue types. The algorithm could deal with non-convex

clusters, and also produced convergence modes that were better applicants for intensity-

based segmentation than the initial voxels. Weber et al. [289] segmented the brain tissues

using FSL-FAST free software that is based on K-means clustering which provided initial

segmentation, followed by the EM algorithm for bias field correction. In order to speed up

the process, parallelization to any eligible parts of the software was applied, which needed

some adaptation to the algorithms in order to maintain the accuracy obtained by the soft-

ware package. Mahmood et al. [290] proposed an unsupervised framework for brain tissue

segmentation using a combination of Bayesian-based adaptive mean shift that clustered the

tissues in the joint spatial-intensity feature space, and fuzzy c-means that is initialized with

a priori spatial tissue probability maps to assign the clusters into three tissue types; WM,

GM, and CSF.

Infant brain segmentation using statistical-based methods was also addressed in

literature. Automated segmentation of brain structures, such as WM, CSF, Central GM

(CEGM), and Cortical GM (COGM) was conducted by Anbeek et al. [291] using T2-

weighted and inversion recovery (IR) MRI of the neonatal brains. Probability maps to

segment each brain tissue class with a K-nearest neighbor (KNN) classifier using voxel

intensities and coordinates as features were constructed manually. A multi-label segmen-

tation process combined the obtained classes. Wang et al. [292] segmented T1, T2 and

diffusion-weighted brain images using a sparse representation of the complementary tis-

sue distribution. Initially, the brain tissue was segmented into different structures using a

patch-based technique with a library of multi-modality images, having been aligned with

their ground-truth segmentation maps. Then the segmentation was refined by integrating

geometric constraints. Wang et al. [293] employed a random forest technique to integrate

features from different modalities for brain tissue segmentation in infants along with prob-

ability maps of GM and CWM. Infant brain segmentation using shape priors was also

addressed in the literature [294–296]. Zhang et al. [297] proposed a deep convolutional
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neural networks (CNNs) approach for segmenting the neonatal brains from multi-modal

MR images, generating the segmentation maps as outputs. The multiple intermediate lay-

ers included many operations such as convolution, pooling, and normalization in order to

capture the highly nonlinear mappings between inputs and outputs. Moeskops et al. [298]

segmented neonatal brains int WM, GM, and CSF using supervised voxel classification.

First, voxels that could easily be assigned to one of the three types are labeled using two-

class classification for each tissue type separately. A multi-class classification was then

performed.

Statistical-based techniques are generally fast to implement compared to other seg-

mentation methods. However, they depend only on predefined probability models that

cannot fit all of the possible real data distributions. This is due to the fact that actual in-

tensity distributions of brain structures are greatly affected by several factors, such as the

unique patient and scanner along with scanning parameters. Also, due to the similar inten-

sities (gray levels) for the different brain tissue structures of the infant MR brain images,

segmentation techniques only based on the intensity remain inaccurate.

2. Atlas-based segmentation

Atlas-based approaches have emerged as powerful segmentation tools. These ap-

proaches are based on a priori knowledge about brain structures, and treat the segmentation

problem as a registration task. Ashburner et al. [299] introduced a generative framework

that combined image registration, tissue classification, and bias correction. Their frame-

work incorporated a smooth intensity variation and nonlinear registration with tissue prob-

ability maps using mixture of Gaussians. Pohl et al. [300] introduced a Bayesian model for

simultaneous segmentation and registration. Their framework tried to exploit complemen-

tary aspects of registration and segmentation problems. In order to account for different

physiological (patient size and weight) and scanning (scanner type and data acquisition

protocol) parameters, Han et al. [301] introduced an intensity re-normalization procedure
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to adjust the prior atlas intensity model to new input data to overcome the problems stem-

ming from using training data acquired from a different scanner that was used for the test

data. The re-normalization process updated the class-conditional densities for each atlas

structure by applying a multi-linear atlas-image registration and histogram matching. Ar-

taechevarria et al. [302] proposed a generalized local weighting voting scheme in which

the fusion weights were adapted for each voxel based on local estimation of the segmen-

tation performance. The local weighting voting outperformed traditional global strategies

that estimate a single value for the segmentation accuracy for the whole image. Sabuncu

et al. [303] proposed an automated label fusion segmentation technique. In order to cap-

ture greater inter-subject anatomical variability, each training data set was individually co-

registered to the test data set. Then, a nonparametric probabilistic model was employed to

fuse the training labels to compute the final segmentation. Morin et al. [304] presented an

atlas-based segmentation framework using random walks that combined registration and la-

beling propagation steps. They used a generative model to provide pixel label probabilities

to improve the segmentation for high-confidence labels. To match the target images with

atlas images, they used the Affine-Scale Invariant Feature Transform (ASIFT) [305] and

Speeded Up Robust Features (SURF) [306] registration techniques. In order to avoid seg-

mentation errors produced by registration imperfection, Lötjönen et al. [307] introduced

an optimized pipeline for multi-atlas brain MRI segmentation. They introduced two ap-

proaches that combine multi-atlas segmentation and intensity modeling based on using EM

and graph cuts for optimization. First, they registered all atlases to the target data and a

majority voting was applied to predict the segmentation of the target image. Then, the

segmentation was improved using the intensity modeling as a post-processing step. Lijn et

al. [308] introduced a segmentation method based on the combination of spatial features

and appearance models. They generated a spatial probability map that was obtained from

multiple atlas-target image registrations, to implement the spatial model. The tissue ap-

pearance was modeled by a KNN classifier using Gaussian scale-space features. Then, a
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Bayesian framework was used to combine both spatial and appearance models and a graph-

cut approach [309] was used for optimization. Ledig et al. [310] introduced a framework

for labeling whole brain scans by incorporating a global and stationary MRF to ensure con-

sistency of the neighborhood relations between structures with an a priori defined model.

Segmentation of neonatal brains was also conducted in the literature using atlas-

based techniques. A method for the segmentation of axial neonatal brain MRI that com-

bined multi-atlas-based segmentation and supervised voxel classification was proposed, [311],

in order to segment eight different tissue classes, namely cortical grey matter (CoGM), un-

myelinated white matter (UWM), brainstem, cerebellum, ventricles, cerebrospinal fluid in

the extra-cerebral space (CSF), basal ganglia, and myelinated white matter (MWM). Some

approaches use longitudinal scans at a late-time-point age, where the contrast is much bet-

ter between different tissue types, from which probabilistic atlases are constructed to guide

segmentation of neonatal images [312, 313]. Cherel et al. [314] employed a subject-specific

atlas that is based on manually segmented data for the segmentation of brain tissue classes.

The atlases were incorporated with single-atlas expectation maximization (EM) method.

Atlas-based segmentation techniques show more accuracy with respect to statistical-

based techniques. Nevertheless, they are still challenged by atlas selection, combination,

and the associated heavy computation time. Another major drawback of atlas-based seg-

mentation algorithms is their dependency on the selected features that will be used to link

between the test subject and the prior (training) data used in the construction of the atlas.

For example most of the current techniques use signal intensity to find the correspondence

between the data to be segmented and the prior atlas. This may lead to inaccurate seg-

mentation results as signal intensities (gray levels) vary due to many factors such as the

patient’s age, and the scanning protocol.
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3. Deformable models-based segmentation

In order to obtain continuous segmentation of brain structures, deformable bound-

aries have also been recognized as more accurate segmentation techniques of MR brain

tissues. Angelini et al. [315] introduced a multi-phase level set framework for automated

segmentation of brain MRIs. The segmentation of the brain tissues (WM, GM and CSF)

was solely based on homogeneity (average grey level) measures. To avoid the need for

any prior information and to speed up numerical calculation, a random seed for initializa-

tion of the deformable boundaries was used. Colliot et al. [316] proposed a deformable

model-based approach that used spatial constraints, represented as fuzzy subsets of the

3D image space, as an external force to control the boundary evolution. To avoid manual

selection of the model parameters, a training step was required to estimate the spatial con-

straints parameters. Miri et al. [317] introduced a topology-preserving deformable model

framework for the segmentation of brain MRI. They employed photometric constraints to

guide the deformable model deformations to iteratively reclassify the points located at the

evolving boundaries. A deformable model approach for the segmentation of brain regions

from MR images was proposed by Liu et al. [318]. The deformable contour was implic-

itly represented by a set of Wendland’s radial basis functions (RBFs) and was evolved by

iterative updates of the locations of the RBFs. The updates of the RBFs locations were con-

trolled by an external force that considered the intensity contrast across boundaries. Huang

et al. [319] introduced an automated, hybrid deformable model framework that integrated

both image edge geometry and voxel statistics features to regularize the convergence of the

deformable contour. Del Fresno et al. [320] described a hybrid method that combined re-

gion growing and deformable models for segmentation of different structures in head MRI

and Computed Tomography CT scans. Their approach used a Region-Growing (RG) algo-

rithm to compute an approximation of the objects. This was followed by generating closed

and oriented surface meshes to enclose the region of interest. To improve the segmenta-

tion of noisy images, local neighborhood features of each voxel of the region boundary
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were used. The deformable model method geometry was constructed using the RG-list

of boundary voxels generating a hole-free surface mesh. To better detect the structures of

interest, the user could select few seeds for RG initial segmentation. Wang et al. [321]

proposed a multi-phase level set framework to segment brain MR images with intensity in-

homogeneity. They modeled the local image intensities using Gaussian distributions with

different means and variances. Then, a variational approach minimized an energy function

to compute the means and variances that would guide the contour evolution towards the

target boundaries. Bourouis et al. [322] developed a level set framework for segmenting

brain tissues. Their framework employed an image registration step and a classification

step for the initialization of the deformable boundary. The boundary evolution was con-

trolled by a speed function that accounted for both boundary- and region-based properties.

Ciofolo et al. [323] developed an automated framework based on level sets for simultane-

ous segmentation of multiple structures from brain MRIs. The evolution of each level set

was driven by a fuzzy decision system that combined three factors: intensity distribution of

the 3D MR volume, the relative position of the evolving contours, and a priori knowledge

provided by an anatomical atlas. Wang et al. [324] proposed a multi-layer background sub-

traction technique with a seed region growing approach which used local texture features

represented by local binary patterns (LBP) and photometric invariant color measurements

in RGB color space for brain MRI segmentation. Zhao et al. [325] segmented brain tissues

using a method that is adapted from Chan and Vese model, named automatic threshold level

set without edges. Threshold were obtained by fuzzy c-mean algorithm.

Segmentation using deformable models was also exploited in infant brains, [292,

293, 312, 313].

The main advantage of deformable model-based segmentation techniques is the

ability to segment connected (non-scattered) objects more accurately than the other seg-

mentation methods. However, the accuracy of this method is based on the accurate design

of the guiding forces (statistical, geometric, etc.) in addition to the initialization of the
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model.

In summary, brain segmentation work found in the literature suffers from many

drawbacks as mentioned before for each type of segmentation. Moreover, infant brain seg-

mentation techniques depend on either multiple modalities which lengthens the processing

time, or on longitudinal studies which are not always available for research purposes. Also,

the reduction in contrast between CWM and other structures hardens the issue of preserving

its edges by most of the available techniques

To overcome the aforementioned limitations, this thesis proposes a novel technique

for brain segmentation from MR images. Adaptive probabilistic shape models for the shape

and first-order visual appearance of MRI data are employed to initialize the segmentation.

This is then combined with a novel higher-order Markov Gibbs Random Field (MGRF)

spatial interaction model (up to fourth order) with analytic estimation of potentials. This

joint model guarantees increasing the segmentation accuracy by accounting for the large

inhomogeneities and noise, especially in infant brain MRI data. Also, the analytic estima-

tion of potentials generalizes the proposed model to different MRI subjects, unlike using

empirical values in most of the work present in the literature which would require manual

setting for each subject. The strength of the proposed algorithm lies in the fact that it nei-

ther depends on multiple modalities for acquiring images nor on longitudinal studies that

are not always available for research purposes.

B. Methods

The proposed framework is based on two main components: (i) brain extraction

(skull stripping); and (ii) brain segmentation. Figure 12 illustrates the proposed framework.

Details of the framework are outlined below.
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FIGURE 12: The proposed segmentation framework.

1. Preprocessing

Before segmentation of brain scans takes place, a novel framework is applied for the

automated extraction of the brain [326, 327]. The proposed approach is primarily based on

the integration of a stochastic model (a two-level Markov-Gibbs random field (MGRF)) that

serves to learn the visual appearance of the brain texture, and a geometric model (the brain

iso-surfaces) that preserves the brain geometry during the extraction process. The proposed

framework consists of three main steps: (i) Following bias correction of the brain, a new

3D MGRF having a 26-pairwise interaction model is applied to enhance the homogeneity

of MR images and preserve the 3D edges between different brain tissues; (ii) The non-

brain tissue found in the MR images is initially removed using the brain extraction tool

(BET), and then the brain is parceled to nested iso-surfaces using a fast marching level set

method; (iii) Finally, a classification step is applied in order to accurately remove the re-

maining parts of the skull without distorting the brain geometry. The classification of each
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voxel found on the iso-surfaces is made based on the first- and second-order visual appear-

ance features. The first-order visual appearance is estimated using a linear combination of

discrete Gaussians (LCDG) to model the intensity distribution of the brain signals. The

second-order visual appearance is constructed by using an MGRF model with analytically

estimated parameters.

2. Joint MGRF Model of MR Brain Images

Let R = {(x, y, z) : 0 ≤ x ≤ X − 1, 0 ≤ y ≤ Y − 1, 0 ≤ z ≤ Z − 1};

Q = {0, 1, . . . , Q − 1}; and L = {0, . . . , L} denote a finite 3D arithmetic lattice of the

size of XY Z supporting grayscale images and their region (segmentation) maps, a finite

set of Q integer gray values, and a set of region labels L, respectively. Let g = {gx,y,z :

(x, y, z) ∈ R; gx,y,z ∈ Q} and m = {mx,y,z : (x, y, z) ∈ R; mx,y,z ∈ L} be a grayscale

image taking values from Q, i.e., g : R → Q, and a region map taking values from L, i.e.,

m : R → L, respectively. An input brain image, g, co-aligned to the training data base,

and its map, m, are described with a joint probability model: P (g,m) = P (g|m)P (m),

which combines a conditional distribution of the images given the map P (g|m), and an

unconditional probability distribution of maps P (m) = Psp(m)PV(m). Here, Psp(m)

denotes a weighted shape prior, and PV(m) is a Gibbs probability distribution with poten-

tials V, which specifies a MGRF model of spatially homogeneous maps m. Details of the

model’s components are outlined below.

a. Adaptive Shape Model Psp(m) To start the segmentation process, a database

is created, where expected shapes of each brain label are constrained with an adaptive

probabilistic shape prior. To create the shape database, a training set of images, collected

for different subjects (15 data sets, not included as test subjects), are co-aligned by 3D affine

transformations with 12 degrees of freedom (three for the 3D translation, three for the 3D

rotation, three for the 3D scaling, and three for the 3D shearing) in a way that maximizes

their Mutual Information (MI) [328]. The 15 subjects were spanning different ages and
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included control and autistic subjects (to avoid being biased to a certain group). This set is

then subdivided into three atlases based on the normalized cross correlation measure. This

is done in order to improve the segmentation accuracy by integrating each atlas with both

the intensity and spatial models (to be discussed in the following subsections), and finally

applying the majority voting criterion to determine the class of each voxel. For each input

MR data to be segmented, the shape prior is constructed by an adaptive process guided

by the visual appearance features of the input MRI data [329–331]. The shape prior is a

spatially variant independent random field of region labels for the co-aligned data:

Psp(m) =
∏

(x,y,z)∈R

psp:x,y,z(mx,y,z) (6)

where psp:x,y,z(l) is the voxel-wise empirical probabilities for each brain label l ∈ L. First,

the normalized cross correlation similarity coefficient is used to select the subject from the

shape database that has the best match with the input subject (i.e., highest similarity). The

selected subject is then used as a reference prototype to co-align the input subject using the

3D affine transformation described above. In order to estimate the shape prior probabilities

for each voxel in the test subject, the steps summarized in Algorithm 1 are followed.

b. First-Order Intensity Model P (g|m) The first-order visual appearance of

each brain label is modeled by separating a mixed distribution of voxel intensities of the

infant brain MRIs into individual components associated with the dominant modes of the

mixture. The latter is precisely approximated with a Linear Combinations of Discrete Gaus-

sians (LCDG) [332] with positive and negative components, which is based on a modified

version of the classical Expectation-Maximization (EM) algorithm.

Let Ψθ = (ψ(q|θ) : q ∈ Q) denote a discrete Gaussian (DG) with parameters

θ = (µ, σ), integrating a continuous 1D Gaussian density with mean µ and variance σ2

over successive gray level intervals. The LCDG with four dominant positive DGs and

Cp ≥ 4 positive and Cn ≥ 0 negative subordinate DGs is [332]:
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Pw,Θ(q) =

Cp∑
k=1

wp:kψ(q|θp:k)−
Cn∑
κ=1

wn:κψ(q|θn:κ) (7)

where all the weights w = [wp:k, wn:κ] are non-negative and meet an obvious constraint∑Cp

k=1wp:k −
∑Cn

κ=1wn:κ = 1. All LCDG parameters, including the DGs numbers, are

estimated from the mixed empirical distribution to be modeled using the modified EM

algorithm [332].

c. MGRF Model With Second- and Higher–order Cliques PV(m) In addition

to the first-order visual appearance model, the spatial interactions between the brain vox-

els are also taken into account. Using spatial models that are second-order-clique based,

(e.g., [333]), will not enable accounting for the large inhomogeneity of brain MR images,

especially for infants. Therefore, in this work we propose a higher-order Markov-Gibbs

Random Field (MGRF) spatial interaction model that adds the families of the triple and

quad cliques to the pairwise cliques (Figure 13(b,c)) with analytical estimation of the po-

tentials. The proposed approach has the ability to account for the large inhomogeneity

of infant MRIs, thus, reducing the noise effects and increasing the segmentation accu-

racy [329, 330]. Details of the proposed higher-order MGRF model are described below.

FIGURE 13: Samples of the second- (a), third- (b), and fourth-order (c) cliques for the

26-neighborhood (graph cliques are shown in different colors for visualization purpose).
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Let Ca denote a family of s-order cliques of an interaction graph with nodes in the

3D lattice sites (x, y, z) and edges connecting the interacting, or interdependent, sites (see

Figure 13). To account for large variations of the infant MRIs, the label interactions are

modeled by a spatially homogeneous MGRF with up to fourth-order interactions over the

nearest 26-neighborhoods of voxels:

PV(m) =
1

ZV

exp

(
A∑

a=1

∑
c∈Ca

Va(m(x, y, z) : (x, y, z) ∈ c)

)
(8)

where A clique families describe the geometry of the graph interactions,

V = [Va : {0, . . . , L} → (−∞,∞) : a = 1, . . . , A] is a collection of Gibbs poten-

tial functions Va for the families Ca, and the partition function ZV normalizes the probabil-

ities over the parent population M = {0, . . . , L}XY Z of all maps. An initial region map m,

obtained by the voxel-wise classification, allows for analytically approximating the maxi-

mum likelihood estimates of the potentials and computing the voxel-wise probabilities of

the region labels. For symmetry sake, only equality or inequality of the labels in clique c

is taken into account. The second- third- and forth–order potentials are given by Equations

(9), (10), and (11), respectively:

Va(mp1 ,mp2) =


V2:a:eq if mp1 = mp2

−V2:a:eq otherwise

(9)

where V2:a:eq = −V2:a:ne = 4
(
Fa:eq(m

◦)− 1
2

)
, and F(m◦) = [ρaFa(µ1, . . . , µs|m◦) :

(µ1, . . . , µs) ∈ {0, . . . , L}s; a = 1, . . . , A] is the collection of scaled relative frequencies

of co-occurrences of configurations (µ1, . . . , µs) of the labels in the cliques of each family

Ca over a given training map m◦.

Va (mp1 ,mp2 ,mp3) =


V3:a:eq3 if mp1 = mp2 = mp3

−V3:a:eq3 otherwise

(10)
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where V3:a:eq3 = −V3:a:eq2 =
16
3

(
Fa:eq3(m

◦)− 1
4

)

Va (mp1 ,mp2 ,mp3 ,mp4) =


V4:a:eq4 if 4 equal labels

V4:a:eq3 if 3 equal labels

−
(
V4:a:eq3 + V4:a:eq4

)
otherwise

(11)

where
V4:a:eq4 = λ∗

(
Fa:eq4(m

◦)− 1
8

)
V4:a:eq3 = λ∗

(
Fa:eq3(m

◦)− 1
2

)
V4:a:eq2 = λ∗

(
Fa:eq2(m

◦)− 3
8

)
= −

(
V4:a:eq4 + V4:a:eq3

)
and

λ∗ =

A∑
a=1

((
Fa:eq4(m

◦)− 1
8

)2
+
(
Fa:eq3(m

◦)− 1
2

)2
+
(
Fa:eq2(m

◦)− 3
8

)2)
A∑

a=1

(
7
64

(
Fa:eq4(m

◦)− 1
8

)2
+ 1

4

(
Fa:eq3(m

◦)− 1
2

)2
+ 15

64

(
Fa:eq2(m

◦)− 3
8

)2)
where mpi

is the region map label at the voxel pi = (xi, yi, zi). The proposed analytical

approximation of the Gibbs potentials from a given map m extends earlier second-order

MGRFs (e.g., [333]) to the higher-order models. Finally, the region map m is improved

using Iterative Conditional Mode (ICM) algorithm [334] that maximizes the probabilities

of the 3D joint model. The complete steps of our segmentation framework are summarized

in Algorithm 1.

C. Experimental Results

The proposed segmentation framework was tested on different databases at differ-

ent ages to show its generality and robustness. Since the ultimate goal of this thesis is to

develop a novel CAD system for autism diagnosis, segmentation was validated on control

as well as autistic subjects. Twenty one autistic subjects and their matched controls were

analyzed from the Kennedy Krieger Institute (KKI)(8–12.8 years). Moreover, 10 autistic

subjects and their matched controls from the university of California (UCLA) (8.4–17.9

years) and 10 autistic subjects and their matched controls from the NYU Langone Medical
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Center (6.5–39.1 years) [335] were analyzed. Also, infants from the NDAR/IBIS database

(10 autism, 10 controls, aged 6 months) [336] were segmented using the proposed frame-

work.

All the scans are T1-weighted, and obtained from the following sources: (1) The In-

fant Brain Imaging Study (hereafter, IBIS), a multisite, longitudinal study of infants at high

risk of developing autism. These data are available from the National Database for Autism

Research (NDAR). (2) Data from the Kennedy Krieger Institute, University of California,

and NYU Langone Medical Center (hereafter, KKI, UCLA, and NYU respectively), made

available through the Autism Brain Imaging Data Exchange [335].

IBIS data comprised T1-weighted images, and were acquired on a 3 tesla scanner

with TR = 2400 millisecond, TE = 3.16 millisecond TI = 1200 millisecond, and flip angle

=8. 160 sagittal slices were acquired at 1 millimeter thickness, with each slice being 224×

256 pixels with 1 millimeter resolution.

KKI data includes children with ASD as well as controls. Participants were between

8 and 13 years of age when scanned. T1-weighted images were acquired on a 3 tesla Philips

Achieva with TR = 8 millisecond, TE = 3.7 millisecond, and flip angle = 8. 128 sagittal

slices were acquired at 1.33 millimeter thickness. The pixels of each 256× 256 slice were

1 millimeter each side.

UCLA data includes participants between 8.4 and 17.9 years of age when scanned.

T1-weighted images were acquired using MPRAGE with TR = 2300 millisecond, TE =

2.84 millisecond, and flip angle = 9. Sagittal slices were acquired at 1.2 millimeter thick-

ness. The pixels of each 256× 256 slice were 1 millimeter each side.

NYU data includes participants between 6.5 and 39.1 years of age when scanned.

T1-weighted images were acquired on a 3 tesla Allegra with TR = 2530 millisecond, TE =

3.25 millisecond, and flip angle = 7. Sagittal slices were acquired at 1.33 millimeter thick-

ness. The pixels of each 256× 256 slice were 1.3 millimeter, and 1 millimeter respectively.

The proposed segmentation approach was evaluated on all subjects above using
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their manually segmented ground truth created by an MR expert. Results in the upcoming

pages show that the joint model combining the intensity, spatial, and shape information is

in general a better performer than having only one or two of the three models. The intensity

information alone, or having it combined with the shape information, often fail to capture

fine details, especially with infant MRI scans, where contrast is extremely poor between

different tissue types, Figure 14 . This is enhanced after using higher-order MGRF, where

edges of different tissue types are better retained. Figures 15, 16, and 17 show more

segmentation results using the proposed framework from the different databases used in

this study.

The segmentation performance was evaluated using 3 metrics: (i) the Dice similar-

ity coefficient (DSC) [337], (ii) the 95-percentile modified Hausdorff distance (MHD) [338],

and (iii) the absolute brain volume difference (ABVD). Metrics were computed by compar-

ing the ground truth segmentation to results from the proposed approach. Tables 1, 2, and 3

summarize the accuracy results obtained using the three metrics on the different databases.

The performance of the proposed segmentation approach is highlighted by compar-

ing it against the software package (iBEAT) [339], that performs bias correction followed

by brain segmentation. Segmentation accuracies for the iBEAT results are also summarized

in Tables 1, 2, and 3. These results emphasize the efficiency of the proposed approach that

is required for the next phase of the proposed CAD system. In addition, the average time

to segment a brain volume using the proposed approach is less than a minute, whereas it

takes around 40 minutes using iBEAT. Accuracies are reported for CWM and cerebral gray

matter (CGM).

D. Summary and Conclusion

This chapter introduced a novel framework for 3D brain segmentation from MR im-

ages. The framework is based on stripping the skull, followed by applying a 3D joint model

that combines shape, intensity, and spatial information for brain segmentation. Adaptive
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FIGURE 14: Segmentation results projected onto axial, coronal, and sagittal planes for a

sample from the IBIS database for infants: (a) original MRIs after skull stripping, and the

segmentation using (b) intensity model alone; (c) intensity and shape models (d) intensity,

shape, and higher-order MGRF models; and (e) the iBEAT method. Ground truth is shown

in (f). CWM is in yellow, GM in blue, and cerebrospinal fluid (CSF) is in red for visual-

ization purposes. All subjects are bias-corrected prior to segmentation using iBEAT or the

proposed method. It is clear that the intensity model alone (b) is not sufficient for segmen-

tation, since the contrast is extremely low between CWM and GM. Results were further

enhanced using the joint model (d).

probabilistic shape models for the shape and first-order visual appearance of MRI data are

employed to initialize the segmentation. This is then combined with a novel higher-order

Markov Gibbs Random Field (MGRF) spatial interaction model (up to fourth order) with

analytic estimation of potentials. This joint model guarantees increasing the segmentation

accuracy by accounting for the large inhomogeneities and noise, especially in infant brain

MRI data. The strength of the proposed algorithm lies in the fact that it neither depends

on multiple modalities for acquiring images nor on longitudinal studies that are not always

available for research purposes. It was tested on several databases at different life stages,
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FIGURE 15: Segmentation results projected onto axial, coronal, and sagittal planes for a

sample from the KKI database: (a) original MRIs after skull stripping, and the segmenta-

tion using (b) intensity model alone; (c) intensity and shape models (d) intensity, shape,

and higher-order MGRF models; and (e) the iBEAT method. Ground truth is shown in

(f). CWM is in yellow, GM in blue, and cerebrospinal fluid (CSF) is in red for visualiza-

tion purposes. All subjects are bias-corrected prior to segmentation using iBEAT or the

proposed method.

and validated versus the ground truth images created with the aid of an MR expert using

different metrics. The proposed framework was also compared to one of the state-of-the-art

approaches and showed better performance. Segmentation is considered to be a key step

for the CAD system that will be illustrated in the next chapter for autism diagnosis. If

structures of the brain are missing from the segmentation step, then classification decision

(autism/control) that comes from the CAD system would not be reliable enough.
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FIGURE 16: Segmentation results projected onto axial, coronal, and sagittal planes for a

sample from the UCLA database: (a) original MRIs after skull stripping, and the segmen-

tation using (b) intensity model alone; (c) intensity and shape models (d) intensity, shape,

and higher-order MGRF models; and (e) the iBEAT method. Ground truth is shown in

(f). CWM is in yellow, GM in blue, and cerebrospinal fluid (CSF) is in red for visualiza-

tion purposes. All subjects are bias-corrected prior to segmentation using iBEAT or the

proposed method.

72



Algorithm 1 Steps of the Proposed segmentation framework

◦ MRI Preprocessing and Shape Database Construction

(a) Use the automated approach in [326, 327] to remove the skull from the MR

images.

(b) Construct the shape database through a co-alignment of the biased-corrected

training brains (both grey scale and their ground truth).

(c) Divide the database into 3 atlases (5 subjects each) using normalized-cross cor-

relation (NCC).

◦ Brain Segmentation

(a) Align the test subject with the shape database to get the 3D affine matrix T.

(b) For each Atlas:

i. Estimate the adaptive shape prior probability:

A. Use the matrix T to transform each voxel to the atlas domain.

B. Initialize a 3D window and search inside it for voxels with correspond-

ing grey level in all training sets with equalized intensities.

C. Increase the window size, if needed, and redo the search until a non-

empty result is found. If maximum size is reached and no result is

found, increase the grey level tolerance and get back to Step b.

D. Create probabilities based on the labels from the search results.

ii. Approximate P (g) using an LCDG with four dominant modes.

iii. Form region map m using marginal estimated density and prior shape.

iv. Find the Gibbs potentials for the MGRF model from the initial map m.

v. Improve m using the iterative conditional mode (ICM) algorithm [334].

(c) Apply majority voting to fuse the segmentation results of the three atlases.
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FIGURE 17: Segmentation results projected onto axial, coronal, and sagittal planes for a

sample from the NYU database: (a) original MRIs after skull stripping, and the segmen-

tation using (b) intensity model alone; (c) intensity and shape models (d) intensity, shape,

and higher-order MGRF models; and (e) the iBEAT method. Ground truth is shown in

(f). CWM is in yellow, GM in blue, and cerebrospinal fluid (CSF) is in red for visualiza-

tion purposes. All subjects are bias-corrected prior to segmentation using iBEAT or the

proposed method.
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TABLE 1: Accuracy of the proposed segmentation approach using Dice Similarity Coef-

ficient (DSC)(%), the modified Hausdorff Distance (MHD), and Absolute Brain Volume

Difference (ABVD) (%) for the IBIS database. Metrics are represented as Mean±Standard

Deviation.
WM CGM

Metric Ours iBEAT Ours iBEAT

DSC 94.7±1.53 73.3±1.27 93.86±0.13 81.6±3.5

p-value 0.0001 0.0001

MHD 7.3±1.23 18.27±1.53 3.5±0.24 23.3±0.52

p-value 0.0001 0.0001

ABVD 3.17±1.73 37.94±0.61 1.62±1.24 34.46±0.18

p-value 0.0001 0.0001

TABLE 2: Accuracy of the proposed segmentation approach using Dice Similarity Co-

efficient DSC(%), the modified Hausdorff Distance (MHD), and Absolute Brain Volume

Difference ABVD(%) for the KKI database. Metrics are represented as Mean± Standard

Deviation.
WM CGM

Metric Ours iBEAT Ours iBEAT

DSC 95.8±1.5 85±3.7 96.7±1.2 88±2.7

p-value 0.0001 0.0001

MHD 5.2±1.5 10.2±3.4 3.1±1.7 15.1±3.5

p-value 0.0001 0.0001

ABVD 2.5±1.6 23.3±1.1 1.12±1.1 18.4±1.8

p-value 0.0001 0.0001
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TABLE 3: Accuracy of the proposed segmentation approach using Dice Similarity Coef-

ficient DSC(%), the modified Hausdorff Distance MHD, and Absolute Brain Volume Dif-

ference ABVD(%) for the NYU and UCLA databases. Metrics are represented as Mean±

Standard Deviation.
WM CGM

Metric Ours iBEAT Ours iBEAT

DSC 96.1±1.5 87.3±1.2 97.8±0.13 89.6±2.5

p-value 0.0001 0.0001

MHD 2.3±1.2 15.6±1.09 0.9±0.2 13.1±1.2

p-value 0.0001 0.0001

ABVD 1.5±1.7 15.4±1.1 1.2±1.4 12.6±1.8

p-value 0.0001 0.0001
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CHAPTER III

A CAD SYSTEM FOR AUTISM DIAGNOSIS USING STRUCTURAL AND
FUNCTIONAL MRI MODALITIES

This chapter introduces a novel shape-based computer-aided diagnosis (CAD) sys-

tem using magnetic resonance (MR) brain images for autism diagnosis. In order to improve

the robustness of classification, the proposed system is based on fusing the shape features

extracted from the cerebral cortex (Cx) and cerebral white matter (CWM) from sMRI with

findings from fMRI. Extracting shape features from both CWM and Cx is conducted based

on the recent findings suggesting that Cx changes in autism are related to CWM abnormal-

ities. Adding fMRI modality is for the sake of exploiting different modalities in order to

better assess ASD.

The CAD system starts with segmenting Cx and CWM using a 3D joint model

that combines intensity, shape, and spatial information. Then, to accurately extract the

3D shape features of Cx, Spherical Harmonic (SPHARM) is applied to its re-constructed

meshes, from which four metrics are derived for each mesh point; normal curvature, mean

curvature, gaussian curvature, and Cx surface reconstruction error. To analyze the CWM

shape, its gyri are extracted by propagating an orthogonal wave to their surfaces using 3D

fast marching and then their distance maps are computed as a shape feature. In addition,

curvature analysis is estimated on CWM gyri surfaces using three shape features (curved-

ness, sharpness, and mean curvature).

Next, a monetary reward fMRI experiment that monitors areas of activation in the

brains of both groups in response to the task is conducted. Findings from both experiments

are then correlated to local areas of the brain in order to integrate the two modalities for

better assessment of ASD and obtain better classification results. This is done by feeding
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all the extracted features to a multi-level deep network for feature fusion and diagnosis.

In this work, all features are extracted from local areas of the brain, where the

brains of subjects included in the study are parcellated into 34 cortical regions per hemi-

sphere. This atlas is known as Desikan-Killiany (DK) labeling atlas [340]. This local

analysis would allow for better understanding of ASD and linking this complex syndrome

to different functional and behavioral activities of the brain.

Results on the subjects included in this study (22 with ASD, 25 controls) showed

high classification accuracy between the two groups. First, the classification was computed

based on CWM features alone, and the accuracy achieved was 81%. The classification ac-

curacy obtained using Cx features alone was 76%. Integrating features from both structures

generated a classification accuracy of 85.11%. This comes in line with the previous neu-

ropathological studies suggesting that the abnormalities in CWM connections are related

to Cx changes in ASD.

Next, the features obtained from the applied monetary reward fMRI experiment

were used for classification, generating an accuracy of 89.4%. Finally, fusing all features

form all modalities generated a classification accuracy of 94.74%, which shows the merit

of integrating multiple modalities for ASD diagnosis.

A. Introduction

The term ”autism spectrum disorder” (ASD) refers to a collection of neuro-developmental

disorders that affect linguistic, behavioral, and social skills. Autism has many symptoms,

most prominently, social impairment and repetitive behaviors. The most severe form of the

ASDs is autistic disorder (AD). By some estimates, ASD affects 1 out of 68 eight years of

age, with males being four times more likely to develop it than females. Autism is typi-

cally diagnosed at the age of 3; however, some characteristics can sometimes be observed

at around 12 months of age. What causes autism is yet unknown; however, it is mainly be-

lieved that genetic and environmental factors in complex combinations are responsible [1].
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In the literature, several imaging modalities have investigated the changes asso-

ciated with autism such as structural MRI (sMRI), diffusion tensor imaging (DTI), and

functional MRI (fMRI). sMRI examines anatomical abnormalities of the brain’s structures

such as Cx, CWM, and hippocampus, whereas DTI characterizes the 3D diffusion of brain

water molecules, hence helping elucidate abnormal white matter connectivity in develop-

mental disorders. fMRI measures the abnormalities through monitoring changes with the

brain’s blood flow.

It is worth mentioning that many acquisition sites in the US have been collecting

sMRI data for a long time, leading to the establishment of comprehensive databases. Ex-

amples are NDAR/IBIS, NDAR/Pitt [336], and ABIDE [335], with some sites collecting

data using other modalities such as DTI data [336]. This work focuses on both sMRI and

fMRI data, having a long-term plan of integrating data from other modalities. sMRI stud-

ies on ASD can be categorized into either ROI-based volumetry (RBV), or shape-based

morphometry (SBM). RBV approaches focus on the total volume for a particular region,

yet suffer from being age and gender-sensitive and in need of age-correction coefficients,

which does not enable having robust CAD systems.

On the other hand, SBM studies mainly address topological shape features that

cannot be directly estimated using RBV, such as surface curvature and cortical thickness.

SBM approaches are capable of accounting for the brain’s inherent topological features,

however most of the work at present work directly on the meshes generated from raw data

without parameterizing the brain or aligning the meshes, which makes the computations

sensitive to pre-processing and hinders comparing information. Please refer to Chapter 2

for a comprehensive survey on fMRI and sMRI in ASD.

To overcome these limitations, this work proposes a novel automated approach for

autism diagnosis using shape features from sMRI as well as findings from fMRI. The mo-

tivation behind fusing CWM and Cx features from sMRI is that recent studies suggest

that neuropathological findings in regards to a putative minicolumnopathy and dysplastic
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Cx changes tend to magnify themselves by abnormal connections of CWM [274]. Also,

it is thought that integrating different imaging modalities such as sMRI and fMRI would

improve the diagnosis accuracy, and that was the motivation behind conducting an fMRI

experiment and fusing its results with those of the sMRI experiment.

B. Methods

The proposed CAD system starts with the segmentation of the brain MR images into

CWM and Cx. The sMRI experiment is then conducted, which performs shape analysis on

the reconstructed meshes of Cx and CWM, from which 8 shape features are extracted.

A monetary reward fMRI experiment is then applied that finds areas of activation of the

brain that are related to that specific task. Features were calculated per anatomical area of

the brain to provide local analysis, using two labeling atlases; DK atlas, Figure 19, which

divides the brain into 34 cortical regions per hemisphere (total number of shape features is

544 (8 per region)). All features from both experiments are finally fused to classify autistic

and control brains. The steps of the proposed CAD system are illustrated in Figure. 18.

1. Segmentation of CWM and Cx from MR images

Segmentation of the MR brain images is conducted using the proposed framework

in Chapter 3, which is based on a 3D joint model that integrates shape, intensity, and spatial

information. Details of the proposed segmentation framework are in Chapter 3.

2. SMRI experiment: shape feature extraction

After segmenting Cx and CWM, shape analysis is conducted to obtain the CAD

system. Four shape features have been extracted from 68 local areas of the brain’s Cx (34

areas per hemisphere). Four other shape features from CWM have also been extracted,

resulting in a total number of 544 features per scan. Shape features details are outlined
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FIGURE 18: Illustration of the proposed CAD system.

FIGURE 19: Desikan-Killiany Labeling Atlas

below.

a. Cx shape features : to extract the Cx shape features, accurate approximation

of its 3D shape is required as well as having the ability to compare different brain sub-

jects. One way to achieve so is SPHARM analysis [341, 342] that approximates the cortex

surface so that the sensitivity to any errors that might have resulted from the segmentation

is greatly reduced. It also makes the reconstruction insensitive to data acquisition from

different sites. In order to apply SPHARM, a mesh manifold is first generated from the

segmented scans using a modified version of the TETGEN algorithm [343]. When con-
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structing the meshes, there is a restriction on the number of nodes to be always the same

for all subjects. This is because the shape of each mesh differs from the other, while there

must be a consistent number of nodes present so that meshes can be aligned with one an-

other. Alignment is done using SPAHRM-based registration [342]. Each node of the mesh

is then characterized with 4 features. These metrics are: Cx reconstruction error, by com-

puting the Euclidean distance from the origin DEuc; Gaussian curvature KG = K1K2

(product of the principal curvatures); mean curvature KM = (K1+K2)/2 (the average of

the principal curvatures); and normal surface curvature KN = max(K1,K2) (maximum

of the two principal curvatures).

b. CWM shape features : in order to extract CWM gyri, the distance map is cal-

culated inside the segmented 3D CWM by a fast marching level set method [344], which

gives the minimum Euclidean distance from each inner point of the segmented CWM to its

boundary. Using the EM-based approach in [345], the mixed empirical marginal distribu-

tion of these distances is partitioned into two probability models: of the CWM gyri (class

1) and all other CWM tissues (class 2), respectively. Then the gyri are extracted using the

optimum threshold that separates the two classes.

First, a 3D fast marching level-set method is used to propagate a wave front in order

to find voxels located at a distance less than or equal to T from the boundary of CWM,

Figure 20(b). Another wave is then propagated in order to find voxels located at a distance

less than or equal to T from voxels located at a distance T from the boundary of CWM,

Figure 20(c). Finally, voxels that are visited by the second wave are removed from the

ones visited by the first wave. The remaining part represents the extracted CWM gyri,

Figure 20(d), (e).

After extracting gyri from CWM, labeling of the brain regions was done using

FreeSurfer software [340], where an automated labeling system for subdividing the human

cerebral cortex on MRI scans into 34 gyral based regions of interest is applied. This would

allow for local analysis of the different brain anatomical areas, which would subsequently

82



FIGURE 20: (a) Boundary of segmented CWM. (b) First distance map. (c) Second distance

map. (d), (e) Extracted CWM gyri. (f) 3D visualization of the extracted gyri.

aid in correlating ASD with different functional and behavioral activities.

From the extracted gyral CWM, the distance maps, DM , were calculated in order

to be used as a shape feature for gyral CWM. In addition, curvature-based analysis is con-

ducted for the 3D brain CWM meshes. Three features are calculated: the mean curvature

MK = 1
2
(K1+K2), the curvedness C =

√
(K12+K22

2
), which distinguishes highly folded

regions from less folded ones [83], and the sharpness S = ((K1−K2)2), which is used to

quantify the sharpness of folding [83].

3. FMRI experiment: monetary reward feedback

This study is based on the experiment described in Scott-Van Zeeland et al. [346],

where two categories of images were displayed to the participants who were asked to press

a button to classify those images, and subsequently, a monetary feedback was provided. In

this work, the monetary rewards data of 19 subjects (8 ASD, and 11 controls) were used.

Each trial in the experiment is 5 seconds, where the images are displayed for approximately

2 seconds, the feedback is displayed for 1.25 seconds, and finally a rest period of approxi-

mately 1.75 seconds occurs between trials [346]. Each volume was preprocessed through

four steps: i) slice time correction to overcome the effect of capturing 2D slices at different

times through the whole volume, ii) realignment of slices to overcome motion artifacts.

The realignment uses six parameters, spatial transformation, and least squares approach,
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iii) normalization of slices to fit them into standard ICBM 152 template space [347] with

voxel size of 2x2x2 mm, and finally iv) smoothing using a Gaussian kernel. In this exper-

iment, the BOLD activation change during the feedback display was modeled using GLM

with one regressor describing the feedback event timing and a first group analysis was

conducted using SPM12 package [348]. For every subject, voxels that exhibited the most

significant BOLD signal activation change due to the monetary reward feedback event are

extracted and sorted. At each significant voxel, 180 values were recorded over the time

series and compared to the expected GLM convolved with the HRF as a reference signal,

Figure 21. Although both BOLD signal changes and the reference signal are in the time

domain, they are both converted first to the frequency domain before comparison. This is

done because comparing in frequency domain gives better results due to the abrupt change

pattern in the reference signal.

4. Deep Fusion Classification Network (DFCN)

The goal of this stage is to obtain a global diagnosis from the collected shape fea-

tures for each one of the local areas the brain is parcellated into. For the sMRI experiment,

the traditional way to achieve so is to use the raw features in a vertex-wise manner, but

this is inefficient since the number of nodes for each mesh is 48K. This will result in hav-

ing around 400K points per subject which is time consuming. To avoid this, features are

represented using their cumulative distribution function (CDF) values that would retain all

information as well as reduce data dimensionality.

As per the fMRI experiment, the input to the deep network is the vector that com-

prises the values recorded over the time series for all significant voxels identified in all

anatomical areas.

The CDFs are calculated with the minimum increment obtained from sorting all

measures and selecting the minimum difference between consecutive points to capture all

information in the distribution. Having this huge number of features per subject (544)
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would require a deep network scheme to account for all data. The model is built from a

stack of auto-encoders (AEs) and output layer of softmax regression for each feature [349],

and is composed of two stages, Figure 22. In the first stage, the CDF for each feature of the

544 is learnt separately with an AE using sparsity (KL-divergence) and non negative con-

straints, in order to capture most prominent variations and thus obtain discriminatory fea-

tures. The scheme employed here uses AEs with non-negativity constraint (NCAE) [350]

that decompose the data, along with sparsity (KL divergence), to extract the most uncorre-

lated and definitive features based on non-negative matrix factorization. Second stage is a

supervised back-propagation method that minimizes the total loss (negative log-likelihood)

for given training labeled data. Finally, the high-level features extracted from each stacked

NCAE (SNCAE) are concatenated, as a new combined high-level feature, and fed into an-

other SNCAE for non-linear fusion and final diagnosis, by taking two probabilities (autism,

control) in its output layer. This is where the term ”deep fusion” comes from.

Let W = {We
j ,W

d
i : j = 1, . . . , s; i = 1, . . . , n} denote a set of column vectors

of weights for encoding (e) and decoding (d) layers of a single AE . Let T denote vector

transposition. The AE converts an n-dimensional column vector u = [u1, . . . , un]
T of input

signals into an s-dimensional column vector h = [h1, . . . , hs]
T of hidden codes (features,

or activations), such that s ≪ n, by uniform nonlinear transformation of s weighted linear

combinations of signals:

hj = σ
((

We
j

)T
u
)
≡ σ

(
n∑

i=1

we
j:iui

)

where σ(. . .) is a certain sigmoid, i.e., a differentiable monotone scalar function with values

in the range [0, 1]. Unsupervised pre-training of the AE minimizes total deviations between

each given training input vector uk; k = 1, . . . , K, and the same-dimensional vector, ûW:k

reconstructed from its code, or activation vector, hk. The total reconstruction error of

applying such AE to compress and decompress the K training input vectors integrates the
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ℓ2-norms of the deviations:

JAE(W) =
1

2K

K∑
k=1

∥ ûW:k − uk ∥2 (12)

To reduce the number of negative weights and enforce sparsity of the NCAE, the recon-

struction error of Equation (12) is appended, respectively, with quadratic negative weight

penalties, f(wi) = (min{0, wi})2; i = 1, . . . , n, and Kullback-Leibler (KL) divergence,

JKL(hWe ; γ), of activations, hWe , obtained with the encoding weights We for the training

data, from a fixed small positive average value, γ, near 0:

JNCAE(W) = JAE(W) + α

s∑
j=1

n∑
i=1

f(wj:i) + βJKL(hWe ; γ) (13)

Here, the factors α ≥ 0 and β ≥ 0 specify relative contributions of the non-negativity and

sparsity constraints to the overall loss, JNCAE(W), and

JKL(hWe , γ) =
s∑

j=1

hWe:j log

(
hWe:j

γ

)
+ (1− hWe:j) log

(
1− hWe:j

1− γ

)
(14)

The classifier is built by stacking the NCAE layers with an output softmax layer.

Each NCAE is pre-trained separately in the unsupervised mode, by using the activation

vector of a lower layer as the input to the upper layer. In our case, the initial input data

consisted of the 100-component CDFs, each of size 100. The bottom NCAE compresses

the input vector to s1 = 50 first-level activators, compressed by the next NCAE to s2 = 5

second-level activators, which are reduced in turn by the output softmax layer to s◦ = 2

values.

Separate pre-training of the first and second layers by minimizing the loss of Equa-

tion (13) reduces the total reconstruction error, as well as increases sparsity of the extracted

activations and numbers of the non-negative weights. The activations of the second NCAE

layer, h[2] = σ(We
[2]

Th[1]), are inputs of the softmax classification layer to compute a plau-

sibility of a decision in favor of each particular output class, c = 1, 2:

p(c;W◦:c) =
exp(WT

◦:ch
[2])

exp(WT
◦:1h

[2]) + exp(WT
◦:2h

[2])
; c = 1, 2;

2∑
c=1

p(c;W◦:c;h
[2]) = 1. (15)
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Its separate pre-training minimizes the total negative log-likelihood J◦(W◦) of the

known training classes, appended with the negative weight penalties:

J◦ (W
o) = − 1

K

K∑
k=1

log p(ck;W◦:c) + α
2∑

c=1

s2∑
j=1

w◦:c:j (16)

Finally, the entire stacked NCAE classifier (SNCAE) is fine-tuned on the labeled

training data by the conventional error back-propagation through the network and penaliz-

ing only the negative weights of the softmax layer. In these experiments, α = 0.03, β = 3,

and γ = 0.1.

Next, in order to prepare the fMRI input, there must be an NCAE for each anatom-

ical region to provide local analysis of the brain. For each subject, each voxel found to

be significant using SPM package was assigned to an anatomical area of the 68. If more

than one voxel was found to be significant at the same anatomical region, the one with the

smallest p-value was picked for that region. The input vector to the NCAE for that region

would be the 180 points recorded over the time series for that voxel. If no significant voxel

was found at a specific anatomical region, then the input vecotr to the NCAE for this region

would be all zeros.

C. Experimental Results

Forty seven subjects (22 autistic (20 Males, 2 Females), 25 controls (all Males))

have been used for this experiment, that have been downloaded from National Database

for Autism Research (NDAR). The range of ages for participants was (23 - 210 months)

during the time of the experiment, and the range of IQs is (84-118) for autistic individuals.

For the fMRI experiment, a subset from the 47 subjects (8 autistic and 11 controls)

has been used. T2-weighted echo-planar images were acquired using a 3T MRI scanner

(TR = 2000 msec, TE = 30 msec, FOV = 20 cm, 33 slices, 3.125 mm in-plane resolution,

4 mm thick). For each run of the experiment, 180 functional images that lasted for six

minutes covering the whole cerebral volume were acquired. Two volumes were used at the
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onset of each run in order to allow equilibration to steady state, then were excluded from

the analysis [346].

In order to test the effect of each feature/modality, the NCAE is first trained and

tested for each feature individually. So, for each of the 68 anatomical areas, an SNCAE

is trained and tested for each of the CWM features. Then, the 4 CWM features were fed

into a DFCN and trained and tested for each area in order to provide local analysis of the

brain. Then, in order to obtain a global classification decision, all CWM features from all

the regions are fused into a DFCN, which achieved an accuracy of 81%.

The same experiment was conducted for Cx, where local analysis was first con-

ducted by training and testing an NCAE for each one of the 4 Cx features at each anatom-

ical region of the 68. Then, the 4 Cx features were fused per region in order to improve

accuracy. Finally, a global classification accuracy is obtained by fusing all features from

all regions, achieving an overall accuracy of 78%.

Next, fusing features from both CWM and Cx was done, which achieved an overall

classification accuracy of 85.11%. The improvement in accuracy achieved when fusing fea-

tures from both regions is in line with the previous neuro-pathological studies that proved

correlation between these two structures in ASD. It also shows the merit of combining

structures for ASD diagnosis.

Next, classification was conducted using the fMRI experiment. Local analysis for

each of the 68 areas was done, then all probabilities were fused from all regions in order to

obtain a global diagnosis decision. The accuracy of classification based on only the fMRI

experiment was 89.4%.

Finally, fusing features from all modalities achieved a classification accuracy of

94.7%, which emphasizes the significance of combining structures/modalities for ASD

diagnosis.

Figures 23 and 24 show different cases of ASD, where DK areas of the cortices of

subjects are color-coded according to the strength of association of each area with ASD.
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The four maps are different, which emphasizes the idea of personalized medicine. Fig-

ures 25, 26 show the same for WM meshes of eight different subjects.

Another labeling system is provided in this work which parcellates the brain into

BAs. This is done by mapping the DK labeling atlas to BAs using Freesurfer’s fsaverage

data [351].

1. Analysis of NCAE weights

In order to evaluate the performance of the NCAE, experiments are conducted that

compare the input to the NCAE, e.g. the CDF values in the sMRI experiment, to the same

CDF vector after being reconstructed, getting the so called NCAE reconstruction error at

the selected hidden number of nodes. Figures 27, 28, 29, 30 indicate that the number of

hidden nodes chosen to conduct these experiments was optimal, since the reconstruction

error is very small.

D. Summary and Conclusion

To recapitulate, this work proposed a novel automated approach for autism diagno-

sis. It started with 3D brain segmentation into Cx and CWM form MR images, followed

by shape feature extraction from both. Shape features from both structures were fused

based on studies suggesting that neuropathological findings in regards to a putative mini-

columnopathy and dysplastic Cx changes tend to magnify themselves by abnormal connec-

tions of CWM. An fMRI experiment was also conducted to capture differences between the

two groups. Local areas of the brain were then analyzed based on DK atlas labeling system,

and were also linked to BAs in order to find any correlation with autism, using a deep fusion

network. This work could pave the pathway for better understanding of the autism spec-

trum by finding local areas that correlate to the disease. The idea of personalized medicine

is emphasized in this work. The proposed CAD system holds the promise to resolve autism

89



endophenotypes and help clinicians deliver personalized treatment to individuals affected

with this complex syndrome.
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(a)

(b)

(c)

FIGURE 21: (a) GLM, and (b) the HRF signal. (c) BOLD signal that results from convolv-

ing (a) and (b).
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FIGURE 22: Structure of DFCN.

92



FIGURE 23: Classification of four ASD cases, color coded to indicate the strength of

association of each DK area with the ASD phenotype. This emphasizes the significance of

personalized medicine.

FIGURE 24: Classification of four ASD cases, color coded to indicate the strength of

association of each DK area with the ASD phenotype. This emphasizes the significance of

personalized medicine.
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FIGURE 25: Classification of four ASD cases, color coded to indicate the strength of

association of each DK area with the ASD phenotype. This emphasizes the significance of

personalized medicine.

FIGURE 26: Classification of four ASD cases, color coded to indicate the strength of

association of each DK area with the ASD phenotype. This emphasizes the significance of

personalized medicine.
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(a)

(b)

(c)

FIGURE 27: (a) Original input CDF vector of one of the Cx measures, KG, to the NCAE.

(b) reconstructed CDF vector from the NCAE. (c) reconstruction error between both.
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(a)

(b)

(c)

FIGURE 28: (a) Original input vector of the fMRI signal to the NCAE. (b) reconstructed

vector from the NCAE. (c) reconstruction error between both.
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(a)

(b)

(c)

FIGURE 29: (a) Original input CDF vector of one of the CWM measures, S, to the NCAE.

(b) reconstructed CDF vector from the NCAE. (c) reconstruction error between both.
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(a)

(b)

(c)

FIGURE 30: (a) Original input CDF vector of one of the Cx measures, KN , to the NCAE.

(b) reconstructed CDF vector from the NCAE. (c) reconstruction error between both.
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CHAPTER IV

CONCLUSIONS AND FUTURE WORK

A. Conclusions

To conclude, this work presented a novel automated CAD system for autism di-

agnosis using sMRI and fMRI data. The proposed framework mainly relies on stripping

the skull from brain scans, followed by applying an accurate segmentation framework on

MR brain images using a joint model that combines shape, intensity, and spatial informa-

tion. The segmentation algorithm was validated on several databases that span different

life stages showing high segmentation accuracy, and also outperformed other state-of-the-

art approaches.

After obtaining the segmented brain volumes, CWM and Cx meshes are constructed,

from which shape features are extracted (sMRI experiment) as well as features related to

the functional activity of the brain that corresponds to a monetary reward task (fMRI exper-

iment). For the sMRI experiment, SPAHRM is used to construct the Cx meshes, followed

by computing four shape features. Four other shape features are computed from CWM

meshes. Also, a monetary reward fMRI experiment is conducted, where brain activation

was modeled using the SPM package. In all subjects, voxels that exhibited the most sig-

nificant BOLD signal activation change due to the reward feedback event are extracted and

sorted, to be then used for classification. Finally, all extracted features from both exper-

iments are fed into a deep fusion classification network for classification and diagnosis.

The CAD system was applied on a wide database and showed a high global classification

accuracy between autistic and typically developing brains of 94.74%. It also provided local
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analysis for areas of the brain based on two labeling atlases, which can resolve autism en-

dophenotypes and help clinicians deliver personalized treatments to individuals with ASD.

The integration of imaging modalities such as sMRI and fMRI data is sought in this work

in hopes to increase the potential and robustness of the proposed CAD system.

B. Future Work

Future directions of research for this thesis can be outlined as follows:

1- In addition to the SBM study conducted in this work, The BioImaging group has

a huge interest in combining behavior reports with the findings from the present study to

better understand and assess ASD.

2- Moreover, this work also aims at investigating the shape features of other deep

structures that have shown correlation with autism, such as the corpus callosum and the

hippocampus.

This work could also be applied to various other applications in medical imaging,

such as the kidney, the heart, the prostate, the lung, and the retina.

One application is renal transplant functional assessment. Chronic kidney dis-

ease (CKD) affects about 26 million people in U.S. with 17,000 transplants being per-

formed each year [352, 353]. In renal transplant patients, acute rejection is the leading

cause of renal dysfunction. Given the limited number of donors, routine clinical post-

transplantation evaluation is of immense importance to help clinicians initiate timely in-

terventions with appropriate treatment and thus prevent the graft loss. In recent years an

increased area of research has been dedicated to developing noninvasive computer-aided di-

agnostic (CAD) systems for renal transplant function assessment, utilizing different image

modalities (e.g., ultrasound (US), computed tomography (CT), magnetic resonance imag-

ing (MRI), etc.). Accurate assessment of renal transplant function is critically important

for graft survival [354]. Although transplantation can improve a patient wellbeing, there

is a potential post-transplantation risk of kidney dysfunction that, if not treated in a timely
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manner, can lead to the loss of the entire graft, and even patient death. Thus, accurate as-

sessment of renal transplant function is crucial for the identification of proper treatment. In

recent years, an increased area of research has been dedicated to developing non-invasive

image-based CAD systems for the assessment of renal transplant function. In particular,

dynamic [355–362] and diffusion [363–372] MRI-based systems have been clinically used

to assess transplanted kidneys with the advantage of providing information on each kidney

separately [373–386].

Another important application for this work could be the prostate. Prostate can-

cer is the second leading cause of cancer-related male deaths among Americans. Recent

cancer studies reported an estimate of 220,800 new cases diagnosed and a mortality rate

close to 27,540 from prostate cancer in 2015. Also, one in seven men is expected to be

diagnosed with the disease in their lifetime. Fortunately, early detection of prostate cancer

can enhance the survival rate since prostate cancer is better treated at early stages of the

disease. This motivated researchers to develop various non-invasive diagnostic system for

early detection of prostate cancer, such as the work in [387–399].

The heart is also an important application to this work. The clinical assessment of

myocardial perfusion plays a major role in the diagnosis, management, and prognosis of

ischemic heart disease patients. Thus, there have been ongoing efforts to develop automated

systems for accurate analysis of myocardial perfusion using first-pass images [400–421].

Another application for this work could be the detection of retinal abnormalities.

Majority of ophthalmologists depend on the visual interpretation for the identification of

diseases types. However, inaccurate diagnosis will affect the treatment procedure which

may lead to fatal results. Hence, there is a crucial need for computer automated diagnosis

systems that yield highly accurate results. Optical coherence tomography (OCT) has be-

come a powerful modality for the non-invasive diagnosis of various retinal abnormalities

such as glaucoma, diabetic macular edema, and macular degeneration. The problem with

diabetic retinopathy (DR) is that the patient is not aware of the disease until the changes in
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the retina have progressed to a level that treatment tends to be less effective. Therefore, au-

tomated early detection could limit the severity of the disease and assist ophthalmologists

in investigating and treating it more efficiently [422–425].

Abnormalities of the lung could also be another promising area of research and a

related application to this work. Radiation-induced lung injury is the main side effect of

radiation therapy for lung cancer patients. Although higher radiation doses increase the

radiation therapy effectiveness for tumor control, this can lead to lung injury as a greater

quantity of normal lung tissues is included in the treated area. Almost 13% 37% of pa-

tients who undergo radiation therapy develop lung injury following radiation treatment.

The severity of Radiation-induced lung injury ranges from ground-glass opacities and con-

solidation at the early phase to fibrosis and traction bronchiectasis in the late phase. Early

detection of lung injury will thus help to improve management of the treatment [426–433].

This work can also be applied to other brain abnormalities, such as Dyslexia. Dyslexia

is one of the most complicated developmental brain disorders that affect childrens learning

abilities. Dyslexia leads to the failure to develop age-appropriate reading skills in spite of

the normal intelligence level and adequate reading instructions. Neuropathological studies

have revealed an abnormal anatomy of some structures, such as the Corpus Callosum in

dyslexic brains. There has been a lot of work in the literature that aims at developing CAD

systems for diagnosing such disorder, along with other brain disorders [327, 331, 434–463].

This work could also be applied for the extraction of blood vessels from phase

contrast (PC) magnetic resonance angiography (MRA). Accurate cerebrovascular segmen-

tation using non-invasive MRA is crucial for the early diagnosis and timely treatment of

intracranial vascular diseases [464–468].
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