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ABSTRACT

LOW-RESOLUTION ADC RECEIVER DESIGN, MIMO INTERFERENCE

CANCELLATION PROTOPTYING, AND PHY SECRECY ANALYSIS

Chen Cao

April 14, 2017

This dissertation studies three independent research topics in the general field of

wireless communications.

The first topic focuses on new receiver design with low-resolution analog-to-digital

converters (ADC). In future massive multiple-input-multiple-output (MIMO) systems,

multiple high-speed high-resolution ADCs will become a bottleneck for practical

applications because of the hardware complexity and power consumption. One solution to

this problem is to adopt low-cost low-precision ADCs instead. In Chapter II,

MU-MIMO-OFDM systems only equipped with low-precision ADCs are considered. A

new turbo receiver structure is proposed to improve the overall system performance.

Meanwhile, ultra-low-cost communication devices can enable massive deployment of

disposable wireless relays. In Chapter III, the feasibility of using a one-bit relay cluster to

help a power-constrained transmitter for distant communication is investigated. Nonlinear

estimators are applied to enable effective decoding.

The second topic focuses prototyping and verification of a LTE and WiFi

co-existence system, where the operation of LTE in unlicensed spectrum (LTE-U) is

v



discussed. LTE-U extends the benefits of LTE and LTE Advanced to unlicensed spectrum,

enabling mobile operators to offload data traffic onto unlicensed frequencies more

efficiently and effectively. With LTE-U, operators can offer consumers a more robust and

seamless mobile broadband experience with better coverage and higher download speeds.

As the coexistence leads to considerable performance instability of both LTE and WiFi

transmissions, the LTE and WiFi receivers with MIMO interference canceller are designed

and prototyped to support the coexistence in Chapter IV.

The third topic focuses on theoretical analysis of physical-layer secrecy with finite

blocklength. Unlike upper layer security approaches, the physical-layer communication

security can guarantee information-theoretic secrecy. Current studies on the physical-layer

secrecy are all based on infinite blocklength. Nevertheless, these asymptotic studies are

unrealistic and the finite blocklength effect is crucial for practical secrecy communication.

In Chapter V, a practical analysis of secure lattice codes is provided.
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CHAPTER I

INTRODUCTION

This dissertation studies three independent research topics in the general field of

wireless communications. In particular, the studies of these three topics focus on different

levels: 1) The first study is new system design and simulation for low-resolution ADC

receivers. 2) The second study is system prototyping and verification of a new LTE and

WiFi coexistence system based on MIMO interference cancellation. 3) The last study is

theoretical analysis physical-layer secrecy.

A Low-Resolution ADC Receiver Design

Massive multiple-input-multiple-output (MIMO) is an enabling technology for

next generation wireless communication systems such as 5G. In such systems, an

indispensable component of any receiver architecture is the analog-to-digital converter

(ADC), typically with a resolution of 8-12 bits. However, the high dimensionality of

massive antennas considerably increases the hardware cost and power consumption of RF

chains [1–3]. In particular, the power consumption of an ADC increases almost

exponentially with the number of bits per sample. As larger and larger bandwidth is used,

the corresponding sampling rate of an ADC scales up. As a result, massive high-speed

high-resolution ADCs are either unavailable or too costly and power-hungry. Apparently,

1



ADCs will become a major obstacle for next generation wireless transceivers. To

overcome this problem, the use of low-resolution ADCs was proposed in [4], etc, which

yields significantly quantized massive MIMO systems. The capacity of different

quantized systems has been analyzed in [5–10]. Although low-resolution ADCs will incur

performance loss, the quantized systems can benefit from the massive antennas while

keeping the power consumption and hardware cost under practical constraints. In Chapter

II, a new turbo receiver structure is proposed for uplink MU-MIMO-OFDM systems

based on low-resolution ADCs only.

The contribution:

1) Unlike the traditional independent quantization error model [11], the interdependency

between the input analog signal and the output quantized signal of low-resolution ADCs is

exploited and a turbo receiver structure is proposed to effectively reduce the large

quantization error. Specifically, using the extrinsic information from the channel decoder,

it can estimate the quantization error and enable de-quantization.

2) Based on the turbo receiver structure, both the Linear Minimum Mean Square Error

(LMMSE) receiver and the Approximate Message Passing (AMP) receiver are designed.

In particular, the turbo AMP receiver is preferred in massive MIMO applications because

its computational complexity increases only linearly with the number of receiver antennas.

3) The simulation results demonstrate that the proposed turbo receiver structure can

significantly improve the performance of quantized receivers. Specifically, even with

highly inaccurate channel state information (CSI), the turbo LMMSE and AMP receiver

are superior to the conventional receiver in terms of bit error rate (BER). Compared with

the LMMSE receiver, the AMP receiver is less sensitive to CSI so it is more advantageous

2



under inaccurate CSI conditions.

Besides massive MIMO, another potential application for low-resolution ADC

receiver is the Internet of Things (IoT) wireless network. In particular, Ubiquitous

communications (UbiComm) that provide reliable connections for anything at anywhere

will take center stage of future wireless networks. In such networks, traditional wireless

communication transceivers may impede their massive deployment due to their high cost

and power consumption. As a result, ultra-low-cost transceivers have become an

intriguing alternative to realize future IoT. In particular, small wireless sensors with a hard

cost/power constraint will benefit from the ultra-low-cost relays. Furthermore, the

ultra-low-cost transceiver will enable massive deployment of disposable wireless relays.

Note that these disposable relays can be arbitrarily scattered at places needed to provide a

reliable connection, and the failure of some of these relays will not interrupt the

connection. In Chapter III, the one-bit relay cluster scheme is studied.

The contribution:

1) This is the first work to study the one-bit relay cluster for distant transmission.

2) A simple DC-offset method is proposed to support the M-QAM modulation.

3) A black-box solution is provided to avoid the unscalable channel estimation process.

4) Two nonlinear estimators are designed with significant performance gains over the

traditional linear estimator.

3



B MIMO Interference Cancellation Prototyping

LTE-unlicensed (LTE-U) technology is initiated as part of LTE Release 13 to allow

users to access both licensed and unlicensed spectrum under a unified LTE network

infrastructure. LTE-U extends LTE to the unlicensed spectrum and aggregates the

unlicensed spectrum with the licensed spectrum. It can provide better coverage and larger

capacity than cellular/WiFi interworking while allowing seamless data flow between

licensed and unlicensed spectrum through a single network. For operators, LTE-U means

synchronized integrated network management, the same authentication procedures, more

efficient resource utilization, and thus lower operational costs. The primary challenge of

LTE-U is the coexistence with the unlicensed systems such as WiFi systems. The current

solution for LTE and WiFi coexistence is to adopt an on/off time pattern in LTE. In

on-state, the LTE basestation transmit based on standards. In off-state, the LTE

basestation ceases all transmissions while WiFi systems can access these gaps for

transmission. This is a simple mechanism to enable both LTE and WiFi systems to work

in the unlicensed band. However, the LTE and WiFi performance in the unlicensed

spectrum will inevitably fluctuate because of frequent back-off, leading to considerable

performance instability. To address this problem, in Chapter IV, a prototype of the

interference cancelling receivers for LTE and WiFi coexistence is demonstrated.

The contribution:

1) Both the WiFi and LTE receivers with MIMO interference canceller are designed and

implemented on Soft Defined Radios (SDR).

2) The prototype system is tested and evaluated in real world environment.
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C PHY Secrecy Analysis

In traditional communication systems, physical-layer channel codes provide the

data reliability, while upper layer encryption algorithms and key exchange protocols

ensure the data secrecy. Unlike upper layer security approaches, physical-layer

communication security can guarantee the information-theoretic secrecy, which is

measured quantitatively in terms of the statistical dependence between transmitted

messages and observations. Specifically, the state-of-the-art coding schemes are measured

by the secrecy capacity, which is defined as the maximum coding rate that can be used by

the sender to ensure that the legitimate receivers can decode successfully while the

eavesdroppers cannot obtain any information. The basic assumption of the secrecy

capacity analysis is the coding blocklength goes to infinity. However, this asymptotic

assumption is unrealistic in practical systems. In fact, the effect of finite blocklength on

secrecy performance can be quite significant in many practical communication scenarios.

In Chapter V, a thorough analysis of the finite-blocklength secrecy performance of

secure lattice codes is provided.

The contribution:

1) Two secrecy performance metrics are provided: the leak probability LP and the average

leakage LA.

2) Since the direct analysis based on LA and LP are computationally prohibitive, a

practical approach is further proposed to approximate LA and LP .

5



3) The trade-off between the secrecy and the reliability is examined.

4) Finally, the secrecy performance of secure nested lattice codes with finite blocklengths

is analyzed.

6



CHAPTER II

UPLINK MU-MIMO-OFDM RECEIVERS WITH LOW-RESOLUTION

ADCS

In a multi-user MIMO (MU-MIMO) system with spatial multiplexing, all users

simultaneously transmit their data using the same bandwidth. Conventional massive

MU-MIMO systems based on perfect ADCs have been extensively studied. Recently,

quantized MU-MIMO systems attract a lot of attention because of the benefits of

low-resolution ADCs. In [12, 13], the authors studied the massive MIMO systems with

one-bit ADCs. They adopted the least square (LS) channel estimation and use the

maximum-ratio-combining (MRC) and zero-forcing (ZF) filter for the MIMO detector.

The underlying assumption is that the quantization error is additive and uncorrelated to the

analog input signal, which is the classic quantization model [11]. The results show that

MIMO is resilient to the quantization error. Along the same line, [14] formulated a

maximum likelihood (ML) detection problem, which was solved by a exhaustive search

over all possible transmitted vectors. The authors further proposed an iterative algorithm

by relaxing the constraints on the transmitted vector. The joint channel-and-data

estimation is considered in [15]. The coarse quantization makes the acquisition of channel

state information (CSI) more challenging in quantized MIMO systems. The requirement

of a long pilot sequence motivates to adopt the joint channel-data estimation. In [15], it

7



proposed a Bayes-optimal inference method based on minimum mean square error

(MMSE). The result demonstrates the joint channel-and-data estimation can help the

receiver to obtain more accurate CSI in quantized MIMO systems. In [16], the authors

focused on the channel estimation with one-bit quantization. They utilized the

characteristics of mmWave that the channel is sparse, and formulated the estimation

problem as a one-bit compressed sensing problem. In [17], nonlinear estimators such as

support vector machine and neural network were exploited to be used in the massive

wireless relay transmission with only one-bit ADCs. However all these work [12–17]

assume the MU-MIMO operation over flat-fading channel.

Orthogonal-frequency-division-modulation (OFDM) is the most adopted technique for

frequency-selective channel. An ideal OFDM process will convert the frequency-selective

channel into a set of orthogonal flat-fading channels. However, in quantized systems, the

linear discrete-Fourier-transform (DFT) operation at a receiver is not able to project the

nonlinear-correlated quantization error into orthogonal components at each subcarrier.

This is equivalent to incurring nonlinear interference at the subcarriers, which makes it

more difficult to mitigate the quantization error compared to the systems only designed for

flat-fading channel.

Recent work [18] developed a dedicated MU-MIMO-OFMD detector for the

quantized case. Two quantization error models are adopted: the exact and mismatched

model. The mismatch quantization model simply regards the quantization error as an

additive uncorrelated noise, which is identical as the classic quantization error model [11].

The detector for the mismatch model is exactly the same as the conventional detector

designed for infinite-resolution ADC receivers. The detector of the exact model works on

8



solving optimal problems based on MAP or MMSE criterions. Obviously, these optimal

problems require high computational complexities. To address the computational

complexity issue, the authors suggested a technique named as forward-backward splitting

(FBS). However, the reduction of the complexity still rely on exploiting fast transforms

instead of matrix products and selecting an appropriate step-size. In [19], the authors

exploited the massive MU-MIMO-OFDM system with mixed high-resolution and one-bit

ADCs, where the nonlinearity of the one-bit quantization is modeled as a linear

inter-symbol interference after the DFT operation. Accordingly, they proposed a linear

frequency domain equalizer to maximize the transmission rate when there is only one

user. For the multiuser scenario, the multiuser interference is regarded as an additional

Gaussian noise so that the linear frequency domain equalizer is obtained the same as the

single user case. The authors also exploited the error matrix structure to reduce the

computational complexity to the cubic of the number of receiver antennas. [20–28] was

first proposed as a channel equalizer to mitigate the inter-symbol interference over

frequency-selective channel. In a turbo receiver, there exists a feedback loop from the

channel decoder output to the equalizer. Specifically, the channel decoder will feed back

the extrinsic information of the transmitted symbols into the equalizer as a priori symbol

probabilities. Then, the equalizer combines this a priori information and the input signal

to estimate the transmitted symbols. The turbo equalizer works in an iterative way until a

stopping criterion is reached. Motivated by the success of the turbo equalizer, the turbo

receiver has been extended to various applications such as MIMO detection [29–31],

carrier-frequency offset estimation [32–34]. Belief propagation (BP) is a message-passing

Bayesian inference framework applied to factor graphical probabilistic models, where

9



messages are sent between factor nodes and variable nodes. The message computation

rules are obtained from the stationary points of the Bethe free energy. When the factor

graph is free of cycles, BP provides the exact marginal distributions. When the graph has

cycles, BP outputs an approximation of the marginal distribution. BP with factor graph

has been widely used in the channel decoding and turbo receiver design [35–39].

However, BP still involves high-dimensional matrix operations in large-scale systems. To

address the dimensionality issue, approximate-message-passing (AMP) [40–44] is further

proposed for large-scale systems to decouple the vector-valued estimation problem into a

sequence of scalar problems and linear transforms. Meanwhile, AMP also enables parallel

and distributed computing.

Throughout this chapter, the following notations are used: Quan (·) denotes the

quantization function; Q (·) denotes the Q function; CN (x; τ, ν) denotes the complex

Gaussian random variable x with the mean τ and variance ν; N (x; τ, ν) denotes the real

Gaussian random variable x with the mean τ and variance ν; R (x) and I (x) denote the

real part and image part of x, respectively. U (x) and L (x) denote the mapping from the

quantized value x to its corresponding upper and lower continuous values before the

quantization, respectively; f (X) |X=x1
X=x2

is short for f (x1)− f (x2); unbold letters (e.g., x)

denote scalars and bold letters (e.g., x) denote vectors or matrices. In addition, some

frequently used system model notations are summarized in Table I.
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TABLE 1

System model notations
nt user (transmitter) index
Nt number of users (transmitters)
nr receiver antenna index
Nr number of receiver antennas
k subcarrier index
K number of subcarriers
t time snapshot (tap) index
T number of time snapshots (taps)

A System model

Consider a generic MU-MIMO-OFDM uplink system, where the receiver is

equipped with multiple antennas while each user has only single antenna. All users intend

to send their individual information bits to the receiver using the same time-frequency

resource. The information bits are segmented and concatenated into transport blocks in

media access (MAC) layer. As only focus on physical-layer, assume there is only one

transport block in each user. This transport block first enters a channel encoder followed

by a block interleaver. The interleaved-coded bits are then mapped into constellation

symbols (QPSK, QAM, etc.). After a series-to-parallel converter, the constellation

symbols are grouped into several OFDM symbols for the IDFT operation 1. Finally, the

OFDM symbols are sent to the antenna and transmitted sequentially by each user. To

make concise expressions, focus on one specific OFDM symbol. The transmitted signal is

1The cyclic-prefix process is not specifically demonstrated in this paper because it does not affect the
proposed algorithms.
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XK×Nt = [x1,x2, · · · ,xNt ], and the discrete channel frequency response is

HNr×Nt×K =


h11 · · · h1Nt

... . . . ...

hNr1 · · · hNrNt

 = [h1,h2, · · · ,hK ] . (1)

The noise matrix is denoted as WT×Nr = [w1,w2, · · · ,wNr ] and the elements in WT×Nr

are i.i.d random variables with the Gaussian distribution N (0, σw). In Figure 1, the analog

signal before the ADCs can be expressed as

ynr,T×1 =
1

K

N∑
nt=1

FT×Kdiag (hnrnt,K×1) xnt,K×1 + wnr,T×1, (2)

where F is the IDFT matrix and YT×Nr = [y1,y2, · · · ,yNr ].

B Conventional receiver with uncorrelated quantization error model

ADC

ADC

ADC

ADC

DFT
MIMO

Detector
Soft

Demapper
Block

Deinterleaver
Channel 
Decoder

Figure 1: Conventional receiver structure for the MU-MIMO-OFDM system

In the conventional receiver design, the quantization error is approximated as a

Gaussian noise and spread more or less uniformly over the Nyquist bandwidth [11]. The

underlying assumption is that the quantization error is uncorrelated to the input analog

signal, which is accurate enough when high-resolution ADCs are used. In this case, the

quantization error can be treated as a channel noise so that it can adopt the conventional

receiver structure shown in Figure1.
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After the quantization, the digital signal is

ȲT×Nr = Quan (YT×Nr) = Quan (R (YT×Nr)) + Quan (I (YT×Nr)) . (3)

The quantized signal is modeled as

ȲT×Nr = YT×Nr + ΩT×Nr , (4)

where the elements in ΩT×Nr are i.i.d noises with the distribution CN (0, σω). Because the

noise here is assumed additive and uncorrelated, the DFT operation can be applied directly

to yield

ZK×Nr = F∗ȲT×Nr = F∗YT×Nr + F∗ΩT×Nr . (5)

Let W̃K×Nr = F∗W̃T×Nr and W̃d
K×Nr = F∗W̃d

T×Nr , it gives

zTk,1×Nr = hk,Nr×Ntx
T
k,1×Nt + w̃T

k,1×Nr + ω̃Tk,1×Nr . (6)

For a specific k, the elements in w̃k,1×Nr (resp. ω̃k,1×Nr) are i.i.d noises with the distribution

CN (0, Tσw) (resp. CN (0, Tσω)).

1 Channel estimation

At the user (transmitter), the IDFT operation is directly applied to the pre-defined

reference symbols XP as pilot signals. To improve the channel estimation accuracy, each

user transmits the pilot with time-division to avoid multiuser interference. At the receiver

side, the pilot signal after the DFT operation is

ZP
K×Nr×Nt = HK×Nr×Nt ·XP + W̃P

K×Nr×Nt + Ω̃P
K×Nr×Nt , (7)
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The channel estimation is based on maximum a posterior (MAP) with the Gaussian

assumption:

Ĥ = arg max
H

P
(
ZP

1 ,Z
P
2 , · · · |H

)
= arg min

H

∑
i

∥∥H ·XP
i − ZP

i

∥∥2
, (8)

and the solution is given by

Ĥ =

∑
i

conj
(
XP
i

)
· ZP

i∑
i

conj (XP
i ) ·XP

i

, (9)

where the dot-product and divide operations are both element-wise operations.

2 LMMSE MIMO detector

While the maximum a posterior (MAP) data signal detector is optimal, it is

impractical for real applications because of its high computational complexity. Among

suboptimal linear MIMO detectors, the minimum mean square error (MMSE) detector has

the best performance. By solving the optimization problem

min
x̂k,1×Nt

E
[
‖x̂k,1×Nt − xk,1×Nt‖

2] , (10)

the estimated X is given as

x̂Tk,1×Nt=
xCNt×Ntĥ

H
k,Nr×Nt

(
ĥk,Nr×Nt

xCNt×Ntĥ
H
k,Nr×Nt+

wCNr×Nr+
ωCNr×Nr

)−1

zTk,1×Nr ,

(11)

where xC is the auto-covariance matrix of xk, wC and ωC are the auto-covariances of the

channel noise and the quantization error with wC ∼ diag (Tσw) and ωC ∼ diag (Tσω),

respectively. The quantization error covariance after the LMMSE detector is given as

eCk,Nt×Nt =x CNt×Nt−

xCNt×Ntĥ
H
k,Nr×Nt

(
ĥk,Nr×Nt

xCNt×Ntĥ
H
k,Nr×Nt+

wCNr×Nr+
ωCNr×Nr

)−1

ĥk,Nr×Nt
xCNt×Nt .

(12)
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With the input x̂k and error covariance eCk, the soft demapper translates the results

of the LMMSE detector into log likehood ratios (LLRs). With the estimated symbol x̂knt ,

the probability that the constellation symbol φi was transmitted is

P (φi|x̂knt) ∼ exp

(
−(x̂knt − φi)

2

2σeknt

)
, (13)

where σeknt is the diagonal element of eCk, σek = diag (eCk),

σek =
[
σek1, · · · , σeknt , · · · , σ

e
kNt

]
and x̂k = [x̂k1, · · · , x̂knt , · · · , x̂kNt ]. Therefore, the LLR

of the jth bit of xknt can be calculated as

lkntj = log

∑
i

P (φi|x̂knt) , i ∈ {jth bit of φi is ′0′}∑
i

P (φi|x̂knt) , i ∈ {jth bit of φi is ′1′}
. (14)

The LLR lkntj is then sent to the block deinterleaver and the channel decoder to estimate

the source bits.

C Turbo LMMSE receiver design

The conventional receiver design in Section III assumes the quantization error is

independent of the analog input signal. However, this assumption is invalid and can cause

significant performance loss when low-resolution ADCs are used. In this section, the

interdependence of the quantization error and the analog input signal is fully considered,

and a new turbo receiver structure is proposed to effectively reduce the large quantization

error caused by low-resolution ADCs.
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Figure 2: Turbo LMMSE receiver for de-quantization

1 Turbo LMMSE receiver design

The dependence of the quantization error Ω on the input signal Y can be modeled

as

Ω (Y) = Quan (Y)−Y. (15)

A simplified turbo receiver structure based on Equation(15) is shown in Figure2. The basic

idea is described as follows: using the extrinsic information of Y provided by the channel

decoder, it can obtain an estimation Ŷ and thus the estimated quantization error Ω
(
Ŷ
)

.

Then Ω
(
Ŷ
)

will be subtracted from Quan (Y) to reduce the quantization error. The

whole detection and decoding process is realized in an iterative way with m as the iteration

index.

Let l(m)
kntj

denote the updated LLR from the channel decoder and block interleaver,

the soft mapper produces the estimated constellation symbol as

x̂
(m)
knt

=
∑
φ∈Φ

φP
(
φ|l(m)

knt1
, l

(m)
knt2

, · · ·
)
, (16)

σ
x̂(m)
knt

=
∑
φ∈Φ

|φ|2P
(
φ|l(m)

knt1
, l

(m)
knt2

, · · ·
)
−
∣∣∣x̂(m)
knt

∣∣∣2. (17)
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Using the estimated symbol x̂(m)
knt

, it can further estimate the analog signal before the

quantization as

ŷ(m)
nr =

1

K

Nt∑
nt=1

Fdiag
(
ĥnrnt

)
x̂(m)
nt . (18)

Therefore, the estimated quantization error is

Ω(m) = Quan
(
Ŷ(m)

)
− Ŷ(m). (19)

The residual error after the de-quantization is

Ω (Y)− Ω
(
Ŷ
)

= Quan (Y)−Quan
(
Ŷ
)

+ Ŷ −Y. (20)

Assume that the estimated Ŷ follows the Gaussian distribution so it is equivalent to an add-

on Gaussian noise matrix Wŷ ∼ CN
(
0, σŷ

)
. Thus, the residual error (20) can be revised

as

Ω (Y)− Ω
(
Ŷ
)

= Quan (Y)−Quan
(
Y + Wŷ

)
+ Wŷ. (21)

When the elements of Wŷ are much smaller than the quantization unit, the quantized signal

stays the same as Quan (Y) = Quan
(
Y + Wŷ

)
. Therefore, the residual error is equal to

the estimation error as

Ω (Y)− Ω
(
Ŷ
)

= Wŷ. (22)

With the de-quantization process, the de-quantized signal after the DFT process is

Z(m) = FH
(
Ȳ −Ω(m)

)
, (23)

and the residual error power after the DFT operation can be estimated by

reC
(m)
k = ĥkdiag

(
σ
x̂(m)
k

)
ĥHk . (24)

17



Because the overall noise power (i.e., wC + reC
(m)
k ) updates in each iteration, the LMMSE

detector coefficients have to be re-calculated based on the updated noise covariance matrix

as

Σ
(m)
k =xCĥ

H

k

(
ĥk

xCĥ
H

k +wC + reC
(m)
k

)−1

. (25)

Therefore, the updated estimated signal matrix and error matrix are given by

x̂
(m)
k

T = Σ
(m)
k z

(m)
k

T , (26)

eC
(m)
k =xC−Σ

(m)
k ĥk

xC. (27)

The soft demapper produces the updated LLRs based on the updated symbol estimation as

P
(
φ|x̂(m)

knt

)
∼ exp

−
(
x̂

(m)
knt
− φi

)2

2σ
e(m)
knt

 , (28)

l
(m+1)
kntj

= log

∑
φ

P
(
φ|x̂(m)

knt

)
, i ∈ {jth bit of φis ′0′}∑

φ

P
(
φ|x̂(m)

knt

)
, i ∈ {jth bit of φis ′1′}

. (29)

2 Complexity

For the turbo receiver structure, the computational complexity is a key factor for

practical applications. Therefore, it is necessary to investigate the computational

complexity of the receiver in one iteration between the softer mapper and demapper. The

complexities for the matrix multiplication and inversion operation depend on specific

algorithms. Assume that arithmetic with individual elements has complexity O(1), as is

the case with fixed-precision floating-point arithmetic. In this section, adopt the general

setting: the complexity of the multiplication of one n×m matrix and one m× p matrix is

O(nmp); and the complexity of the inversion of one n × n matrix is O(n3). In one
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iteration, the complexity to calculate ŷ
(m)
nr using Equation(18) is

O(NrNtK) + O(NrNtT ) + O(NrNtTK). Then, the complexity to estimate the

quantization error Ω(m) using Equation(19) is only O(NrT ). The de-quantized signal

Z(m) is calculated using Equation(23) with complexity O(NrT ) + O(NrKT ). In each

iteration, it needs to re-calculate the residual error variance matrix reC
(m)
k using

Equation(24), and its complexity is O(NtN
2
rK). Because reC

(m)
k updates in each

iteration, the LMMSE detector needs to be updated using Equation(25) with complexity

O(NtNrK) + O(NtN
2
rK) + O(NrK) + O(N3

r ). Thus, the estimated symbol x̂
(m)
k and

error covariance eC
(m)
k are updated using Equation(26) and Equation(27), and their

complexities are O(NrNt) and O(NrN
2
t ) + O(N2

t ) + O(Nt), respectively. Overall, the

complexity for the turbo LMMSE receiver is

O (NrNtKT ) + O (N3
r ) + O (N2

rNtK) + O (N2
t ). Apparently, for massive MIMO

systems, the complexity could be overwhelming because of O (N3
r ) +O (N2

rNtK).

D Turbo AMP receiver design

Belief propagation (BP) is an iterative message-passing type estimator. To reduce

the complexity of the turbo receiver, it can adopt approximate-message-passing (AMP)

[40–43] as an alternative signal detector. Figure3 shows the AMP receiver structure.

Instead of vector estimations, the AMP detector works on a decoupled-scalars factor

graph. For the AMP detector design, it uses the factor graph shown in Figure4, in which

the square and circle represents the factor node and variable node, respectively. The

messages are passed between the factor nodes and variable nodes. Note that each message
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represents a specific probability density function (PDF).
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Figure 3: Turbo AMP receiver for de-quantization
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Figure 4: Factor graph for the AMP detector

1 Message-passing algorithm

1) calculate µyt→bnrntk

As shown in Figure5, µyt→bnrntk is the message sent from the factor node fynrt to
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Figure 5: Messages between the factor node fynrt and the variable node bnrntk

the variable node bnrntk. First of all, the conditional probability of ynrt is

f (ynrt|bnr) =

U(ynrt)∫
L(ynrt)

CN

(
y −

Nt∑
nt=1

K∑
k=1

bnrntke
j2π(t−1)(k−1)/K ; 0, σw

)
dy. (30)

Thus, the joint probability is further given as

f (ynrt,bnr) = f (ynrt|bnr)
NrK∏

nr=1k=1

µbnrntk→yt . (31)

To decouple bnr into scalar variables, it could adopt the mean-field (MF) approximation

and derive µyt→bnrntk as

µyt→bnrntk ∝

exp

(
E[ln f (ynrt,bnr)] ∏

n′tk
′ 6=ntk

µb
nrn
′
tk
′→yt

)
µbnrntk→yt

. (32)

However, different from the convectional systems without quantization, there exists an

integral part in f (ynrt,bnr) so that the calculation of Equation(32) is non-trivial. Therefore,

it goes back to the original sum-product (SP) algorithm with the assumption that µbnrntk→yt

is a Gaussian distribution. Specifically, denote

τynrt\bnrntk =
∑

n′tk
′ 6=ntk

τbnrn′tk′→yt
ej2π(t′−1)(k′−1)/K , (33)

νynrt\bnrntk =
∑

n′tk
′ 6=ntk

νbnrn′tk′→yt
, (34)
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where τbnrntk→yt and νbnrntk→yt are the expectation and variance of the probability

distribution µbnrntk→yt . It can derive a new decoupled conditional probability as

f (ynrt|bnrntk) =

U(ynrt)∫
L(ynrt)

CN
(
y; τynrt\bnrntk + bnrntke

j2π(t−1)(k−1)/K , νynrt\bnrntk + σw
)
dy.

(35)

The a posterior probability is further given by

f (bnrntk|ynrt) =
f (ynrt|bnrntk) fprior (bnrntk)

fprior (ynrt)
, (36)

where fprior (bnrntk) and fprior (ynrt) are the prior probability for bnrntk and ynrt. With the

Gaussian approximation, the message µyt→bnrntk is

µyt→bnrntk ≈ CN
(
bnrntk; τyt→bnrntk , νyt→bnrntk

)
, (37)

where

τyt→bnrntk =

∫
bf (b|ynrt)db, (38)

νyt→bnrntk =

∫
b2f (b|ynrt)db− τ 2

yt→bnrntk
. (39)

However, the calculation of Equation(38) and Equation(39) still requires the integral

operation. To simplify the calculation, further assume the prior distribution of bnrntk is

also Gaussian. Let

fprior (bnrntk) = CN
(
bnrntk; 0, σb

)
, (40)

and define

γyt→bnrntk = τyt→bnrntke
−j2π(t−1)(k−1)/K , (41)

It can derive

R
(
γyt→bnrntk

)
=

σbN
(
y;R

(
τynrt\bnrntk

)
, νynrt\bnrntk + σw + σb

)∣∣y=L(R(ynrt))

y=U(R(ynrt))

Q
((
y −R

(
τynrt\bnrntk

))
/
(
νynrt\bnrntk + σw + σb

))∣∣y=L(R(ynrt))

y=U(R(ynrt))

,

(42)
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I
(
γyt→bnrntk

)
=

σbN
(
y; I

(
τynrt\bnrntk

)
, νynrt\bnrntk + σw + σb

)∣∣y=L(I(ynrt))

y=U(I(ynrt))

Q
((
y − I

(
τynrt\bnrntk

))
/
(
νynrt\bnrntk + σw + σb

))∣∣y=L(I(ynrt))

y=U(I(ynrt))

. (43)

The detailed derivation of Equation(42) and Equation(43) is provided in Appendix. Thus,

it gives

τyt→bnrntk =
(
R
(
γyt→bnrntk

)
+ jI

(
γyt→bnrntk

))
ej2π(t−1)(k−1)/K . (44)

It can be easily verified that

lim
L(ysmt)−U(ynrt)→0

τynrt→bnrntk =
σb
(
ynrt − τynrt\bnrntk

)
e−j2π(t−1)(k−1)/K

νynrt\bnrntk + σw + σb
∆
= τ̇ynrt→bnrntk ,

(45)

and

νyt→bnrntk =
νynrt\bnrntkσ

b + σwσb

νynrt\bnrntk + σw + σb
+
∣∣τynrt→bnrntk − τ̇ynrt→bnrntk∣∣2. (46)

Therefore, Equation(41)-(46) provide a feasible close-form expression to calculate the

message µyt→bnrntk .

2) calculate µbnrntk→yt

To avoid the loop in the factor graph, only use the extrinsic information from the

channel decoder. Thus, it adopts µbnrntk→yt = µhx→bnrntk .

3) calculate µbnrntk→hx
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Figure 6: Messages between the factor node fhx and the variable node bnrntk

In Figure6, µbnrntk→hx is the message sent from the variable node bnrntk to the factor
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node fhx. According to the SP algorithm, it gives

µbnrntk→hx =
T∏
t=1

µyt→bnrntk = CN
(
b; τbnrntk→yt , νbnrntk→yt

)
, (47)

where τbnrntk→hx and νbnrntk→hx are given by

τbnrntk→hx = νbnrntk→hx

T∑
t=1

τyt→bnrntk
νyt→bnrntk

, (48)

νbnrntk→hx =

(
T∑
t=1

1

νyt→bnrntk

)−1

. (49)

4) calculate µhx→bnrntk

µhx→bnrntk is the message sent from the factor node fhx to the variable node bnrntk

and it is given by

µhx→bnrntk =

∫
hx=b

µxntk→hxµhnrntk→hxdxdh = CN
(
b; τhx→bnrntk , νhx→bnrntk

)
, (50)

where τhx→bnrntk and νhx→bnrntk are calculated by

τhx→bnrntk = τxntk→hxτhnrntk→hx, (51)

νhx→bnrntk = vxntk→hxνhnrntk→hx + τ 2
xntk→hx

νhnrntk→hx + τ 2
hnrntk→hx

νxsnk→hx, (52)

where τxntk→hx, νxntk→hx are given in Section 1-6). τhnrntk→hx and νhnrntk→hx are obtained

from the channel estimation:

τhnrntk→hx = ĥnrntk, (53)

υhnrntk→hx = w̃p
nrntk

+ ω̃pnrntk, (54)

where ĥnrntk is the element of Ĥ in Equation(7), w̃p
nrntk

and ω̃pnrntk are the elements of W̃P

and Ω̃P , respectively, in Equation(9).

5) calculate µhx→xntk In Figure7, µhx→xntk is the message from the factor node fhx
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Figure 7: Messages between the factor node fhx and the variable node xntk

to the variable node xntk:

µhx→xntk =

∫
µbnrntk→hxµhnrntk→hxdh. (55)

However, unlike Equation(50), Equation(55) is not a Gaussian distribution and too

complicated for efficient message-passing, so use the following approximation:

µ̂hx→xntk ≈ CN
(
x; τhx→xntk , νhx→xntk

)
, (56)

where

τhx→xntk =

∫
xµhx→xntkdx, (57)

νhx→xntk =

∫
x2µhx→xntkdx− τ

2
hx→xntk

, (58)

Similar to Equation(38)(39), Equation(57) has a high complexity, so adopt the MF

approximation:

µhx→xntk ∝ exp

(
E
[
lnµbnrntk→hxµhnrntk→hx

]
µhnrntk→hx

)
= CN

(
x; τhx→xntk , νhx→xntnrk

)
,

(59)

and

τhx→xntk =
τ ∗hnrntk→hx

τbnrntk→hx

νhmnk→hx + τ 2
hnrntk→hx

, (60)

νhx→xnrntk =
νbnrntk→hx

νhnrntk→hx + τ 2
hnrntk→hx

. (61)

6) calculate µxntk→hx
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µxntk→hx is the message from the variable node xntk to the factor node fhx, which is

provided by the soft mapper as

µxntk→hx ≈ CN
(
x; τxntk→hx, νxntk→hx

)
, (62)

with

τxntk→hx =
∑
φ∈Φ

φP
(
φ|l(m)

knt1
, l

(m)
knt2

, · · ·
)
, (63)

νxntk→hx =
∑
φ∈Φ

|φ|2P
(
φ|l(m)

knt1
, l

(m)
knt2

, · · ·
)
−
∣∣τxntk→hx∣∣2. (64)

2 Complexity

In this section, the computational complexity of the AMP receiver in one iteration

between the softer mapper and demapper is investigated. As all messages are calculated

based on scalars, there is no matrix operation. For the message µyt→bnrntk , it requires to

calculate τynrt→bnrntk and νynrt→bnrntk . Following the steps in Section 1-1), first it needs to

calculate τynrt\bnrntk
and νynrt\bnrntk

using Equation(33) and Equation(34). Note that it can

obtain the overall summation only once for all nt and k with complexity

O(NrNtKT ) + O(NrKT ). Then for each nt and k, τynrt\bnrntk
and νynrt\bnrntk

are

realized by a subtraction from the summation part with complexity O(NrNtKT ). For

Equation(42) and Equation(43), the standard Gaussian function and Q function are

realized by hash maps which does not require any computational operation; and the

complexities for R
(
γyt→bnrntk

)
and I

(
γyt→bnrntk

)
are both O(NrNtKT ). Then,

calculating τynrt→bnrntk
using Equation(44) and νynrt→bnrntk

using Equation(46) has the

same complexity O(NrNtKT ). Therefore, the complexity to obtain µyt→bnrntk is

O(NrNtKT ) +O(NrKT ).
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For the message µbnrntk→hx, the complexity for νbnrntk→hx using Equation(48) and

τbnrntk→hx using Equation(49) is O(NrNrKT ) +O(NrNtK). For the message µhx→bnrntk ,

the complexity for τhx→bnrntk using Equation(51) and νhx→bnrntk using (51) is O(NrNtK).

For the message µhx→xntk , the complexity for µhx→xntk using Equation(60) and νhx→xntk

using Equation(61) is O(NrNtK). Overall, the complexity for the designed AMP detector

is onlyO(NrNtKT )+O(NrKT )+O(NrT )+O(NrNtK), which is linear withNr andNt.

Therefore, compared with the turbo LMMSE receiver, the AMP receiver is advantageous

in computational complexity for large-scale systems.

E Simulation results

TABLE 2

Parameter Settings for the Simulations
ADC resolution 3/4/8 bits
Pilot pattern Random 16QAM
Number of training slots (TS) 1
Constellation alphabet 16QAM/QPSK
Number of information bits 324
Number of subcarriers 18
Number of data OFDM symbols 27
Number of users 3
Number of receiver antennas 12
Interleaver Block
LDPC code H648,1/2,27

Number of iterations 5
Number of trials 300

To compare with the conventional receiver structure, define the signal-to-noise ratio

(SNR) at each subcarrier as E
[
|h|2
]
E
[
|x|2
]
/Kσw when T = K. During one training slot

(TS), each user sends one pilot OFDM symbol to the receiver with time-division to avoid
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interference between the pilot symbols. Apparently, the receiver is not able to obtain the

accurate CSI only from one TS because of the low-resolution ADCs. While increasing the

number of TSs will help the receiver to better estimate the channel, it also means increased

power consumption and overhead for the pilot transmission.

In the simulation setting, only one TS is used for the channel estimation and the

pilot pattern is randomly selected 16QAM symbols. Adopt LDPC as the channel code

because it shares the same parallel decoding process as the proposed algorithms. Use the

LDPC code H648,1/2,27 defined in IEEE 802.11 which is a 1/2 rate code. The number

of information bits for each user is 324, and after the 1/2 code, there are 648 effective

bits. Skip cyclic redundancy check (CRC) and assume there is no other duplication or

redundancy added after the channel encoder. Therefore, 648 bits are directly mapped by

16QAM and modulated using OFDM with 18 subcarriers. At the receiver, 27 OFDM

symbols (from 3 users) are decoded simultaneously. Overall, 972 information bits are the

output from the physical-layer decoding process. Considering delay and complexity in

practical applications, limit the maximum number of the iterations to 5. A total of 300

independent trials are conducted for each setting to average the numerical results. The

system parameters are summarized in Table 2.

Figure8 shows the bit error rate (BER) performance of the 8-bit, 4-bit and 3-bit

ADC receivers with 16QAM. As expected, the BER decreases with the resolution for all

receivers and the turbo receiver structure can significantly improve the performance. More

specifically, for the conventional LMMSE receiver, there are approximately 1.5 dB and

0.5 dB performance loss when the resolution changes from 8-bit to 4-bit and from 4-bit

to 3-bit, respectively. For the turbo LMMSE receiver, it brings about 0.5dB performance
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Figure 8: BER performance of the turbo receiver,16QAM

gain over the conventional LMMSE receiver. Generally speaking, the turbo AMP decoder

has a better performance with up to 2.5dB gain over the conventional LMMSE receiver.

In the high SNR region, the turbo LMMSE decoder has a better performance due to the

more accurate CSI estimation. Figure 9 shows a similar BER performance with QPSK.

The turbo LMMSE receiver and turbo AMP receiver bring approximately 0.5dB and 1.5dB

gain over the conventional LMMSE receiver, respectively. It is worth noting that: 1) The

performance of the turbo receiver depends on the accurate CSI estimation. In particular, the

signal reconstruction in Equation(18) and the symbol estimation in Equation(25) require

an accurate Ĥ. In the simulation setting, only one training slot is allocated for the channel

estimation so that the CSI is highly inaccurate because of the low-resolution ADCs. 2)

Compared to the turbo LMMSE receiver, the turbo AMP receiver is less sensitive to the

CSI estimation. Because the AMP detector also takes the variance of the estimated CSI

into consideration. 3) The turbo LMMSE receiver uses the extrinsic information from the
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Figure 9: BER performance of the turbo receiver,QPSK

channel decoder only for de-quantization. On the other hand, the turbo AMP receiver also

utilizes this extrinsic information for decoupling the multi-user interference.
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Figure 10: Convergence speed of the iterative decoding,16QAM,2.45dB

Another important factor for a turbo receiver is the convergence speed, which is

closely related to the computational complexity. Figure10 and Figure11 show the

convergence speeds of the turbo LMMSE and AMP receivers for 16QAM (SNR=2.45dB)
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Figure 11: Convergence speed of the iterative decoding,QPSK,-3.55dB

and QPSK (SNR=-3.55dB), respectively. The turbo AMP decoder initially has a high

BER because it initializes all estimated symbols as zero. Nevertheless, it only takes about

5-6 iterations for both the 16QAM and QPSK cases to converge. On the other hand, the

turbo LMMSE receiver has slow but smooth convergence curves.

F Conclusion

In this Chapter, a new turbo receiver structure was proposed for the uplink

MU-OFDM-MIMO systems with low-resolution ADCs. The interdependency between

the input analog signal and the quantization error was exploited to realize an iterative

turbo structure. Two specific turbo receivers were designed based on LMMSE and AMP,

and the computational complexity was analyzed. The simulation results demonstrated that

the turbo structure can effectively improve the performance in quantized

MU-OFDM-MIMO systems.
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CHAPTER III

ONE-BIT TRANSCEIVER CLUSTER FOR RELAY TRANSMISSION
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Figure 12: Direct-conversion receiver architecture

Figure 12 shows the architecture of conventional direct-conversion receivers,

where a fundamental component is the analog to digital converter (ADC), converting the

received signal into digital format with a typical precision of 8-12 bits. For example, a

complete direct-conversion receiver RF front end in [45] consists of a frequency

synthesizer, a quadrature demodulator (including a Variable Gain Amplifier (VGA) and an

Automatic Gain Control (AGC)) and a 10-Bit ADC. The typical power dissipation in [45]

for each IC is 40mW, 340mW and 565mW, respectively, which indicates the majority of

the power is consumed in ADCs [1]. Therefore, it has been proposed to use comparators

(one-bit ADCs) to replace the high resolution ADCs [4, 5, 12, 13, 16, 46], and the power

consumption can be reduced by up to one order of magnitude. Meanwhile, since only two

different phases are recognized after the comparator, the VGA and AGC become
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unnecessary, which further reduces the cost and the power dissipation. Finally, the one-bit

comparator also reduces the performance requirement of power amplifiers for further

efficiency improvement. The drawback of using the one-bit transceiver is obvious: the

extreme quantization will cause information loss and failure of traditional DSP

techniques. Thus, the key of one-bit transceiver design is to develop a feasible baseband to

handle the one-bit quantization. In the literature, use of the one-bit ADCs has only been

recently studied in MIMO systems [4, 5, 8, 12, 13, 16, 46].

In this chapter, the feasibility of deploying a one-bit relay cluster for a distant

transmission is explored. The envisioned system model is shown in Figure 13, where there

: Source : 1-bit relay

Destination

Figure 13: One-bit relays cluster transmission.

are one source node, one destination node and multiple one-bit relays, all equipped with

single-antenna. It must be emphasized that the one-bit relays transmit simultaneously at

the same frequency band, which completely eliminates the traditional multiple access

requirement and thus greatly simplifies the transmission protocol (especially for a large

number of relays). However, to make it work, the challenges are multi-fold: Unlike the

one-bit MIMO systems in [8, 12–14, 16], in this case the destination node cannot separate

the superimposed signal with single-antenna. Meanwhile, one-bit ADCs also impede

high-order amplitude modulation schemes because the amplitude information will be

totally lost at the destination. Furthermore, the equivalent channel between the source and
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the destination is nonlinear so that traditional estimation techniques are not applicable any

more.

A System model

Assume a power-restricted source with single-antenna needs to reach a distant

destination. The signal strength at the destination is too low for detection. As shown in

Figure 2, a number of one-bit communication nodes scattered around the source can help

its transmission as intermediate relays. For low-cost reasons, these one-bit relays are

equipped with single-antenna and the full connection is realized in physical layer (PHY)

without any complex protocol. The only responsibility of these relays is to

receive-store-transmit in a specific time period. All the relays work independently without

any message exchange among themselves or control from the destination. Therefore, the

information of each the relay is not necessarily required by the destination, and the

existence of a specific relay does not need to be acknowledged. This highly increases the

flexibility of the entire network. Note that the source node will periodically broadcast a

preset synchronization signal to realize both time and symbol synchronization among the

relays.

The Pseudo Noise (PN) sequence is well suited for the one-bit relay

synchronization. Specifically, one PN sequence is transmitted only using I path

(equivalent to BPSK). Since the PN sequence is binary, a one-bit relay can detect the

sequence directly and synchronize its own transmission.

34



1 Random-static DC-offset for the M-QAM modulation

Using the one-bit relays, phase information of the source signal is preserved by the

relay cluster, but amplitude levels are not distinguishable. To see that, let’s see an example

with three transmitted baseband signals: signal1 = 1, signal2 = 2 and

signal3 = exp(π/3j). There are 30 valid one-bit relays. The channel realizations are

sampled based on the complex Gaussian distribution, and the SNR at each relay is 20dB.

In Figure 14, signal1 and signal2 have exactly the same histogram (the number of the

relays with received signal 1 and −1), implying these two signals can not be distinguished

by the relay cluster. On the contrary, the different histograms for signal1 and signal3

indicate that the phase difference is acknowledged by the cluster. Therefore, the M-Phase

Shift Keying (M-PSK) is naturally supported by the one-bit relay cluster. To further

−2 −1 0 1 2
0

2

4

6

8

10

12

14

16

18

20
Signal 1

Received signal

N
um

be
r 

of
 r

el
ay

s

 

 

−2 −1 0 1 2
0

2

4

6

8

10

12

14

16

18

20
Signal 2

Received signal

 

 

−2 −1 0 1 2
0

2

4

6

8

10

12

14

16

18

20
Signal 3

Received signal

 

 
 I  path
Q path

 I  path
Q path

 I  path
Q path

Figure 14: Histogram of the relays on received signals: Rayleigh fading channel and
SNR=20dB, number of relays =30

support amplitude modulations such as the M-Quadrature Amplitude Modulation

(M-QAM), a new receiver architecture is proposed with a random-static DC-offset (i.e.,

the value of this DC-offset is constant based on some probability density function).
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Specifically, DC-offsets are added at each the relay before the comparator. This can be

simply realized by coupling the local oscillator (LO) with the RF signal before the mixer,

as showed in Figure 15. This artificial interference provides the needed diversity across

the relays to distinguish amplitudes at the destination. Figure 16 shows the histograms of

the relays with the DC-offsets. Compared to Figure 14, signal1 and signal2 yield the

different histograms that carry the amplitude information. Another advantage of the
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Figure 15: Relay Rx design with the LO coupling.
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Figure 16: Histogram of the relays on received signal with the DC-offsets: Rayleigh fading
channel and SNR=20dB, number of relays =30

random-static DC-offset solution is that it evolves naturally from the direct-conversion

receiver architecture. Specifically, it is well known that a direct-conversion Rx suffers
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from the LO leakage: the LO may be conducted or radiated through an unintended path to

the mixer’s input port. As a by-product, the LO signal effectively mixes with itself,

producing a DC component at the mixer output.

In particular, due to manufacturing process and environment, the amount of LO

leakage varies across the relays, which naturally results in a random-static DC-offset at

baseband.

2 Black-box solution for the one-bit relays cluster system

For the single-input-single-output (SISO) system shown in Figure 2, assume flat

uncorrelated Rayleigh slow fading channels. Denote the number of the relays in a cluster

as n, the source symbol as x1×1, the channel matrices as h1,n×1 (from the source to the

relays) and h2,1×n (from the relays to the destination), the DC-offset as d1×n (constant) and

the circularly symmetric complex Gaussian noise as w1,1×n, w2,1×1. The received symbol

y1×1 at the destination node is given by:

y = h2fq (h1x+ d + w1) + w2, (65)

where fq(·) is the one-bit quantization function. For massive relay deployment, n can be

very large. Apparently, it is impractical to estimate h1 and h2. Estimating h1 and h2 will

cost unscalable overhead and power. Therefore, to solve this problem, instead of using

the traditional system model in (1), the destination node will treat the equivalent channel

y = f̂−1 (x) between the source and the destination as a black box shown in Figure 17, and

try to find out the relationship between x and y through training data. With the black-box

assumption, decoding in the destination node is independent of the number of the relays.
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In other words, increasing the number of the relays doesn’t increase the system complexity,

and failure of multiple the relays has little impact on decoding process1.

: Source : 1-bit relay

Destination

Black box

Figure 17: Black box view of the system.

B Estimator design for one-bit relays decoding

At the destination, the key is to estimate x based on y using the function x̂ = f̂ (y),

where parameters of f̂ are determined by minimizing the mean square error (MSE) of the

pilot samples ((x̄1, ȳ1) , (x̄2, ȳ2) , · · · , (x̄n, ȳn)) as

min
f̂

∑
i

∣∣ˆ̄xi − x̄i∣∣2. (66)

Consider the following three estimators.

1 Linear estimator (LE)

The traditional estimator is linear based:

x̂ = ay + b. (67)

Plug (3) in (2). The optimization problem is quadratic and it can obtain the optimal solution

as

a =

(∑
i

|˜̄yi|
2

)−1∑
i

˜̄yi
∗ ˜̄xi, b =

1

n

∑
i

x̄i −
a

n

∑
i

ȳi, (68)

1The destination node will periodically re-estimate the black-box system, the failure of multiple relays
only exhibits as a fluctuation of the equivalent channel.

38



where ˜̄yi = ȳi − 1
n

∑
i

ȳi and ˜̄xi = x̄i − 1
n

∑
i

x̄i.

2 Support vector machine (SVM)

Linear parametric models can be re-cast into an equivalent ‘dual representation’ in

which the estimations are also based on linear combinations of a kernel function evaluated

at the training data points. For models based on a fixed nonlinear feature space mapping

φ (y), the kernel function is given by κ (y, y′) = φ(y)∗φ (y′). For example, the Gaussian

kernel is given by κ (y, y′) = exp
(
−(y − y′)2/2σ2

)
. By utilizing the nonlinear feature

mapping, the black-box system can be modeled as x̂ = f̂ (y) = wφ (y), where w is the

undetermined coefficient. The Representer theorem shows that it can adoptw = aHφ (ȳ) =∑
i

aiφ (ȳi), where ai is the model parameter. Therefore, the nonlinear estimator based on

the training samples is given by

x̂ = aHφ (ȳ)φ (y) . (69)

Plug (5) into (2), it can solve the quadratic optimization problem with a analytical solution

as

a =
(
φ (ȳ)φ(ȳ)H

)−1

x̄. (70)

Thus, the nonlinear estimator is given by

x̂ = x̄H
(
φ (ȳ)φ(ȳ)H

)−1

φ (ȳ)φ (y)

= x̄HK−1 (ȳ, ȳ)K (ȳ, y) ,

(71)

where K (y,y′) =


κ (y1, y1

′) · · · κ (y1, yn
′)

... . . . ...

κ (yn, y1
′) · · · κ (yn, yn

′)

.
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3 Neural network (NN)

In the SVM, every single estimation requires re-computing of all samples because

of K (ȳ, y). To make the model more compact, it can use other nonlinear models such as

the neural network. Adopt a 2-layer neural network given as

x̂ = aH2 fa
(
aH1 y + b1

)
+ b2, (72)

where fa (·) is the nonlinear activation function (e.g., the sigmoid function

fa (y) = (1 + exp (−y))−1); a1, a2, b1 and b2 are the model parameters; and the

dimension of these parameters can be arbitrarily chosen by investigating the estimation

performance. Plug (8) into (2), it gives

min
a1,a2,b1,b2

∑
i

∣∣aH2 fa (aH1 ȳi + b1

)
+ b2 − x̄i

∣∣2. (73)

Equation(9) is not a convex optimization problem and there is no analytical solution. It can

use the Newton algorithm to find a local optimal point and the parameters are updated by:

[
a

(β+1)
1 ; a

(β+1)
2 ; b

(β+1)
1 ; b

(β+1)
2

]
=
[
a

(β)
1 ; a

(β)
2 ; b

(β)
1 ; b

(β)
2

]
−∆

where ∆ = H−1Je, e =
(
ˆ̄x1 − x̄1, ˆ̄x2 − x̄2, · · · , ˆ̄xn − x̄n

)T , H and J respectively are the

Hessian and the Jacobian matrix of e. To reduce the complexity of calculating the Hessian

matrix, adopt the Levenberg-Marquardt algorithm that approximates the Hessian matrix

using the Jacobian matrix as

H ≈
(
JHJ + λdiag

(
JHJ

))
(74)

where λ is the damping parameter which can be arbitrary chosen by investigating the

estimation performance.
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C Numerical Results

The simulation has the following setup: the modulations are 16-QAM and 16-PSK

respectively; the number of relays is 30; the number of pilot symbols is 128; the number

of data symbols is 1280; Since all relays are scattered near the source nodes, assume the

SNR of these relays E
[
|h1|2|x|2/|w1|2

]
is 20dB. The DC-offset d is sampled from

N (0, 1). The kernel for the SVM is the Gaussian kernel; the number of hidden nodes for

the NN is 10. Take 200 independent trials of the Rayleigh fading channel h1, h2 and the

DC-offset d. To make the results comparable, assume that the transmit power of a single

relay is identical to that of the source node. First of all, Figure 18 compares the 16-QAM

decoding constellations without and with the DC-offsets. In Figure 7(a), without the

DC-offset, the pairs (1 + j, 1/3 + j1/3), (−1 + j,−1/3 + j1/3), (1− j, 1/3− j1/3) and

(−1− j,−1/3− j1/3) are not distinguishable by any the estimator. This problem is

caused by the one-bit relays rather than the estimator design. With the proposed DC-offset

solution, the entire 16-QAM constellation can be recovered as showed in Figure 7(b),

which proves the effectiveness of the DC-offset solution for the M-QAM. Next, compare

the performance of the direct-link transmission (w/o relays) and the one-bit relay

transmission with the three estimators. Since the direct-link channel is linear, the linear

estimator is sufficient for decoding (i.e., the other two estimators cannot provider

additional gains). After the symbol estimator, use the hard detection to get the bit error

rate (BER) directly. Figure 19 shows the performance of the estimators based on SNR

(E
[
|h2|2/|w2|2

]
). From Figure 19, it gives the following results: (1) The performance of

the one-bit relay with the LE stays the same in all the conditions as expected. This is
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Figure 18: 16-QAM decoding constellation.
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Figure 19: Performance of the nonlinear estimators. (Solid line: 16-QAM, Dash line:
16-PSK)

because that the equivalent channel itself is nonlinear and the LE is not able to handle this

channel at all. The fluctuation appearing in the LE performance curve is caused by the

finite set of test data. (2) Using the designed nonlinear estimators, 30 one-bit relays can

approximately reduce the BER to a half, comparing to the direct-link without the relays.

(2) In the low SNR region (SNR<4dB), the NN has a lower BER than the SVM. However,

as the SNR increases, the performance of the SVM exceeds that of the NN.
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D Conclusion

In this Chapter, the feasibility to massively deploy a one-bit relay cluster for a distant

transmission was discussed. The simulation results verified that the solution is practical and

effective for the one-bit relay transmission.
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CHAPTER IV

MIMO INTERFERENCE CANCELLATION FOR LTE AND WIFI

COEXISTENCE

LTE-U is a radio access technology that has been proposed for providing

carrier-grade wireless service in the 5GHz unlicensed band. Until today, WiFi (WLAN

that uses the IEEE 802.11 standard) has been the most popular choice for radio access in

the unlicensed space. However, recent studies have highlighted that LTE technology,

originally envisioned for cellular operation in licensed bands, has significant performance

gains over Wi-Fi when operating in the unlicensed band. The main advantages for LTE-U

over WiFi include better link performance, medium access control, mobility management,

and excellent coverage. These benefits combined with the vast amount of available

spectrum (>400MHz) in the 5GHz band make LTE-U a promising radio access

technology in the unlicensed arena.

Since WiFi devices are already widespread in the 5GHz unlicensed band, there is

a need for newly deployed LTE-U Small Cell (SC) to coexist with the WiFi ecosystem.

Moreover, different LTE-U operators may occupy the same spectrum in the unlicensed band

to provide data services to their users. Such an unplanned and unmanaged deployment of

LTE-U SCs (femtocells, picocells) may result in excessive RF interference to the existing

co-channel WiFi and other operator LTE-U nodes in the vicinity. It is therefore critical for

44



LTE-U SCs to choose the best operating channel while minimizing the interference caused

to nearby WiFi and LTE-U networks. However, there are scenarios where all available

channels are occupied by WiFi devices which forces LTE-U SC to operate on the same

channel as WiFi. WiFi devices do not back off to LTE-U unless its interference level is

above the energy detection threshold (-62dBm over 20MHz). Without proper coexistence

mechanisms, LTE-U transmissions could cause considerable interference on WiFi network

relative to WiFi transmissions.

The LTE-U Forum1 was created by Verizon, in conjunction with Alcatel-Lucent,

Ericsson, Qualcomm, and Samsung as members. The forum collaborates and creates

technical specifications for base stations and consumer devices passing LTE-U on the

unlicensed 5 GHz band, as well as coexistence specs to handle traffic contention with

existing WiFi devices. In LTE-U SDL Coexistence Specifications V1.3 (2015-10)

proposed by the LTE-U Forum, it requires the base station to be able to create an ON/OFF

time pattern on the cell using the carrier sensing adaptive transmission (CSAT) procedure

when other WiFi or other operator LTE-U co-channel nodes are sensed with energy level

above −62 dBm. In ON-state, the cell is transmitting according to 3GPP LTE Rel-10 or

later releases specification or the cell is transmitting LTE-U Discovery Signal. In

OFF-state: the cell ceases all transmissions, including sync signal, SI signals, CRS, and

etc. The CSAT duty cycle can change over time, for instance based on channel usage.

With the exception of periodic transmissions for the MIB and LTE-U Discovery Signal

(LDS), the base station shall put the cell in OFF-state when the cell is not needed such as

no user in the cell coverage or there is no data in buffer for users in the cell coverage.

1http://www.lteuforum.org/
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While the ON/OFF time pattern of LTE-U can release the spectrum periodically, In

ON-state, WiFi devices will be fully blocked leading to considerable performance

instability. Therefore, to support the LTE and WiFi coexistence, MIMO interference

cancelling receivers are designed and prototyped in this work to enable the LTE and WiFi

devices to work effectively even in ON-state of the cell.

A 802.11 and LTE PHY specifications

1 802.11 PHY

IEEE 802.11 is a set of medium access control (MAC) and physical layer (PHY)

specifications for implementing Wireless Local Area Network (WLAN) communication

using ISM band. The 802.11 PHY uses burst transmissions. The 802.11 standards define

frame types for use in transmission of data as well as management and control of wireless

links. In MAC layer, these frames are divided into three functions. Management frames2

allow for the maintenance of communication. Control frames3 facilitate in the exchange of

data frames. Data frames carry higher-level protocol data in the frame body.

All the frames in MAC layer are transmitted using the same packet structure in

PHY. Each packet contains a preamble and payload data. The preamble allows the

receiver to obtain time and frequency synchronization and estimate channel characteristics

for equalization. It is a sequence that receivers watch for to lock onto the rest of the

transmission. For the legacy preamble, it is composed of three fields as shown in Figure

2including: Authentication Frame, Association Request Frame, Association Response Frame, Beacon
Frame, Deauthentication Frame, Disassociation Frame, Probe Request Frame, Probe Response Frame,
Reassociation Request Frame, Reassociation Response Frame.

3including: Acknowledgement (ACK) Frame, Request to Send (RTS) Frame, Clear to Send (CTS) Frame.
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Figure 20: 802.11 packet structure.

The legacy short training field (L-STF) is the first field of the 802.11 OFDM legacy

preamble. The L-LTF is composed of two identical OFDM symbols with a 1/4 CP each.

The sequence uses 12 of the 52 subcarriers (every fourth) that are available per OFDM

symbol. Because the sequence has good correlation properties, it is used for start-of-packet

detection, for coarse frequency correction, and for setting the AGC. The L-STF duration is

8µs. The legacy long training field (L-LTF) is the second field. Channel estimation, fine

frequency offset estimation, and fine symbol timing offset estimation rely on the L-LTF.

The L-LTF is composed of a CP followed by two identical OFDM symbols occupying all

52 subcarriers. The CP consists of the second half of the OFDM symbol. The L-LTF

duration is also 8µs. The legacy signal (L-SIG) field is the third field. The L-SIG is

one OFDM symbol with its CP. It consists of 24 bits that contain rate, length, and parity

information. It is transmitted using BPSK modulation with rate 1/2 binary convolutional

coding (BCC). The L-SIG duration is 4µs.

2 LTE PHY

Long Term Evolution (LTE) is a series of standards that define the entire network

structure for implementing cellular network communication. LTE PHY operates on the
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licensed bands with dedicated resources. The LTE PHY transmission is fully synchronized

and controlled by Base Station (BS).

There are five time units defined in LTE MAC and PHY: frame (10ms), half-frame

(5ms), subframe (5ms), slot (1ms), symbol. A resource block (RB) is the smallest unit of

resources that can be allocated to a user. The resource block is 180 kHz wide in frequency

and 1 slot long in time. In frequency, resource blocks are 12 x 15 kHz subcarriers wide.

The bandwidths defined by the LTE standard are 1.4, 3, 5, 10, 15, and 20 MHz. For full-

duplex FDD, uplink and downlink frames are separated by frequency and are transmitted

continuously and synchronously. Figure 21 show an example of one FDD downlink frame

structure4.

Figure 21: LTE resource grid, 1.4MHz FDD downlink.

LTE physical channels correspond to sets of time-frequency resources used for

4http://niviuk.free.fr/lte resource grid.html
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transmission of particular transport channel data, control information, or indicator

information. The PHY Downlink Shared Channel (PDSCH) carries user data and paging

information to the terminal. The PHY Downlink Control Channel (PDCCH) conveys

control information, scheduling decisions for PDSCH reception, and for scheduling grants

enabling transmission on the PHY Uplink Shared Channel (PUSCH). The PHY

BroadCast Channel (PBCH) carries part of the system information required for terminals

to access the network. The PHY Hybrid-ARQ Indicator Channel (PHICH) conveys the

hybrid-ARQ acknowledgement indicating to the terminal whether or not to retransmission

of a transport block is required. The PHY Control Format Indicator Channel (PCFICH)

provides terminals with information to decode the set of PDCCHs.

LTE physical signals are used for synchronization and channel estimation. The cell-

specific reference signal (CRS) is transmitted on resource elements spread throughout the

frame in specific locations as defined by the standard. The CRS are transmitted in every

downlink subframe and in every resource block in the frequency domain, thus covering the

entire cell bandwidth. The CRS can be used by user equipments for channel estimation and

coherent demodulation of any downlink physical channel. The primary synchronization

signal (PSS) are used by users for cell search and time synchronization. The secondary

synchronization signal (SSS) are used to obtain the start of a frame. For FDD, the PSS is

presented in the last symbol, and the SSS is presented in the second-to-last symbol of slots

0 and 10 in every frame. The PSS is mapped into the first 31 subcarriers either side of the

DC subcarrier. Therefore, the PSS uses six resource blocks with five reserved subcarriers

each side.
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B Time and frequency synchronization

Time and frequency synchronization at receivers is required by all OFDM based

communication systems.

1 802.11 synchronization

CP Symbol

Figure 22: L-STF auto-correlation.

Time and frequency synchronization in 802.11 utilizes the structure of the L-STF

and L-LTF. In time domain, the L-STF is a 16-points (samples) signal repeated 10 times.

Conduct auto-correlation based on the L-STF signal as demonstrated by Figure 22:

P (d) =
8∑

n=1

15∑
m=0

(
r∗d+m+n×16rd+m+16+n×16

)
, (75)

R (d) =
8∑

n=1

15∑
m=0

|rd+m+n×16| |rd+m+16+n×16|, (76)

M (d) =
|P (d)|2

R2 (d)
, (77)

where rm is the received discrete signal at index m. The auto-correlation method can be

implemented with low-complex iterative formula as

P (d+ 1) = P (d)−
(
r∗d+16rd+32

)
+
(
r∗d+144rd+160

)
, (78)

R (d+ 1) = P (d)− |rd+16| |rd+32|+ |rd+144| |rd+160| . (79)
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With a threshold λ, the packet start point is estimated as

d̂ = arg (M (d) > λ) . (80)

The advantage of the auto-correlation method is twofold: 1) it is robust to multipath

channel, the auto-correlation value is independent from frequency-selective channel. 2) its

complexity is constant O (1) using the iterative method. However, the auto-correlation

method usually leads to a wide mainlobe width. To increase the time accuracy, the

cross-correlation method can be further adopted as a complementary. The

cross-correlation method is straight-forward, it calculates the correlation of a pre-known

signal with the received signal. The cross-correlation value is affected by the specific

channel and with a linear complexity. To take advantage of both the auto and cross

correlation methods, the receivers can use the cross-correlation method on the L-STF to

find a candidate start point region
[
d̂L, d̂R

]
. Then search for the maximal cross-correlation

value on the L-LTF in
[
d̂L, d̂R

]
as the estimated packet start point d̂. This method

provides an accuracy estimation while remaining the constant complexity.

After finding the frame start point d̂, the fractional frequency (phase) offset is

estimated as

φ̂ = angle
(
P
(
d̂
))

/16. (81)

2 LTE sychronization

Different from burst transmission, the major synchronization of LTE is only required

when a user first time accesses the network. The frame synchronization (i.e., MAC layer

synchronization) is based on the SSS. The symbol time and frequency synchronization
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(i.e., PHY synchronization) of LTE users rely on the CPs of OFDM symbols. The PSS can

also be used to help time synchronization. The length and position of the CPs vary from

different bandwidths. Figure 23 shows the CP length in a slot of different bandwidths.

Figure 23: CP length in a slot.

Conduct auto-correlation on the CPs in a slot as shown in Figure 24:

CP Symbol

Figure 24: L-LTF auto-correlation.

P (d) =
6∑

n=0

Lcp∑
m=0

(
r∗d+m+n×(Ls+Lcp)rd+m+Ls+n×(Ls+Lcp)

)
, (82)

R (d) =
6∑

n=0

Lcp∑
M=0

∣∣∣rd+m+n×(Ls+Lcp)

∣∣∣ ∣∣rd+m+Ls+n×(Ls+Lcp)

∣∣, (83)

where Lcp is a length smaller than the length of one CP, Ls is the length of one OFDM

symbol. Equation(82)(83) can also be calculated in a iterative way with a constant

complexity. The symbol start point region is estimated as

[
d̂L, d̂R

]
= arg

(
|P (d)|2

R2 (d)
> λ

)
. (84)
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Then conduct cross-correlation on the PSS time domain signal to find the start of the symbol

d̂. The fractional frequency (phase) offset is estimated as

φ̂ = angle
(
P
(
d̂
))

/LS. (85)

C MIMO interference cancellation

In the LTE-U and WiFi coexistence network, the LTE (resp. WiFi) receiver needs

to cancel WiFi (resp. LTE) signal to improve desired SNR. Different from the scenarios

that the receiver is able to estimate all the interference channel, the LTE (resp. WiFi)

receiver has no information about the WiFi (resp. LTE) system. Therefore the receiver

has to implement MIMO interference canceller only with the knowledge of its own PHY

structure.

1 802.11 interference canceller

For a WiFi receiver, the MIMO interference canceller is designed to minimize the

square error of the data in the L-LTF.

min
gk
|gkyk − cLTF,k|2, (86)

where cLTF,k is the L-LTF signal on the kth subcarrier, yk is the received signal vector on

the kth subcarrier from multiple receiving antennas, gk is the receiving antenna combining

coefficient vector on the kth subcarrier. The optimal solution is

g∗k =
(
yHk yk

)−1
yHk cLTF,k. (87)
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As the channels of the neighboring subcarriers are highly correlated, it can take average

over neighboring g∗k to combat the noise as

ḡk =
1

δ + 1

∑
|∆|≤δ

g∗k+∆, (88)

where δ is the number of neighboring g∗k used. ḡk will be used by the equalizer in this

packet to recover the signal. However, if we assume gk of the neighboring subcarriers are

the same, the optimal solution should be given by

min
gk

∑
|∆|≤δ

|gkyk+∆ − cLTF,k+∆|2 (89)

g∗k =

∑
|∆|≤δ

yHk+∆yk+∆

−1 ∑
|∆|≤δ

yHk+∆cLTF,k+∆ (90)

2 LTE interference canceller

For a LTE receiver, the MIMO interference canceller is designed to minimize the

square error of the data in the CRS.

min
gk,t

∣∣gk,tyk,t − cRS,(k,t)∣∣2, (91)

where cRS,(k,t) is the CRS signal on the kth subcarrier of tth OFDM symbol, yk,t is the

received signal vector from multiple receiving antennas on the kth subcarrier of the tth

OFDM symbol, gk,t is the receiving antenna combining coefficient vector on the kth

subcarrier of the tth OFDM symbol. The optimal solution is given by

g∗k,t =
(
yHk,tyk,t

)−1
yHk,tcCR,(k,t), (92)
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The channels in a resource block are highly correlated. Therefore, take average of g∗k,t in a

resource block as

ḡΩk,t =
1

|Ωk,t|
∑

(k′,t′)∈Ωk,t

g∗k′,t′ , (93)

where Ωk,t is the set of the CRS positions. ḡk,t will be used by the equalizer in this resource

block to recover the signal. Similarly, if we assume gΩk,t is the same in a resource block,

the optimal solution is given by

min
gΩ

∑
(k′,t′)∈Ω

∣∣gΩyk′,t′ − cRS,(k′,t′)
∣∣2 (94)

g∗Ω =

 ∑
(k′,t′)∈Ω

yHk′,t′yk′,t′

−1 ∑
(k′,t′)∈Ω

yHk′,t′cRS,(k′,t′) (95)

3 Interference mitigation for synchronization

In section C.1 and C.2, both the WiFi and LTE interference cancellers are obtained

following an accurate time and frequency synchronization. However, with a high power

interference, the synchronization usually has very poor performance. To increase the

synchronization performance, the receiver requires a pre-process filter to mitigate the

interference without any prior information.

From the received signal stream YNr×L (Nr is the number of receiving antenna, L

is the number of received discrete signal samples), the receiver needs to separate two

uncorrelated signal streams v1,1×L and v2,1×L using a linear spatial filter u1,1×Nr and

u2,1×Nr , respectively (i.e., v1 = u1Y, v2 = u2Y). As the LTE and WiFi transmitters are

totally independent, it can assume the separated signal stream v1 (or v2) only contains

LTE signal or WiFi signal. Therefore, the synchronization can be realized based on just v1
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or v2. The uncorrelation condition of v1 and v2 requires

v1v
H
2 = 0, (96)

which is equivalent to

u1YYHuH2 = 0. (97)

Equation (97) is the definition for the eigendecomposition of YYH , where u1 and u2 are

two distinct eigenvectors. Therefore, the pre-process spatial filter can be obtained just from

the decomposition of YYH .
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Figure 25: WiFi interference cancelling receiver.

The designed WiFi receiver structure is demonstrated in Figure 25. The pre-process

filter separate the multiple signal paths from different antennas into two signal paths v1 and

v2 based on the method in section C.3. The time estimation method introduced in section

B.1 is conducted on both v1 and v2, respectively. The time estimation block will generate a

pulse if the correlation value is greater than the threshold. The MUX selects v1 or v2 based

on the result of the time estimation block. Then the frequency estimation will be conducted
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on the signal path selected by the MUX. The frequency estimation result drives a VCO

to generate a sine waveform to compensate the frequency offset on the signal path. For

burst transmission, the pulse generated by the time estimation block will turn on a switch

at the signal path. The switch will be turned off after reading the whole packet based on the

length information in the L-SIG. After the time and frequency synchronization, the signals

are converted into frequency domain by FFT. The frame splitter picks the L-LTF signal,

and the interference canceller is obtained based on the L-LTF. Finally, the interference

canceller coefficient ḡ is sent to the equalizer recovering constellation symbols. The LTE
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Figure 26: LTE interference cancelling receiver.

receiver structure is similar as demonstrated in Figure 26. The key difference is that the

LTE transmission is not burst based. Therefore, a delay block is used instead of the switch

to align the signal path to the pulse generated by the time estimation block.

A

B C D E F G H I J K L M N

Figure 27: Test scenario.

The hardware used for prototyping is USRP N210. USRP N210 is one of the highest
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performing class of the USRP (Universal Software Radio Peripheral) family of products,

which enables rapidly design and implement powerful, flexible software radio systems.

N210 architecture includes a Xilinx Spartan FPGA, 100 MS/s dual ADC, 400 MS/s dual

DAC and Gigabit Ethernet connectivity to stream data to and from host processors. USRP

N210 can operate from DC to 2 GHz, while an expansion port allows multiple USRP N210

series devices to be synchronized and used in a MIMO configuration. An optional GPSDO

module can also be used to discipline the USRP N210 reference clock to within 0.01 ppm

of the worldwide GPS standard. The USRP N210 can stream up to 50 MS/s to and from

host applications.

Figure 28: Transmitter location.

In the current stage, the sampled data from USRP N210 is processed off-line. The

benefit of the off-line receiver is easier to measure the performance quantitatively.

Furthermore, it is more convenient to take the advantage of GUI softwares such as

MATLAB to demonstrate performance. For the next stage of prototyping, we will realize

the real-time receiver with GNU-Radio. Two USRP N210 are used to implement a
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two-antenna WiFi or LTE receiver. The WiFi transmitter (i.e., AP) and LTE transmitter

(i.e., BS) is realized by only one USRP N210 each. The transmitted signal waveform is

generated from 801.11 and LTE PHY standards. The test scenario (shown in Figure 27) is

the 2nd floor of W.S. Speed Hall, University of Louisville. Both the WiFi and LTE

transmitters are placed at location (A) as shown in Figure 28.

Figure 29: Receiver platform.
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Figure 30: L-STF auto-correlation result.

The receiver (Figure 29) is first placed at location (G). The WiFi and LTE
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Figure 31: L-LTF cross-correlation result.

transmitters use the same transmit power 20 dBm. Figure 30 and Figure 31 present the

correlation results without and with the pre-process filter. From the results, it shows that

the pre-process filter effectively improves the correlation result for both the auto and cross

correlation methods. The pre-process filter enables an accurate time synchronization even

under high interference power.
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Figure 32: Performance in different locations.

Then the receiver is tested at different locations. The received SNR is defined as

10 log10(E(|X − X̂|2)/E(|X|2)). The QPSK system’s Raw-BER (before channel

decoding) can be evaluated based on the received SNR by
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Raw-BER = 2Q(
√

SNR) − Q2(
√

SNR), where Q(·) is the Q-function. The receiver is

placed from location (B) to (N) and measured with the received SNR. The received SNR

with interference is compared with the received SNR without interference, in order to

demonstrate the efficiency of the designed interference canceller. Specifically, Figure 32

shows that the WiFi receiver has an average 2.9 dB received SNR degradation compared

to the case without interference, the LTE receiver has an average 3.1 dB received SNR

degradation compared to the case without interference.
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Figure 33: Impact of interference power.

The impact of interference power on the receiver is also studied. The receiver is

placed at location (B), (C), and (D), respectively. At each location, set the WiFi (resp.

LTE) transmitter’s power to 10 dBm and change the LTE (resp. WiFi) transmitter’s power

from −7 dBm to 20 dBm. Figure 33 presents the received SNR of the WiFi and LTE

receivers at different locations. The results show that, even if the WiFi (resp. LTE) transmit

power is 10 dB smaller than the LTE (resp. LTE) power, the receiver can still successfully

decode the signal.
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E Conclusion

In this Chapter, a MIMO interference cancellation LTE and WiFi receiver was

designed and prototyped to support the coexistence of the LTE-U and WiFi network. The

platform was tested in real scenario demonstrating the performance. The test results

indicated that the MIMO interference canceller receivers can effectively support the

coexistence.
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CHAPTER V

FINITE-BLOCKLENGTH SECRECY PERFORMANCE OF LATTICE

CODES

The theoretical foundation of the physical-layer security can be traced back to the

early works of Wyner, Csiszar and Korner. In [47], Wyner introduced the notion of the

wiretap channel, which was further generalized by Csiszar and Korner[48]. The wiretap

channel model is shown in Figure34, where there are two legitimate communicators:

Alice and Bob. Alice wishes to send a secret message U , u ∈ {1, 2 · · · ,M0}, to Bob

through the main channel
(
X ,WY|X,Y

)
. However, this transmission also reaches a

passive eavesdropper Eve through the wiretap channel
(
X ,WZ|X,Z

)
. Alice and Bob have

agreed on an encoding/decoding mechanism, while this information is also acknowledged

at Eve. Furthermore, Eve does not suffer from any limitation on computational complexity

and time consumption. Meanwhile, Alice also has an auxiliary message A,

a ∈ {1, 2 · · · ,M1}, which is unknown to both Bob and Eve. This auxiliary message is

used to ‘randomize’ and ‘cover’ the secret message. Alice maps U and A to a transmitted

word X and broadcasts it as U × A→ X→ YZ, where x ∈ X n, y ∈ Yn and z ∈ Zn.

At the receiver side, Bob maps Y into an estimation Û . The reliability is measured
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in terms of the error probability to recover U . Specifically, the asymptotic reliability is:

lim
n→∞

P
{
Û 6= U

}
= 0. (98)

And the secrecy is measured by the dependence between the observation Z and the secret

message U . The weak secrecy is introduced by Wyner in [47] as:

lim
n→∞

I (Z;U)

n
= 0. (99)

However, [49–51] showed that (99) is much too weak as a large portion of the message can

still be recovered at Eve. Thus, Maurer further introduced the strong secrecy in [49] as

lim
n→∞

I (Z;U) = 0, (100)

The secrecy capacity is defined as the maximal secrecy rate satisfying both the reliability

(98) and the secrecy (99)(100). In particular, Theorem 1 is obtained by Cisizar [51], Maurer

[49] and Bloch [50] with different techniques.

Theorem 1. The secrecy capacity of the memoryless channel
(
X ,Y , PY Z|X ,Z

)
is given by

Cs = sup (I (Y ;X)− I (Z;X)) , (101)

In the literature, [52–54] showed that the coding schemes with the auxiliary

messages approaching the capacity of the wiretap channel can achieve the weak secrecy.
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Nevertheless, it is not true when applied to the strong secrecy. Extensive studies have been

conducted to find the coding schemes achieving the secrecy capacity. For example, lattice

codes have long been known as one of the capacity-achieving coding schemes. When

applied to secure transmissions, it has been proven that nested lattice codes can achieve

the secrecy capacity [55, 56]. For linear codes, LDPC codes are proposed for the erasure

channel to achieve the strong secrecy [57–60]. Along the same line, polar codes are

another type of linear block codes introduced by Arikan [61]. Polar codes are

structure-specified and provably capacity-achieving over any binary-input symmetric

channel. The secure polar codes have been explored to achieve the strong secrecy [54, 62].

Other secure coding schemes can be found in [63–66]. The wiretap channel model is also

studied with various configurations: multi-antenna wiretap channel[67–74], wiretap

channel with feedback [75–77], wiretap channel with side information[78, 79] and

multiple access wiretap channel[80]. However, these coding schemes and systems are all

measured by the secrecy capacity, in which the secrecy are analyzed asymptotically with

infinite blocklength.

Assume a finite blocklength n (n < ∞) and a erasure channel with a erasure

probability δ for Eve. Name the case that no erasure happens as error-free realization. The

probability of the error-free realization is (1− δ)n > 0. For any coding scheme with a

coding rate strictly less than 1, Eve can definitely recover this secret message when the

error-free realization happens. Similarly, Bob is not able to achieve any error-free

transmission with the finite blocklength. It is worth noting that this finite blocklength

penalty has little impact on the reliable communication, in which the channel coding is

combined with the auto-repeat-request (ARQ) technique to achieve a desired reliability.
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However, the finite-blocklength penalty is crucial for the secrecy. As the information leak

is irreversible, in the worst case (i.e., the error-free realization happens), Eve will recover

the whole secret message. Because there is no limitation on Eve, it can assume that Eve is

powerful enough to simultaneously obtain a large number of independent channels, and

have at least one error-free realization after searching all these wiretap channels.

Theoretically, Eve is always able to recover the secret message regardless of coding

schemes. In summary, the example tells us: (1) The secret information leak is inevitable

with finite blocklengths; (2) The secret information leak is irreversible. Therefore, it is

essential to quantify how difficult for Eve to recover this secret message from an

information-theoretic perspective.

The literature that focuses on the finite-blocklength secrecy can only be found

recently. [81] investigates the maximal secrecy rate over a wiretap channel at a given

blocklength. The maximal secrecy rate in [81] is defined by the constraint of a given

amount of secret information leak probability, which is similar to the definition of the leak

probability in this work. The achievability and converse bounds of this maximal secrecy

rate are derived using the uniform-partition codes in [81]. These bounds lead to the

tightest second-order coding rate, stated as the theorem 9 in [81]. It can be easily proved

that, even through different approaches, the tightest second-order coding rate in [81] is

identical to the results stated as Theorem 8 in this work. Compared to [81], this work

otherwise focuses on computationally trackable analysis. The average secret information

leakage is also adopted as one metric apart from the leak probability. With different

emphases, this work demonstrates how secure lattice codes can be analyzed practically at

a given blocklength. [82] provide a new secrecy metric for finite blocklengths — the bit
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error rate cumulative distribution function (BER-CDF). Different from traditional

impractical information-theoretic secrecy measures, the BER-CDF is simple and

computationally trackable. Therefore, the BER-CDF provide a practical approach for the

analysis of the finite-blocklength secrecy. However, the BER-CDF can only be used in

binary input channels and is not able to guarantee the information-theoretic secrecy.

Compared to [82], this work strive to provide a practical analysis of the finite-blocklength

secrecy but based on the information-theoretic secrecy. This approach is not limited to

binary input channels, as shown by the analysis of secure lattice codes.

In this chapter, upper case letters and the corresponding lower case letters denote

random variables (e.g., X) and their realizations (e.g., x), respectively; bold letters denote

arrays of random variables (e.g., X) or realizations (e.g., x); PX (·) (resp. fX (·)) denotes

the probability mass (density) function of the discrete (continuous) random variable X;

E[g (X)]fX(·) denotes the expectation of g (X) in regard to the random variable X with the

probability density function (PDF) fX (·); log(x) and ln(x) refer to the binary and nature

logarithm respectively. Note that only memoryless channels are considered in this paper.

A Finite-blocklength secrecy analysis

To facilitate the discussion, define the entropy density and the mutual information

density as:

h (x) = log
1

PX (x)
, i (z; x) = log

PZ|X (z|x)

PZ (z)
,

where h (X) and i (Z; X) are the corresponding random variables.

For a secure code, the auxiliary message A is chosen to ‘fully cover’ the secret
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message U . For example, in a transmission u×a→ x→ z, the receiver is not able to infer

the message u based on the observation z without the message a as∫
ā∈A

P (u|zā)P (ā) dā = P (u) (102)

With the correct message a at the receiver, the receiver is able to further infer the message

u as

P (u|za) ≥ P (u) (103)

However, with an incorrect message a′ (a′ 6= a), the receiver will make a false inference on

the message u as

P (u|za′) ≤ P (u) (104)

Apparently, the maximal mutual information density is obtained when the receiver correctly

decode a as

argmax
P (a|z)

i (z;u) = argmax
P (a|z)

∫
ā∈A

P (u|zā)P (ā|z) dā = 1 (105)

Therefore, the maximal i (z;u) is

max i (z;u) = max log
P (u|z)

P (u)
= log

P (ua|z)P (a)

P (u)P (a)
(106)

As x is fully determined by u and a (i.e., P (u)P (a) = P (x)), it gives

max i (z;u) = log
P (x|z)P (a)

P (x)
= i (z; x)− h (a) (107)

Note that P (u|za) ≥ P (u), the maximal i (z;u) is non-negative.

1 Finite-blocklength secrecy performance

The finite-blocklength secrecy performance for different channels can be measured

by Definition 1.
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Definition 1. i) Leak Probability:

LP = P [max i (Z;U) > 0] ; (108)

ii) Average Leakage:

LA = E [max i (Z;U)] . (109)

For the convenience of illustrations, adopt the following notations:

Expectation:

IZ =
1

n
E [i (Z; X)] =

∑
x∈X

∑
z∈Z

PX (x)PZ|X (z|x) log
PZ|X (z|x)

PZ (z)
; (110)

Variance:

VZ =
1

n
E
[
(i (Z; X)− nIZ)2] =

∑
x∈X

∑
z∈Z

PX (x)PZ|X (z|x) log2PZ|X (z|x)

PZ (z)
− I2

Z ; (111)

Skewness:

TZ =
√
nE

[∣∣∣∣i (Z; X)− nIZ√
nVZ

∣∣∣∣3
]

=
∑
x∈X

∑
z∈Z

PX (x)PZ|X (z|x)

∣∣∣∣∣∣ log
PZ|X(z|x)

PZ(z)
− IZ

√
VZ

∣∣∣∣∣∣
3

.

(112)

Theorem 2. The blocklength-n leak probability LP is bounded by

LP ≤ Q

(
logM1 − nIZ√

nVZ

)
+

TZ
2
√
n
, (113)

LP ≥ Q

(
logM1 − nIZ√

nVZ

)
− TZ

2
√
n
. (114)

Proof. Theorem 2 can be easily proved with the Berry-Esseen Theorem.

Theorem 3. (Berry-Esseen) Suppose X1, X2, . . . , Xn are i.i.d random variables with µ =

E [Xi], σ2 = Var [Xi], t = E
[
|Xi − µi|3

]
. Then for any λ, it gives∣∣∣∣∣P

[
n∑
i=1

Xi − nµ ≤ λnσ

]
− Φ (λ)

∣∣∣∣∣ ≤ t

2σ3
√
n
, (115)

where Φ (λ) is the cumulative distribution function (CDF) of the normal distribution.
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Define new random variables

Λj = i (Zj;Xj)−
logM1

n
, j = 1, 2, · · · , n. (116)

Then, it gives E [Λj] = IZ − logM1

n
, Var [Λj] = VZ and E

[∣∣∣∣Λj−E[Λj ]√
Var[Λj ]

∣∣∣∣3
]

= TZ . Apply Λj

with the Berry-Esseen Theorem, it gives∣∣∣∣∣P
[

n∑
j=1

Λj − (nIZ − logM1) ≤ λ
√
nVZ

]
− Φ (λ)

∣∣∣∣∣ ≤ TZ
2
√
n
, (117)

∣∣∣P [I (Z; X)− logM1 ≤ λ
√
nVZ + nIZ − logM1

]
− Φ (λ)

∣∣∣ ≤ TZ
2
√
n
. (118)

Let λ = logM1−nIZ√
nVZ

, it gives

∣∣∣∣P [I (Z; X)− logM1 ≤ 0]− Φ

(
logM1 − nIZ√

nVZ

)∣∣∣∣ ≤ TZ
2
√
n
, (119)

which is ∣∣∣∣P [I (Z;U) > 0]−Q
(

logM1 − nIZ√
nVZ

)∣∣∣∣ ≤ TZ
2
√
n
. (120)

Theorem 4. The blocklength-n average leakage LA is approximated by

LA ≈
√
nVZ
2π

e
− (logM1−nIZ)2

2nVZ − (logM1 − nIZ)Q

(
logM1 − nIZ√

nVZ

)
. (121)

Proof.

E [(Z;U)] = E [i (Z; X) |i (Z; X) ≥ logM1 ]− logM1P [i (Z; X) ≥ logM1] . (122)

Because

i (z; x) =
n∑
i=1

log
PZi|Xi (zi|xi)
PZi (zi)

, (123)

70



according to the central limit theorem, the distribution of i (Z; X) can be approximated by

the normal distribution with µ=nIZ and σ2 = nVZ . Then, (122) can be approximated by

∫ ∞
logM1

i (Z; X)
1√

2nVZ
e
− (i(Z;X)−nIZ)2

2nVZ di (Z; X)− logM1Q

(
logM1 − nIZ√

nVZ

)
. (124)

Therefore, it gives

LA ≈
√
nVZ
2π

e
− (logM1−nIZ)2

2nVZ − (logM1 − nIZ)Q

(
logM1 − nIZ√

nVZ

)
. (125)

Theorem 5. Take the entropy of the auxiliary message equal to the capacity of the wiretap

channel (i.e., logM1 = nIZ), the asymptotic secrecy performance is

lim
n→∞

LP =
1

2
; (126)

lim
n→∞

LA =∞. (127)

Theorem 5 just shows that capacity-achieving codes are not good enough for the

strong secrecy.

Theorem 6. i) For a fixed entropy M0, define the effective auxiliary ratio as

ηEn =
logM1

nH (X)− logM0

. (128)

When ηEn < IZ
H(X)

, lim
n→∞

Lp = 1 and lim
n→∞

LA = logM0;

When ηEn > IZ
H(X)

, lim
n→∞

Lp = 0 and lim
n→∞

LA = 0.

ii) For a fixed rate Rs = logM0/ (nH (X)), define the effective auxiliary ratio as

ηRs =
logM1

nH (X) (1−Rs)
. (129)
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When ηRs <
IZ

H(X)(1−Rs) , lim
n→∞

Lp = 1 and lim
n→∞

LA =∞;

When ηRs >
IZ

H(X)(1−Rs) , lim
n→∞

Lp = 0 and lim
n→∞

LA = 0.

Remark: Theorem 6 can be directly proved from Theorem 2 and Theorem 4. For

part i), when M0 is fixed and n goes to infinity, the coding rate goes to zero. However,

even the coding rate goes to zero asymptotically, Eve is not able to recover any secret

message if ηEn is above the threshold. For part ii), compared with Theorem 5, it shows that

a code achieving the wiretap channel capacity will leak the whole secret message to Eve.

However, if the coding rate is greater than the wiretap channel capacity, the strong secrecy

can be achieved asymptotically.

Example 1. Binary Erasure Channel (BEC)

Use the BEC as an example to explain Theorem 2-6 (the results can be easily

extended to other channel models). Assume the input X is uniformly distributed (i.e.,

PX (1) = PX (0) = 1
2
), the variance is

VZ = 2

(
1− δ

2
(1− (1− δ))2 +

δ

2
(0− (1− δ))2

)
= (1− δ) δ, (130)

and the skewness is

TZ = (1− δ)
3
2 δ

3
2

(
(1− δ) δ3 + δ(1− δ)3) . (131)

Let the erasure probability δ = 0.6 and the coding rate ηRs = 0.6, it gives IZ = 0.4,

VZ = 0.24 and TZ = 0.0147. The secrecy threshold in Theorem 6 is calculated as η∗Rs =

0.5.

Figure 2 shows LP as a function of blocklength n. For η∗Rs = 0.5, LP converges to

0.5, which validates Theorem 5. It is interesting to see that, when ηRs = 0.51 (above the
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Figure 35: Leak probability LP vs blocklength n, BEC.

threshold 0.5), LP will slowly converge to 0, indicating that it requires a large blocklength

for an acceptable secrecy performance. When ηRs = 0.6, LP converges to 0 more quickly

such that a blocklength of 300 is long enough for a small LP . Figure 3 shows LA as a

function of blocklength n: (1) LA is infinity when ηRs = 0.5. (2) LA curve is not monotone

with n. When ηRs = 0.51, LA increases with n when n < 1000, which indicates that a

small blocklength is beneficial even when ηRs is greater than the threshold. Nevertheless,

when ηRs is large enough, the LP curve is almost monotone with n.

2 Trade-off between the reliability and the secrecy

The performance analysis in Section III only discussed the wiretap channel, while

the main channel is an ordinary communication channel with the transmitted message U ×

A, which can be analyzed using the results in [83]. Combining these results, the wiretap

system can be fully evaluated and optimized.
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From [83], the average error probability of the main channel is bounded by

ε ≤ P
[
i (Y; X) ≤ log

M0M1 − 1

2

]
+
M0M1 − 1

2
P
[
i
(
Ȳ; X

)
> log

M0M1 − 1

2

]
,

(132)

where Ȳ has the same distribution as Y but is independent of X. Similarly, use the

following notations of the main channel:

IY =
1

n
E [i (Y; X)] =

∑
x∈X

∑
y∈Y

PX (x)PY |X (y|x) log
PY |X (y|x)

PY (y)
; (133)

VY =
1

n
E
[
(i (Y; X)− nIY )2] =

∑
x∈X

∑
y∈Y

PX (x)PY |X (y|x) log2PY |X (y|x)

PY (y)
− I2

Y .

(134)

From [83], the average error probability of the main channel can be approximated by

ε ≈ Q

(
nIY − logM0M1√

nVY

)
. (135)

Using Theorem 2, Theorem 4 and (135), it can obtain the secrecy performance conditioning

on the desired main channel average error probability.
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Theorem 7. Given the blocklength n, the secret information M0 and the main channel

maximum average error probability ε, the secrecy performance is

L∗P (n, ε,M0) ≤ Q

(
n (IY − IZ)−

√
nVYQ

−1 (ε)− logM0√
nVZ

)
+

TZ
2
√
n

; (136)

L∗A (n, ε,M0) =

√
nVZ
2π

e
−

(n(IY −IZ)−
√
nVY Q

−1(ε)−logM0)
2

2nVZ −(
n (IY − IZ)−

√
nVYQ

−1 (ε)− logM0

)
Q

(
n (IY − IZ)−

√
nVYQ

−1 (ε)− logM0√
nVZ

)
.

(137)

Example 2. (Binary Erasure Channel for both main channel and wiretap channel)
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Figure 37: Leak probability LP vs main channel error probability ε, BEC.

In this example, the main channel and the wiretap channel have the erasure

probabilities δY = 0.1 and δZ = 0.6, respectively. The input X is uniformly distributed

with PX (1) = PX (0) = 1
2

and the blocklength is n = 500. Figure 37 (resp. Figure 38)

shows the trade-off between LP (resp. LA) and ε. It can seen that, only when logM0 is
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smaller than 150, both the error probability and the secrecy performance are able to

achieve an acceptable value. Thus, the secrecy rate is below 0.3, which is far below the

asymptotic secrecy rate IY − IZ = 0.9− 0.4 = 0.5. This rate loss is caused by the nature

of the finite blocklength.

B Secure Nested Lattice Coding

Nested lattice codes have already been proved to be able to achieve the strong

secrecy over the Gaussian wiretap channel [55, 56]. In the following sections, secure

lattice codes are investigated and the blocklength-n secrecy performance is evaluated.
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1 Preliminaries

A lattice Λ is a discrete subset of the Euclidean space Rn and consists of all integer

linear combinations of the basis. Thus, an n×n real-valued matrix G defines a lattice Λ by

Λ = {λ = Gx : x ∈ Zn} . (138)

The fundamental Voronoi region of Λ denoted by V(Λ) is a set of minimum Euclidean

norm coset representatives. The nearest neighbour quantizer is

QV(Λ) (x) = arg min
λ∈Λ
‖x− λ‖ . (139)

The modulo-Λ operation corresponding to V(Λ) is defined as

x mod Λ = x−QV(Λ) (x) . (140)

Geometrically, Rn is the disjoint union of the Voronoi regions,

Rn = ∪
λ∈Λ

(V (Λ) + λ) . (141)

The volume V (λ) of V(Λ) is therefore the volume of Rn associated with each point of Λ.

The second moment of Λ is the second moment per dimension of the random vector D

uniformly distributed over V(Λ),

σ2 (V (Λ)) =
1

n
E
[
‖D‖2] =

1

nV (Λ)

∫
x∈V(Λ)

‖x‖2dx. (142)

The normalized second moment of λ is given by

G (Λ) =
σ2 (V (Λ))

V (Λ)2/n
=

1

n

∫
x∈V(Λ)

‖x‖2
dx

V (Λ)1+2/n
. (143)

A lattice Λ is said to be good for quantization if G (Λ) is close to 1
2πe

. Furthermore, [84]

has proved that Voronoi region V approaches a sphere in the sense that G(Λ) gets close to
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1
2πe

, which means the lattices taking Voronio region as their fundamental region are good-

quantization lattices. In this work, only consider the lattices with V as their fundamental

region.

2 Nested Lattice coding

Consider a nested lattice Λ1 ⊂ Λ2 ⊂ Λ3, where Λ1 is the shaping lattice for AWGN

channel. For the convenience of illustration, use Vi to represent V (Λi) . The nested lattice

provides two sets of codebooks:

CA = {Λ2 ∩ V1} , CU = {Λ3 ∩ V2} , (144)

where the secret message U and the auxiliary message A are associated with CU and CA,

respectively, and the lattice is constructed with

log |CU | = logM0, log |CA| = logM1. (145)

For λU ∈ CU , λU + Λ2 is a coset of Λ2 and

Λ3 =
⋃

λU∈CU

λU+Λ2. (146)

The shaping lattice is chosen according to the power of the transmit symbol SX . Alice first

uniformly selects a λA ∈ CA as a random message A and selects λU ∈ |CU | according to

the secret message U . Therefore, the transmitted codewords set at Alice is the coset of CU ,

C =
⋃

λA∈CA

λA+CU = {Λ3 ∩ V1} . (147)
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3 Mod-Λ channel with Euclidean decoder

The mod-Λ1 channel is demonstrated by Figure 39, where the input X is first added

with a dither D before the shaping lattice Λ1. The transmitted signal is

X′ = [X + D] mod Λ1. (148)

The received signal is

Y′ = X′ + W = [X + D] mod Λ1 + W, (149)

where W is an n-dimension i.i.d Gaussian noise vector. The receiver applies the linear

MMSE estimation for Y′ with coefficient α and subtract the dither D, followed by the

shaping lattice modulo-Λ operation. This whole process produces an output of the mod-Λ

channel as

Y = [αY′ −D] mod Λ1 (150)

= [[X + D] mod Λ1 −D− (1− α) X′ + αW] mod Λ1 (151)

= [X + αW − (1− α) D] mod Λ1 (152)

In (152), used the fact that the modulo operation is distributive so the dither cancels out,

and X′ has the same distribution as D according to Lemma 1.
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Lemma 1. For an uniform random variable D (over V) and an arbitrary random variable

X (over the same V but independent of D), it gives that [X + D] mod Λ is uniformly

distributed over V and is independent of X.

The proof of Lemma 1 can be found in [85]. Define the equivalent noise as

W′ = αW − (1− α) D, (153)

the transfer function is given by

fY|X (y|x) =
∑
λ1∈Λ1

fW′ (y + λ1 − x). (154)

To obtain the Euclidean decoder, apply two simplification methods adopted in [85].

First, approximate W′ as a n-dimensional Gaussian random variable using the following

Lemma.

Lemma 2. For a n-dimensional Gaussian random variable X ∼ N (µ,Σ) and any n-

dimension random variable Y, to minimize the KL divergence between Y and X

min
µ,Σ

KL (fY ‖fX ) , (155)

the optimal solution is

µ = E [Y]fY , Σ = E [Y ⊗Y∗]fY , (156)

where ⊗ is Kronecker product and Y∗ is the conjugate transpose of Y.

Lemma 2 is proved in Appendix A. Using Lemma 2 to minimize KL divergence of

the Gaussian variable N (µW ′ , σ
2
W ′) and W ′, it gives

µW ′2 = E [W ′] = αE [W ]− (1− α)E [D] = 0; (157)
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σ2
W ′2 = E

[
W ′2] = α2E

[
W 2
]

+ (1− α)2E
[
D2
]

= α2σ2
W + (1− α)2SX . (158)

Since the elements in both vector W and U are i.i.d., the PDF of W′ is approximated as

f̃Y|X (y|x) =
(
2πσ2

W ′

)−n
2

∑
λ1∈Λ1

e
− ‖y+λ1−x‖2

2σ2
W ′ . (159)

Then, the largest term is

˜̃fY|X (y|x) = max
λ1∈Λ1

(
2πσ2

W ′

)−n
2 e
− ‖y+λ1−x‖2

2σ2
W ′ =

(
2πσ2

W ′

)−n
2 e
− ‖[y−x] mod Λ1‖

2

2σ2
W ′ . (160)

Based on (160), the decoder will apply the maximum a posterior (MAP) decoding as

max
x∈V1

˜̃fY|X (y|x) , (161)

which is equivalent to the Euclidean decoding

min
x∈V1

‖[y − x] mod Λ‖2 = min
x∈V1

‖w (y,x)‖2,w ∈ V1. (162)

Thus, the Mod-Λ Euclidean decoder has the following equivalent transfer probability

function as

f mod
Y|X (y|x) =

˜̃fY|X (y|x)∫
y∈V1

˜̃fY|X (y|x) dy
=

(2πσ2
W ′)
−n

2 e
− ‖w(y,x)‖2

2σ2
W ′∫

w∈V1

(2πσ2
W ′)
−n

2 e
− ‖w‖

2

2σ2
W ′ dw

,w ∈ V1. (163)

C Secrecy performance of nested lattice codes

To facilitate the discussion, first introduce function Qn.

Definition 2. The n-dimension Qn function is defined as

Qn

(
ρ2
)

= (2π)−
n
2

∫
w∈Θ(ρ2)

exp

(
−‖w‖

2

2

)
dw, (164)

where

Θ
(
ρ2
)

=
{
w
∣∣‖w‖2 ≥ nρ2

}
. (165)
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Figure 40: Qn function

Plot Qn in Figure 40.

Lemma 3. Qn can be obtained numerically by

Qn

(
ρ2
)

=
(n
π

) 1
2
( e
n

)n
2

∫ ∞
√
nρ

tn−1 exp

(
−t

2

2

)
dt. (166)

Lemma 3 is proved in Appendix B.

Lemma 4. The asymptotic characteristic of Qn is

lim
n→∞

Qn

(
ρ2
)

= 1 ifρ < 1 and lim
n→∞

Qn

(
ρ2
)

= 0 ifρ > 1. (167)

Lemma 4 is proved in Appendix C.

Proposition 1.

1−Qn

(
ρ2
)
∈ o
(
n−1
)
, (168)

which gives

lim
n→∞

n
(
1−Qn

(
ρ2
))

= 0 when ρ < 1. (169)
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Proposition 1 is illustrated by Figure 41.

Lemma 5. For a random variable X, if X is uniformly distributed in a n-dimension sphere

with power SX per dimension, the radius ρ of this sphere is given by

ρ2 = (n+ 2)SX . (170)

Lemma 5 is proved in Appendix D. When n is sufficiently large, the Voroni region

can be expressed as V =
{
x
∣∣‖x‖2 ≤ (n+ 2)SX

}
, and ρ2 ≈ nSX . Using Definition 2 and

Lemma 5, (163) is re-written as

f mod
Y|X (y|x) =

(2πσ2
W ′)
−n

2 e
− ‖y−x‖2

2σ2
W ′

1−Qn

(
SX
σ2
W ′

) y ∈ V,x ∈ V. (171)

Lemma 6. The capacity of the Mod-Λ channel is achieved when X is uniformly distributed

in V1 as

arg max
fX(x)

I (Y; X) =
1

V1

, x ∈ V1. (172)
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Lemma 6 is proved in Appendix E. As Bob adopts the Mod-Λ Euclidean decoder,

assume that Alice always intends to maximize the mutual information to Bob. Thus, X

is assumed to be uniformly distributed over V1 according to Lemma 6. Then the mutual

information density of the Mod-Λ Euclidean decoder is obtained as

i mod (z; x) = log
f mod

Z|X (z|x)

fZ (z)
(173)

= log

(
V1

((
2πσ2

Wz
′
)−n

2 exp

(
−‖z− x‖2

2σ2
Wz
′

))
/

(
1−Qn

(
SX
σ2
Wz
′

)))

(174)

=
n

2
log

(
eSX
σ2
Wz
′

)
− ‖w‖

2

2σ2
Wz
′
log e− 1

2
log πn− log

(
1−Qn

(
SX
σ2
Wz
′

))
.

(175)

Theorem 8. There exists nested lattice codes with the Mod-Λ Euclidean decoder that can

achieve the Gaussian channel capacity.

Proof. Nested lattice codes with the the Mod-Λ Euclidean decoder have already been

proved to be capacity-achieving by [85]. Alternatively, this can also be proved using the

mutual information density.

Lemma 7. The MMSE coefficient of E
[
‖αy − x‖2] is α∗ = SX

SX+σ2
w

.

Lemma 7 is proved in Appendix F. Using the MMSE coefficient stated by Lemma

7,

lim
n→∞

1

n
i mod (z; x) (176)

=
1

2
log

(
eSX
σ2
Wz
′

)
− lim

n→∞

‖w′‖2

2nσ2
Wz
′
log e− 1

2
lim
n→∞

log πn

n
− lim

n→∞

1

n
logQn

(
SX
σ2
W ′

)
(177)

=
1

2
log

(
SX
σ2
Wz
′

)
=

1

2
log

(
1 +

SX
σ2
W

)
. (178)

84



1 Blocklength-n secrecy performance

Now, let’s analyze blocklength-n secrecy performance. First define the threshold

value

ρ2
mod (n,M1) = ln

(
eSX
σ2
Wy

)
− 2

n
lnM1 −

1

n
ln πn− 2

n
log

(
1−Qn

(
SX
σ2
Wz
′

))
. (179)

Then, the set of W satisfying iZ|X (z|x) > logM1 can be rewritten as

Ω mod

(
ρ2

mod (n,M1)
)

=

{
w

∣∣∣∣∣‖w‖2

σ2
Wz
′
< nρ2

mod (n,M1)

}
. (180)

Therefore, the leak probability is

LP = P
[
i mod (z; x) > logM1

]
=

∫
w′∈Ω mod ∩V1

∫
x∈V1

fX (x)fWz
′ (w′) dxdw′. (181)

Theorem 9. Given the MMSE coefficient α and ∀ n > 1, it gives

Ω mod ∩ V1 = Ω mod (182)

Proof. Note that

Ω mod =

{
w′

∣∣∣∣∣‖w′‖2

σ2
Wz
′
< n log

(
eSX
σ2
Wz
′

)
− ln πn− ln

(
1−Qn

(
SX
σ2
Wz
′

))}
. (183)

Taking the MMSE coefficient, it gives

Qn

(
SX
σ2
Wz
′

)
= Qn

(
1 +

SX
σ2
Wz

)
< Q2

(
1 +

SX
σ2
Wz

)
< Q2 (1) (184)

Now, check Q2 as

Q2 (1) =
1

2π

∫
w2

1+w2
2≥2

e−
w2

1+w2
2

2 dw1dw2 = e−1. (185)
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Then

ln

(
1−Qn

(
SX
σ2
Wz
′

))
> ln

(
1− e−1

)
, (186)

and

− lnπn− ln

(
1−Qn

(
SX
σ2
Wz
′

))
< − ln

(
πn
(
1− e−1

))
< 0. (187)

Therefore,

Ω mod ⊂

{
w′

∣∣∣∣∣‖w′‖2

nσ2
Wz
′
< ln

(
eSX
σ2
Wz
′

)}
=

{
w′

∣∣∣∣∣‖w′‖2

nσ2
Wz
′
< 1 + ln

(
SX
σ2
Wz
′

)}
. (188)

Lemma 8. For any SX > 0 and the given coefficient α, it gives

SX
σ2
Wz
′
> 1 + ln

SX
σ2
Wz
′
. (189)

Lemma 8 is proved in Appendix G. Using Lemma 8, it gives

Ω mod ⊂

{
w′

∣∣∣∣∣‖w′‖2

nσ2
Wz
′
< 1 + ln

(
SX
σ2
Wz
′

)}
⊂

{
w′

∣∣∣∣∣‖w′‖2

nσ2
Wz
′
<

SX
σ2
Wz
′

}
=
{

w′
∣∣∣‖w′‖2

< nSX

}
.

(190)

According to Lemma 5, (190) becomes

Ω mod ⊂
{

w′
∣∣∣‖w′‖2

< nSX

}
⊂
{

w′
∣∣∣‖w′‖2

< (n+ 2)SX

}
= V1. (191)

Using Theorem 9, the leak probability is simplified as

LP =

∫
w∈Ω mod

∫
x∈V1

fX (x) fWz
′ (w′) dxdw′ = 1−Qn

(
ρ2

mod (n,M1)
)
. (192)
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Similarly, the average leakage is

LA = E
[
[i (z; x|u)− logM1]+

]
(193)

=
(
2πσ2

Wz
′
)−n

2

∫
w′∈Ω mod ∩V1

(
n

2
ρ2
Eu (n,M1) log e− ‖w

′‖2

2σ2
Wz
′

log e

)
e
− ‖w‖

2

2σ2
Wz ′ dw′

(194)

=
(
2πσ2

Wz
′
)−n

2

∫
w′∈Ω mod

(
n

2
ρ2
Eu (n,M1) log e− ‖w

′‖2

2σ2
Wz
′

log e

)
e
− ‖w‖

2

2σ2
Wz ′ dw′ (195)

=
(
2πσ2

Wz
′
)−n

2 log e

∫
w′∈Ω mod

−‖w
′‖2

2σ2
Wz
′
e
− ‖w

′‖2
2σ2
Wz ′ dw′+ (196)

log e

2
ρ2

mod (n,M1)n
(
1−Qn

(
ρ2

mod (n,M1)
))
. (197)

Note that (196) can be further calculated as

(
2πσ2

Wz
′
)−n

2 log e

∫
w′∈Ω mod

−‖w‖
2

2σ2
Wz
′
e
− ‖w

′‖2
2σ2
Wz ′ dw′ (198)

= −
(
2πσ2

Wz
′
)−n

2 log e

∫
ρ<ρ mod

(n
π

) 1
2

(
2πe

n

)n
2

ρn−1 ρ2

2σ2
Wz
′
e
− ρ2

2σ2
Wz ′ dρ (199)

= − log e

2e
(n+ 2)

(
n

n+ 2

) 1
2
(
n+ 2

n

)n
2 (

2πσ2
Wz
′
)−n+2

2 × (200)∫
ρ<ρ mod

(
n+ 2

π

) 1
2
(

2πe

n+ 2

)n+2
2

ρn+1e
− ρ2

2σ2
Wz ′ dρ (201)

= − log e

2e
(n+ 2)

(
n

n+ 2

) 1
2
(
n+ 2

n

)n
2
(

1−Qn+2

(
n

n+ 2
ρ2

mod (n,M1)

))
(202)

= − log e

2
(n+ 2)

(
1−Qn+2

(
n

n+ 2
ρ2

mod (n,M1)

))
, (203)

where used the fact
(

n
n+2

) 1
2 ≈ 1 and

(
n+2
n

)n
2 ≈ e for a large n. Finally, LA is calculated as

LA =
log e

2
ρ2

mod (n,M1)n
(
1−Qn

(
ρ2

mod (n,M1)
))

− log e

2
(n+ 2)

(
1−Qn+2

(
n

n+ 2
ρ2

mod (n,M1)

))
.

(204)

Example 3. (The Mod-Λ Euclidean decoder at Eve)
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Assume Eve adopts the Mod-Λ Euclidean decoder with a received SNR of 10dB,

evaluate LP and compared it with the result of the blocklength-n Gaussian channel in

Section III. Figure 42 shows LP versus n, when logM1 = 0.93IZ , 0.98IZ , IZ , 1.02IZ and

1.07IZ . From Figure 42, it gives the following observation. For the secure lattice codes
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Figure 42: Leak probability LP vs blocklength n, Comparison of the Mod-Λ Euclidean
decoder and the blocklength-n Gaussian channel.

with finite blocklengths, LP is below the theoretical value when logM1 is greater than the

channel capacity, and LP will be greater than its theoretical value when logM1 becomes

smaller than the channel capacity. Nevertheless, the observation for LP doesn’t hold for

LA. Figure 43 shows LA versus n, clearly, LA of the Mod-Λ Euclidean decoder is always

smaller than the theoretical LA of the n-dimensional Gaussian channel.
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2 Asymptotic analysis

In this section, the results is re-examined when n goes to infinity. From Lemma 4,

when ρ2
mod (n,M1) < 1, the asymptotic LP is given by

lim
n→∞

LP = 1− lim
n→∞

Qn

(
ρ2

mod (n,M1)
)

= 0. (205)

Similarly, from Proposition 1, the asymptotic LA is given by

lim
n→∞

LA =
log e

2
×
(

lim
n→∞

ρ2
mod (n,M1)n

(
1−Qn

(
ρ2

mod (n,M1)
))
−

lim
n→∞

(n+ 2)

(
1−Qn+2

(
n

n+ 2
ρ2

mod (n,M1)

)))
= 0− 0 = 0.

(206)

When ρ2
mod (n,M1) > 1, the asymptotic LP becomes

lim
n→∞

LP = 1− lim
n→∞

Qn

(
ρ2

mod (n,M1)
)

= 1, (207)
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and the asymptotic LA becomes

lim
n→∞

LA =
log e

2
lim
n→∞

ρ2
mod (n,M1)n− log e

2
lim
n→∞

(n+ 2) (208)

=
log e

2

(
ρ2

mod (n,M1)− 1
)

lim
n→∞

n−O (1) =∞, (209)

where Lemma 4 and the fact that lim
n→∞

n
n+2

ρ2
Eu (n,M1) > 1 when ρ2

mod (n,M1) > 1 are

used.

From (205)-(209), the asymptotic performance threshold is ρ2
mod = 1. Compared

with Theorem 6, it gives

ηRs =
logM1

nH (X) (1−Rs)
=
IZ + (1− ρ2

mod ) log e

H (X) (1−Rs)
. (210)

Note that ρ2
mod = 1 is equivalent to ηRs = IZ

H(X)(1−η)
, which is exactly the same as the

strong secrecy threshold obtained. This means, when H (A) > IZ , the nested lattice codes

with the Mod-Λ Euclidean decoder can achieve the strong secrecy. This conclusion can

also be verified by ρ2
mod (n,M1). Using the threshold ρ2

mod (n,M1) = 1 and the fact

log

(
1−Qn

(
SX
σ2
Wz ′

))
∼ O (1) for a sufficiently large n, it gives

1

n
logM1 =

1

2
log

(
1 +

SX
σ2
Wz

)
− 1

n
O (log n) , (211)

which means that the auxiliary message A achieves the capacity of wiretap channel as

n→∞.

3 Trade-off between the reliability and the secrecy

In [85], Erez proved there exists lattice codes whose decoding error probability with

the Mod-Λ Euclidean decoder satisfies

Pe ≤ e
−n
(
EP

(
e2(IY −I)

)
−O(1)

)
, (212)
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where Ep is the Poltyrev exponent

EP (x) =



1
2

((x− 1)− lnx) 1 < x ≤ 2

1
2

ln ex
4

2 ≤ x ≤ 4

x
8

x ≥ 4 .

.

Therefore, for a required M0 and ε (the upper bound of Pe), the minimal M1 is given by

1

n
logM1 = IY −

1

n
logM0 −

1

2
ln

(
E−1
p

(
− ln ε

n

))
. (213)

Plug (213) into (179), ρ mod can be rewritten as a function of M0 and ε.

ρ2
mod (n,M0, ε) = 1− ln 4

n
(IY − IZ − logM0) +

ln 2

n
ln

(
E−1
P

(
− ln ε

n

))
− ln πn

n
.

(214)

Then, the trade-off between ε and the secrecy performance can be expressed as

L∗P (M0, ε, n) = 1−Qn

(
ρ2

Un (M0, ε, n)
)

; (215)

L∗A (M0, ε, n) =
log e

2
ρ2

Un (M0, ε, n)n
(
1−Qn

(
ρ2

Un (M0, ε, n)
))

− log e

2
(n+ 2)

(
1−Qn+2

(
n

n+ 2
ρ2

Un (M0, ε, n)

))
.

(216)

Example 4. (Mod-Λ channel with the Euclidean decoder at both Bob and Eve)

Assume Bob and Eve both adopt the module operation and the Euclidean decoder

with received SNRs being 20dB and 10dB respectively, and the blocklength n is 200. From

the asymptotic result, the maximal secrecy entropy is n (IY − IZ) = 330.9. However, the

secrecy entropy for the finite blocklength is much smaller than 330.9. Figure 44 and Figure

45 show Lp and LA vs ε. First of all, only when logM0 is smaller than 150 can LP ,

LA and ε simultaneously achieve acceptable values, which clearly shows that the finite

blocklength penalty is quiet significant and cannot be ignored. Another observation from
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Figure 44: Leak probability LP vs main channel error probability ε. Comparison of the
Mod-Λ Euclidean decoder and the blocklength-n Gaussian channel.

Figure 44 and Figure 45 is that the performance of the Mod-λ Euclidean decoder is close to

the blocklength-n Gaussian channel, especially when a smaller ε is required at Bob, which

indicates that the Mod-Λ Euclidean decoder is acceptable for Eve if Alice emphasizes on

the reliability more than the secrecy.

D Conclusion

In this Chapter, a practical approach to analyze secure lattice codes with finite

blocklengths was provided. The idea to find computationally trackable analysis is to

utilize the second-order. The idea and technique presented can be applied to various

scenarios for the analysis of the finite-blocklength secrecy. For a specific code design, it is

necessary to analyze its trade-off between the reliability and the secrecy.
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[23] C. Douillard, M. Jézéquel, C. Berrou, D. Electronique, A. Picart, P. Didier, and
A. Glavieux, “Iterative correction of intersymbol interference: Turbo-equalization,”
European transactions on telecommunications, vol. 6, no. 5, pp. 507–511, 1995.

[24] G. Bauch and V. Franz, “A comparison of soft-in/soft-out algorithms for turbo
detection,” in Proc. Int. Conf. Telecomm, pp. 259–263, Citeseer, 1998.

[25] A. Anastasopoulos and K. M. Chugg, “Iterative equalization/decoding of tcm for
frequency-selective fading channels,” in Signals, Systems &amp; Computers, 1997.
Conference Record of the Thirty-First Asilomar Conference on, vol. 1, pp. 177–181,
IEEE, 1997.

[26] M. Tuchler, R. Koetter, and A. C. Singer, “Turbo equalization: principles and new
results,” IEEE transactions on communications, vol. 50, no. 5, pp. 754–767, 2002.

95



[27] M. Tuchler, A. C. Singer, and R. Koetter, “Minimum mean squared error equalization
using a priori information,” IEEE Transactions on Signal processing, vol. 50, no. 3,
pp. 673–683, 2002.

[28] A. Glavieux, C. Laot, and J. Labat, “Turbo equalization over a frequency selective
channel,” in Proc. Int. Symp. Turbo Codes, vol. 962102, 1997.

[29] R. El Chall, F. Nouvel, M. Hélard, and M. Liu, “Iterative receivers combining
mimo detection with turbo decoding: performance-complexity trade-offs,” EURASIP
Journal on Wireless Communications and Networking, vol. 2015, no. 1, pp. 1–19,
2015.

[30] A. Tomasoni, M. Ferrari, D. Gatti, F. Osnato, and S. Bellini, “A low complexity turbo
mmse receiver for w-lan mimo systems,” in 2006 IEEE International Conference on
Communications, vol. 9, pp. 4119–4124, IEEE, 2006.

[31] P. Shang, S. Kim, and K. Choi, “Soft mmse receiver for turbo coded mimo system,”
in 2011 IEEE 7th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), pp. 471–475, IEEE, 2011.

[32] S. Salari, M. Ardebilipour, M. Ahmadian, J.-P. Cances, and V. Meghdadi, “Turbo
receiver design with carrier-frequency offset estimation for ldpc-coded mimo
ofdm systems,” in The 9th International Conference on Advanced Communication
Technology, vol. 3, pp. 1911–1915, IEEE, 2007.

[33] J. Guo, Y. Shang, S. Ren, and H. Xiang, “A turbo receiver combined with cfo
compensation in frequency-domain for ofdma uplink,” Signal Processing, vol. 90,
no. 7, pp. 2253–2264, 2010.

[34] T. Kang and R. A. Iltis, “Iterative carrier frequency offset and channel estimation
for underwater acoustic ofdm systems,” IEEE Journal on Selected Areas in
Communications, vol. 26, no. 9, pp. 1650–1661, 2008.

[35] J. Boutros and G. Caire, “Iterative multiuser joint decoding: Unified framework
and asymptotic analysis,” IEEE Transactions on Information Theory, vol. 48, no. 7,
pp. 1772–1793, 2002.

[36] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschischang, “The
factor graph approach to model-based signal processing,” Proceedings of the IEEE,
vol. 95, no. 6, pp. 1295–1322, 2007.

[37] G. Colavolpe and G. Germi, “On the application of factor graphs and the sum-product
algorithm to isi channels,” IEEE Transactions on Communications, vol. 53, no. 5,
pp. 818–825, 2005.

[38] C. Novak, G. Matz, and F. Hlawatsch, “A factor graph approach to joint iterative data
detection and channel estimation in pilot-assisted idma transmissions,” in 2008 IEEE
International Conference on Acoustics, Speech and Signal Processing, pp. 2697–

96



2700, IEEE, 2008.

[39] A. P. Worthen and W. E. Stark, “Unified design of iterative receivers using factor
graphs,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 843–849, 2001.

[40] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for
compressed sensing,” Proceedings of the National Academy of Sciences, vol. 106,
no. 45, pp. 18914–18919, 2009.

[41] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms
for compressed sensing: I. motivation and construction,” in Information Theory
Workshop (ITW), 2010 IEEE, pp. 1–5, IEEE, 2010.

[42] M. A. Maleki, Approximate message passing algorithms for compressed sensing.
Stanford University, 2010.

[43] S. Rangan, “Generalized approximate message passing for estimation with random
linear mixing,” in Information Theory Proceedings (ISIT), 2011 IEEE International
Symposium on, pp. 2168–2172, IEEE, 2011.

[44] C. Cao, H. Li, and Z. Hu, “An amp based decoder for massive mu-mimo-ofdm with
low-resolution adcs,” ICNC, 2017.

[45] E. Nash, Y. Toh, and G. Hendrickson, “Single chip realizes direct-conversion rx,”
MICROWAVES & RF, pp. 55–67, 2002.

[46] J. Mo and R. W. Heath, “Capacity analysis of one-bit quantized mimo systems
with transmitter channel state information,” IEEE Transactions on Signal Processing,
vol. 63, no. 20, pp. 5498–5512, 2015.

[47] A. D. Wyner, “The wire-tap channel,” Bell System Technical Journal, The, vol. 54,
no. 8, pp. 1355–1387, 1975.

[48] I. Csiszár and J. Korner, “Broadcast channels with confidential messages,”
Information Theory, IEEE Transactions on, vol. 24, no. 3, pp. 339–348, 1978.

[49] U. Maurer and S. Wolf, “Information-theoretic key agreement: From weak to strong
secrecy for free,” in Advances in Cryptology EUROCRYPT 2000, pp. 351–368,
Springer, 2000.

[50] M. Bloch and J. Barros, Physical-layer security: from information theory to security
engineering. Cambridge University Press, 2011.

[51] I. Csiszár, “Almost independence and secrecy capacity,” Problemy Peredachi
Informatsii, vol. 32, no. 1, pp. 48–57, 1996.

[52] A. Thangaraj, S. Dihidar, A. R. Calderbank, S. W. McLaughlin, and J.-M. Merolla,
“Applications of ldpc codes to the wiretap channel,” Information Theory, IEEE
Transactions on, vol. 53, no. 8, pp. 2933–2945, 2007.

97



[53] M. R. Bloch and J. N. Laneman, “Strong secrecy from channel resolvability,”
Information Theory, IEEE Transactions on, vol. 59, no. 12, pp. 8077–8098, 2013.

[54] H. Mahdavifar and A. Vardy, “Achieving the secrecy capacity of wiretap channels
using polar codes,” Information Theory, IEEE Transactions on, vol. 57, no. 10,
pp. 6428–6443, 2011.

[55] L.-C. Choo, C. Ling, and K.-K. Wong, “Achievable rates for lattice coded gaussian
wiretap channels,” in 2011 IEEE International Conference on Communications
Workshops (ICC), 2011.

[56] C. Ling, L. Luzzi, J. Belfiore, and D. Stehlé, “Semantically secure lattice codes for
the gaussian wiretap channel,” 2012.

[57] V. Rathi, M. Andersson, R. Thobaben, J. Kliewer, and M. Skoglund, “Performance
analysis and design of two edge-type ldpc codes for the bec wiretap channel,” IEEE
Transactions on Information Theory, vol. 59, no. 2, pp. 1048–1064, 2013.

[58] V. Rathi, R. Urbanke, M. Andersson, and M. Skoglund, “Rate-equivocation optimal
spatially coupled ldpc codes for the bec wiretap channel,” in Information Theory
Proceedings (ISIT), 2011 IEEE International Symposium on, pp. 2393–2397, IEEE,
2011.

[59] C. W. Wong, T. F. Wong, and J. M. Shea, “Secret-sharing ldpc codes for the bpsk-
constrained gaussian wiretap channel,” IEEE Transactions on Information Forensics
and Security, vol. 6, no. 3, pp. 551–564, 2011.

[60] A. Subramanian, A. Thangaraj, M. Bloch, and S. W. McLaughlin, “Strong secrecy on
the binary erasure wiretap channel using large-girth ldpc codes,” IEEE Transactions
on Information Forensics and Security, vol. 6, no. 3, pp. 585–594, 2011.

[61] E. Arikan, “Channel polarization: A method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels,” IEEE Transactions on
Information Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[62] E. Sasoglu and A. Vardy, “A new polar coding scheme for strong security on wiretap
channels,” in Information Theory Proceedings (ISIT), 2013 IEEE International
Symposium on, pp. 1117–1121, IEEE, 2013.

[63] M. Hayashi and R. Matsumoto, “Construction of wiretap codes from ordinary channel
codes,” arXiv preprint arXiv:1001.1197, 2010.

[64] M. Cheraghchi, F. Didier, and A. Shokrollahi, “Invertible extractors and wiretap
protocols,” Information Theory, IEEE Transactions on, vol. 58, no. 2, pp. 1254–1274,
2012.

[65] M. Bellare, S. Tessaro, and A. Vardy, “Semantic security for the wiretap channel,” in
Advances in Cryptology–CRYPTO 2012, pp. 294–311, Springer, 2012.

98



[66] H. Tyagi and A. Vardy, “Explicit capacity-achieving coding scheme for the gaussian
wiretap channel,” in 2014 IEEE International Symposium on Information Theory,
pp. 956–960, IEEE, 2014.

[67] F. Oggier and B. Hassibi, “The secrecy capacity of the mimo wiretap channel,” IEEE
Transactions on Information Theory, vol. 57, no. 8, pp. 4961–4972, 2011.

[68] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas i: The
misome wiretap channel,” IEEE Transactions on Information Theory, vol. 56, no. 7,
pp. 3088–3104, 2010.

[69] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas ii: The
mimome wiretap channel,” IEEE Transactions on Information Theory, vol. 56, no. 11,
pp. 5515–5532, 2010.

[70] T. Liu and S. Shamai, “A note on the secrecy capacity of the multiple-antenna wiretap
channel,” IEEE Transactions on Information Theory, vol. 55, no. 6, pp. 2547–2553,
2009.

[71] A. Khisti, G. Wornell, A. Wiesel, and Y. Eldar, “On the gaussian mimo wiretap
channel,” in 2007 IEEE International Symposium on Information Theory, pp. 2471–
2475, IEEE, 2007.

[72] E. Ekrem and S. Ulukus, “The secrecy capacity region of the gaussian mimo multi-
receiver wiretap channel,” IEEE Transactions on Information Theory, vol. 57, no. 4,
pp. 2083–2114, 2011.

[73] E. Ekrem and S. Ulukus, “Capacity-equivocation region of the gaussian mimo wiretap
channel,” IEEE Transactions on Information Theory, vol. 58, no. 9, pp. 5699–5710,
2012.

[74] J. Li and A. P. Petropulu, “On ergodic secrecy rate for gaussian miso wiretap
channels,” IEEE Transactions on Wireless communications, vol. 10, no. 4, pp. 1176–
1187, 2011.

[75] L. Lai, H. El Gamal, and H. V. Poor, “The wiretap channel with feedback: Encryption
over the channel,” IEEE Transactions on Information Theory, vol. 54, no. 11,
pp. 5059–5067, 2008.

[76] E. Ardestanizadeh, M. Franceschetti, T. Javidi, and Y.-H. Kim, “Wiretap channel with
secure rate-limited feedback,” IEEE Transactions on Information Theory, vol. 55,
no. 12, pp. 5353–5361, 2009.

[77] Z. Rezki, A. Khisti, and M.-S. Alouini, “Ergodic secret message capacity of
the wiretap channel with finite-rate feedback,” IEEE Transactions on Wireless
Communications, vol. 13, no. 6, pp. 3364–3379, 2014.

[78] Y. Chen et al., “Wiretap channel with side information,” in 2006 IEEE International

99



Symposium on Information Theory, pp. 2607–2611, IEEE, 2006.

[79] C. Mitrpant, A. H. Vinck, and Y. Luo, “An achievable region for the gaussian wiretap
channel with side information,” IEEE Transactions on Information Theory, vol. 52,
no. 5, pp. 2181–2190, 2006.

[80] E. Ekrem and S. Ulukus, “On the secrecy of multiple access wiretap channel,” in
Communication, Control, and Computing, 2008 46th Annual Allerton Conference on,
pp. 1014–1021, IEEE, 2008.

[81] W. Yang, R. F. Schaefer, and H. V. Poor, “Finite-blocklength bounds for wiretap
channels,” in Information Theory (ISIT), 2016 IEEE International Symposium on,
pp. 3087–3091, IEEE, 2016.

[82] W. K. Harrison, D. Sarmento, J. P. Vilela, and M. Gomes, “Analysis of short
blocklength codes for secrecy,” arXiv preprint arXiv:1509.07092, 2015.
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APPENDIX

E Proof of Equation (42)(43)

First it gives

f (x) = e
− (x−µ1)2
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1 e
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Apply Equation(36) in,

µ1 =
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)
e−j2π(t−1)(k−1)/K , µ2 = 0, (219)
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Then it can derive the nominator of Equation(38) as
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Note that
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It can obtain Equation(42)(43).

F Proof of Lemma 3

Proof. Following the definition of Qn,
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and Θ (ρ2) =
{
w
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. Apparently, Θ (ρ2) is a sphere with radius
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Using the Stirling’s approximation, (n/2)! ≈
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G Proof of Lemma 4

Proof. Following the definition of Qn, Θ (ρ2) =
{
w
∣∣‖w‖2 ≥ nρ2

}
. According to the law

of large number, for the random variable w with variance n,
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Thus,

lim
n→∞
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= 1 if ρ < 1; (241)
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Because Qn is the integral along ∀w ∈ Θ (ρ2), (241)(242) give the result
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H Proof of Lemma 5

Proof. Denote the n-dimension sphere as Sn. For the random variable X uniformly

distributed in this sphere, the power of X is
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For the given power per dimension SX ,

SX = nSX =
n
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ρ2. (247)

Therefore, ρ2 = (n+ 2)SX .
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I Proof of Lemma 6

Proof. From (154) it gives

fY|X (y|x) =
∑
λ∈Λ

fW′ (y + λ− x).

Take w̃ = (y − x) mod Λ1, it gives

H (Y|X) (248)

= −
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fY|X (w̃)fX (x) log fY|X (w̃) dw̃dx (250)

= −
∫

w̃∈V1

fY|X (w̃) log fY|X (w̃) dw′. (251)

which is independent of Y. Therefore, to maximize I (X; Y) is only to maximize H (Y).

Therefore, the optimal PDF for Y is

fY (y) =
1

V1

,y ∈ V1. (252)

According to Lemma 1, if the input X is uniformly distributed in V1, the output Y will also

be uniformly distributed in V1 for the Mod-Λ channel. Therefore, the optimal PDF of X to

maximize I (X; Y) is

fX (x) =
1

V1

,x ∈ V1. (253)
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J Proof of Lemma 7

Proof. The mean square error between the received signal y and the original signal x is

E
[
‖αy − x‖2] and the optimal coefficient is

α∗ = arg min
α

E
[
‖αy − x‖2] . (254)

The first derivation is

dE
[
‖αy − x‖2]
dα

= αE
[
‖y‖2]− E

[
yxT

]
= αE

[
‖y‖2]− E

[
(x + w) xT

]
.

(255)

As x is independent of w,

dE
[
‖αy − x‖2]
dα

= αE
[
‖y‖2]− E

[
‖x‖2] . (256)

And the second derivative is

d2E
[
‖αy − x‖2]
dα2

= E
[
‖y‖2] > 0. (257)

(256)(257) give

α∗ =
E
[
‖x‖2]

E
[
‖y‖2] =

SX
SX + σ2

w

. (258)

K Proof of Lemma 8

Proof. Define the function f (x) = x−1− lnx, then f ′ (x) = 1−x−1 and f ′′ (x) = x−2 >

0. It gives min f (x) = f (1) = 0. with the MMSE coefficient SX
σ2
Wz ′

= 1+ SX
σ2
Wz

> 1, it gives

SX
σ2
Wz
′
> 1 + ln

SX
σ2
Wz
′
. (259)
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