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ABSTRACT 

COMBATING MALIGNANT MELANOMA WITH THE MULTIFACETED SOY-DERIVED 

PEPTIDE LUNASIN 

Christopher P. Shidal 

April 24, 2017 

Lunasin is a 44 amino acid peptide that has been shown to have cancer chemopreventative and 

chemotherapeutic properties. This study investigated the potential utility of Lunasin as a chemotherapeutic 

in melanomas.  Studies showed that Lunasin had little activity against established melanoma cell lines 

using adherent culture methods; however, Lunasin’s in vitro activity was significantly higher in non-

adherent colony-forming assays and oncosphere formation. These results led to the investigation of whether 

or not Lunasin has selective effects on cancer initiating cells (CIC) that are known to be present in 

melanomas. It was revealed that Lunasin selectively inhibited the proliferation of high-ALDH expressing 

CICs, and prevented oncosphere formation. In vitro results were extended into mouse xenograft studies 

using parental cells and isolated CICs.  Lunasin significantly inhibited tumor growth in both cases, with the 

highest inhibition being observed in tumors initiated by CICs while achieving an excellent safety profile. 

Lunasin reduced the invasive potential of CICs in vitro and in an in vivo experimental metastasis model.  

Mechanistic studies revealed that Lunasin may disrupt integrin signaling by inhibiting phosphorylations of 

the intracellular kinase FAK as well as altering the PI3K/AKT axis.  Additionally, it was demonstrated that 

histone acetylation in H3 and H4 core histone are significantly altered in CICs treated with Lunasin.  While 

histone acetylation is potentially involved in Lunasin’s anticancer activity, the effects seen in these studies 

are mainly integrin-driven.  These studies demonstrate that Lunasin has activity against putative CICs, and 

that Lunasin has potential utility as a therapeutic in treating malignant melanomas. 



v 
 

TABLE OF CONTENTS 

           PAGE 

ACKNOWLEDGEMENTS…………………………………………………………………………….....iii 
ABSTRACT…………………………………………………………………………………………….....iv 
LIST OF FIGURES………………………………………………….………………………………….....ix 
 
CHAPTER 

1. INTRODUCTION…………………………………………………………………………………….....1 

1.1. Background and rationale for the study...……………………………………………………...…..1 

1.1.1.1. Lunasin as an anticancer agent……...…………..……..………….……....……...……1 

1.1.1.2. Integrins as a therapeutic target in melanoma patients…..……………………………5 

1.1.1.3. Melanoma and the presence of melanoma stem cells…………...………………….....8 

1.1.1.4. Traditional approaches to treating melanomas and future perspectives..…...….…....12 

1.2. Specific aims and goals of the dissertation……………………………………………………….14 

1.2.1.1. Identify the mechanisms in which Lunasin exerts its anticancer effects in 

melanoma…………………………………………………………………………….14 

1.2.1.2. Evaluate the interaction between Lunasin and integrin subunits…………...………..15 

1.2.1.3. Investigate the antimetastatic effects of Lunasin……...…...……...…………………16 

2. EXPERIMENTAL PROCEDURES AND METHODOLOGY…………..……………………...…….17 

2.1. Isolation and purification of Lunasin…………………………………………...………………...17 

2.2. Cell culture and reagents…………………………………………………………………….……18 

2.3. Proliferation assays……………………………………………………………………………….19 

2.4. Soft agar colony forming assays………………………………………………………………….19 

2.5. ALDEFLUOR staining………………...…………………………………………………………20 

2.6. Flow Cytometry (Apoptosis)……………………………………………………………………..20 

2.7. Flow cytometry (Cell Cycle)……………………………………………………………………..22 

2.8. Fluorescence-assisted cell sorting (FACS)……………………………………………………….22 



vi 
 

2.9. Formation of multicellular oncospheres………………………………………………………….22 

2.10. In vivo xenograft model…………………………………………………………………………..23 

2.11. SDS-PAGE and immunoblot……………………………………………………………………..25 

2.12. Non-steroidal anti-inflammatory drug (NSAID) toxicological panel and complete blood count 

(CBC)……………………………………………………………………………………………..26 

2.13. In vivo Limiting Dilution Assay and ALDH Activity in Primary Tumors………………………27 

2.14. Β-Galactosidase staining………………………………………………………………………….27 

2.15. Liquid overlay generation of multicellular tumor spheres………………………………………..28 

2.16. Microarray………………………………………………………………………………………..28 

2.17. Immunofluorescence……………………………………………………………………………..28 

2.18. Proximity ligation assay…………………………………………………………………………..29 

2.19. Transwell invasion assay…………………………………………………………………………30 

2.20. Murine model of experimental metastasis………………………………………………………..30 

2.21. Histology………………………………………………………………………………………….31 

2.22. Differentiation of ALDHhigh cells…………………………………………………………………31 

2.23. Statistical analysis………………………………………………………………………………...31 

3. LUNASIN IS A NOVEL THERAPEUTIC FOR TARGETING MELANOMA STEM CELLS….….33 

3.1. Introduction…………………………………………………………………………………….…33 

3.2. Materials and methods……………………………………………………………………………34 

3.3. Results…………………………………………………………………………………………….36 

3.3.1.1. Lunasin inhibits anchorage-independent growth in human melanoma cell lines …...36 

3.3.1.2. Lunasin inhibits tumor growth of melanoma cells in vivo ………………………….36 

3.3.1.3. Lunasin reduces the melanoma CIC subpopulation in established cell lines ……….38 

3.3.1.4. Lunasin suppresses the functional properties of melanoma CICs ………...…...……41 

3.3.1.5. Lunasin limits in vivo growth of tumors initiated by melanoma CIC-enriched 

ALDHhigh cells ……………………………………………………………...…..……41 

3.3.1.6. Limiting dilution assays demonstrate differential growth patterns between ALDHhigh 

and ALDHlow phenotypes………………………………………...…………………..44 



vii 
 

3.3.1.7. CIC markers are heterogeneously expressed in different melanoma cell lines...……46 

3.3.1.8. Lunasin induces expression of differentiation markers in melanoma CICs…………48 

3.3.1.9. Lunasin did not induce a significant senescent response in ALDHhigh melanoma 

cells…………………………………………………………………………………..50 

3.3.1.10.  Lunasin may enhance the efficacy of vemurafenib in vemurafenib-resistant 

melanomas……...…………………………………………………………………….53 

3.4. Discussion………………………………………………………………………………………...57 

4. LUNASIN REDUCES THE METASTATIC POTENTIAL OF MALIGNANT MELANOMAS BY 

INHIBITING INTEGRIN SIGNALING AND ALTERING HISTONE ACETYLATION………..…63 

4.1. Introduction………………………………………………………………………………………63 

4.2. Materials and methods……………………………………………………………………………66 

4.3. Results…………………………………………………………………………………………….69 

4.3.1.1. Microarray reveals Lunasin-targeted genes and identifies a unique gene signature in 

ALDHhigh melanoma cells compared to parental cells …………………...………….69 

4.3.1.2. Lunasin uptake correlates with expression of αV integrin subunits…….………..…..85 

4.3.1.3. B16-F10 CIC populations were reduced with Lunasin treatment……………………86 

4.3.1.4. Lunasin inhibits invasion of ALDHhigh melanoma stem cells in vitro…………….....87 

4.3.1.5. Lunasin abrogates pulmonary metastasis in vivo………………………………….....89 

4.3.1.6. Lunasin antagonizes integrin signaling through FAK/AKT/ERK and inhibits histone 

acetylation……………………………………………………………………………91 

4.3.1.7. The RGD-domain is essential for Lunasin uptake and disrupting oncosphere 

formation……………………………………………………………………………..93 

4.4. Discussion……………………………………………………………………………………….100 

5. DISCUSSION AND CONCLUSIONS……………………………………………………………….105 

5.1. Restatement of specific aims……………………………………………………………………105 

5.2. Summary of findings and impact of the work……………………..……………………………105 

5.3. Strengths and weaknesses of the dissertation………………….…………………………..……108 

5.4. Future studies……………………………………………………………………………………110 



viii 
 

5.5. Final summary and conclusions……………………………………………………………...….113 

REFERENCES……………………………………………………………………………………..…114 

ABBREVIATIONS………………………………………………………………………………...…130 

CURRICULUM VITAE……………………...………………………………………………………136



ix 
 

LIST OF FIGURES 

FIGURES          PAGE 

1. Lunasin and mechanisms of  histone acetylation………………………………………………………..3 

2. Integrin-associated signaling pathways……………………………………………………………….....6 

3. The cancer stem cell theory versus the stochastic model of cancer……………………………………..9 

4. SDS-PAGE analysis of Lunasin purified from white flake…..……………………………………..….18 

5. SKMEL-28 cells stained with ALDEFLUOR reagent +/- DEAB……………………………………..21 

6. Batch report for A375 cells stained with ALDEFLUOR………………………………………………23 

7. Batch report for B16-F10 cells stained with ALDEFLUOR…………………………………………...24 

8. Lunasin did not have an antiproliferative effect on A375 or SKMEL-28 melanoma cells in adherent 

culture…………………………………………………………………………………………………..37 

9. Lunasin did not induce apoptosis in parental melanoma cell lines…………………………………….38 

10. In vitro efficacy of Lunasin in malignant melanomas………………………………………………….39 

11. Lunasin depleted populations of cells displaying high ALDH activity………………………………..40 

12. Lunasin reduced self-renewal capacity and oncosphere formation of CICs…………………………...42 

13. Lunasin inhibited CIC tumorigenesis in vivo…………………………………………………………..43 

14. Long-term Lunasin treatment did not induce toxic side effects………………………………………..44 

15. Limiting dilution assays demonstrate the high tumorigenicity of A375 ALDHhigh cells………………46 

16. Differentiation of ALDH-sorted cells in culture……………………………………………………….49 

17. CIC biomarkers are heterogeneously expressed in melanoma cell lines………………………………51 

18. Lunasin did not induce an apoptotic response in ALDHhigh melanoma cells…………………………..52 

19. Lunasin modulated expression of melanocyte differentiation and stem-associated markers…………..53 

20. Lunasin did not induce a significant senescent response in A375high melanoma cells…………………54 

21. Combinations of Lunasin and vemurafenib yielded an additive interaction that may benefit treatment 

of chemoresistant populations of melanoma cells……………………………………………………...55 



x 
 

22. Lunasin in combination with vemurafenib kills A375 melanoma cells………………………………..56 

23. Proposed mechanism for Lunasin’s activity in melanoma CICs……………………………………….62 

24. Full amino acid sequence of the Lunasin peptide ……...……………………………………………...64 

25. Full sequences of synthesized peptides………………………………………………………………...66 

26. Validation of Lunasin antibody recognizing mutated peptides …………...……………………..…….66 

27. RNA integrity values for genome-wide microarray analysis…………………………………………..67 

28. Principle component analysis and variation in microarray analysis…………………………………...85 

29. Lunasin is readily internalized in A375 melanoma cells……………………………………………....87 

30. Lunasin disrupted oncosphere formation and reduces ALDHhigh populations……………………..….88 

31. CIC invasion was suppressed in Lunasin-treated cells…………………………………………….…..89 

32. Lunasin reduced pulmonary metastases in vivo……………………………………………………….91 

33. Lungs resected from experimental metastasis in vivo model………………………………………….93 

34. Cell cycle was not significantly affected by Lunasin ………………………………………………....94 

35. Lunasin suppressed integrin signal transduction……………………………………………………....95 

36. Lunasin inhibited phosphorylation of FAK, AKT, and ERK………………………………………….96 

37. Lunasin modulates histone acetylation in melanoma CICs…………………………………………....97 

38. Differential expression of integrin subunits by melanoma CICs………………………………………97 

39. Lunasin’s RGD motif is essential for disrupting oncosphere formation……………………………....98 

40. Lunasin uptake is an integrin-dependent process………………………………………………………99 



xi 
 

LIST OF TABLES 

TABLES          PAGE 

1.    Microarray Analysis of Lunasin-treated A375 Cells…………………………………………………...72 

2.    Microarray Analysis of Lunasin-treated ALDHhigh A375 Cells………………………………..............75 

3.    Microarray Analysis of Untreated Parental Versus ALDHhigh A375 Cells…………………………….80 

 



1 
 

CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND AND RATIONALE FOR THIS STUDY 

Lunasin as an Anticancer Agent 

 Consumption of high amounts of soy is prevalent in many Eastern cultures and has been linked by 

epidemiological studies to lower incidence of certain types of cancer [1-3].  Several components of soy 

have been attributed with its chemopreventative and chemotherapeutic properties including isoflavones [4], 

protease inhibitors [5], and bioactive peptides [6].  In combination, these components may work in a 

concerted effort to reduce carcinogenesis through several mechanisms of action.  For example, genistein, a 

well-studied soy isoflavone, has been acknowledged to assert its anticancer effects through a variety of 

mechanisms including cell cycle arrest and induction of differentiation [7].  Bowman Birk Inhibitors (BBI) 

present in soy isolates perform an import action in the uptake and stability of bioactive peptides [8].  

Lunasin, a 44 amino acid peptide encoded by the 2S Albumin gene in soy, has been reported to have 

several activities which may drive its anticancer effects; previous reports have shown that Lunasin 

functions as a histone acetyltransferase inhibitor [9] as well as an integrin antagonist [10].  With these 

studies in mind, using soy intake as a functional food seemingly has promising health benefits in preventing 

carcinogenesis.  Additionally, investigating diet as a potential anticancer agent would appear an 

encouraging avenue for future therapeutic-based studies.  This dissertation will specifically investigate the 

utility of the soy-derived peptide Lunasin as a chemotherapeutic agent against malignant melanomas. 

Lunasin is a soy-derived peptide that has demonstrated anticancer, anti-inflammatory, antioxidant, 

and immunomodulatory activity [11-14].  Lunasin has been reported as a 43 amino acid fragment present in 

processed 2S albumin protein [15]; however, the Davis lab recently identified a native 44 amino acid 

sequence of Lunasin isolated from defatted soy flour consisting of the sequence: 

SKWQHQQDSCRKQLQGVNLTPCEKHIMEKIQGRGDDDDDDDDDN [16].  This 44 amino acid 

sequence was verified by subsequent studies by Serra et. al.  [17].  Lunasin has been proposed to have three 

distinct domains that are responsible for its therapeutic and chemopreventive activity: an RGD sequence 
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involved in internalization of the peptide via integrin binding, a poly-aspartic acid tail that binds 

lysine residues present in H3 and H4 histone tails, and a hypothesized chromatin binding domain [9, 18].  

Limited studies have described the direct chemotherapeutic effects of Lunasin against cancer as it is 

generally defined as a chemopreventive agent based on earlier studies by De Lumen and coworkers [9, 19-

22].  Thus, many questions remain about the number of cancer types sensitive to Lunasin, the possible 

mechanisms of Lunasin’s anticancer effects, and to what extent Lunasin is involved with the tight 

correlation of soy consumption with a protective effect against certain cancer types [23-25]. 

Lunasin has been found to inhibit transformation induced by multiple carcinogens and viral 

oncogenes [9, 19, 26-28].  Moreover, studies in the Davis lab indicate Lunasin is able to inhibit 

transformation of mouse fibroblast cells induced by carcinogens present in cigarette smoke including 

cadmium and nicotine-derived nitrosamine ketones (unpublished data).  The most discussed mechanism of 

action of Lunasin is the inhibition of histone acetyltransferases (HATs) and modulation of histone 

acetylation (Figure 1).  The acetylation of core histones initiates the unwinding of tightly packed DNA 

from the nucleosome complex allowing for transcription of target genes.  HAT inhibition alters normal 

acetylation patterns leading to hypoacetylation of histone tails, repressing transcription and can account for 

global cellular effects including proliferation, cell cycling, and apoptosis [29-31].    Although some 

evidence supports HAT inhibition as Lunasin’s primary mechanism of action, to date, there have been no 

functional studies to support this hypothesis.  Moreover, as new principal mechanisms of Lunasin action 

are still being discovered, it is not clear in the different experimental systems that have been studied 

whether histone acetylation is involved in all cases.    

 Studies in the Davis lab confirm a significant antiproliferative effect of Lunasin on non-small cell 

lung cancer (NSCLC), an effect which is mediated by disrupting cell cycle signaling [32].  Previous studies 

have suggested that Lunasin reduces cyclin-dependent kinase (CDK) levels, and may promote aspirin-

induced apoptosis in breast cancer models [33, 34].  Additionally, Lunasin was reported to induce apoptosis 

and alter expression of matrix adhesion proteins in metastatic colon cancer [35].  Lunasin was recently 

shown to suppress FAK/ERK/NF-κB signaling in human colon cancer as well as potentiate the 

antiproliferative and antimetastatic effects of oxaliplatin [36].  
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 Sadly, many plant-derived compounds (e.g. curcumin) are quickly metabolized or excreted resulting in 

poor bioavailability; however, Lunasin is active and bioavailable in humans consuming physiologically 

relevant amounts of soy [37].  In this study, volunteers were orally dosed with Lunasin (155.5 mg/day) in 

50 grams (g) soy protein for 5 consecutive days.  De Mejia et al. revealed Lunasin is   

orally bioavailable; however, incomplete gastrointestinal (GI) absorption resulted in a low concentration 

(71.0 ng/mL or approximately 14 nM) of Lunasin in plasma samples [37].  

 

 

Figure 1: Proposed mechanism in which Lunasin decreases histone acetylation.  The poly-aspartic acid 

tail of the Lunasin peptide may inhibit binding of HATs to lysine residues on core histone H3 and H4 tails.  

This effect disrupts the normal cycles of histone acetylation/deacetylation and subsequently represses 

transcription of target genes.  Transcriptional machinery is unable to initiate transcription when chromatin 

is tightly wound around the nucleosome complex (top).  Histone acetylation allows for the unwinding of 

chromatin and exposes sights of transcriptional regulation (bottom). 
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  Prior studies suggest that Lunasin interacts with a specific subset of integrin subunits, as 

supported by a 2012 study by De Mejia and coworkers [12].  Furthermore, recent studies suggest that 

internalization of Lunasin is mediated by αvβ3 integrins via clathrin and caveolin-mediated endocytosis 

[38].  Proximity ligation assays (PLA) verify that the specific integrin subunits αv, α5, β1 and β3 network 

with the Lunasin peptide [10].  In normal cells, integrins mediate cell-cell and cell-matrix adhesions by 

recognizing binding motifs (i.e. RGD) as well as cooperating with growth factor receptors to induce 

proliferative and survival signaling [39, 40].  The ubiquitous activity of integrin signaling provides an 

interesting target for cancer prevention and treatment because many of these pathways are deregulated in 

cancer and result in uncontrolled proliferation and metastasis.  More specifically, this dissertation aimed to 

elucidate the effects of Lunasin on downstream pathways associated with integrin signaling and how 

disrupting these pathways can therapeutically benefit melanoma patients. 

Perhaps the most intriguing aspect of the Lunasin peptide is the fact that it has been shown to have 

immunomodulatory properties as well as those previously mentioned.  Having a therapeutic with several 

mechanisms may lower the possibility of chemoresistance due to the upregulation of pathways associated 

with the inhibition of oncogenic pathways caused by chemotherapeutic agents as seen in B-Raf targeted 

therapies (i.e. vemurafenib).  In one study, Lunasin was shown to increase antigen specific T cells when 

mice were challenged with allergen, while also suppressing inflammatory cytokines through NF-ĸB 

inhibition [41].  A subsequent study demonstrated that Lunasin provided a significant advantage in 

dendritic cell activation and maturation and conferred an enhanced immune response to viral challenge in a 

similar murine model [42].  Relevant to melanoma, Lunasin in combination with cytokines (IL-2 and IL-

12) synergistically enhanced NK cell-mediated cytotoxicity leading to significantly improved tumoricidal 

activity both in vitro and in vivo [13].  Lunasin, when introduced into a host, induces an immune response 

as indicated by the use of multiple antibodies raised in both rabbit and mouse models [16]; thus, Lunasin 

could be considered an antigenic peptide.  Perhaps, the introduction of an immunogenic peptide such as 

Lunasin promotes the mobilization of cells involved in innate immunity (NK cells, etc.) in order to combat 

tumor-associated molecules; though, this hypothesis is only speculator at this point, and subsequent studies 

on the precise mechanisms of Lunasin’s immunomodulatory functions are necessary.   
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Studies utilizing Lunasin have demonstrated its significant benefit in several cancer models; 

however, specific mechanisms of action and their induced response in cancer cells is only beginning to 

become clear.  Without functional studies to investigate the precise activity of mechanisms such as integrin 

antagonism or histone acetylation, it is difficult to target the exact cause of Lunasin’s anticancer activity.  

This dissertation aims to explore the functional domains of the Lunasin peptide while also expanding the 

knowledge of its chemotherapeutic potential in preclinical models of human melanoma with a strong 

emphasis on understanding the interactions between Lunasin’s RGD domain and integrin subunits on the 

extracellular matrix (ECM). 

 

Integrins as a targeted therapy in melanoma patients 

Integrins are vital to many cellular processes, and remain an important and underexplored target 

for cancer therapies (Figure 2).  Recent studies utilizing RGD peptides have shown targeting of integrins as 

a viable treatment alternative in melanoma therapy by inhibiting tumor angiogenesis, growth, and 

metastasis [43-45].  Integrins are heterodimeric membrane proteins primarily implicated in cell adhesion 

and migration [46, 47]; yet, integrins have also been reported to be intimately involved in cell growth, 

differentiation, and survival [48, 49].  Integrin heterodimers are composed of a single α-subunits and a 

single β-subunits, of which there are 18 and 8 variations, respectively.  These α- and β-subunits comprise 

the 24 heterodimeric proteins known in humans [50], and make integrin signaling flexible yet highly 

intricate [51].  Furthermore, integrin expression profiles in vitro can vary largely depending upon the type 

of adhesion (adherent cells versus cells in suspension) [52], and can result in recruitment of very different 

subsets of proteins.  Proteins attracted to different adhesion structures (e.g. paxillin) can produce diverse 

yet specific signaling cascades.   

By categorizing NSCLC lines based on integrin expression profiles, studies have associated 

explicit integrin subunits with Lunasin sensitivity [10].  Moreover, it was shown that Lunasin exerts its 

anticancer effects in NSCLC by reducing activating phosphorylations of v-akt murine thymoma viral 

oncogene homolog 1 (AKT), focal adhesion kinase (FAK), and interactions of β-subunits with integrin-

linked kinase (ILK), thereby altering signaling pathways downstream of integrin-ligand binding [10].   
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In melanoma models, the integrin αvβ3 is currently the predominant target for therapeutic 

applications of integrin antagonists.  Integrin αvβ3 is expressed at low levels in non-transformed epithelial 

cells relative to melanoma cells [53], as αvβ3 expression has been related to metastatic potential and 

dissemination of melanoma neoplasms to a metastatic phenotype [54, 55].  Crosstalk between integrins and 

growth factor receptors has been well documented [56, 57].  Enhanced cancer cell survival has been 

attributed to a number of interactions between integrin signaling and other pathways including increased 

BCL-2 expression, PI3K-AKT activation, or NF-κB signaling [58-60].  This dissertation proposed that in 

melanoma models, similar to recent findings in NSCLC [10], Lunasin binds αvβ3 integrins through its 

RGD domain and inhibits proproliferative and prosurvival signaling.   

 

 

Figure 2: Integrin-associated signaling pathways and the cellular effects associated with integrin 

signal transduction.  Integrin signaling is ubiquitous in that several intracellular kinases (and their effector 

proteins) are involved in signal transduction.  These transduction pathways elicit various cellular effects 
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including proliferation, differentiation, and migration, to name a few.  Specific kinases highlighted in this 

dissertation are enclosed in red boxes. 

 

Certain integrins have specific roles in melanoma;  for instance, it has been shown that α4β1, a 

homing molecule on leukocytes that binds VCAM-1, is absent on melanocytes, yet present in melanoma 

cultures [61].  Consequently, α4β1 may help melanomas mimic hematopoietic cells by enabling melanoma 

migration into tissues that expressing VCAM-1 [62].  Other integrins implicated in melanoma are α3β1 and 

α5β1, which were elevated in metastatic melanoma tissue.  Furthermore, α1β1, α2β1 and α6β1 integrin 

subunits were found to be reduced in metastatic versus primary melanoma [61].  However, roles of 

integrins in CICs are somewhat ambiguous.  Recent studies show that integrin subunits may be a viable 

marker for CICs and may be responsible for stem cell pool maintenance and differentiation mediated by 

FAK [63, 64], but the specific functions of integrins in CICs when compared to non-CICs have yet to be 

elucidated.  CICs are proposed to be more tumorigenic based on properties such as chemoresistance, 

immune evasion, and self-renewal capabilities [65, 66].  Whether integrins, through mechanical adhesion or 

signal transduction mechanisms, play a central role in these cellular processes is a major focus of this 

dissertation. 

Cilengitide, a cyclic RGD (cRGD) peptide, has been used to treat glioblastoma and is the first 

integrin inhibitor to be used in Phase III clinical trials [67].  Unfortunately, cilengitide had minimal clinical 

efficacy as a single agent in treating malignant melanoma [68].  Clinicians noted a significant decrease of 

αVβ3 expression in cilengitide-treated melanoma patients.  Interestingly, the sole responder to cilengitide 

treatment had no tumoral αVβ3 expression.  Additional clinical trials utilizing integrin-targeted therapeutics 

in combination with standard treatments have yielded disappointing results [69, 70]; despite promising 

preclinical data [71-73].  Despite not obtaining a significant difference, the treatment arm combining 

standard-of-care chemotherapy and anti-integrin targeted therapy trended toward improved overall survival 

in addition to having a favorable kinetic profile [69].  Furthermore, targeting of integrin subunits explicitly 

expressed on cancer cells may represent a dynamic solution to reducing off-site, adverse side effects 

generally seen with traditional chemotherapy.  Using integrin antagonists to suppress angiogenesis as well 

as integrin-associated signaling cascades may prove useful in the future as novel therapeutic strategies that 
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do not simply target the bulk of rapidly proliferating tumor cells.  The multiple modes of action of Lunasin 

may provide a substantial boost in antitumor efficacy over more traditional integrin-targeted therapies. 

 

Melanoma and the presence of melanoma stem cells 

Skin cancers account for nearly half of all diagnosed cancer cases in the United States and have 

increased in frequency over the last thirty years [74].  Melanoma is estimated to account for 76,000 new 

cancer cases in 2014 [75].  Despite being less frequent than other skin cancers, nearly 75% of skin cancer 

deaths are attributed to melanoma [75].  Even more unnerving, NCI’s Surveillance, Epidemiology, and End 

Results (SEER) program estimates cases of melanoma have nearly tripled in the past thirty years increasing 

from 7.9 (per 100,000) in 1975 to 22.7 in 2011, while 5-year survival rates remain constant.  Early 

detection and diagnosis is paramount for overall survival with 5-year survival rates of 98%, 62%, and 16% 

for localized, regional, and distant diseases, respectively [75].  Epidemiological studies have shown that the 

single greatest risk factor for melanomagenesis is UV exposure [76]; however, heredity has been reported 

to be involved in up to 12% of melanoma cases [77].  Classification of melanomas (reviewed in [78]) relies 

on a staging system which incorporates tumor thickness, presence of ulcerations, mitotic rate, and the 

existence of metastasis.  If diagnosed at an early stage, melanoma is a highly curable disease; however, 

progression from the radial to vertical growth phase indicates the ability to invade surrounding tissues and 

potential for metastatic dissemination [79]. 

Continued research of melanoma has provided several “cracks in the armor” of metastatic 

melanoma leading to the development of several targeted therapies that aim to inhibit proliferation, 

metastasis, and angiogenesis of primary and secondary tumors.  One such targeted therapy is vemurafenib, 

which decreases melanoma cell viability and proliferation resulting in tumor regression and increasing 

overall mean survival time [80, 81].  Vemurafenib targets a mutated form of the B-Raf protein found in 

approximately 60% of melanomas in which a V600E substitution leads to constitutive Raf signaling within 

the mitogen-activated protein kinase (MAPK) cascade [82].  In the majority of patients harboring this 

mutation, mean survival time has been improved with vemurafenib; however, after initial tumor regression, 

many patients experience recurrence of tumors that are vemurafenib-resistant [83-85].   Conferred 

resistance to vemurafenib may occur through a number of mechanisms including, but not limited to, 
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feedback activation of epithelial growth factor receptor (EGFR), upregulation of other Raf proteins, or 

upregulation of N-Ras [85-87].   

One explanation for the reformation of palpable tumors with chemoresistance is the presence of 

CICs within the bulk tumor population.  The presence of CICs and their origin have become a topic of 

debate [88-92].  According to the cancer stem cell theory, a subset of cells within the tumor population 

have properties that resemble physiological stem cells including the ability to self-renew while also giving 

rise to daughter cells that differentiate to reform heterogeneous tumor populations [88] (Figure 3).  The 

present study will show that CICs exist within established melanoma cell lines at a relatively high rate, and 

that this subset of cells displays enhanced tumorigenicity and invasiveness.   

 

 

Figure 3: Stochastic model compared to the cancer stem cell model. The stochastic model of 

tumorigenesis argues that all individual cells within a tumor population have the intrinsic ability to form a 

tumor.  The cancer stem cell hypothesis states that only a subset of tumor cells have the capacity for 

reforming heterogeneous tumor populations.  The cancer stem cell hypothesis has recently become a topic 

of debate.  While several models seem to appropriately fit the cancer stem cell hypothesis, several 

researchers have provided evidence suggesting some models do not follow this model. 
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Discovery of melanoma cells with stem cell-like plasticity was initially found in patient tumors 

overexpressing CD20 and CD133 [93, 94].  CD20 is a membrane-spanning surface molecule generally 

found on B lymphocytes; per se, it is the molecular target for therapeutic monoclonal antibodies (e.g. 

rituximab) for treatment of select leukemias and lymphomas.  CD133 (prominin-1) is a membrane-

spanning protein of no known function that is classified as a marker for primitive hematopoietic and neural 

stem cells.  These subsets of cells were found to have properties of stem cells as well as enhanced ability to 

form palpable tumors in immunodeficient mice.  Ensuing studies verify ATP-binding cassette sub-family B 

member 5 (ABCB5), a drug transporter playing a key role in chemoresistance, and Low-Affinity Nerve 

Growth Factor Receptor  (LNGFR/CD271),  a member of the tumor necrosis factor (TNF) receptor family 

involved in survival and differentiation of neurons, as viable CIC biomarkers [66, 95]. However, scientists 

are slow to embrace this concept for a number of valid reasons.  One concern remains the standardization 

of techniques for identifying and propagating cancer stem cells.  Serial dilution and transplantation of CICs 

into NOD/SCID mice has long been the gold standard for determining stem cell populations; however, 

spheroid assays in addition to genetic lineage tracing provide in vitro assays for CIC classification [89].   

To make matters more complicated, some evidence supports plasticity of differentiated cancer 

cells in a breast cancer model [96].  By reverting to a dedifferentiated phenotype, stem-like cells arise de 

novo in response to environmental cues [96].   These data support the theory of bidirectional movement 

between stem and non-stem compartments, and have serious implications on the plasticity of cells in cancer 

models as well as subsequent therapeutic strategies.  The phenomenon of “phenotype switching” has also 

been reported in melanomas [97].  The hypothesis proposed by Hoek and his coworkers suggests that cells 

within a tumor may be able to undergo a change between invasive and proliferative phenotypes depending 

on environmental cues and genetic alterations.  Additional publications have aimed to refute the claim that 

melanoma “fits” the cancer stem cell theory.  Quintana et. al. recently reported that nearly 1 in every 4 

melanoma cells may be able to produce a palpable tumor in vivo; however, the percentage of tumorigenic 

melanoma cells was highly variable depending upon the immune status of the host animal [98].  This report 

questions whether or not cancer stems cells are a rare subpopulation despite the fact that the rarity of CSCs, 

according to the CSC theory, has yet to be truly defined [99, 100].   



11 
 

Although populations of stem cell-like cells are recognized in melanoma cell lines, the frequency 

of these cells is highly variable, ranging from less than 1% up to nearly 25% [66, 98].  The incidence of 

cancer stem cells seems dependent upon the in vivo model, the biomarker used for identification, and the 

tumor microenvironment [62, 101].  Conflicting reports indicate that tumor samples enriched for CIC 

markers have enhanced tumor forming capacity.  Quintana [98] showed tumorigenic cells are 

phenotypically heterogeneous in melanomas, as significant in vivo tumor growth was marginal based on 

select CIC biomarkers.  Despite these findings, numerous studies report superior tumor forming capabilities 

of cells enriched for melanoma stem cell biomarkers including ABCB5 [102], CD133 [94], CD271 [95], 

and ALDH (aldehyde dehydrogenase) [103].   

 ALDH is a family of detoxifying enzymes responsible for metabolism of certain alkylating agents 

such as cyclophosphamide.  Enrichment for melanoma initiating cells by intracellular ALDH staining 

(protocol reviewed in [104]) has come with mixed reviews; however, most evidence supports ALDH as a 

CIC biomarker [103, 105-107].  ALDH expression has also successfully been used to detect CICs in breast 

and colon cancer models [108, 109].  The use of ALDH as a biomarker is based on its involvement in 

vitamin A metabolism [110].  ALDH has also been researched as a therapeutic target in human melanomas 

and its inhibition has been shown to decrease melanoma cell tumorigenicity and metastasis [111], 

indicating a primary role in melanomagenesis and progression.  Interestingly, ALDH-high cells may also 

serve a role as an adjuvant in vaccine-based therapies for melanoma [112].   

 Throughout this dissertation, ALDH-high fractions of cells derived from several melanoma lines 

were utilized to assess the effects of Lunasin on melanoma CICs compared to “bulk” tumor cells with the 

ALDH-low phenotype.  The complex mechanisms underlying the contributions of ALDH in CIC function 

have yet to be fully elucidated.  While the work presented in this dissertation does not immediately delve 

into these intricacies regarding ALDH function in CICs, it will serve as a foundation for using ALDH as a 

CIC biomarker and supports the notion that ALDH-high cells harbor a highly tumorigenic and invasive 

population of melanoma cells.  In order to indisputably determine whether melanomas follow a hierarchal 

or stochastic model of tumorigenesis, additional research must be conducted using a standardized and well 

defined classification and identification system for CSCs.  Simply collecting cells based on a single 

biomarker will most likely not suffice, but long-term propagation in an in vivo system may help categorize 
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subsets of tumors cells in terms of tumorigenic capacity and self-renewal.  Data presented throughout this 

dissertation and how it relates to what is currently known about the CSC theory (Reviewed in [113]) will be 

discussed in subsequent chapters of this work. 

 

Traditional approaches to treating melanomas and future perspectives 

 It is becoming clear that late-stage and recurrent melanoma may be due to the presence of 

melanoma stem cells which repopulate the heterogeneity of melanoma tumor tissues throughout the body.  

An emerging issue in treatment strategies involving late-stage cancers is the fact that traditional 

chemotherapeutic agents (e.g. alkylating agents) can actually expand the CIC compartment while 

simultaneously causing an initial regression of the primary tumor [114-116].  Recent studies have found 

that several traditional chemotherapies, including many used in the treatment of malignant melanomas, can 

increase the number of cells in the CIC compartment [117-120].  In addition to selecting for CICs, these 

chemotherapeutic regimens can increase genetic instability leading to phenotypic abnormalities such as 

increased invasiveness or enhanced tumorigenicity [121]. Therefore, the strategy of using differentiation-

inducing agents to reduced CIC populations prior to, in combination with, or immediately following 

therapeutic intervention is an emerging area of research [122].   

 The standard protocol for treating melanoma has largely depended on the stage at diagnosis; early 

melanomas (stage I and II) can generally be surgically resected without fear of recurrence [123, 124].  

However, late stage (stage III and IV) melanomas are treated much more aggressively and traditional 

treatment usually includes surgical resection, radiation, chemotherapy, or a combination of these therapies 

[123, 124].  Dacarbazine, temazolomide, cisplatin, and paclitaxel have primarily been used as the 

chemotherapeutic arm of traditional treatment strategies [125-127].  While these therapies have been shown 

to induce apoptosis in many melanomas and provide relief in the form of an initial tumor regression, many 

patients will experience recurrence and subsequent metastasis of chemoresistant tumor populations within 

months of treatment; patients with stage IV melanomas given the standardized treatment of care (i.e. 

dacarbazine) had median overall survival times ranging from 5.6 – 7.8 months and a response rate of only 7 

– 12% [83, 128-131].  These facts, taken in conjunction with the high cytotoxicity and ongoing list of 
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adverse effects of traditional anticancer pharmacologics, make it very clear to see why the demand for 

efficacious yet safe treatment options are needed. 

 The past decade has seen the implementation of several novel strategies for the treatment of late 

stage melanomas including targeted therapy (e.g. vemurafenib) [132] and immunotherapies, which consist 

of several subcategories including adoptive cell transfer [133], oncolytic viral therapy [134], and 

checkpoint blockade (e.g. nivolumab) [135].  Due to the strong immunogenicity of melanomas [136], the 

use of immunotherapies for modulating melanoma progression has received strong interest from 

researchers and pharmaceutical companies and will likely be a major focus moving forward.  While 

immunotherapies have shown great promise in clinical trials [137-139], the fact that these drugs are just 

now being implemented clinically raises the question as to whether these agents can sustain improved 

patient responses and increased overall survival rates.  Therefore, the continual development of novel 

antimelanoma drugs is necessary to combat this particularly deadly and inherently common disease.  With 

respect to Lunasin, a particularly intriguing aspect of the recent development and approval of 

immunotherapies is the fact that Lunasin has been shown to enhance components of both innate and 

adaptive immunity [13, 41, 42].  While strategies dedicated to eliciting cell-mediated immune responses 

seem to be receiving heightened interest, inducing an overall immune response by activating several 

constituents of the immune system may provide a more robust antitumor effect.  At the very least, it will be 

interesting to see what the future holds for immunomodulatory therapies, and whether or not they become a 

mainstay in anticancer treatments. 
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1.2 SPECIFIC AIMS AND GOALS OF THE DISSERTATION 

Overall Goals 

 The principle goal of this dissertation is to expand upon the existing knowledge that Lunasin has 

significant anticancer activity.  Initial data from the Davis lab indicated that Lunasin may have potential 

utility against NSCLC.  The hypothesis of this dissertation extends upon previous studies in the Davis lab 

to suggest that Lunasin may have potential clinical utility against melanoma.  Malignant melanoma cell 

lines derived from both human and murine origins were used to investigate the functional effects on cancer 

cells when they are treated with Lunasin, and additionally, to demonstrate through preclinical studies that 

these effects could provide a potential therapeutic benefit in clinical applications.  Initially, it was observed 

that Lunasin had a modest effect in vitro; however, these effects were more robust in vivo.  The importance 

of CICs in melanoma mortality [140] led to the question as to whether or not Lunasin might have a 

selective effect on this population of cells.  This was especially important due to the problematic and 

challenging nature of melanoma recurrence and chemoresistance due to the presence of CICs [140].  A 

principle goal of this study was to characterize the effects of Lunasin on melanoma cells through analysis 

of proliferative, apoptotic, differentiation, and senescence markers.  Previously described mechanisms of 

Lunasin’s anticancer activity including alterations in histone acetylation and integrin signaling were 

investigated to reveal which mechanism(s) was responsible for the effects seen in melanoma models.  The 

driving hypothesis of this study is that Lunasin decreases tumorigenicity and proliferation of melanoma cell 

lines by inhibiting integrin signal transduction. 

 Recent findings in NSCLC [10] indicated that Lunasin’s interaction with integrins comprised a 

significant portion of its anticancer activity; therefore, those studies were used as a stepping stone to further 

explore melanoma as a model to discover novel functions of the Lunasin peptide.  Because of the central 

role of both CICs and integrins in metastatic dissemination [62], it was imperative to assess whether 

Lunasin, through its changes in integrin signal transduction and selective targeting of CICs, would 

significantly suppress metastatic outgrowth in a murine model of metastasis.  In terms of clinical relevance, 

the use of Lunasin as an adjuvant in combination with the commonly prescribed B-Raf inhibitor 

vemurafenib was utilized to assess any additional gain in therapeutic benefit.  Taken together, it was 

expected that these findings would advance Lunasin as a potential drug candidate for further development, 
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not only in malignant melanoma, but in malignant diseases in which the presence of CICs has the potential 

to cause patient relapse. 

Specific Aims 

1. Identify the mechanisms in which Lunasin exerts its anticancer effects in melanoma 

Sub Aim A. Assess the ability of Lunasin to reduce populations expressing CIC and stem-associated 

markers 

Sub Aim B. Characterize the effects of Lunasin on CICs through analysis of proliferative, apoptotic, and 

differentiation markers 

Lunasin’s effects on melanoma had yet to be documented prior to the Davis lab’s initial study 

[141]; however, the recent findings in NSCLC would suggest that these effects are conserved throughout 

many different cancer cell types.  It was revealed that NSCLC proliferation was significantly inhibited 

when cancer cells were treated with Lunasin, and additionally, that this effect was differentially dependent 

upon expression of specific integrin subunits [10].  These results would suggest that integrin signaling is 

strongly linked to the initial results which demonstrated that Lunasin diminished the ability of cells to form 

colonies in soft agar as well as had a very modest effect on melanoma cells in proliferation assays.  Firstly, 

this dissertation aimed to identify and characterize the effects that Lunasin had on parental melanoma cells 

through assessment of markers for proliferation, apoptosis, differentiation, and senescence.  Secondly, this 

work planned to identify whether or not Lunasin had a significant effect on biomarkers for melanoma CICs 

including ALDH, CD271, and CD133.  Categorizing these effects as described would justify subsequent 

aims geared toward elucidating specific mechanisms of Lunasin in melanoma CICs. 

2. Evaluate the interaction between Lunasin and integrin subunits 

Sub Aim A. Specify the explicit integrin subunits interacting with Lunasin and identify the downstream 

mediators of integrin signal transduction 

Sub Aim B. Mutate the Lunasin peptide to discriminate the effects caused by histone acetyltransferase 

inhibition and integrin antagonism 

Sub Aim C. Genome-wide microarray analysis to discover Lunasin associated gene targets 

Recent work in the Davis laboratory has focused on using NSCLC as a model to investigate the 

specific mechanisms in which Lunasin exerts its effects on cancer cells.  It was observed that in NSCLC, 
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integrin signaling was significantly suppressed in cells treated with Lunasin.  Using these results as a 

stepping stone, it was next investigated if these effects were conserved in models of melanoma.  Therefore, 

this dissertation proposed to investigate the interactions between RGD-recognizing integrin subunits and 

the Lunasin peptide as well as assessed the downstream effects through integrin-associated intracellular 

kinases (e.g. FAK) caused by this interaction.  Because Lunasin has been reported to have significant 

effects on global histone acetylation patterns [142], it was next asked whether these effects could be driven 

by alterations in chromatin structure (via histone acetylation) compared to suppressed integrin signaling.  

Using synthesized peptides with mutated activity domains, this study aimed to test whether the RGD 

domain or the poly-aspartic acid tail were necessary for Lunasin’s activity in melanoma.   

Integrin signal transduction has been linked to several oncogenic signaling pathways [143]; for 

example, integrins have been shown to cooperate with the MAPK signaling cascade [144].  The ubiquitous 

nature of integrin-mediated signaling makes it difficult to accurately pinpoint precise mechanisms involved 

in Lunasin’s activity.  Thus, a genome-wide microarray screen was employed in order to distinguish any 

signaling pathways that may overlap with either integrin signal transduction or histone acetylation causing 

the effects observed in previous studies.  Using Lunasin as a tool to probe for novel therapeutic targets or 

identify connected hubs of proteins associated with these targets may allow researchers to explore this 

multifaceted peptide as a viable treatment option for malignant melanoma. 

3. Investigate the antimetastatic effects of Lunasin 

Metastatic dissemination due to circulating tumor cells that have undergone epithelial to 

mesenchymal transition (EMT) is the foremost reason for poor prognosis due to the high mortality rates 

caused by secondary tumor growth [145].  Prevention of initial metastatic seeding and sequential 

colonization of distant tissues is at the forefront of several clinical trials, and remains a major focus for 

oncologists and researchers [146, 147].  Even after metastatic outgrowth from the primary tumor, shrinkage 

of these initial lesions and prevention of metastatic spread can successfully improve overall patient 

survival.  Therefore, it was next investigated whether or not Lunasin could provide any antimetastatic 

benefit in a syngenic model of experimental metastasis.  These data, if supportive of the proposed 

hypothesis, could potentially provide significant clinical implications for the development of Lunasin as an 

adjuvant therapy in malignant diseases. 
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CHAPTER 2: EXPERIMENTAL PROCEDURES AND METHODOLOGY 

2.1 Lunasin Isolation and Purification 

 Lunasin was isolated from “white flake,” a product resulting from the flaking and defatting of 

soybeans via hexane extraction.  The extraction and purification was scaled and performed by Kentucky 

BioProcessing (KBP) as previously described [16].  Briefly, Lunasin was extracted from defatted soy flour 

in a 12.5: 1 ratio of extraction buffer (20 mM sodium phosphate/150 mM NaCl/20 mM ascorbic acid/10 

mM sodium metabisulfite, pH 7.4) to soy flour.  This solution was mixed for one hour at room temperature.  

A diatomite filter aid (Advanced Minerals Corporation) was added to the solution after mixing, and the 

mixture was then passed through a filter press (ErtelAlsop, 1 μm filter pads).  The filter cake was dried and 

once again washed with extraction buffer, and the resulting mixture was added to the initial extract.  Anion 

exchange chromatography was performed at Kentucky BioProcessing using a 20x13 cm Q-Sepharose FF 

column on a Pharmacia 10 mm BioProcess System Skid after both column and skid were sanitized with 1 

N NaOH and preconditioned with equilibration buffer (20 mM sodium phosphate/150 mM NaCl, pH 7.4).    

Clarified extracted was applied to the column for a residence time of approximately 3 min, and washed 

with 14.8 CV (column volumes) of equilibration buffer.  Lunasin was eluted using a linear gradient of 

sodium chloride (0.29 – 0.48 M, pH = 7.4), and the Lunasin-containing fractions were filtered through a 0.2 

μm capsule filter.  Dithiothreitol (DTT) was added to the fraction containing Lunasin to a final 

concentration of 2 mM, and the mixture was mixed at room temperature for one hour.  DTT-containing 

fractions were then subjected to ultrafiltration using 30 kDa polyethersulfone membranes and a Sartorious 

Sartocon Slice unit (Sartorious Stedium Biotech).  The final step in the purification process utilized 

reverse-phase chromatography (RPC) using a 10x9.2 cm Source RPC column on an AKTA pilot system 

(GE Healthcare).  Fractions were applied to the column with a residence time of precisely 2.5 min. and 

subsequently washed with equilibration buffer followed by a step elution process using 20% up to 100% 

elution buffer (17 mM sodium phosphate/127.5 mM NaCl/15% n-propanol/pH 7.4) in which the 100% 

buffer was the Lunasin-containing fraction.  This fraction was concentrated using a 0.5 m2 2 kDa cellulose 
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cassette (Sarorious Stedium Biotech).  RPC elution buffer was replaced with 50 mM sodium phosphate (pH 

7.4) via diafiltration, and passed through a 0.2 μm filter.  Sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) analysis indicate these Lunasin preparations have >99% purity (Figure 4).  

Subsequent experiments utilizing Lunasin as a treatment used these stock preparations, which had been 

diluted to a final concentration of 4.7 mg/mL of Lunasin (in 50 mM sodium phosphate) in 10 mL sterile 

glass vials and stored at 4˚ C. 

 

 

Figure 4: SDS-PAGE analysis of lunasin purified from soybean white flake. A total of 5 μg total 

protein was subjected to SDS-PAGE using a 15% gel (BioRad) followed by staining with Coomassie 

Brilliant Blue (BioRad). Labels indicate migration of SeeBlue Plus2 (Life Technologies) protein standards. 

 

2.2 Cell Culture and Reagents 

 B16-F10, SKMEL-28, and A375 cell lines were obtained from American Type Culture Collection 

(Rockville, MD), and further authenticated by short tandem repeat profiling (Promega).  Cells were 

monitored for mycoplasma contamination every 6 months.  All cell lines were grown in Dulbecco’s 
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Modified Eagles Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS), Penicillin (100 

U/mL), and Streptomycin (100 μg/mL).  Cells were incubated at 37 °C at 5% CO2 and sub-cultured every 

72 h.  ALDH+ cells were purified by fluorescence-activated cell sorting (FACS) and were grown in 

DMEM/F-12 serum-free media containing 1x N-2 Supplement (Gibco) 10 ng/mL basic fibroblast growth 

factor (Gibco), and 10 ng/mL epidermal growth factor (Gibco).  For soft agar assays, DMEM media 

(Invitrogen) powder was reconstituted in ultrapure water (500 mL) and supplemented with 20% FBS, 

Penicillin (200 U/mL), and Streptomycin(200 μg/mL).  Vemurafenib (a selective B-Raf inhibitor) was 

obtained from Selleck Chemicals (PLX4032, RG7204).  Vemurafenib was dissolved in dimethyl sulfoxide 

(DMSO) at a stock concentration of 1 mM and stored at -20˚C until use.  The A375R cell line was created 

in the Davis lab to mimic acquired vemurafenib resistance.  A375R cells are derived from A375 melanoma 

cells which were cultured in 1 μM vemurafenib for 4 weeks.  The resulting cell phenotype had decreased 

sensitivity to vemurafenib compared to parental A375 cells. 

2.3 Proliferation Assays 

Manufacturer protocols were followed to determine the effects of Lunasin on melanoma cell 

proliferation (Promega Cell titer-96 Aqueous Reagent).  Initial seeding densities were standardized at 7.5x 

103 cells/cm2 in 100 μL culture media.  Briefly, cells were plated and incubated at 37˚C, 5% CO2 for 4 h.  

Media were drained from each well and replaced with media containing varying concentrations of vehicle, 

Lunasin, or vemurafenib.  Treatment media were replaced every 24 h during the 72 h treatment period.  

After 72 h of treatment, wells were drained of expired media and refilled with 100 μL of fresh media.  20 

μL of  [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 

(MTS) reagent was added to each well and the plate was incubated for 2-3 h.  Absorbance was read at 490 

nm on a plate reader (Biotek Instruments).  Average absorbance of media containing no cells (i.e. 

background absorbance) was subtracted from all absorbance values.  Absorbance values were then 

normalized to control and expressed as percent control ± s.d. 

2.4 Soft Agar Colony Forming Assay 

 A lower, cell-free layer of 0.5% Bacto agar and cell culture media (1:1 suspension) was plated in 

6-well tissue culture plates and allowed to solidify at room temperature in a laminar flow cabinet. An upper 

layer of 0.35% agar and culture media (1:1) containing 1000 melanoma cells plus vehicle, Lunasin or 
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vemurafenib was plated over the solid lower layer. Plates were incubated at 37 °C and 5% CO2 for 10–18 

days until colonies grew to approximately 100 μm in diameter. After seeding, plates were fed with culture 

media containing vehicle (PB) or Lunasin twice weekly. Plates were stained with crystal violet solution 

(0.005%; Sigma-Aldrich), photographed, and scanned (1000 dpi; EPSO Expression 1680 scanner). Average 

colony size and total colony area for each sample were analyzed using Image-J software (National 

Institutes of Health). 

 2.5 ALDEFLUOR Staining 

 The ALDH positive population was identified using a commercial kit (ALDEFLUOR™, Stem 

Cell Technologies) according to manufacturer’s directions. A375, SKMEL-28, and B16-F10 cells were 

grown to approximately 80% confluence in DMEM cell culture medium and treated with Lunasin for 24 h. 

Cells (1 × 106 cells/mL) were washed and resuspended in ALDEFLUOR™ Assay Buffer. ALDEFLUOR™ 

reagent (5 µL/mL) was added to the cell suspension. The sample was mixed, and a portion was added to a 

fresh tube containing the N,N-diethylaminobenzaldehyde (DEAB) inhibitor. Another portion was placed in 

a fresh tube for staining with 10 μg/mL propidium iodide (PI). Samples were incubated in 37 °C for 45 min 

and mixed occasionally by inversion. Flow cytometry was performed using FACS Calibur (BD 

Biosciences).  A representative histogram showing SKMEL-28 melanoma cells stained with ALDEFLUOR 

reagent is presented in Figure 5. 

2.6 Flow Cytometry (Apoptosis) 

Annexin V binding assays were conducted using FITC conjugated antibodies against 

phosphatidylserine (BD Bioscience) and propidium iodide to measure rates of apoptosis and cell death.  

Cells were harvested and resuspended in 1x binding buffer (0.1 M HEPES, pH 7.4; 1.4 M NaCl; 25 mM 

CaCl2) at a concentration of 1x106 cells per mL.  Briefly, 1x105 melanoma cells were incubated with 100 

μM Lunasin for 24 h.  After the 24 h treatment, cells were harvested using enzyme-free dissociation media 

(TrypLE, Life Technologies), counted, and subjected to staining.  Cells were suspended in 0.5 mL binding 

buffer and stained with 5 μL PI, 5 μL Annexin antibody, or both for 15 min at room temperature.  Gates 

were set based on controls (unstained, PI only, Annexin only), and compensation controls were performed 

in FlowJo V10 (FlowJo, LLC).  1x104 events were collected per run on a FACS Calibur flow cytometer 

(BD Biosciences).  
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  For identifying ALDHhigh cells, melanoma cells were assayed for high ALDH activity as 

described above (Section 2.5). ALDHhigh and ALDHlow melanoma cells were sorted using a MoFlo cell 

sorter (Beckman Coulter) or a FACS Aria II with FACS Diva software (BD Biosciences).  Sorted 

ALDHhigh cells (1 × 103 cells/mL) were plated in low-attachment 6-well plates (Corning) in DMEM/F-12 

serum-free media. Cells were either treated with Lunasin (100 μM) or vehicle and labelled with Annexin V 

or PI.  Labelled cells were analyzed by flow cytometry using FACSCalibur (BD Biosciences) as outlined 

above. 

 

 

 

Figure 5:  SKMEL-28 cells stained with ALDEFLUOR reagent +/- DEAB.  SKMEL-28 melanoma 

cells were grown in adherent culture, harvested, and stained for ALDH activity.  This histogram represents 

a typical ALDH staining profile for the SKMEL-28 cell line run on a MoFlo cell sorter, and shows 

subpopulations both negative (A) and positive (B) for ALDH activity. 
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2.7 Flow Cytometry (Cell Cycle) 

Cell cycle analysis was performed on synchronized melanoma cells; cells were serum starved for 

72 h and then released by addition of 10% FBS culture media containing Lunasin or vehicle for 24 h.  

1x106 cells were harvested and resuspended in 200 μL of PBS.  Cells were slowly added to 4 mL ice cold 

70% ethanol for overnight fixation at -20˚C.  After fixation, cells were spun down at 300 xg for 10 min and 

resuspended in 0.5 mL of PI master mix (40 μg/mL PI, 100 μg/mL DNase in PBS) and incubated at 37˚C 

for 30 min prior to flow analysis using a BD FACS Calibur.  Resulting data were analyzed using FlowJo 

V10 cell cycle analysis tool. 

2.8 Fluorescence-assisted Cell Sorting  

Cell sorting was performed on a Beckman MoFlo or BD Aria II instrument equipped with a 20 

milliwatt blue argon laser (488 nm) using the ALDEFLUORTM kit as previously described (Section 2.5).  

ALDHhigh and ALDHlow fractions were detected using a FITC filter set (530/30 emission) on FL-1 (FITC) 

channel and collected for subsequent in vitro and in vivo experiments.  Sorted cells were confirmed to be 

positively stained for ALDH by fluorescent microscopy on a Nikon NiE microscope (Nikon) under a 488 

nm laser and GFP (530/20) filter set.  Batch sorting reports derived from Aria II FACS equipment are 

provided to represent typical staining profiles for A375 (Figure 6) and B16-F10 (Figure 7) melanoma cell 

lines.  Melanoma cells which do not express ALDH (i.e. ALDH-negative) are captured in the left gate (set 

by the DEAB control), and those staining for high ALDH activity are captured in the gate to the right.  

Cells which express intermediate (i.e. between the left and right gate) levels of ALDH represent an ALDH-

positive population that did not demonstrate a one log shift in fluorescence, and thus, were not isolated in 

our ALDHhigh sorted fractions. 

2.9 Formation of Multicellular Oncospheres 

B16-F10, A375 and SKMEL-28 melanoma cells were sorted for ALDH activity as described 

above.  ALDHhigh cells were sorted using a MoFlo flow cytometer (Beckman Coulter) or a FACS Aria II 

(BD Biosciences). Gates were set based upon DEAB controls for each cell line and reflected at least a one-

log shift between negatively and positively stained cells.  Sorted cells were cultured in low-adherent T-25 

flasks (Corning) in DMEM/F-12 serum-free media at a density of 1 × 103 cells/mL.  Cultures were grown 

for up to 14 days and treated with fresh media containing either Lunasin (100 μM) or vehicle twice per 
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week. Oncospheres (>100 μm) were harvested and passed through a 70 μm nylon filter (BD Biosciences) to 

remove single cells and small cell clumps. Spheres were imaged and analyzed using Image-J software 

[148].  

 

Figure 6: Batch report for A375 melanoma cells stained with ALDEFLUOR reagent. Parental A375 

cell lines were subjected to FACS after being stained with ALDEFLUOR reagent.  DEAB was used as a 

negative control in order to set appropriate gates for ALDH-negative cells (A). ALDHhigh cells reflect at 

least a one log shift in fluorescence intensity (B).  Sorted cells were analyzed and isolated using a BD Aria 

II FACS and batch reports were generated using FACS Diva software. 

 

2.10 In vivo Xenograft Model 

 Male athymic nude mice (Jackson #002019) were used at 6-8 weeks of age. All mice were 

handled in accordance with the Association for Assessment and Accreditation of Laboratory Animals Care 

international guidelines with the approval of the appropriate Institutional Animal Care and Use Committees 

at the University of Louisville (protocol #12091) and Indiana University, Bloomington (Protocol # 14-019-
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4). Mice were injected subcutaneously (s.c.) with 2.5 × 106 A375 cells in phosphate buffered saline (PBS; 

100 μL) on the right hind flank. Mice received daily intraperitoneal (i.p.) injections of either Lunasin (30 

mg/kg) or vehicle (PB) starting the same day that cells were implanted and repeated until mice were 

sacrificed.  Noticeable tumor formation was observed approximately 14 days post-injection and measured 

every other day thereafter.  Experimental endpoint was set at tumor volumes exceeding 20 mm in diameter 

(~ 2 cm2 total area) or upon ulceration of tumor tissues.  At endpoint, mice were sacrificed, and organs and 

whole blood samples were taken for subsequent analyses. 

Figure 7: Batch report for B16-F10 melanoma cells stained with ALDEFLUOR reagent. Parental 

B16-F10 cell lines were subjected to FACS after being stained with ALDEFLUOR reagent.  DEAB was 

used as a negative control in order to set appropriate gates for ALDH-negative cells (A). ALDHhigh cells 

reflect at least a one log shift in fluorescence intensity (B).  Sorted cells were analyzed and isolated using a 

BD Aria II FACS and batch reports were generated using FACS Diva software. 

 

 To test the in vivo properties of CICs, ALDHhigh A375 cells were sorted as described above. 

ALDHhigh cells were suspended in Hank’s Balanced Salt Solution (HBSS) +calcium +magnesium 
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(Invitrogen) and mixed at a ratio of 1:1 with Matrigel (growth factor reduced, without phenol red; BD 

Biosciences). A total of 100 μL of this Matrigel-cell suspension containing 1x104 melanoma cells was 

implanted s.c. on the dorsal side of the athymic nude mice. Tumor size was monitored thrice weekly until 

animals were sacrificed due to tumor burden. Tumor volume [V = L × W2 × (π / 6)] was determined by 

measuring the greatest linear dimensions in length (L) and width (W). 

2.11 SDS-PAGE and Immunoblot 

 Cultured cells were treated with 100 μM Lunasin or vehicle and harvested by using enzyme free 

dissociation buffer (TrypLE, Gibco) to minimize protein degradation.  Cells were pelleted by centrifugation 

at 300 xg and resuspended in appropriate amounts of RIPA buffer (250 mM Tris-HCl, pH 7.5, 5 mM 

EDTA, 750 mM NaCl, 0.5% Lauryl sulfate, 2.5% Deoxycholic acid, 5% Igepal CA-630, Protease inhibitor 

cocktail containing 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), pepstatin A, bestatin, leupeptin, 

aprotinin and trans-epoxysuccinyl-L-leucyl-amido(4-guanidino)-butane (E-64) (Sigma-Aldrich).  Protein 

concentrations of cell lysates were determined by a bicinchoninic acid (BCA) assay (Thermo Fisher 

Scientific, Waltham, MA).  Total protein ranging from 20 - 40 μg were loaded in 10% polyacrylamide gels 

(BioRad, Hercules, CA) and resolved at 100 volts for 1 h.  The protein was then transferred to a 

polyvinylidene difluoride (PVDF) membrane (BioRad) at 350 milliamps (mA) for 1 h.  Membranes were 

stained with Ponceau S (BioRad) to ensure equal loading and transfer of protein into the membrane.  In 

some cases, PVDF membranes were then cut into halves, leaving two duplicate membranes that were 

subsequently probed for various proteins.  In some cases, images of immunoblots presented in this 

dissertation represent chemiluminescent signal resulting from these duplicate membranes.  Individual 

PVDF membranes were blocked with 5% bovine serum albumin (BSA) or non-fat dry milk for 1 h.  After 

several washing steps in Tris Buffered Saline with 0.1% Tween (TTBS), primary antibodies were incubated 

with the PVDF membrane at 4˚C overnight with constant agitation.  Lysates were probed with antibodies 

that recognize human Microphthalmia-associated transcription factor (MITF, Cell Signaling #12590), 

Tyrosinase (EMD Millipore #05-647), poly ADP ribose polymerase (PARP, Santa Cruz #sc-7150), 

Caspase-3 (Santa Cruz #sc-56055), NANOG (EMD Millipore #MABD24), β-Actin (Santa Cruz #sc-

47778), phosphorylated AKT (Cell Signaling #9916S), phosphorylated FAK (Cell Signaling #9330S), 

phosphorylated ERK 1/2 (Cell Signaling #4094), H3K9 (EMD Millipore #07-352), H4K12 (EMD 
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Millipore #04-119), H4K8 (EMD Millipore #07-328), and H3K14 (EMD Millipore #07-353) diluted in 

TTBS at 1:1000 – 1:2000 v/v.  After three washes in TTBS, secondary antibodies at 1:10,000 dilutions 

(Cell Signaling) were incubated with the membrane for 1 h at RT.  Electrochemiluminescent (ECL) 

substrate and enhancer solutions (Thermo Fisher) were allowed to activate horseradish peroxidase (HRP) 

signal on membrane for 2-3 min; Chemiluminescence was developed on x-ray film and/or detected using a 

ChemiDoc station (BioRad).  In some cases, membranes were stripped using a harsh stripping buffer (0.5 

M Tris HCL, pH = 6.8, 10% SDS, 1% 2-mercaptoethanol).  Briefly, PVDF membranes were allowed to 

incubate in an appropriate amount of stripping buffer in a dry incubator (Thermo Fisher) for approximately 

20 min at 50˚ C under constant agitation.  After removal of the antibodies, membranes were washed in 

TTBS at least 5 times for a minimum of 5 min per wash.  To ensure removal of all primary and secondary 

antibodies, ECL substrate was applied to the stripped membrane as described above.  After a 2-3 min 

incubation with ECL substrate, membranes were reimaged to confirm the efficient removal of all 

antibodies.  In some cases, a second incubation with stripping buffer was necessary to remove all bands 

from previously imaged membranes.  Efficiently stripped membranes were blocked in an appropriate 

blocking buffer as described above, and subsequently probed using a different primary antibody.  All band 

densities, including the loading control (β-Actin), were normalized to vehicle-treated cells and are shown 

above the appropriate representative protein band.   

2.12 Non-steroidal anti-inflammatory drug (NSAID) Toxicological Panel and Complete Blood Count 

(CBC) 

 Whole blood was drawn from athymic nude mice by cardiac puncture immediately following CO2 

asphyxiation and collected in serum separator tubes (BD Biosciences) or EDTA coated collection tubes 

(BD Biosciences).  Aliquots of whole blood (25 μL) were collected in EDTA coated tubes and sent to the 

Research Resources Center (RRC) at the University of Louisville for CBC analysis.  After 1 h post-

collection, whole blood collected in serum separator tubes were centrifuged for 10 min at 10,000 xg.  250 

μL of serum was removed from each sample, collected in a 1.5 mL Eppendorf tube, and send to the RRC 

facility for NSAID toxicological analysis. Liver damage was assessed by levels of alanine aminotransferase 

(ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALKP).  Kidney damage was assessed 

by level of blood urea nitrogen (BUN) and creatinine (CREA). 
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2.13 In vivo Limiting Dilution Assay and ALDH Activity in Primary Tumors 

 In order to determine the viability of using ALDH as a practical biomarker for identifying CICs, in 

vivo limiting dilution assays were employed.  A375 melanoma cells were isolated by FACS based on 

ALDHhigh and ALDHlow activity as described above (Section 2.5).  These cells were counted and assessed 

for high viability (> 95%) by trypan blue exclusion assays.  Cells were resuspended in HBSS and mixed in 

a 1:1 ratio of Matrigel as previously described in this chapter (Section 2.10).  Dilutions of 100, 1,000, and 

10,000 cells were s.c. injected into the hind flanks of athymic nude mice in a total volume of 100 μL.  

Tumor growth initiated by both ALDHhigh and ALDHlow cells was observed for each dilution group.  Upon 

experimental endpoint, tumors were excised, and subjected to collagenase treatment to dissociate primary 

tumors to single cell suspensions.  After resection, tumor tissues were minced using a scalpel and incubated 

at 37˚ C with dissociation media (DMEM/F12 containing 1 mg/ mL collagenase, 20 μg/ mL DNase, and 

1% penicillin/streptomycin) for up to 4 h.  Samples were strained using a 70 μm nylon filter to remove 

aggregates of tumor tissue and collect single cells into a 15 mL conical tube.  Samples from ALDHhigh and 

ALDHlow tumors were pooled before analysis of ALDH activity.  Samples from each group were counted 

and assessed for viability by trypan blue exclusion assays, and subjected to staining for ALDH activity as 

previously described.  In order to discriminate mouse from human cells, all samples were labelled with a 

human-specific antibody against CD147 (BioLegend).  Positively-gated CD147 cells were then analyzed 

for ALDH activity by ALDEFLUORTM staining as previously described. 

2.14 β-Galactosidase Staining 

 Senescence-associated (SA) β-Galactosidase staining (Cell Signaling) was utilized to assess the 

degree of cellular senescence induced by Lunasin treatment; vemurafenib was used as an experimental 

control.  Melanoma cells were plated at 1x105 cells per well in 6-well culture plates (Corning) and treated 

with vehicle (PB), 100 μM Lunasin, or 1 μM vemurafenib for up to 24 h.  Treated cells were washed twice 

with PBS, and incubated with 1x fixative solution for 15 min at RT.  Cells were again washed twice with 

PBS and incubated with 1x staining solution (pH 6.0) overnight in a dry incubator at 37˚ C.  Staining was 

analyzed and imaged using an EVOS light microscope.  A total of 500 cells were counted from 5 

independent fields and averaged for the total number of stained (blue) cells.  The mean number of 
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positively stained cells was averaged from three independent experiments and represented as a percentage ± 

s.d. 

2.15 Liquid Overlay Generation of Multicellular Tumor Spheres 

 Cell culture plates (96-well, Corning) were coated with 100 μL per well of a 1:1 mixture of 

warmed DMEM culture media and cell culture-grade agarose (1.5% final concentration) and allowed to air 

dry at RT.  1x103 A375 and A375R melanoma cells were plated in 100 μL of DMEM culture media 

containing vehicle, 100 μM Lunasin, 1 μM vemurafenib, or a combination of vemurafenib and Lunasin.  

Cells were allowed to grow in an incubator at 37˚C and 5% CO2 for up to 96 h.  Tumor sphere 

measurements were taken after the formation of multicellular spheres (~72 - 96 h), and measured for up to 

an additional 96 h after sphere formation using ImageJ software (National Institutes of Health, NIH).  

Tumor sphere diameters were measured and plotted as mean sphere diameter ± s.d. 

2.16 Microarray 

 Parental A375 cells and A375 ALDHhigh cells from three independent cultures were treated with 

vehicle or 100 μM Lunasin for 72 h in adherent and nonadherent conditions, respectively.  After treatment, 

cells were harvested, homogenized, and RNA was extracted using the RNeasy Mini Kit (Qiagen) 

complemented with the QIAshredder kit (Qiagen).  RNA concentration was quantitated using a Nanodrop 

1000 system (Thermo Fisher) and quality was analyzed by an Expert 2100 BioAnalyzer (Agilent).  All 

RNA used had RNA integrity numbers (RIN) of 8 or greater.  cDNA was generated using the Ovation Pico 

WTA V2 system (NuGen), and analyzed for integrity on the Bioanalyzer.  Fragmentation and labeling of 5 

μg total DNA was carried out using an Encore Biotin Module (NuGen) which is optimized for use with 

Affymetrix gene chips.  Hybridization and raw data analysis were carried out by staff at the University of 

Louisville Microarray Core (Louisville, KY).  Gene expression and analysis were performed using 

MetaCore software (Thomson Reuters) with a fold-change cut-off of 1.3 (p < 0.05). 

2.17 Immunofluorescence Microscopy 

 A375 cells were plated in DMEM culture media at a density of 1 x 104 cells per well in an 8-

chambered microscope slide.  Cells were allowed to adhere for 4 h before removal of media and 

replacement with media containing vehicle (PB) or 100 μM Lunasin.  Cells were allowed to incubate with 

treatment media for up to 24 h.  Cells were washed with PBS, fixed with 4% paraformaldehyde, and 
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permeabilized with 0.1% Triton X-100.  Cells were incubated at -20˚C in 100% methanol before blocking 

with 1% bovine serum albumin.  Cells were incubated with anti-Lunasin (1:1000) rabbit polyclonal 

antibody [16] and anti-αV (1:100) mouse monoclonal antibody (Santa Cruz #376156) in blocking solution.  

Following overnight incubation, cells were washed and incubated with appropriate secondary antibodies 

conjugated to AlexaFluor-488 or AlexaFluor-647 fluorophores (Jackson ImmunoResearch).  After 

washing, mounting media containing DAPI (Thermo Fisher) was dropped onto slides, and a cover slip was 

sealed on top of the slide using clear fingernail polish prior to fluorescent analysis.  Images were taken on a 

Nikon NiE upright microscope using Nikon Elements software (Nikon). 

 For Lunasin uptake experiments, the same protocol was followed; however, time points were 

standardized at 0, 5, 10, 30, and 60 min post-treatment.  Additionally, A375 melanoma cells were treated 

with both Lunasin containing the native (RGD) sequence as well as a mutated (RAD) peptide at a 

concentration of 100 μM.  Melanoma cells were again fixed and labelled with Lunasin monoclonal 

antibody, counterstained with DAPI, and imaged on a Nikon NiE fluorescent microscope using Nikon 

Elements software. 

2.18 Proximity ligation assay (PLA) 

 A375 ALDHhigh cells were isolated by FACS as described in Section 2.5.  Following isolation, 

ALDHhigh cells were treated for 24 h with 100 μM Lunasin.  Treated cells were washed twice with PBS, 

plated on glass coverslips coated with poly-lysine (Sigma), and allowed to air dry in a biological safety 

cabinet.  Coverslips were washed twice with PBS for 5 min per wash and fixed in 4% paraformaldehyde 

(PFA) for 10 min.  Coverslips were then washed three times with PBS for 5 min per wash and 

permeabilized using 0.5% Triton X-100 in PBS for 10 min.  After permeabilization, cells were washed 

three times with TTBS for 5 min per wash, and blocked in 1% BSA in TTBS.  Cells were incubated 

overnight at 4˚C with appropriate antibody combinations against Lunasin [16], phosphorylated focal 

adhesion kinase (FAK, Abcam #ab4803), integrin-linked kinase (ILK, Cell Signaling #3862), and integrin 

αV (Cell Signaling #4711), β1 (Abcam #ab134179), and β3 (Millipore #AB2984) subunits as described [10].  

Antibodies were then labelled using the Duolink in situ red starter kit (Sigma) following the recommended 

manufacturer’s protocol, and subsequently imaged on a Nikon NiE upright microscope with Nikon 
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Elements software.  Exposure settings were kept consistent throughout image collection.  Fluorescence 

analysis of the resulting images representing a single layer was analyzed using ImageJ software (NIH).   

2.19 Transwell invasion assay 

 A375 and B16-F10 cells were plated in 6-well culture plates at a density of 1x105 cells per well in 

2 mL of DMEM culture media.  After 4 h, the media were removed and replaced with media containing 

vehicle or 100 μM Lunasin for 24 h.  After treatment, cells were washed once with PBS, and harvested with 

TrypLE dissociation media (Gibco).  Cells were counted and viability was assessed by trypan blue 

exclusion assay; > 95% viability was observed for all samples.  Cells were replated at a density of 1x105 

viable cells in serum-free DMEM culture media containing vehicle or Lunasin into a transwell Boyden 

chamber (pore size = 8 μm) coated with Matrigel basement membrane (Corning).  The bottom chamber 

was filled with DMEM culture media containing 10% FBS to promote invasion from the top chamber.  

After 24 h at 37˚C, cells were removed from the top chamber by using a cotton-tipped swab, and cells 

adhered on the bottom layer of the insert were fixed in 100% methanol and stained in a 1% Toluidine Blue 

in 1% borax solution.  After several washes in distilled water, membranes were allowed to air dry, mounted 

onto slides with mounting solution, covered, and sealed with a 60 mm cover slip and clear fingernail polish.  

A total of 5 fields per insert were counted and averaged to obtain the average number of cells per field. 

2.20 Murine model of experimental metastasis 

 All mice were handled in accordance with the Association for Assessment and Accreditation of 

Laboratory Animals Care international guidelines with the approval of the appropriate Institutional Animal 

Care and Use Committees at Indiana University, Bloomington (Protocol # 14–019–4).  B16-F10 cells (2.5 

x 105 ) were suspended in 100 μL phosphate buffered saline (PBS) and injected intravenously (i.v.) into 4-6 

week old, female C57Bl/6 mice (Harlan) via the lateral tail vein.  Immediately following transplantation of 

melanoma cells, mice were dosed with Lunasin (30 mg / kg) or vehicle by intraperitoneal (i.p.) injection.  

Mice received daily i.p. injections of Lunasin or vehicle until the end of the experiment 18 days post-

transplantation of cells.  Upon sacrificing the mice, lungs were resected and imaged using a Leica M205 

Stereoscope (Leica).  Tissues were fixed in 10% formalin for 72 h and processed for subsequent 

histological staining. 
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2.21 Histology 

 After fixation in 10% formalin, lungs were transferred to 70% ethanol and stored overnight at 

room temperature.  Tissues were dehydrated through a series of graded alcohols, and infiltrated with 

paraffin (Electron Microscopy Sciences).  Tissues were embedded in paraffin and sectioned (thickness = 7 

μm) on a microtome.  Sections were transferred to SuperFrost Plus slides (Fisher) and allowed to dry 

overnight on a slide warmer (Fisher).  Paraffin removal was initiated by several washes in xylene, and 

followed by rehydration of the tissues in a series of graded alcohols.  Tissues were stained in hematoxylin 

and eosin (H&E) solutions followed by a clearing solution of xylene.  After staining, PermountTM mounting 

medium (Fisher) was applied to each slide and covered with a 60 mm cover slip (Fisher).  Slides were 

allowed to dry at room temperature overnight and then placed in a drying oven until completely dry.  

Images of H&E stained slides were taken using a Leica M205 Stereoscope (Leica) as well as an EVOS 

light microscope (Life Technologies).  Macrometastases were counted under 4.32x magnification on the 

Leica M205 Stereoscope.  Micrometastases were counted from H&E stained non-sequential sections (n = 

5) from each tissue sample using an EVOS light microscope.  Images were subsequently analyzed for total 

tumor area using ImageJ software (NIH). 

2.22 Differentiation of ALDHhigh cells 

 ALDHhigh and ALDHlow cells were isolated from A375 and SKMEL-28 cell lines as described 

above.  These cells were counted, assessed for viability by trypan blue exclusion, and plated into 6-well cell 

culture plates at a density of 1x105 cells per well in fresh DMEM culture media.  Cells were allowed to 

grow in standard growth conditions in an incubator for up to 7 days.  ALDH activity was assessed on day 3 

and on day 7 and subsequent analysis was performed to assess the proportion of cells remaining in the 

ALDHhigh compartment using methods previously described in Section 2.5.  Analysis was performed using 

FlowJo V10 software using gates set upon a DEAB negative control. 

2.23 Statistical Analysis 

 GraphPad Prism 5.0 software (GraphPad Prism Software, Inc., La Jolla, CA) was used for all 

statistical analyses. For all in vitro studies, two-group comparisons between control and test samples were 

done by two-tailed student’s t-tests and represent data from three independent experiments. For 

experiments in which a significant difference was observed, p-values are provided above the statistically 
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significant (from control group) treatment group.  If statistical significance is observed between 

experimental groups, an asterisk will be used to denote significance between the indicated treatment 

groups.  P-values between groups which were not determined to be statistically significant are not provided 

in their respective figures.  For the in vivo tumor measurement studies, group comparisons were done using 

two-way ANOVA. For all tests, statistical significance was assumed when p < 0.05.  In vitro results are 

shown as means ± s.d.  In vivo experiments were analyzed using GraphPad Prism ANOVA analysis tool 

are shown as means ± s.e.m.  Mean tumor volumes for individual days were compared by unpaired 

student’s t test (p<0.05) to determine significance between control and treatment groups.  Experimental 

metastasis data were analyzed for significance using two-tailed student’s t-tests.  Interactions between 

Lunasin and vemurafenib were determined to be antagonistic (< 1), additive (1), or synergistic (> 1) by 

calculating the Drewinko Index (DI).  All samples were normalized to appropriate controls and applied to 

the formula DI = �𝑆𝑆𝑆𝑆
1�(𝑆𝑆𝑆𝑆2)
𝑆𝑆𝑆𝑆3

 in which SF1 is equal to the surviving fraction of drug1, SF2 is equal to the 

surviving fraction of drug2, and SF3 is equal to the surviving fraction of the combination of drug1 and drug2.  
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CHAPTER 3: LUNASIN IS A NOVEL THERPEUTIC TARGETING MELANOMA STEM CELLS 

3.1 INTRODUCTION 

 Nearly 20% of all Americans will develop some form of skin cancer during their lifetime [149].  

Annual treatment costs for skin cancers are estimated at $8.1 billion; approximately $4.8 billion and $3.3 

billion for non-melanoma and melanoma skin cancers, respectively [150].  Although less frequent than 

non-melanoma skin cancers, rates of melanoma are steadily rising and account for nearly all skin cancer-

associated deaths [74].  Recurrent disease is the major cause of morbidity and mortality associated with 

melanoma. Although significant progress has been made in preventing or delaying disease, additional non-

toxic approaches are needed to reduce the risk of recurrence. Studies in preclinical models of 

carcinogenesis have shown that an enrichment of melanoma CICs is likely to occur after conventional 

chemotherapeutic regimens, implicating CICs in treatment resistance and cancer recurrence [151-154].  

Thus, successful elimination of CICs, along with the proliferating bulk tumor melanoma cells could be an 

effective therapeutic strategy to achieve higher rates of complete remission, especially in patients with late 

stage melanoma. 

Melanoma CICs have been shown to represent about 1–25% of all tumor cells and can form 

tumors by injection of a single cell [98].  Identification of a universal biomarker for CICs remains a major 

research focus [155]; however, most markers appear to be model specific. Melanoma cells with stem cell-

like plasticity were initially discovered in patient tumors that overexpressed CD20 [93] and CD133 [94]. 

These subsets of cells displayed characteristics of stem cells and an enhanced ability to form palpable 

tumors in immunodeficient mice. Ensuing studies have identified ABCB5 [66] and CD271 [95] as potential 

melanoma CIC biomarkers. More recently, melanoma cells expressing Aldehyde Dehydrogenase (ALDH) 

have been shown to display stem cell-like properties with enhanced in vivo tumorigenic capacity [103].  

Other studies utilizing solid tumor models of the colon [108], breast [109], and lung [156] provide further 

evidence for utilizing expression levels of ALDH as a CIC marker.  This hypothesis is supported by data 

showing ALDH1 expression correlates with poor prognosis in breast [157], ovarian [158], and lung [159]
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cancers, and that ALDH is critical in the development and differentiation of hematopoietic stem cells [160, 

161] by modulating retinoid signaling through the conversion of vitamin A (retinol) to retinoic acid [162], a 

ligand for downstream nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR) [163]. 

Lunasin has three putative functional domains including an aspartic acid tail, an RGD domain, and 

a chromatin-binding helical domain [15, 16].  Lunasin has been shown to exhibit robust chemopreventive 

and chemotherapeutic activities [9, 11-14].  Lunasin has chemotherapeutic activity both in vitro and in vivo 

in various cancer models, including colon [35, 36, 164] and breast [34] cancer.  Previous studies have 

established a novel functional role for Lunasin in decreasing proliferation of NSCLC cells by suppressing 

integrin signaling through αvβ3 [10, 165]. This finding is consistent with results from previous studies that 

demonstrated that Lunasin is internalized via αvβ3 integrin [12, 38].  When compared to melanoma cells, 

the expression of αvβ3 integrins are lower in non-transformed epithelial cells [53]; the expression levels of 

αvβ3 correlate with the metastatic potential and the conversion of melanoma neoplasms to a metastatic 

phenotype [55].   

In light of recent studies that clearly link integrin-matrix interactions to cancer cell survival [166] 

(including the maintenance and survival of CICs through integrin-FAK signaling [64, 167-174]), it seemed 

logical to ask whether Lunasin can target melanoma CICs and, if yes, is this anti-CIC activity critical for its 

in vivo antitumorigenic effects.  This dissertation will aim to show, for the first time, that Lunasin 

specifically targets ALDHhigh CICs in human melanoma cell lines. Lunasin treatment decreases the 

expression of surrogate CIC markers in vitro and reduces their in vivo tumorigenicity. Lunasin treatment 

significantly reduces formation of CIC-enriched melanoma oncospheres and more importantly, induces 

expression of melanocyte-associated differentiation markers while suppressing stem-associated factors. 

Taken together, these results delineate the ability of Lunasin to regulate melanoma CIC properties and 

provide a compelling argument for developing Lunasin as a therapeutic agent to reduce melanoma 

recurrence.  

3.2 MATERIALS AND METHODS 

Isolation and purification of Lunasin 

 Isolation and purification of Lunasin was performed as described in Section 2.1.  These Lunasin 

stock preparations were used throughout the work in this dissertation.
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ALDH assay 

 ALDH activity was assessed using the ALDEFLUOR kit (StemCell Technologies) as described in 

Section 2.5.  FACS was performed to isolate fractions of cells based on ALDH activity as previously 

described in Section 2.5. 

Annexin V binding assays  

Apoptosis was assessed using a commercially available Annexin V binding assay (BD 

Biosciences) as described in Section 2.6.  

Melanoma oncosphere culture 

Generation of melanoma oncospheres from sorted cells was performed as described in Section 2.9. 

Xenograft experiments 

 Subcutaneous xenograft models to assess tumor growth characteristics of parental and ALDHhigh 

melanoma cells were utilized as described in Section 2.10. 

In vivo limiting dilution assay 

 In order to investigate the tumorigenic properties and frequency of CICs in ALDH-sorted 

compartments, A375 cells were subjected to FACS as described in Section 2.5.  These cells were then 

injected s.c. at various dilutions in order to determine the extent of their tumorigenic potential as outlined in 

Section 2.10. 

Immunoblot analysis 

 Lysate preparation, SDS-PAGE, and immunoblot analysis were performed as outlined in Section 

2.11. 

Toxicological analysis 

 Kidney and liver function as well as complete blood analysis were evaluated by NSAID 

toxicological and CBC panels as previously described in Section 2.12. 

SA β-Galactosidase staining 

 A375 ALDHhigh cells were isolated by FACS and subsequently treated with vehicle, Lunasin, or 

vemurafenib.  After 24 h treatment, cells were stained as described in Section 2.14. 
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Liquid overlay generation of multicellular tumor spheres 

 Liquid overlay was used to help characterize the interaction between vemurafenib and Lunasin as 

described in Section 2.15. 

Statistical analysis  

 Statistical analysis of data presented in Chapter 3 was performed as described in Section 2.23. 

 

3.3 RESULTS 

 Lunasin inhibits anchorage-independent growth in human melanoma cell lines 

 Previous studies of NSCLC demonstrated that Lunasin had a modest or no effect on most cell 

lines when grown under standard adherent culture conditions whereas all cell lines tested were sensitive 

under non-adherent conditions [165].  It was found that this was also the case with human melanoma cell 

lines. A375 and SKMEL-28 cells did not show any decrease in proliferation when treated with a 

concentration range of 10 to 100 µM over three days when assayed using a standard MTS-based assay 

(Figure 8).  Additionally, no indication of apoptosis in parental A375 or SKMEL-28 melanoma cells was 

observed (Figure 9) when cells were treated with Lunasin and subjected to labelling using an Annexin V 

binding assay (Figure 9A-D).  No significant induction of cleaved caspase 3 or PARP was observed 

following treatment with Lunasin for 24 h in either cell line (Figure 9E).  However, A375 and SKMEL-28 

melanoma cells exhibited a significant dose-dependent decrease in colony formation in soft agar assays 

upon exposure to Lunasin (Figure 10). When compared to cells treated with vehicle alone; colony 

formation by A375 cells was reduced by 37% upon treatment with Lunasin (100 µM) (Figure 10A, 10B, 

and 10E), while Lunasin-treated SKMEL-28 cells exhibited a 23% inhibition of colony formation (Figure 

10C, 10D and 10F). The size of colonies formed by single melanoma cells was also decreased upon 

exposure to Lunasin (Figure 10A–D). These results establish that Lunasin inhibits anchorage-independent 

growth of melanoma in vitro and provides the first demonstration that Lunasin may offer potential 

therapeutic effects on human melanoma cells.  

Lunasin inhibits tumor growth of melanoma cells in vivo 

 To evaluate whether the inhibition of in vitro anchorage-independent growth of melanoma cells 

can be recapitulated in vivo, tumor xenografts were generated by s.c. implantation of A375 cells in athymic 
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nude mice. Tumor cell implantation was followed by concurrent and subsequent daily i.p. injections of 

Lunasin (30 mg/kg body weight).  Dosing was determined by a combination of previous in vivo 

experiments [175] with the objective of obtaining a significant host response while minimizing toxicity, 

and established dosing regimens for previously established biologics (e.g. cilengitide).  While no 

significant reduction in palpable tumor formation was observed, a significant reduction in the tumor growth 

rate was observed in the Lunasin-treated mice when compared to mice injected with vehicle alone 

(Figure 10G). Tumors were measured at 14 days after initial implantation; however, it was observed that 

mice in the Lunasin-treated group displayed tumors that were significantly smaller (< 50 mm3) and difficult 

to measure due to their small size and lack of depth. Mice treated with Lunasin over a 34 day period 

exhibited significant reductions in tumor volume (55%) and total tumor mass (46%) when compared to 

those measured in the vehicle-treated mice (Figure 10G and 10H).  This model established that Lunasin 

was biologically active in athymic nude mice, and its anticancer effects persists in vivo. 

 

 

Figure 8: Lunasin did not have an antiproliferative effect on A375 or SKMEL-28 melanoma cells in 

adherent culture.  Parental A375 (A) and SKMEL-28 (B) cells were plated and treated with vehicle or 

varying concentrations of Lunasin for up to 72 h.  It was observed that Lunasin treatment caused no 

significant antiproliferative effect on these cell lines when utilizing the MTS/MTT tetrazolium-based 

proliferation assay in an adherent format.  These data are consistent with the modest effects observed when 
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several NSCLC, breast, and colon cancer cell lines were treated with Lunasin at similar concentrations.  

Graphs were generated using data gathered from three independent experiments, and statistical analysis 

was performed by student’s t-test.  P-values of less than 0.05 were considered statistically significant. 

 

 

Figure 9:  Lunasin did not induce apoptosis in parental melanoma cell lines. A375 (A, C) and 

SKMEL-28 (B, D) cell lines were treated with Lunasin (100 μM) for 24 h, and subsequently analyzed for 

apoptosis. No significant induction of apoptosis or necrosis was observed with Lunasin treatments.  These 

results were corroborated by findings that Lunasin did not increase levels of cleaved PARP and active 

Caspase 3 when assessed by immunoblot analysis (E).  Data were gathered from three independent 

experiments, and analyzed using FlowJo V10.  Statistical significance between control and Lunasin 

treatment groups was determined by student’s t-test (p < 0.05).   

Lunasin reduces the melanoma CIC subpopulation in established cell lines 

  ALDH is an intracellular enzyme highly expressed by stem-like cells [176] and recent studies 

suggest that high ALDH activity is a property of CICs in human melanoma [103]. To measure ALDH 

activity in melanoma cells, ALDEFLUOR reagent was used.  ALDEFLUOR is a commercially available 

molecule that freely diffuses into cells and is a substrate for the ALDH enzyme. ALDH cleaves 

ALDEFLUOR and yields a fluorescent product that can no longer diffuse across the cell membrane. ALDH 

activity within the cells is then assayed by incubating cells with a fluorescent ALDH substrate followed by 
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flow cytometry. For this assay, ALDHhigh CICs were identified by comparing the fluorescence in a test 

sample to that in a control sample containing DEAB, a specific inhibitor of ALDH. These data demonstrate 

that treatment of A375 melanoma cells with Lunasin (100 µM) for 24 h significantly reduced the size of the 

ALDHhigh CIC subpopulation (Figure 11A – 11C). Similarly, SKMEL-28 ALDHhigh subpopulations were 

reduced after a 24 h treatment with Lunasin (Figure 11D- 11F).  Immunofluorescence analyses for the 

ALDH marker expression corroborated the findings that Lunasin treatment dramatically diminished the 

ALDH expression levels in both A375 and SKMEL-28 melanoma cells and significantly reduced the 

ALDHhigh subpopulation (Figure 11A–11F). 

 

Figure 10:   In vitro efficacy of Lunasin in malignant melanomas. Representative images of colonies 

grown in soft agar for vehicle-treated (A, C) and Lunasin-treated (B, D) A375 (A,B) and SKMEL-28 (C,D) 

cells (magnification at 40x). Scale bars on images represent 100 μm.  Anchorage-independent growth 

conditions sensitized melanoma cells to Lunasin resulting in a significant decrease in colony formation in 

A375 (E) and SKMEL-28 (F) cells. Statistical significance between treatment groups is denoted by an 

asterisks (*) and p-values are provided for each significant difference. Two asterisks (**) signifies a 

difference between 30 μM and 100 μM Lunasin treatment groups.  Data are presented as mean ± s.d. from 

three independent experiments. For xenograft studies, 2.5 X 10
6
 A375 cells were injected s.c. into nude 
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mice and subsequently treated with vehicle (PB) (n = 8) or Lunasin (n = 10) for a total of 34 d.  Lunasin 

reduced tumor volume by 55% (G) and wet tumor weight by 46% (H).  Lunasin-treated mice differed 

significantly in tumor volume (p < 0.001) from control treated mice as assessed by GraphPad ANOVA 

analysis.  The corresponding reductions in wet tumor weights were determined to be significant by 

unpaired student’s t-test (p = 0.003) and statistical significance is denoted by an asterisk.  In vivo data are 

presented as mean ± s.e.m. 

 

 

Figure 11:  Lunasin depleted populations of cells displaying high ALDH activity.  A375 and SKMEL-

28 cells showed a substantial decrease in ALDH positive populations when treated with Lunasin for 24 h.  

DEAB was used as a negative control, and served as a tool for gating ALDH negative populations.  

Representative flow cytometry plots and corresponding fluorescent microscopy images were taken 24 h 

post-treatment and provided for DEAB (A, D), control (B, E), and Lunasin-treated (C,F) groups.  Lunasin 

reduced the number ALDH
high 

cells in A375 and SKMEL-28 cell lines when compared to vehicle-treated 

cells (G).  Statistical significance was determined from three independent experiments and assessed by 

student t-test (p < 0.05). Fluorescence microscopy images were taken at 40x magnification.  Data are 

presented as mean ± S.D and represent data gathered from three independent experiments.  Statistical 
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analyses were performed using student’s t-test with p-values of less than 0.05 being considered statistically 

significant. 

Lunasin suppresses the functional properties of melanoma CICs 

 CICs are characterized by having stem cell-like properties, including the ability to self-renew. 

Oncosphere formation assays have been widely used to measure the functional activity of CICs, and 

previous studies have indicated that the ALDHhigh melanoma cells represent the CIC-enriched compartment 

[103]. To determine the effects of Lunasin on melanoma CIC functional properties, clonogenic and sphere 

formation assays were performed using isolated ALDHhigh A375 and SKMEL-28 melanoma cells. Stringent 

assay conditions in which spheres (floating) and colonies (formed in soft agar) are all of clonal origin were 

first established. Under these conditions, Lunasin treatment (100 µM), when compared to control vehicle 

treatment, significantly inhibited sphere establishment in ALDHhigh A375 melanoma cells and in ALDHhigh 

SKMEL-28 melanoma cells (Figure 12A-C). Similarly, when compared to vehicle-treated cells, Lunasin-

treatment at both 30 µM and 100 µM drug doses significantly affected colony forming ability in purified 

ALDHhigh A375 melanoma cells (Figure 12D, 12E, and 12H) as well as in ALDHhigh SKMEL-28 cells 

(Figure 12F, 12G, and 12I). Collectively, these results indicate that treatment with Lunasin negatively 

regulates melanoma CIC functional properties in vitro.  In these assays, it was demonstrated that Lunasin 

functionally represses the clonogenic ability of melanoma CICs by inhibiting their potential to form 

oncospheres in non-adherent conditions as well as self-renewal capacity when suspended in soft agar. 

Lunasin limits in vivo growth of tumors initiated by melanoma CIC-enriched ALDHhigh cells 

 It was further investigated if the anti-CIC activity of Lunasin in melanoma cells in vitro translated 

into better therapeutic efficacy against in vivo melanoma CIC-initiated tumor growth. ALDHhigh A375 cells 

isolated from the parental line were subcutaneously injected into the dorsal side of nude mice and 

subsequently treated via the intraperitoneal route with 30 mg/kg of Lunasin or vehicle control as described 

in Section 2.5. All mice eventually formed palpable tumors regardless of treatment group; however, a 

significant reduction in the tumor growth rate was observed in the Lunasin-treated group when compared to 

that in vehicle treated mice (Figure 13A and B). Notably, tumor volumes in Lunasin-treated mice were 

reduced by 73% (p < 0.001; Figure 13A) upon experimental endpoint (i.e. 38 days post-transplantation). 

Also, wet weights of tumors isolated from Lunasin-treated groups were reduced by 67% when compared to 
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tumor weights from vehicle-treated mice (p < 0.001; Figure 13B) upon experimental endpoint.  

Additionally, a significant lag time until palpable tumors (> 50 mm3) were formed was observed in the 

Lunasin-treated group when compared to vehicle-treated animals. 

 It was evaluated if any toxicological effects are associated with chronic Lunasin treatment.  Mice 

receiving Lunasin treatment did not display significantly altered liver enzymes or creatinine levels when 

compared to the control group; however, significantly lower BUN levels were observed in Lunasin-treated 

mice (Figure 14A-B).  Additionally, CBC analysis showed no significant difference in blood cell counts 

between vehicle-treated and Lunasin-treated mice (Figure 14C-E).  These studies indicate that melanoma 

CICs were very sensitive to Lunasin treatment in vivo, and that this treatment regimen resulted in minimal 

toxicity. 

 

Figure 12: Lunasin reduced self-renewal capacity and oncosphere formation of CICs.  ALDH
high

 

populations of melanoma cells were plated in low adherent culture for 21 d and treated with vehicle or 

Lunasin twice weekly.  Representative images taken at 7 d (A) and 21 d (B) illustrate the ability of Lunasin 

to disrupt sphere formation of A375 ALDHhigh melanoma cells. Lunasin treatment decreased sphere 

formation by 81% and 55% in A375 ALDHhigh and SKMEL-28 ALDHhigh cell lines, respectively (C).  

ALDH
high

 melanoma cells showed increased sensitivity to Lunasin versus their parental counterparts when 

treated in soft agar.  Lunasin-treated ALDHhigh cells derived from A375 and SKMEL-28 lines demonstrated 
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a decreased ability to form colonies in soft agar.  Representative images for A375 and SKMEL-28 colonies 

treated with vehicle (D, F) or Lunasin (E, G) illustrate the morphological differences between treatment 

groups. The number of colonies formed by Lunasin-treated cells were decreased in size and density in 

ALDHhigh fractions of A375 (H) and SKMEL-28 (I) cell lines.  Significance (p < 0.05) was determined 

from three independent experiments and assessed by student’s t-test (p < 0.05).  Scale bars on images 

represent 100 μm.  All representative images were taken at 40x magnification. Data are presented as mean 

± s.d.  

 

Figure 13:  Lunasin inhibited CIC tumorigenesis in vivo.  Athymic nude mice were injected s.c. with 1 

x 10
4
 A375 ALDH

high
 cells and subsequently dosed with 30 mg/kg of Lunasin or vehicle every day for 38 

d.  Upon endpoint, average tumor volumes in Lunasin-treated mice (n = 9) were significantly lower 

compared to mean tumor volume in vehicle-treated mice (n = 8) (A).  Upon resection of tumor tissues, wet 

tumor weights were determined (B). Statistical significance between mean tumor volumes of control and 

treatment groups was determined using GraphPad ANOVA analysis tool (p < 0.05).  Wet tumor weights 

determined at experimental endpoint were determined to be statistically significant by student’s t-tests, and 

significant differences are denoted by an asterisk (*). Data are represented as mean ± s.e.m. 
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Figure 14:  Long-term Lunasin treatment did not induce toxic side effects. Nude mice were treated 

with Lunasin (30 mg/kg) for several weeks. Upon experimental endpoint, blood serum and whole blood 

fractions derived from mice in the Lunasin and control groups (n = 17) were analyzed for liver (A), kidney 

(B) and CBC (C-E) toxicity, respectively. A significant decrease in BUN was observed in Lunasin-treated 

mice.  Liver and kidney function did not appear to be affected by long-term Lunasin treatment.  Statistical 

significance between Lunasin and control groups was determined by student’s t-test (p < 0.05). 

 

Limiting dilution assays demonstrate differential growth patterns between ALDHhigh and ALDHlow 

phenotypes 

 To assess in vivo tumorigenicity of ALDH-sorted populations derived from A375 melanoma cells, 

varying concentrations of cells were injected into nude mice (Figure 15).  All mice injected with ALDHlow 

cells produced tumors when injected with 1x103 and 1x104 cells; however, only 2/3 mice injected with 

1x102 ALDHlow cells produced tumors.  All mice transplanted with ALDHhigh cells produced palpable 

tumors (9/9).  Although the sample size in these experiments was not large enough to produce a statistical 

significance in tumor formation, a significant difference in tumor growth curves between ALDHhigh and 

ALDHlow cells was observed (Figure 15A-C) when tumor growth rates were analyzed by GraphPad 

ANOVA analysis tool as described in Section 2.5.  When 1x102 ALDHhigh cells were injected into mice, 
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tumors formed quicker and had higher proliferation rates when compared to tumors initiated by ALDHlow 

cells (p < 0.007).  Despite this statistically significant difference, these results were potentially driven by 

one large tumor produced in the ALDHhigh group.  Conversely, ALDHlow cells had higher proliferative 

capacity when compared to ALDHhigh cells when 1x104 cells were transplanted (p < 0.001).  The 

intermediate dilution of 1x103 cells produced no observable differences in tumor growth (p = 0.98).  

Representative images demonstrate the differences in final tumor size between tumors initiated by 

ALDHhigh and ALDHlow cells (Figure 15D-F). 

Tumors initiated by ALDHhigh cells had a higher propensity to stay in the ALDHhigh compartment 

when compared to tumors initiated by ALDHlow cells 

 With the observable differences in tumor growth rates from limiting dilution assays, it was next 

investigated whether or not the proportion of ALDHhigh cells would significantly vary between tumors 

initiated by ALDHhigh and ALDHlow phenotypes (Figure 15G).  In order to discriminate between human 

melanoma cells with elevated ALDH activity and mouse cells which may also have intrinsic ALDH 

activity, human cells were selected for by using a human-specific PE-conjugated antibody against CD147 

(top).  This allowed for the gating and analysis of ALDH activity in only A375-derived cells (bottom).  

Cells dissociated from tumors initiated by ALDHhigh melanoma cells had a population with high ALDH 

activity which represented 6.24% of PE+ cells.  In ALDHlow initiated tumors, high ALDH activity was seen 

in only 1.25% of PE+ cells.  These data raise several questions as to the function and responses of 

melanoma CICs to the surrounding microenvironment, and whether bulk tumor cells play a major role in 

the differentiation and self-renewal of these stem-like cells. 

 In vitro, a small population of cells with low ALDH activity derived from both A375 and 

SKMEL-28 melanoma cell lines had the intrinsic capability to (de)differentiate to form ALDHhigh cells 

(Figure 16).  ALDHhigh and ALDHlow cells were monitored for up to a week in serum-free stem cell media 

in low-adherent culture conditions following FACS.  After 3d and 7d in culture, cells were stained with 

ALDEFLUOR reagent and reanalyzed for the percentage of cells displaying high ALDH activity.  Samples 

derived from A375 (Figure 16A) and SKMEL-28 (Figure 16B) showed a significant portion of ALDHhigh 

cells had differentiated into the ALDHlow compartment.  Unexpectedly, it was also observed that some cells 

isolated in the ALDHlow compartment had the ability to undergo a phenotype switch into the ALDHhigh 
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compartment.  Whether this phenomenon is due to the high plasticity and heterogeneity of melanoma cells, 

a byproduct of using cultured cell lines, or the fact that these studies used a singular marker to define a 

complex hierarchy of cells has yet to be determined.  Additional studies to define the cellular hierarchy and 

differential capacity to differentiate and dedifferentiate between melanoma stem cells and bulk tumor cells 

are necessary to 1) determine if melanoma truly fits the model proposed by the cancer stem cell theory, 2) 

determine if cultured cell lines truly represent the heterogeneity of primary melanoma tissues, and 3) 

determine if ALDH is a practical biomarker for potential CIC identification. 

CIC markers are heterogeneously expressed in different melanoma cell lines 

 Although ALDH was used as a surrogate marker for identification and isolation of melanoma 

CICs, this study aims to investigate whether or not other potential biomarkers for CICs were present in the 

melanoma cell lines used.  Flow cytometry was used to assessed the level of expression of several cancer 

stem cell biomarkers reported for melanomas and for other cancer models including CD44/CD24, CD133, 

and CD271 (Figure 17).  These data indicate that both A375 and SKMEL-28 cells have a highly abundant 

population of cells with a CD44+/CD24- phenotype (Figure 17A).  Conversely, both cells lines failed to 

show populations of cells that were labelled with a CD133 antibody (Figure 17B).   Differential expression 

of CD271 was observed between A375 (93%) and SKMEL-28 (28.1%) cell lines suggesting that 

melanomas display high heterogeneity even between commonly used cell lines (Figure 17C). 
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Figure 15: Limiting dilution assays demonstrate the high tumorigenicity of A375 ALDHhigh cells.  

Xenografted A375 ALDHhigh and ALDHlow melanoma cells were observed for differences in tumor 

proliferation and tumorigenicity when injected into nude mice at decreasing dilutions (A-C).  ALDHhigh 

cells produced tumors in all mice injected (9/9 total), and were tumorigenic with cell dilutions down to 100 

cells.  ALDHlow cells also displayed high tumorigenicity yet, only produced 2/3 tumors in nude mice when 

injected with 100 cells.  Tumor growth rates were also dilution-dependent; ALDHlow cells proliferated 

much more quickly at a lower cell dilution (1x104), but less rapidly at higher concentrations (1x102) when 

compared to ALDHhigh cells.  No significant difference was observed between growth curves at the 

intermediate dilution (1x103).  NT = no tumor.  Statistical analyses were performed using GraphPad 

ANOVA analysis tool with statistical significance considered when p < 0.05.  Representative images of 

tumors derived from both ALDH-sorted groups in dilutions of 1x104 (D), 1x103 (E), and 1x102 (F) are 

shown to illustrate the differential growth patterns of tumors initiated by each phenotype (zoom = 4.32x).  

Tumors initiated by 1x102 ALDHlow and ALDHhigh melanoma cells were dissociated, counted, and pooled to 

generate samples subsequently analyzed for ALDH activity. ALDHhigh and ALDHlow cells of human origin 

(i.e. A375 melanoma cells) were labelled with an anti-CD147 antibody (G, top). PE+ cells were analyzed 

for ALDH activity; Tumor cells derived from the ALDHhigh phenotype had a higher proportion of cells 
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remaining in the ALDHhigh compartment (6.25%) when compared to tumors initiated by ALDHlow 

melanoma cells (1.26%) (G, bottom). 

Lunasin induces expression of differentiation markers in melanoma CICs 

 To test if the Lunasin-induced decrease in CIC function is due to induction of apoptotic cell death 

in the isolated CICs, cell viability and apoptosis assays (Annexin V/PI staining) were performed following 

Lunasin treatment on isolated ALDHhigh cells. Interestingly, these assays failed to detect any significant 

reduction in cell viability with Lunasin treatment in ALDHhigh CICs obtained from either A375 or SKMEL-

28 cell lines when compared to that in vehicle-treated ALDHhigh CICs (Figure 18A and 18B). Consistent 

with these results, there was no apparent difference in the protein expression of apoptotic signaling 

mediators, PARP and Caspase-3 in vehicle and Lunasin-treated ALDHhigh CICs from both A375 and 

SKMEL-28 melanoma cell lines (Figure 18C).  Caspase-3 is cleaved (i.e. activated) in response to 

activation of the apoptotic cascade and in turn, cleaves PARP to carry out cellular deconstruction.  Thus, 

the absence of active Caspase-3 and cleaved PARP in Lunasin-treated samples indicates that apoptosis was 

not induced.   

 Recent studies established that reduced expression of MITF yielded G1-arrested cells with an 

invasive stem cell-like phenotype, whereas high MITF expression generated either proliferating cells or 

cells with a differentiated pigment-producing phenotype depending on the status of MITF’s post-

translational modifications [177, 178]. Other studies provide supportive evidence to this claim and show 

that TGF-β signaling can mediate MITF expression, which is critical for the generation and maintenance of 

melanoma stem cells [179]. In accordance with these reported studies, the authors observed a reduced 

expression of MITF in CIC-enriched ALDHhigh A375 and SKMEL-28 cells in comparison to MITF 

expression in ALDHlow A375 and SKMEL-28 cells (Figure 19A).  
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Figure 16: Differentiation of ALDHhigh cells derived from A375 and SKMEL-28 melanoma lines.  

Sorted melanoma cells were replated in normal culture media and cultured in 6-well culture dishes for up to 

7 d.  Cells were assayed for ALDH activity at day 3 (top) and day 7 (bottom).  After sorting,  ALDHhigh 

cells represented a significantly smaller proportion of cells in both A375 (A) and SKMEL-28 (B) after only 

3 days in culture and ALDHhigh populations further decreased in both cell lines at day 7.  Interestingly, it 

was observed that a small population of ALDHlow cells had the capacity to revert back to an ALDHhigh 

phenotype in both cell lines. 

 

 Whether or not Lunasin treatment can modulate MITF expression in CICs and thereby, trigger a 

phenotypic switch in CICs that will ultimately drive the Lunasin exposed melanoma CICs towards 
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differentiation was next investigated. To test this hypothesis, ALDHhigh cells isolated from A375 and 

SKMEL-28 melanoma lines were cultured in the presence or absence of Lunasin (100 µM) for 24 h under 

serum-free, non-adherent culture conditions. Lunasin-treated and vehicle-treated cultures were then 

analyzed for MITF protein expression as well as for the expression of its downstream differentiation-

associated protein, Tyrosinase. It was observed that Lunasin treatment increased the expression of MITF 

and Tyrosinase proteins in A375- and SKMEL-28-derived ALDHhigh cells compared to vehicle-treated 

controls (Figure 19B). Additionally, Lunasin-treated ALDHhigh cells from both A375 and SKMEL-28 

melanoma lines showed reduced expression of the stem-associated transcription factor, NANOG (Figure 

19C). Taken together, these experiments provide substantial experimental evidence to support the notion 

that Lunasin treatment negatively influenced melanoma CICs’ tumorigenicity and self-renewal abilities by 

regulating MITF signaling, one of the key drivers in inducing a differentiated phenotype in melanoma 

CICs, as well as suppressing levels of the key stemness factor Nanog.  

Lunasin did not induce a significant senescent response in ALDHhigh melanoma cells 

 A375 melanoma cells were sorted based on ALDH activity.  These cells were treated with vehicle, 

Lunasin, or vemurafenib for 24 h.  Representative images for positively-stained melanoma cells in vehicle, 

Lunasin, and vemurafenib-treated samples are shown (Figure 20A). No significant difference in positively 

stained cells (Figure 20B) between vehicle or Lunasin treatment groups (p = 0.09) was observed.  The 

positive control, vemurafenib, induced a significant senescent response in nearly 25% of all cells, and 

represented a significant increase from control and Lunasin-treated cells (p < 0.001).   

 



51 
 

 

 

Figure 17:  CIC biomarkers are heterogeneously expressed in melanoma cell lines.  Utilizing flow 

cytometry A375 (left) and SKMEL-28 (right) melanoma cell lines were labelled and assessed for 

expression of commonly used CIC identification markers.  Both cell lines had an abundant CD44+/CD24- 

population (A).  Neither cell line had a significant population of cells that express the CD133 CIC 

biomarker (B).  When A375 cells were labelled with anti-CD271 antibody, it was observed that the 

majority of the cells were CD271+; however, in the SKMEL-28 cell line, only a small proportion (28.1%) 

expressed CD271 (C).  Isotype controls were represented by the appropriate host-specific PE- and APC-

conjugated IgG1 antibodies. 
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Figure 18: Lunasin did not induce an apoptotic response in ALDHhigh melanoma cells.  Annexin V 

binding assays were used to assess apoptotic populations of melanoma cells sorted for high ALDH activity 

and subsequently treated with Lunasin or vehicle for 24 h.  Representative flow cytometry plots for A375 

ALDHhigh cells in each treatment group are shown (A).  No significant decrease in cell viability of 

ALDHhigh subpopulations derived from A375 or SKMEL-28 cells were observed when stained with 

Annexin V/ PI.  Additionally, there was no observed significant increase in apoptotic or necrotic 

populations after Lunasin treatment (B) when compared to control.  It was further confirmed that Lunasin 

did not induce apoptosis by immunoblot analysis for the apoptotic markers active Caspase-3 and cleaved 

PARP, which were absent in both control and Lunasin-treated samples (C).  Significance was determined 

by student’s t-test from three independent experiments with a p-value of < 0.05 representing statistical 

significance from control samples.  Data are represented as mean ± s.d. 
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Figure 19:  Lunasin modulated expression of melanocyte differentiation and stem-associated 

markers.  Sorted subpopulations of  ALDHlow and ALDH
high

 cells displayed differential expression of the 

melanocyte-associated transcription factor MITF, with  ALDH
low 

cells expressing higher levels of MITF 

than ALDH
high

 populations in both A375 and SKMEL-28 cell lines (A). MITF and the downstream 

melanocyte differentiation marker Tyrosinase were strongly induced in ALDH
high

 cells treated with Lunasin 

for 24 h (B). Immunoblot analysis revealed that NANOG, a stem-associated marker, was repressed in 

Lunasin-treated ALDH
high

 samples (C). Actin was used as a loading control. 

 

Lunasin may enhance the efficacy of vemurafenib in vemurafenib-resistant melanomas 

 Proliferation (Figure 21A), colony-forming (Figure 21B), and liquid overlay assays (Figure 21C) 

were performed on parental A375 cells and vemurafenib-resistant A375R cells.  In MTS assays, a 

significant decrease in the number of viable A375 cells when 300 nM vemurafenib was combined with 10 

and 100 μM Lunasin (p < 0.05) was observed.  In A375R cells, a significant decrease in viable cell counts 

in combinations of 100 μM Lunasin and several concentrations of vemurafenib (p < 0.05) was observed.  

Similarly, a significant difference in the ability of A375 cells to form colonies in soft agar at concentrations 

of 30 and 100 μM Lunasin alone and 100 μM Lunasin in combination with 300 and 1000 nM vemurafenib 

(p < 0.05) was observed.  While Lunasin did not cause a significant decrease in colony formation in A375R 

cells, it did significantly reduce colony formation when A375R cells were treated in combination with 300 
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nM and 1000 nM vemurafenib (Figure 21B).  Interestingly, the authors observed that when A375R cells 

were grown in anchorage-independent culture conditions (i.e. suspended in soft agar), they were much 

more sensitive to vemurafenib when compared to adherent culture.  Liquid overlay assays were utilized to 

generate multicellular oncospheres and assess their growth characteristics after treatment with 

combinations of Lunasin and vemurafenib.  Lunasin (100 μM) did not significantly decrease the total area 

of the oncospheres in either A375 or A375R cells; vemurafenib-treated cells were significantly smaller in 

total area in both A375 and A375R cells (p < 0.05).  However, when Lunasin was combined with 

vemurafenib, sphere area was significantly decreased in both A375 (p < 0.001) and A375R (p = 0.04) 

tumor spheres (Figure 21C) compared to vemurafenib controls.  For each assay described, DI values were 

calculated based on the effect of each drug on melanoma cell proliferation.  It was observed that Lunasin 

had an additive effect (DI values between 0.9 and 1.1) when used in combination with vemurafenib for all 

of the aforementioned assays.   

 

  

Figure 20: Lunasin did not induce a significant senescent response in A375 ALDHhigh melanoma cells.  

When A375 ALDHhigh cells were treated with vehicle, Lunasin, and vemurafenib, no observable increase in 

senescence between control (2.6%) and Lunasin-treated (4.2%) samples was detected, despite a modest 

increase in cells staining positive for β-Galactosidase activity in the Lunasin-treated cells (A,B).  

Vemurafenib was statistically significant from both groups with nearly 25% of cells staining positive after a 
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24 h treatment.  Representative images for each treatment group are shown at 200x magnification (A) and 

represent data from two independent experiments. Statistical analysis was performed using student’s t-test 

with a p-value of less than 0.05 considered statistically significant. 

 

Figure 21: Combinations of Lunasin and vemurafenib yielded an additive interaction that may 

benefit treatment of chemoresistant populations of melanoma cells.  A375 and A375R (i.e. 

vemurafenib-resistant) cells were treated with combinations of vemurafenib and Lunasin and efficacy was 

assessed by MTS (A), soft agar (B), and liquid overlay assays (C).  C = control, L = Lunasin, V = 

vemurafenib, V + L = combination.  Concentrations of Lunasin are indicated in the respective graph 

legends (A, B). Significant differences between control and treatment groups were determined by student’s 

t-test and were observed for several combination treatments as denoted by asterisks (*).  Results represent 

data taken from three independent experiments and are expressed as mean ± s.d.  Representative images for 

liquid overlay assays were taken at 100x magnification. 

 

 In Annexin V binding assays, a significant decrease in cell viability (PI-A-) was observed in cells 

treated with 1 μM vemurafenib and 1 μM vemurafenib in combination with 100 μM Lunasin after 72 h of 

treatment (Figure 22).  No significant differences in viable (PI-A-), apoptotic (PI-A+/PI+A+), or necrotic  

(PI+A-) populations were observed between treatment groups and control samples at either 24h or 48 h time 
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points.  At 72 h, a significant increase in cells positively stained with PI (PI+A-) was observed in cells 

treated with a combination of Lunasin and vemurafenib when compared to vehicle-treated cells indicating 

that Lunasin may increase necrotic cell death in A375 cells treated with vemurafenib (Figure 22A).  

Representative dot plots for A375 cells treated with vehicle, Lunasin, vemurafenib, and combination 

therapy demonstrate the potential of Lunasin in conjunction with vemurafenib (Figure 22B).  Combined 

with the results from the in vitro proliferation assays, it would seem logical that Lunasin may lend some 

therapeutic benefit as an adjuvant therapy in melanoma patients receiving vemurafenib treatment.  

 

Figure 22: Lunasin in combination with vemurafenib kills A375 melanoma cells.  Annexin V binding 

assays were performed on A375 melanoma cells treated for 24, 48, and 72 h (A).  A significant difference 

was observed in cell viability after 72 h in vemurafenib and combination treatment groups compared to 

control (p < 0.05).  PI-stained cells were significantly increased in combination treatment when compared 

to control samples (p < 0.05).  Data were obtained from three independent experiments and are represented 

as mean percent ± s.d.  Representative dot plots are shown for vehicle, Lunasin, vemurafenib, and 
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combination treatments at the 72 h time point (B). Statistical analysis was performed using the student’s t-

test.  Groups were considered statistically significant when p < 0.05. 

 

3.4 DISCUSSION 

 Consumption of large amounts of soy-derived foods is associated with a lower risk of a number of 

chronic diseases including cancer [180-182]. The anticancer effects of soy components have been attributed 

to secondary metabolites such as isoflavones and specific protein fractions [183, 184]; however, no 

epidemiological evidence directly correlating soy consumption with decreased melanomagenesis has come 

to light.  Lunasin, a peptide present in crude soy protein, has been proposed to be an important 

chemoprevention agent in soy [9]. Lunasin is a 43–44-amino acid polypeptide [16, 18] that is encoded 

within the soybean GM2S-1 gene. The 22-amino acid N-terminal sequence (with no known function) of 

Lunasin is followed by a putative helix domain proposed to target Lunasin to chromatin, and the C-terminal 

end that includes a RGD cell adhesion motif followed by a poly-aspartic acid tail [15, 16]. Lunasin’s 

potential chemopreventive activity has been established by studies which show that Lunasin prevents 

cellular transformation by chemical carcinogens and viral oncogenes [9]. Recent studies have shown that 

Lunasin can inhibit the in vitro and in vivo growth of breast [34, 185], leukemia [186], colon [35, 187], and 

lung cancers [10]. These findings of this dissertation reveal that Lunasin has potential therapeutic effects 

against melanoma in both non-adherent in vitro assays and in vivo xenograft studies.  

The ALDHhigh melanoma cancer cell subpopulation has been reported to harbor the tumor-

initiating and metastatic cells and is enriched in several of the self-renewal genes including NANOG [188, 

189]. A recent study has shown that siRNA-mediated knockdown of ALDH in melanoma cells inhibited in 

vivo tumor development and metastatic properties [106]. Mechanistically, the ALDHhigh melanoma cells 

have been shown to possess higher tumorigenic, invasive, and self-renewal capacities than ALDHlow cells 

and thus, can serve as a potential therapeutic target [103, 111, 188]. These studies implicate high ALDH 

activity as a relevant biomarker for identifying melanoma CICs, and the significant inhibition of ALDH 

activity that was observed with Lunasin phenocopies the antimelanoma/anti-CIC effects observed in cells 

silenced for ALDH. Thus, using Lunasin to reduce this aggressive populations of cells may serve as an 

invaluable tool in melanomas which display cells with CIC-like abilities.  Using surrogate assays for CIC 
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identification, it was demonstrated that sorted cell populations based on the ALDH biomarker were 

sensitive to Lunasin treatment in non-adherent melanosphere formation assays as well as colony formation 

in soft agar.  As presented in these data, Lunasin functionally blocked the self-renewal capacity of isolated 

melanoma CICs. The activity of Lunasin both in vitro and in vivo on melanoma CICs suggests the 

intriguing possibility that Lunasin can target these quiescent and drug-resistant cells and is consistent with a 

recently published study on colon cancer [164].  Using the CIC surface markers CD133 and CD44, the 

authors showed that soy bioactives in combination with the antidiabetic drug, Metformin, reduced 

populations of cells capable of self-renewal by modulating the PTEN/PI3K/FASN axis.  Taken in 

combination with results gathered in this dissertation, these data represent a novel idea that Lunasin and 

other soy derivatives may alleviate patient relapse by decreasing cancer stem cell populations.   

An important and most intriguing aspect of this study is that the potential anticancer effects of 

Lunasin were enduring in vivo.  Despite somewhat modest effects in vitro, it was observed that Lunasin 

had a highly significant effect on tumor growth when cells were transplanted into immunodeficient mice.  

Lunasin-treated mice had a significantly reduced tumor burden in both parental (46%) and ALDHhigh (73%) 

A375 cells when compared to their vehicle-treated counterparts.  In fact, Lunasin has been described to 

have immunomodulatory functions [13, 42] adding another feature to this multifaceted peptide.  In these 

studies, Lunasin was shown to enhance activation of innate immunity.  Lunasin-treated dendritic cells 

expressed higher levels of cytokines and chemokines, and induced expansion of CD4+ T cells [42].  

Additionally, Lunasin-treated mice had improved responses when compared to control mice in models 

which were challenged with OVA-expressing influenza as well as lymphoma [42].  Specific to 

immunotherapy, Lunasin was shown to synergistically enhance NK cell mediated cytotoxicity when used 

in combination with IL-2 or IL-12 in a lymphoma model [13].  These studies open the possibility that 

mouse models with intact innate immunity may provide a substantial boost to the anticancer activity of the 

Lunasin peptide. 

While the study was too small to measure a significant difference between in vivo tumorigenicity 

between ALDHhigh and ALDHlow A375 cells, limiting dilutions assays did provide the intriguing possibility 

that the number of cells in the ALDHhigh compartment may be dependent upon the number of tumor cells 

within the tumor microenvironment (TME).  Data from these serial dilution assays would suggest a 
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differential ability to proliferate and form palpable tumors in ALDHlow and ALDHhigh A375 cells in a 

dilution-dependent manner.  Additionally, samples from tumors initiated by the lowest dilution of cells 

demonstrated that ALDHhigh cells had a higher population of cells remaining in the ALDHhigh compartment 

after tumor formation when compared to samples derived from ALDHlow cells.  It is well known that the 

TME can regulate the stem cell niche through cell-cell contact, secretion of proteins, and hypoxia [190-

192].  Though these data may be a result of the abundance of tumor cells (or lack thereof), it might also 

indicate that A375 cells display high plasticity, and CICs derived from the ALDHhigh compartment may 

revert to a non-stem cell compartment and vice versa.  Indeed, melanoma has been described as a highly 

plastic malignancy [193].  While ALDHlow cells may display a high degree of tumorigenicity in the in vivo 

models used in this study, the authors did not study long-term propagation and self-renewal capacity in 

vivo, a central feature of stem cells, of either ALDHhigh or ALDHlow cells.  Therefore, any conclusive 

evidence as to how these isolated CICs are functioning in vivo in comparison to their non-CIC counterparts 

will need to be explored further.  Until the caveats limiting the CIC hypothesis are further addressed (i.e. 

improved experimental systems or a defined molecular phenotype for CIC identification), it is likely that 

the abundant support for the CIC theory will be met with equally abundant skepticism.   

 With regard to potential mechanisms of action, Lunasin contains a RGD domain and has been 

shown to bind specific integrins that recognize this cell adhesion motif [38]. Integrins are heterodimeric 

cell surface proteins that play critical roles in adhesion to the extracellular matrix, transmitting extracellular 

signals that affect cell migration and the regulation of signaling pathways involved in cell survival and 

proliferation. Recent studies [10, 12, 36, 194] strongly suggest that Lunasin bound to integrins containing 

combinations of the α5, αv, β1, and β3 subunits and modulated the ILK and FAK signaling pathways. 

Additionally, it is becoming clear that there is a strong linkage of integrin-matrix interactions to cancer cell 

initiation and progression (reviewed in  [64]), including the maintenance and survival of CICs through 

integrin-FAK signaling [reviewed in [195]]. Interestingly, the current data indicate that sorted fractions of 

ALDHhigh melanoma cells are more sensitive to Lunasin than the unsorted cell fractions. One possible 

explanation for this differential sensitivity is that when compared to the bulk of tumor cells, the ALDHhigh 

subpopulation of melanoma cells exhibit altered integrin expression profiles.  It is also possible that the 

ALDHhigh melanoma CICs rely more heavily and specifically on ‘outside-in’ signal transduction 
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mechanisms mediated via integrin networks compared to ALDHlow cells. Such differential integrin 

signaling in CICs could confer an increased sensitivity to Lunasin’s anticancer activity.  In fact, it has been 

reported that metastatic melanomas, compared to primary melanomas, favor the expression of particular 

integrins, including integrin αvβ3 [61], a known Lunasin target [10]. Differential expression of integrins in 

CICs is not only restricted to melanoma but have been reported in CICs from other cancers including 

prostate [196, 197], breast [198], and neuroglia cancers [172]. Given the strong interaction between 

Lunasin and integrins [10, 12, 38], it is tempting to speculate that Lunasin specifically targets CICs by 

modulating integrin signaling circuits that are differentially expressed in melanoma CICs. Although the 

mode of action of Lunasin’s anti-CIC activity remains to be clearly defined, future studies in the Davis lab 

will focus on identifying the specific integrin-mediated signaling modules required for Lunasin sensitivity 

against melanoma CICs.  

 MITF, commonly referred to as a “master controller” gene for melanocyte development strictly 

regulates melanocyte proliferation and differentiation [199].  Recent studies have identified the existence of 

slow-cycling, low MITF-expressing CICs in melanoma cell populations with intrinsic chemoresistant and 

tumorigenic phenotypes [200].  Additionally, this subpopulation of melanoma cells expressed high levels of 

the stem cell-associated markers Oct-4 and Nanog [200]. One of the most significant findings from this 

study is that treatment of melanoma ALDHhigh CICs with Lunasin induced a more differentiated phenotype 

by increasing the expression of MITF as well as the expression of the downstream melanocyte 

differentiation marker, Tyrosinase, an enzyme directly involved in melanin synthesis. Concomitant with the 

Lunasin-induced phenotypic shift, a significant reduction in the expression of NANOG, a transcription 

factor implicated in migration, invasion, self-renewal, and dedifferentiation of melanoma cells [201-203] 

was observed in both A375 and SKMEL-28 cells. This represents a novel activity for Lunasin that has not 

been reported in any cancer model to date. 

 The encouraging functional effects that were observed in melanoma CICs lead to the investigation 

of whether or not Lunasin could be used in conjunction with a clinically relevant therapeutic for the 

treatment of malignant melanoma.  Lunasin in combination with vemurafenib, a selective B-Raf inhibitor, 

was used to demonstrate the potential of Lunasin as an adjuvant therapeutic.  When proliferation and 

colony formation in soft agar were assessed, DI values indicate that Lunasin and vemurafenib did not 
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interact synergistically, but did have an additive effect; the highest DI values were observed using 

combinations using 100 μM Lunasin.  At 100 μM, Lunasin increased the efficacy of vemurafenib in A375 

cells with acquired vemurafenib-resistance to treatment in both adherent (proliferation assays) and non-

adherent formats (soft agar).  Multicellular generation of oncospheres was used to determine the growth 

characteristics when parental and resistant A375 cells were treated with combinations of Lunasin and 

vemurafenib.  In both models, combination treatment with Lunasin and vemurafenib significantly reduced 

the total sphere area when compared to vemurafenib treatment alone suggesting that Lunasin enhanced the 

antiproliferative effects of vemurafenib.  These additive effects may be driven by Lunasin’s interaction 

with integrins and the suppression of activating phosphorylations of downstream signal transducers (i.e. 

FAK).  In fact, research has shown that resistance to vemurafenib may be caused by elevated β1-FAK 

signaling [204].  ERK signaling, which is typically activated downstream of integrin-mediated adhesion, is 

found to be constitutively activated in B-Raf mutated melanomas [205]; consequently, selective targeting 

of ERK or its downstream effectors may provide some therapeutic potential in B-Raf mutated melanomas.  

Combinations of B-Raf and MEK/ERK inhibitors continues to be a field of great interest to researchers 

trying to overcome chemoresistant melanomas [206].  Given the prominent role of integrins in CIC 

maintenance and chemoresistance [207], combining MAPK inhibitors with integrin-targeted therapies 

could potentially offer a novel strategy for reducing tumor burden while also targeting CICs.  

 Taken together, results from the present study and previously published data support the model 

(Figure 23) depicting the potential therapeutic benefits of Lunasin in melanoma.  Effectively reducing pools 

of CICs by driving a movement of cells out of the cancer stem cell-like compartment (i.e. ALDHhigh) and 

into a more differentiated phenotype (i.e. ALDHlow), Lunasin may alleviate patient relapse by diminishing 

pools of cells with the intrinsic abilities generally conserved in hematopoietic stem cells.  By blocking self-

renewal and subsequent expansion of the CIC compartment, Lunasin may ultimately prove to be an 

indispensable tool in combating populations of cells with high invasive potential and chemoresistant 

characteristics.  
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Figure 23:  Proposed mechanism for Lunasin’s activity in melanoma CICs.  This diagram depicts the 

observed effects and possible therapeutic advantage of Lunasin treatment in cases of malignant melanoma.  

Lunasin decreased the stem-like properties of ALDHhigh CICs isolated from A375 and SKMEL-28 cell 

lines while concurrently decreasing the stem-associated marker NANOG and inducing expression of 

melanocyte differentiation markers MITF and Tyrosinase.  By effectively reducing this stem cell-like 

compartment, Lunasin may alleviate patient relapse caused by the subpopulation of cells with intrinsic 

metastatic potential and chemoresistance.



63 
 

CHAPTER 4: LUNASIN SUPPRESSES THE METASTATIC CAPACITY OF MELANOMA 

INITIATING CELLS BY INHIBITING INTEGRIN SIGNAL TRANSDUCTION 

4.1 INTRODUCTION 

 Melanoma is a notoriously aggressive form of skin cancer that represents approximately 80% of 

all skin cancer related deaths, despite accounting for only 5% of diagnosed cases [208, 209].  New classes 

of drugs (i.e. small molecule inhibitors) combating malignant melanomas have yielded mixed results [210-

212].  Although many patients achieve an initial tumor regression, these agents quickly become ineffective, 

and additionally, may promote the spread of a highly aggressive and chemoresistant population of cells 

[213-215].  Studies utilizing immunotherapy (extensively reviewed in [216]) to treat malignant melanomas 

have been found to be an effective treatment option.  However, only a relatively small subset of patients 

achieve a sustained complete response [217-219].   More recently, immunotherapies with substantially 

improved objective responses in melanoma patients have proven the clinical utility of immunotherapy [138, 

220-222].  Nevertheless, adverse safety profiles, chemoresistance, and immune evasion continue to prove 

problematic in many of these newly approved immunotherapies [223-225].  Thus, providing patients with 

additional novel adjuvant therapies to reduce or even prevent metastatic spread will continue to be needed 

for the development for effective treatment strategies.  

 The process of invasion and metastasis is perhaps the most studied hallmark of cancer due to the 

high mortality rates caused by the metastatic dissemination of tumor cells from the primary tumor into 

distant organs.  Malignant melanomas frequently metastasize to the brain, lymph nodes, gastrointestinal 

tract, liver, and most commonly the lungs [226]. Primary tumor formation and subsequent metastatic 

outgrowth is maintained by a subset of cells with innate stem cell-like abilities that enable them to invade 

and colonize surrounding tissues, while preserving a population of highly proliferative bulk tumor cells [66, 

93].  The heterogeneous nature of melanomas make an intriguing model to study metastatic dissemination 

as they have been reported, among many classes of solid tumors, to harbor CIC populations identified by 

several biomarkers including ALDH [103, 106], CD20 [93], CD133 [94], CD271 [95], and ABCB5 [66].   
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 Lunasin is a peptide isolated from soy that has been shown to have chemopreventive and 

chemotherapeutic activity [9, 10, 26, 27, 32, 35, 186, 227, 228]. Lunasin has three domains implicated in its 

anticancer activity; a RGD motif, a helical domain with a sequence conserved in chromatin binding 

proteins, and a poly-aspartic acid tail (Figure 24) [229].  Chapter 3 of this dissertation reported that Lunasin 

significantly reduced a melanoma stem cell population expressing elevated levels of ALDH [228].  

Additionally, it was shown that in vivo tumor growth initiated by this putative CIC population was 

significantly impaired in mice treated with Lunasin [228].   

 

Figure 24: Full amino acid sequence of the Lunasin peptide.  Lunasin is a 44 amino acid peptide with 3 

functional domains attributed with its anticancer activity: 1) a helical regional conserved in chromatin-

binding proteins (blue), 2) a RGD motif recognized by integrins (red), and 3) a poly-D tail involved in 

histone tail binding (green). 

 

 Previously, Lunasin was shown to inhibit metastasis of malignant colon cancer cells and 

additionally, potentiated the antimetastatic effects of oxaliplatin [36]; however, studies linking Lunasin to 

suppressed metastatic dissemination are largely lacking.  With the encouraging effects of Lunasin on breast 

and melanoma CICs [228, 230], it is plausible to speculate that by reducing expansion of the CIC 

compartment, Lunasin would ultimately decrease the ability  of tumor cells to invade, survive, and colonize 

distant tissues.  Mechanistic studies to date support that Lunasin’s anticancer activity may be due to effects 

on histone acetylation and integrin signaling. 

 Preliminary studies of Lunasin suggested that a primary anticancer mechanism was derived from 

its activity as a HAT inhibitor [9].  Both HAT inhibitors and their inverse, histone deacetylase (HDAC) 



65 
 

inhibitors, have been shown to have potential clinical utility in malignant melanoma [231, 232]; however, 

some epigenetic modulating agents may also contribute to undesirable effects.  For example, it was recently 

published the HDAC inhibitor, valproic acid, caused breast cancer cells to dedifferentiate toward a 

chemoresistant stem-like state [233].  With regard to Lunasin, it was indeed found that histone acetylation 

patterns are altered in melanoma models; however, it is an open question as to whether or not it is the 

driving mechanism in Lunasin’s chemotherapeutic activity.  Equally, it is proposed that although HAT 

inhibition may cause many anticancer effects in Lunasin treated cancers, inhibition of integrin signaling 

stimulates the effects seen in melanoma as well as NSCLC [10].  The intertwining mechanisms between 

histone acetylation and integrin signal transduction remains unclear.  One major question that remains to be 

answered is whether integrin signaling can modulate epigenetic histone modifications or vice versa? 

 Two key signaling pathways involved in the metastatic cascade are the integrin-FAK axis [195] 

and the downstream PI3K/AKT pathway [234].  FAK is a critical mediator of cell proliferation, 

differentiation, angiogenesis, and invasion as it promotes cytoskeletal remodeling through interactions with 

several proteins including Src kinases [235].  The PI3K/AKT pathway is also found to be aberrantly 

regulated in a variety of cancers including melanoma [236].  Although generally thought of as a central 

protein involved in cell survival and cell cycling, AKT has been shown to bind and regulate FAK 

phosphorylation suggesting an important role in metastatic adhesion [237].  Dual targeting of these 

dysregulated pathways by disrupting upstream (integrin) signaling remains a promising therapeutic 

approach despite the fact that there are few clinical applications using this approach.  Pharmacologic 

targeting of integrins is currently undergoing clinical trials for the treatment of malignant melanomas [68].  

Due to the central role of integrins in several oncogenic signaling pathways [64], blockade of integrin 

signal transduction seems a likely candidate for future drug development.  While the potential clinical 

benefit of integrin antagonists seems hopeful, the future of this class of drug will likely depend upon the 

development of novel first line anticancer drugs as integrin antagonists are generally utilized in 

combination with more traditional chemotherapeutics as antiangiogenic agents  [238-241].   

 The present study significantly extends upon previous work by demonstrating that Lunasin 

inhibits metastasis-associated activities in melanoma CICs both in vitro and in vivo.  Additionally, it is 

proposed that Lunasin is a multifaceted peptide with a complementary array of mechanisms which provides 
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the potential for a significant therapeutic benefit as an adjuvant therapy against malignant melanomas 

compared to single-agent treatment strategies.  By altering histone acetylation patterns as well as inhibiting 

integrin signaling, Lunasin exerts a significant anticancer effect in melanoma models both in vitro and in 

vivo.   

4.2 MATERIALS AND METHODS 

Purification of Lunasin from defatted soy and synthesis of mutated peptides 

 Lunasin was isolated from defatted soy flour as described in Section 2.1 [16].  Mutated peptides 

were synthesized by China Peptides (China) with a purity > 95% as assessed by HPLC/MS.  Full sequences 

are provided (Figure 25) along with validation that these sequences were recognized by the anti-Lunasin 

rabbit polyclonal antibody (Figure 26) used in immunoblot and immunofluorescent assays.  Peptides were 

dissolved in 50 mM sodium phosphate buffer pH = 7.4 (PB), and dialyzed overnight to remove any 

contaminating salts.  Protein concentrations from the resulting peptide solutions were determined using a 

bicinchoninic acid (BCA) assay (Pierce).  Peptide solutions were filter sterilized by passing through a 0.22 

μm filter (Millipore), aliquoted, and stored at -20˚C until use.   

 

Figure 25:  Full sequences of synthesized peptides.  Peptides based on Lunasin’s initial 43 amino acid 

sequence were synthesized by China Peptides to represent altered functional domains.  Mutated amino acid 

sequences for each peptide are underlined in red.  KBP-Lunasin was used in all experimental conditions, 

and varies from the native Lunasin sequence by a single asparagine residue on the C-terminal end. 

 

Figure 26:  Validation of Lunasin antibody recognizing mutated peptides.  200 ng of total peptide were 

electrophoresed in 15% polyacrylamide gels, transferred to a PVDF membrane, and probed for Lunasin 
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using a rabbit polyclonal antibody.  This confirmed that the antibody used in these studies will indeed 

recognize the mutated peptide sequences.  Lunasin is represented by the 5 kDa band; a slight degree of 

oligomerization can be seen as represented by the fainter band above the 5 kDa Lunasin band. 

 

Cell culture and reagents 

 All cell cultures and reagents utilized in Chapter 4 were described in Section 2.2. 

Genome-wide microarray analysis  

 All RNA extractions, cDNA generation, and hybridization protocols were followed as outlined in 

Section 2.16.  RNA integrity values as assessed by the Bioanalyzer are shown in Figure 27. 

 

Figure 27: RNA integrity values assessed on an Agilent Bioanalyzer.  Isolated RNA from parental A375 

cells treated with vehicle (1-3) or Lunasin (4-6) were assessed for RNA degradation and sample integrity 

before generation of the cDNA template for microarray analysis.  A375 ALDHhigh cells were also treated 

with either vehicle (7-9) or Lunasin (10-12), and subsequently assessed on the Bioanalyzer.  RNA integrity 

values were confirmed to be greater than 8 which indicates minimal samples degradation.   
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Immunofluorescence 

 Immunofluorescent microscopy was used for colocalization analysis and Lunasin uptake 

experiments as described in Section 2.17. 

Proximity ligation assay (PLA) 

 PLA assays were performed as described in Section 2.18. 

Oncosphere formation assay 

 Generation of melanoma oncospheres was performed as outlines in Section 2.15. 

Flow cytometry 

 Flow cytometry experiments to assess cell cycle and apoptosis have been detailed in Sections 2.6 

and 2.7, respectively. 

Transwell invasion assay 

 In vitro invasion assays were performed on ALDHhigh melanoma cells as described in Section 2.19. 

Murine model of experimental metastasis 

 In vivo metastasis models were utilized to investigate the antimetastatic properties of Lunasin as 

outlined in Section 2.20. 

Histology 

 Tissues resected from primary melanoma lesions were prepared, sectioned, and stained as 

described in Section 2.21. 

Histone Extraction and Immunoblot Analysis 

 Cultured cells were treated with PB or Lunasin (100 μM) for 24 h. Acid extraction of histones was 

performed as described [242].  Briefly, cells were washed in PBS and harvested into 15 mL conical tubes.  

Cells were pelleted by spinning at 300 xg for 10 min and the resulting cell pellet was resuspended in an 

appropriate amount of hypotonic lysis buffer (10 mM Tris–Cl pH 8.0, 1 mM KCl, 1.5 mM MgCl2 and 1 

mM DTT).  Cell pellets were incubated at 37˚ C for 30 min with agitation to promote cell swelling and 

lysis.  Lysates were pelleted by centrifugation at 10,000 xg for 10 min at 4˚ C on a tabletop centrifuge 

(Eppendorf).  The supernatant was discarded and the remaining nuclei were suspended in 0.4 N H2SO4 and 

allowed to sit overnight at 4˚ C with constant agitation.  Samples were centrifuged at 16,000 xg for 10 min 

to remove nuclear debris and the resulting supernatant containing histones was transferred to a fresh 1.5 mL 
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tube.  A volume of 132 μL of 100 % trichloroacetic acid (TCA) was added to each sample to a final 

concentration of 33% TCA v/v.  Histones were precipitated in TCA overnight at 4˚ C.  The supernatant was 

removed and the histones were pelleted by centrifugation at 16,000 xg for 10 min.  The pellet was washed 

three times with ice-cold acetone to remove any remaining acid with spins at 16,000 xg for 10 min between 

each wash.  After the final wash, the supernatant was removed and the pellet was allowed to air-dry for 30 

min at RT.  The dried pellet was dissolved in 100 – 200 μL of ultrapure water and diluted to a concentration 

of 1 mg/ mL as assessed by BCA method.  Purified histones (10 μg) were prepared, loaded, and 

electrophoresed in 15% gels (Lonza) at 100 V for 120 min.  Transfer to PVDF membranes and antibody 

incubations were performed as described in Section 2.11. 

Statistical Analysis 

 Statistical analysis of data obtained from in vitro and in vivo experiments in this Chapter were 

analyzed for statistical significant as described in Section 2.23. 

 

4.3 RESULTS 

Genome-wide microarray analysis reveals Lunasin-targeted genes and identifies a unique gene 

signature in ALDHhigh melanoma cells compared to parental cells 

 The initial focus in this Chapter was to validate that ALDHhigh melanoma cells harbor the CIC 

population in the A375 cell line.  Additionally, gene expression profiling was utilized as a tool to expose 

potential mechanisms for the selective effects seen when ALDHhigh cells were treated with Lunasin.  The 

initial datasets compared parental A375 cells in vehicle and Lunasin-treated samples (Table 1).  While only 

a modest effect (fold-change is shown in parentheses) on gene expression was observed, some genes of 

interest included MAP2K7 (-1.34), MAPK11 (-1.31), RARα (-1.29), WNT3A (1.28), WNT5A (-1.28), 

RARϒ (-1.27), and FOXP1 (1.52).  MAP2K7 and MAPK11 are components of the MAPK signaling 

pathway which is commonly mutated in cancers [243], thus, reducing expression of these genes may reduce 

oncogenic signaling through MAPK-associated proteins.  Retinoic acid (RA) and its receptors (RARs) are 

centrally involved in stem cell differentiation [161, 244] and have been reported to induce cell cycle arrest 

and apoptosis in melanomas [245-247].  While an exact mechanism for Lunasin’s induction of melanocyte-

associated differentiation markers as well as the phenotype switch out of the CIC compartment has yet to 
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be elucidated, the fact that two RARs were identified in the microarray analysis suggests a potential link 

considering that ALDH metabolizes vitamin A into RA.  To complicate the potential connection between 

Lunasin and RARs, it has been reported that co-repressors and co-activators of RARs have intrinsic HAT 

and HDAC activity, respectively [248].  Yet, there also exists a mechanism by which RARs are 

interconnected to cellular adhesion molecules [249, 250] and more specifically integrins [251].  Given the 

reports that Lunasin can alter histone acetylation patterns [142] as well as antagonize integrin signaling 

[10], the mechanisms for this effect remain unclear.  Wnt/β-catenin signaling is a relatively controversial 

therapeutic target in cancer; several models support the inhibition of the pathway in order to induce a 

therapeutic response [252, 253], while other models support activation of Wnt/β-catenin [254, 255].  Others 

argue that the response may be context dependent [256].  Also of interest, it was found that WNT5A 

antagonized the proliferation induced by Wnt/β-catenin activation [257].  FOXP1 is a member of the FOX 

transcription factor family, and has been shown to be a therapeutic target in tumors in which it is 

overexpressed [258].  In contrast, low levels of FOXP1 expression in neuroblastoma correlates with a poor 

prognosis, and re-expression of the transcription factor significantly reduced tumor cell proliferation and 

diminished tumorigenicity [259].  While these genes have been linked to a functional therapeutic response 

in some cancer cell types, further pathway analysis is necessary to reveal novel mechanisms suggested by 

this initial screen. 

 Next, A375 ALDHhigh cells treated with vehicle or Lunasin (Table 2) were compared in order to 

discriminate any specific genes targeted in this cell population as opposed to the parental A375 cell line.  

Several genes in which Lunasin had a modest effect were identified; many have been found to significantly 

contribute to melanoma progression and metastasis.  Genes of interest identified in this study were FOXP1 

(-1.46), AKT1 (-1.31), KAT2B (-1.30), ERBB2 (-1.28), TGFB3 (-1.25), FOS (1.31), TP73 (1.31), SMAD5 

(1.35), IGF1R (1.38), RAC1 (1.43).  In parental cells, FOXP1 was up-regulated while in CICs treated with 

Lunasin a significant down-regulation of the gene.  AKT represents the major signaling protein of the 

PI3K/AKT pathway and has been discussed previously.  A down-regulation in AKT expression would 

presumably confer an antisurvival signal, which may help explain why A375R cells were sensitized to 

vemurafenib in combination treatments (discussed in Chapter 3, page 48).  Given its involvement in 

integrin signal transduction and regulation of histone acetylation machinery, these changes in expression of 
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AKT signaling components were somewhat expected.  KAT2B encodes for the PCAF protein, and directly 

regulates transcription as it has HAT activity.  Again, these results are not surprising as Lunasin has been 

proposed to alter histone acetylation patterns; however, this is the first report that Lunasin may directly 

change gene expression of HATs.  ERBB2/ERBB3 heterodimers (and its activator NRG1 [-1.26]) in 

melanoma has been shown to modulate AKT activation and promote cell growth, survival, and metastasis 

[260, 261].  The TGF-β/Smad pathway regulates the progression and metastasis of melanoma [262].  The 

fact that SMAD5 is up-regulated while TGFB3 is down-regulated may suggest a mechanism for Smad-

independent TGF-β responses.   

 Finally, gene expression in untreated cells derived from parental A375 cells and ALDHhigh A375 

cells was compared in order to identify a unique gene set that was expressed in ALDHhigh cells, but not in 

the parental line.  Several genes associated with invasion and epithelial to mesenchymal transition (EMT) 

were upregulated in ALDHhigh cells compared to parental cells (Table 3).  Several genes of interest were 

identified including MMP13 (-1.82), BMP4 (1.27), SNAI1 (1.28), TGFB2 (1.31), WNT5A (1.33), SKI 

(1.33), SMAD6 (1.34), BCL2L11 (1.37), ETS1 (1.37), WNT11 (1.37), TLN2 (1.37), BCL2 (1.37), SMAD7 

(1.37), MMP1 (1.39), EGFR (1.39), FN1 (1.44), JUN (1.46), JAG1 (1.59), SNAI2 (1.60), FOS (1.66), 

FOSB (1.80), and BMP2 (1.86).  Several critical mediators of the TGF-β, BMP, and β-catenin signaling 

pathways were identified by analysis of the microarray dataset.  These pathways have been implicated to 

regulate key processes involved in melanoma development and progression [263-265] indicating that the 

increased expression seen in ALDHhigh cells may confer some selective advantage when invading and 

proliferating in distant tissue.  FN1, the gene encoding fibronectin, was upregulated in ALDHhigh cells when 

compared to parental cells, and is implicated in melanoma cell invasion [266]. Additionally, SNAI1 and 

SNAI2, regulators of EMT [267], are both upregulated in ALDHhigh cells compared to parental cells.  

Interestingly, MMP-1 and MMP-13 are inversely affected.  While MMP-1 has been implicated in 

melanoma invasion [268], MMP-13 has also been linked to metastasis [269] and may also mediate cell 

cycling [270].  Finally, the AP-1 transcription factor components, JUN and FOS (and FOSB) were 

upregulated in ALDHhigh cells compared to the parental line.  Despite their well-known connection to 

MAPK signaling [271], these proto-oncogenes have several functions in melanomas including metastatic 

dissemination and chemoresistance [272-274].  These data would indicate that ALDHhigh cells express 
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genes associated with melanoma progression through EMT, invasion, and proliferation which supports the 

function of ALDH as a biomarker for CICs in melanoma. 

 Principle component analysis (PCA) (Figure 28A) shows the disparity between gene signatures of 

parental A375 cells and ALDH-sorted populations.  Additionally, Lunasin-treated ALDHhigh cells appeared 

to deviate from vehicle-treated cells more so than when their parental counterparts were treated with 

Lunasin, despite having a similar trend.  Sources of error were scored using mean F-ratio to assess the 

authenticity of the microarray analysis (Figure 28B).  The greatest difference between groups came from 

the cell type, meaning the highest variance was between parental cells and ALDH-sorted populations.  This 

demonstrates that ALDHhigh cells displayed a significantly altered gene signature from the parental A375 

populations; this may potentially confirm the results discussed previously describing the upregulation of 

several genes associated with EMT, invasion, and stemness in ALDHhigh cells when compared to parental 

populations.  Treatment with Lunasin accounted for the second highest source of variation, followed by 

replicates and human error, respectively.   

Table 1: Microarray dataset (threshold = 1.25, p < 0.05) for parental A375  

List Report 
Network Object 

Name 
Gene Symbol Gene Name Object Type Description Signal p-value 

Phospholamban PLN phospholamban Generic binding 
protein 

Cardiac phospholamban -1.44444 0.0206268 

NF-AT NFATC4 nuclear factor of activated T-cells 4 Transcription 
factor 

 -1.42274 0.00795497 

NF-AT3(NFATC4) NFATC4 nuclear factor of activated T-cells 4 Transcription 
factor 

Nuclear factor of activated T-cells, 
cytoplasmic 4 

-1.42274 0.00795497 

Arrestin 3 ARR3 arrestin 3 retinal (X-arrestin) Generic binding 
protein 

Arrestin-C -1.40384 0.000620583 

Desmin DES desmin Generic binding 
protein 

Desmin -1.39849 0.00816461 

GRAP2 GRAP2 GRB2-related adaptor protein 2 Generic binding 
protein 

GRB2-related adapter protein 2 -1.39079 0.0330518 

SIA7E ST6GALNAC5 ST6 N-acetylgalactosaminide alpha-2,6-
sialyltransferase 5 

Generic enzyme Alpha-N-acetylgalactosaminide 
alpha-2,6-sialyltransferase 5 

-1.38735 0.00809087 

Calpain 10 CAPN10 calpain 10 Generic protease Calpain-10 -1.38007 0.0309494 

G3ST3 GAL3ST3 galactose-3-O-sulfotransferase 3 Generic enzyme Galactose-3-O-sulfotransferase 3 -1.35473 0.00908722 

Epiregulin EREG epiregulin Protein Proepiregulin -1.35302 0.0101828 

MKK7 (MAP2K7) MAP2K7 mitogen-activated protein kinase kinase 7 Protein kinase Dual specificity mitogen-activated 
protein kinase kinase 7 

-1.33896 0.00316078 

ABO system 
transferase 

ABO ABO blood group (transferase A, alpha 1-3-N- 
acetylgalactosaminyltransferase; transferase B, 
alpha 1-3galactosyltransferase) 

Generic enzyme Histo-blood group ABO system 
transferase 

-1.33629 0.0348191 

CalDAG-GEFII RASGRP1 RAS guanyl releasing protein 1 Regulators (GDI, 
GAP, GEF) 

RAS guanyl-releasing protein 1 -1.3217 0.0466738 
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ACACB ACACB acetyl-CoA carboxylase beta Protein Acetyl-CoA carboxylase 2 -1.31886 0.0146277 

ACE1 ACE angiotensin I converting enzyme Generic protease Angiotensin-converting enzyme -1.31409 0.0139762 

p38 MAPK MAPK11 mitogen-activated protein kinase 11 Protein kinase  -1.30969 0.0162317 

p38beta (MAPK11) MAPK11 mitogen-activated protein kinase 11 Protein kinase Mitogen-activated protein kinase 
11 

-1.30969 0.0162317 

BAIAP2 BAIAP2 BAI1 associated protein 2 Generic binding 
protein 

Brain-specific angiogenesis 
inhibitor 1-associated protein 2 

-1.30952 0.00163325 

Galpha(s)-specific 
amine  
GPCRs 

HRH2 histamine receptor H2 Generic receptor  -1.29861 0.0393267 

Tissue kallikreins KLK10 kallikrein related peptidase 10 Generic protease  -1.29669 0.0358496 

RARalpha RARA retinoic acid receptor alpha Transcription 
factor 

Retinoic acid receptor alpha -1.28836 0.00247536 

WNT WNT3A Wnt family member 3A Receptor ligand  -1.28404 0.0302277 

WNT3A WNT3A Wnt family member 3A Receptor ligand Protein Wnt-3a -1.28404 0.0302277 

L-type Ca(II) 
channel, alpha 1C 
subunit 

CACNA1C calcium voltage-gated channel subunit alpha1 C Voltage-gated ion 
channel 

Voltage-dependent L-type calcium 
channel subunit alpha-1C 

-1.27809 0.0123255 

WNT WNT5A Wnt family member 5A Receptor ligand  -1.2726 0.00115524 

WNT5A WNT5A Wnt family member 5A Receptor ligand Protein Wnt-5a -1.2726 0.00115524 

RARgamma RARG retinoic acid receptor gamma Transcription factor Retinoic acid receptor gamma -1.2701 0.00193338 

HXK4 GCK glucokinase Generic kinase Glucokinase -1.26848 0.00158031 

Tissue kallikreins KLK12 kallikrein related peptidase 12 Generic protease  -1.26669 0.0488501 

HGF HGF hepatocyte growth factor Receptor ligand Hepatocyte growth factor -1.26587 0.0187103 

NR1 GRIN1 glutamate ionotropic receptor NMDA type subunit 1 Ligand-gated ion 
channel 

Glutamate receptor ionotropic,  
NMDA 1 

-1.26439 0.0494182 

CYP4F2 CYP4F2 cytochrome P450 family 4 subfamily F member 2 Generic enzyme Phylloquinone omega-hydroxylase 
CYP4F2 

-1.26402 0.00367679 

c-Maf MAF MAF bZIP transcription factor Transcription factor Transcription factor Maf -1.26355 0.0364182 

IGH@ IGH immunoglobulin heavy locus Receptor ligand immunoglobulin heavy locus -1.26164 0.0240856 

Synaptotagmin VII SYT7 synaptotagmin 7 Protein Synaptotagmin-7 -1.26021 0.0222702 

Sirtuin6 SIRT6 sirtuin 6 Generic enzyme NAD-dependent protein 
deacetylase sirtuin-6 

-1.25989 0.0426655 

IRF5 IRF5 interferon regulatory factor 5 Transcription factor Interferon regulatory factor 5 -1.25985 0.0210335 

PLC-delta PLCD3 phospholipase C delta 3 Generic 
phospholipase 

 -1.25942 0.0122591 

GRK6 GRK6 G protein-coupled receptor kinase 6 Protein kinase G protein-coupled receptor kinase 
6 

-1.25853 0.0138678 

GLUT2 SLC2A2 solute carrier family 2 member 2 Transporter Solute carrier family 2, facilitated 
glucose transporter member 2 

-1.25405 0.0335012 

PP2A regulatory PPP2R5D protein phosphatase 2 regulatory subunit B'delta Generic binding 
protein 

 -1.21491 0.0285902 

Tissue kallikreins KLK7 kallikrein related peptidase 7 Generic protease  -1.19423 0.0352611 
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Tissue kallikreins KLK6 kallikrein related peptidase 6 Generic protease  -1.18227 0.0432625 

NF-AT NFAT5 nuclear factor of activated T-cells 5, tonicity-
responsive 

Transcription factor  -1.17732 0.0265163 

Tubulin alpha TUBA3C tubulin alpha 3c Generic binding 
protein 

 -1.14922 0.0266541 

Tubulin alpha TUBA3D tubulin alpha 3d Generic binding 
protein 

 -1.14922 0.0266541 

Galpha(s)-specific 
amine  
GPCRs 

HTR7 5-hydroxytryptamine receptor 7 Generic receptor  -1.11885 0.0112545 

NF-AT NFATC2 nuclear factor of activated T-cells 2 Transcription factor  1.06543 0.0432984 

PLC-beta PLCB1 phospholipase C beta 1 Generic 
phospholipase 

 1.18758 0.0301776 

MUNC13-1 UNC13A unc-13 homolog A (C. elegans) Generic binding 
protein 

Protein unc-13 homolog A 1.25565 0.0376234 

PARD6 PARD6B par-6 family cell polarity regulator beta Generic binding 
protein 

 1.25711 0.0376021 

P2Y1 P2RY1 purinergic receptor P2Y1 GPCR P2Y purinoceptor 1 1.27086 9.23061E-05 

Heme oxygenase 1 HMOX1 heme oxygenase 1 Generic enzyme Heme oxygenase 1 1.27173 0.000507197 

p130 RBL2 RB transcriptional corepressor like 2 Generic binding 
protein 

Retinoblastoma-like protein 2 1.28053 0.0362018 

CACNA1D CACNA1D calcium voltage-gated channel subunit alpha1 D Voltage-gated ion 
channel 

Voltage-dependent L-type calcium 
channel subunit alpha-1D 

1.29206 0.00864385 

PACAP ADCYAP1 adenylate cyclase activating polypeptide 1 Receptor ligand Pituitary adenylate 
cyclaseactivating polypeptide 

1.31848 0.0327697 

GCL reg GCLM glutamate-cysteine ligase modifier subunit Generic enzyme Glutamate--cysteine ligase 
regulatory subunit 

1.32293 0.00125117 

TLR1 TLR1 toll like receptor 1 Generic receptor Toll-like receptor 1 1.32839 0.0275434 

Tubulin alpha EHHADH enoyl-CoA, hydratase/3-hydroxyacyl CoA 
dehydrogenase 

Generic binding 
protein 

 1.32991 0.00604937 

Sec8 EXOC4 exocyst complex component 4 Generic binding 
protein 

Exocyst complex component 4 1.33531 0.033613 

AMPK alpha 
subunit 

PRKAA1 protein kinase AMP-activated catalytic subunit 
alpha 1 

Protein kinase 
 

1.36607 0.00164903 

PLC-beta PLCB4 phospholipase C beta 4 Generic 
phospholipase 

 1.37036 0.00733205 

Carboxypeptidase 
M 

CPM carboxypeptidase M Generic protease Carboxypeptidase M 1.37297 0.0184119 

LAMP2 LAMP2 lysosomal associated membrane protein 2 Generic binding 
protein 

Lysosome-associated membrane 
glycoprotein 2 

1.38197 0.0109799 

EGF EGF epidermal growth factor Receptor ligand Pro-epidermal growth factor 1.38549 0.0313874 

PP2A regulatory PPP2R2B protein phosphatase 2 regulatory subunit Bbeta Generic binding 
protein 

 1.39363 0.00776675 

RECK RECK reversion inducing cysteine rich protein with kazal 
motifs 

Generic binding 
protein 

Reversion-inducing cysteine-rich 
protein with Kazal motifs 

1.40929 0.00514642 

70Z-PEP PTPN22 protein tyrosine phosphatase, non-receptor type 22 Protein 
phosphatase 

Tyrosine-protein phosphatase 
nonreceptor type 22 

1.47127 0.00577936 

FOXP1 FOXP1 forkhead box P1 Transcription factor Forkhead box protein P1 1.52131 0.00252521 
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Table 2: Microarray dataset (threshold = 1.25, p < 0.05) for ALDH-high A375 cells 

List Report 
Network Object 

Name 
Gene 

Symbol 
Gene Name Object Type Description Signal p-value 

Protein kinase G PRKG1 protein kinase, cGMP-dependent, type I Protein kinase  -1.5701 0.00337114 

FOXP1 FOXP1 forkhead box P1 Transcription factor Forkhead box protein P1 -1.46271 0.0125002 

KCRU CKMT1A creatine kinase, mitochondrial 1A Generic kinase Creatine kinase U-type, mitochondrial -1.45383 0.00150056 

KCRU CKMT1B creatine kinase, mitochondrial 1B Generic kinase Creatine kinase U-type, mitochondrial -1.45383 0.00150056 

PP2A regulatory PTPA protein phosphatase 2 phosphatase 
activator 

Generic binding 
protein 

 -1.42442 0.00947514 

CARD8 CARD8 caspase recruitment domain family 
member 8 

Generic binding 
protein 

Caspase recruitment domain-containing 
protein 8 

-1.40269 0.00466734 

Bim BCL2L11 BCL2 like 11 Generic binding 
protein 

Bcl-2-like protein 11 -1.3764 0.0226245 

MSP MST1 macrophage stimulating 1 Receptor ligand Hepatocyte growth factorlike protein -1.3685 0.0243488 

Schwannomin (NF2) NF2 neurofibromin 2 (merlin) Generic binding 
protein 

Merlin -1.36212 0.0331648 

MEK6(MAP2K6) MAP2K6 mitogen-activated protein kinase kinase 
6 

Protein kinase Dual specificity mitogenactivated protein 
kinase kinase 6 

-1.34109 0.0465563 

cAMP-GEFII RAPGEF4 Rap guanine nucleotide exchange factor 
4 

Regulators (GDI, 
GAP, GEF) 

Rap guanine nucleotide exchange factor 4 -1.33651 0.0162899 

CNTN1 (F3) CNTN1 contactin 1 Generic binding 
protein 

Contactin-1 -1.3314 0.0458024 

Intersectin ITSN1 intersectin 1 Regulators (GDI, 
GAP, GEF) 

Intersectin-1 -1.32506 0.000236297 

NALP2 NLRP2 NLR family pyrin domain containing 2 Generic binding 
protein 

NACHT, LRR and PYD  
domains-containing protein 2 

-1.3211 0.00221173 

GP-IB alpha GP1BA glycoprotein Ib platelet alpha subunit GPCR Platelet glycoprotein Ib alpha chain -1.31542 0.0457474 

GAB2 GAB2 GRB2 associated binding protein 2 Generic binding 
protein 

GRB2-associated-binding protein 2 -1.31488 0.0380525 

CD70(TNFSF7) CD70 CD70 molecule Receptor ligand CD70 antigen -1.30677 0.0111134 

AKT(PKB) AKT1 AKT serine/threonine kinase 1 Protein kinase  -1.30416 0.000226758 

AKT1 AKT1 AKT serine/threonine kinase 1 Protein kinase RAC-alpha serine/threonineprotein kinase -1.30416 0.000226758 

HIVEP2 HIVEP2 human immunodeficiency virus type I 
enhancer binding protein 2 

Transcription factor Transcription factor  
HIVEP2 

-1.29905 0.00355775 

Ephrin-A receptors EPHA3 EPH receptor A3 Generic receptor  -1.29764 0.000542762 

PCAF KAT2B lysine acetyltransferase 2B Generic enzyme Histone acetyltransferase  
KAT2B 

-1.29653 0.00198854 

PPARGC1 (PGC1-
alpha) 

PPARGC1A PPARG coactivator 1 alpha Generic binding 
protein 

Peroxisome proliferatoractivated receptor 
gamma coactivator 1-alpha 

-1.29602 0.0191075 

B-chimaerin CHN2 chimerin 2 Regulators (GDI, 
GAP, GEF) 

Beta-chimaerin -1.29129 0.0233722 

ELF5 ELF5 E74 like ETS transcription factor 5 Transcription factor ETS-related transcription factor Elf-5 -1.29026 0.0487005 

Ephrin-B receptor 1 EPHB1 EPH receptor B1 Receptor with 
enzyme activity 

Ephrin type-B receptor 1 -1.28997 0.0450225 

Ephrin-B receptors EPHB1 EPH receptor B1 Generic receptor  -1.28997 0.0450225 
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PP2A regulatory PPP2R5D protein phosphatase 2 regulatory 
subunit B'delta 

Generic binding 
protein 

 -1.28952 0.00831128 

MSK1 RPS6KA5 ribosomal protein S6 kinase A5 Protein kinase Ribosomal protein S6 kinase alpha-5 -1.28643 0.0290961 

MSK1/2 
(RPS6KA5/4) 

RPS6KA5 ribosomal protein S6 kinase A5 Protein kinase  -1.28643 0.0290961 

MNK1 MKNK1 MAP kinase interacting serine/threonine 
kinase 1 

Protein kinase MAP kinase-interacting serine/threonine-
protein kinase 1 

-1.28634 0.00102042 

ErbB2 ERBB2 erb-b2 receptor tyrosine kinase 2 Receptor with 
enzyme activity 

Receptor tyrosine-protein kinase erbB-2 -1.28262 0.0183775 

IGHG1 IGHG1 immunoglobulin heavy constant gamma 
1 (G1m marker) 

Receptor ligand Ig gamma-1 chain C region -1.27369 0.00748698 

eIF4A EIF4A1 eukaryotic translation initiation factor 
4A1 

Generic enzyme  -1.27351 0.0120587 

CARD7 NLRP1 NLR family pyrin domain containing 1 Generic binding 
protein 

NACHT, LRR and PYD  
domains-containing protein 1 

-1.27181 0.0355684 

DR5(TNFRSF10B) TNFRSF10B tumor necrosis factor receptor 
superfamily member 10b 

Receptor with 
enzyme activity 

Tumor necrosis factor  
receptor superfamily member 10B 

-1.26909 0.000643637 

ADAM17 ADAM17 ADAM metallopeptidase domain 17 Metalloprotease Disintegrin and metalloproteinase 
domaincontaining protein 17 

-1.26776 0.0033431 

CD36 CD36 CD36 molecule Generic receptor Platelet glycoprotein 4 -1.26623 0.018395 

IL4RA IL4R interleukin 4 receptor Generic receptor Interleukin-4 receptor subunit alpha -1.26512 0.0191704 

NKG2A KLRC1 killer cell lectin like receptor C1 Generic receptor NKG2-A/NKG2-B type II integral membrane 
protein 

-1.26289 0.0334868 

GRB10 GRB10 growth factor receptor bound protein 10 Generic binding 
protein 

Growth factor receptorbound protein 10 -1.26127 0.0157259 

FKHR FOXO1 forkhead box O1 Transcription factor Forkhead box protein O1 -1.25939 0.00206426 

Neurotractin NEGR1 neuronal growth regulator 1 Generic binding 
protein 

Neuronal growth regulator 1 -1.25895 0.00424239 

Neuregulin 1 NRG1 neuregulin 1 Receptor ligand Pro-neuregulin-1, membrane-bound isoform -1.25677 0.0236608 

CLIP3 CLIP3 CAP-Gly domain containing linker 
protein 3 

Protein CAP-Gly domain-containing linker protein 3 -1.25409 0.00303439 

HGF HGF hepatocyte growth factor Receptor ligand Hepatocyte growth factor -1.25234 0.0229854 

TGF-beta TGFB3 transforming growth factor beta 3 Receptor ligand  -1.25052 0.00532903 

Ephrin-A receptors EPHA4 EPH receptor A4 Generic receptor  -1.2152 0.0120193 

Adenylate cyclase ADCY7 adenylate cyclase 7 Generic enzyme  -1.192 0.0181893 

eIF4G1/3 EIF4G1 eukaryotic translation initiation factor 4 
gamma 1 

Generic binding 
protein 

 

-1.11566 0.0103837 

AKT(PKB) AKT2 AKT serine/threonine kinase 2 Protein kinase  -1.10513 0.00858131 

MHC class I HLA-E major histocompatibility complex, class 
I, E 

Generic receptor  -1.10479 0.0367323 

HSP90 HSP90AB1 heat shock protein 90kDa alpha family 
class B member 1 

Generic binding 
protein 

 -1.02524 0.0469378 

AKT(PKB) AKT3 AKT serine/threonine kinase 3 Protein kinase  1.08838 0.0379968 

14-3-3 YWHAQ tyrosine 3-monooxygenase/tryptophan 
5monooxygenase activation protein 
theta 

Generic binding 
protein 

 1.09529 0.000338352 

14-3-3 YWHAE tyrosine 3-monooxygenase/tryptophan 
5monooxygenase activation protein 
epsilon 

Generic binding 
protein 

 1.1424 0.005047 
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14-3-3 YWHAG tyrosine 3-monooxygenase/tryptophan 
5monooxygenase activation protein 
gamma 

Generic binding 
protein 

 1.14443 0.0106333 

MRLC MYL12A myosin light chain 12A Generic binding 
protein 

 1.14548 0.00470967 

PP2A regulatory PPP2R5E protein phosphatase 2 regulatory 
subunit B'epsilon 

Generic binding 
protein 

 1.18192 0.0478546 

HSP90 HSP90AA1 heat shock protein 90kDa alpha family 
class A member 1 

Generic binding 
protein 

 1.21348 0.00543915 

Ephrin-A receptors EPHA5 EPH receptor A5 Generic receptor  1.23325 0.00135816 

MHC class I HLA-G major histocompatibility complex, class 
I, G 

Generic receptor  1.23695 0.0262767 

NGF NGF nerve growth factor Receptor ligand Beta-nerve growth factor 1.25368 0.0133639 

Adenylate cyclase ADCY8 adenylate cyclase 8 (brain) Generic enzyme  1.25427 0.0112251 

Adenylate cyclase 
type VIII 

ADCY8 adenylate cyclase 8 (brain) Generic enzyme Adenylate cyclase type 8 1.25427 0.0112251 

Brca2 BRCA2 BRCA2, DNA repair associated Generic binding 
protein 

Breast cancer type 2 susceptibility protein 1.25438 0.000775725 

ABR ABR active BCR-related Regulators (GDI, 
GAP, GEF) 

Active breakpoint cluster region-related 
protein 

1.25461 0.00190559 

LRRK2 LRRK2 leucine rich repeat kinase 2 Protein kinase Leucine-rich repeat serine/threonine-
protein kinase 2 

1.2566 0.00710897 

SMAD1 SMAD1 SMAD family member 1 Transcription factor Mothers against decapentaplegic homolog 1 1.25784 0.00175723 

RacGAP1 RACGAP1 Rac GTPase activating protein 1 Regulators (GDI, 
GAP, GEF) 

Rac GTPase-activating protein 1 1.26471 0.00486122 

EBP50 SLC9A3R1 SLC9A3 regulator 1 Generic binding 
protein 

Na(+)/H(+) exchange  
regulatory cofactor NHE- 
RF1 

1.26562 0.00298857 

E3b1(ABI-1) ABI1 abl interactor 1 Generic binding 
protein 

Abl interactor 1 1.26599 0.000897763 

Cathepsin B CTSB cathepsin B Generic protease Cathepsin B 1.26656 0.0253929 

P2X7 P2RX7 purinergic receptor P2X 7 Ligand-gated ion 
channel 

P2X purinoceptor 7 1.26689 0.0271523 

CREB1 CREB1 cAMP responsive element binding 
protein 1 

Transcription factor Cyclic AMP-responsive element-binding 
protein 1 

1.26771 0.00371316 

eIF4B EIF4B eukaryotic translation initiation factor 4B Generic binding 
protein 

Eukaryotic translation initiation factor 4B 1.26771 0.0362407 

p18 CDKN2C cyclin dependent kinase inhibitor 2C Generic binding 
protein 

Cyclin-dependent kinase 4 inhibitor C 1.27536 0.00174692 

OATP-A SLCO1A2 solute carrier organic anion transporter 
family member 1A2 

Transporter Solute carrier organic anion  
transporter family member 1A2 

1.2768 0.0127423 

PP2A regulatory PPP2R5B protein phosphatase 2 regulatory 
subunit B'beta 

Generic binding 
protein 

 1.28013 0.028923 

Rictor RICTOR RPTOR independent companion of 
MTOR complex 2 

Generic binding 
protein 

Rapamycin-insensitive companion of mTOR 1.28306 0.00299417 

Perforin PRF1 perforin 1 Transporter Perforin-1 1.28693 0.0356184 

KAP3 KIFAP3 kinesin associated protein 3 Generic binding 
protein 

Kinesin-associated protein 3 1.28759 0.00119856 

ALPL ALPL alkaline phosphatase, liver/bone/kidney Generic phosphatase Alkaline phosphatase, tissue-nonspecific 
isozyme 

1.29131 0.0245732 

Tob1 TOB1 transducer of ERBB2, 1 Generic binding 
protein 

Protein Tob1 1.29203 0.00351566 

CCL2 CCL2 C-C motif chemokine ligand 2 Receptor ligand C-C motif chemokine 2 1.29588 0.0249862 
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MR-GEF RAPGEF5 Rap guanine nucleotide exchange 
factor 5 

Regulators (GDI, 
GAP, GEF) 

Rap guanine nucleotide exchange factor 5 1.29627 0.0364294 

STK4 STK4 serine/threonine kinase 4 Protein kinase Serine/threonine-protein kinase 4 1.2963 0.0067006 

RHAMM HMMR hyaluronan mediated motility receptor Generic receptor Hyaluronan mediated motility receptor 1.29916 0.00116314 

RhoGAP5 ARHGAP5 Rho GTPase activating protein 5 Regulators (GDI, 
GAP, GEF) 

Rho GTPase-activating protein 5 1.29932 0.00320296 

SOD2 SOD2 superoxide dismutase 2, mitochondrial Generic enzyme Superoxide dismutase [Mn], mitochondrial 1.30008 0.000133145 

PARP-1 PARP1 poly(ADP-ribose) polymerase 1 Generic enzyme Poly [ADP-ribose] polymerase 1 1.3017 0.0167984 

MPP5 MPP5 membrane palmitoylated protein 5 Generic binding 
protein 

MAGUK p55 subfamily member 5 1.30188 0.00231735 

APC protein APC WNT signaling pathway regulator Generic binding 
protein 

Adenomatous polyposis coli protein 1.30488 0.0062747 

RAP-1A RAP1A RAP1A, member of RAS oncogene 
family 

RAS - superfamily Ras-related protein Rap-1A 1.30488 0.0416244 

PSAT PSAT1 phosphoserine aminotransferase 1 Generic enzyme Phosphoserine aminotransferase 1.30787 0.000502575 

c-Fos FOS Fos proto-oncogene, AP-1 transcription 
factor subunit 

Transcription factor Proto-oncogene c-Fos 1.30873 0.000144963 

p73 TP73 tumor protein p73 Transcription factor Tumor protein p73 1.3132 0.0179451 

14-3-3 YWHAZ tyrosine 3-monooxygenase/tryptophan 
5monooxygenase activation protein 
zeta 

Generic binding 
protein 

 1.31677 0.0236916 

14-3-3 zeta/delta YWHAZ tyrosine 3-monooxygenase/tryptophan 
5monooxygenase activation protein 
zeta 

Generic binding 
protein 

14-3-3 protein zeta/delta 1.31677 0.0236916 

mGluR1 GRM1 glutamate metabotropic receptor 1 GPCR Metabotropic glutamate receptor 1 1.31864 0.0051418 

MHC class I HLA-F major histocompatibility complex, class 
I, F 

Generic receptor  1.31998 0.00676518 

IL-1RI IL1R1 interleukin 1 receptor type 1 Generic receptor Interleukin-1 receptor type 1 1.3234 0.00954023 

Syndecan-2 SDC2 syndecan 2 Generic receptor Syndecan-2 1.32432 0.000543997 

IRF1 IRF1 interferon regulatory factor 1 Transcription factor Interferon regulatory factor  
1 

1.32567 0.0148805 

eIF4G1/3 EIF4G3 eukaryotic translation initiation factor 4 
gamma 3 

Generic binding 
protein 

 1.32688 0.0240793 

ATF-1 ATF1 activating transcription factor 1 Transcription factor Cyclic AMP-dependent transcription factor 
ATF-1 

1.33141 0.00862807 

PP2A regulatory PPP2R3A protein phosphatase 2 regulatory 
subunit B''alpha 

Generic binding 
protein 

 1.3348 0.00213492 

Caspase-2 CASP2 caspase 2 Generic protease Caspase-2 1.34305 0.00221027 

SMAD5 SMAD5 SMAD family member 5 Transcription factor Mothers against decapentaplegic homolog 5 1.34693 0.012205 

RASSF5 RASSF5 Ras association domain family member 
5 

Generic binding 
protein 

Ras association domaincontaining protein 5 1.3648 0.00616737 

Nucleophosmin NPM1 nucleophosmin (nucleolar 
phosphoprotein B23, numatrin) 

Generic binding 
protein 

Nucleophosmin 1.36901 0.00132591 

Endoplasmin HSP90B1 heat shock protein 90kDa beta family 
member 1 

Generic binding 
protein 

Endoplasmin 1.37222 0.0376878 

HSP90 HSP90B1 heat shock protein 90kDa beta family 
member 1 

Generic binding 
protein 

 1.37222 0.0376878 

RHEB2 RHEB Ras homolog enriched in brain RAS - superfamily GTP-binding protein Rheb 1.37269 0.00391466 
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MHC class I B2M beta-2-microglobulin Generic receptor  1.37655 0.00262384 

BMPR1A BMPR1A bone morphogenetic protein receptor 
type 1A 

Receptor with 
enzyme activity 

Bone morphogenetic protein receptor type-1A 1.37717 0.00542215 

FAP-1 PTPN13 protein tyrosine phosphatase, non-
receptor type 13 

Generic 
phosphatase 

Tyrosine-protein phosphatase non-receptor 
type 13 

1.37852 0.0181538 

IGF-1 receptor IGF1R insulin like growth factor 1 receptor Receptor with 
enzyme activity 

Insulin-like growth factor 1 receptor 1.38488 0.00124826 

Dynorphin A(1-13) PDYN prodynorphin Receptor ligand Dynorphin-A(1-13) 1.38832 0.00114984 

Leu-enkephalin PDYN prodynorphin Receptor ligand Leu-enkephalin 1.38832 0.00114984 

Proenkephalin-B PDYN prodynorphin Receptor ligand Proenkephalin-B 1.38832 0.00114984 

Caspase-8 CASP8 caspase 8 Generic protease Caspase-8 1.39804 0.0119021 

ESR2 ESR2 estrogen receptor 2 Transcription factor Estrogen receptor beta 1.40974 0.0236654 

LAMP2 LAMP2 lysosomal associated membrane 
protein 2 

Generic binding 
protein 

Lysosome-associated membrane 
glycoprotein 2 

1.41288 0.000310979 

Rac1 RAC1 ras-related C3 botulinum toxin 
substrate 1 (rho family, small GTP 
binding protein Rac1) 

RAS - superfamily Ras-related C3 botulinum toxin substrate 1 1.43303 0.00759662 

MRLC MYL12B myosin light chain 12B Generic binding 
protein 

 1.50417 0.000444727 

Adenylate cyclase ADCY1 adenylate cyclase 1 (brain) Generic enzyme  1.52523 2.81187E-06 

Adenylate cyclase 
type I 

ADCY1 adenylate cyclase 1 (brain) Generic enzyme Adenylate cyclase type 1 1.52523 2.81187E-06 

KIR2DL1 KIR2DL1 killer cell immunoglobulin like receptor, 
two Ig domains and long cytoplasmic 
tail 1 

Generic receptor Killer cell immunoglobulinlike receptor 2DL1 1.84246 0.022848 

KIR2DL2 KIR2DL2 killer cell immunoglobulin like receptor, 
two Ig domains and long cytoplasmic 
tail 2 

Generic receptor Killer cell immunoglobulinlike receptor 2DL2 1.84246 0.022848 

KIR2DL3 KIR2DL3 killer cell immunoglobulin like receptor, 
two Ig domains and long cytoplasmic 
tail 3 

Generic receptor Killer cell immunoglobulinlike receptor 2DL3 1.84246 0.022848 

KIR2DL4 KIR2DL4 killer cell immunoglobulin like receptor, 
two Ig domains and long cytoplasmic 
tail 4 

Generic receptor Killer cell immunoglobulinlike receptor 2DL4 1.84246 0.022848 

KIR2DL5 KIR2DL5A killer cell immunoglobulin like receptor, 
two Ig domains and long cytoplasmic 
tail 5A 

Generic receptor Killer cell immunoglobulinlike receptor 2DL5A 1.84246 0.022848 

 
 

Table 3: Parental versus ALDH-high A375 cells (Untreated) 

List Report 
Network Object  

Name 
Gene 
Symbol 

Gene Name Object Type Description 
Signal p-value 

CCL2 CCL2 C-C motif chemokine ligand 2 Receptor ligand C-C motif chemokine 2 -2.36328 1.66572E-05 

p57 CDKN1C cyclin dependent kinase inhibitor 1C Generic binding 
protein 

Cyclin-dependent kinase inhibitor 1C -2.35549 7.53913E-07 

MHC class II HLA-DOA major histocompatibility complex, class 
II, DO alpha 

Generic receptor  -1.88445 1.96402E-05 

MMP-13 MMP13 matrix metallopeptidase 13 Metalloprotease Collagenase 3 -1.81956 0.00133048 

MEF2C MEF2C myocyte enhancer factor 2C Transcription factor Myocyte-specific enhancer factor 2C -1.72111 0.000499586 

TRAF1 TRAF1 TNF receptor associated factor 1 Generic binding 
protein 

TNF receptor-associated factor 1 -1.56675 0.000152341 
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MEK6(MAP2K6) MAP2K6 mitogen-activated protein kinase kinase 
6 

Protein kinase Dual specificity mitogen-activated protein 
kinase kinase 6 

-1.5054 3.59244E-05 

eIF4A EIF4A2 eukaryotic translation initiation factor 
4A2 

Generic enzyme  -1.46238 0.000581214 

MHC class II HLA-DOB major histocompatibility complex, class 
II, DO beta 

Generic receptor  -1.43366 0.0276582 

Osteopontin SPP1 secreted phosphoprotein 1 Receptor ligand Osteopontin -1.37772 1.37342E-05 

GAB1 GAB1 GRB2 associated binding protein 1 Generic binding 
protein 

GRB2-associated-binding protein 1 -1.36772 0.0477614 

Histone H4 HIST1H4A histone cluster 1, H4a Generic binding 
protein 

Histone H4 -1.3674 0.000812007 

Histone H4 HIST1H4B histone cluster 1, H4b Generic binding 
protein 

Histone H4 -1.3674 0.000812007 

Histone H4 HIST1H4C histone cluster 1, H4c Generic binding 
protein 

Histone H4 -1.3674 0.000812007 

Histone H4 HIST1H4D histone cluster 1, H4d Generic binding 
protein 

Histone H4 -1.3674 0.000812007 

Histone H4 HIST1H4E histone cluster 1, H4e Generic binding 
protein 

Histone H4 -1.3674 0.000812007 

Histone H4 HIST1H4F histone cluster 1, H4f Generic binding 
protein 

Histone H4 -1.3674 0.000812007 

Histone H4 HIST1H4H histone cluster 1, H4h Generic binding 
protein 

Histone H4 -1.3674 0.000812007 

Histone H4 HIST1H4I histone cluster 1, H4i Generic binding 
protein 

Histone H4 -1.3674 0.000812007 

Histone H4 HIST1H4J histone cluster 1, H4j Generic binding 
protein 

Histone H4 -1.3674 0.000812007 

Histone H4 HIST1H4K histone cluster 1, H4k Generic binding 
protein 

Histone H4 -1.3674 0.000812007 

Histone H4 HIST1H4L histone cluster 1, H4l Generic binding 
protein 

Histone H4 -1.3674 0.000812007 

Histone H4 HIST2H4A histone cluster 2, H4a Generic binding 
protein 

Histone H4 -1.3674 0.000812007 

Histone H4 HIST2H4B histone cluster 2, H4b Generic binding 
protein 

Histone H4 -1.3674 0.000812007 

Histone H4 HIST4H4 histone cluster 4, H4 Generic binding 
protein 

Histone H4 -1.3674 0.000812007 

CD40(TNFRSF5 
) 

CD40 CD40 molecule Generic receptor Tumor necrosis factor receptor superfamily 
member 5 

-1.36382 0.0110669 

PP2A regulatory PPP2R3A protein phosphatase 2 regulatory 
subunit B''alpha 

Generic binding 
protein 

 -1.36311 0.00139958 

PLP1 PLP1 proteolipid protein 1 Generic binding 
protein 

Myelin proteolipid protein -1.35525 0.0103633 

MHC class II HLA-DMB major histocompatibility complex, class 
II, DM beta 

Generic receptor  -1.35184 3.44602E-05 

von Willebrand 
factor 

VWF von Willebrand factor Receptor ligand von Willebrand factor -1.3206 0.0210621 

Fc gamma RII alpha FCGR2A Fc fragment of IgG receptor IIa Generic receptor Low affinity immunoglobulin gamma Fc 
region receptor II-a 

-1.31836 0.00296042 

VDR VDR vitamin D (1,25- dihydroxyvitamin D3) 
receptor 

Transcription factor Vitamin D3 receptor -1.31617 0.00300324 

c-Maf MAF MAF bZIP transcription factor Transcription factor Transcription factor Maf -1.30398 0.021578 

Frizzled FZD4 frizzled class receptor 4 GPCR  -1.30301 0.0233367 

COL1A1 COL1A1 collagen type I alpha 1 Generic binding 
protein 

Collagen alpha-1(I) chain -1.29164 0.0279799 
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Adenylate cyclase ADCY6 adenylate cyclase 6 Generic enzyme  -1.28938 0.00835718 

PDGF receptor PDGFRB platelet derived growth factor receptor 
beta 

Receptor with 
enzyme activity 

 -1.28614 0.00403004 

PDGF-R-beta PDGFRB platelet derived growth factor receptor 
beta 

Receptor with 
enzyme activity 

Platelet-derived growth factor receptor beta -1.28614 0.00403004 

Follistatin FST follistatin Generic binding 
protein 

Follistatin -1.2848 0.000024051 

PP2A structural PPP2R1B protein phosphatase 2 scaffold subunit 
Abeta 

Generic binding 
protein 

 -1.28221 0.0177006 

CDK6 CDK6 cyclin dependent kinase 6 Protein kinase Cyclin-dependent kinase 6 -1.27706 0.00107739 

MLCK MYLK myosin light chain kinase Protein kinase  -1.2671 0.00395734 

MYLK1 MYLK myosin light chain kinase Protein kinase Myosin light chain kinase, smooth muscle -1.2671 0.00395734 

TAB1 TAB1 TGF-beta activated kinase 1/MAP3K7 
binding protein 1 

Generic binding 
protein 

TGF-beta-activated kinase 1 and 
MAP3K7binding protein 1 

-1.2654 0.00263249 

p38 MAPK MAPK11 mitogen-activated protein kinase 11 Protein kinase  -1.25439 0.0342748 

p38beta  
(MAPK11) 

MAPK11 mitogen-activated protein kinase 11 Protein kinase Mitogen-activated protein kinase 11 -1.25439 0.0342748 

NGF NGF nerve growth factor Receptor ligand Beta-nerve growth factor -1.25013 0.0141866 

MHC class II HLA-DPB1 major histocompatibility complex, class 
II, DP beta 1 

Generic receptor  -1.24615 0.0241933 

IP3 receptor ITPR2 inositol 1,4,5-trisphosphate receptor 
type 2 

Ligand-gated ion 
channel 

 -1.24373 0.0308373 

MHC class II HLA-DMA major histocompatibility complex, class 
II, DM alpha 

Generic receptor  -1.23692 0.00037169 

PKC PRKCZ protein kinase C zeta Protein kinase  -1.22047 0.0013793 

MHC class II HLA-DRA major histocompatibility complex, class 
II, DR alpha 

Generic receptor  -1.214 0.0283084 

MHC class II HLA-DQA1 major histocompatibility complex, class 
II, DQ alpha 1 

Generic receptor  -1.21032 0.00112998 

Adenylate cyclase ADCY1 adenylate cyclase 1 (brain) Generic enzyme  -1.18377 0.00169305 

PP2A regulatory PPP2R5C protein phosphatase 2 regulatory 
subunit B'gamma 

Generic binding 
protein 

 -1.17906 0.0275376 

Histone H2 HIST1H2AC histone cluster 1, H2ac Generic binding 
protein 

 -1.17575 0.033901 

p38 MAPK MAPK12 mitogen-activated protein kinase 12 Protein kinase  -1.17095 0.00706191 

MHC class II HLA-DPA1 major histocompatibility complex, class 
II, DP alpha 1 

Generic receptor  -1.16399 0.027006 

PP2A regulatory PPP2R3B protein phosphatase 2 regulatory 
subunit B''beta 

Generic binding 
protein 

 -1.15891 0.0157553 

Histone H2 HIST1H2BH histone cluster 1, H2bh Generic binding 
protein 

 -1.14047 0.0249971 

SOS SOS1 SOS Ras/Rac guanine nucleotide 
exchange factor 1 

Regulators (GDI, 
GAP, GEF) 

 -1.10822 0.0208185 

p90Rsk RPS6KA1 ribosomal protein S6 kinase A1 Protein kinase  -1.09743 0.0387703 

WNT WNT2 Wnt family member 2 Receptor ligand  -1.09671 0.0484961 

Histone H2 HIST2H2AC histone cluster 2, H2ac Generic binding 
protein 

 -1.09121 0.0183897 
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MHC class II HLA-DRB3 major histocompatibility complex, class 
II, DR beta 3 

Generic receptor  -1.08555 0.0133047 

MHC class II HLA-DRB4 major histocompatibility complex, class 
II, DR beta 4 

Generic receptor  -1.08555 0.0133047 

MHC class II HLA-DRB5 major histocompatibility complex, class 
II, DR beta 5 

Generic receptor  -1.08555 0.0133047 

G-protein alpha-i 
family 

GNAI2 G protein subunit alpha i2 G-alpha  -1.07362 0.00354277 

Collagen IV COL4A4 collagen type IV alpha 4 chain Generic binding 
protein 

 -1.05384 0.0498416 

IP3 receptor ITPR3 inositol 1,4,5-trisphosphate receptor 
type 3 

Ligand-gated ion 
channel 

 1.1381 0.0477303 

Collagen IV COL4A2 collagen type IV alpha 2 Generic binding 
protein 

 1.17528 5.54546E-
05 

eIF4A EIF4A1 eukaryotic translation initiation factor 
4A1 

Generic enzyme  1.18902 0.0112779 

PKC PRKCA protein kinase C alpha Protein kinase  1.19457 0.00355992 

Histone H2 HIST1H2BD histone cluster 1, H2bd Generic binding 
protein 

 1.22971 0.00741417 

PKC PRKD3 protein kinase D3 Protein kinase  1.25218 0.0170282 

EDNRA EDNRA endothelin receptor type A GPCR Endothelin-1 receptor 1.25971 0.0455197 

AP-1 FOSL1 FOS like 1, AP-1 transcription factor 
subunit 

Transcription factor  1.26072 0.00083762 

Fra-1 FOSL1 FOS like 1, AP-1 transcription factor 
subunit 

Transcription factor Fos-related antigen 1 1.26072 0.00083762 

KLF5 KLF5 Kruppel like factor 5 Transcription factor Krueppel-like factor 5 1.26959 0.00193235 

Histone H3 H3F3A H3 histone, family 3A Generic binding 
protein 

 1.27027 0.0349977 

Histone H3 H3F3B H3 histone, family 3B (H3.3B) Generic binding 
protein 

 1.27027 0.0349977 

BMP4 BMP4 bone morphogenetic protein 4 Receptor ligand Bone morphogenetic protein 4 1.27237 0.0042337 

G-protein alpha-i 
family 

GNAI1 G protein subunit alpha i1 G-alpha  1.27252 8.97476E-
05 

G-protein alphai1 GNAI1 G protein subunit alpha i1 G-alpha Guanine nucleotide-binding protein G(i) 
subunit alpha-1 

1.27252 8.97476E-
05 

GCR NR3C1 nuclear receptor subfamily 3 group C 
member 1 

Transcription factor Glucocorticoid receptor 1.27334 1.09912E-
05 

GATA-1 GATA1 GATA binding protein 1 Transcription factor Erythroid transcription factor 1.27414 0.0193385 

SOS SOS2 SOS Ras/Rho guanine nucleotide 
exchange factor 2 

Regulators (GDI, 
GAP, GEF) 

 1.27712 0.00811183 

SNAIL1 SNAI1 snail family transcriptional repressor 1 Transcription factor Zinc finger protein SNAI1 1.27758 0.00712077 

LDLR LDLR low density lipoprotein receptor Generic receptor Low-density lipoprotein receptor 1.27923 0.00008782
1 

C/EBPbeta CEBPB CCAAT/enhancer binding protein beta Transcription factor CCAAT/enhancer-binding protein beta 1.27983 0.00025230
6 

TRAF2 TRAF2 TNF receptor associated factor 2 Generic binding 
protein 

TNF receptor-associated factor 2 1.28784 0.0323403 

HSP70 HSPA8 heat shock protein family A (Hsp70) 
member 8 

Generic binding 
protein 

 1.29043 0.00070906
8 

Histone H2 HIST1H2BC histone cluster 1, H2bc Generic binding 
protein 

 1.29919 0.0160555 
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Histone H2 HIST1H2BE histone cluster 1, H2be Generic binding 
protein 

 1.29919 0.0160555 

Histone H2 HIST1H2BF histone cluster 1, H2bf Generic binding 
protein 

 1.29919 0.0160555 

Histone H2 HIST1H2BG histone cluster 1, H2bg Generic binding 
protein 

 1.29919 0.0160555 

Histone H2 HIST1H2BI histone cluster 1, H2bi Generic binding 
protein 

 1.29919 0.0160555 

SOX9 SOX9 SRY-box 9 Transcription factor Transcription factor SOX-9 1.30548 0.042592 

Cytochrome c CYCS cytochrome c, somatic Generic enzyme Cytochrome c 1.30676 0.0160318 

VEGF-A VEGFA vascular endothelial growth factor A Receptor ligand Vascular endothelial growth factor A 1.3092 0.00443429 

TGF-beta TGFB2 transforming growth factor beta 2 Receptor ligand  1.31177 0.0495434 

TGF-beta 2 TGFB2 transforming growth factor beta 2 Receptor ligand Transforming growth factor beta-2 1.31177 0.0495434 

IP3 receptor ITPR1 inositol 1,4,5-trisphosphate receptor 
type 1 

Ligand-gated ion 
channel 

 1.31212 0.0031542 

PDGF-A PDGFA platelet derived growth factor subunit A Receptor ligand Platelet-derived growth factor subunit A 1.31216 0.00039450
4 

Alpha-actinin ACTN2 actinin alpha 2 Generic binding 
protein 

 1.31256 0.00387745 

Cyclin A CCNA1 cyclin A1 Generic binding 
protein 

 1.3241 0.00093803
5 

WNT WNT5A Wnt family member 5A Receptor ligand  1.32631 8.78136E-
06 

Ski SKI SKI proto-oncogene Generic binding 
protein 

Ski oncogene 1.33162 0.0187077 

PTHrP PTHLH parathyroid hormone-like hormone Receptor ligand Parathyroid hormone-related protein 1.33186 0.00043387 

p90Rsk RPS6KA2 ribosomal protein S6 kinase A2 Protein kinase  1.33239 0.00884093 

FSRP FSTL3 follistatin like 3 Generic binding 
protein 

Follistatin-related protein 3 1.3342 0.00020716
7 

SMAD6 SMAD6 SMAD family member 6 Transcription factor Mothers against decapentaplegic homolog 6 1.3376 0.00518022 

Bim BCL2L11 BCL2 like 11 Generic binding 
protein 

Bcl-2-like protein 11 1.3653 0.0252576 

AP-1 FOSL2 FOS like 2, AP-1 transcription factor 
subunit 

Transcription factor  1.36594 0.01046 

ETS1 ETS1 ETS proto-oncogene 1, transcription 
factor 

Transcription factor Protein C-ets-1 1.36672 0.00053754 

WNT WNT11 Wnt family member 11 Receptor ligand  1.37035 0.0215301 

Talin TLN2 talin 2 Generic binding 
protein 

 1.37124 0.00143352 

Bcl-2 BCL2 BCL2, apoptosis regulator Generic binding 
protein 

Apoptosis regulator Bcl-2 1.37145 0.00660047 

SMAD7 SMAD7 SMAD family member 7 Transcription factor Mothers against decapentaplegic homolog 7 1.3735 0.0013868 

EGR1 EGR1 early growth response 1 Transcription factor Early growth response protein 1 1.38222 0.000708757 

IL4RA IL4R interleukin 4 receptor Generic receptor Interleukin-4 receptor subunit alpha 1.3835 0.00375447 

MMP-1 MMP1 matrix metallopeptidase 1 Metalloprotease Interstitial collagenase 1.38518 0.000936588 
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EGFR EGFR epidermal growth factor receptor Receptor with 
enzyme activity 

Epidermal growth factor receptor 1.39085 0.0112142 

eIF4E EIF4E eukaryotic translation initiation factor 4E Generic binding 
protein 

Eukaryotic translation initiation factor 4E 1.40812 0.0168678 

SCUBE3 SCUBE3 signal peptide, CUB domain and EGF 
like domain containing 3 

Generic binding 
protein 

Signal peptide, CUB and EGF-like 
domaincontaining protein 3 

1.42369 0.000614548 

TIMP1 TIMP1 TIMP metallopeptidase inhibitor 1 Generic binding 
protein 

Metalloproteinase inhibitor 1 1.42794 1.17491E-06 

Fibronectin FN1 fibronectin 1 Receptor ligand Fibronectin 1.44107 0.000135032 

AP-1 JUN Jun proto-oncogene, AP-1 transcription 
factor subunit 

Transcription factor  1.46266 3.33637E-05 

c-Jun JUN Jun proto-oncogene, AP-1 transcription 
factor subunit 

Transcription factor Transcription factor AP-1 1.46266 3.33637E-05 

c-Jun/c-Fos JUN Jun proto-oncogene, AP-1 transcription 
factor subunit 

Transcription factor  1.46266 3.33637E-05 

Heme oxygenase 1 HMOX1 heme oxygenase 1 Generic enzyme Heme oxygenase 1 1.46526 1.99778E-05 

TRIO TRIO trio Rho guanine nucleotide exchange 
factor 

Regulators (GDI, 
GAP, GEF) 

Triple functional domain protein 1.48572 2.28255E-05 

CYP24A1 CYP24A1 cytochrome P450 family 24 subfamily A 
member 1 

Generic enzyme 1,25-dihydroxyvitamin D(3) 24-hydroxylase, 
mitochondrial 

1.51113 0.0187962 

MAP2K5 (MEK5) MAP2K5 mitogen-activated protein kinase kinase 
5 

Protein kinase Dual specificity mitogen-activated protein 
kinase kinase 5 

1.51502 0.00417811 

Collagen IV COL4A1 collagen type IV alpha 1 chain Generic binding 
protein 

 1.51599 0.000878077 

FKHR FOXO1 forkhead box O1 Transcription factor Forkhead box protein O1 1.54368 2.99464E-05 

SHP-2 PTPN11 protein tyrosine phosphatase, non-
receptor type 11 

Protein phosphatase Tyrosine-protein phosphatase non-receptor 
type 11 

1.55187 0.02919 

Histone H2 HIST1H2AG histone cluster 1, H2ag Generic binding 
protein 

 1.58172 0.00195219 

Histone H2 HIST1H2AI histone cluster 1, H2ai Generic binding 
protein 

 1.58172 0.00195219 

Histone H2 HIST1H2AK histone cluster 1, H2ak Generic binding 
protein 

 1.58172 0.00195219 

Histone H2 HIST1H2AL histone cluster 1, H2al Generic binding 
protein 

 1.58172 0.00195219 

Histone H2 HIST1H2AM histone cluster 1, H2am Generic binding 
protein 

 1.58172 0.00195219 

Jagged1 JAG1 jagged 1 Receptor ligand Protein jagged-1 1.58718 1.62228E-06 

SLUG SNAI2 snail family transcriptional repressor 2 Transcription factor Zinc finger protein SNAI2 1.59851 3.98516E-05 

PAI1 SERPINE1 serpin family E member 1 Receptor ligand Plasminogen activator inhibitor 1 1.60385 5.49105E-05 

Neurofibromin NF1 neurofibromin 1 Regulators (GDI, 
GAP, GEF) 

Neurofibromin 1.65278 0.0100313 

AP-1 FOS Fos proto-oncogene, AP-1 transcription 
factor subunit 

Transcription factor  1.6562 0.00330321 

c-Fos FOS Fos proto-oncogene, AP-1 transcription 
factor subunit 

Transcription factor Proto-oncogene c-Fos 1.6562 0.00330321 

c-Jun/c-Fos FOS Fos proto-oncogene, AP-1 transcription 
factor subunit 

Transcription factor  1.6562 0.00330321 

ID2 ID2 inhibitor of DNA binding 2, HLH protein Transcription factor DNA-binding protein inhibitor ID-2 1.70344 1.43712E-05 

Amphiregulin AREG amphiregulin Receptor ligand Amphiregulin 1.71147 3.82709E-07 
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HSP70 HSPA7 heat shock protein family A (Hsp70) 
member 7 

Generic binding 
protein 

 1.74553 0.00216841 

HSP70 HSPA6 heat shock protein family A (Hsp70) 
member 6 

Generic binding 
protein 

 1.78839 0.00171406 

AP-1 FOSB FosB proto-oncogene, AP-1 
transcription factor subunit 

Transcription factor  1.80026 0.000011886 

FosB FOSB FosB proto-oncogene, AP-1 
transcription factor subunit 

Transcription factor Protein fosB 1.80026 0.000011886 

EGR2 (Krox20) EGR2 early growth response 2 Transcription factor E3 SUMO-protein ligase EGR2 1.85416 7.39307E-05 

BMP2 BMP2 bone morphogenetic protein 2 Receptor ligand Bone morphogenetic protein 2 1.85652 4.92344E-05 

COX-2 (PTGS2) PTGS2 prostaglandin-endoperoxide synthase 2 Generic enzyme Prostaglandin G/H synthase 2 2.59037 7.57152E-07 

 

 

Figure 28: Principle component analysis and sources of variation resulting from genome-wide 

microarray analysis.  Parental A375 cells (red) were compared to ALDHhigh A375 cells (blue).  The 

response to Lunasin treatment in A375 (purple) and A375 ALDHhigh cells (green) was also compared (A).  

The largest source of variation between the experimental groups was cell type (parental vs ALDH) 

followed by treatment (vehicle vs Lunasin).  Technical replicates and human error accounted for 

comparatively little variation with F-ratios of 1.22 and 1.00, respectively (B). 

 

Lunasin uptake correlates with expression of αV integrin subunits 

 Lunasin internalization is thought to be dependent upon endocytic mechanisms involving integrins 

[38].  A375 cells, which overexpress the integrin αVβ3, were treated with vehicle or 100 μM Lunasin, and 

analyzed for colocalization of integrin subunits and Lunasin at several time points ranging from 4 to 24 h.  

It was observed that Lunasin is abundantly internalized in A375 cells, and present both in the cytoplasm 
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and the nucleus.  Interestingly, cell morphology was slightly altered at later time points in Lunasin-treated 

cells; a decrease in cell size as well as localization of integrins around the nucleus was observed in treated 

cells when compared to cells in control wells (Figure 29).  

B16-F10 CIC populations were reduced with Lunasin treatment 

 Previously, it was shown Lunasin reduced ALDH-expressing populations of cells in A375 and 

SK-MEL-28 melanoma cell lines (Chapter 3, Figure 11) concomitant with a decreased ability of these cells 

to form oncospheres (Chapter 3, Figure 12) when plated in anchorage-independent culture conditions in 

serum-free media [228].  To determine if this is the case with a murine model of melanoma, these 

experiments were repeated using the aggressive mouse-derived melanoma line B16-F10 (Figure 30).  

Treatment with 100 μM Lunasin reduced oncosphere formation by 29% (p = 0.005).  Representative 

images taken at 7 days post-treatment show the inhibitory effect of Lunasin on oncosphere formation 

(Figure 30A).  Additionally, a decrease in the ALDHhigh population when cells were treated with 100 μM 

Lunasin for 24 h was observed.  Treatment reduced the mean percentage of ALDH-positive B16-F10 cells 

from 8% in the control samples to 1.9% in the Lunasin-treated samples (p = 0.029).  The 4-fold decrease in 

ALDHhigh cells is depicted in a representative series of flow cytometry dot-plots (Figure 30C) showing 

DEAB, Control, and Lunasin-treated samples.  Three populations with varying degrees of ALDH activity 

exist within parental B16-F10 cells (Figure 30C); an ALDH-negative population represented at the left of 

each dot-plot, an ALDHlow population that displays a baseline expression of ALDH activity (i.e. these cells 

are ALDH-positive, but do not significantly shift in fluorescence intensity when exposed to ALDEFLUOR 

reagent in the absence of DEAB) represented by the population of cells clustered at a slightly higher 

intensity than the ALDH-negative population, and an ALDHhigh population (at least a one-log shift in 

fluorescence intensity over DEAB controls) represented by the cells in the gated compartment on the right 

of the dot-plot. 
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Figure 29: Lunasin is readily internalized in A375 melanoma cells.  A375 cells treated with Lunasin for 

up to 24 h internalized Lunasin, which was found to colocalize with integrin αV subunits.  Additionally, 

nuclear localization of Lunasin was observed after 4 h, and Lunasin persisted in cells up to 24 h post-

treatment. Florescence intensity of clustered integrin subunits was higher around the nucleus in Lunasin-

treated cells when compared to vehicle-treated cells where integrin αV subunits appeared on the periphery 

of A375 cells.  These results demonstrate that Lunasin was readily internalized in A375 cells, and may 

support a mechanism in which Lunasin is internalized with integrin αV subunits.  Representative images 

from three independent experiments were used, and were taken at 40x magnification.  (Blue = dapi, green = 

Lunasin, red = integrin αV) 
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Figure 30: Lunasin disrupted oncosphere formation and reduces ALDHhigh populations.  B16-F10 

ALDHhigh cells were plated in low adherent culture in stem cell media and allowed to form floating 

oncospheres.  When media was amended with 100 μM Lunasin, a significant decrease in oncosphere 

formation compared to control samples was observed (A, B).  V = vehicle, L = Lunasin.  ALDH activity 

was measured as described in Section 2.5.  When B16-F10 cells were treated with Lunasin, a significant 

reduction in cells displaying the ALDHhigh phenotype was observed (C,D).  Figures represent data obtained 

from three independent experiments and are shown as mean ± s.d.  Statistical significance (p < 0.05) was 

determined by student’s t-test and denoted by an asterisk (*).  

 

Lunasin inhibits invasion of ALDHhigh melanoma stem cells in vitro 

 A375 and B16-F10 cells were sorted to isolate populations with elevated ALDH activity.  These 

cells were pretreated with 100 μM Lunasin for 24 h, and subsequently replated in the upper chamber of 

transwell inserts containing serum-free DMEM/F12 media amended with PB or Lunasin.  After adding 

media containing 10% FBS to the lower chamber, plates were incubated for 24 h, and the cells invading 

through the Matrigel basement membrane were counted.  Invasion of A375 and B16-F10 ALDHhigh was 

significantly inhibited in Lunasin-treated wells compared to vehicle-treated wells resulting in a 57% (p = 

0.02) and 60% (p = 0.04) decrease in invading cells, respectively (Figure 31A).  Representative images 
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showing the Toluidine-stained invading cells from the bottom of the inserts illustrate the antimetastatic 

effects of Lunasin in vitro (Figure 31B).   

 

Figure 31: CIC invasion was suppressed in Lunasin-treated cells.  In vitro invasion assays demonstrate 

that Lunasin-treated A375 and B16-F10 ALDHhigh cells had less invasive capacity than cells treated with 

vehicle (A).  A375 and B16-F10 ALDHhigh cells were plated in the upper compartment of a Boyden 

chamber, and allowed to migrate through a Matrigel-coated insert (8 μm pore size) toward a 

chemoattractant as described in Section 2.19.  Invading cells were stained with toluidine blue and 

representative images are shown at 20x magnification (B).  Five fields from each insert were counted and 

the mean number of stained cells per field in Lunasin-treated wells was normalized to the mean number of 

invading cells in vehicle-treated wells.  The normalized values were expressed as percent (%) control.  Data 

from three independent experiments are shown as mean ± s.d.  Statistical significance was determined by 

student’s t-test and is denoted by an asterisks.   

 

Lunasin abrogates pulmonary metastasis in vivo 

 To test whether Lunasin’s antimetastatic effects would persist in vivo, a syngeneic mouse model 

using the B16-F10 cell line was employed.   This system was shown to represent an excellent model to test 

Lunasin’s efficacy in inhibiting tumor growth in xenograft experiments [275].  When 2.5x105 B16-F10 

cells were intravenously injected into C57Bl/6 mice, pulmonary seeding and subsequent tumor 

establishment occurred within 18 days.  Throughout the experiment, mice were dosed daily with vehicle or 
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Lunasin (30 mg/ kg) by i.p. injection.  Upon experimental endpoint, it was observed that Lunasin-treated 

mice had significantly reduced metastatic outgrowths when compared to control mice (Figure 32).  Mice in 

the control group averaged 45 (± 22) observable pulmonary lesions compared to only 9.5 (± 8) in Lunasin-

treated mice (Figure 32A).  These results were consistent with data obtained when observable microscopic 

lesions from randomized lung sections of control and Lunasin-treated mice were counted and measured 

(Figure 32B).  Representative images of lungs resected from metastasis-bearing mice in control (Figure 

32C) and Lunasin (Figure 32D) treatment groups are shown.  In addition, macrometastases were present in 

the lungs of all control mice (n = 10); however, lungs from 2 mice in the Lunasin group (n = 10) had no 

observable macrometastases.   

 Hematoxylin and eosin (H&E) stained lung sections also showed an observable difference in the 

average area of micrometastases between treatment groups.  Control mice had an average lesion area of 

31.6 mm2 compared to 10.3 mm2 in the Lunasin group (Figure 32B).  Micrometastases formed in the lungs 

of vehicle treated mice (Figure 32E) were larger and more abundant than in mice treated with Lunasin 

(Figure 32F).  Cellular morphology was similar between lesions derived from both control and Lunasin-

treated mice.  A subsequent graphic (Figure 33) which includes all pulmonary tissues resected from all 

mice in each treatment group (n = 20) is also provided.  The total number of observable macrometastases 

found on each set of lungs is provided in the bottom left corner of each image (Figure 33). 

 The decreased size and number of micrometastases present in Lunasin-treated animals led to the 

investigation of whether Lunasin has a significant effect on cell cycling in melanoma cell lines.  Although 

Lunasin has been shown to have an antiproliferative effect in NSCLC, no significant effect on cell cycle or 

cell viability (despite a modest increase in the G1 population) was observed when A375 or B16-F10 cell 

were treated with 100 μM Lunasin (Figure 34A-B).  Vemurafenib was used as a positive control and 

significantly reduced the number of cells in S-phase leading to an accumulation of cells in G1 (Figure 34C). 
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Figure 32: Lunasin reduced pulmonary metastases in vivo.  B16-F10 melanoma cells were injected i.v. 

into female C57BL/6 mice.  Lunasin-treated mice had less incidence of macrometastases (A) as well as 

significantly reduced average lesion area (B) as measured using ImageJ software.  Representative images of 

pulmonary tissues resected from control (C) and Lunasin (D) treated mice are shown.  H&E stained 

sections demonstrate the significant difference between average lesion area in vehicle (E) and Lunasin (F) 

treated mice.  Stained sections were imaged at 10x (left) and 40x (right), scale bar = 1 mm.  Graphs 

represent data plotted as mean ± s.e.m.  Means were determined to be statistically significant by student’s t-

test and significance is denoted by an asterisk. 

 

Lunasin antagonizes integrin signaling through FAK/AKT/ERK and inhibits histone acetylation 

 It was next investigated whether the effects of Lunasin on human and murine melanoma cells is 

related to the known effects of Lunasin on integrin signaling.  Immunoblot analysis showed that A375 and 

B16-F10 melanoma lines treated with Lunasin for 24 h had decreased phosphorylation patterns of FAK, 

AKT, and ERK.  When compared to ALDHlow cells, A375 ALDHhigh cells exhibited decreased AKT and 

ERK phosphorylation in Lunasin-treated cells (Figure 35A); both ALDHlow and ALDHhigh showed 

decreased FAK phosphorylation when treated with 100 μM Lunasin.  Integrin β1 engagement has been 

shown to activate auto-phosphorylation of FAK at Y397 [276, 277], thus, binding of Lunasin to the α-
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subunit (via Lunasin’s RGD motif) and the subsequent inhibition of β1 engagement with downstream signal 

transducers may cause the observed decreased in phosphorylation patterns.  Because β1 subunits dimerize 

with a plethora of α subunits (reviewed in [278]), the baseline phosphorylation may be due to the 

expression of various integrin heterodimers (e.g. α1β1) in melanoma cells.  Similarly, the β1 integrin subunit 

has been shown to phosphorylate AKT at S473 [279], suggesting a analogous mechanism to FAK 

activation. 

 In order to validate the effects of Lunasin on integrin signaling in CICs, PLA assays were used to 

investigate the interactions between integrin β subunits and the intracellular signal transducers ILK and 

pFAK (Y397).  Firstly, it was observed that Lunasin interacts with the integrin αV subunit of A375 

ALDHhigh cells (Figure 35B).  This interaction suppressed downstream interactions between β1 and β3 

integrin subunits with ILK and pFAK by approximately 40- 50% (Figure 35B and 35C).  These results are 

consistent with those seen in NSCLC models [10], and further confirm that the effects of Lunasin on 

melanoma CICs are, in part, due to altered integrin signaling pathways. 

 Immunoblot analysis for several phosphorylation sites corresponding to activation of FAK and 

AKT were conducted on A375 and B16-F10 ALDHhigh cells.  Phosphorylation of FAK at tyrosine residues 

Y397 and Y925 was inhibited when ALDHhigh cells were treated with Lunasin for 24 h (Figure 36A).  It 

was also observed that PI3K/AKT signaling was reduced in Lunasin-treated cells.  Lunasin treatment 

decreased phosphorylation of AKT at S473 and T308 as well as phosphorylated ERK1/2 at T202/Y204 

(Figure 36B).   

 Because Lunasin has been reported to have activity as a HAT inhibitor, it was also investigated if 

any histone acetylation marks may have been changed in Lunasin-treated cells.  Histones were isolated by 

acid extraction, and acetylation marks in H3 and H4 histone were assessed by immunoblot analysis.  It was 

previously reported that several acetylation marks were altered when NSCLC cells were incubated with 

Lunasin [10].  Interestingly, an observable change in a different set of acetylation marks in melanoma cells 

treated with Lunasin.  Lunasin treatment reduced histone acetylation at H3K9 and H4K12, while no 

difference was seen in acetylation of H4K8 and H3K14 (Figure 37).  The present data suggest that Lunasin 

modulates histone acetylation in melanoma cells resulting in decreased acetylation marks, which may lend 
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itself to the anticancer effects of Lunasin.  These results are consistent with previously published reports 

supporting a mechanism in which Lunasin disrupts histone acetylation at H3 and H4 histone tails [9, 10]. 

 

Figure 33:  Lungs resected from experimental metastasis in vivo model.  Lungs were resected from 

mice receiving vehicle (A) or Lunasin (B) treatment after implantation of B16-F10 cells.  Lunasin-treated 

mice displayed significantly less tumor burden in pulmonary tissues when compared to vehicle-treated 

mice.  The number of macrometastatic lesions observed for each set of lungs is shown in the bottom left of 

each image. 

 

 Interestingly, ALDHhigh and ALDHlow A375 cells had somewhat contrasting integrin expression 

profiles; ALDHhigh cells expressed integrin subunits αV and β3 more abundantly than ALDHlow cells when 

grown in anchorage independent culture, while ALDHlow cells seemed to express higher levels of α5 and β1 

integrin subunits (Figure 38).  These data may suggest a mechanism for the increased disruption of 

integrin-associated signaling in cells derived from ALDHhigh CICs when compared to cells from the non-

CIC compartment (i.e. ALDHlow). 

The RGD-domain is essential for Lunasin uptake and disrupting oncosphere formation 

 Immunoblot analyses implicated suppression of integrin signaling and effects on histone 

acetylation as being important for Lunasin action.  To investigate whether these mechanisms are required 
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for Lunasin activity, peptides were synthesized in which the RGD domain or poly-D tail were mutated in 

order to disrupt Lunasin’s interaction between integrins or histones, respectively.  The generation of 

oncospheres was utilized as a surrogate assay to identify the effect of Lunasin on CIC clonogenicity.  No 

difference in the ability of A375 ALDHhigh cells to form oncospheres between vehicle-treated cells and cells 

treated with RAD-mutated peptide was observed.  Conversely, cells treated with native Lunasin (p < 0.001) 

and the scrambled tail peptide (p = 0.0013) had a significantly reduced ability to form oncospheres in 

anchorage-independent culture (Figure 39).  These data suggest that the RGD domain, which interacts with 

integrins, is necessary for preventing sphere formation by CICs.   

 

Figure 34:  Cell cycle was not significantly affected by Lunasin.  A375 (A) and B16-F10 (B) ALDHhigh 

cells were treated with 100 μM Lunasin, and stained with PI for analysis of cell cycle.  No significant 

difference in populations in G1, S-phase, or G2/M was observed with Lunasin treatment compared to 

control in either cell line.  A representative image shows the cell cycle curve for control, Lunasin, and 

vemurafenib (positive control) as analyzed using FlowJo cell cycle analysis software.  Data were obtained 

from three independent experiments and shown as mean ± s.d.  Statistical significance was determined by 

student’s t-test (p < 0.05), and significant values are denoted by an asterisk (*).   



95 
 

 An endocytic mechanism by which Lunasin is internalized has been reported in human 

macrophages [38].  Since the RGD domain appears to be necessary for Lunasin’s disruption of oncosphere 

formation, it was next asked whether or not the RGD domain was essential for Lunasin’s internalization.  

A375 cells, which express the RGD-recognizing integrin subunits αV and α5, were treated with 100 μM 

native Lunasin (Figure 40A) or RAD-Lunasin (Figure 40B) for 5, 10, 30, and 60 min.  Cells were fixed and 

probed for Lunasin using a rabbit polyclonal antibody which was confirmed to recognize the mutated 

peptide sequence.  Although Lunasin was detected intracellularly in cells treated with both native and 

RAD-mutated peptides, fluorescent intensity was much higher in cells treated with native Lunasin 

compared to RAD-Lunasin.  Interestingly, RAD-Lunasin never localized in the nucleus, while the native 

peptide was observed in the nucleus after 10-30 m.  These data support the notion that Lunasin’s 

internalization is integrin-dependent, and may explain why the RGD domain is an integral part of Lunasin’s 

anticancer activity. 

 

Figure 35: Lunasin suppressed integrin signal transduction.  ALDHhigh and ALDHlow cells derived from 

the A375 melanoma cell line were treated with 100 μM Lunasin in low adherent culture for 24 h, and the 

resulting lysates were probed for integrin-associated signaling proteins (A).  Reductions in phosphorylation 

patterns of FAK, AKT, and ERK in ALDHhigh cells were observed in Lunasin-treated ALDHhigh cells, while 

only a modest effect was observed on FAK phosphorylation in ALDHlow cells (A).  Actin was used as a 

reference protein.  Relative protein expression (normalized to control) is shown above corresponding 

bands.  Additionally, PLA assays were utilized to validate that Lunasin was targeting integrin signal 
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transduction (B).  A significant decrease (~40 – 50%) in fluorescence signals per cell were observed when 

interactions between integrins and ILK/pFAK were detected in vehicle and Lunasin-treated cells (C).  

These results suggest Lunasin decreased the interactions between integrin β subunits and the intracellular 

kinases FAK and ILK.    

 

 

 

 

Figure 36: Lunasin inhibited phosphorylation of FAK, AKT, and ERK.  ALDHhigh cells derived from 

human A375 and murine B16-F10 melanomas were treated with Lunasin for 24 h, and the resulting cell 

lysates were subjected to SDS-PAGE and probed for integrin-associated signaling pathways.  Lunasin 

inhibited activating phosphorylations of FAK (A), AKT (B), and ERK (B) at several amino acid residues.  

Immunoblot analysis of integrin-associated pathways were performed in two independent experiments.  

Densitometry analysis was performed, normalized to control, and is denoted above each representative 

band. 
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Figure 37: Lunasin modulates histone acetylation.   It was observed that Lunasin treatment caused a 

decrease in histone acetylation at H3K9 and H4K12, which suggests epigenetic modification may play a 

role in Lunasin’s effects on melanoma CICs.  Histone acetylation was assessed by immunoblot and relative 

protein expression (shown above corresponding bands) was taken from analysis of two independent 

experiments. 

 

Figure 38:  Differential expression of integrin subunits by melanoma CICs.  A375 ALDHlow and 

ALDHhigh cells were isolated by FACS, and lysates were subjected to SDS-PAGE.  Integrin expression 

profiles show that ALDHhigh cells express higher levels of αV and β3 subunits when compared to ALDHlow 
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cells.  ALDHlow cells showed higher abundance of integrin α5 and β1 subunits when compared to samples 

from ALDHhigh cells.  

 

 

Figure 39: Lunasin’s RGD motif is essential for disrupting oncosphere formation.  Mutated peptides 

based on Lunasin’s activity domains were synthesized and used to treat A375 ALDHhigh cells in low 

adherent culture.  Vehicle-treated cells readily formed oncospheres, but native Lunasin disrupted 

oncosphere formation (A).  When the RGD sequence was mutated to RAD, Lunasin lost its ability to 

inhibit oncosphere formation, while a peptide containing a scrambled tail retained the ability to inhibit 

oncosphere generation (A).  Representative images taken at 10x (left) and 20x (right) demonstrate the 

ability of the peptide to inhibit oncosphere formation (B).  Averages from three independent experiments 

were plotted at mean ± s.d.  Statistical significance was determined by student’s t-test and denoted by an 

asterisk.   
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Figure 40:  Lunasin uptake is an integrin-dependent process.  RGD (A) and RAD (B) Lunasin peptides 

were incubated with A375 cells for various time points up to 1 h.  While some RAD-Lunasin was detected, 

cells treated with RGD-Lunasin (native) showed significantly more abundant intracellular Lunasin as 

illustrated by a significantly increased fluorescent signal (C).  Additionally, it was observed that native 

Lunasin with an intact RGD motif was localized in the nucleus of A375 cells after just 10 min, while RAD-

Lunasin was only detected in the cytoplasm at up to 1 h after treatment.  Images represent data obtained 

from two independent experiments, and is plotted as average fluorescence per cell ± s.d. Statistical 
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significance was determined by student’s t-test (p < 0.05).  An asterisk (*) denotes significance between 

RGD and RAD peptides at the respective time points. 

 

4.4 DISCUSSION 

 The findings that Lunasin reduced metastatic dissemination in vivo and invasion through Matrigel 

in vitro, support the unique hypothesis that RGD peptides may help alleviate patient relapse in malignant 

melanomas.  Chapter 4 shows that mechanisms previously described for Lunasin’s anticancer effects 

persist in melanoma models, and perhaps most importantly, are exacerbated in isolated CIC populations.  

Uptake and internalization of Lunasin in A375 cells was shown to be integrin-dependent and correlated 

with the expression of the integrin αV subunit.  Colocalization of Lunasin with integrin subunits was 

observed at several time points varying from 4 h to 24 h, and localization of Lunasin in both the cytoplasm 

and nucleus was observed for all time points.  These data are in agreement with previously reported studies 

on Lunasin’s interaction and uptake with specific integrin subunits [12, 38].  Interestingly, a morphological 

difference between A375 cells treated with Lunasin and vehicle was observed.  Intracellular localization of 

integrin αV in Lunasin-treated cells was observed, while integrin αV was found only on the periphery of 

vehicle-treated cells.  These data indicate that Lunasin was readily internalized in A375 cells, and support 

the previously described endocytic mechanism reported in human macrophages [38]. 

 The Davis lab has previously published results using human melanoma cell lines showing that 

Lunasin efficiently reduced pools of CICs based on the ALDH biomarker, and resulted in disrupted  

oncosphere formation when ALDHhigh cells were plated in stem cell media in anchorage-independent 

culture conditions [228] (described in Chapter 3, page 43).  Additionally, it was found that Lunasin induced 

expression of melanocyte-associated differentiation markers MITF and Tyrosinase (described in Chapter 3, 

page 46).  Low-MITF expressing populations in melanomas have been described to harbor a slow cycling 

stem-like population with intrinsic chemoresistant and tumorigenic properties [200].  It was recently 

reported that MITF regulates melanoma invasion through Rac/Rho GTPases [280], which supports 

previous evidence showing MITF is explicitly involved in melanoma progression [281, 282].  This is a 

particularly interesting discovery given the regulation of Rac1 by integrins [283].   
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 In the present study, a significant decrease in B16-F10 oncosphere generation was observed when 

cells were treated with 100 μM Lunasin concomitant with a significant decrease in the ALDH-positive 

population of cells, which has been reported to bear the CIC fraction responsible for tumor formation and 

metastasis [103].  When the in vitro invasive potential of A375 and B16-F10 ALDHhigh cells was measured, 

Lunasin-treated cells were significantly less capable of invading through the basement membrane when 

compared to vehicle-treated cells).  These data are in agreement with Lunasin’s effect on depleting 

ALDHhigh populations [228], which may be responsible for metastatic dissemination [103, 106, 228]. 

 When C57Bl/6 mice were subjected to an experimental metastasis model of melanoma using B16-

F10 cells, Lunasin treatment significantly suppressed the ability of these cells to invade and proliferate in 

the lungs.  Two mice in the Lunasin-treated group displayed no sign of macrometastases suggesting that 

Lunasin was an effective treatment for reducing or abolishing metastatic burden altogether.  It was 

demonstrated that Lunasin inhibited subcutaneous tumor growth of murine models of melanoma and 

NSCLC [275].  Utilizing immunocompetent preclinical models of cancer allows researchers to explore the 

complex relationship between host immunity and tumor microenvironment; this especially holds true given 

the immunogenic nature of melanomas [136, 284].  It has been found that Lunasin has robust immune 

boosting effects, and may improve vaccine efficacy by promoting dendritic cell maturation [41, 42].  

Furthermore, Lunasin synergistically enhanced the cytotoxic effect of NK cells when combined with 

cytokine therapy [13].   The exciting possibility that Lunasin not only directly affects cells by reducing 

integrin signaling or histone acetylation, but can also “prime” the innate immune system to repress cancer 

cell proliferation illustrates the extremely promising benefits of the peptide that deserve further study. 

 As described in Chapter 3 [228], Lunasin has a selective effect on melanoma CICs compared to 

bulk tumor cells.  It was questioned whether these selective effects would persist when integrin signal 

transduction was evaluated.  Phosphorylations of FAK, AKT, and ERK, intracellular kinases downstream 

of integrins, were significantly reduced when A375 and B16-F10 cells were treated with Lunasin; A more 

robust effect was observed in the ALDHhigh cells when compared to the ALDHlow cells.  These mechanisms 

have been described in several cancer models including breast [227], colon [36], and lung cancer [10]; 

however, the Davis lab is the first to report that CICs are more sensitive to Lunasin’s integrin antagonism in 

melanoma.  Given the explicit involvement of FAK and AKT in carcinogenesis, progression, and 
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metastasis [195, 234], these results are promising especially taken in conjunction with the finding that 

Lunasin decreased CIC pools.   

 Lunasin sensitivity of A375 ALDHhigh and ALDHlow cells correlates with differential expression of 

specific integrin subunits when cultured as spheres in low-adherent conditions.  ALDHhigh cells expressed 

relatively higher amounts of αV and β3 integrin subunits, while ALDHlow cells expressed comparatively 

higher levels of α5 and β1 integrin subunits.  The complexities of integrin signal transduction mechanisms 

remain somewhat of a mystery; however, new research has revealed disparities in signaling coordinated 

though αvβ3 integrins and α5β1 [285, 286].  In fact, expression of specific integrins in stem cell-like cancer 

cells has been reported in other cancer models including prostate [196] and breast [198], which may reveal 

a potential weakness of CICs that provides a potential therapeutic target to specifically inhibit CIC 

expansion.   

 Histone acetylation by HATs (Reviewed in [287]) results in chromatin remodeling to allow for the 

initiation of transcription; efficient histone acetylation is necessary for replicative machinery to initiate 

transcription of target genes.  Thus, targeting HATs appears an attractive means to reduce cancer cell 

proliferation.  Lunasin’s activity as a HAT inhibitor has been described [20].  Histone acetylation in A375 

and B16F10 ALDHhigh cells was affected with Lunasin treatment; however, Lunasin induced different 

acetylation patterns in melanoma when compared to previously reported results in NSCLC [10].  Recently, 

it was shown that HAT inhibition preferentially induced apoptosis and inhibited stem-associated markers in 

a NSCLC model [288].  While an induction of apoptosis in melanoma was not observed, many of the 

results described in Chapters 3 and 4 parallel those obtained in this study, suggesting a potential link 

between suppression of CIC invasion and Lunasin’s epigenetic mechanisms. 

 The present study suggests that inhibition of integrin signaling is the primary mechanism 

mediating Lunasin’s effects in melanoma stem cells.  When the RGD domain of Lunasin was mutated, 

Lunasin lost its ability to disrupt oncosphere formation, a surrogate assay for stem cell identification and 

propagation.  Mutating the poly-aspartic acid tail seemingly had no effect on oncosphere formation.  This 

result implies that the poly aspartic acid tail is not required for inhibiting CIC clonogenicity; however, 

functional assays utilizing siRNA-mediated knockdown of both integrins and histone acetylation would 

provide a more suitable system to test this hypothesis.  Though supporting evidence shows that stem cells 
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can be maintained through integrin signaling [289], further research must be conducted to unequivocally 

determine that integrin antagonism is the sole mechanism for Lunasin’s reduction of the CIC compartment, 

especially given that CICs may also be maintained by histone acetylation [290].  This is particularly 

interesting considering that when p300, a HAT whose activity is antagonized by Lunasin [33], was knocked 

out in embryonic stem (ES) cells, Nanog expression was markedly reduced yet, self-renewal capacity (a 

function measured by oncosphere formation) was not significantly affected [291].  These results 

corroborate findings from a previous study [228] (described in Chapter 3, page 47) showing Lunasin 

treatment resulted in a significant reduction in Nanog levels; however, Lunasin treatment also robustly 

inhibited sphere formation, suggesting oncosphere formation may be integrin-dependent and independent 

of histone acetylation.  Crosstalk between integrin signaling and histone acetylation is relatively 

unexplored; though, evidence that integrin β1 engagement with ECM proteins may regulate H3 acetylation 

patterns has been described [292].  The complex signaling circuits between extracellular cues transduced 

through integrins, and intracellular events leading to changes in histone acetylation patterns is slowly 

unraveling; however, several key pieces of the puzzle remain.  Lunasin may serve as a key tool to bridge 

the gap between these two interesting and highly complex signaling pathways. 

 In summary, the present study found that Lunasin has robust antimetastatic properties in vitro and 

in vivo.  CICs, characterized by elevated ALDH activity, showed a greater disruption in integrin signaling 

induced by Lunasin treatment when compared to non-CICs as assessed by downstream activating 

phosphorylations of FAK and AKT.  In agreement with the studies described in Chapter 3, it was shown 

that B16-F10 cells exhibited Lunasin-dependent depletion of ALDHhigh populations, and disruption of 

oncosphere formation.  While Lunasin also altered histone acetylation patterns, Lunasin’s effects in 

melanoma appear to be largely an integrin-dependent process.  The present study extends upon the novel 

therapeutic approach that using Lunasin to reduce pools of CICs will ultimately lead to decreased invasion 

and subsequent metastatic outgrowths.  By modulating integrin signaling through FAK and PI3K/AKT 

pathways as well as altering histone acetylation patterns, Lunasin’s complex and multifaceted anticancer 

activities suggest a potential therapeutic utility against malignant diseases in which recurrence due to CICs 

is likely.  Given the results presented in this dissertation as well as those from others, a sufficient body of 
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evidence has been presented to examine the clinical utility of Lunasin as an antimetastatic agent in patients 

with late stage cancers that are at risk of further metastatic dissemination. 
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 

5.1 Restatement of Specific Aims 

Specific Aim 1: Identify the mechanisms in which Lunasin targets CICs 

Sub Aim A. Assess the ability of Lunasin to reduce populations expressing CIC and stem-

associated markers 

Sub Aim B. Characterize the effects of Lunasin on CICs through analysis of proliferative, 

apoptotic, and differentiation markers 

Specific Aim 2: Evaluate the interaction between Lunasin and integrin subunits 

Sub Aim A. Specify the explicit integrin subunits interacting with Lunasin and identify the 

downstream mediators of integrin signal transduction 

Sub Aim B. Mutate the Lunasin peptide to discriminate the effects caused by histone 

acetyltransferase inhibition and integrin antagonism 

Sub Aim C. Genome-wide microarray analysis to discover Lunasin associated gene targets 

Specific Aim 3: Investigate the antimetastatic effects of Lunasin 

5.2 Summary of Findings and Impact of the Work 

 The overall aim of this dissertation was to investigate the therapeutic benefit that Lunasin may 

achieve in malignant melanomas, and identify the potential mechanisms driving its anticancer properties.  

Initially, it was demonstrated that Lunasin suppressed melanoma cell growth in 3D in vitro assays as well 

as in vivo.  In Chapter 3, these studies were expanded to describe the selective effects of Lunasin on CICs, 

identified by elevated ALDH activity. It was shown that Lunasin efficiently reduced ALDH-high 

populations, a subset of cells that harbor the stem cell-like population, and consequently inhibited the 

functional characteristics and self-renewal capabilities of these cells.  Mechanistically, Lunasin drastically 

decreased integrin signaling through FAK, AKT, and ERK while also inducing a differentiated phenotype 

with reduced expression of stem-associated markers.  Data presented in Chapter 4, investigated the 

antimetastatic effects of Lunasin on melanoma CICs, and elucidated the potential mechanisms underlying 
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Lunasin’s antimetastatic activity.  Given the significant involvement of CICs and integrin signaling in 

metastatic dissemination, this work aims to explain how Lunasin may be useful clinically in patients with 

malignant diseases.  This dissertation advances the potential utility of the novel therapeutic Lunasin which 

is largely unexplored and additionally, provides a compelling argument for the development of Lunasin, 

not only in melanoma, but malignant diseases in which CICs can produce refractory tumors. 

 The first aim of this work was to define the selective effects of Lunasin on CICs by assessing 

proliferation, apoptosis, and differentiation markers, and additionally, show that Lunasin induced a 

movement of cells out of the CIC compartment (defined by elevated ALDH activity) and into the non-stem 

compartment (i.e. ALDHlow).  The human melanoma cell lines A375 and SKMEL-28 had subpopulations of 

cells with both ALDHhigh and ALDHlow activity.  In both cell lines, Lunasin induced a shift of cells from the 

ALDHhigh compartment to the ALDHlow compartment without decreasing cell viability or cell cycling.  This 

phenotype switch was concomitant with an induction of melanocyte-associated differentiation markers 

MITF and its downstream target Tyrosinase.  A significant decrease in the stem-associated transcription 

factor NANOG was observed when melanoma cell lines were treated with Lunasin.  NANOG has been 

shown to control stemness and self-renewal properties of physiological stem cells as well as CICs [293].  

Perhaps the most interesting discovery from these initial studies is the fact that CICs were more sensitive to 

Lunasin when compared to parental cells in vitro.  This exacerbated effect on melanoma CICs persisted in 

vivo when nude mice were subcutaneously injected with parental and ALDHhigh A375 cells.  Lunasin’s 

safety profile was also quite promising; no cytotoxicity was observed in mice receiving i.p. injections of 

Lunasin at 30 mg/kg.  Liver and kidney functions were not significantly impaired, nor was a significant 

difference in CBC counts observed between mice receiving vehicle and Lunasin-treated mice. 

 To follow up the studies presented in Chapter 3, Chapter 4 questioned whether Lunasin’s effects 

on CICs were driven by the inhibition of integrin signaling; thus, the second aim of this dissertation was to 

describe the downstream effectors of integrin signal transduction which may be affected by Lunasin.  

Additionally, the work in Chapter 4 investigated the effects elicited by Lunasin on integrin antagonism and 

alterations in histone acetylation patterns.  It was revealed that Lunasin’s effects in melanoma cells was 

primarily integrin-driven, and integrin signal transduction through FAK, PI3K-AKT, and ERK was 

significantly suppressed when melanoma cells were treated with Lunasin.  The final sub-aim was to utilize 
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a genome-wide microarray screen in order to help reveal selective targets of Lunasin in CICs, but also to 

define a unique gene signatures between ALDHhigh melanoma cells and parental cells.  The datasets 

generated from the microarray analysis revealed the upregulation of EMT-associated genes in ALDHhigh 

populations along with several genes linked to invasion and metastasis.  Although Lunasin had a modest 

effect on both parental and ALDHhigh cells treated for 72 h, ALDH-sorted cells had nearly twice as many 

genes up- or down-regulated when compared to parental cells, which may indicate why isolated CIC were 

more sensitive to Lunasin.  Furthermore, this study validated the use of ALDH as a viable biomarkers for 

stem-like cells in melanoma models; ALDHhigh cells had increased expression of several genes associated 

with EMT and melanoma invasion. 

 Given the results presented in Chapter 3 and Chapter 4 describing the robust effects of Lunasin on 

depleting CIC pools and suppression of integrin signaling, it was hypothesized that Lunasin would have 

significant antimetastatic effects.  Therefore, the final aim of this dissertation was to investigate the 

proposed antimetastatic effects using an experimental metastasis model.  Boyden chamber assays using 

Matrigel coated inserts provided evidence that in vitro invasion was repressed when A375 and B16-F10 

ALDHhigh melanoma cells were pretreated with Lunasin.  Subsequently, a syngeneic murine model of 

metastasis was utilized to demonstrate that Lunasin’s antimetastatic effects were enduring in vivo.  A 

significant decrease in pulmonary colonization of B16-F10 cells was observed in Lunasin-treated mice 

when compared to mice receiving vehicle treatment.   

 Completion of these studies contributed significantly to the field of Lunasin research in several 

ways.  The Davis laboratory is the first to report on the anticancer effects of Lunasin in a melanoma model, 

and additionally, the first to report that CICs may be more sensitive to Lunasin’s inhibition of integrin 

signaling.  The present study also showed that functionally, the RGD domain of the Lunasin peptide is 

essential for Lunasin uptake as well as its disruption of oncospheres generated from isolated CICs.  This 

dissertation provides substantial evidence supporting that Lunasin has robust antiproliferative effects in 

subcutaneous xenograft models of melanoma as well as considerable antimetastatic effects in a syngeneic 

mouse model of experimental metastasis; studies which are largely lacking in the field of Lunasin research.  

Moreover, this work has created a foundation upon which future studies of Lunasin can draw from in 
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addition to provided concepts which could be further expanded upon.  These studies support the already 

solid body of evidence supporting the development of the Lunasin peptide as an anticancer therapeutic.  

5.3: Strengths and Weaknesses of the Dissertation 

 This dissertation has several strengths that have contributed significantly to understanding the 

mechanisms involved in the anticancer activities of Lunasin.  Using Lunasin to treat isolated CICs based on 

the ALDH biomarker is a novel strategy for the treatment of malignant disease in which CICs have been 

described.  Furthermore, the present study compared ALDHhigh samples to parental samples in order to 

differentiate the specific signaling pathways mediating Lunasin-sensitivity.  Evidence was provided which 

supports previous studies involving Lunasin’s interactions and uptake with specific integrin subunits, as 

well as expands upon the idea that Lunasin drives alterations in intracellular signaling cascades involving 

FAK, AKT, and ERK.  Not only do these studies define specific mechanisms implicated in Lunasin’s 

activity as a chemotherapeutic, but also support the concept that targeting CICs may provide an innovative 

intervention strategy for malignant diseases. 

 Another strength of the dissertation is the use of several preclinical in vivo murine models of 

cancer to demonstrate the ability of Lunasin to inhibit cancer progression in a living system.  

Immunocompromised mice were utilized to show that Lunasin robustly inhibits human melanoma 

proliferation in subcutaneous xenograft models of melanoma.  An immunocompetent syngeneic mouse 

model was also utilized to demonstrate that Lunasin significantly suppressed metastatic dissemination to 

pulmonary tissues of mice injected with the highly metastatic B16-F10 cell line.  Both 

immunocompromised and immunocompetent mouse models have distinct advantages and disadvantages.  

By using both types of murine models, this dissertation demonstrates that Lunasin has robust anticancer 

effects regardless of host immune status, or species from which the cancer cells are derived.   

 Although preclinical murine models can mimic human diseases, there are several distinct 

differences between model organisms and humans.  Firstly, subcutaneous xenografts do not recapitulate the 

correct microenvironment from which a human tumor will arise.  Although the human condition cannot be 

exactly recapitulated in murine models, certain cellular processes such as angiogenesis or proliferation can 

somewhat be observed within the tumor microenvironment; however, these model are lacking the 

interactions typically reserved between tumor stroma and surrounding tissues.  Additionally, these studies 



109 
 

cannot accurately mimic the de novo formation of tumor cells; nor do subcutaneous tumors readily progress 

to malignant disease, therefore, limiting subcutaneous models to essentially measuring in vivo tumor 

proliferation, but not progression. 

 Experimental metastasis models have the advantage of being quick, easy, and reproducible.  Yet, 

injecting tumor cells intravenously does not account for the early cellular changes involved in metastatic 

dissemination.  Because these cells are already in systemic circulation, this model avoids important 

processes involved in metastasis including invasion of surrounding tissues and extravasation.  While 

melanomas commonly metastasize to the lungs, experimental metastasis models are generally confined to 

producing pulmonary lesions and do not allow for colonization of other common metastatic sites such as 

the brain, bone, or lymph nodes. 

 The lack of positive controls for several in vitro assays is another source of potential error.  In 

order to determine if the assay(s) is working correctly, positive controls must be included in the analysis of 

apoptosis, proliferation, and invasion.  For Annexin V binding assays and immunoblot analysis of 

apoptosis-associated proteins, a positive control (e.g. staurosporin) should have been included.  

Additionally, the inclusion of an agent known to inhibit proliferation of melanoma cells (e.g. vemurafenib) 

should have been included in the tetrazolium-based proliferation assays.  Many of these controls were used 

in prior experiments to demonstrate that the assays were performing as expected; however, were not 

included in the representative experiments shown in this dissertation.  The absence of such controls lowers 

the potential impact of such studies, and should be included in any future studies.  Furthermore, many 

assays utilizing PB (the vehicle in which Lunasin is dissolved) as a control would benefit from the addition 

of an RGD tripeptide control.  The simple addition of this tripeptide as a control would potentially explain 

if perhaps Lunasin’s activity is significantly higher due to mechanisms other than those associated with its 

RGD domain.  Several experiments in which immunoblot analysis revealed a significant impact on 

integrin-associated signal transduction would have benefitted from the inclusion of several concentrations 

of Lunasin; the addition of multiple treatment groups would demonstrate whether or not the observed 

effects were dose-dependent.  Furthermore, several techniques could have been used to definitively 

demonstrate that mutated peptides were interacting with integrin subunits including knockdown of integrins 

and subsequent Lunasin internalization, saturation binding assays, or competition binding assays.  The 
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addition of such an assay would strengthen the discussion on whether or not the RGD motif is necessary to 

Lunasin’s activity in melanoma cells. 

 Perhaps the most glaring weakness of this dissertation is the use of cell lines without employing 

any primary melanoma cultures.  Several disadvantages to using cell lines include: 1) the continual passage 

in culture can alter cellular phenotypes, 2) without genotyping the status of several critical genes involved 

in specific models of cancer (e.g. B-Raf) can be ambiguous, 3) cross-contamination and mycoplasma, and 

4) they do not accurately mimic primary cultures.  Although many of these problems can be avoided 

through simple testing procedures, purchasing from approved vendors, and using proper controls in 

experiments, using cell lines can be especially problematic when studying CIC populations.   

 While the experimental system used to identify changes in gene expression in the genome-wide 

microarray analysis was robust and technically sound, it is necessary to validate these results by qRT-PCR 

as well as determine the subsequent changes in protein levels.  Conversely, the inclusion of several 

technical replicates, sample integrity, and stringent analysis minimized any artifacts or false discoveries 

resulting from the array. 

 It was observed that ALDHlow cells derived from A375 and SKMEL-28 cell lines tended to 

“dedifferentiate” into ALDHhigh cells when grown in culture (described in Chapter 3).  This is counter to 

some studies in which ALDH-sorted cells were isolated from primary melanomas; ALDHhigh cells could 

differentiate into ALDHlow cells, but ALDHlow cells did not generate ALDHhigh populations.  Whether this is 

a condition of using cells that have been propagated in culture, plasticity in ALDHlow melanoma cells, or a 

“rebound” effect initiated by cells trying to recapitulate the balance of heterogeneous populations in 

parental cell lines remains unclear. 

5.4: Future Studies 

 The questions answered in this work, while significant to the field of Lunasin, created several new 

questions that will need to be investigated to obtain a more thorough understanding of the novel 

mechanisms described in CICs as well as the role they play in tumorigenesis and metastasis.  Listed below 

are several of these questions: 

1. What is the connection (if any) between integrin signaling and histone acetylation? 
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 While this study linked several of Lunasin’s effects in melanoma to integrin signaling, a 

significant change in histone acetylation patterns was also observed.  Without functional studies which 

manipulate integrin signaling and measure the resulting histone acetylation patterns (or vice versa), it is 

impossible to determine unequivocally that these effects are only driven by integrin signaling networks.  

Using peptides with mutated activity domains, it was shown that uptake and localization of Lunasin 

intracellularly was associated with the interaction between the RGD domain and integrins.  In RAD-

Lunasin-treated samples, a minimal fluorescent signal was observed when probing for Lunasin.  However, 

some Lunasin in the cytoplasm was observed, which may suggest an alternative mechanism for Lunasin 

internalization. 

2. What are the pharmacokinetic properties of Lunasin? 

 Lunasin has been shown to be bioavailable in men consuming applicable amounts of soy protein; 

however, kinetic profiling of Lunasin in vivo has been a rather unexplored field.  Obtaining metabolomics 

data in a relevant system is paramount to developing any therapeutic.  Because this study used 

comparatively high concentrations of Lunasin in vitro, many questions arise to the practicality and 

correlation to achievable concentrations in vivo.  While the authors digress that Lunasin’s kinetic properties 

are unknown, several biologics including peptide therapeutics and monoclonal antibodies are dosed at 

similar ranges to the in vivo studies in this work which utilized Lunasin at a concentration of 30 mg/kg.  

More importantly, robust anticancer effects were achieved using this dosing regimen while also observing 

minimal dose-limiting toxicity. 

3. What therapeutics could be used in conjunction with Lunasin to achieve a synergistic 

response? 

 Novel, first-line therapeutics to battle cancer are essential to the development and evolution of 

chemotherapy; however, several institutions are focusing on combination therapies to combat diseases 

traditionally treated with single agents; malignant melanomas are often treated with temozolomide as the 

only agent of the chemotherapeutic arm.  While these strategies may alleviate some primary and secondary 

tumor growth, they simply are not effective in the long-term treatment of recurrent malignant diseases.  

Combination therapy allows for several advantages over traditional single agent approaches including less 

dose-associated toxicity, minimizing chemoresistance, and modulation of several oncogenic pathways.  
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Initial studies in the Davis laboratory have focused on utilizing molecules which affected histone 

acetylation in combination with Lunasin in order to induce a synergistic response in cancer cells.  While 

little positive data were obtained from these studies, they seem to support the hypothesis that Lunasin’s 

anticancer effects are primarily integrin-driven.  Indeed, combinations of vemurafenib and Lunasin resulted 

in an additive/ slightly synergistic interaction.  Because Lunasin does not induce apoptosis or inhibit 

proliferation in vitro, the authors do not foresee using the peptide as a stand-alone therapeutic; a real-world 

application of Lunasin as an adjuvant therapy seems much more likely.  

4. Does Lunasin target EMT-associated genes? 

 It was demonstrated that Lunasin repressed the invasive phenotype of melanoma CICs; however 

proteins associated with EMT were not explored in this study.  Since the experimental metastasis model 

used in this dissertation does not accurately mimic EMT and extravasation, it would be interesting to 

explore the modulation of EMT-associated genes that are potentially targeted by Lunasin.  For example, 

assessing the effect of Lunasin on Notch, TGF-β, Wnt/β-Catenin, and BMP signaling may provide a critical 

perspective in further describing mechanisms associated with Lunasin’s antimetastatic properties. 

5. How does Lunasin modulate the expression of differentiation-associated biomarkers? 

 A novel component of this study was revealing the activity of Lunasin on the induction of 

melanocyte-associated differentiation markers.  Several proteins can regulate MITF expression including 

AKT yet, a major unanswered question to this dissertation is how Lunasin induced MITF.  What upstream 

pathway(s) was associated with the observed effects on MITF protein expression?  Answering these 

questions would unravel the mechanisms behind Lunasin’s function as a differentiation-inducing agent, and 

perhaps the mechanisms behind the suppression of self-renewal capacity of CICs.  While it was shown that 

Lunasin treatment suppressed Nanog levels, it was not conclusively answered how Lunasin was inhibiting 

Nanog expression, and whether this effect was a result of altered integrin signaling, histone acetylation, or 

some other mechanism. 

6. Can Lunasin prevent UV-mediated melanomagenesis? 

 As several studies have shown, Lunasin has significant chemopreventive activity in chemical and 

viral oncogene-induced carcinogenesis [27].  In the case of melanoma, the greatest risk factor is ultraviolet 

(UV) exposure.  Examining the literature on Lunasin revealed that there have been no studies investigating 
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whether Lunasin’s chemopreventive activity would apply to a UV-induced model of carcinogenesis.  The 

data presented in this dissertation would indicate that Lunasin has significant antimelanoma effects, yet, 

this work did not test human melanocytes for any functional effects stemming from Lunasin treatment.  It 

would be interesting to see if the protective effects of Lunasin exist in melanocytes, or if the results 

observed in this work are due to dysregulated oncogenic signaling in melanoma cells.  Although several 

studies in NSCLC parallel these results, it would be interesting to assess whether these effects are tissue-

specific especially when considering the induction of melanocyte-specific transcription factors such as 

MITF.  

5.5: Final Summary and Conclusions 

 The overall aim of this work was to examine the mechanisms involved in the anticancer effects of 

the Lunasin peptide.  The work in Chapter 3 uncovered a novel function of Lunasin in that it can selectively 

target CICs based on the ALDH biomarker.  Additionally, it was demonstrated that Lunasin depleted pools 

of cells displaying elevated ALDH activity, a subpopulation which has been reported to harbor the stem 

cell-like population occurring in several malignant diseases.  These studies were extended upon by using in 

vivo xenograft studies to demonstrate that Lunasin has robust antiproliferative effects in preclinical 

melanoma models, and exhibited an excellent safety profile with no significant cytotoxicity.  Work 

completed in Chapter 4 confirmed that CICs were more sensitive to the antagonism of integrin signaling by 

Lunasin; however, Lunasin treatment also resulted in alterations of histone acetylation patterns.  

Mechanistically, the work presented in this dissertation showed that the RGD domain is necessary for rapid 

uptake of Lunasin as well as for inhibiting the self-renewal capacity of CICs.  Combining the concepts that 

Lunasin depleted pools of CICs and antagonizes integrin signaling, this study investigated the 

antimetastatic effects of Lunasin in vitro and in vivo.  Lunasin significantly reduced invasive potential of 

ALDHhigh CICs in vitro, and suppressed colonization of the lungs by B16-F10 cells in an experimental 

metastasis model.  Taken together, this dissertation highlights several mechanisms associated with 

Lunasin’s effects, and examines its potential clinical utility as an adjuvant therapy to minimize patient 

relapse due to the presence of highly invasive and tumorigenic subpopulations of CICs. 

 



114 
 

REFERENCES 

 

1. Shin, A., et al., Isoflavone and Soyfood Intake and Colorectal Cancer Risk: A Case-Control 
Study in Korea. PloS one, 2015. 10(11): p. e0143228. 

2. Zhang, G.Q., et al., Soy Intake Is Associated With Lower Endometrial Cancer Risk: A 
Systematic Review and Meta-Analysis of Observational Studies. Medicine, 2015. 94(50): 
p. e2281. 

3. Wu, S.H. and Z. Liu, Soy food consumption and lung cancer risk: a meta-analysis using a 
common measure across studies. Nutrition and cancer, 2013. 65(5): p. 625-32. 

4. Pudenz, M., K. Roth, and C. Gerhauser, Impact of soy isoflavones on the epigenome in 
cancer prevention. Nutrients, 2014. 6(10): p. 4218-72. 

5. McCormick, D.L., et al., Chemoprevention of rat prostate carcinogenesis by soy isoflavones 
and by Bowman-Birk inhibitor. Nutrition and cancer, 2007. 57(2): p. 184-93. 

6. Lopez-Barrios, L., J.A. Gutierrez-Uribe, and S.O. Serna-Saldivar, Bioactive peptides and 
hydrolysates from pulses and their potential use as functional ingredients. Journal of food 
science, 2014. 79(3): p. R273-83. 

7. Rauth, S., J. Kichina, and A. Green, Inhibition of growth and induction of differentiation of 
metastatic melanoma cells in vitro by genistein: chemosensitivity is regulated by cellular 
p53. British journal of cancer, 1997. 75(11): p. 1559-66. 

8. Park, J.H., H.J. Jeong, and B.O. Lumen, In vitro digestibility of the cancer-preventive soy 
peptides lunasin and BBI. Journal of agricultural and food chemistry, 2007. 55(26): p. 
10703-6. 

9. Galvez, A.F., et al., Chemopreventive property of a soybean peptide (lunasin) that binds to 
deacetylated histones and inhibits acetylation. Cancer research, 2001. 61(20): p. 7473-8. 

10. Inaba, J., E.J. McConnell, and K.R. Davis, Lunasin sensitivity in non-small cell lung cancer 
cells is linked to suppression of integrin signaling and changes in histone acetylation. 
International journal of molecular sciences, 2014. 15(12): p. 23705-24. 

11. Garcia-Nebot, M.J., I. Recio, and B. Hernandez-Ledesma, Antioxidant activity and 
protective effects of peptide lunasin against oxidative stress in intestinal Caco-2 cells. Food 
and chemical toxicology : an international journal published for the British Industrial 
Biological Research Association, 2014. 65: p. 155-61. 

12. Cam, A. and E.G. de Mejia, RGD-peptide lunasin inhibits Akt-mediated NF-kappaB 
activation in human macrophages through interaction with the alphaVbeta3 integrin. 
Molecular nutrition & food research, 2012. 56(10): p. 1569-81. 

13. Chang, H.C., et al., Soypeptide lunasin in cytokine immunotherapy for lymphoma. Cancer 
immunology, immunotherapy : CII, 2014. 63(3): p. 283-95. 

14. Hernandez-Ledesma, B., C.C. Hsieh, and B.O. de Lumen, Antioxidant and anti-
inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. 
Biochemical and biophysical research communications, 2009. 390(3): p. 803-8. 

15. Odani, S., T. Koide, and T. Ono, Amino acid sequence of a soybean (Glycine max) seed 
polypeptide having a poly(L-aspartic acid) structure. The Journal of biological chemistry, 
1987. 262(22): p. 10502-5. 

16. Seber, L.E., et al., Scalable purification and characterization of the anticancer lunasin 
peptide from soybean. PLoS One, 2012. 7(4): p. e35409. 

17. Serra, A., et al., Commercial processed soy-based food product contains glycated and 
glycoxidated lunasin proteoforms. Scientific reports, 2016. 6: p. 26106. 



115 
 

18. Galvez, A.F. and B.O. de Lumen, A soybean cDNA encoding a chromatin-binding peptide 
inhibits mitosis of mammalian cells. Nature biotechnology, 1999. 17(5): p. 495-500. 

19. Jeong, H.J., Y. Lam, and B.O. de Lumen, Barley lunasin suppresses ras-induced colony 
formation and inhibits core histone acetylation in mammalian cells. Journal of agricultural 
and food chemistry, 2002. 50(21): p. 5903-8. 

20. de Lumen, B.O., Lunasin: a cancer-preventive soy peptide. Nutrition reviews, 2005. 63(1): 
p. 16-21. 

21. Jeong, H.J., et al., The cancer preventive peptide lunasin from wheat inhibits core histone 
acetylation. Cancer letters, 2007. 255(1): p. 42-8. 

22. Jeong, J.B., et al., Cancer-preventive peptide lunasin from Solanum nigrum L. inhibits 
acetylation of core histones H3 and H4 and phosphorylation of retinoblastoma protein 
(Rb). Journal of agricultural and food chemistry, 2007. 55(26): p. 10707-13. 

23. Omoni, A.O. and R.E. Aluko, Soybean foods and their benefits: potential mechanisms of 
action. Nutrition reviews, 2005. 63(8): p. 272-83. 

24. Lee, M.M., et al., Soy and isoflavone consumption in relation to prostate cancer risk in 
China. Cancer epidemiology, biomarkers & prevention : a publication of the American 
Association for Cancer Research, cosponsored by the American Society of Preventive 
Oncology, 2003. 12(7): p. 665-8. 

25. Messina, M.J., et al., Soy intake and cancer risk: a review of the in vitro and in vivo data. 
Nutrition and cancer, 1994. 21(2): p. 113-31. 

26. Hernandez-Ledesma, B., C.C. Hsieh, and B.O. de Lumen, Lunasin, a novel seed peptide for 
cancer prevention. Peptides, 2009. 30(2): p. 426-30. 

27. Lam, Y., A. Galvez, and B.O. de Lumen, Lunasin suppresses E1A-mediated transformation 
of mammalian cells but does not inhibit growth of immortalized and established cancer 
cell lines. Nutrition and cancer, 2003. 47(1): p. 88-94. 

28. Hsieh, C.C., B. Hernandez-Ledesma, and B.O. de Lumen, Lunasin-aspirin combination 
against NIH/3T3 cells transformation induced by chemical carcinogens. Plant foods for 
human nutrition, 2011. 66(2): p. 107-13. 

29. Avvakumov, N., et al., Conserved molecular interactions within the HBO1 
acetyltransferase complexes regulate cell proliferation. Molecular and cellular biology, 
2012. 32(3): p. 689-703. 

30. Santer, F.R., et al., Inhibition of the acetyltransferases p300 and CBP reveals a targetable 
function for p300 in the survival and invasion pathways of prostate cancer cell lines. 
Molecular cancer therapeutics, 2011. 10(9): p. 1644-55. 

31. Ait-Si-Ali, S., et al., CBP/p300 histone acetyl-transferase activity is important for the G1/S 
transition. Oncogene, 2000. 19(20): p. 2430-7. 

32. McConnell, E.J., et al., The soybean-derived peptide lunasin inhibits non-small cell lung 
cancer cell proliferation by suppressing phosphorylation of the retinoblastoma protein. 
Oncotarget, 2015. 6(7): p. 4649-62. 

33. Hernandez-Ledesma, B., C.C. Hsieh, and B.O. de Lumen, Relationship between lunasin's 
sequence and its inhibitory activity of histones H3 and H4 acetylation. Molecular nutrition 
& food research, 2011. 55(7): p. 989-98. 

34. Hsieh, C.C., B. Hernandez-Ledesma, and B.O. de Lumen, Lunasin, a novel seed peptide, 
sensitizes human breast cancer MDA-MB-231 cells to aspirin-arrested cell cycle and 
induced apoptosis. Chemico-biological interactions, 2010. 186(2): p. 127-34. 

35. Dia, V.P. and E. Gonzalez de Mejia, Lunasin induces apoptosis and modifies the expression 
of genes associated with extracellular matrix and cell adhesion in human metastatic colon 
cancer cells. Molecular nutrition & food research, 2011. 55(4): p. 623-34. 



116 
 

36. Dia, V.P. and E. Gonzalez de Mejia, Lunasin potentiates the effect of oxaliplatin preventing 
outgrowth of colon cancer metastasis, binds to alpha5beta1 integrin and suppresses 
FAK/ERK/NF-kappaB signaling. Cancer letters, 2011. 313(2): p. 167-80. 

37. Dia, V.P., et al., Structural property of soybean lunasin and development of a method to 
quantify lunasin in plasma using an optimized immunoassay protocol. Food chemistry, 
2013. 138(1): p. 334-41. 

38. Cam, A., M. Sivaguru, and E. Gonzalez de Mejia, Endocytic mechanism of internalization 
of dietary peptide lunasin into macrophages in inflammatory condition associated with 
cardiovascular disease. PloS one, 2013. 8(9): p. e72115. 

39. Playford, M.P. and M.D. Schaller, The interplay between Src and integrins in normal and 
tumor biology. Oncogene, 2004. 23(48): p. 7928-46. 

40. Moro, L., et al., Integrin-induced epidermal growth factor (EGF) receptor activation 
requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor 
tyrosines. The Journal of biological chemistry, 2002. 277(11): p. 9405-14. 

41. Yang, X., et al., Lunasin alleviates allergic airway inflammation while increases antigen-
specific Tregs. PloS one, 2015. 10(2): p. e0115330. 

42. Tung, C.Y., et al., Activation of dendritic cell function by soypeptide lunasin as a novel 
vaccine adjuvant. Vaccine, 2014. 32(42): p. 5411-9. 

43. Pu, C.Y., et al., RGD-modified endostatin fragments showed an antitumor effect through 
antiangiogenesis. Anti-cancer drugs, 2012. 23(8): p. 788-802. 

44. Smolarczyk, R., et al., Antitumor effect of RGD-4C-GG-D(KLAKLAK)2 peptide in mouse 
B16(F10) melanoma model. Acta biochimica Polonica, 2006. 53(4): p. 801-5. 

45. Buerkle, M.A., et al., Inhibition of the alpha-nu integrins with a cyclic RGD peptide impairs 
angiogenesis, growth and metastasis of solid tumours in vivo. British journal of cancer, 
2002. 86(5): p. 788-95. 

46. Geiger, B., et al., A chimeric N-cadherin/beta 1-integrin receptor which localizes to both 
cell-cell and cell-matrix adhesions. Journal of cell science, 1992. 103 ( Pt 4): p. 943-51. 

47. Howe, A., et al., Integrin signaling and cell growth control. Current opinion in cell biology, 
1998. 10(2): p. 220-31. 

48. Persad, S., et al., Inhibition of integrin-linked kinase (ILK) suppresses activation of protein 
kinase B/Akt and induces cell cycle arrest and apoptosis of PTEN-mutant prostate cancer 
cells. Proceedings of the National Academy of Sciences of the United States of America, 
2000. 97(7): p. 3207-12. 

49. Berthet, V., et al., Role of endoproteolytic processing in the adhesive and signaling 
functions of alphavbeta5 integrin. The Journal of biological chemistry, 2000. 275(43): p. 
33308-13. 

50. Fu, G., W. Wang, and B.H. Luo, Overview: structural biology of integrins. Methods in 
molecular biology, 2012. 757: p. 81-99. 

51. Hynes, R.O., Integrins: bidirectional, allosteric signaling machines. Cell, 2002. 110(6): p. 
673-87. 

52. Berrier, A.L. and K.M. Yamada, Cell-matrix adhesion. Journal of cellular physiology, 2007. 
213(3): p. 565-73. 

53. Pisano, M., et al., In vitro activity of the alphavbeta3 integrin antagonist RGDechi-hCit on 
malignant melanoma cells. Anticancer research, 2013. 33(3): p. 871-9. 

54. McGary, E.C., D.C. Lev, and M. Bar-Eli, Cellular adhesion pathways and metastatic 
potential of human melanoma. Cancer biology & therapy, 2002. 1(5): p. 459-65. 

55. Hood, J.D. and D.A. Cheresh, Role of integrins in cell invasion and migration. Nature 
reviews. Cancer, 2002. 2(2): p. 91-100. 



117 
 

56. Hood, J.D., et al., Differential alphav integrin-mediated Ras-ERK signaling during two 
pathways of angiogenesis. The Journal of cell biology, 2003. 162(5): p. 933-43. 

57. Alavi, A., et al., Role of Raf in vascular protection from distinct apoptotic stimuli. Science, 
2003. 301(5629): p. 94-6. 

58. Matter, M.L. and E. Ruoslahti, A signaling pathway from the alpha5beta1 and 
alpha(v)beta3 integrins that elevates bcl-2 transcription. The Journal of biological 
chemistry, 2001. 276(30): p. 27757-63. 

59. Aoudjit, F. and K. Vuori, Integrin signaling inhibits paclitaxel-induced apoptosis in breast 
cancer cells. Oncogene, 2001. 20(36): p. 4995-5004. 

60. Scatena, M., et al., NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell 
survival. The Journal of cell biology, 1998. 141(4): p. 1083-93. 

61. Kuphal, S., R. Bauer, and A.K. Bosserhoff, Integrin signaling in malignant melanoma. 
Cancer metastasis reviews, 2005. 24(2): p. 195-222. 

62. Lee, N., S.R. Barthel, and T. Schatton, Melanoma stem cells and metastasis: mimicking 
hematopoietic cell trafficking? Laboratory investigation; a journal of technical methods 
and pathology, 2014. 94(1): p. 13-30. 

63. Danen, E.H., et al., Integrin beta 3 cDNA transfection into a highly metastatic alpha v beta 
3-negative human melanoma cell line inhibits invasion and experimental metastasis. 
Biochemical and biophysical research communications, 1996. 226(1): p. 75-81. 

64. Desgrosellier, J.S. and D.A. Cheresh, Integrins in cancer: biological implications and 
therapeutic opportunities. Nature reviews. Cancer, 2010. 10(1): p. 9-22. 

65. Schatton, T. and M.H. Frank, Antitumor immunity and cancer stem cells. Annals of the 
New York Academy of Sciences, 2009. 1176: p. 154-69. 

66. Schatton, T., et al., Identification of cells initiating human melanomas. Nature, 2008. 
451(7176): p. 345-9. 

67. Reardon, D.A., et al., Cilengitide: an RGD pentapeptide alphanubeta3 and alphanubeta5 
integrin inhibitor in development for glioblastoma and other malignancies. Future 
oncology, 2011. 7(3): p. 339-54. 

68. Kim, K.B., et al., A randomized phase II study of cilengitide (EMD 121974) in patients with 
metastatic melanoma. Melanoma research, 2012. 22(4): p. 294-301. 

69. O'Day, S., et al., A randomised, phase II study of intetumumab, an anti-alphav-integrin 
mAb, alone and with dacarbazine in stage IV melanoma. British journal of cancer, 2011. 
105(3): p. 346-52. 

70. Hersey, P., et al., A randomized phase 2 study of etaracizumab, a monoclonal antibody 
against integrin alpha(v)beta(3), + or - dacarbazine in patients with stage IV metastatic 
melanoma. Cancer, 2010. 116(6): p. 1526-34. 

71. Yamada, S., et al., Effect of the angiogenesis inhibitor Cilengitide (EMD 121974) on 
glioblastoma growth in nude mice. Neurosurgery, 2006. 59(6): p. 1304-12; discussion 
1312. 

72. Ruffini, F., et al., Cilengitide downmodulates invasiveness and vasculogenic mimicry of 
neuropilin 1 expressing melanoma cells through the inhibition of alphavbeta5 integrin. 
International journal of cancer, 2015. 136(6): p. E545-58. 

73. Tentori, L., et al., The integrin antagonist cilengitide increases the antitumor activity of 
temozolomide against malignant melanoma. Oncology reports, 2008. 19(4): p. 1039-43. 

74. (ACS), A.C.S. Skin Cancer Facts. [Online] 2014 3/14/2014 [cited 2014 April 24]; Available 
from: http://www.cancer.org/cancer/cancercauses/sunanduvexposure/skin-cancer-
facts. 

http://www.cancer.org/cancer/cancercauses/sunanduvexposure/skin-cancer-facts
http://www.cancer.org/cancer/cancercauses/sunanduvexposure/skin-cancer-facts


118 
 

75. Howlader N, N.A., Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, 
Tatalovich Z,Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA. SEER Cancer Statistics 
Review, 1975-2011. 2014  [cited 2014 April 25]; based on November 2013 SEER data 
submission, posted to the SEER web site, April 2014.]. Available from: 
http://seer.cancer.gov/csr/1975_2011/. 

76. Gandini, S., et al., Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. 
European journal of cancer, 2005. 41(1): p. 45-60. 

77. Fountain, J.W., et al., Genetics of melanoma. Cancer surveys, 1990. 9(4): p. 645-71. 
78. Piris, A., A.C. Lobo, and L.M. Duncan, Melanoma staging: where are we now? 

Dermatologic clinics, 2012. 30(4): p. 581-92, v. 
79. Crowson, A.N., C.M. Magro, and M.C. Mihm, Prognosticators of melanoma, the 

melanoma report, and the sentinel lymph node. Modern pathology : an official journal of 
the United States and Canadian Academy of Pathology, Inc, 2006. 19 Suppl 2: p. S71-87. 

80. Ji, Z., et al., Vemurafenib synergizes with nutlin-3 to deplete survivin and suppresses 
melanoma viability and tumor growth. Clinical cancer research : an official journal of the 
American Association for Cancer Research, 2013. 19(16): p. 4383-91. 

81. Trunzer, K., et al., Pharmacodynamic effects and mechanisms of resistance to 
vemurafenib in patients with metastatic melanoma. Journal of clinical oncology : official 
journal of the American Society of Clinical Oncology, 2013. 31(14): p. 1767-74. 

82. Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): 
p. 949-54. 

83. Chapman, P.B., et al., Improved survival with vemurafenib in melanoma with BRAF V600E 
mutation. The New England journal of medicine, 2011. 364(26): p. 2507-16. 

84. Rizos, H., et al., BRAF Inhibitor Resistance Mechanisms in Metastatic Melanoma: Spectrum 
and Clinical Impact. Clinical cancer research : an official journal of the American 
Association for Cancer Research, 2014. 20(7): p. 1965-77. 

85. Sun, C., et al., Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. 
Nature, 2014. 508(7494): p. 118-22. 

86. Nazarian, R., et al., Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-
RAS upregulation. Nature, 2010. 468(7326): p. 973-7. 

87. Tuma, R.S., Getting around PLX4032: studies turn up unusual mechanisms of resistance to 
melanoma drug. Journal of the National Cancer Institute, 2011. 103(3): p. 170-1, 177. 

88. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-
11. 

89. Clarke, M.F., et al., Cancer stem cells--perspectives on current status and future directions: 
AACR Workshop on cancer stem cells. Cancer research, 2006. 66(19): p. 9339-44. 

90. Clarke, M.F. and M. Fuller, Stem cells and cancer: two faces of eve. Cell, 2006. 124(6): p. 
1111-5. 

91. Krivtsov, A.V., et al., Transformation from committed progenitor to leukaemia stem cell 
initiated by MLL-AF9. Nature, 2006. 442(7104): p. 818-22. 

92. Sun, B., et al., The minimal set of genetic alterations required for conversion of primary 
human fibroblasts to cancer cells in the subrenal capsule assay. Neoplasia, 2005. 7(6): p. 
585-93. 

93. Fang, D., et al., A tumorigenic subpopulation with stem cell properties in melanomas. 
Cancer research, 2005. 65(20): p. 9328-37. 

94. Monzani, E., et al., Melanoma contains CD133 and ABCG2 positive cells with enhanced 
tumourigenic potential. European journal of cancer, 2007. 43(5): p. 935-46. 

http://seer.cancer.gov/csr/1975_2011/


119 
 

95. Boiko, A.D., et al., Human melanoma-initiating cells express neural crest nerve growth 
factor receptor CD271. Nature, 2010. 466(7302): p. 133-7. 

96. Chaffer, C.L., et al., Normal and neoplastic nonstem cells can spontaneously convert to a 
stem-like state. Proceedings of the National Academy of Sciences of the United States of 
America, 2011. 108(19): p. 7950-5. 

97. Hoek, K.S. and C.R. Goding, Cancer stem cells versus phenotype-switching in melanoma. 
Pigment cell & melanoma research, 2010. 23(6): p. 746-59. 

98. Quintana, E., et al., Efficient tumour formation by single human melanoma cells. Nature, 
2008. 456(7222): p. 593-8. 

99. Kennedy, J.A., et al., Comment on "Tumor growth need not be driven by rare cancer stem 
cells". Science, 2007. 318(5857): p. 1722; author reply 1722. 

100. Gupta, P.B., C.L. Chaffer, and R.A. Weinberg, Cancer stem cells: mirage or reality? Nature 
medicine, 2009. 15(9): p. 1010-2. 

101. Girouard, S.D. and G.F. Murphy, Melanoma stem cells: not rare, but well done. Laboratory 
investigation; a journal of technical methods and pathology, 2011. 91(5): p. 647-64. 

102. Frank, N.Y., et al., VEGFR-1 expressed by malignant melanoma-initiating cells is required 
for tumor growth. Cancer research, 2011. 71(4): p. 1474-85. 

103. Boonyaratanakornkit, J.B., et al., Selection of tumorigenic melanoma cells using ALDH. The 
Journal of investigative dermatology, 2010. 130(12): p. 2799-808. 

104. Luo, Y., N. Nguyen, and M. Fujita, Isolation of human melanoma stem cells using ALDH as 
a marker. Current protocols in stem cell biology, 2013. 26: p. Unit 3 8. 

105. Prasmickaite, L., et al., Aldehyde dehydrogenase (ALDH) activity does not select for cells 
with enhanced aggressive properties in malignant melanoma. PloS one, 2010. 5(5): p. 
e10731. 

106. Luo, Y., et al., ALDH1A isozymes are markers of human melanoma stem cells and potential 
therapeutic targets. Stem cells, 2012. 30(10): p. 2100-13. 

107. Visus, C., et al., Targeting ALDH(bright) human carcinoma-initiating cells with ALDH1A1-
specific CD8(+) T cells. Clinical cancer research : an official journal of the American 
Association for Cancer Research, 2011. 17(19): p. 6174-84. 

108. Carpentino, J.E., et al., Aldehyde dehydrogenase-expressing colon stem cells contribute to 
tumorigenesis in the transition from colitis to cancer. Cancer research, 2009. 69(20): p. 
8208-15. 

109. Ginestier, C., et al., ALDH1 is a marker of normal and malignant human mammary stem 
cells and a predictor of poor clinical outcome. Cell stem cell, 2007. 1(5): p. 555-67. 

110. Amann, P.M., et al., Expression and activity of alcohol and aldehyde dehydrogenases in 
melanoma cells and in melanocytes. Journal of cellular biochemistry, 2012. 113(3): p. 792-
9. 

111. Yue, L., et al., Targeting ALDH1 to decrease tumorigenicity, growth and metastasis of 
human melanoma. Melanoma research, 2015. 25(2): p. 138-48. 

112. Hu, Y., et al., Therapeutic Efficacy of Cancer Stem Cell Vaccines in the Adjuvant Setting. 
Cancer research, 2016. 76(16): p. 4661-72. 

113. Brinckerhoff, C.E., Cancer Stem Cells (CSCs) in melanoma: There's smoke, but is there fire? 
Journal of cellular physiology, 2017. 

114. Volk-Draper, L., et al., Paclitaxel therapy promotes breast cancer metastasis in a TLR4-
dependent manner. Cancer research, 2014. 74(19): p. 5421-34. 

115. Chen, J., et al., A restricted cell population propagates glioblastoma growth after 
chemotherapy. Nature, 2012. 488(7412): p. 522-6. 



120 
 

116. Dylla, S.J., et al., Colorectal cancer stem cells are enriched in xenogeneic tumors following 
chemotherapy. PloS one, 2008. 3(6): p. e2428. 

117. Hermann, P.C., et al., Distinct populations of cancer stem cells determine tumor growth 
and metastatic activity in human pancreatic cancer. Cell stem cell, 2007. 1(3): p. 313-23. 

118. Bao, S., et al., Glioma stem cells promote radioresistance by preferential activation of the 
DNA damage response. Nature, 2006. 444(7120): p. 756-60. 

119. Larzabal, L., et al., Differential effects of drugs targeting cancer stem cell (CSC) and non-
CSC populations on lung primary tumors and metastasis. PloS one, 2013. 8(11): p. e79798. 

120. Pistollato, F., et al., Intratumoral hypoxic gradient drives stem cells distribution and MGMT 
expression in glioblastoma. Stem cells, 2010. 28(5): p. 851-62. 

121. Stepanenko, A.A., et al., Temozolomide promotes genomic and phenotypic changes in 
glioblastoma cells. Cancer cell international, 2016. 16: p. 36. 

122. Gupta, P.B., et al., Identification of selective inhibitors of cancer stem cells by high-
throughput screening. Cell, 2009. 138(4): p. 645-59. 

123. NCI. Melanoma Treatment 2016 July 11, 2016 [cited 2016 November 2]; Available from: 
https://www.cancer.gov/types/skin/patient/melanoma-treatment-pdq. 

124. Balch, C.M., et al., Final version of 2009 AJCC melanoma staging and classification. Journal 
of clinical oncology : official journal of the American Society of Clinical Oncology, 2009. 
27(36): p. 6199-206. 

125. Siddik, Z.H., Cisplatin: mode of cytotoxic action and molecular basis of resistance. 
Oncogene, 2003. 22(47): p. 7265-79. 

126. Quirt, I., et al., Temozolomide for the treatment of metastatic melanoma: a systematic 
review. The oncologist, 2007. 12(9): p. 1114-23. 

127. Hersh, E.M., et al., A randomized, controlled phase III trial of nab-Paclitaxel versus 
dacarbazine in chemotherapy-naive patients with metastatic melanoma. Annals of 
oncology : official journal of the European Society for Medical Oncology, 2015. 26(11): p. 
2267-74. 

128. Chapman, P.B., et al., Phase III multicenter randomized trial of the Dartmouth regimen 
versus dacarbazine in patients with metastatic melanoma. Journal of clinical oncology : 
official journal of the American Society of Clinical Oncology, 1999. 17(9): p. 2745-51. 

129. Bedikian, A.Y., et al., Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with 
advanced melanoma: the Oblimersen Melanoma Study Group. Journal of clinical oncology 
: official journal of the American Society of Clinical Oncology, 2006. 24(29): p. 4738-45. 

130. Middleton, M.R., et al., Randomized phase III study of temozolomide versus dacarbazine 
in the treatment of patients with advanced metastatic malignant melanoma. Journal of 
clinical oncology : official journal of the American Society of Clinical Oncology, 2000. 18(1): 
p. 158-66. 

131. Avril, M.F., et al., Fotemustine compared with dacarbazine in patients with disseminated 
malignant melanoma: a phase III study. Journal of clinical oncology : official journal of the 
American Society of Clinical Oncology, 2004. 22(6): p. 1118-25. 

132. Vultur, A., J. Villanueva, and M. Herlyn, Targeting BRAF in advanced melanoma: a first 
step toward manageable disease. Clinical cancer research : an official journal of the 
American Association for Cancer Research, 2011. 17(7): p. 1658-63. 

133. Rosenberg, S.A. and N.P. Restifo, Adoptive cell transfer as personalized immunotherapy 
for human cancer. Science, 2015. 348(6230): p. 62-8. 

134. Fukuhara, H., Y. Ino, and T. Todo, Oncolytic virus therapy: A new era of cancer treatment 
at dawn. Cancer science, 2016. 107(10): p. 1373-1379. 

http://www.cancer.gov/types/skin/patient/melanoma-treatment-pdq


121 
 

135. Shrimali, R.K., et al., Programmed death-1 & its ligands: promising targets for cancer 
immunotherapy. Immunotherapy, 2015. 7(7): p. 777-92. 

136. Blankenstein, T., et al., The determinants of tumour immunogenicity. Nature reviews. 
Cancer, 2012. 12(4): p. 307-13. 

137. Zimmer, L., et al., Open-label, multicenter, single-arm phase II DeCOG-study of ipilimumab 
in pretreated patients with different subtypes of metastatic melanoma. Journal of 
translational medicine, 2015. 13: p. 351. 

138. Weber, J.S., et al., Nivolumab versus chemotherapy in patients with advanced melanoma 
who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, 
open-label, phase 3 trial. The Lancet. Oncology, 2015. 16(4): p. 375-84. 

139. Robbins, P.F., et al., A pilot trial using lymphocytes genetically engineered with an NY-ESO-
1-reactive T-cell receptor: long-term follow-up and correlates with response. Clinical 
cancer research : an official journal of the American Association for Cancer Research, 
2015. 21(5): p. 1019-27. 

140. Schatton, T. and M.H. Frank, Cancer stem cells and human malignant melanoma. Pigment 
cell & melanoma research, 2008. 21(1): p. 39-55. 

141. Shidal, C., et al., Lunasin is a novel therapeutic agent for targeting melanoma cancer stem 
cells. Oncotarget, 2016. 7(51): p. 84128-84141. 

142. Jeong, H.J., et al., Inhibition of core histone acetylation by the cancer preventive peptide 
lunasin. Journal of agricultural and food chemistry, 2007. 55(3): p. 632-7. 

143. Pinon, P. and B. Wehrle-Haller, Integrins: versatile receptors controlling melanocyte 
adhesion, migration and proliferation. Pigment cell & melanoma research, 2011. 24(2): p. 
282-94. 

144. Guo, W. and F.G. Giancotti, Integrin signalling during tumour progression. Nature reviews. 
Molecular cell biology, 2004. 5(10): p. 816-26. 

145. Mitra, A., L. Mishra, and S. Li, EMT, CTCs and CSCs in tumor relapse and drug-resistance. 
Oncotarget, 2015. 6(13): p. 10697-711. 

146. Mudigonda, T.V., et al., A phase II trial of erlotinib and bevacizumab for patients with 
metastatic melanoma. Pigment cell & melanoma research, 2016. 29(1): p. 101-3. 

147. Ahluwalia, M.S., et al., Phase II trial of sunitinib as adjuvant therapy after stereotactic 
radiosurgery in patients with 1-3 newly diagnosed brain metastases. Journal of neuro-
oncology, 2015. 124(3): p. 485-91. 

148. Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of image 
analysis. Nat. Methods, 2012. 9(7): p. 671-5. 

149. Robinson, J.K., Sun exposure, sun protection, and vitamin D. JAMA, 2005. 294(12): p. 1541-
3. 

150. Guy, G.P., Jr., et al., Prevalence and costs of skin cancer treatment in the U.S., 2002-2006 
and 2007-2011. American journal of preventive medicine, 2015. 48(2): p. 183-7. 

151. Soengas, M.S. and S.W. Lowe, Apoptosis and melanoma chemoresistance. Oncogene, 
2003. 22(20): p. 3138-51. 

152. Chin, L., L.A. Garraway, and D.E. Fisher, Malignant melanoma: genetics and therapeutics 
in the genomic era. Genes & development, 2006. 20(16): p. 2149-82. 

153. Helmbach, H., P. Sinha, and D. Schadendorf, Human melanoma: drug resistance. Recent 
results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches 
sur le cancer, 2003. 161: p. 93-110. 

154. Yu, Y., G. Ramena, and R.C. Elble, The role of cancer stem cells in relapse of solid tumors. 
Frontiers in bioscience, 2012. 4: p. 1528-41. 



122 
 

155. Xia, P., Surface markers of cancer stem cells in solid tumors. Current stem cell research & 
therapy, 2014. 9(2): p. 102-11. 

156. Sullivan, J.P., et al., Aldehyde dehydrogenase activity selects for lung adenocarcinoma 
stem cells dependent on notch signaling. Cancer research, 2010. 70(23): p. 9937-48. 

157. Charafe-Jauffret, E., et al., Aldehyde dehydrogenase 1-positive cancer stem cells mediate 
metastasis and poor clinical outcome in inflammatory breast cancer. Clinical cancer 
research : an official journal of the American Association for Cancer Research, 2010. 16(1): 
p. 45-55. 

158. Silva, I.A., et al., Aldehyde dehydrogenase in combination with CD133 defines angiogenic 
ovarian cancer stem cells that portend poor patient survival. Cancer research, 2011. 
71(11): p. 3991-4001. 

159. Jiang, F., et al., Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung 
cancer. Molecular cancer research : MCR, 2009. 7(3): p. 330-8. 

160. Hess, D.A., et al., Selection based on CD133 and high aldehyde dehydrogenase activity 
isolates long-term reconstituting human hematopoietic stem cells. Blood, 2006. 107(5): p. 
2162-9. 

161. Gudas, L.J. and J.A. Wagner, Retinoids regulate stem cell differentiation. Journal of cellular 
physiology, 2011. 226(2): p. 322-30. 

162. Chute, J.P., et al., Inhibition of aldehyde dehydrogenase and retinoid signaling induces the 
expansion of human hematopoietic stem cells. Proceedings of the National Academy of 
Sciences of the United States of America, 2006. 103(31): p. 11707-12. 

163. Tang, X.H. and L.J. Gudas, Retinoids, retinoic acid receptors, and cancer. Annual review of 
pathology, 2011. 6: p. 345-64. 

164. Montales, M.T., et al., Metformin and soybean-derived bioactive molecules attenuate the 
expansion of stem cell-like epithelial subpopulation and confer apoptotic sensitivity in 
human colon cancer cells. Genes Nutr, 2015. 10(6): p. 49. 

165. McConnell, E.J., et al., The soybean-derived peptide lunasin inhibits non-small cell lung 
cancer cell proliferation by suppressing phosphorylation of the retinoblastoma protein. 
Oncotarget, 2014. 

166. Bertolini, G., et al., Highly tumorigenic lung cancer CD133+ cells display stem-like features 
and are spared by cisplatin treatment. Proceedings of the National Academy of Sciences 
of the United States of America, 2009. 106(38): p. 16281-6. 

167. Guan, J.L., Integrin signaling through FAK in the regulation of mammary stem cells and 
breast cancer. IUBMB life, 2010. 62(4): p. 268-76. 

168. Aoudjit, F. and K. Vuori, Integrin signaling in cancer cell survival and chemoresistance. 
Chemother Res Pract, 2012. 2012: p. 283181. 

169. Patrawala, L., et al., Hierarchical organization of prostate cancer cells in xenograft tumors: 
the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer 
research, 2007. 67(14): p. 6796-805. 

170. van den Hoogen, C., et al., Integrin alphav expression is required for the acquisition of a 
metastatic stem/progenitor cell phenotype in human prostate cancer. Am J Pathol, 2011. 
179(5): p. 2559-68. 

171. Ellis, S.J. and G. Tanentzapf, Integrin-mediated adhesion and stem-cell-niche interactions. 
Cell Tissue Res, 2010. 339(1): p. 121-30. 

172. Lathia, J.D., et al., Integrin alpha 6 regulates glioblastoma stem cells. Cell stem cell, 2010. 
6(5): p. 421-32. 



123 
 

173. Lo, P.K., et al., CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells 
that are potentially derived from luminal progenitors and maintained by the integrin-
TGFbeta signaling. Oncogene, 2012. 31(21): p. 2614-26. 

174. Bianchi-Smiraglia, A., S. Paesante, and A.V. Bakin, Integrin beta5 contributes to the 
tumorigenic potential of breast cancer cells through the Src-FAK and MEK-ERK signaling 
pathways. Oncogene, 2012. 

175. Devapatla, B., et al., Validation of syngeneic mouse models of melanoma and non-small 
cell lung cancer for investigating the anticancer effects of the soy-derived peptide Lunasin. 
F1000Research, 2016. 5: p. 2432. 

176. Douville, J., R. Beaulieu, and D. Balicki, ALDH1 as a functional marker of cancer stem and 
progenitor cells. Stem cells and development, 2009. 18(1): p. 17-25. 

177. Carreira, S., et al., Mitf regulation of Dia1 controls melanoma proliferation and 
invasiveness. Genes & development, 2006. 20(24): p. 3426-39. 

178. Hartman, M.L. and M. Czyz, Pro-survival role of MITF in melanoma. The Journal of 
investigative dermatology, 2015. 135(2): p. 352-8. 

179. Nishimura, E.K., et al., Key roles for transforming growth factor beta in melanocyte stem 
cell maintenance. Cell stem cell, 2010. 6(2): p. 130-40. 

180. Omoni, A.O. and R.E. Aluko, Soybean Foods and Their Benefits: Potential Mechanisms of 
Action. Nutrition Reviews, 2005. 63(8): p. 272-283. 

181. Trock, B.J., L. Hilakivi-Clarke, and R. Clarke, Meta-analysis of soy intake and breast cancer 
risk. J Natl Cancer Inst, 2006. 98(7): p. 459-71. 

182. Yan, L. and E.L. Spitznagel, Meta-analysis of soy food and risk of prostate cancer in men. 
Int J Cancer, 2005. 117(4): p. 667-9. 

183. Rochfort, S. and J. Panozzo, Phytochemicals for health, the role of pulses. Journal of 
agricultural and food chemistry, 2007. 55(20): p. 7981-94. 

184. Larkin, T., W.E. Price, and L. Astheimer, The key importance of soy isoflavone 
bioavailability to understanding health benefits. Critical reviews in food science and 
nutrition, 2008. 48(6): p. 538-52. 

185. Pabona, J.M., et al., The soybean peptide lunasin promotes apoptosis of mammary 
epithelial cells via induction of tumor suppressor PTEN: similarities and distinct actions 
from soy isoflavone genistein. Genes & nutrition, 2013. 8(1): p. 79-90. 

186. de Mejia, E.G., W. Wang, and V.P. Dia, Lunasin, with an arginine-glycine-aspartic acid 
motif, causes apoptosis to L1210 leukemia cells by activation of caspase-3. Molecular 
nutrition & food research, 2010. 54(3): p. 406-14. 

187. Dia, V.P. and E.G. Mejia, Lunasin promotes apoptosis in human colon cancer cells by 
mitochondrial pathway activation and induction of nuclear clusterin expression. Cancer 
letters, 2010. 295(1): p. 44-53. 

188. Santini, R., et al., Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human 
melanoma-initiating cells. Stem cells, 2012. 30(9): p. 1808-18. 

189. Santini, R., et al., SOX2 regulates self-renewal and tumorigenicity of human melanoma-
initiating cells. Oncogene, 2014. 33(38): p. 4697-708. 

190. Plaks, V., N. Kong, and Z. Werb, The cancer stem cell niche: how essential is the niche in 
regulating stemness of tumor cells? Cell stem cell, 2015. 16(3): p. 225-38. 

191. Yun, Z. and Q. Lin, Hypoxia and regulation of cancer cell stemness. Advances in 
experimental medicine and biology, 2014. 772: p. 41-53. 

192. Voog, J. and D.L. Jones, Stem cells and the niche: a dynamic duo. Cell stem cell, 2010. 6(2): 
p. 103-15. 



124 
 

193. Roesch, A., Tumor heterogeneity and plasticity as elusive drivers for resistance to MAPK 
pathway inhibition in melanoma. Oncogene, 2015. 34(23): p. 2951-7. 

194. Jiang, Q., et al., Lunasin suppresses the migration and invasion of breast cancer cells by 
inhibiting matrix metalloproteinase-2/-9 via the FAK/Akt/ERK and NF-kappaB signaling 
pathways. Oncol Rep, 2016. 

195. Sulzmaier, F.J., C. Jean, and D.D. Schlaepfer, FAK in cancer: mechanistic findings and 
clinical applications. Nature reviews. Cancer, 2014. 14(9): p. 598-610. 

196. Ricci, E., et al., Increased expression of putative cancer stem cell markers in the bone 
marrow of prostate cancer patients is associated with bone metastasis progression. The 
Prostate, 2013. 73(16): p. 1738-46. 

197. Rentala, S., P.D. Yalavarthy, and L.N. Mangamoori, Alpha1 and beta1 integrins enhance 
the homing and differentiation of cultured prostate cancer stem cells. Asian journal of 
andrology, 2010. 12(4): p. 548-55. 

198. Lee, K.M., et al., The CD49d+/high subpopulation from isolated human breast sarcoma 
spheres possesses tumor-initiating ability. International journal of oncology, 2012. 40(3): 
p. 665-72. 

199. Nishimura, E.K., S.R. Granter, and D.E. Fisher, Mechanisms of hair graying: incomplete 
melanocyte stem cell maintenance in the niche. Science, 2005. 307(5710): p. 720-4. 

200. Cheli, Y., et al., Mitf is the key molecular switch between mouse or human melanoma 
initiating cells and their differentiated progeny. Oncogene, 2011. 30(20): p. 2307-18. 

201. Perego, M., et al., Heterogeneous phenotype of human melanoma cells with in vitro and 
in vivo features of tumor-initiating cells. The Journal of investigative dermatology, 2010. 
130(7): p. 1877-86. 

202. Borrull, A., et al., Nanog and Oct4 overexpression increases motility and transmigration of 
melanoma cells. Journal of cancer research and clinical oncology, 2012. 138(7): p. 1145-
54. 

203. Kumar, S.M., et al., Acquired cancer stem cell phenotypes through Oct4-mediated 
dedifferentiation. Oncogene, 2012. 31(47): p. 4898-911. 

204. Hirata, E., et al., Intravital imaging reveals how BRAF inhibition generates drug-tolerant 
microenvironments with high integrin beta1/FAK signaling. Cancer cell, 2015. 27(4): p. 
574-88. 

205. Conner, S.R., G. Scott, and A.E. Aplin, Adhesion-dependent activation of the ERK1/2 
cascade is by-passed in melanoma cells. The Journal of biological chemistry, 2003. 
278(36): p. 34548-54. 

206. Corcoran, R.B., et al., Combined BRAF and MEK Inhibition With Dabrafenib and Trametinib 
in BRAF V600-Mutant Colorectal Cancer. Journal of clinical oncology : official journal of 
the American Society of Clinical Oncology, 2015. 33(34): p. 4023-31. 

207. Seguin, L., et al., Integrins and cancer: regulators of cancer stemness, metastasis, and drug 
resistance. Trends in cell biology, 2015. 25(4): p. 234-40. 

208. Thang, N.D., et al., Deltex-3-like (DTX3L) stimulates metastasis of melanoma through 
FAK/PI3K/AKT but not MEK/ERK pathway. Oncotarget, 2015. 6(16): p. 14290-9. 

209. Gupta, P.B., et al., The melanocyte differentiation program predisposes to metastasis after 
neoplastic transformation. Nature genetics, 2005. 37(10): p. 1047-54. 

210. Nikolaou, V.A., et al., Melanoma: new insights and new therapies. The Journal of 
investigative dermatology, 2012. 132(3 Pt 2): p. 854-63. 

211. McArthur, G.A., et al., Safety and efficacy of vemurafenib in BRAF(V600E) and 
BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, 
randomised, open-label study. The Lancet. Oncology, 2014. 15(3): p. 323-32. 



125 
 

212. Hauschild, A., et al., Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, 
open-label, phase 3 randomised controlled trial. Lancet, 2012. 380(9839): p. 358-65. 

213. Chartrain, M., et al., Melanoma chemotherapy leads to the selection of ABCB5-expressing 
cells. PloS one, 2012. 7(5): p. e36762. 

214. Roesch, A., et al., Overcoming intrinsic multidrug resistance in melanoma by blocking the 
mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer cell, 2013. 
23(6): p. 811-25. 

215. Sosman, J.A., et al., Survival in BRAF V600-mutant advanced melanoma treated with 
vemurafenib. The New England journal of medicine, 2012. 366(8): p. 707-14. 

216. Galluzzi, L., et al., Classification of current anticancer immunotherapies. Oncotarget, 2014. 
5(24): p. 12472-508. 

217. Redman, J.M., G.T. Gibney, and M.B. Atkins, Advances in immunotherapy for melanoma. 
BMC medicine, 2016. 14: p. 20. 

218. Schwartzentruber, D.J., et al., gp100 peptide vaccine and interleukin-2 in patients with 
advanced melanoma. The New England journal of medicine, 2011. 364(22): p. 2119-27. 

219. Atkins, M.B., et al., High-dose recombinant interleukin-2 therapy in patients with 
metastatic melanoma: long-term survival update. The cancer journal from Scientific 
American, 2000. 6 Suppl 1: p. S11-4. 

220. Hodi, F.S., et al., Improved survival with ipilimumab in patients with metastatic melanoma. 
The New England journal of medicine, 2010. 363(8): p. 711-23. 

221. Robert, C., et al., Pembrolizumab versus Ipilimumab in Advanced Melanoma. The New 
England journal of medicine, 2015. 372(26): p. 2521-32. 

222. Andtbacka, R.H., et al., Talimogene Laherparepvec Improves Durable Response Rate in 
Patients With Advanced Melanoma. Journal of clinical oncology : official journal of the 
American Society of Clinical Oncology, 2015. 33(25): p. 2780-8. 

223. Zaretsky, J.M., et al., Mutations Associated with Acquired Resistance to PD-1 Blockade in 
Melanoma. The New England journal of medicine, 2016. 375(9): p. 819-29. 

224. Hamid, O., et al., Safety and tumor responses with lambrolizumab (anti-PD-1) in 
melanoma. The New England journal of medicine, 2013. 369(2): p. 134-44. 

225. Restifo, N.P., M.J. Smyth, and A. Snyder, Acquired resistance to immunotherapy and future 
challenges. Nature reviews. Cancer, 2016. 16(2): p. 121-6. 

226. Zbytek, B., et al., Current concepts of metastasis in melanoma. Expert review of 
dermatology, 2008. 3(5): p. 569-585. 

227. Jiang, Q., et al., Lunasin suppresses the migration and invasion of breast cancer cells by 
inhibiting matrix metalloproteinase-2/-9 via the FAK/Akt/ERK and NF-kappaB signaling 
pathways. Oncology reports, 2016. 36(1): p. 253-62. 

228. Shidal, C., et al., Lunasin is a novel therapeutic agent for targeting melanoma cancer stem 
cells. Oncotarget, 2016. 

229. Jeong, H.J., et al., Characterization of lunasin isolated from soybean. Journal of agricultural 
and food chemistry, 2003. 51(27): p. 7901-6. 

230. Montales, M.T., et al., Metformin and soybean-derived bioactive molecules attenuate the 
expansion of stem cell-like epithelial subpopulation and confer apoptotic sensitivity in 
human colon cancer cells. Genes & nutrition, 2015. 10(6): p. 49. 

231. Yan, G., et al., Selective inhibition of p300 HAT blocks cell cycle progression, induces 
cellular senescence, and inhibits the DNA damage response in melanoma cells. The Journal 
of investigative dermatology, 2013. 133(10): p. 2444-52. 



126 
 

232. Boyle, G.M., A.C. Martyn, and P.G. Parsons, Histone deacetylase inhibitors and malignant 
melanoma. Pigment cell research / sponsored by the European Society for Pigment Cell 
Research and the International Pigment Cell Society, 2005. 18(3): p. 160-6. 

233. Debeb, B.G., et al., Histone deacetylase inhibitors stimulate dedifferentiation of human 
breast cancer cells through WNT/beta-catenin signaling. Stem cells, 2012. 30(11): p. 2366-
77. 

234. Larue, L. and A. Bellacosa, Epithelial-mesenchymal transition in development and cancer: 
role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene, 2005. 24(50): p. 7443-54. 

235. Kolli-Bouhafs, K., et al., FAK competes for Src to promote migration against invasion in 
melanoma cells. Cell death & disease, 2014. 5: p. e1379. 

236. Madhunapantula, S.V. and G.P. Robertson, The PTEN-AKT3 signaling cascade as a 
therapeutic target in melanoma. Pigment cell & melanoma research, 2009. 22(4): p. 400-
19. 

237. Wang, S. and M.D. Basson, Akt directly regulates focal adhesion kinase through 
association and serine phosphorylation: implication for pressure-induced colon cancer 
metastasis. American journal of physiology. Cell physiology, 2011. 300(3): p. C657-70. 

238. Nabors, L.B., et al., A safety run-in and randomized phase 2 study of cilengitide combined 
with chemoradiation for newly diagnosed glioblastoma (NABTT 0306). Cancer, 2012. 
118(22): p. 5601-7. 

239. Gerstner, E.R., et al., A phase I study of cediranib in combination with cilengitide in 
patients with recurrent glioblastoma. Neuro-oncology, 2015. 17(10): p. 1386-92. 

240. Friess, H., et al., A randomized multi-center phase II trial of the angiogenesis inhibitor 
Cilengitide (EMD 121974) and gemcitabine compared with gemcitabine alone in advanced 
unresectable pancreatic cancer. BMC cancer, 2006. 6: p. 285. 

241. Vermorken, J.B., et al., Cisplatin, 5-fluorouracil, and cetuximab (PFE) with or without 
cilengitide in recurrent/metastatic squamous cell carcinoma of the head and neck: results 
of the randomized phase I/II ADVANTAGE trial (phase II part). Annals of oncology : official 
journal of the European Society for Medical Oncology / ESMO, 2014. 25(3): p. 682-8. 

242. Shechter, D., et al., Extraction, purification and analysis of histones. Nature protocols, 
2007. 2(6): p. 1445-57. 

243. Greenman, C., et al., Patterns of somatic mutation in human cancer genomes. Nature, 
2007. 446(7132): p. 153-8. 

244. Sporn, M.B. and A.B. Roberts, Role of retinoids in differentiation and carcinogenesis. 
Journal of the National Cancer Institute, 1984. 73(6): p. 1381-7. 

245. Spanjaard, R.A., et al., Specific activation of retinoic acid receptors (RARs) and retinoid X 
receptors reveals a unique role for RARgamma in induction of differentiation and 
apoptosis of S91 melanoma cells. The Journal of biological chemistry, 1997. 272(30): p. 
18990-9. 

246. Lotan, R., et al., Characterization of the inhibitory effects of retinoids on the in vitro growth 
of two malignant murine melanomas. Journal of the National Cancer Institute, 1978. 
60(5): p. 1035-41. 

247. Meyskens, F.L., Jr. and S.E. Salmon, Inhibition of human melanoma colony formation by 
retinoids. Cancer research, 1979. 39(10): p. 4055-7. 

248. Shibata, H., et al., Role of co-activators and co-repressors in the mechanism of 
steroid/thyroid receptor action. Recent progress in hormone research, 1997. 52: p. 141-
64; discussion 164-5. 



127 
 

249. Wang, Z., et al., Differential susceptibility of cultured human melanoma cell lines to 
enhancement by retinoic acid of intercellular adhesion molecule 1 expression. Cancer 
research, 1992. 52(17): p. 4766-72. 

250. Edward, M., J.A. Gold, and R.M. MacKie, Modulation of melanoma cell adhesion to 
basement membrane components by retinoic acid. Journal of cell science, 1989. 93 ( Pt 
1): p. 155-61. 

251. Sengupta, S., et al., Effect of retinoic acid on integrin receptors of B16F10 melanoma cells. 
Journal of experimental & clinical cancer research : CR, 2000. 19(1): p. 81-7. 

252. Scholer-Dahirel, A., et al., Maintenance of adenomatous polyposis coli (APC)-mutant 
colorectal cancer is dependent on Wnt/beta-catenin signaling. Proceedings of the 
National Academy of Sciences of the United States of America, 2011. 108(41): p. 17135-
40. 

253. Anastas, J.N. and R.T. Moon, WNT signalling pathways as therapeutic targets in cancer. 
Nature reviews. Cancer, 2013. 13(1): p. 11-26. 

254. Atkinson, J.M., et al., Activating the Wnt/beta-Catenin Pathway for the Treatment of 
Melanoma--Application of LY2090314, a Novel Selective Inhibitor of Glycogen Synthase 
Kinase-3. PloS one, 2015. 10(4): p. e0125028. 

255. Kageshita, T., et al., Loss of beta-catenin expression associated with disease progression 
in malignant melanoma. The British journal of dermatology, 2001. 145(2): p. 210-6. 

256. Gallagher, S.J., et al., Beta-catenin inhibits melanocyte migration but induces melanoma 
metastasis. Oncogene, 2013. 32(17): p. 2230-8. 

257. Chien, A.J., et al., Activated Wnt/beta-catenin signaling in melanoma is associated with 
decreased proliferation in patient tumors and a murine melanoma model. Proceedings of 
the National Academy of Sciences of the United States of America, 2009. 106(4): p. 1193-
8. 

258. Koon, H.B., et al., FOXP1: a potential therapeutic target in cancer. Expert opinion on 
therapeutic targets, 2007. 11(7): p. 955-65. 

259. Ackermann, S., et al., FOXP1 inhibits cell growth and attenuates tumorigenicity of 
neuroblastoma. BMC cancer, 2014. 14: p. 840. 

260. Zhang, K., et al., An ERBB3/ERBB2 oncogenic unit plays a key role in NRG1 signaling and 
melanoma cell growth and survival. Pigment cell & melanoma research, 2013. 26(3): p. 
408-14. 

261. Tiwary, S., et al., ERBB3 is required for metastasis formation of melanoma cells. 
Oncogenesis, 2014. 3: p. e110. 

262. Leivonen, S.K. and V.M. Kahari, Transforming growth factor-beta signaling in cancer 
invasion and metastasis. International journal of cancer, 2007. 121(10): p. 2119-24. 

263. Lasfar, A. and K.A. Cohen-Solal, Resistance to transforming growth factor beta-mediated 
tumor suppression in melanoma: are multiple mechanisms in place? Carcinogenesis, 2010. 
31(10): p. 1710-7. 

264. Webster, M.R., C.H. Kugel, 3rd, and A.T. Weeraratna, The Wnts of change: How Wnts 
regulate phenotype switching in melanoma. Biochimica et biophysica acta, 2015. 1856(2): 
p. 244-51. 

265. Hsu, M.Y., et al., Bone morphogenetic proteins in melanoma: angel or devil? Cancer 
metastasis reviews, 2005. 24(2): p. 251-63. 

266. Gaggioli, C., et al., Tumor-derived fibronectin is involved in melanoma cell invasion and 
regulated by V600E B-Raf signaling pathway. The Journal of investigative dermatology, 
2007. 127(2): p. 400-10. 



128 
 

267. Puisieux, A., T. Brabletz, and J. Caramel, Oncogenic roles of EMT-inducing transcription 
factors. Nature cell biology, 2014. 16(6): p. 488-94. 

268. Huntington, J.T., et al., Overexpression of collagenase 1 (MMP-1) is mediated by the ERK 
pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor 
signaling. The Journal of biological chemistry, 2004. 279(32): p. 33168-76. 

269. Zigrino, P., et al., Stromal expression of MMP-13 is required for melanoma invasion and 
metastasis. The Journal of investigative dermatology, 2009. 129(11): p. 2686-93. 

270. Meierjohann, S., et al., MMP13 mediates cell cycle progression in melanocytes and 
melanoma cells: in vitro studies of migration and proliferation. Molecular cancer, 2010. 9: 
p. 201. 

271. Karin, M., The regulation of AP-1 activity by mitogen-activated protein kinases. The 
Journal of biological chemistry, 1995. 270(28): p. 16483-6. 

272. Urabe, A., et al., Expression of the fos oncogene in B16 melanoma cells exhibiting different 
metastatic abilities. Journal of dermatological science, 1990. 1(6): p. 455-8. 

273. Ramsdale, R., et al., The transcription cofactor c-JUN mediates phenotype switching and 
BRAF inhibitor resistance in melanoma. Science signaling, 2015. 8(390): p. ra82. 

274. Kappelmann, M., A. Bosserhoff, and S. Kuphal, AP-1/c-Jun transcription factors: regulation 
and function in malignant melanoma. European journal of cell biology, 2014. 93(1-2): p. 
76-81. 

275. Devapatla B, S.C., Yaddanapudi K and Davis KR, Validation of syngeneic mouse models of 
melanoma and non-small cell lung cancer for investigating the anticancer effects of the 
soy-derived peptide Lunasin  [version 1; referees: 3 approved with reservations]. 
F1000Research, 2016( 

). 
276. Wennerberg, K., et al., The cytoplasmic tyrosines of integrin subunit beta1 are involved in 

focal adhesion kinase activation. Molecular and cellular biology, 2000. 20(15): p. 5758-65. 
277. Costa, P., et al., Integrin-specific control of focal adhesion kinase and RhoA regulates 

membrane protrusion and invasion. PloS one, 2013. 8(9): p. e74659. 
278. Calderwood, D.A., I.D. Campbell, and D.R. Critchley, Talins and kindlins: partners in 

integrin-mediated adhesion. Nature reviews. Molecular cell biology, 2013. 14(8): p. 503-
17. 

279. Velling, T., et al., beta1-Integrins induce phosphorylation of Akt on serine 473 
independently of focal adhesion kinase and Src family kinases. EMBO reports, 2004. 5(9): 
p. 901-5. 

280. Bianchi-Smiraglia, A., et al., Microphthalmia-associated transcription factor suppresses 
invasion by reducing intracellular GTP pools. Oncogene, 2016. 

281. Arozarena, I., et al., In melanoma, beta-catenin is a suppressor of invasion. Oncogene, 
2011. 30(45): p. 4531-43. 

282. Javelaud, D., et al., GLI2 and M-MITF transcription factors control exclusive gene 
expression programs and inversely regulate invasion in human melanoma cells. Pigment 
cell & melanoma research, 2011. 24(5): p. 932-43. 

283. del Pozo, M.A., et al., Integrins regulate Rac targeting by internalization of membrane 
domains. Science, 2004. 303(5659): p. 839-42. 

284. Maio, M., Melanoma as a model tumour for immuno-oncology. Annals of oncology : 
official journal of the European Society for Medical Oncology / ESMO, 2012. 23 Suppl 8: 
p. viii10-4. 



129 
 

285. Roca-Cusachs, P., et al., Clustering of alpha(5)beta(1) integrins determines adhesion 
strength whereas alpha(v)beta(3) and talin enable mechanotransduction. Proceedings of 
the National Academy of Sciences of the United States of America, 2009. 106(38): p. 
16245-50. 

286. Morgan, M.R., et al., Giving off mixed signals--distinct functions of alpha5beta1 and 
alphavbeta3 integrins in regulating cell behaviour. IUBMB life, 2009. 61(7): p. 731-8. 

287. Venkatesh, S. and J.L. Workman, Histone exchange, chromatin structure and the 
regulation of transcription. Nature reviews. Molecular cell biology, 2015. 16(3): p. 178-89. 

288. Di Martile, M., et al., Histone acetyltransferase inhibitor CPTH6 preferentially targets lung 
cancer stem-like cells. Oncotarget, 2016. 7(10): p. 11332-48. 

289. Vitillo, L., et al., Integrin-Associated Focal Adhesion Kinase Protects Human Embryonic 
Stem Cells from Apoptosis, Detachment, and Differentiation. Stem cell reports, 2016. 7(2): 
p. 167-76. 

290. Qiao, Y., et al., Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell 
pluripotency and neural differentiation. The Journal of biological chemistry, 2015. 
290(16): p. 9949. 

291. Zhong, X. and Y. Jin, Critical roles of coactivator p300 in mouse embryonic stem cell 
differentiation and Nanog expression. The Journal of biological chemistry, 2009. 284(14): 
p. 9168-75. 

292. Rose, J.L., et al., Integrin engagement increases histone H3 acetylation and reduces 
histone H1 association with DNA in murine lung endothelial cells. Molecular 
pharmacology, 2005. 68(2): p. 439-46. 

293. Jeter, C.R., et al., Concise Review: NANOG in Cancer Stem Cells and Tumor Development: 
An Update and Outstanding Questions. Stem cells, 2015. 33(8): p. 2381-90. 

 



130 
 

ABBREVIATIONS 
 

AA Amino acid 

ABCB5 ATP-binding cassette sub-family B member 5 

AEBSF 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride 

AKT V-akt murine thymoma viral oncogene homolog 1 

ALDH Aldehyde dehydrogenase 

ALKP Alkaline phosphatase 

ALT Alanine transaminase 

AST Aspartate aminotransferase 

ATCC American Type Culture Collection 

BBI Bowman-Birk inhibitor 

BCA Bicinchoninic acid assay 

BCL-2 B-cell lymphoma 2 

BMP2 Bone morphogenetic protein 4 

BMP4 Bone morphogenetic protein 4 

BRAF V-Raf murine sarcoma viral oncogene homolog B 

BSA Bovine serum albumin 

BUN Blood urea nitrogen 

C Cysteine 

CBC Complete blood count 

CD133 Cluster of differentiation 133 (prominin-1) 

CD147 Cluster of differentiation 147 (Basigin) 

CD20 Cluster of differentiation 20 (B-lymphocyte antigen 20) 

CD271 Cluster of differentiation 271 (low-affinity nerve growth factor receptor) 

CDK Cyclin-dependent kinase 



131 
 

CIC Cancer initiating cell 

CO2 Carbon dioxide 

CREA Creatinine 

cRGD cyclic-RGD 

D Aspartic acid 

DAPI 4',6-diamidino-2-phenylindole 

DEAB N,N-diethylaminobenzaldehyde 

DI Drewinko index 

DMEM Dulbecco’s modified eagle medium 

DMSO Dimethyl sulfoxide 

DTT Dithiothreitol 

E Glutamic acid 

ECL Electrochemiluminescent 

ECM Extracellular matrix 

EDTA Ethylenediaminetetraacetic acid 

EGFR Epidermal growth factor receptor 

EMT Epithelial to mesenchymal transition 

ERBB2 Erb-b2 receptor tyrosine kinase 2 

ERK Extracellular signal–regulated kinases 

ES Embryonic stem 

ETS1 ETS proto-oncogene 1 

FACS Fluorescence-assisted cell sorting 

FAK Focal adhesion kinase 

FBS Fetal bovine serum 

FITC Fluorescein isothiocyanate 

FN1 Fibronectin 1 

FOS FBJ osteosarcoma oncogene 

FOSB FBJ osteosarcoma oncogene B 



132 
 

FOXP1 Forkhead box P1 

G Glycine 

GFP Green fluorescent protein 

GI Gastrointestinal 

H Histidine 

H&E Hematoxylin and eosin 

H2SO4 Sulfuric acid 

H3 Histone H3 

H4 Histone H4 

HAT Histone acetyltransferase 

HBSS Hank’s balanced salt solution 

HDAC Histone deacetylase 

HPLC High-performance liquid chromatography 

HRP Horseradish peroxidase 

I Isoleucine 

i.p. Intraperitoneal 

i.v Intravenous 

IGFR1 Insulin-like growth factor receptor-1 

IL Interleukin 

ILK Integrin-linked kinase 

JAG1 Jagged 1 

JUN Jun proto-oncogene 

K Lysine 

KAT2B Lysine acetyltransferase 2B 

KBP Kentucky BioProcessing 

KCl Potassium chloride 

L Leucine 

M Methionine 



133 
 

MAP2K11 Mitogen-activated protein kinase kinase 11 

MAP2K7 Mitogen-activated protein kinase kinase 7 

MAPK Mitogen-activated protein kinase 

MgCl2 Magnesium chloride 

MITF Microphthalmia-associated transcription factor 

MMP1 Matrix metallopeptidase 1 

MMP13 Matrix metallopeptidase 13 

MS Mass Spectrometry  

MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium 

N Asparagine 

NANOG Nanog homeobox 

NaOH Sodium hydroxide 

NCI National Cancer Institute 

NF-ĸB Nuclear factor kappa-light-chain-enhancer of activated B cells 

NIH National Institutes of Health 

NK Natural killer 

NOD/SCID Nonobese diabetic/severe combined immunodeficiency 

NSAID Non-steroidal anti-inflammatory drug 

NSCLC Non-small cell lung cancer 

OCT4 Octamer-binding transcription factor 4 

P Proline 

PARP Poly ADP ribose polymerase 

PB Phosphate buffer 

PBS Phosphate-buffered saline 

PCR Polymerase chain reaction 

PE Phycoerythrin 

PFA Paraformaldehyde 



134 
 

PI Propidium iodide 

PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase 

PLA Proximity ligation assay 

PTEN Phosphatase and tensin homolog 

PVDF Polyvinylidene fluoride 

Q Glutamine 

R Arginine 

RAC1 Ras-related C3 botulinum toxin substrate 1 

RAR Retinoic acid receptor 

RAS Rat sarcoma 

RIN RNA integrity number 

RIPA Radioimmunoprecipitation assay 

RPC Reverse-phase chromatography 

RXR Retinoid X receptor 

S Serine 

s.c. Subcutaneous 

SA Senescence-associated 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEER Surveillance, Epidemiology, and End Results 

SF Surviving fraction 

SKI SKI proto-oncogene 

SMAD5 SMAD family member 5 

SMAD6 SMAD family member 6 

SMAD7 SMAD family member 7  

SNAI1 Snail family transcriptional repressor 1 

SNAI2 Snail family transcriptional repressor 2 

T Threonine 

TBS Tris-buffered saline 



135 
 

TCA Trichloroacetic acid 

TGF-β Transforming growth factor beta 

TGF-β3 Transforming growth factor beta 3 

TME Tumor microenvironment 

TNF Tumor necrosis factor 

TP73 Tumor protein p73 

TTBS Tris-buffered saline with Tween 

UV Ultraviolet 

V Valine 

VCAM-1 Vascular cell adhesion protein 1 

W Tryptophan 

WNT5a Wnt (wingless) oncogene analog 5a  

 

 
 



136 
 

CURRICULUM VITAE 
 

Christopher P. Shidal 
425 S. Hubbards Lane #425 
Louisville, KY 40207 
 (270) 519-2207 
cshidal@indiana.edu 

 
Personal Statement: 
 
 My personal goal is to generate high quality data that can be easily integrated into and further 
develop the field of cancer therapeutic drugs.  My work as a research fellow in the field of oncology has 
allowed me to explore and advance several research projects including cigarette smoke induced 
carcinogenesis and the development of a soy-derived peptide as a chemotherapeutic. My background in the 
field of pharmacology has allowed me to develop concepts and critical thinking skills necessary to excel 
throughout my career.  I have held several science-related positions since graduating from the University of 
Kentucky which have allowed me to sharpen my skills working in settings such as industry as well as 
academia.  Furthermore, I was given the opportunity to advance a number of projects independently.  As a 
research fellow, I have acquired a unique skill set aimed toward oncology research; however, learned 
techniques which could be applied to any life science including flow cytometry, fluorescent microscopy, 
GC/HPLC, and in vivo models, to name a few. 

Education: 

INSTITUTION AND 
LOCATION 

DEGREE 
(if applicable) 

DATES 
ATTENDED FIELD OF STUDY 

Paducah Community College 
(Paducah, KY) N/A 08/04 – 08/05 Pre-Pharmacy 

University of Kentucky 
(Lexington, KY) B.S. 08/05 – 08/08 Biology 

University of Louisville 
(Louisville, KY) M.S. 08/11 – 08/14 Pharmacology/Toxicology 

 Ph. D (expected) 08/14 -05/17 Pharmacology/Toxicology 

Positions and Honors: 

Employment 

 2003 - 2006   Pharmacy Technician, Lourdes Hospital, (Paducah, KY) 
 2008   Research Technician, University of Kentucky (Lexington, KY) 
 2008 - 2010  Quality Assurance Technician, Air Products (Calvert City, KY) 
 2011 - 2014  Predoctoral Researcher, University of Louisville (Louisville, KY) 
 2014 – 2016  Visiting Researcher Associate, Indiana University (Bloomington, IN) 
 2017- Present  Postdoctoral Research Fellow, University of South Carolina School of  

   Medicine 
 
 
 



137 
 

Volunteerism and Memberships 

 2001 - 2004  Volunteer, Relay for Life (Paducah, KY) 
 2004   Volunteer, Habitat for Humanity (Paducah, KY) 
 2008 - 2011  Volunteer, ASPCA (Lexington, KY) 
 2011 - present  Member, Society of Toxicology (SOT) 
 2015   Volunteer, Monroe County VITALS Program 

 
 
Honors 

 2004 – 2005  Academic Scholarship, Paducah Community College (Paducah, KY) 
 2004 – 2005  Deans List, Paducah Community College (Paducah, KY) 
 2009-2010  Governor’s Safety and Health Award, Air Products (Calvert City, KY) 
 2011-2013  Graduate Fellowship, University of Louisville (IPIBS) (Louisville, KY) 
 2015   Simon Cancer Center Research Day, 2nd Place Poster Presentation  

   (Indianapolis, IN) 
 2016   CTSI Customer Discovery Program (Indianapolis, IN) 

 
Publications: 

Articles 

Shidal, C.P., Lunasin reduces the melanoma stem cell population in vitro and inhibits tumor proliferation in 
vivo. (2014). Electronic Theses and Dissertations. Paper 1765. 

Shidal C., et. al. Lunasin is a novel therapeutic agent for targeting melanoma cancer stem cells. Oncotarget 
2016 (doi: 10.18632/oncotarget.11554) 

Devapatla B, Shidal C, Yaddanapudi K and Davis KR. Validation of syngeneic mouse models of 
melanoma and non-small cell lung cancer for investigating the anticancer effects of the soy-derived peptide 
Lunasin. F1000Research 2016, 5:2432 (doi: 10.12688/f1000research.9661.1) 

Shidal C., Yaddanapudi K., and Keith R Davis. The soy derived peptide Lunasin decreases invasive 
potential of melanoma initiating cells. Oncotarget, 2016. (Accepted) 

Shidal C. et al. Genome-wide microarray analysis reveals the selective effects of Lunasin on melanoma 
initiating cells. (Manuscript in preparation). 

Select Presentations 

Shidal, Chris and Keith R. Davis (2012). Lunasin inhibits proliferation of non-small cell lung cancer 
(NSCLC) in-vitro.  J.G. Brown Cancer Center Retreat. University of Louisville, Louisville, KY. 

Shidal, Chris and Keith R. Davis (2013). Molecular interactions between cadmium and nitrosamine ketone 
potentiate carcinogenic potential of cigarette smoke.  OVSOT 2013 Spring Meeting, University of 
Louisville, Louisville, KY. 

Shidal, Chris and Keith R. Davis (2013). Profiling Lunasin as an adjuvant treatment in malignant 
melanoma.  J.G. Brown Cancer Center Retreat. University of Louisville, Louisville, KY. 

Shidal, Chris, et al. (2015). Lunasin has therapeutic potential against malignant melanoma. Simon Cancer 
Center Research Day. IUPUI, Indianapolis, IN. 



138 
 

Shidal, Chris, et al. (2015).  Lunasin has therapeutic potential against malignant melanoma. Society of 
Postdoctoral Scholars Symposium. University of Kentucky, Lexington, KY. 

Shidal, Chris, et. al.(2016) Lunasin has therapeutic utility against malignant melanoma. Indiana University 
Chemistry Department Career Development Seminar. Indiana University, Bloomington, IN. 

Shidal, Chris, et. al. (2016) Using the multifaceted peptide Lunasin to combat malignant melanoma. 
Biochemistry and Molecular Biology (BMB) Research Club, Indiana University-Bloomington. 

Shidal, Chris, et. al. (2016) Using the multifaceted peptide Lunasin to combat malignant melanoma. 
OVSOT 2016 Fall Meeting. Eli Lilly, Indianapolis, IN. 


	Combating malignant melanoma with the multifaceted soy-dervied peptide lunasin.
	Recommended Citation

	Melanoma and the presence of melanoma stem cells
	A lower, cell-free layer of 0.5% Bacto agar and cell culture media (1:1 suspension) was plated in 6-well tissue culture plates and allowed to solidify at room temperature in a laminar flow cabinet. An upper layer of 0.35% agar and culture media (1:1)...
	2.5 ALDEFLUOR Staining
	2.6 Flow Cytometry (Apoptosis)
	Annexin V binding assays were conducted using FITC conjugated antibodies against phosphatidylserine (BD Bioscience) and propidium iodide to measure rates of apoptosis and cell death.  Cells were harvested and resuspended in 1x binding buffer (0.1 M HE...
	For identifying ALDHhigh cells, melanoma cells were assayed for high ALDH activity as described above (Section 2.5). ALDHhigh and ALDHlow melanoma cells were sorted using a MoFlo cell sorter (Beckman Coulter) or a FACS Aria II with FACS Diva softwar...
	2.7 Flow Cytometry (Cell Cycle)
	Cell cycle analysis was performed on synchronized melanoma cells; cells were serum starved for 72 h and then released by addition of 10% FBS culture media containing Lunasin or vehicle for 24 h.  1x106 cells were harvested and resuspended in 200 μL of...
	2.8 Fluorescence-assisted Cell Sorting
	Cell sorting was performed on a Beckman MoFlo or BD Aria II instrument equipped with a 20 milliwatt blue argon laser (488 nm) using the ALDEFLUORTM kit as previously described (Section 2.5).  ALDHhigh and ALDHlow fractions were detected using a FITC f...
	Positions and Honors:


