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ABSTRACT

OPTIMIZATION MODELS AND ALGORITHMS FOR DEMAND RESPONSE IN

SMART GRID

Guangyang Xu

November 28th, 2016

For demand response in smart grid, a utility company wants to minimize

total electricity cost and end users want to maximize their own utility. The latter is

considered to consist of two parts in this research: electricity cost and

convenience/comfort. We first develop a system optimal (SO) model and a user

equilibrium (UE) model for the utility company and end users, respectively and

compare the difference of the two. We consider users’ possible preference on

convenience over cost-saving under the real-time pricing in smart grid, and each

user is assumed to have a preferred time window for using a particular appliance.

As a result, each user in the proposed energy consumption game wishes to maximize

a payoff or utility consisting of two parts: the negative of electricity cost and the

convenience of using appliances during their preferred time windows. Numerical

results show that users with less flexibility on their preferred usage times have larger

impact on the system performance at equilibrium.

Second, we found that instead of minimizing total cost, if utility company is

regulated to maximize the social welfare, the user equilibrium model can achieve

identical optimal solution as the system optimal model. We then design a demand

response pricing frame work to accomplish this goal under alternative secondary
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objectives. We also investigate the non-uniqueness of the user equilibrium solution

and prove that there exist alternative user equilibrium solutions. In this case, robust

pricing is considered using multi-level optimization for the user equilibrium.

Third, we study empirical data from a demand response pilot program in

Kentucky in an attempt to understand consumer behavior under demand response

and to characterize the thermo dynamics when set point for heat, ventilation and

air conditioning (HVAC) is adjusted for demand response. Although sample size is

limited, it helps to reveal the great variability in consumers’ response to demand

response event. Using the real data collected, we consider to minimize the peak

demand for a system consisting of smart thermostats, advanced hot water heaters

and battery systems for storage. We propose a mixed integer program model as well

as a heuristic algorithm for an optimal consumption schedule so that the system

peak during a designated period is minimized. Therefore, we propose a consumption

scheduling model to optimally control these loads and storage in maximizing

efficiency without impacting thermal comfort. The model allows pre-cooling and

pre-heating of homes to be performed for variable loads in low-demand times.

We propose several future works. First, we introduce the concept of elastic

demand to our SO model and UE model. The system problem maximizes net

benefit to the energy consumers and the user problem is the usual one of finding

equilibrium with elastic demand. The Karush-Kuhn-Tucker (KKT) conditions can

be applied to solve the elastic demand problems. We also propose to develop

algorithms for multi-level pricing models and further collect and analyze more field

data in order to better understand energy users’ consumption behavior.
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CHAPTER 1

INTRODUCTION

“The grid”, refers to the electric power grid, a network system that consists

of transmission lines, substations, transformers and more (shown in Figure 1). It

delivers electricity from the power plant to residential homes or businesses [1]. The

first alternating current power grid was built in 1886 in the small city of Great

Barrington, MA [2]. Since then, the power grid has been improved dramatically as

technology advanced through each decade. The current US power grid consists of

more than 9,200 electric generating units with more than 1 million megawatts of

generating capacity, which is connected by more than 300,000 miles of transmission

lines [1].

Although the electric grid is considered an engineering marvel, it has to face

so many challenges today, such as generation diversification, optimal deployment of

expensive assets, demand response, energy conservation, and reduction of the

industry’s overall carbon footprint, that it is not designed and engineered to handle

[1][3][4]. The above listed critical issues cannot be addressed within the confines of

the existing electricity power grid [3].

The existing electricity grid is one-way communication in nature. Two-thirds

of fuel energy is wasted and cannot be converted into electricity. Almost 8% of its

output is lost during the transmission from the generation facility to end users. In

addition, 20% of its generation capacity exists to meet peak demand, which occurs

only 5% of the time. Furthermore, because of the hierarchical topology of its assets,

the current power grid experiences domino-impact failures [3]. To move forward, we

require another sort of electric grid, which is developed from the base to handle the
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Figure 1. General layout of electricity networks [5]

upsurge of digital and computerized equipment and innovation subject to it – and

which can automate and manage the increasing complexity and needs of electricity

in the 21st Century. The next-generation electricity grid, which is also called smart

grid or intelligent grid, is expected to overcome the major disadvantages of the

existing grid.

The smart grid is a modern grid infrastructure to improve efficiency,

reliability and security. Using automated control and modern communications

technologies, it can smoothly integrate renewable and alternative energy sources

[6][7]. Critically, smart grid empowering new network management strategies

provide an effective grid integration in Distributed Generation (DG) for demand

response (DR) and energy storage for DG load balancing, etc. [8][9]. Under this
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circumstance, renewable energy generators is not only a promising technology to

reduce fuel consumption and greenhouse gas emissions [10], renewable energy

sources (RES) also become part of a reliable grid system. The integration of RES

reduces system losses and enhances the reliability, efficiency and security of

electricity supply to customers, which are some of the benefits that smart grid

system will bring [11]. The existing grid is lack of ability to communicate, while a

smart power grid infrastructure is sufficiently strengthened in enhanced sensing and

advanced communication and computing abilities (see Figure. 2). Different

components of the system are connected together with communication paths and

sensors to provide advanced sensing and control, among which are distribution,

transmission and other substations, i.e. residential, commercial, and industrial

customers [12].

Figure 2. Framework of smart grid [12]

In essence, the smart grid needs to provide the utility companies with full

visibility and pervasive control over their assets and services. Advanced metering

infrastructure (AMI) for its significant effect in terms of system operation, asset
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management, especially in energy saving and emission reduction achieved by DR

technology has become the most popular research area throughout the power

industry [13]. AMI uses two-way communication network, which can remotely

connect and disconnect services, record waveforms, monitor voltage and current,

send alarm information back to center within near real-time, and support

time-of-use and real-time rate structures [13]-[15].

Additionally, the smart grid is required to be self-healing and resilient to

system anomalies. Both simulation models [16][17] and optimization models

[18]-[20] have been developed and investigated by many researchers to promote trust

in smart grid solutions in safe and cost effective ways. Ghosn et al.[21] design an

agent-oriented simulation model which can help understand smart grid issues and

identify ways to improve the electrical grid. Their focus is mainly on the self-healing

problem on how to activate control solutions in order to either take preventative

actions or to handle problems after they occur. Alderson et al. [22] demonstrate a

defender-attacker-defender (DAD) sequential game model to plan defenses for an

infrastructure system that will enhance that system’s resilience against attacks by

an intelligent adversary. They also develop a general decomposition algorithm for

solving DAD models and it only requires the system-operation model to be

continuous and convex.

And last but not least, the smart grid needs to empower its stake holders to

define and realize new ways of engaging with each other and performing energy

transactions across the system. The integration of RES in smart grid is a challenging

task, primarily because of the intermittent and unpredictable nature of the sources,

either wind or polar [23]. Significant improvements can be made to the operations of

a smart grid by providing information about the likely behavior of renewable energy

through both online short-term forecasting and long-term assessments [24]. Another

issue concerns the way to support the consumers’ participation in the electricity

market aiming at minimizing the costs of the system energy consumption [23].
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In the advent of smart grid, demand response (DR) presents significant

opportunities for load shifting, which helps flatten the demand curves, decrease the

peak-to-average ratio, and hence reduce total cost. Managing residential electricity

consumption, which accounts for 22% of the US energy consumption in 2008, is an

important part to make the system more economical. Particularly, when consumers’

use of electricity is mainly driven by convenience, coincident demand occurs,

resulting in electric load peaks that greatly increase the generation costs. Early

approach of consumer response can date back to the 1980’s [25]. More recently, both

centralized optimization models and decentralized game-theoretic models have been

introduced to study strategies to flatten the load curves in DR and to study

consumer behaviors. In centralized models, a central controller is assumed to be

able to control and distribute the loads, with the objective of optimizing the total

cost and user satisfaction (e.g., Gatsis and Giannakis [26]). With the advancement

of communication technologies and smart meters within a smart grid, price signals

can reach to the consumers in real time and in some cases the local/central

operators can directly control the usage of some appliances. This increased ability

for consumers and operators to interact within the power system has sparked

interests in more decentralized models for describing individual’s energy

consumption scheduling and its impact on the power system [27].

Under smart pricing schemes, users are encouraged to individually and

voluntarily manage their loads by reducing their energy consumption during peak

hours [28]-[30]. In price based programs, time-of-use pricing (TOU), critical-peak

pricing (CPP), extreme day CPP (ED-CPP), extreme day pricing (EDP) and

real-time pricing (RTP) are among the popular options [31]. For example, in RTP

scheme, the price of electricity varies at different hours of the day. The prices are

usually higher during the afternoon of hot days in the summer and cold days in the

winter [32].

In this dissertation proposal, we first propose a game theoretical approach to
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modeling energy consumption scheduling in smart grid with consumer preference.

We develop a system optimum model and a user equilibrium model. The objective

of the system model is to minimize the total electricity cost of the entire system. In

this model, the area central controller determines when and how much each user

should use his/her appliances, so that the system can achieve the minimum total

electricity cost. But for each user, it may not be the minimum cost for him/her.

Also, as the end user, each one has his/her preference on how to use the appliances.

They may not want to compromise the convenience to less cost. So in our user

equilibrium model, we want to describe users’ energy consumption behavior which

considers users’ possible preference on convenience and cost. This makes the user

equilibrium model more realistic. The objective of the user equilibrium model is to

maximize each user’s payoff or utility, which is the utility function minus the

electricity cost. We assume that each user has the knowledge of the usage profile of

others. We depict the convenience experienced each user in term of monetary value

in the utility function. The user equilibrium solution is always different from the

system optimal solution. In terms of the total cost and peak load reduction, it is

always worse than the system model.

Second, we develop a pricing model to see if there exists proper pricing

scheme that can make the system model and the user equilibrium model share the

same users energy consumption profile. The objective of the system model is to

maximize the social welfare, which is the convenience-based utility function minus

the electricity generation cost function. This is similar to the objective of the user

equilibrium model, which is the convenience-based utility function minus the time

variant based electricity cost. We show that for a pre-specified system optimal

solution, there exists alternative pricing schemes to achieve the desired objective. In

this way, the pricing scheme becomes adjustable and the utility company may

customize the pricing scheme to achieve proper objectives. We also prove that at

the equilibrium, the users’ energy consumption pattern of user equilibrium may not

6



follow the system optimal solution if the user equilibrium has multiple solutions

under a given pricing scheme. Then, we propose a robust pricing multi-level

optimization problem to maximize the minimum possible social welfare among

alternative user equilibrium solutions. The column and constraint generation

algorithm or bender’s dual cutting plane algorithm might be two of our potential

methods to solve the proposed bi-level model.

Third, we study empirical data from a demand response pilot program in

Kentucky in an attempt to understand consumer behavior under demand response

and to characterize the thermo dynamics when set point for HVAC is adjusted for

demand response. Using the real data collected, we consider to minimize the peak

demand for a system consisting of smart thermostats, advanced hot water heaters

and battery systems for storage. We propose a mixed integer program model as well

as a heuristic algorithm for an optimal consumption schedule so that the system

peak during a designated period is minimized. Therefore, we propose a consumption

scheduling model to optimally control these loads and storage in maximizing

efficiency without impacting thermal comfort. The model allows pre-cooling and

pre-heating of homes to be performed for variable loads in low-demand times and/or

when renewable generation resources are on-line, so as to get maximum utilization

from these resources.

The rest of this proposal is organized as follows. Chapter 2 reviews the

literature on optimization models and algorithms on DR. Chapter 3 formulates the

centralized model and game theoretical model for DR with costumer preference and

its numerical results. Chapter 4 presents the pricing model for DR with consumer

preference and its computational results. Chapter 5 presents the empirical study of

energy consumption in sub-metered homes and the optimal consumption scheduling

model. Chapter 6 presents the conclusion and proposed works.
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CHAPTER 2

LITERATURE REVIEW

2.1 Direct Load Control

Direct load control (DLC) has been investigated for a long time and there is

a large literature of classical DLC on load management. Most optimization methods

have been proposed to minimize generation cost [33]-[35]. Particularly, Cohen and

Wang [33] develop an effective optimization method for scheduling load management

based on an analytic model of the load under control. Their method can be used to

minimize different objectives including peak load and production cost. Although it

is impossible to determine how close the solutions generated by this method are to

the optimal schedules, they have found that the schedules produced are effective in

reducing the value of the objective and that they cannot be easily improved upon.

Furthermore, the solution method can obtain schedules for difficult problems

involving very long periods of peak load and cases where the cycle rate is allowed to

vary. Its advantage is to allow any length for the control periods and any cycle

rates. While the disadvantage in allowing the cycle rate to vary is that run time will

increase almost linearly with the number of allowed cycle rates.

Similarly, Wei and Chen [34] apply multi-pass dynamic programming

(MPDP) to determine the required amount of load to be controlled at each time

stage in order to reach maximum cost saving and peak load reduction. They test

the proposed approach on Taiwan Power Company system to demonstrate its

effectiveness. Results show that the peak load reduction and production cost saving

are closely related to the energy payback pattern. Furthermore, the MPDP

8



approach would also yield a load control value for each time stage during the whole

study period. They claim that their algorithm is also suitable for the solution of

problems with other types of load control operation because of its reasonable

results, fast calculation speed and small storage memory requirement.

Another method for DLC dispatch other than dynamic programming is

presented by Chen et al. [35]. For a DLC group, their method identifies a set of

candidate control patterns in terms of feasibility and cost benefit. Based on the

candidate control patterns, they determine the optimal DLC dispatch strategy via a

binary flow network model. They also compare their results with a dynamic

programming based DLC dispatch method and show their method is very effective.

The second aspect of the DLC’s objective is to maximize utility’s profit [36].

Ng and Sheble [36] introduce the profit-based load management to examine generic

direct load control scheduling. Their aim is to increase the profit of utilities based

on the cost/market price function. Their linear programming algorithm controls the

number of groups per customer/load type to maximize the profit. They compare

their profit-based DLC with the conventional cost-based approach and results show

that the former achieves better solution when the rate structure varies each time.

Furthermore, the algorithm provides a relatively inexpensive and powerful approach

to the scheduling problem.

Minimizing deviation from users’ desired consumptions is the third aspect of

DLC’s objective [37][38]. In order to solve the chronic problem of severe power

shortage in the summer for the Taiwan Power Company (TPC), Chu et al. [37]

adopt the method of dynamic programming to optimally determine the schedule of

the DLC with the objective of minimizing the amount of load reduction to lessen

the effects of customers’ discomfort and to maintain the TPC’s total incomes. They

consider the constraints of operation limitations of the compressor and room

temperature. They claim that their method is able to dynamically specify the

target load level, and should also be helpful for other utilities trying to control the
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growth rates of peak loads in their attempt to match their schedules of system

planning and thereby to reap the maximal benefit.

Ramanathan and Vittal [38] develop a framework for designing and assessing

DLC program with the objective of minimizing end-user discomfort and is

formulated as an optimization problem. Two different algorithms for cycling of

loads have been presented and Monte Carlo-based dynamic programming approach

is applied. The results of the simulations are with regard to the impact of different

constraints and parameters on the effectiveness of control. They also claim that

their method could be applied in designing and analyzing the effectiveness of other

demand-side management programs.

Finally, DLC is sometimes integrated with unit commitment [39]. Hsu and

Su [39] integrate the DLC dispatch problem into conventional unit commitment

problem. They apply dynamic programming to determine the required amount of

load control and generation schedule at each stage in order to maximize fuel cost

savings. The total fuel cost can be reduced through peak load reduction and

rescheduling of peaking units. It is also observed that the proposed dynamic

programming approach would yield a variable amount of load control for each stage

over the load control period. Their DLC dispatching strategy will result in more

fuel cost savings than the fixed DLC dispatching strategy.

2.2 Distributed and Game Theoretical User Equilibrium Model

Distributed algorithm for coordinated scheduling, is motivated by

individualism in decision making in energy consumption and has attracted many

researchers in the past decades. Compared to DLC, decentralize/distributed

scheduling assumes there is no central controller and all individuals decide or

optimize their own energy consumption profiles. As a result, the agent-based

approach (e.g., [40]) seems to be a good fit to model individuals’ consumption

behavior.
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For example, Vytelingum et al. [41] implement the agent-based concept in

developing a micro-storage management algorithm for the smart grid. In their

model, each agent fixes his or her storage profile based on forecasted market price.

Vytelingum et al. [41] prove that the average storage profile from their distributed

algorithm converges to the Nash Equilibrium. Consequently, average peak demand

induced by the optimal storage profile is reduced, thus eliminating the requirements

for more costly and carbon-intensive generation plant.

In addition, Vandael et al. [42] propose a multi-agent solution and compared

the qualities of this solution with an optimal reference solution obtained by

quadratic programming. They use a decentralized model to level the load at each

transformer through two coordination strategies: the energy limiter and power

limiter. The former only uses predictions about loads, while the latter doesn’t use

any forecast data. In [42], the multi-agent solution proves to be scalable and

adaptable to incomplete and unpredictable information, while still capable of

reducing peak demands with an efficiency up to 95% compared to the quadratic

scheduler.

In fact, understanding individuals’ behavior in energy consumption is

considered as one key (among others) to the success of DR, because it will help

effectively manage demands via pricing or incentive programs. In the literature,

game-theoretic approaches have been the main stream (e.g., Saad et al. [43] and

Fadlullah et al. [44]) for modeling the consumer behaviors. Most of these studies

assume each consumer optimizes his/her own cost in their energy consumption

scheduling.

In [43], Saad et al. provide an overview on the applications of game theory in

smart grid networks. In the areas of microgrids, demand-side management, and

communications, they have identified the main technical challenges and discussed on

how game theory can be applied to address these challenges. Moreover, they

propose several future directions for extending these approaches and adopting
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advanced game theoretic techniques, so as to reduce the gap between theoretical

models and practical implementations of future smart grids.

Fadlullah et al. [44] survey a number of game theory-based applications to

solve different problems in smart grid. Their survey reveals that game theory can be

apparently simple yet become an effective technique to facilitate intelligent decision

making in smart grid frameworks. They also notice that many of the game theory

applications do not provide the global solution to the considered problem, which

might be challenging in applying game theory to solve different optimization

problems since the solution may remain stuck to a local minimum. In addition, the

time to reach the Nash equilibrium point, in particular the global optimum, should

be considered by researchers when applying game theory to solve smart grid

communication problems.

More related to our work, Mohsenian-Rad et al. [45] propose a distributed

algorithm to study consumers’ optimal energy consumption scheduling when they

are equipped with communication devices enabling them to talk to each other on

energy usage. Their work in [45] assumes that each consumer minimizes his/her

“utility payment,” while we assume consumers value the convenience of using

appliances at preferred times and incorporate this in the model.

In addition, Chen et al. [46] propose a real-time pricing based power

scheduling scheme as a demand response mechanism for residential electric power

consumption. A Stackelberg game model is formulated to analyze the interaction

between a consumer’s Energy Management Controller and the service provider.

Their scheme can reduce peak load and the mismatch between actual load and

planned supply, while avoiding a rebound peak. They allow users to delay the

starting time of their usage of the appliances in order to reduce cost. However, users’

experience on convenience is not directly modeled in [46] as is in our approach.

Furthermore, Maharjan et al. [47] propose a Stackelberg game between

utility companies and end-users to maximize the revenue of each utility company
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and the payoff of each user. They assume users will choose different utility

companies as the leader in the Stackelberg game and derive analytical results for the

Stackelberg equilibrium of the game and prove that a unique solution exists. They

also propose a scheme based on the concept of shared reserve power to improve the

grid reliability and ensure its dependability.

Finally, Samadi et al. [48] model the users’ preferences and their energy

consumption patterns in form of selected utility functions based on concepts from

microeconomics. They also propose a distributed algorithm which finds the optimal

energy consumption levels for each subscriber, so that the aggregate utility of all

subscribers in the system is maximized in a fair and efficient way. Samadi et al. [48]

show that the energy provider can encourage some desirable consumption patterns

among the subscribers by the means of real-time pricing. The simulation results

confirm that the proposed distributed algorithm can potentially benefit both

subscribers and the energy provider.

2.3 Pricing Schemes

A crucial element in any DR study is the choice of the electricity cost/price,

which has been studied rather extensively. Most studies on electricity markets

incorporate quadratic functions describing the relationship between cost and electric

usage. Furthermore, pricing approaches have been proposed to help shift the

electricity load from peak to off-peak hours (e.g., Samadi et al. [48]).

In [49], a piecewise linear approximation is often applied to ease

computational burden that would otherwise be experienced by quadratic models.

On the other hand, the residential ‘time-of-use’ (TOU) rate has also been actively

studied at various U.S. cities through projects funded by the U.S. Department of

Energy over the past decades. The first project to implement the residential TOU

rate began in 1975 in Vermont and was documented in [50]. The latter provides a

detailed analysis of the TOU experiments in residential areas. Aigner [50] concludes
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that effective pricing mechanism to change consumers’ behavior is among the most

important issues to the success of TOU rates. Other studies focusing on the impacts

of TOU rates include [51], [52], [53], and [54].

In order to mitigate peak demand due to the extra load of charging electric

vehicles (EVs) , Collins and Mader [51] utilize time-of-day pricing of electricity that

causes a driver to shift recharging to periods in the day when electricity price is low.

This would increase the utilization of baseload power plants and reduce the average

cost of generating electricity.

For the purpose of better understanding the effectiveness of how TOU rates

can economically incent off-peak charging in plug-in hybrid electric vehicles

(PHEV), Davis and Bradley [52] present a simulation of PHEV total fueling costs

and metrics of performance for evaluation of various TOU rate designs. Their

results show that TOU rates are not universally effective at incenting off-peak

PHEV charging behavior. By analyzing a suite of TOU rate models, the

effectiveness and total fueling costs associated with a TOU rate is shown to be a

function of the type of vehicle that the consumer is driving, the on:off peak price

ratio of the TOU rate, and the length of the off-peak period.

Baladi et al. [53] estimate the response of residential consumers to voluntary

TOU electricity pricing, both in terms of their willingness to participate in the rate

structure and in their ability to shift usage. They find that the usage patterns of

volunteers and non-volunteers were virtually identical under flat rates and on the

TOU tariff. The only difference between volunteers and non-volunteers appears to

be in their perceived usage patterns and their perceived ability to respond to the

rate structure. This raises the issue as to whether education programs might alter

these results in the long term, which is not discussed in [53].

Similarly, Hartway et al. [54] describe the results of a TOU rate option

experiment which demonstrates that offering a TOU option can be profitable to a

utility company. Their finding refutes the common belief that rate options are
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necessarily unprofitable to a utility and unwanted by small users.

Other than the TOU rates, real-time pricing (RTP) structure is another

intensively investigated pricing scheme by researchers (e.g. [32], [46], [48] and [55]).

Lijesen [32] provides a quantification of the real-time relationship between

total peak demand and spot market prices. They find a low value for the real-time

price elasticity, which may because not all users observe the spot market price.

Their main policy implication is that the real-time elasticity of targeted users should

be assessed before expensive demand response measures are taken on a large scale.

Similarly, Mohsenian-Rad and Leon-Garcia [55] point out that the lack of

knowledge among users about how to respond to time-varying prices as well as the

lack of effective building automation systems are two major barriers for fully

utilizing the potential benefits of real-time pricing tariffs. Therefore, they propose

an optimal and automatic residential energy consumption scheduling framework to

tackle these problems. They attempt to achieve a desired trade-off between

minimizing the electricity payment and minimizing the waiting time for the

operation of each appliance in household in presence of a real-time pricing tariff

combined with inclining block rates. By applying a simple and efficient weighted

average price prediction filter to the actual hourly-based prices, Mohsenian-Rad and

Leon-Garcia [55] obtain the optimal choices of the coefficients for each day of the

week. Simulation results show that the combination of the proposed energy

scheduler design and the price predictor leads to significant reduction in users’

payments.

In addition to only changing the price, incentive-based demand response

approaches are also effective in load shifting (e.g., Zhong et al. [56]). They propose

the coupon incentive-based demand response to to induce flexibility in retail

customers on a voluntary basis. The main advantages of their scheme are improved

social welfare and consumers not exposed to fluctuating wholesale electricity prices.

However, there also exists obvious disadvantages, such as increasing the burden of
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communications and keeping some potential responsive customers away from the

program.

Because all consumers respond to the price signals in adjusting their

consumption behaviors, Stackelberg game is used by Meng and Zeng [57] for

determining proper incentive. In [57], Meng and Zeng propose a Stackelberg game

approach to maximize the profit of the utility company and minimize the payment

bills of its customers. They model the interactions between the utility company and

its electricity customers as a 1-leader, N-follower Stackelberg game. At the leader’s

side, they adopt genetic algorithms to maximize its profit while at the followers’

side, an analytical solution to the linear programming problem is develop to

minimize their bills. Simulation results show that their proposed approach is

beneficial for both the customers and the utility company.

Moreover, Fetz and Filippini [58] have studied the economies of vertical

integration and economies of scale. Specifically, they use different econometric

specifications for panel data, including a random effects and a random-coefficients

model, to estimate a quadratic multi-stage cost function for a sample of electricity

companies. The empirical results in [58] reflect the presence of considerable

economies of vertical integration and economies of scale for most companies

considered in the analysis. Moreover, the results suggest a variation in economies of

vertical integration across companies due to unobserved heterogeneity.

Finally, concerning the production cost, Mart́ınez-Budŕıa et al. [59] have

adapted productivity analysis to the case of a cost model. A normalized quadratic

cost function is estimated and discrete data has been used in their research. The

main theoretical result in [59] is a productivity index that can be decomposed into

modified versions of the contribution of technical change and the effect of the

variations in the scale of production. The results also show important productivity

gains with both technical change and scale effect playing important roles.
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2.4 Customers’ Preferences

The dissertation assumes that the consumers take into consideration not only

their energy costs but also the convenience of their energy consumption schedule.

This is because the fact that people would like to pay more for the convenience to

their personal schedule, even if such preference implies a higher system-wide cost.

Not much literature we found considers the customers’ preferences or convenience.

Sianaki et al. [60] claim that in literature, no approach focuses on the users’

point of view at the home level on a continuous basis and in an intelligent way to

achieve demand response. They develop an intelligent decision supporting system

model at home level for increasing the efficiency of energy consumption in the Smart

Grid. They believe that their system will adapt to consumers’ preferences and be

compatible with demand response in the Smart Grid. The aim of their proposed

approach is to urge end users to increase their consumption of renewable sources of

energy and decrease the consumption of nonrenewable sources.

Amer et al. [61] propose the algorithm that can manage the household loads

according to end user’s preset priority and fix the total household power

consumption under certain limit. The method in [61] makes the homeowner to

automatically perform smart load controls possible. Controls are based on utility

programs, customer’s preference and load priority . They claim that their work

achieves the purpose of reducing electricity expense and clipping the

peak-to-average ratio (PAR).

Yoo and Lee [62] present the analysis of the power saving effect and the

customer satisfaction level for In-Home Display usage. They analyze the power

consumption and consumer preferences through the validation between the

experimental group and the control group. From the results obtained from the

questionnaire used, they also confirm the customer satisfaction. Yoo and Lee [62]

are expected to improve the energy saving effect further, if the service providers

supply a variety of devices to the customers to verify their power consumption
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information more conveniently in the future.
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CHAPTER 3

A GAME THEORETICAL APPROACH FOR DEMAND

RESPONSE WITH CONSUMER PREFERENCE

The department of energy estimates that residential buildings accounted for

37% of the total electricity consumption in 2008, and the percentage will grow much

higher upon a broad adoption of electrical vehicles. Thus, energy consumption

management in residential buildings becomes a pressing issue for our society to be

sustainable. Particularly, when consumers’ use of electricity is mainly driven by

convenience, coincident demand occurs, resulting in electric load peaks that greatly

increase the generation costs. In the advent of smart grid where price and usage

data can be exchanged between consumers and utilities, demand side management

(DSM) or demand response presents significant opportunities for load shifting and

leveling.

Mohsenian-Rad et al. [45] propose a distributed algorithm to study

consumers’ optimal energy consumption scheduling. Their work assumes that each

consumer minimizes his/her utility payment, while we assume consumers value the

convenience of using appliances at preferred times and incorporate this in the

model. In addition, Chen et al. [46] and Mohsenian-Rad et al. [55] allow users to

delay the starting time for using appliances in order to reduce cost. However, users’

experience on convenience is not directly modeled in their works as is in our

approach. Finally, Maharjan et al. [47] assume users will choose different utility

companies through a Stackelberg game. In summary, the current study assumes

that consumers take into consideration not only their energy costs but also the

convenience of their energy consumption schedule, and the latter is the focus for
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subsequent numerical simulations.

In this chapter, we first propose a user (equilibrium) model to describe users’

energy consumption behavior that explicitly considers users’ possible preference on

convenience over cost-saving. In this user equilibrium model, each user maximizes

his/her payoff consisting of convenience and cost. To our best knowledge, most

DSM literature assumes minimizing cost is the only objective for users, which is

unrealistic. Indeed, in a recent smart meter/appliances pilot program by General

Electric (GE) and Louisville Gas & Electric Company (LG&E), participants praised

the program for it allows them to override the cost-saving based schedule [64].

Second, a centralized system-wide optimization model is developed as a benchmark

for the user equilibrium model. The system model is for a central controller to

maximize all users’ payoffs collectively. Third, extensive sensitivity analysis provides

insights on how consumers with various monetary values for convenience and with

various flexibility on their energy consumption schedule affect the system

equilibrium differently. Numerical experiments further validate both the system and

user equilibrium models, and show that system performance is affected by both

consumers’ preferences and their value for convenience. Users who are less flexible

in shifting their consumption schedule have more influence on the equilibrium.

Further, consumers who value convenience higher will have a larger impact on the

system’s total cost.

3.1 Nomenclature

A. Sets and Indices

A Set of appliances indexed by a

I Set of users indexed by i

i− Denote all other users in I except user i
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T Set of time periods indexed by t

T 0
i,a The unacceptable time periods for user i to use appliance a

T 1
i,a The preferred time periods for user i to use appliance a

B. Parameters

Di,a The daily demand of user i on appliance a

Ei,a The maximum electricity that can be consumed by user i on appliance a in one

time period

πi The monetary value of the time-of-use convenience for user i

c0, c Electricity price coefficients in the cost function

C. Variables

xti,a Electricity consumption of user i on appliance a at time t

xi The electricity usage profile of user i, i.e., a vector of xti,a for all appliances and

time periods

lt, l
t
i Total electricity loads/consumptions at time t for all users and user i,

respectively

pi,a Electricity consumption of user i on appliance a during preferred times

λia, ρ
i
t,, γ

i
t,a, ξ

i
t,a Dual variables for the user model

D. Functions

f(·) Unit electricity cost as of a function of total load

ui(·) Utility function for user i
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3.2 System Optimization Model

Consider a local area power system with n users and a set of appliances A for

each user. Assume each user i has a daily energy demand Di,a for appliance a ∈ A.

We define a 24-hour daily cycle with t ∈ T = {1, 2, · · · , 24}. Further, let Ei,a be the

maximum amount of energy consumed by user i on appliance a during one unit

time. In addition, define a set of unacceptable time intervals T 0
i,a ⊂ T during which

user i does not wish to use appliance a, and a set of preferred time intervals T 1
i,a ⊂ T

(T 1
i,a ∩ T 0

i,a = ∅) during which user i prefers to use appliance a. Using this notation

and letting decision variable xti,a be the amount of energy consumed on appliance a

by user i at time t, the system model for the energy controller can be formulated as

follows:

SO: min
T∑
t=1

f(lt) · lt (1)

s.t. lt =
n∑

i=1

∑
a∈A

xti,a, ∀t (2)

T∑
t=1

xti,a = Di,a, ∀i, a (3)

xti,a ≤ Ei,a, ∀i, a, t (4)

xti,a = 0, ∀i, a, t ∈ T 0
i,a (5)

xti,a ≥ 0, ∀i, a, t (6)

where f(lt) represents the unit electricity (generation) cost at time t, which is a

monotone increasing function of the total electricity consumption lt at time t. In the

SO model, the objective in (1) is for the central controller to minimize the total

electricity cost required to serve all users. Furthermore, constraints (2) calculate the

total energy consumption lt at time t by all users and constraints (3) ensure that

user i’s energy demand for appliance a is met. In addition, constraints (4) state that

the total energy used by user i’s appliance a during each time interval does not

exceed Ei,a, an upper bound due to technical specification. Finally, constraints (5)
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ensure that user i does not use appliance a at any time interval t ∈ T 0
i,a.

Theorem 1. If g(z) = f(z)z is strictly convex, then the SO model has a unique

global solution l∗.

Proof. Let

F = {lt|(2)− (6)}. (7)

Clearly, this feasible region F is a convex, closed and bounded set. Thus, any local

minimum is the global minimum and the uniqueness of the global minimum follows

immediately from the strict convexity of the objective function
∑T

t=1 g(lt) (see e.g.,

[65]).

While the above theorem shows the uniqueness of the optimal load vector l∗t

when g(·) is strictly convex, individuals’ energy consumption vector x∗ti,a may not be

unique under the same condition. Below is a counter example.

Consider a system with two users (n = 2), two appliances (|A| = 2) and four

time intervals (T = 4). The demand profiles are: D1,1 = 7, D1,2 = 3, D2,1 = 6, and

D2,2 = 4. The Upper bounds are: E1,1 = 3, E1,2 = 1, E2,1 = 4, and E2,2 = 3. The

unacceptable usage window T 0
i,a = ∅ for i = 1, 2 and a = 1, 2. Suppose

f(lt) = 10 + 3lt, then g(lt) = 3l2t + 10lt is strictly convex. The optimal load profile for

the SO model is l∗1 = 6, l∗2 = 6.5, l∗3 = 6.5, and l∗4 = 1. One can easily verify that the

following two consumption profiles x̆ti,a and x̃ti,a both yield this optimal load profile.

x̆11,1=3, x̆12,2=3, x̃11,1=3, x̃12,2=3,
x̆21,1=1.7875, x̆21,2=1, x̃21,1=2, x̃21,2=1,
x̆22,1=2.7125, x̆22,2=1, x̃22,1=2.5, x̃22,2=1,
x̆31,1=2.2125, x̆31,2=1, x̃31,1=2, x̃31,2=1,
x̆32,1=3.2875, x̆41,2=1, x̃32,1=3.5, x̃41,2=1.

The SO model assumes a centralized decision system where the central area

controller in the power distribution network wishes to coordinate energy

consumption for all of its subscribers. Thus, the SO model provides an energy

consumption profile with the least electricity cost. On the other hand, in practice
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each subscriber may be more interested in their own electricity usage, not so much

in others or even the average usage for the entire system. Thus, a user equilibrium

model is suitable for describing the individual subscriber’s energy consumption

behavior.

3.3 User Equilibrium Model

In modeling a user’s decision on when and how much to use his/her

appliances, we consider not only cost but also the convenience for the user to be

able to use an appliance during his/her preferred times. Thus, the user equilibrium

model assumes each user i maximizes the following payoff or utility:

Ui = −

[
T∑
t=1

f(lt) · lti

]
+ ui (xi) (8)

where lti is the total electricity consumption by user i at time t, and xi is the

electricity usage profile of user i, a vector of xti,a for all appliances and time periods.

In this payoff Ui, the first term represents the total energy cost, thus the disutility,

for user i, and the second term defines the convenience experienced by user i,

calculated by his/her personal utility function ui(·) in terms of monetary value. In

general, ui (xi) can incorporate different monetary values or functions toward

different appliances and time periods, e.g., ui(xi) =
∑

a∈A
∑

t∈T π
t
i,aν

t
i,a(xt

i,a), where

πt
i,a and νti,a are the monetary value of convenience and the utility function for user i

to use appliance a at time t, respectively. Furthermore, the reason, for a user to

take into account the unit generation cost to calculate his/her total consumption

cost, is the wide use of smart electricity meters which enable the user-to-generator

and user-to-user communication in the smart grid. Hence, in a distributed manner,

each user solves the following user’s problem:
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UOi : max Ui = −

[
T∑
t=1

f(lti + lti−) · lti

]
+ ui (xi) (9)

s.t. lti =
∑
a∈A

xti,a, ∀t (10)

T∑
t=1

xti,a = Di,a, ∀a (11)

xti,a ≤ Ei,a, ∀a, t (12)

xti,a = 0, ∀a, t : t ∈ T 0
i,a (13)

xti,a ≥ 0, ∀a, t (14)

The UO model is for each user i to maximize his/her payoff assuming the

knowledge of others’ usage profile xi− , {xt
j,a}a,j6=i, and the decision variables only

pertain to user i’s energy consumption profile xti,a and the resulting load profile lti.

Thus, the objective (9) for user i is to minimize the total disutility, i.e., the energy

cost less the convenience-based utility. Note that in calculating the energy cost, the

generation cost function is rewritten as f(lt) = f(lti + lti−) in order to distinguish

user i’s decision variable lti from the input parameter lti− . Constraints (10)-(14) for

the UO model are similar to (2)-(6) in the SO model. Finally, if each user solves

his/her own UOi, then the system of n user problems, i.e., {UOi}i=1,··· ,n, may reach

an equilibrium defined below.

Definition 2. Let Xi = {xi|(10)− (14)} be the set of feasible consumption profiles

and x , {xi}i=1,··· ,n be the usage profile for an n-user system. Then, x∗ is at user

equilibrium if and only if each user i does not have the incentive to unilaterally

change his/her optimal consumption profile x∗i , i.e.,

Ui(x
∗
i ; x

∗
i−) ≥ Ui(xi; x

∗
i−),∀xi ∈ Xi, i = 1, · · · ,n. (15)

Theorem 3. If g(z) = f(z)z is convex and the utility function ui is concave for all

user i, then there exists a user equilibrium consumption profile x∗ that satisfies (15).
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Proof. Recall that the simultaneous strategy space F in (7) is a convex, closed and

bounded set. Because g(lti) is convex with respect to lti, ui is concave with respect to

xti,a, and the linear relationship between lti and xti,a as defined in (10), the

individual’s payoff function Ui = −
∑

t g(lti) + ui is concave with respect to xti,a.

Thus, from Theorem 1 in Rosen [66], a user equilibrium that satisfies (15) exists.

Theorem 4. If g(z) = f(z)z is strictly convex and the utility function ui is strictly

concave for all user i, then there exists a unique user equilibrium consumption

profile x∗ that satisfies (15).

Proof. Because g is strictly convex with respect to lti, Theorem 2 in Rosen [66]

guarantees the uniqueness of the lti part, although not necessarily the xti,a part, of

the equilibrium solution. On the other hand, the strict convavity of ui implies the

uniqueness of xti,a in the equilibrium solution, again due to Theorem 2 in Rose [66].

Therefore, the equilibrium solution (lti, x
t
i,a) must be unique.

Theorem 5. Suppose that g(z) = f(z)z is convex and the utility function ui is

concave for all user i. Further, if the unit cost function f is constant, then the SO

model and the UO model with ui = 0 for all i yield the same optimal solution.

Proof. Let the Karush−Kuhn−Tucker (KKT) conditions (e.g., Bazaraa et al. [65])

for the SO system be KKTSO, and the KKT conditions for UOi with ui = 0

(i = 1, · · · , n) be KKTUO(i). Then, it is fairly straightforward that KKTSO and

{KKTUO(i)}i=1,··· ,n are equivalent when the unit cost function f satisfies f ′(z) = 0.

Thus, if f = c0 is a constant, then the two problems have the optimal solution.

In order to characterize the equilibrium solution x∗, one introduces the

Lagrangian multipliers ρit, λ
i
a, γ

i
t,a, and ξit,a for constraints (10), (11), (12), and (13)

in user i’s model UOi, respectively. Consequently, the user equilibrium problem
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{UOi}i=1,··· ,n reduces to the following mixed complementarity problem (MCP),

0 ≤ xti,a ⊥ ρit = u′i(x
t
i,a) + λia + γit,a

+ξit,a − µit,a, ∀i, a, t : t ∈ T 0
i,a

0 ≤ xti,a ⊥ ρit = u′i(x
t
i,a) + λia + γit,a

−µit,a, ∀i, a, t : t ∈ T \ T 0
i,a

0 ≤ lti ⊥ ρit = −ltif ′(lti + lti−)

−f(lti + lti−), ∀i, t

0 ≤ γit,a ⊥ Ei,a − xti,a ≥ 0, ∀i, a, t

ρit ⊥ lti =
∑

a∈A x
t
i,a, ∀i, t

λia ⊥
∑T

t=1 x
t
i,a = Di,a, ∀i, a

ξit,a ⊥ xti,a = 0, ∀i, a, t : t ∈ T 0
i,a

(16)

where the “⊥” sign in a ⊥ b (for a,b ∈ Rn) signifies that componentwise aibi = 0

for i = 1, · · · , n. Such a property is referred to as ai is ”complementary” to bi. In

other words, the above MCP defines the KKT optimality conditions for the

equilibrium solution x∗ and associated Lagrangian multipliers. Note that

formulating the KKT conditions in a MCP form allows for an efficient solution by

the PATH solver [67] offered by the nonlinear program software GAMS [68] used in

this study.

3.4 Computational Results

In this section, we discuss the results from our numerical simulations for

evaluating the proposed system and user equilibrium models. Both SO and UO

models were implemented in GAMS [68], a state-of-the-art modeling language for

nonlinear programs, where the SO model was solved by the CONOPT solver [69]

and the UO model was solved by the PATH solver [67]. All experiments and

simulations were run on a 16-core dual Opteron CPU server with 32GB of memory

running openSUSE 11 Linux.

Common to all numerical examples and test instances is the way we model
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the convenience experienced by users. To do so, we introduce the notion of preferred

usage window. The “preferred usage window,” denoted as T 1
i,a ⊆ T , represents a set

of time periods when user i prefers to use appliance a. Note that associated with

user i and appliance a, there is also a time window T 0
i,a ⊆ T when the user does not

wish to use appliance a. Thus, T 0
i,a ∩ T 1

i,a = ∅ holds. Using the “preferred usage

window”, the (second) convenience term as required in the utility function (8) is

defined as

ui(xi) = πi
∑
a

(
pi,a

Di,a

)1/2

(17)

where πi is the utility coefficient representing the monetary value of convenience for

user i and pi,a =
∑

t∈T 1
i,a
xti,a is the amount of electricity from appliance a used by

user i during his/her preferred usage window. Subsequently, ui is the utility value

based on the proportion of total demand for user i that is fulfilled during preferred

usage window. We note that this specific form of utility function is widely used in

economics and decision analysis for modeling users preference (e.g., Keeney and

Raiffa [70] and Clemen [71]).

Without loss of generality, in this section, we simplify the presentation by

using [α, β] to denote T \ T 0
i,a and [αp, βp] to denote T 1

i,a. Thus,

1 ≤ α ≤ αp ≤ βp ≤ β ≤ 24.

3.4.1 Relationship between UO and SO consumption profiles

To begin the evaluation of the proposed user equilibrium model, we illustrate

the difference between the outcomes of the system model and the user equilibrium

model in which utilities for all users πi equal zero. The latter is because we would

like to study without introducing the notion of “convenience utility”, how the

proposed UO model performs against the SO model. In section 3.4.3, we discuss

extensively the UO model with non-zero utilities.

Consider two simple numerical examples both with two users, two appliances

and four time intervals. The attributes of the two users in these two examples are
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summarized in Table 1, where α, β, αp and βp are as defined above. One notes that

the two examples only differ by the values for β, i.e., βex1 6= βex2. The purpose of

this design will become clear later in this subsection.

TABLE 1
Parameter Values for Examples 1 and 2

user appliance Di,a Ei,a α βex1 βex2 αp βp
1 1 7 3 1 3 3 1 1
1 2 3 1 2 4 4 4 4
2 1 6 4 2 4 3 3 3
2 2 4 3 1 3 2 2 2

In both examples, for simplicity, we use the unit electricity price

f(lt) = 10 + 3lt. Then, solving the SO and UO models for Example 1 yields the

optimal consumption profiles displayed in Table 2, where the SO solution is denoted

by x̄ti,a and the UO solution by x̂ti,a. Note again the UO solution is obtained by

setting utilities π1 = π2 = 0.

Several observations can be made from Table 2. First, the optimal solutions

to the SO and UO models (the latter with zero utilities for both users) are different.

This necessitates the study of the user equilibrium model, while using the system

model as a benchmark. Second, the total electricity cost for the SO solution is

500.00, less than the that for the UO solution (502.25). This is consistent with the

general knowledge that in a non-cooperative game the equilibrium solution does not

necessarily yield the maximal system-wide payoff. Third, comparing the costs for

user 1 under SO and UO (250 vs. 254.5), he/she is better off in the system solution.

However, user 2 is better off in the equilibrium solution (250 vs. 247.75). This

suggests that the concern of “making everybody better off” exists for the proposed

equilibrium model.

Furthermore, it is interesting to observe the results for Example 2 in Table 3.

With slight modifications to the value of β, Example 2 presents a different

comparison between the SO and UO solutions. Notably, the two models yields the
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TABLE 2
Optimal UO and SO Solutions for Example 1

user appliance time SO-x̄ti,a UO-x̂ti,a
1 1 1 2.8143 3.0000
1 1 2 2.1761 2.0000
1 1 3 2.0096 2.0000
1 1 4 0.0000 0.0000
1 2 1 0.0000 0.0000
1 2 2 1.0000 1.0000
1 2 3 1.0000 1.0000
1 2 4 1.0000 1.0000

aggregate cost for user 1 250.00 254.50
2 1 1 0.0000 0.0000
2 1 2 0.5004 1.7500
2 1 3 1.4996 1.0000
2 1 4 4.0000 3.2500
2 2 1 2.1857 2.2500
2 2 2 1.3234 0.5000
2 2 3 0.4908 1.2500
2 2 4 0.0000 0.0000

aggregate cost for user 2 250.00 247.75
aggregate cost for the system 500.00 502.25

same total electricity cost 564.50, although from different solutions.

Collectively, Examples 1 and 2 suggest that although in most cases the SO

and UO models yield different solutions, it is possible that they lead to the same

system-wide optimal cost.

3.4.2 Data generation for extended testing

The data used in extended numerical experiments include two parts. The

first part characterizes users profiles, i.e., appliances a, appliances’ demand Di,a and

maximum amount of energy during a unit time for appliances Ei,a. In particular, we

use dishwasher, plug-in hybrid electric vehicle (PHEV) and air conditioner as

prototypical appliances 1, 2 and 3, respectively. The daily demand of each appliance
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TABLE 3
Optimal UO and SO Solutions for Example 2

user appliance time SO-x̄ti,a UO-x̂ti,a
1 1 1 3.0000 3.0000
1 1 2 1.7875 2.0000
1 1 3 2.2125 2.0000
1 1 4 0.0000 0.0000
1 2 1 0.0000 0.0000
1 2 2 1.0000 1.0000
1 2 3 1.0000 1.0000
1 2 4 1.0000 1.0000

aggregate cost for user 1 274.00 274.00
2 1 1 0.0000 0.0000
2 1 2 2.7125 2.5000
2 1 3 3.2875 3.5000
2 1 4 0.0000 0.0000
2 2 1 3.0000 3.0000
2 2 2 1.0000 1.0000
2 2 3 0.0000 0.0000
2 2 4 0.0000 0.0000

aggregate cost for user 2 290.50 290.50
aggregate cost for the system 564.50 564.50

follows a uniform distribution in the range of 0.8 and 1.2 times of the typical daily

consumption as reported in [72]. Similarly, the upper bound Ei,a is also uniformly

distributed between 0.8 and 1.2 times of the typical hourly consumption for each

appliance. For example, the typical daily and hourly consumption of a dishwasher is

5.76 kWh and 1.44 kW. Thus, the daily demand for dishwashers Di,a=2 is set to

follow the uniform distribution between (4.6, 6.9), while the upper bound Ei,a follow

the uniform distribution between (1.152, 1.728).

The second part of the data involves the unit cost f(lt), as a function of the

load lt at any time t. We choose to use the linear unit cost function f(lt) = c0 + clt

in our simulation, which leads to a quadratic total cost function f(lt)lt = c0lt + cl2t .

The latter is consistent with the commonly used quadratic fuel cost in modeling
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power generation. Our choice of c0 and c is based on the DoE census report on the

retail price of electricity for 50 states in the U.S. (see e.g., [73]), with an average of

10 cents per KWh. Given an average gap of approximately 17% between the

generation and retail costs among the 50 states, we determine that c0 = 7.43 cents

and c = 1.55 cents per kWh.

3.4.3 Impacts of various users groups on the equilibrium

This section reports extensive sensitivity analysis for the UO and SO models

based on variations to the baseline scenario summarized in Table 4. In words, there

are two users, three appliances and 24 time intervals. Setting [α, β] = [1, 24] allows

both users to be able to use all three appliances any time. Note that both users

share the same profile with respect to demand Di,a and upper bound Ei,a.

TABLE 4
Parameter Values for Baseline Scenario

user appliance Di,a Ei,a α β αp βp
1 1 6.0753 1.1703 1 24 3 10
1 2 13.0305 3.2684 1 24 4 9
1 3 18.5805 2.3439 1 24 5 15
2 1 6.0753 1.1703 1 24 3 13
2 2 13.0305 3.2684 1 24 4 12
2 3 18.5805 2.3439 1 24 5 18
Utilities: π1=π2=5

Given special attention is the design of the “preferred usage window” for

users 1 and 2. User 1’s preferred usage window for using appliance 1 is [3,10], three

hours shorter than that for user 2 ([3,13]). Similar observations can be made for

appliances 2 and 3 between user 1 and user 2. Practically, user 1 represent those

with less flexibility on their preferred time, while user 2 represents those with more

flexibility. One focus of our subsequent sensitivity analysis is how these two groups

may affect the equilibrium solution differently.

32



TABLE 5
Aggregate Measures vs. Utility for User 2

Case π1 π2
SO UO

Cost Disutility Cost Disutility
1 5 5 926.9182 892.1366 927.2219 877.7099
2 5 15 926.9182 871.6919 927.9788 824.936
3 5 25 926.9182 851.2473 929.0919 769.9865
4 5 35 926.9182 830.8027 930.1639 713.6645
5 5 45 926.9182 810.3581 931.4551 656.1449
6 5 55 926.9182 789.9134 932.8704 597.5788
7 5 65 926.9182 769.4688 934.3944 538.0829
8 5 75 926.9182 749.0242 936.0158 477.7459
9 5 85 926.9182 728.5795 937.6911 416.7896
10 5 95 926.9182 708.1349 939.3973 355.3186
11 5 100 926.9182 697.9126 940.2457 324.4142

Table 5 displays the aggregate measures for the SO and UO solutions when

varying the utility coefficient for user 2, i.e., π2. Recall that πi represents the user

i’s monetary value for the convenience utility. The aggregate measures include the

total electricity cost as well as the total disutility (the total electricity cost minus

the total convenience utilities), for both the SO and UO solutions. Note that the

SO is independent of utility coefficients, thus the electricity cost for the SO solution

is fixed regardless values of πi. From Table 5, as user 2’s monetary value of

convenience increases from 5 (the baseline value) to 100, the system-wide electricity

cost for the UO solution increases from 927.2219 to 940.2457. On the other hand,

the disutility of the UO solution decreases from 877.7099 to 324.4142, which

indicates the increase of the electricity cost is dominated by the increase of the

convenience. Similarly, the disutility of the SO solution decreases (from 892.1366 to

697.9126) as well when π2 increases. Finally, for all cases 1 through 11, the disutility

of the UO solution is consistently more appealing, i.e., less than that of the SO

solution. This validates the user equilibrium model in that the user model provides

the best utility for users, whereas the system model provides the best cost for the
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central controller.

TABLE 6
Aggregate Measures vs. Utility for User 1

Case π1 π2
SO UO

Cost Disutility Cost Disutility
1 5 5 926.9182 892.1366 927.2219 877.7099
2 15 5 926.9182 843.0180 928.1562 828.5164
3 25 5 926.9182 793.8994 929.5449 776.5224
4 35 5 926.9182 744.7807 931.2226 722.3303
5 45 5 926.9182 695.6621 933.1827 666.2387
6 55 5 926.9182 646.5435 935.3919 608.4622
7 65 5 926.9182 597.4249 937.8233 549.1673
8 75 5 926.9182 548.3063 939.5396 490.078
9 85 5 926.9182 499.1877 940.0007 432.5708
10 95 5 926.9182 450.0691 941.3545 373.4698
11 100 5 926.9182 425.5098 942.2829 343.3592

Similarly, Table 6 shows the effect of increasing user 1’s utility coefficient.

Again, as π1 increases, the electricity cost for the UO solution increases and the

disutility decreases for both the UO and the SO solutions.

More interestingly, when assemble the cost-related results in Tables 5 and 6

together, Figure 3 indicates that user 1 and user 2 have different impact on the

system cost at equilibrium. In Figure 3, the “�” series corresponds to the

system-wide electricity cost with varying π1, and the ‘�’ series with varying π2.

From the figure, the ‘�’ series is consistently above the ‘�’ series, implying that

increasing the utility value for user 1, who has less flexibility on the preferred usage

window, has larger effect than increasing that for user 2, who has more flexibility.

To illustrate, point A in the ‘�’ series in Figure 3 represents the case where π1 = 5

and π2 = 55 and point B in the ‘�’ series represents the case where π1 = 55 and

π2 = 5. Clearly, π1 = 55 yields a higher electricity cost (935.3919) than does π2 = 55

(932.8704), when compared to the baseline cost for the UO solution (927.2219).

Similarly, Figure 4 depicts different impact of user 1 and user 2 on the
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Figure 3. UO Cost vs. Utility

disutility of the equilibrium. Again, the “�” series corresponds to varying π1 and

the ‘�’ series corresponds to varying π2. One notes that the UO disutility is

consistently higher when varying π1 than when varying π2. This is because the

increased UO cost (from Figure 3) outweighs the increased convenience.

Finally, we examine the convenience experienced by users for the SO and UO

solutions under various scenarios. Recall that the (second) convenience term in the

utility function (8) is defined as ui(xi) = πi
∑

a (
pi,a

Di,a
)1/2, where pi,a =

∑
t∈T 1

i,a
xti,a is

the amount of electricity used from appliance a by user i during the preferred usage

window. In subsequent analysis, we define the “average percentage of preferred

usage” (APPU) to be APPU =
∑n

i=1 pi
n

, where pi =

∑
a∈A

pi,a
Di,a

|A| . In other words, pi is

user i’s average percentage of preferred usage over all appliances, and APPU is the

average of pi over all users.
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Figure 4. UO Disutility vs. Utility

Figure 5 depicts how p1 (the “�” series), p2 (the “�” series) and APPU (the

“4” series) respond to the increase of user 2’s utility coefficient π2. Clearly, when

π2 increases, the average percentage of preferred usage (over three appliances) for

user 2 increases, again validating the UO model from the perspective of the

convenience utility. On the other hand, the APPU for user 1 decreases as shown in

the “�” series. Finally, looking at the average APPU for two users in the “4” series,

it is relatively stable but with a slight increasing trend.

Figure 6 depicts how p1 (the “×” series), p2 (the “∗” series) and APPU (the

“•” series) respond to the increase of user 1’s utility coefficient π1. In this case, the

three series have the same trend as in Figure 5 except that they intercept around

π1 = 25, where the two users have the same APPU. Finally, Figure 7 compares how

the APPU for both users is affected by the change of π1 and π2. From this figure,
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Figure 5. Average Percentage of Preferred Usage vs. Utility 2

the system APPU is higher in the situation where π2 is fixed and π1 increases,

compared to the situation where π1 is fixed and π2 increases. This suggests that

user 1 has more influence on the equilibrium in terms of the convenience utility,

which is consistent with previous observations in terms of the system costs.

We also study the effect of the changing preferred usage window, i.e., αp and

βp, on the equilibrium solution. The baseline scenario in this experiment is the same

as the baseline in previous sensitivity studies except for π1 = π2 = 50. Table 7

displays the SO and UO solutions for four cases. Case 1 corresponds to the baseline.

Case 2 is constructed from the baseline by spreading out user 1’s preferred windows

for the three appliances so that they do not overlap with each other. As a result,

the electricity cost and disutiliuty for the UO solution decrease from 949.6517 to

936.6132, and from 412.4361 to 354.4051, respectively. This implies that if a user is
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willing to spread out his/her preferred usage window between various appliances,

the entire system is better off at the equilibrium. Compared to case 1, case 3

spreads out the preferred usage window for user 2, although these intervals still

overlap but to lesser degree than in case 1. Similar to case 2, in case 3 the total cost

and disutility decreases from 949.6517 to 932.4823, and from 412.4361 to 356.4647,

respectively, when compared to the baseline case 1. Finally, case 4 represents a

scenario where there is a large overlap amongst all six preferred usage windows for

three appliances and two users. Consequently, the system is worse off at

equilibrium, experiencing higher cost (952.4703 vs. 949.6517) and disutility

(433.5812 vs. 412.4361).
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TABLE 7
UO Solutions for Various Preferred Windows

Case Appliance
User 1 User 2 UO
[αp, βp] [αp, βp] Cost Disutility

1
1 [3,10] [3,13]

949.6517 412.43612 [4,9] [4,12]
3 [5,15] [5,18]

2
1 [1,8] [3,13]

936.6132 354.40512 [9,14] [4,12]
3 [14,24] [5,18]

3
1 [3,10] [1,11]

932.4823 356.46472 [4,9] [16,24]
3 [5,15] [11,24]

4
1 [3,10] [3,13]

952.4703 433.58122 [3,8] [3,11]
3 [3,13] [3,16]
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CHAPTER 4

A PRICING MODEL FOR DEMAND RESPONSE WITH

CONSUMER PREFERENCE

In Chapter 3, we consider users possible preference on convenience over

cost-saving under the real-time pricing in smart grid. Through numerical analysis,

we found that the UE solution is always different from the SO solution. In terms of

the total cost and peak load reduction, it is always worse than the SO model. In

this chapter, we focus on developing a pricing framework that can make the system

model and the user equilibrium model share the same users energy consumption

profile. The objective of the system model is different from the one in Chapter 3.

The new objective of the system model to maximize the social welfare, which is the

convenience-based utility function minus the electricity generation cost function.

Li et al. [63] use dynamic pricing to coordinate the customers’ demand

responses to the benefit of individual customers and the overall system. Two models

are established. In their utility’s (system) model, they assume that the utility

company is regulated so that instead of maximizing its profit through selling

electricity to end users, its objective is to maximize the social welfare. On the other

hand, in their customer’s or user equilibrium model, each customer aims to

maximize his/her own benefit. Both objectives include two parts: a utility function

and a cost function. The utility function for the two models are identical while the

cost functions are different. Let xti,a be the energy consumption by customer i on

appliance a at time t, then the total energy drawn by all consumers at time t is

Q =
∑

i,a x
t
i,a. the system model assumes the cost function C(Q, t) to be convex and

increasing in Q for each t. On the other hand, the user equilibrium model defines
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the cost function to be the bill charged to individual user i as

B(Qi, t) = p(t)
∑

a x
t
i,a, where p(t) is the electricity rate at time t. They show that

the pricing scheme defined by p∗(t) = C ′(
∑

iQ
∗
i (t)) ≥ 0 for each time t can render

the equilibrium solution to be identical to the system solution.

In their paper [63], Li et al. show the existence of a pricing p∗(t) that would

reconcile the optimal solutions to the equilibrium and system models. They do not

discuss the uniqueness of either the pricing or the equilibrium solution. On the

other hand, in the area of traffic networks, congestion toll pricing has been studied

for more than a decade [74]. Bergendorff et al. [74] prove that in order to reproduce

a fixed choice of system solution, alternative tolls exist. Furthermore, they show

that these alternative valid toll vectors can be characterized by a polyhedron, or

expressed in a linear system of equalities and inequalities. Thus, in this study we

investigate: 1) the nonuniqueness of the demand response pricing under which the

user equilibrium solution would reproduce the system optimal solution; 2) the

nonuniqueness of the user equilibrium solutions; 3) the development of a framework

that optimizes demand response pricing with respect to various objectives, and

solution algorithms for the demand response pricing optimization problems.

In this chapter, we first develop a system model for social welfare

maximization (SOS) and a game theoretical user equilibrium model for pricing

(UEP). We show that the pricing scheme that would induce the equilibrium solution

to be identical to the system solution is not unique. With a desired and

pre-determined system optimal solution, we show that there exist alternative pricing

schemes to achieve the desired objective. In this way, the pricing scheme becomes

adjustable and the utility company may customize the pricing scheme to achieve

proper objectives, e.g. maximize the profit, minimize the maximum price, etc.

Second, we also show that at the equilibrium, the user’s solution is not unique. The

users’ energy consumption pattern is supposed to follow the optimal solution of

system model. But when the UEP has multiple solutions under a given pricing
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scheme, the design objective will always get worse and the obtained pricing scheme

may not be the most desirable. Third, by adopting the risk-averse Second Best Toll

Price (SBTP) concept in [75], we propose a bi-level model to solve the problem,

which the design objective is worse off when the UEP solution varies under a given

pricing scheme. Instead of designing the pricing scheme for the best case scenario,

we set the pricing under the worst case scenario. In this case, the design objective

will always better off.

The remainder of this chapter is organized as follows. Sections 4.1 and 4.2

present the system optimum and user equilibrium models respectively. Section 4.3

describes a pricing frame work to reproduce the system optimal solution for user

equilibrium model. Section 4.4 discusses results from numerical experiments and

Section 4.5 demonstrate the non-uniqueness of the valid pricing scheme and that of

the UEP solution. Section 4.6 formulates the demand response pricing optimization

problem as a bi-level program, especially when the UEP solution is non-unique and

a risk-averse pricing model is desired. In addition, discussions are also given on

possible decomposition algorithms for the resulting demand response pricing

optimization problem.

4.1 System Optimization Model of Maximizing Social Welfare

In our system model, instead of maximizing its profit through selling

electricity to end customers, the utility company’s objective is to maximize the

social welfare. In the way of considering customers’ convenience to use an appliance

during his/her preferred times, the objective function is the total customers utility

minus the utility cost of providing the electricity demanded by all customers.

Consider a local area power system with n users and a set of appliances A for each

user. Assume each user i has a daily energy demand Di,a for appliance a ∈ A. We

define a 24-hour daily cycle with t ∈ T = {1, 2, · · · , 24}. Further, let Ei,a be the

maximum amount of energy consumed by user i on appliance a during one unit
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time. In addition, define a set of preferred time intervals T 1
i,a ⊂ T during which user

i prefers to use appliance a. Using this notation and letting decision variable xti,a be

the amount of energy consumed on appliance a by user i at time t, the system

optimal for social welfare maximization (SOS) model to maximizing social welfare

for the utility company can be formulated as follows:

Utility’s objective (max social welfare):

SOS:

max
xt
i,a

∑
i

πi ·
∑
a

2


∑
t∈T 1

i,a

xti,a

Di,a


1/2

−
T∑
t=1

[(c0 + c ·
∑
i,a

xti,a) ·
∑
i,a

xti,a] (18)

s.t.

λia · · ·
∑
t

xti,a = Di,a, ∀i, a (19)

γit,a · · · xti,a ≤ Ei,a, ∀i, a, t (20)

µi
t,a · · · xti,a ≥ 0, ∀i, a, t (21)

In the SOS model, the objective (18) is for the utility company to maximize

the total social welfare considering all users’ utility. The first term in (18) represents

the utility function of all users, in which πi is the monetary value of the time-of-use

convenience for user i. Specifically, the “utility” herein stands for the convenience

users have experienced by being able to use their appliances at preferred times. The

second term represents the unit electricity (generation) cost. As mentioned

previously, at any given time t, this cost function is monotone increasing in the total

electricity consumption
∑

i,a x
t
i,a at time t. c0 and c are the electricity generation

cost coefficients. Furthermore, constraints (19) ensure that user i’s energy demand

for appliance a is met. Constraints (20) state that the total energy used by user i’s

appliance a during each time interval does not exceed Ei,a, an upper bound due to

technical specification. Finally, constraints (21) ensure that all xti,a are non-negative.
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Let λi,a, γ
t
i,a ≥ 0 and µt

i,a ≥ 0 be the Lagrange multipliers of constraints (19) to (21),

respectively. The Lagrange equation and the Karush-Kuhn-Tucker (KKT) system of

the SOS model is as follows:

Lagrange Equation:

SL(xti,a;λ, µ, γ) =
∑T

t=1[(c0 + c ·
∑

i,a x
t
i,a) ·

∑
i,a x

t
i,a]−

∑
i πi ·

∑
a 2

(∑
t∈T1

i,a
xt
i,a

Di,a

)1/2

+
∑

i,a λi,a · (
∑T

t=1 x
t
i,a −Di,a)

+
∑

t,i,a γ
t
i,a · (xti,a − Ei,a)

−
∑

t,i,a µ
t
i,a · xti,a

(22)

The KKT conditions for the system optimal model (KKTSOS):∑
t

xti,a = Di,a, ∀i, a (23)

xti,a ≤ Ei,a, ∀i, a, t (24)

−xti,a ≤ 0, ∀i, a, t (25)(
∂SL
∂xt

i,a
|t∈T 1

i,a
= 0
)

(c0 + 2c ·
∑

i,a x
t
i,a)− πi · [(

∑
t∈T 1

i,a
xti,a) ·Di,a]

−1/2

+λi,a + γti,a − µt
i,a = 0, ∀i, a, t (26)(

∂SL
∂xt

i,a
|t/∈T 1

i,a
= 0
)

(c0 + 2c ·
∑

i,a x
t
i,a)

+λi,a + γti,a − µt
i,a = 0, ∀i, a, t (27)

(xti,a − Ei,a) · γti,a = 0, ∀i, a, t (28)

xti,a · µt
i,a = 0, ∀i, a, t (29)

γti,a, µ
t
i,a ≥ 0, ∀i, a, t (30)

The SOS model assumes a centralized decision system where the central area

controller in the power distribution network wishes to coordinate energy

consumption for all of its subscribers. Thus, the SOS model provides an energy

consumption profile with the maximal social welfare. On the other hand, in practice

each subscriber may be more interested in their own electricity usage, not so much

in others or even the average usage for the entire system. Thus, a user equilibrium
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model is suitable for describing the individual subscriber’s energy consumption

behavior.

4.2 User Equilibrium Model of Maximizing Own Benefit

Different from the SOS model, a user’s decision is on when and how much to

use his/her appliances. We consider only the convenience for this user to be able to

use an appliance during his/her preferred times. Thus, the user equilibrium model

assumes each user i maximizes the his/her own benefit or utility. Hence, in a

distributed manner, each user solves the following user’s problem:

Customer i’s objective (max own benefit):

UEPi : max
yti,a

πi ·
∑
a

2


∑
t∈T 1

i,a

yti,a

Di,a


1/2

−
T∑
t=1

p(t) · (
∑
a

yti,a) (31)

s.t.

αi,a · · ·
∑
t

yti,a = Di,a, ∀a (32)

βt
i,a · · · yti,a ≤ Ei,a, ∀a, t (33)

ρti,a · · · −yti,a ≤ 0, ∀a, t (34)

The UEP model is for each user i to maximize his/her payoff assuming the

knowledge of time-of-use pricing scheme p(t), and the decision variables only pertain

to user i’s energy consumption profile yti,a. Thus, the objective (31) for user i is to

maximize his/her own benefit, i.e., the electricity cost less the convenience-based

utility. Note that in calculating the electricity cost, the pricing scheme p(t) is

designed by the utility company and informed to customers in advance. Constraints

(32)-(34) for the UEP model are similar to (19)-(21) in the SOS model. Finally, if

each user solves his/her own UEPi, then the system of n user problems, i.e.,
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{UEi}i=1,··· ,n, may reach an equilibrium. Let αi,a, β
t
i,a and ρti,a be the Lagrange

multipliers of constraints (32) to (34), respectively, the Lagrange equation and the

KKT system of the UEPi model is shown as follows:

Lagrange Equation:

UL(yti,a;α, β, ρ) =
∑T

t=1 p(t) · (
∑

a y
t
i,a)− πi ·

∑
a 2

(∑
t∈T1

i,a
yti,a

Di,a

)1/2

+
∑

a αi,a · (
∑

t y
t
i,a −Di,a)

+
∑

t,a β
t
i,a · (yti,a − Ei,a)

−
∑

t,a ρ
t
i,a · yti,a

(35)

The KKT conditions for the user equilibrium KKT(KKTUEP):∑
t

yti,a = Di,a, ∀a (36)

yti,a ≤ Ei,a, ∀a, t (37)

−yti,a ≤ 0, ∀a, t (38)(
∂UL
∂yti,a
|t∈T 1

i,a
= 0
)

p(t)− πi · [(
∑

t∈T 1
i,a
yti,a) ·Di,a]

−1/2

+αi,a + βt
i,a − ρti,a = 0, ∀a, t (39)(

∂UL
∂xt

i,a
|t/∈T 1

i,a
= 0
)

p(t) + αi,a + βt
i,a − ρti,a = 0, ∀a, t (40)

(yti,a − Ei,a) · βt
i,a = 0, ∀a, t (41)

yti,a · ρti,a = 0, ∀a, t (42)

βt
i,a, ρ

t
i,a ≥ 0, ∀a, t (43)

In Li et al.’s paper [63], they claim that if the utility company set the

time-of-use electricity price equal to the first derivative of the electricity generation

cost function, the customers’ consumption profile (yti,a) will be the same as the

system optimum model solution xti,a. This is a direct result comparing KKTSOS

and KKTUEP. If three pairs of Lagrange multipliers are equal to each other, i.e.

λi,a = αi,a, γ
t
i,a = βt

i,a and µt
i,a = ρti,a, then p∗(t) = c0 + 2c ·

∑
i,a x

t
i,a will make these

two KKT systems [(23)-(30) and (36)-(43)] identical. Thus, user’s energy
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consumption profile of UEP (yti,a) under this pricing scheme (p∗(t)) will be the

solution of the SOS model.

However, this is only one feasible pricing scheme that renders the UEP

solution to reproduce the SOS model. Below we define a set of pricing schemes

P = {p(t)|(44)− (48) hold for some α, β and ρ}. We show that: 1) set P is

nonempty; 2) for any p(t) ∈ P , the UEP solution would be identical to the system

solution; 3) set P is convex.

p(t)− πi · [(
∑

t∈T 1
i,a
xti,a) ·Di,a]

−1/2 + αi,a + βt
i,a − ρti,a = 0, ∀a, t (44)

p(t) + αi,a + βt
i,a − ρti,a = 0, ∀a, t (45)

(xti,a − Ei,a) · βt
i,a = 0, ∀a, t (46)

xti,a · ρti,a = 0, ∀a, t (47)

βt
i,a, ρ

t
i,a ≥ 0, ∀a, t (48)

where xti,a is the solution set of SOS model, computed by equations (18) to (21). By

setting different objectives, we may find different solution sets of

S ≡ {p(t), αi,a, β
t
i,a, ρ

t
i,a} that can solve equations (44) to (48). If we can find such set

S and because equations (44) to (48) are the KKT system of the UE, we can prove

that the SOS model and the UEP may share the same solution set xti,a = yti,a. We

show our computational results for multiple pricing schemes in section 4.4. We also

show in section 4.4 that under the given pricing scheme, UEP has multiple solutions

and it is always worse than the optimal objective value achieved by the SOS model.

Note that the third assertion above is true only when the SOS model has a

unique optimal solution. This requires the cost function of the SOS model to be

strictly convex. If the SOS has multiple optimal solutions, then we can find sets of

pricing schemes P1,P2, ... that can make the UEP model render the same solution as

the SOS model. Then the union of all sets {P1 ∪P2 ∪ ...} may or may not be convex.
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1. Solve the SOS model and let Xs solves (18)-(21).

2. Identify the set P of valid pricing schemes for demand response by
substituting Xs into (44)-(48).

3. Solve the following pricing problem for a desired demand response
pricing scheme.

min{g(p)|p ∈ P from Step 2.}

4.3 A DR Pricing Framework

We propose a framework of demand response pricing whose goal is that the

user equilibrium solution under such pricing will reproduce the system solution. The

framework offers alternative pricing schemes depending on various pricing objectives

chosen by utility authorities.

4.4 Computational Results

4.4.1 Data generation for extended testing

In this section, we discuss the results from our numerical simulations for

evaluating the proposed system and user equilibrium models. Both SOS and UEP

models were implemented and solved in GAMS [69], a state-of-the-art modeling

language for nonlinear programs. All simulations were run on a 16-core dual

Opteron CPU server with 32GB of memory running openSUSE 11 Linux.

The data used in extended numerical experiments include two parts. The

first part characterizes users profiles, i.e., appliances a, appliances’ demand Di,a and

maximum amount of energy during a unit time for appliances Ei,a. In particular, we

use dishwasher, plug-in hybrid electric vehicle (PHEV) and air conditioner as

prototypical appliances 1, 2 and 3, respectively. The daily demand of each appliance

follows a uniform distribution in the range of 0.8 and 1.2 times of the typical daily
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consumption as reported in [72]. Similarly, the upper bound Ei,a is also uniformly

distributed between 0.8 and 1.2 times of the typical hourly consumption for each

appliance. For example, the typical daily and hourly consumption of a dishwasher is

5.76 kWh and 1.44 kW. Thus, the daily demand for dishwashers Di,a=2 is set to

follow the uniform distribution between (4.6, 6.9), while the upper bound Ei,a follow

the uniform distribution between (1.152, 1.728).

The second part of the data involves the unit cost f(
∑

i,a x
t
i,a), as a function

of the load
∑

i,a x
t
i,a at any time t. We choose to use the linear unit cost function

f(
∑

i,a x
t
i,a) = c0 + c

∑
i,a x

t
i,a in our simulation, which leads to a quadratic total cost

function f(
∑

i,a x
t
i,a)lt = c0

∑
i,a x

t
i,a + c(

∑
i,a x

t
i,a)

2. The latter is consistent with the

commonly used quadratic fuel cost in modeling power generation. Our choice of c0

and c is based on the DoE census report on the retail price of electricity for 50

states in the U.S. (see e.g., [73]), with an average of 10 cents per KWh. Given an

average gap of approximately 17% between the generation and retail costs among

the 50 states, we determine that c0 = 7.43 cents and c = 1.55 cents per kWh.

4.4.2 Pricing scheme design and results

This section reports pricing scheme design for various objectives based on

scenario summarized in Table 8. In words, there are two users, three appliances and

24 time intervals. Setting [α, β] = [1, 24] allows both users to be able to use all three

appliances any time. Note that both users share the same profile with respect to

demand Di,a and upper bound Ei,a. The “preferred usage windows” for users 1 and

2 are different. For example, user 1’s preferred usage window for using appliance 1 is

[3,10] and that for user 2 is [3,13]. Similar observations can be made for appliances

2 and 3 between user 1 and user 2.

In order to obtain different pricing schemes, we design various objective

function scenarios and describe them as follows.

Marginal Pricing (MP ): Let p(t) be the first derivative of the electricity
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TABLE 8
Parameter Values for Baseline Scenario

user appliance Di,a Ei,a α β αp βp
1 1 6.0753 1.1703 1 24 3 10
1 2 13.0305 3.2684 1 24 4 9
1 3 18.5805 2.3439 1 24 5 15
2 1 6.0753 1.1703 1 24 3 13
2 2 13.0305 3.2684 1 24 4 12
2 3 18.5805 2.3439 1 24 5 18
Utilities: π1=π2=5

generation cost function, which equals to c0 + 2c ·
∑

i,a x
t
i,a in our case. This is the

pricing scheme claimed by Li et al. in [63].

Minimum Total (MinT ): The objective is set to be the minimum of the

total revenue for the utility company, or the total financial burden for the

consumers.

Minimum of Maximum (MinMax): The objective is to minimize the

maximum of all possible p(t).

Netzero Total (Net0): The objective is set to be net zero profit for the

utility company. This scheme can have two applications. One awards some kind of

credits (i.e., negative cost) to users when they use appliances during designated

off-peak hours. The other allows for users to discharge and sell the electricity at a

certain rate when they are equipped with battery storage devices.

Maximum Total (MaxT ): The objective is set to be the maximum of total

profit for the utility company with an upper bound of p(t) ≤ P . P is the constant

and can be properly chosen by the utility company. In our case, we randomly

choose P = 1, 9, 10 or 15 .

Table 9 displays various pricing schemes for different objectives shown in

Scenarios 1 to 5. In the second column, we list the solution profile for SOS model.

The p(t) of scenario 1 to 4 are listed in column 3 to 6 in Table 9. For scenario 5, the

p(t) with upper bound of 1, 9, 10 or 15 are listed in column 7 to 10, respectively.
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The bottom row of Table 9 displays total profit in each scenario. It proves that

various pricing schemes exist, under which the UEP may have the same users’

energy consumption profile as the optimal solution of SOS model. Given this

solution profile xti,a, we solve equations (44) to (48) with various designed objective

functions to get S ≡ {p(t), αi,a, β
t
i,a, ρ

t
i,a}. Adopting this method, the utility

company can properly design their electricity pricing scheme to achieve their desired

objective. For example, if the utility company is willing to maximize their profit and

there is a regulation limiting the highest electricity price to less than or equal to an

exact price, i.e. 10, the utility company can set its pricing scheme following column

9 and the maximum profit is 737.29.

TABLE 9
Various pricing schemes

Time
∑

i,a x
t
i,a MP MinT MinMax Net0

MaxT
P = 1 P = 9 P = 10 P = 15

1 3.0711 16.9504 0 0 -0.22 0.5619 8.5619 9.5619 14.5619
2 3.0711 16.9504 0 0 -0.22 0.5619 8.5619 9.5619 14.5619
3 3.0711 16.9504 0 0 -0.22 0.5619 8.5619 9.5619 14.5619
4 3.2124 17.3885 0.4381 0.4381 0.2181 1 9 10 15
5 3.2124 17.3885 0.4381 0.4381 0.2181 1 9 10 15
6 3.2124 17.3885 0.4381 0.4381 0.2181 1 9 10 15
7 3.2124 17.3885 0.4381 0.4381 0.2181 1 9 10 15
8 3.2124 17.3885 0.4381 0.4381 0.2181 1 9 10 15
9 3.2124 17.3885 0.4381 0.4381 0.2181 1 9 10 15
10 3.2124 17.3885 0.4381 0.4381 0.2181 1 9 10 15
11 3.2124 17.3885 0.4381 0.4381 0.2181 1 9 10 15
12 3.2124 17.3885 0.4381 0.4381 0.2181 1 9 10 15
13 3.2124 17.3885 0.4381 0.4381 0.2181 1 9 10 15
14 3.1977 17.3428 0.3924 0.3924 0.1724 0.9543 8.9543 9.9543 14.9543
15 3.1977 17.3428 0.3924 0.3924 0.1724 0.9543 8.9543 9.9543 14.9543
16 3.0711 16.9504 0 0 -0.22 0.5619 8.5619 9.5619 14.5619
17 3.0711 16.9504 0 0 -0.22 0.5619 8.5619 9.5619 14.5619
18 3.0711 16.9504 0 0 -0.22 0.5619 8.5619 9.5619 14.5619
19 3.0711 16.9504 0 0 -0.22 0.5619 8.5619 9.5619 14.5619
20 3.0711 16.9504 0 0 -0.22 0.5619 8.5619 9.5619 14.5619
21 3.0711 16.9504 0 0 -0.22 0.5619 8.5619 9.5619 14.5619
22 3.0711 16.9504 0 0 -0.22 0.5619 8.5619 9.5619 14.5619
23 3.0711 16.9504 0 0 -0.22 0.5619 8.5619 9.5619 14.5619
24 3.0711 16.9504 0 0 -0.22 0.5619 8.5619 9.5619 14.5619
Total reveneu 1294.18 16.58 16.58 0.00 58.93 661.92 737.29 1114.15
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4.5 Non-uniqueness of UEPi Model

Observations on Non-Uniqueness of UEP Solutions: Our preliminary experiments

show that the UEP may have multiple solutions under a given pricing scheme, i.e.,

the users’ energy consumption pattern may not follow the optimal solution of

system model. For example, when substituting the marginal pricing (MP) in Table

9 into UEPi model, the corresponding KKTUEP system with (36)-(43) yields an

UEP solution (the last column in Table 10) with a total welfare of -1086.6029. This

is less desirable than that of the SOS solution (-876.5805). Thus considerations

ought to be given to the non-uniqueness of the UEP solution when designing a

pricing scheme. This motivates the robust pricing in Section 4.6.
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4.6 A Robust Pricing Model

As noted previously, for a given pricing scheme p the UEP solution may not

be unique. Thus, we propose the following robust pricing multi-level optimization

problem to maximize the minimum possible social welfare among alternative UEP

solutions.

(RPDR) maxp min
y∈Sy(p)

SW (y) (49)

s.t. L ≤ pt ≤ U, ∀t (50)

where Sy(p) = {y ∈ KKTUEP:(36)− (43)} is the set of UEP solutions given p, and

SW (y) =
∑

i πi ·
∑

a 2


∑
t∈T 1

i,a

yti,a

Di,a


1/2

−
∑T

t=1[(c0 + c ·
∑

i,a y
t
i,a) ·

∑
i,a y

t
i,a] is the

social welfare for UEP solution y. L and U are the lower bound and upper bound of

pt, respectively.
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TABLE 10
Energy consumption profile of SOS and UEP under the MP scheme

Time p(t)
∑

i,a x
t
i,a

∑
i,a y

t
i,a

1 16.9504 3.0711 1.9319
2 16.9504 3.0711 3.7903
3 16.9504 3.0711 7.1828
4 17.3885 3.2124 6.5792
5 17.3885 3.2124 9.6446
6 17.3885 3.2124 5.5697
7 17.3885 3.2124 2.9916
8 17.3885 3.2124 3.0861
9 17.3885 3.2124 7.2570
10 17.3885 3.2124 2.9916
11 17.3885 3.2124 3.2764
12 17.3885 3.2124 1.3033
13 17.3885 3.2124 1.1901
14 17.3428 3.1977 1.1901
15 17.3428 3.1977 1.1901
16 16.9504 3.0711 2.1356
17 16.9504 3.0711 2.1356
18 16.9504 3.0711 3.7131
19 16.9504 3.0711 1.9319
20 16.9504 3.0711 1.9319
21 16.9504 3.0711 1.9319
22 16.9504 3.0711 1.9319
23 16.9504 3.0711 0.4856
24 16.9504 3.0711 0.0000

Social welfare -876.5805 -1086.6029
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CHAPTER 5

AN EMPIRICAL STUDY OF ENERGY CONSUMPTION IN

SUB-METERED HOMES AND AN OPTIMAL CONSUMPTION

SCHEDULING METHOD

This chapter focuses on DLC in smart grid at the micro-level for major

energy-consuming appliances, which account for up to 30% of the residential

electricity consumption [76]. We study empirical data from a DR pilot program in

Kentucky in an attempt to understand consumer behavior under DR event. We

expect that the real data collected can be integrated to models developed in

Chapters 3 and 4.

In the literature, many have studied DLC under the smart grid framework.

For example, in order to solve the chronic problem of severe power shortage in the

summer for the Taiwan Power Company (TPC), Chu et al. [37] adopt the method

of dynamic programming to optimally determine the schedule of the DLC with the

objective of minimizing the amount of load reduction to lessen the effects of

customers’ discomfort and to maintain the TPC’s total incomes. Ramanathan and

Vittal [38] develop a an optimization problem for designing and assessing DLC

program with the objective of minimizing end-user discomfort. More related to our

work, McIntyre et al. [76] conduct a multi-phase study, in which different DR

strategies are tested and energy consumption is measured during each phase. Their

results show that the use of highly energy efficient appliances can achieve a

significant reduction in energy consumption under real-world conditions. They also

demonstrate the ability of smart appliances to react to remote pricing signals, which
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can produce a measurable decrease in energy consumption during high price periods

and may help utilities manage their demand peaks.

While the above mentioned research focuses on the DLC methods under

various conditions, it is desirable to have a micro-level and/or detailed analysis on

real data to reveal how customers may act upon a DR event. One contribution of

this chapter is that it is the first study of demand response in smart grid revealing

real life sub-metered data. In particular, this chapter consists of three parts. First,

detailed home energy consumption profiles obtained from a pilot study by a local

utility company are reported and investigated for clustering analysis. A total of 10

local homes equipped with sub-meters enabling measurements at individual

appliance level have been studied. They are divided into 6 clusters based on their

daily and peak-period energy consumption in the summer, and 2 clusters in the

winter. Second, a heuristic scheduling algorithm that coordinates the time and

length of the use of smart appliances, i.e. Thermo-Stat (TSTAT), Heat Pump

Water Heater (HPWH) and Battery System, is proposed. The goal of this heuristic

algorithm is to minimize the peak load during designated period of three hours,

which is defined as 2-5pm in the summer and 7-10am in the winter. Finally,

consumer survey from the pilot program indicates that many electricity consumers

would rely upon central utility to control major appliances such as TSTAT and

HPWH, as well as the operation of the battery and inverter units, in order to

manage demand during the predicted peak periods. Therefore, a mixed integer

programming (MIP) model for energy consumption scheduling is developed to

optimally control these loads and storage in minimizing the peak load of the peak

window for the entire system.

The rest of this chapter is organized as follows. Section 5.1 presents a

detailed home energy consumption profile clustering analysis based on the data from

a pilot study by a local utility company. Section 5.2 establishes a heuristic rotation

model for the energy consumption scheduling problem. Section 5.3 develops the two
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MIP models for the optimal energy consumption scheduling. Section 5.5 reports the

numerical results.

5.1 Clustering Analysis for Home Energy Consumption Profiles

In 2012∼2013, a major US home appliance manufacturer, a local regulation

authority and a local utility company in Kentucky together initiated a pilot study

with the end goal of DR through the use of smart appliance infrastructure and load

shifting. The group wanted to know if through proper incentives, consumers could

use smart appliances along with a central control unit to shift appliance loads.

Ultimately, this pilot study will help justify and validate an innovative rate

structure, which not only charges for the energy consumed each month, but also

charges for a home’s peak load during the designated system peak window. The

appliance types considered in the pilot study are dishwasher, clothes washer, dryer,

HVAC, water heater, refrigerator, and range.

30 local homes are engaged in this study with a test group of 20 homes and a

control group of 10 homes. Care is taken to make sure that homes within each

group are comparable in terms of appliance types. All 30 homes are equipped with

sub-meters enabling measurements at the individual appliance level (e.g., HVAC,

water heater). The 20 test homes have undergone appliance upgrade with smart

appliances and have undergone demand response events in later phases. The 10

control homes, on the other hand, have received no upgrades. Therefore, the energy

consumption data at the appliance level for these 10 sub-metered control homes

becomes extremely valuable for the micro-level clustering analysis.

Figure 8 displays an example of the energy consumption of a control home in

a typical summer day. In Figure 8, the total load is the sum of the HVAC load,

water heater load and the baseline load. The time axis represents the starting point

of each time interval. In this case, the entire day is divided into 24 continuous time

intervals, which means each time interval equals to 1 hour. Time 14 represents the
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Figure 8. An energy consumption example of a control home in a typical summer day

2-3pm and the time interval between 14 and 16 represents the peak period from

2pm to 5pm. For this particular home #29, its peak load of the day occurs at time

15, which is 3-4pm, with a total load of 3.144 kW.

All 10 control homes are analyzed and grouped using two rules: 1) if the daily

peak occurs in the peak period (2-5pm), and 2) the highest kW in the peak period.

Based on the above two rules and information in Table 11, all 10 control homes are

divided into 6 clusters listed in Table 12. Take home #21 as an example, its daily

energy peak load is 4.078 kW, which occurs at 4pm during the system peak period.

Three of the other 9 homes also have their daily peak load during the system peak

period but with different peak load values. Home #24 has the peak load of over 5

kW at 5pm and home #26 and #29 both have a peak load of around 3.1 kW at

4pm. Therefore, the four homes with peak load inside the system peak period are

divided into 3 clusters. For the other 6 homes having their daily peak load outside

the system peak period, we distinguish them according to their highest kW between

2pm and 5pm. Home #23 and #30 have highest load in peak period at around 4.5
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kW and they are grouped in cluster 4. Similarly, home #22 and home #27’s highest

load during peak window are about 3.8 kW, home #25 and home #28 have their

highest load between 2pm and 5pm at about 2.65 kW. Therefore, these four homes

are divided into two clusters, cluster 5 and cluster 6. Hence, all the 10 control homes

are divided into 6 clusters with the frequency of each cluster shown in Table 12.

TABLE 11
10 control homes peak load and timing during a typical summer day

Home#
Peak or Nonpeak Highest kW

Peak time Peak kW
between 2-5pm between 2-5pm

21 Peak 4.078 4pm 4.078
22 Non-peak 3.775 6pm 4.036
23 Non-peak 4.471 11am 6.122
24 Peak 5.198 5pm 5.198
25 Non-peak 2.649 7pm 4.311
26 Peak 3.148 4pm 3.148
27 Non-peak 3.988 11pm 4.991
28 Non-peak 2.746 9pm 3.209
29 Peak 3.144 4pm 3.144
30 Non-peak 4.626 7pm 5.101

TABLE 12
Clusters of summer homes

Cluster Representative homes Frequency
1 #21 0.1
2 #24 0.1
3 #26, #29 0.2
4 #23, #30 0.2
5 #22, #27 0.2
6 #28, #25 0.2

Among the 10 control homes, only home #21 and home #28 are equipped

with electric heater, while the other 8 homes are equipped with gas heater for
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winter. Therefore, only home #21 and home #28 are considered in winter home

energy consumption profile cluster analysis. The study is based on the similar rules

that are used for the summer homes: 1) if the daily peak occurs in the peak period

(7-10am), and 2) the highest kW in the peak period. Based on the above two rules

and information in Table 13, each of the 2 homes represents its own cluster as listed

in Table 14. Take home #21 as an example, its daily energy peak load is 5.134 kW,

which occurs at 11pm outside the system peak period. For home #28, its daily peak

load is also outside the system peak period at 3.067 kW.

TABLE 13
2 control homes peak load and timing during a typical winter day

Home#
Peak or Nonpeak Highest kW b

Peak time Peak kW
between 7-10am etween 7-10am

21 Non-peak 5.134 11pm 5.866
28 Non-peak 3.067 6pm 3.227

TABLE 14
Clusters of winter homes

Cluster Representative homes Frequency
1 #21 0.5
2 #28 0.5

We like to note that the relatively small sample size of 10 makes this

clustering analysis difficult. The intent here is to propose a method that will be

applied to a future work consisting of 330 local homes. We can then divide all the

330 homes into clusters based on the rules described above for both summer and

winter. Then either the heuristic algorithm in Section 5.2 or the optimal energy

scheduling models in Section 5.3 can be developed based on these clusters.
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5.2 A Heuristic Rotation Algorithm for 330 Homes

Consider a local utility company that considers to call for DR event on 330

selected homes. Thus, this and subsequent sections extend the energy consumption

sub-metered data from the 10 control homes presented in last section to 330

involved local homes. There are three supporting smart appliances/systems for the

demand response system considered in this study. The HPWH allows residents to

preheat and elevate (∼ 165oF) the water temperature off peak and control and

prevent heating on peak. The programmable TSTAT can be controlled via Wifi to

schedule the HVAC temperature set points, thus minimizing peak demand. The

battery system stores energy by charging during off-peak periods and discharge

during peak periods.

In order to effectively manage demand response supported by these 3

technologies: HPWH, TSTAT and battery system, we develop a heuristic scheduling

algorithm that coordinates the time and length of the use of the HPWH, TSTAT

and battery system. The goal of this heuristic algorithm is to minimize the peak

load during designated system peak period of three hours, which is defined as 2-5pm

in the summer and 7-10am in the winter.

The algorithm is described in detail in Table 15, and can be summarized as

follows. We consider 3 clusters in this demonstration of the scheduling only. First,

the scheduling of the HPWH works as follows. All homes can start at the same time

and finish at the same time; no rotation is needed because HPWH is not used

during the system peak window. In the Summer, the HPWH starts to work at

midnight and lasts for 5 hours to fulfill the daily demand. For the rest of the day, it

draws minimal power. Similarly, the HPWH starts to work at 11pm the previous

day and lasts for 7 hours in winter days. Second, the operations of TSTAT is

designed so as to ensure the maximal thermal comfort level and to minimize the

peak load during the peak window. The usage of TSTAT is rotated among three

clusters. Each TSTAT incurs a (3,0,3,0,3,3,1.5) consumption pattern for 7 hours,
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starting pre-cool at 1pm in summer, and pre-heat at 5am in winter. For example, in

summer days, users in cluster 1 can start pre-cool their homes at 1pm. Then users

in the following cluster may delay their pre-cool time by τ minutes, and users in

cluster n may delay their pre-cool time by (n− 1) ∗ τ minutes. Consequently, all

subsequent steps for scheduling TSTAT described in 1b-1h for cluster n will delay

by (n− 1) ∗ τ minutes. Third, the rotation scheduling for TSTAT will not affect the

charging of battery system for each user, while the discharging of the battery will be

affected. According to the consumption pattern of TSTAT, it requires discharging

pattern of (0,0,-3,0,-3,-3,0) from battery. Each Battery gives 3kW for 3 hours,

totaling a 9 kWh storage. As we described in step two of battery scheduling, it is

discharged to fully or partly mitigate the load of TSTAT during peak window. In

this way, the users’ thermal comfort level is ensured at a maximal level, and the

peak load of the system during peak window is minimized. The scheduling of winter

homes is similar to scheduling summer homes as described above.

While the above heuristic rotation algorithm is to minimize the peak load of

the system during peak window with the consideration of maximum users’ thermal

comfort level, it cannot ensure the optimality of the entire system. To achieve the

latter, we develop the centralized system peak minimization SPM-1 and SPM-2

models in Section 5.3.
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TABLE 15
Outline of heuristic device scheduling algorithm

Devices Steps for Scheduling

HPWH

1. In the summer, pre-heat starts at midnight and lasts for 5 hours.
For the rest of the day, the HPWH draws minimal power.

2. In the winter, pre-heats starts at 11pm the previous day and lasts
for 7 hours. For the rest of the day, the HPWH draws minimal
power.

TSTAT

1. In the summer when the peak period is 2-5PM, T-stat of first
cluster homes works as follows:

a. 1 PM. Pre-cool the home at maximal capacity.
b. 2 PM. Cool the home at minimum capacity that can avoid room

temperature rebound in the near future.
c. 3 PM. Cool the home at maximal capacity.
d. 4 PM. Cool the home at minimum capacity that can avoid room

temperature rebound in the near future.
e. 5 PM. Cool the home at maximal capacity.
f. 6 PM. Cool the home at maximal capacity.
g. 7 PM. Cool the home at medium capacity that can avoid room

temperature rebound in the near future.
h. All other periods, the T-stat keeps the same consumption pattern

as the regular HVAC system.
2. In the winter when the peak period is 7-10AM, T-stat of first

cluster homes works as follows:
a. 5AM and 6AM. Pre-heat the home at maximal capacity.
b. 7AM. Heat the home at minimum capacity that can avoid room

temperature rebound in the near future.
c. 8AM. Heat the home at maximal capacity.
d. 9AM. Heat the home at minimum capacity that can avoid room

temperature rebound in the near future.
e. 10AM. Heat the home at maximal capacity.
f. 11AM. Heat the home at medium capacity that can avoid room

temperature rebound in the near future.
g. All other periods, the T-stat keeps the same consumption pattern

as the regular HVAC system.
3. T-stat of the nth cluster homes start 1a or 2a late by (n− 1) ∗ τ

minutes and complete the process till 1h or 2g.

Battery

1. Battery is charged at midnight per allowed charging rate and hours.
2. Battery is discharged during peak period and, if any, extended

periods thereafter, in order to fully or partly mitigate the load
required by T-stat and other appliances.
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5.3 Development of MIP Models

The goal of the system peak minimization (SPM-1) model is for the utility

company to schedule an energy consumption profile for each user so that the user’s

energy demand is fulfilled while the total peak load for all users collectively is

minimized. One objective of the research is to study the effect of newly equipped

smart appliance, i.e. HPWH, TSTAT and the battery storage system, on the power

grid. Four electricity consumption sources are considered. One is the regular

household usage such as heating, lighting, washer and dryer, etc. The other three

are the demand of HPWH, TSTAT and battery system. Mathematically, let

t ∈ {1, 2, · · · , T} denote a time interval in a 24-hour cycle. For example, when

T = 24, each t represents a one-hour interval and when T = 48, each t represents a

half-hour interval. In addition, T 0 is defined as the low-demand time window and

T 1 is defined as the high-demand time window. In our case, if T = 48, the

high-demand window T 1 of summer days ranges from 27 to 42 for afternoon and

evening hours, and the rest is the low-demand window T 0. Inside the high-demand

window T 1, the designated system peak window is defined as T P . T P ranges from

29 to 34 for summer days. Therefore, T P ⊂ T 1, T 1 ∪ T 0 = T, T 1 ∩ T 0 = φ.

Consider a power distribution network with I users. Let BLi
t be the regular

household baseline demand for user i at time interval t, DH i, DT i, DBi be the daily

demand of HPWH, TSTAT and battery for user i, respectively. UH i, UT i, UBi are

the power rating for HPWH, TSTAT and battery of user i, respectively. LBi is the

battery discharge rate for user i. Let decision variable xit, y
i
t be the amount of

energy consumption of HPWH and TSTAT for user i during time interval t, and

uit, v
i
t be the associated binary variables indicating if the HPWH or TSTAT of user i

is assigned to use during interval t. In words, uit = 1 or vit = 1 when HPWH or

TSTAT of user i is scheduled to use at time interval t, and uit = 0 or vit = 0

otherwise. Decision variable zit is the amount of energy charged to or discharged

from the battery at time t for user i. rit, s
i
t are the associated binary variables
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indicating if the battery of user i is assigned to charge or discharge during interval t.

Using the above notation, the SPM-1 model of optimal energy consumption

scheduling in sub-metered homes is described below in equations (51)-(67).

(SPM-1) min P (51)

s.t. P ≥Mt, ∀t ∈ T P (52)

Mt =
∑
i

(BLi
t + xit + yit + zit), ∀t (53)

∑
t

xit = DH i, ∀i (54)

xit = UH i ∗ uit, ∀i, t (55)∑
t∈T 1

xit = 0, ∀i (56)

∑
t

yit = DT i, ∀i (57)

yit = UT i ∗ vit, ∀i, t (58)∑
t∈T 0

yit = 0, ∀i (59)

∑
t∈T 0

zit = DBi, ∀i (60)

∑
t∈T 1

zit = −2/3 ∗DBi, ∀i (61)

zit ≥ 0, ∀i, t ∈ T 0 (62)

zit = UBi ∗ rit, ∀i, t ∈ T 0 (63)

zit ≤ 0, ∀i, t ∈ T 1 (64)

zit = LBi ∗ sit, ∀i, t ∈ T 1 (65)

− zit ≤ yit, ∀i, t ∈ T 1 (66)

uit, v
i
t, r

i
t, s

i
t ∈ {0, 1}, xit, yit ≥ 0, ∀i, t (67)

In particular, the objective in equation (51) minimizes the peak load during
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the peak window for all users in the distribution system. Constraint (52) makes sure

that the peak load P is the largest total load Mt of any peak time interval t ∈ T P .

In our case, if T = 48, then the peak window T P ranges from 29 to 34 for afternoon

and evening hours (2-5pm). Constraint (53) calculates the total load in each time

interval t as the sum of household baseline load, HPWH load, TSTAT load and

battery charging or discharging load for all users. Constraints (54) through (56) are

constraints for HPWH. Constraint (54) ensures that each user’s HPWH daily

demand is fulfilled in a 24-hour cycle. Constraint (55) calculates the energy

consumption of each user’s HPWH at any time interval t. Further, constraint (56)

states that no user will use their HPWH during high-demand time window t ∈ T 1.

Similarly, constraints (57) through (59) are TSTAT constraints. Constraint (57)

ensures that each user’s TSTAT daily energy requirement is met. Constraint (58)

calculates the energy consumption of each user’s TSTAT at any time interval t.

Because the energy consumption of TSTAT during low-demand period (t ∈ T 0)

remains the same as the HVAC and is included in the household low-demand

window t ∈ T 0. In our case, if T = 48, then the low-demand window T 0 ranges from

1 to 26 and from 43 to 48. Constraints (60) to (66) pertains to the battery system.

Constraint (60) ensures that each user’s battery storage is charged to its full

capacity during the low-demand period T 0. Constraint (61) states that the battery

storage can be discharged 2/3 of its full capacity during the high-demand window

T 1 for user i. Constraint (62) states that the battery can only be charged during the

low-demand period and constraint (63) calculates the energy consumption of

charging battery for each time interval during low-demand times. Similarly,

constraint (64) ensures that the battery can only be discharged during the

high-demand window and constraint (65) calculates the amount of energy each

battery can discharge to the grid at each time interval during high-demand window.

Additionally, constraint (66) states that the energy discharged from the battery will

not be more than that is consumed by the TSTAT during the high-demand window.
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Finally, constraint (67) specifies that variables uit, v
i
t, r

i
t and sit are binary indicating

if user i will use not use each appliance at time interval t while xti and yti are all

non-negative.

The objective of the above SPM-1 model (51)-(67) is to minimize the peak

load during the peak window T P .

Note that one may be interested in minimizing the peak load of the entire

day. In this way, we can achieve better performance with the respective to

peak-to-average ratio (PAR). Therefore, we can change equation (52) to (68).

P ≥Mt, ∀t (68)

We may also drop constraint (56), since the goal now is to minimize the peak

load of the entire day, the load of HPWH may fill the valley occurs at any time t.

Therefore, the following SPM-2 model can be used if the objective is to minimize

the system daily peak load.

(SPM-2) min {P |(68), (53)− (55), (57)− (67)} (69)

5.4 Modification of MIP Models

After the MIP models have been developed, it is important to realize that

there are numerous factors which exist in reality and have significant implications

on the outcome of the models. These factors include:

1. The preference of consecutive and non-interrupted running of appliances;

2. The different timing of residential and non-residential consumers load on the

grid;

3. The unwillingness of certain residential consumers to have their behavior

controlled by the centralized decision making system;

4. Thermal comfort needs by consumers.
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We will revise the MIP models to reflect each or a combination of the above

factors in this section.

We acknowledge that the original model could require frequent run and stop

of appliances as determined by the central controller, in reality there is a strong

preference that appliances are running on a continuous and uninterrupted basis.

This is because starting an appliance to run always consumes extra energy than its

normal working load. At the same time, keeping an appliance on and off too

frequently can shorten its life span. Therefore one always considers keeping an

appliance running for some consecutive time periods once it starts to run.

In the literature, Xu and Bai [77] introduced the fixed setup cost to help

reduce the percentage of non-consecutive PHEV charging in a public charging

station. Through carefully selected fixed setup cost, the percentage of

non-consecutive charging can be reduced by approximately 80%. Unlike public

charging during day-time, using an appliance such as HPWH and HVAC at home is

difficult to utilize the concept of setup cost.

In this dissertation, we use an alternative approach via the use of binary

variables to ensure continuous use of an appliance as in constraints (70) -(72).

Assuming once triggered to run, one may consider to keep the HPWH, TSTAT and

battery working at least l, m and n time periods, respectively. Note that, for the

battery, we only consider to keep it charging for at least n consecutive time periods,

but not for the discharging. For the latter, we still use constraint (66) to ensure the

energy discharged from the battery will not be more than that is consumed by the

TSTAT during the high-demand window.

uit+1 − uit + uit−1 ≥ 0,

uit+2 − uit + uit−1 ≥ 0,

..., ∀i, t

uit+l−1 − uit + uit−1 ≥ 0,

(70)
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vit+1 − vit + vit−1 ≥ 0,

vit+2 − vit + vit−1 ≥ 0,

..., ∀i, t

vit+m−1 − vit + vit−1 ≥ 0,

(71)

rit+1 − rit + rit−1 ≥ 0,

rit+2 − rit + rit−1 ≥ 0,

..., ∀i, t ∈ T 0

rit+n−1 − rit + rit−1 ≥ 0,

(72)

The second factor to consider in revising the model is the difference between

residential load and non-residential energy load. From a system point of view, the

total system energy load includes not only residential load but also commercial and

business load, or non-residential energy load. They affect the system load in

different ways and need to be examined separately. While the residential energy

consumption is supervised by the central controller as is the purpose of designing

the present models, the non-residential consumption is not supervised by the central

controller. Therefore, it is critical to include the non-residential energy load when

we calculate the hourly total system load. In addition, we want to make sure that

we do not create a new peak for the total system by shifting the consumption

pattern of the residential users, as for most of the time, especially during day-time

when the system peak load is likely to occur, the non-residential load accounts for

the majority of the total system load. Here we introduce the pricing mechanism of

peak tariff, which is a surcharge that only applies to electricity consumption that

incurs within specified time frame. The peak tariff is charged on each user’s

“coincident load” at the time when system peak load occurs.

Another important factor is that not all homes are willing to give up their

appliances’ control to the utility company. Some may prefer to take control

themselves even though they probably end up paying more on the peak tariff.
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Therefore we need to consider these users energy load although it is not controlled

by the model.

Let OLt be the non-participating regular household original total demand at

time interval t, NRLt be the non-residential total energy load at time interval t.

Constraint (53) can be rewritten as (73).

Mt =
∑
i

(BLi
t + xit + yit + zit) +OLt +NRLt, ∀t (73)

Together with binary constraint sets (70)-(72) for consecutively using

appliances, the following SPM-3 model can be used if

1. only part of the selected residential home owners are willing to participate in

the centralized controlled program;

2. non-residential energy load should be considered in the total system load;

3. appliance should be using for at least a consecutive time period once triggered

to run.

(SPM-3) min {P |(52), (54)− (67), (70)− (73)} (74)

Another critical factor regarding optimal energy consumption scheduling is

the users thermal comfort of using the TSTAT. In our previously developed MIP

models, this has not been considered as the energy demand has been limited on a

per day basis and in a pre-defined time window T 1. In reality the user will base

his/her decision to turn on/off the appliances on how they feel, or the ambient

temperature. In this case, it is necessary to figure out a way to capture the changing

temperature as a result of on/off decisions for the TSTAT.

Similar to the model used by Li et al. ([63]), we use a linear dynamic model

to represent an approximate thermal behavior of a house for the purpose of this
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dissertation. We denote T i
t and TO

t as the temperature at time t inside and outside

the house i. As shown in (75) and (76), T i
t is given by a linear function of house i’s

previous room temperature T i
t−1, gradient between current outside temperature and

previous room temperature (TO
t - T i

t−1), and energy consumed by HVAC unit at

time t for user i, i.e., γyit. Each user may have a particular preferred temperature at

which they feel the most comfortable. Although a comfortable temperature is

generally believed to be around 70 − 72 ◦F, thermal comfort indeed varies by

people. Some people may feel most comfortable at 75 ◦F while others may prefer 65

◦F. In our model, we denote T i
comf,min and T i

comf,max as the lower boundary and

upper boundary of the comfort temperature window for user i. T 1 denotes the set of

time window that the users care about the room temperature.

T i
t = αT i

t−1 + β(TO
t − T i

t−1) + γyit, ∀i, t (75)

T i
comf,min ≤ T i

t ≤ T i
comf,max, ∀i, t ∈ T 1 (76)

By incorporating the thermal comfort constraints, it is unnecessary to keep

the TSTAT demand constraint. Also, the HVAC is not always running at its power

rating UT i. LT i denotes its lower limit of energy consumption once it is on. Thus,

we replace the TSTAT demand constraints (57) to (59) with (77).

LT i ∗ vit ≤ yit ≤ UT i ∗ vit, ∀i, t (77)

The modified SPM-4 model shown below can be used by the central

controller to optimize the peak load of participating homes with the consideration of

non-participating homes load, non-residential energy consumption and user’s

thermal comfort.

(SPM-4) min {P |(52), (54)− (56), (60)− (67), (73), (75)− (77)} (78)
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5.5 Results and Discussion

5.5.1 Assumptions

When conducting numerical experiments with the proposed rotation

scheduling and MIP models, we assume that each home is equipped with the same

smart appliances, i.e., HPWH, TSTAT and battery system. We also make the

following assumptions according to the information from the smart appliance

manufacturer and users’ energy consumption profile.

• The daily demand for each HPWH is 2.5 kWh and its power rating is 0.5 kW.

Each HPWH needs to run 2.5 hours to fulfill its daily demand.

• The demand for each TSTAT during high-demand hours (t ∈ T 1) is 13.5 kWh

and its power rating is 3 kW. Each TSTAT needs to run 4.5 hours to fulfill

this demand. The demand for low-demand hours (t ∈ T 0) is included in the

baseline load (BL).

• The charging demand for each battery system is 13.5 kWh and its power

rating is 2.7 kW with an efficiency of 2/3. It can provide 9 kWh energy during

high-demand hours (t ∈ T 1) to the grid to support some of the demand of

TSTAT during that time. Each battery needs 5 hours to be fully charged and

it can provide power to the TSTAT for 3 hours during t ∈ T 1.

• The new TSTAT can only be scheduled to help users shift their peak load. It

still consumes the same amount of energy as the original HVAC. If the original

HAVC consumes more than the TSTAT during high-demand hours (t ∈ T 1),

which is 13.5 kWh, then the extra demand is compensated to the time

intervals closed to T 1, but cannot surpass its maximum power of 3 kW. This

way, the daily demand of TSTAT is kept the same as that of the original

HAVC.
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Based on the above assumptions, we first get the new energy consumption

profile with smart appliance i.e., HPWH, TSTAT and battery system, for home

#21. Then we expand this energy consumption profile of home #21 to 330 homes.

The 330 homes are with identical energy consumption profile and we evenly divide

them into three groups with 110 homes in each group. We only show results of a

typical summer day. The winter case should be similar to the summer case, only

difference is the peak window for summer is from 2-5pm and for winter, it is 7-10am.

5.5.2 Without Battery System

The battery system can help user mitigate the energy consumption caused by

the TSTAT during peak window. However, its high cost and non-necessity nature

may prevent users from purchasing it. Therefore, we first study the case that all 330

homes are equipped with only HPWH and TSTAT, but no battery system.

In subsequent analysis, we schedule all 330 homes to use their current

appliances simultaneously in the “Original” case (OL) in Figure 9, and all 330

homes to use their smart appliances, i.e., HPWH and TSTAT in the “No Rotation”

case and apply the heuristic rotation algorithm for 330 homes all equipped with

smart appliances described in Section 5.2 as the “Heuristic” case. Also, as

previously stated, we divide the entire day into 48 time intervals and each time

interval represents half an hour. We compare the energy consumption of these two

scenarios with the original profile and show the results in Figure 9. From Figure 9,

we first observe that the peak load during peak window can be reduced from 672.92

kW of the original case to 440.46 kW of the “Heuristic” case due to the effective

rotation. Note that under the “No Rotation” case the peak load increases to 689.96

kW, because the maximal power of the new TSTAT is 3 kW, which is higher than

that of the original HVAC. Second, the peak load of original case occurs at time

interval 31 and 32 and it shifts to time interval 27 and 28 for the “Heuristic” case.

Third, the valley load of “No Rotation” case and “Heuristic” case occurs at the
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same time intervals as the original load but with a lower energy load. This is due to

the more efficient HPWH, which consumes less energy than the original water

heater. Overall, for the peak load during peak window, the heuristic rotation

algorithm performs significantly better than the other two cases. It can shift the

system peak load to non-peak window effectively.

Figure 9. System total energy consumption without battery based on home #21 in
a typical summer day

The aggregate results of the above three cases are listed in Table 16. Since

the goal of the rotation heuristic is to minimize peak load during peak window, it

can be seen the “Heuristic” case can accomplish the goal very well (peak load of

440kW, compared to 672.92kW of “Original” and 687.96kW of “No Rotation”).

However, as far as the PAR is concerned, both “No Rotation” case and “Heuristic”

case are higher than the original case. This is because the peak load of the former

two cases is higher and their valley load is lower than the original case. If we only
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compare the “No Rotation” case and the “Heuristic” case, then the “Heuristic” case

has a lower PAR. Additionally, the peak load during peak window of “Heuristic”

case is much lower than the other two cases. This is consistent with the result we

obtain from Figure 9.

TABLE 16
Performance of different scenarios without battery

Original No Rotation Heuristic
PAR 1.49 1.75 1.63
Peak Load in

672.92 687.96 440.46
Peak Window (kW)

5.5.3 With Battery System

If all 330 homes are equipped with battery system, then in addition to the

three cases discussed in Section 5.5.2, we add two MIP models results to our

comparison as shown in Figure 10. The curve of original case is the same as shown

in Figure 9. Also, as the battery only works during the high-demand time window

(T 1), the parts of curve outside this range for “No Rotation” and “Heuristic” cases

are the same as in Figure 9. Because the battery can provide 9 kW of energy totally

compensating the TSTAT consumption during this period, both “No Rotation” and

“Heuristic” cases have their valley load (192.96 kW), exactly same as the baseline

load. For the SPM-1 model, it can achieve the same peak load as the “No Rotation”

and “Heuristic” cases, but it does not consider users’ comfort level and schedules

the TSTAT to work after the midnight and after the high-demand period T 1. There

seems no advantage of using the SPM-1 model to minimize the peak load during

peak window when the battery system exits. The objective of the SPM-2 model is

to minimize the system peak load of the entire day, and the highest load during

peak window of SPM-2 model is 412.96 kW, which is higher than “No Rotation”,
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“Heuristic” and SPM-1 cases. However, on the horizon of the entire day , the curve

of SPM-2 model is more leveled than all the other cases.

Figure 10. System total energy consumption with battery based on home #21 in a
typical summer day

We show the performance results of the above five scenarios in Table 17.

Similar to the case without battery system, the “No Rotation”, “Heuristic” and

SPM-1 models all have higher PAR than the original scenario. However, amongst

the three models, the heuristic algorithm can achieve the lowest PAR at 1.5. This is

only slightly higher than that of the original scenario. The peak load during peak

window under these three scenarios are 192.96 kW, which is much lower than 672.92

kW of the original scenario. Further, we also add the performance result of the

SPM-2 model as shown in the last column of Table 17. Although the objective of

the SPM-2 model is different from the other three models, we can still compare its

performance in terms of the PAR. As expected, the PAR is much lower than those
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of “Original”, “No Rotation”, “Heuristic” and SPM-1 scenarios. It shows that even

though the SPM-1 model does not have advantage over the “No Rotation” and

“Heuristic” models in minimizing the peak load during the peak window, the

SPM-2 model can be applied to level the system load of the entire day and achieve

much better performance than all other models.

TABLE 17
Performance of different scenarios with battery

Original No Rotation Heuristic SPM-1 SPM-2
PAR 1.49 1.63 1.50 1.98 1.19
Peak Load in

672.92 192.96 192.96 192.96 412.96
Peak Window (kW)

5.5.4 Results of SPM-3 Model (With Non-Residential Load and Consecutive Usage

Constraints)

In this section, we consider the non-residential load when we calculate the

system total load. We also assume that only one third of 330 residential homes

participate in the program that would allow the central controller to determine

when and how much they can use their appliance in order to avoid high cost due to

the peak tariff. The rest 220 homes would prefer to take control themselves rather

than giving the right of decision to the central controller, even though they may end

up paying more during the peak window. In order to show the role of battery

system in this optimization problem, we assume that only half of the 110

participating homes are equipped with battery system. The other 55 participating

homes and 220 non-participating homes do not have any energy storage system. In

addition, we will add the consecutive using constraints and understand how that

would change the outcome.

We plot the results of SPM-3 model in Figure 11. There are two levels of
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comparisons. Both solid lines represent the system load with orange series

representing the load without optimization (marked as “OL”) and gray representing

the load with optimization (marked as “ML”). On the other hand, both dashed lines

represent residential load with (gray) and without (orange) optimization. First, we

observe that with the consideration of the non-residential load, which contributes

more than two thirds of the system total energy consumption, the system peak load

is almost certain to occur during the day time when the non-residential load reaches

its peak. Second, the peak load of original case occurs at time interval 31 and 32

and it shifts to time interval 27 and 28 for the “ML” case (i.e., with optimization).

Third, the residential load of “ML” case during the peak window reduce

significantly from the “OL” case. Overall, for the peak load during peak window,

the SPM-3 model performs significantly better than the original case. It can reduce

the system peak load during peak window effectively.

Figure 11. System total energy consumption with non-residential load in a typical
summer day

The results of the above two cases are listed in Table 18 and Table 19. Since
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the goal of the SPM-3 model is to minimize peak load during peak window, it can

be seen from Table 18 that the total system peak load during peak window can be

reduced from 2143.46 kW for the original case to 2060.51 kW for the “ML” case.

The PAR declines from 1.39 to 1.34. Note that the load of non-residential and

non-participating residence has not been optimized by the model, the effect of peak

reduction is not as significant as we have seen in Section 5.5.2 and 5.5.3. When

focusing just on the residential load, Table 19 shows that the total residential peak

load during peak window is reduced from 672.92 kW to 566.81 kW and the PAR

declines from 1.49 to 1.27.

TABLE 18
Performance of SPM-3 Model - Total Load

Original Modified
PAR 1.39 1.34
Peak Load in

2143.46 2060.51
Peak Window (kW)

TABLE 19
Performance of SPM-3 Model - Residential Load

Original Modified
PAR 1.49 1.27
Peak Load in

672.92 566.81
Peak Window (kW)

The load profile of 110 participating residential homes are shown in Figure

12. It can be observed that all energy consumption due to HPWH and battery

charging happens outside the preferred window T 1. More specifically, HPWH and

battery only consume energy from time period 1 to 10, when the system load is at

its valley. On the other hand, TSTAT only works during the preferred time window

T 1, which is from time period 28 to 42. Interestingly, the hourly total energy
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consumption drawn from the grid in T 1 is less than or equal to the hourly TSTAT

load, thanks to the battery energy storage system. It is necessary to look into

detailed load profiles of users with and without battery in order to understand the

difference of the two groups.

Figure 12. Participating residential energy consumption in a typical summer day

In order to differentiate the users with and without battery system, we label

users equipped with battery as Group 1 and the other half without battery as Group

2. Also, we set the consecutive using parameters l, m and n in constraints (70) to

(72) at 2, 3 and 3, respectively. In this way, the HPWH works at least two time

periods once it starts to run. TSTAT works at least three time periods and battery

charges at least three time periods once they start to run. We do not constrain the

discharge of the battery and leave it to work with the TSTAT energy consumption.

Figure 13 shows the total load profile of the two groups. Group 1 consumes

much more energy during time period 1 to 10, due to charging of the battery

system. In returns, Group 1 users consume no energy from the grid during the peak

window T P . Their battery systems provide all loads that are needed by the TSTAT

in T P . This can help them avoid paying any peak tariff. Without the battery,
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Group 2 users have to draw energy from the grid from time period 33 to 34 and

they have to pay the resulting peak tariff.

Figure 13. Participating residential total energy consumption in a typical summer
day

As shown in Figure 14, the two groups have the same load profile on the

HPWH. The HPWH starts to work at time period 1 and continues to run till time

10 to fulfill its daily demand.
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Figure 14. Participating residential HPWH energy consumption in a typical summer
day

Figure 15. Participating residential TSTAT energy consumption in a typical summer
day
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Figure 16. Participating residential battery energy consumption in a typical summer
day
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Figure 15 describes the detailed TSTAT load profile of two groups. Group 1

homes first use the TSTAT at time 28, right before the peak window T P , and

continue to run it for three time periods. Then at time 33 and 40, they use the

TSTAT twice, each for three consecutive time periods. Group 2 users start to use

the TSTAT at time 33 for five consecutive time periods. At time 39, they use the

TSTAT again for another four time periods.

Figure 16 shows Group 1’s battery load profile. As we can see, the user

charges his or her battery at time 1 for ten consecutive periods to fulfill the daily

battery demand. Then the battery discharges from time 28 to 30, 33 to 34 and 42 to

provide energy to the TSTAT. This ensures Group 1’s energy consumption during

peak window all coming from the battery.

Figure 17. Outside temperature of the study area in a typical summer day

5.5.5 Incorporating Thermal Comfort in MIP models

To incorporate thermal comfort in the MIP model, we first get the 24-hour

temperature of the study area for a typical summer day. The temperature change is

plotted in Figure 17. As we can see, in a typical summer day, the outside
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temperature of the study area varies from below 73 ◦F to over 96 ◦F.

Khadgi [79] performs a study on how to identify the proper value of

parameters in the thermal behavior function. We calibrate his results with the

insulation condition and TSTAT power rating of the participating homes. In

equation (75), we set the coefficient of previous room temperature α = 1.00015, the

gradient between previous room temperature and current outside temperature β =

0.010649 and the coefficient of the TSTAT power rating γ = -0.3821. The large

range of the temperature change makes the parameters selected in constraint (75)

persuasive and fit for any summer day in the study area.

Figure 18. System total energy consumption with thermal comfort in a typical sum-
mer day

For the SPM-4 model, we first include the TSTAT demand constraint and

the results are shown in Figures 18 to 24. First, when compared to the original case,

the average load and peak load are both lower. The PAR decreases from 1.39 to

1.34. Second, users with battery (Group 1) use the HVAC before and during the

peak window and the load is provided by the battery. Users without the battery
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(Group 2) use the HVAC 2.5 hours after the peak window when the room

temperature gets close to the upper limit of the comfort zone. Finally, because the

battery can provide energy load for Group 1, the room temperature fluctuates in a

relatively smaller range. While the other group without the battery cannot use the

HVAC until the temperature hits the upper comfort limit as they want to avoid

paying the peak tariff.

Figure 19. Participating residential energy consumption with thermal comfort in a
typical summer day
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Figure 20. Participating residential total energy consumption with thermal comfort
in a typical summer day

Figure 21. Participating residential HPWH energy consumption with thermal comfort
in a typical summer day
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Figure 22. Participating residential TSTAT energy consumption with thermal comfort
in a typical summer day

Figure 23. Participating residential battery energy consumption with thermal comfort
in a typical summer day
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Figure 24. Room temperature of participating home in a typical summer day

89



We then drop the TSTAT demand and incorporate constraint (77) to allow

the TSTAT working based on the thermal comfort. The results are shown in

Figures 25 to 30. Because we do not have the TSTAT demand constraint, we cannot

compare the total load of the two scenarios. Without the battery, Group 2 can only

use the HVAC after the peak window to keep the room temperature below the

upper comfort limit. With the battery as the secondary power source, Group 1 can

use the HVAC before, during and after the peak window to keep the room

temperature in a much more comfortable range.

Figure 25. Participating residential energy consumption with thermal comfort and
no TSTAT limit in a typical summer day
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Figure 26. Participating residential total energy consumption with thermal comfort
and no TSTAT limit in a typical summer day

Figure 27. Participating residential HPWH energy consumption with thermal comfort
and no TSTAT limit in a typical summer day

91



Figure 28. Participating residential TSTAT energy consumption with thermal comfort
and no TSTAT limit in a typical summer day

Figure 29. Participating residential battery energy consumption with thermal comfort
and no TSTAT limit in a typical summer day
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Figure 30. Room temperature of participating homes without TSTAT limit in a
typical summer day
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

Smart grid promises an efficient, reliable and economical power system via

advanced models and technologies. Demand side management has gained renewed

interests recently in the advent of smart grid, with the focus on increasing energy

efficiency from end users. In this study, we consider residential end users who wish

not only to minimize their electricity cost but to maximize the utility (e.g., the

convenience of using appliances during their preferred times). A user equilibrium

model is developed for each user to maximize his/her utility consisting of

convenience as well as cost. As a benchmark, a centralized system model is also

developed for central controllers to minimize the total system-wide electricity cost.

Under mild conditions, we show that the user equilibrium exists and is unique. In

addition, we develop the sufficient conditions under which the system and

equilibrium models yield the same solution.

Numerically, we demonstrate in general the solutions to the two models are

different, even when the convenience utility is not considered. In terms of the total

electricity cost of all users, the system model yields lower costs than does the

equilibrium model. Our sensitivity analysis suggest that: 1) as users increase their

values for convenience, the system’s total electricity cost increase at the equilibrium;

2) further, this increase of the electricity cost is dominated by the increase of the

users’ utility on convenience, thus an increase of the total system-wide utility; 3)

users with less flexibility on their preferred time windows for various appliances have
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larger impact on the total system-wide measures (e.g., cost and average percentage

of preferred usage) at equilibrium; 4) the lesser degree of overlap amongst all users’

preferred usage windows for various appliances yields a better system performance

(e.g., reduced total cost) at equilibrium. These conclusions provide unique insights

for utilities to properly design their demand response programs.

We develop a system model and a game theoretical user equilibrium model to

prove that the pricing scheme, which makes the system model and the user

equilibrium model share the same users’ energy consumption profile, is not unique.

By some numerical examples, we show that with a fixed system optimal solution,

other pricing schemes exist to achieve the desired objective. In this way, the pricing

scheme becomes adjustable and the utility company may customize the pricing

scheme to achieve proper objectives. We also prove that at the equilibrium, the

users’ energy consumption pattern of UEP may not follow the SOS optimal solution

if the UEP has multiple solutions under a given pricing scheme. The design

objective will always be worse and the obtained pricing scheme may not be the most

desirable. By adopting the risk-averse second best toll pricing concept in traffic

network area, we propose a bi-level model to solve the problem, where the design

objective is worse off.

Based on a pilot study by a major US home appliance manufacturer, a local

regulation authority and a local utility company, we analyze the sub-metered homes

energy consumption data for summer and winter and develop models for minimize

peak load for the system. First, 10 control homes equipped with sub-meters are

studied for clustering analysis based on their energy consumption profile for summer

days and winter days. In summer days, the 10 homes are sorted into 6 clusters

based on the maximum load during peak window and when the peak load occurs.

Similarly, 2 clusters are built for winter days. The clustering analysis of the 10

control homes can be applied to the future work, when the pilot study is expanded

to 330 local homes enrolled in this project. Secondly, a heuristic rotation algorithm
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and four mixed integer programming (MIP) models are developed to minimize the

peak load of the entire system. The heuristic algorithm also considers the users’

maximum thermal comfort level. Without the expensive battery system, the

heuristic rotation algorithm performs better than the “No Rotation” case in two

measures of PAR and peak load during peak window. However, with the battery

system, the heuristic rotation algorithm and the SPM-1 model does not show

advantage over the “No Rotation” case in terms of the peak load during peak

window. If the goal is to level the system load of the entire day, the SPM-2 model

can reduce the PAR by over 30% compared to the “No Rotation” case.

SPM-3 model is developed to introduce the non-residential consumption into

the equation as well as consider the users preference of consecutive using of the

appliances. The PAR decreases from 1.39 to 1.34 which appears relatively minor

due to the non-residential consumption that is not regulated by the central

controller and accounts for over two thirds of total energy consumption.

SPM-4 model further considers the thermal comfort which allows all

participating homes to keep the room temperature within their comfortable range

and allows the consumers to avoid the peak tariff by using the batteries that provide

power supply during peak hours. In addition, this allows the room temperature to

fluctuate within a more desired range as compared to the group without the

batteries.

Although this dissertation has reached its goals, there were some unavoidable

limitations. First, all mathematical models developed in this research were static

models. It would be more meaningful and applicable to have dynamic models.

Second, some model parameters were based on assumptions for the purpose of

theoretical research. If we want to apply the models and results to real world

application, the parameters need to go through proper validation processes. Finally,

in order for the UE solution to be existence, the cost function needs to be convex

and the utility function needs to be concave. In reality, these strict conditions might
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not hold.

6.2 Future Research

6.2.1 Energy Consumption Models with Elastic Demand

The price elasticity of demand used in economics assumes a certain

relationship between price and quantity demanded in a given time period [80]. It

has been widely used in the area of traffic assignment [81] for more than a decade.

With the advent of smart grid and demand response, this concept attracts more

attention of researchers in electric power system [82][83]. However, they [82][83] only

mention the applicability of the elasticity of demand in electricity markets. They do

not include the concept in any mathematical models. This section extends the

system optimal models and user equilibrium models previously developed for fixed

demand energy consumption scheduling to the problem with elastic demand. The

system problem maximizes net benefit to the energy consumers and the user

problem is the usual one of finding equilibrium with elastic demand.

We first introduce notion and then define the system and user equilibrium

models. The system model assumes that the goal of system central controller is to

maximize net user benefit, while the equilibrium problem maximizes each user’s own

benefit.

Employing notation similar to Section 3.1, in addition, let y be the variable of

electricity cost.

di,a = v(y) = Ui,a − ki,a ∗ y (79)

is the the elastic demand function of electricity cost y, where Ui,a and ki,a are

parameters and Ui,a ≥ 0, ki,a ≥ 0.

wi,a(z) = v−1(z) (80)

is the inverse demand function of electricity demand variable z. wi,a is the

generalized electricity cost, which is a function of the electricity demand z.
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From basic economic principles, the total network wide benefit is∑
i

∑
a

∫ di,a

0

wi,a(z)d(z) (81)

We can take equations (79) and (80) into equation (81) and get∫ di,a
0

wi,a(z)d(z)

= 1
ki,a

(Ui,a − z)dz

=
(

Ui,a

ki,a
z − 1

2ki,a
z2
) ∣∣∣∣di,a

0

=
Ui,a

ki,a
di,a − 1

2ki,a
d2i,a

Therefore, ∫ di,a

0

wi,a(z)d(z) =
Ui,a

ki,a
di,a −

1

2ki,a
d2i,a (82)

Note that, z does not really appear in equation (82).

In the system problem, the central controller maximizes net user benefit, the

difference between total user benefit and the system cost. and the system cost is

defined by
∑T

t=1 f(lt) · lt in the SO model described in Section 3.2. Thus, using

minimization in the objective, the elastic demand system problem (SO-ED) is

SO-ED: min
T∑
t=1

f(
∑
i,a

xti,a) ·
∑
i,a

xti,a −
∑
i

∑
a

∫ di,a

0

wi,a(z)d(z) (83)

s.t.
T∑
t=1

xti,a = di,a, ∀i, a (84)

xti,a ≤ Ei,a, ∀i, a, t (85)

xti,a = 0, ∀i, a, t : t ∈ T 0
i,a (86)

xti,a ≥ 0, ∀i, a, t (87)

where the objective in (83) is for the central controller to maximize the net user

benefit, which is the difference between the total electricity cost required to serve all

users and the inverse elastic demand function. Furthermore, constraints (84) - (86)
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are similar to constraints (3) - (5). The only difference is that in constraint (84),

user i’s energy demand for appliance a di,a is no longer fixed. It is the the elastic

demand function of electricity cost y and can be written as (79).

Similarly, if we apply the above elastic demand to the SOS model described

in Section 4.1, the new SOS-ED model can be characterized as follows:

SOS-ED:

max
xt
i,a,di,a

∑
i

πi ·
∑
a

2


∑
t∈T 1

i,a

xti,a

di,a


1/2

+
∑
i

∑
a

∫ di,a

0

wi,a(z)d(z)

−
T∑
t=1

[(c0 + c ·
∑
i,a

xti,a) ·
∑
i,a

xti,a] (88)

s.t.

λia · · ·
∑
t

xti,a = di,a, ∀i, a (89)

γit,a · · · xti,a ≤ Ei,a, ∀i, a, t (90)

µi
t,a · · · xti,a ≥ 0, ∀i, a, t (91)

Finally, we apply the elastic demand to the UEPi model in Section 4.2. We

consider the convenience for this user to be able to use an appliance during his/her

preferred times and the benefit of the elastic demand. Thus, the user equilibrium

model assumes each user i maximizes the his/her own benefit. Hence, in a

distributed manner, each user solves the following user’s problem under the elastic

demand:
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UEPi-ED:

max
yti,a,di,a

πi ·
∑
a

2


∑
t∈T 1

i,a

yti,a

di,a


1/2

+
∑
a

∫ di,a

0

wi,a(z)d(z)

−
T∑
t=1

p(t) · (
∑
a

yti,a) (92)

s.t.

αi,a · · ·
∑
t

yti,a = di,a, ∀a (93)

βt
i,a · · · yti,a ≤ Ei,a, ∀a, t (94)

ρti,a · · · −yti,a ≤ 0, ∀a, t (95)

The Lagrange multipliers and KKT conditions method described in Chapter

4 may be applied to solve the above models with elastic demand.

6.2.2 Benders Decomposition Method for Proposed Bi-level Robust Pricing Model

As a follow-up to this dissertation, the Benders Decomposition [84] will be

examined as a potential solution method for solving the proposed bi-level model

(49)-(50). In Benders decomposition, a subset of variables is solved in the first-stage

master problem, and the remaining variables are determined by the second-stage

subproblem given the values of the first-stage variables [85]. Benders decomposition

is a cutting plane method due to adding a constraint at each iteration. It reduces

search region by adding linear constraints while preserving the original feasible

region.

In our case, the second-stage subproblem is to minimize the social welfare

given a pricing p. The first-stage master problem is to maximize all minimum

possible social welfare among alternative pricing with lower and upper boundary
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conditions. In this manner, we can get the robust pricing scheme, which can ensure

the maximum of all minimum possible social welfare.
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