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ABSTRACT 

DEVELOPMENT AND DEGRADATION ANALYSIS OF NOVEL MICRO AND 

NANOSTRUCTURED TRANSITION METAL OXIDE (TMO) ANODES FOR 

AQUEOUS SODIUM ION BATTERIES 

Santanu Mukherjee 

April 7, 2017 

 

One of the primary motivations driving battery technology research is the need to 

develop cleaner and more efficient energy storage systems. The portable electronics 

industry has developed exponentially, especially over the last couple of decades and 

therefore the importance of efficient electrochemical energy storage systems cannot be 

overstated. Li-ion batteries have been the predominant rechargeable energy in use, 

however, they have their own particular drawbacks viz. flammability of the electrolyte, 

expensive mining of the Li metal etc. This is where the importance of Na-ion batteries lie. 

This research focuses on using existing transition metal oxides (TMOs) and tuning their 

crystal structure as well as morphology for application as anodes in the Na-ion battery 

systems. The three TMOs used in this thesis are copper (II) oxide (CuO), iron (III) oxide 

(Fe2O3) and titanium (IV) oxide (TiO2). They are chosen based on their easy availability, 

affordability and structural flexibility. Aqueous environment has been chosen as it tends 

to involve simpler and easier fabrication, lower overhead costs and reduce the 

complexities of glovebox based assembly techniques. Improvement of kinetics and 

understanding as well as improving structural stability have been the main goals of this 
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dissertation. The analysis is performed by a two-way approach. Multiple morphologies of 

CuO are used to study the effect of surface area and porosity on kinetics. Similarly, the 

effect of doping different types of atoms in the hematite (α-Fe2O3) structure is studied in 

detail and the influence it has on the electrochemical performance. Finally, both the 

techniques are coupled to study the effects on the TiO2 anode system.  

It is expected that this dissertation will provide a comprehensive framework for the 

degradation analysis of simple TMO anodes in aqueous Na-ion battery systems, 

something which will add significant intellectual merit to the burgeoning field of aqueous 

rechargeable batteries in general. 
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CHAPTER 1 

A BRIEF INTRODUCTION TO ENERGY SYSTEMS: BASIC ASPECTS, HISTORY, 

ECONOMICS & CURRENT OUTLOOK 

 

1.1 Background 

Efficient, environmentally sustainable and economically prudent energy consumption and 

storage is one of the primary technological challenges of the 21st century. With growing 

awareness about climate change caused by fossil fuel usage, the current global trend has 

been to transition away from these “unclean” energy sources to potentially “cleaner” and 

“smarter” energy sources as well as grid storage techniques1,2. The next sections in this 

chapter will try to provide a perspective about the scientific concept of energy itself, as 

well as historical and socio-economic aspects of energy generation, storage, and 

consumption. 

1.2 The concept of energy  

Energy is often conceived of and even studied as a mathematical construct; a value that 

can be obtained by solving a set of equations3. However energy can be considered to be 

something more fundamental, a necessary driving force behind almost all chemical 

transformations and physical phenomena3. One of the most salient facts about energy is 

its ubiquity and yet it is “invisible”; unlike matter which is tangible and visible in daily 

life3,4. It was postulated by Mayer as early as 1842 that energy exists in different forms 

and that work and heat, something hitherto thought to be mutually exclusive, were in fact 

related5. Since then extensive research has shown that energy, as a physical quantity, is 
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considered to be “a property of matter that can be converted into work, heat or 

radiation”6.  

Therefore, energy, even though not a tangible entity, plays an immensely important role 

in the environment. It is unique in that it can “flow” between systems and it is 

interconvertible with matter6. The different types of energy that are commonly 

encountered are solar, nuclear, gravitational, chemical, sound and electrical7. The net 

amount of energy that the universe holds is essentially a constant and it is the 

transformations of energy between its various forms that evokes interest and is studied 

and researched extensively7,8. 

1.3 A brief history of human energy production and consumption 

Energy has been one of the most common and necessary requirements of human 

civilization from its infancy. It is easily considered to be the fundamental driving force 

behind human progress and development. Even though the need and utilization of natural 

resources for energy purposes have been prevalent since antiquity, the concept of “energy” 

was first put forward by the Greek philosopher Aristotle6. The sun has served as a 

continuous and perennial source of energy for the earth and its inhabitants, even before 

any energy storage system was invented. In fact life on earth as we know it would 

probably not have existed without the sun’s presence. It has been estimated that the total 

energy received is about 1366 Wm-2s-1 6. This tremendous amount of energy drives 

photosynthesis and is utilized by other living beings in their vital metabolic pathways as 

well as applied in other secondary human technological applications e.g. solar heating 

systems. One of the earliest instances of utilization of natural resources for energy 

consumption was the discovery of fire and consequently the burning of wood for cooking 
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and heating; the first evidence of the controlled usage of fire being around 50,000 years 

ago9. The next watershed moment in human civilization’s energy consumption was the 

development of agriculture10. The conquest of wind and water for energy production was 

another important event in this saga. Considerable growth of the human population and 

improvement in quality of life continued, even though there were no further dramatic 

enhancements in energy storage or consumption techniques11.  

One of the most dramatic and consequential events in human civilization and 

development was the Industrial Revolution, which as the name suggests, “revolutionized” 

the way energy was produced and consumed12. Starting in Britain in the mid-18th century, 

it spread throughout the world at a rapid pace12,13. It was also a period of almost 

unparalleled growth in economic activity and prosperity and during which the dominance 

of fossil fuels started to become prevalent13. The period marked an exponential rise in 

industries, especially manufacturing and coal, which became the predominant energy 

source14. With the development of the internal combustion engine that spurred on growth, 

the usage of oil started to take a prominent role. The mid-20th century denotes the time 

where oil became the primary energy producing source in the US15. The period after 

WWII also witnessed the growing emergence of nuclear power16. However, global oil 

shocks of the 70s (especially the 1973 oil crisis) led to growth of natural gas as an energy 

source17. It is only since the 1980s that the application of renewable energy sources has 

slowly come into the mainstream with the development of technology for the utilization 

of biomass, wind, solar, etc18. These trends demonstrate that technological innovation has 

almost always led to diversification of energy producing sources, resulting in an effort 



4 
 

towards overcoming the energy production and consumption drawbacks of the previous 

era.  

1.4 Energy consumption and its economics 

The economics of any system always plays a vital role in determining its feasibility. 

Energy is manifested in practice as “useful work” and the utilization of productive human 

labor is absolutely essential in performing this work19.  The flowchart in the figure below 

illustrates how the different components in the entire system are related. 

 

Figure 1. A schematic diagram illustrating the relationship between resources, labor, 

capital and energy produced (product)19. 

 

The cost of energy generation and its effect on the labor market is an important 

consideration because that plays an important role in developing public policy for energy 

issues19,20. Greater deregulation of energy markets, especially in Europe, has played an 

important role in influencing energy costs20. According to current estimates, the net 

global energy consumption annually is about 12.3 trillion Watts and is expected to be 17 

trillion Watts by 203019,21. It is interesting to note that, even with the current focus on 
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energy generation from renewable sources, approximately 80 % of the estimated energy 

consumption was from traditional or fossil fuel sources (mainly coal, oil and natural gas). 

It has also been forecast by the Energy Information Administration (EIA) that global 

energy consumption is to grow by about 50 % by the end of the current century20,22. It is 

here that renewable energy systems play a central role. As an example, the current 

levelized energy generation cost from coal fired power plants in the OECD countries 

range between $54/MWh in Australia to $120/MWh in the Slovak Republic22. According 

to estimates, the net investment cost represents 28 % of the expenditure, whereas the 

carbon capture technology accounts for approximately 30 % of the cost21,22. Currently 

about 9 % of energy consumption comes from renewable sources (i.e. hydroelectric, solar, 

wind, biofuel, etc.) and these numbers have remained steady for some time22-24. It should 

be noted that the infrastructure needed to generate energy from renewable techniques is 

still in its nascent stage in various parts of the world and, as such, is expensive. Therefore 

it is imperative that good energy and grid storage systems are developed to offset the 

heightened cost that might accompany energy generated from renewable systems. 

1.5 Current outlook of energy storage systems 

Energy storage systems have an important role to play with the development of new, 

varied and technologically advanced energy production systems, especially from 

renewable sources. Economic arguments also play a leading role in using grid storage 

systems vis-à-vis more conventional systems of load distribution25. A modern energy 

storage system can serve several important purposes: reduce the need for major and 

expensive system updates, play a role in emergency preparedness and assist in integrating 

the transportation sector as and when it gets fully electrified25. According to the latest 
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DOE reports, the net storage capacity of all the storage systems in the US amount to 

approximately 24.6 GW25,26. The storage systems in use currently comprise of pumped 

hydro, flywheels and electrochemical systems (different types of batteries). It should be 

noted that out of these pumped hydro alone account for about 95 % of the total25,26. The 

figure below illustrates the percentage breakdown of the non-pumped hydro based (5 %) 

energy storage systems. 

 

Figure 2. Non-pumped hydro based energy storage systems currently used in the U.S.25. 

 

These facts underscore the importance of robust, flexible and diverse grid storage 

systems so that over-reliance on any particular type can be avoided. It is believed that 

electrochemical energy storage systems will play a pivotal role in the near future. 
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CHAPTER 2 

ELECTROCHEMICAL ENERGY STORAGE AND BATTERIES 

 

2.1 Rationale for electrochemical energy storage 

Electricity is the most important form of energy in today’s world and about 20 TW of 

electrical energy is generated globally27,28. It has been forecast that this global demand for 

power will only increase and be tripled by the end of the 21st century27,28. However, as 

mentioned in the previous chapter, most of the energy produced currently is from fossil 

fuels which have extensive environmental hazards. Reports indicate that approximately 

1 kg of CO2 is emitted for every kilowatt-hour (kWh) of electricity produced from 

coal27,29,30. It is here that renewable energy sources are supposed to play a key role; 

however, they also have their respective pitfalls. Wind energy and solar power are both 

intermittent and dependent on location and geography; as a result, they do not fare well 

when persistent peak demands need to be satisfied27.  

An ideal energy storage system should essentially share some attributes of the generation 

system its coupled with and provide economic benefits and environmental advantages. 

Some of the important aspects of a robust electrochemical energy storage system is a low 

carbon (greenhouse) footprint, good efficiency, operational longevity, large capacity, and 

small size, all with a reasonable budget27. Existing energy storage systems, like pumped 

hydro, have their own drawbacks; e.g. its performance goes down in a region where 

there’s lack of water24. The compressed air energy storage (CAES) system, as the name 
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suggests, uses compressed air to store power; however, its usage is primarily for off-peak 

energy storage and there are some concerns of NOx emissions24,31. 

Electrochemical energy storage systems have elicited great interest in recent years with 

the motivation of overcoming some of the above-mentioned drawbacks32. Batteries are 

the most commonly used types of electrochemical storage devices; fuel cells, flow 

batteries, supercapacitors, etc. being other types of electrochemical energy storage27,33,34. 

Some of the advantages provided by an electrochemical energy storage system include a 

smooth and seamless integration into the grids of the future (“smart grids”), smoothing 

out renewable energy generation wherever it is unreliable, provide energy during 

emergency demands, provide longevity, be able to perform at high as well as low 

temperatures, and help broadly in load balancing27,35. Nevertheless, economics is always 

an important driving factor behind any new technology and the expenditure behind the 

establishment of electrochemical energy storage devices still need to be solved 36. 

2.2. Types of electrochemical energy storage devices 

Electrochemical energy storage devices are attracting widespread research and attention 

because of their inherent advantages, some of which have been mentioned in the 

preceding sections. The different types of electrochemical storage devices can be broadly 

classified as fuel cells, flow batteries, (super) capacitors and batteries24,37. All of these 

have a common feature in that they provide electrical energy when the need arises, from 

the chemical energy which they store37.  

Fuel cells may have a continuous supply of fuel from external sources; including a 

continuous oxidant (atmospheric air) supply24,38. There is no direct combustion, rather 

hydrogen oxidizes electrochemically to produce the energy required. Fuel cells vary in 



9 
 

the amount of energy they produce and operational temperatures38. Due to the type of 

reaction occurring, water management is a significant concern in fuel cell technology 

currently38.  

Supercapacitors store energy in the form of electrical charge and have very high 

efficiencies (≈ 100 %); but, usually suffer from low energy density27. A preferentially 

permeable (to the ions) membrane saturated with electrolyte segregates two different 

electrodes in a compartment. Power is provided in response to an external potential. 

Supercapacitors have been incorporated in grid power applications24,27,39.  

Batteries are very similar in design to supercapacitors and work along the same principles. 

They also have the advantage of being relatively lightweight and portable, have high 

operational longevities, and generally good storage efficiencies. The two electrodes of the 

battery are called the anode and the cathode37,40. Different types of battery technologies 

are in application today; primary and secondary batteries are a broad and useful 

classification. Primary batteries are non-rechargeable and have to be disposed of once 

they are depleted40. However, they cheaply provide high energy density. Some of the 

commonly used primary batteries are silver oxide, lithium, zinc-air, and alkaline24,41. 

Sometimes they do not contain a liquid electrolyte and are therefore called “dry cells”41. 

On the other hand secondary batteries (or “cells” as they are interchangeably called) are 

those that can be recharged once they have been depleted24. Recharging is usually 

achieved by applying a potential in the opposite direction to that when the battery is 

being discharged or “used”.  Based on the specific power and energy, batteries are 

usually placed somewhere between supercapacitors and fuel cells42. Examples of 

secondary batteries include the widely used lead acid (Pb acid), nickel cadmium (Ni-Cd), 
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nickel-metal hydride (Ni-MH), lithium ion (Li-ion), and sodium ion (Na-ion) batteries24,43. 

Significant improvement in rechargeable battery technology has been achieved; however, 

a lot of work still lies ahead with regards to optimizing cell chemistries to obtain 

maximum energy output while keeping cost constraints in mind42.  

Flow batteries are another type of electrochemical storage device which store two distinct 

electrolytes (or “catholytes” and “anolytes” as they are called) in separate reservoirs37. 

Each electrolyte contains a redox couple (hence they are sometimes called “redox” flow 

batteries) and these local reactions produce the electrical energy44. Vanadium-vanadium 

and zinc-bromine are some redox couples used. Flow batteries typically have energy 

densities on the lower side (≈ 40 Wh kg-1); however, their longevity (approximately 25-

35 years) is an advantage37.  

A simple schematic diagram of the different types of electrochemical energy storage 

devices is given in the figure below: 
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Figure 3. Schematic of the different types of electrochemical storage devices. 

2.3 Rechargeable (secondary) battery; Components and working principles 

As mentioned above, secondary batteries usually comprise two different electrodes, a 

membrane which allows the ion of interest to be transported through it, and an electrolyte 

housed together in an enclosed casing. These aspects will be discussed in greater detail in 

the following sections: 

2.3.1 Components 

The most important components of a rechargeable battery are its electrodes (the anode 

and the cathode), the electrolyte, and the preferentially permeable membrane that allows 

the ions to go through. Usual conventions designate the cathode and the anode as the 

positive and negative electrodes, respectively41,45. Oxidation, i.e. loss of electrons, takes 
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place at the anode and reduction, i.e. a gain of electrons, occurs at the cathode during the 

discharging process; this is reversed during charging41,45. This back and forth motion of 

the electrons across the external circuit is complemented by ionic movement through the 

membrane which maintains the overall electrical neutrality of the cell.   

2.3.2. Working principles 

As has been described in the preceding section, a rechargeable battery essentially has the 

ions shuttling between the electrodes through the electrolyte. For example, during the 

discharging process in a Na-ion battery, the Na+ ions move from the Na metal anode to 

the cathode. During this process, the ions traverse through the electrolyte and the flow of 

ions through the liquid electrolyte is usually modeled using Fick’s second law of 

diffusion46. Fick’s second law of diffusion can be written as follows: 
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where D is the diffusion coefficient, T is the temperature, R is the gas constant and F is 

Faraday’s constant. One of the primary assumptions in this process is to consider that 

concentration gradient is the main driving force behind the ionic movement and 

migration terms can be neglected46. Subsequently, the Na+ ions are hosted by the cathode 

lattice through a process called intercalation47. Therefore, sometimes these batteries are 

called “rocking chair” batteries because of this back and forth ionic motion47,48. 

Consequently, from a structural perspective, crystallography and crystal geometry are 

important deciding factors that help to accommodate migrating ions in the host lattice. 

Therefore, the host electrodes must be chosen so that their crystal structures are amenable 

to hosting the intercalated ions. Figure 4, below, shows a schematic diagram of the 

intercalation process during the charging and discharging of a hypothetical Na-ion battery. 
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Figure 4. Schematic of intercalation in a hypothetical Na-ion battery. 

 

The figure demonstrates the ions (in solid yellow) shuttling back and forth across the 

electrolyte between the cathode and the anode. The charging process consists of the ionic 

movement from the cathode to the anode and vice versa during the discharging process. 

As the ions move through the electrolyte, the electrons flow in the opposite direction 

through the external circuit to maintain the charge neutrality.  

Thermodynamics is another important factor that acts as the prime mover for successful 

electrochemical reaction. A reversible electrochemical reaction is guided by the 

thermodynamic relation as given in equation (2) below 

                                                       ∆� =	∆� − �∆�                                                     (2) 

where ΔG is the change in free energy, T is the temperature, ΔS is the change in entropy, 

and ΔH is the change in enthalpy49. The net free energy change is important because its 

sign is an indicator of the thermodynamic possibility of a reaction. The free energy 
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change is also considered equivalent to the molar free energy of the reaction, which is 

equated to the electrical work obtained, and this is then demonstrated by equation (3) as 

given below38,49
. 

                                                    ∆� =	−���                                                                 (3) 

where n is the number of moles of ions or electrons being transported, F is Faraday’s 

constant, and E is the cell voltage38,48. Therefore, ΔG in this case estimates the total 

electrical work output that can be obtained from the cell38,49. A fundamental 

thermodynamic relation can be written as follows38,50
. 

                                              ∆� =	∆�° + �� ln�                                                          (4) 

where ΔG0 is the standard free energy change, R is the universal gas constant, and Q is 

the reaction quotient38,49. Considering equation (3), equation (4) can be rewritten as 

follows49,50
. 

                                        −��� = 	−���° + �� ln�                                                     (5) 

This reaction when simplified comes down to the one as shown below: 

                                               � = �° − �
��

��
� ln�                                                            (6) 

Equation (5) is the basic form of the celebrated Nernst equation and it relates the half-cell 

potential E to the reaction conditions (temperature and activity of the reactants)49,51. 

Therefore, it is seen that thermodynamics not only assumes an important role in being the 

force behind electrochemical reactions, it is also a major factor that determines cell 

potential and net energy output. 

Favorable crystal geometry and the electrochemical reaction proceeding in the forward 

direction are two of the most vital aspects of the rechargeable battery for its successful 

functioning. Slow reaction rates, i.e. sluggish kinetics, are detrimental to developing a 
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successful battery and therefore understanding the reaction kinetics is essential. It is 

understood that electrochemical reactions mostly take place at the electrode-electrolyte 

interface52. Consequently, when the ion (e.g. Li+, Na+) transits from the electrolyte to the 

electrode, it encounters an energy barrier at the interface51,52. This energy barrier, or 

rather its “height” determines the reaction rate. The steeper the energy barrier, i.e. the 

greater the energy that has to be expended to overcome it, the slower the reaction rate 

will be, rendering the battery inefficient51. Considering an equilibrium condition, the 

current produced at an electrode is given by equation (7) 

                                                                 � = �	�	�                                                           (7) 

where i is the localized electrode current, n is the number of moles of electron 

transported , F is faraday’s constant and j is the current density48,50. The localized 

electrode current results in local potential deviating from equilibrium. This discrepancy 

between the theoretical electrode potential and what it actually is, is designated as 

“overpotential”38,49. For all practical purposes, the overpotential at an electrode can be 

mathematically represented as follows: 

                                                                 � = 	� − 	�°                                                    (8) 

where η denotes the overpotential, Φ denotes the potential due to local current i, and Φ0 is 

the equilibrium electrode potential. When the electrochemical reaction takes place at the 

interface, the metal ions that have been transported through the electrolyte lose their 

positive charge and tend to recombine with an electron in order to maintain the overall 

electrical neutrality of the electrode, according to chemical reaction given in equation 

(9)49. 

 Mz+ + ze- ↔ M (9) 
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If the above reaction is in equilibrium, then the forward as well as the backward reaction 

take place at the same rate. However, such an ideal scenario is seldom the case and 

usually one proceeds over the other. If the forward reaction takes place at a higher rate, 

the electrode is stripped of electrons and acquires a positive charge localized at the 

interface49,51. This localized positive charge region subsequently attracts negatively 

charged ions to its vicinity and therefore a “double layer” of charge is built up49,53,54. This 

localized charge buildup causes what is known as “polarization,” resulting in the 

electrode having a different potential than its equilibrium value53. Previous experimental 

results have indicated that the electrical double layer (EDL) is usually about 1 nm thick 

and produces a large electric field of approximately 109 V m-1 in the neighborhood49,51.           

Therefore, it can be seen that the performance of a cell depends on several 

electrochemical factors and the choice of the electrode materials and battery design has to 

be done judiciously so as to obtain optimum results.  
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CHAPTER 3 

SODIUM ION BATTERIES: BACKGROUND, RATIONALE, MATERIALS 

SELECTION, INTELLECTUAL MERITS AND INSTRUMENTATION 

 

3.1 Current status of Li-ion batteries and their drawbacks 

The need for “clean” energy systems and sustainable grid storage is the driving force 

behind the development of novel rechargeable battery systems. Primary lithium batteries 

came into being in the 1970s and Li-ion and have exploded on to the scene since then55. 

The first commercial rechargeable Li-ion battery was introduced by Sony in 199143,48. 

Currently, Li-ion batteries are the pre-eminent rechargeable energy storage devices in use. 

They provide several advantages; considerable energy densities (usually in the range of 

100 Wh kg-1 – 150 Wh kg-1) high operating voltages (≈ 3.5 V)56. Especially in the field of 

portable electronics e.g. laptops and mobile phones, Li-ion battery systems have found 

remarkable success56. A basic Li-ion rechargeable battery essentially contains a graphite 

anode a LiCoO2 (LCO) cathode and a Li+ ion conducting electrolyte e.g. LiPF6
56. Both 

these electrode materials are layered and allows for the rather smooth Li+ 

intercalation/deintercalation. The reversible charging process involves the oxidation of 

the LCO cathode and the consequent lithiation of the graphite according to the following 

reaction56: 

C6 + LiCoO2 ↔ Li0.5C6 + Li0.5CoO2 
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Because of the nature of the reaction i.e. half a Li ion being stripped from the LCO 

cathode, only about half of the theoretical specific capacity of approximately 140 mAhg-1 

is obtained57,58. 

Beyond this most fundamental arrangement, extensive research has been done to develop 

newer and more advanced Li-ion battery materials. Lithium titanium oxides (LTO) 

materials viz. Li4Ti5O12 have been developed with the aim of being a zero strain material 

and has provided specific capacities of 150 mAhg-1 – 160 mAhg-1 at a voltage of 1.5 V vs 

Li59. Olivines are another class of cathode materials having the general formula LiMPO4 

(where M is a transition metal) and they provide relative flat intercalation and stable 

discharges60.  

However, Li ion batteries also suffer from several drawbacks.  Flammability, leakage and 

electrolytic stability of the toxic electrolyte, is a major issue56,61. The high reactivity of Li 

metal results in the formation of dendrites which sometimes short the cell and this is  a 

safety feature that needs to be taken care of, and increases the manufacturing cost61. 

Steady degradation of the electrode due to continuous insertion/deinsertion of the Li+ ion 

is another important area of concern56. The figure below demonstrates the progressive 

lattice degradation of the cathode material. 
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Figure 5. Scanning electron microscopy (SEM) images of (a) pristine electrode (b) 

electrode after 2 cycles of operation and (c) same electrode after 5 cycles of operation62. 

 

As can be seen from the Figure 5, cracks start to appear in the material after just 2 cycles 

of operation and greatly magnify after 5 cycles. The volumetric expansion suffered by the 

electrode to accommodate the Li+ ion is the reason behind this structural failure62. Apart 

from these drawbacks, economics and geopolitics also play a very important role. Li and 

its ores are expensive to mine and are found in parts of the world that do not have stable 

governance63. Therefore it is imperative that alternative systems of rechargeable energy 

storage be studied and developed if the problems of Li-ion battery systems are to be 

overcome in particular and energy independence is to be achieved in general.  

3.2 Background and rationale behind Na-ion battery research 

The above-mentioned drawbacks of Li-ion systems provide an opening for other battery 

types viz. the Na-ion batteries. They are expected to play an important niche role in the 

rechargeable energy storage ecosystem. Metallic sodium has the advantage of being 

easily available in the earth's crust (ranked fourth in terms of the most abundant minerals 

in the earth) and subsequently, being rather cheap compared to lithium64. Initially Li-ion 
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battery materials were used as templates for sodium ion battery study, this is because the 

principle of Li-ion and Na-ion batteries are analogous i.e. intercalation and hosting the 

Na+ ion in the host lattice. However it is this very principle that produces unique 

constraints for the Na-ion battery. The size of the Na+ ion is about 1.4 times larger than 

the Li+ ion and this requires rather larger interstitial/interlayer host spaces, and the host 

electrode also is prone to suffering more degradation to accommodate the continuous 

insertion/deinsertion of this large cation65. A table of comparison between sodium and 

lithium-ion systems is provided below: 

 

Table 1 

Comparative analysis of Na and Li systems66,67 

                                                     Na                                                                                                   Li 

Cation radius                              97 pm                                               68 pm 

E0 vs SHE                                 -2.7 V                                              -3.04 V 

Abundance                        23.6*103mg kg-1                                            20 mg kg-1 

Price of carbonates              $ 0.29 per kg                                            $ 5.82 per kg 

 

The Na/S and the Na/NiCl2 based systems were one of the earliest Na-ion battery systems 

that were studied, during the 1970s and the 1980s64. These systems had low power 

densities, moderate energy densities and operated at rather high temperatures (300 °C – 

350 °C)64. Research in Na-ion systems has diversified much since then and the primary 

motivation of Na-ion battery research has been to engineer materials to allow for easy 

intercalation of Na ions into the electrodes. One of the earliest developments in this field 
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was work done by Whittingham and Hagenmuller on layered compounds such as 

dichalcogenides like MoS2, TaS2 and oxides of the form NaxMO2 (where M is Co, Mn 

etc.) type metal oxides68.                                                                                                                

The rather large sized sodium cation also results in sluggish reaction kinetics. Therefore 

subsequent research on Na-ion batteries has focused on engineering and modifying 

electrode materials particularly to suit these demands. For e.g. the rhombohedral α-

NaFeO2 has elicited some interest due to its layered structure and rather non-toxic 

chemistry and has demonstrated a reversible intercalation voltage of 3.3 V69. Similarly 

3D open structures like Na Super Ionic Conductors (NASICON) have been developed. 

Na3V2(PO4)3 is a typical NASICON compound that has been studied and it has 

demonstrated operational voltage of 1.6 V and maximum specific capacity of 93 mAhg-1 

but its reversibility has been undesirable70. A representative charge-discharge curve for 

the Na3V2(PO4)3 is given in the figure 6 below: 

 

Figure 6. Representative charge-discharge curves for the 1st, 2nd and 10th cycle of 

Na3V2(PO4)3 cathode71. 
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The advantages of the Li-ion batteries i.e. their rather large energy density and operating 

voltages basically mean Na-ion batteries will have to occupy the niche market where the 

battery longevity and low cost are the main targets e.g. large scale grid storage64,72. 

Therefore a compelling rationale exists behind further research and development into Na-

ion battery systems and developing an understanding of its fundamental principles in 

even greater detail. Also the work in this dissertation deals with aqueous Na-ion batteries; 

this is because aqueous systems do away with complicated and expensive fabrication 

processes that are otherwise needed in cells that use organic electrolyte. 

3.3 Material Selection 

From the above discussion, it becomes clear that the choice of the positive and the 

negative electrode materials becomes very important so as to develop a successful and 

functional Na-ion battery. Some considerations and discussion regarding materials 

selection is given the following sections. 

3.3.1 Cathodes 

Exhaustive research has been done in developing novel, long lasting and stable cathode 

materials for Na-ion batteries. Layered oxide compounds of the type NaxMO2, analogous 

to LiMO2 for Li-ion batteries, have been experimented with73,74. Delmas et al. have 

studied NaxCoO2 and an energy density as high as 260 Wh kg-1 has been obtained75. 

Dichalcogenide compounds i.e. those having the general formula MS2 (where M is a 

transition metal) have been tried by several groups, however their overall electrochemical 

properties have not been satisfactory76,77. 
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The material of choice as cathode in this dissertation is Prussian blue (P.B.). P.B. is 

essentially hexacyanoferrate with Fe4[Fe(CN)6]3.xH2O being its most typical form, 

though other analogues exist with a general formula AxM[Fe(CN)6]y where A is an alkali 

metal (e.g. Na, K etc.) and M is a transition metal (e.g. Ni, Zn etc.)78,79. The first study of 

the chemical and crystal structure of Prussian blue was performed by Keggin and Miles 

using powder diffraction data80. It has been conclusively shown that Prussian blue has a 

cubic crystal structure in which Fe2+ and Fe3+ ions are located alternatively on a Face 

Centered Cubic (FCC) lattice81,82. It has also been demonstrated that the P.B.s exhibit 

rather large interstitial spaces and these spaces can be useful for hosting alkaline metal 

ions (e.g. Na+, K+ etc.) during the intercalation process81. It is because of these properties 

that they usually do not undergo much lattice deformation and provide longevity, which 

is a very desirable property. A schematic diagram of a typical P.B. crystal system is 

shown in the figure below. 

 

 
 

Figure 7. Schematic representation of the structure of a typical Prussian blue crystal81. 
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Several studies have been performed on the application of P.B.s as cathode materials in 

batteries. Okubo et al. have used core shell Cu and Fe based PB based nanoparticles in 

sodium batteries and have reported relatively stable performances; 60% capacity 

retention at a discharge rate 600 mA g-1 83. An Na-Zn based hexacyanoferrate based 

system has been used as a positive electrode in a sodium battery by Lee et al and they 

have demonstrated a maximum specific capacity of 56.4 mAh g-1 with  a capacity 

retention of 85.2% up to 50 cycles84. PB as a cathode in aqueous media have been studied 

by Wu and coworkers, using a NaTi2(PO4)3 anode85. An energy density of 42.5 Wh kg-1 

have been obtained with a capacity retention of 88 % over 250 cycles85.  

3.3.2 Anode 

Different classes of materials with varying crystallographic morphologies and 

microstructures have been examined for the anodes of Na-ion batteries. Hard carbon is 

one of the materials that has been extensively studied as an anode67,86. Another important 

class of materials that has been useful as negative electrodes are intermetallics. However, 

in intermetallics, it is alloying that helps to bind the Na+ ions together rather than 

intercalation. SnSb/C, is one such intermetallic composite that provided a maximum 

specific capacity of 544 mAhg-1 and a Coulombic efficiency of 98% during cycling87. 

NASICON type materials e.g. Na3Ti2(PO4)3 with rhombohedral crystal structure are a 

novel class of compounds that have elicited interest and has been tried as an anode and 

have demonstrated reasonable stability in neutral as well as strongly basic (pH=11) 

environments88. 

Transition metal oxides (TMOs) have been chosen as anodes for the aqueous Na-ion 

batteries in this thesis. TMOs provide several advantages; firstly they have highly flexible 
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crystal structures which can modify themselves accordingly during the intercalation 

process89. Secondly their relatively large interstitial spaces are expected to serve as good 

hosts for storage of large sized ions89. Another important reason for using TMOs is 

because of the type of bonding necessary to host the Na+ ions. These oxides usually have 

a large multi-ionic layered structure and this structure is beneficial in hosting and 

stabilizing the rather large sized Na+ ion90. Also this type of structure helps to form a 6-

fold co-ordination bond which the Na+ ion prefers most when it is hosted interstitially90. 

The schematic diagram below demonstrates the variety of structures exhibited by some 

common TMOs.  

 

Figure 8. Schematic ball and stick representation of (a) tetragonal CrO2 (b) simple cubic 

CoO and (c) orthorhombic V2O5. 

 

Other pertinent advantages of TMOs include their high electrical conductivities and 

relative insolubility in water which makes them relatively stable in aqueous 

environments91. There have been some notable work to further the application of TMOs 

in Na-ion batteries, in both organic and aqueous environments, a few of which are 

summarized below.  
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In organic media, Balaya et al. have been able to obtain a maximum specific capacity of 

643 mAhg-1 with Fe3O4 anodes, however they encountered a 50 % capacity drop after 

subsequent cycling92. Nanostructured Fe2O3 have been reported to provide specific 

capacities of 250 mAhg-1 93. α-MoO3 has been reported to provide a maximum specific 

capacity of 771 mAhg-1 in its first cycle and has shown good capacity retention over 500 

cycles of operation94. 

In aqueous media, NaV3O8 has been tried as an anode material and has proven to be 

stable for approximately 150 cycles95. However, they suffer from rapid initial capacity 

fade and the maximum capacity that has been obtained is rather low (≈ 30 mAhg-1)95. Wu 

et al have demonstrated MnCo2O4 to be a relative stable anode material in aqueous media, 

with discharge capacity being 244 mAhg-1 even after the 40 cycles at discharge rates as 

high as 50 mAg-1 96. 

3.4 Objectives and intellectual merits 

An important intellectual merit of studying the sodium ion battery is to probe into the 

different electrode structures that can be fabricated as well as how the microstructural 

tuning affects the electrochemical properties. Most of the electrode structures and 

materials chosen for Na-ion batteries are analogous to those which are used for Li ion 

batteries and there is great scope for a better understanding of the degradation mechanism 

involved in the charging-discharging process. As mentioned briefly in a previous section, 

the fundamental issues faced by current Na-ion batteries can be elucidated as follows: 

 Host lattice deformation occurring due to significant volume expansion necessary 

to accommodate the large Na+ ion. 

 Sluggish kinetics of the Na+ ion due its large size. 
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 Corrosion that takes place at the electrode-electrolyte interface.  

It is well known the continuous lattice expansion and contraction that occurs to 

accommodate the large Na+ ion produces significant stress on the electrode and thereby 

leads to its eventual degradation, loss in capacity and poor longevity. During this process, 

due to the continuous loss in structural integrity, the available reaction sites are also lost 

on the electrode surface thereby weakening its kinetics as well. Therefore the objectives 

can be summarized as follows. 

(i) To develop a fundamental understanding of the structure-property relations of the 

electrode material – Structure property relations are important in as they strongly 

influence the electrochemical properties. The relation between structure, morphology and 

properties are studied in three different ways.  

Studying the effect of variation of precursors and fabrication conditions (fabrication time, 

temperature etc.) is an important objective. These different fabrication conditions provide 

different morphologies and surface areas and studying these variations is an important 

objective. Apart from morphology change and surface property variations, another 

objective is to study the effect of doping on the changes in lattice parameters and how 

crystal lattices respond to dopant atoms of different sizes. Finally, doping is done in even 

more significant amounts with the objective of probing a structural change altogether. 

(ii) Analyzing structural deformation and degradation by studying structural changes and 

kinetics as a result of electrochemical cell cycling - Another important aspect to study is 

the effect of these morphological/structural changes on the  deformation in the electrodes 

due to the wear and tear imposed on the lattice structures by cell cycling. A successful 

understanding of the interfacial and degradation phenomena will help in understanding 
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ways to improve longevity of the battery and thereby assist in to furthering the evolution 

of sustainable energy storage and lessen the dependency on fossil fuels. An important 

part of this objective is to understand if there is an “optimum” or “best performing” 

morphology or lattice structure which delivers maximum capacity and longevity under all 

conditions.  

Another important intellectual merit is the study of aqueous batteries. Aqueous batteries 

provide several advantages than their organic electrolyte counterparts; quick and easy 

fabrication, less energy intensive cell assembly, lower overheads and overall more 

affordability. However most of the research community’s focus has been on organic 

electrolyte based cells, and therefore a detailed study on aqueous rechargeable batteries 

especially Na-ion is essential. 

3.5 Instrumentation 

This section discusses as well as provides a brief idea about the instruments used for the 

purpose of performing the structural characterization as well as studying the 

electrochemical performance of the cell. 

3.5.1 Structural and particle property characterization techniques and instruments 

(i) X-Ray diffraction (XRD)  

XRD is one of the most powerful experimental techniques that allow for the study of 

structural properties of crystalline materials. The principle of Bragg’s law utilizing 

diffraction of X-Rays from lattice planes provides important information regarding 

crystal structure, lattice parameters etc97. XRD was performed by a Bruker D8™ 

diffractometer using Cu K-α radiation. The diffractometer is used in the θ-2θ arrangement 

and the XRD diffractometer is shown in the figure below. 
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Figure 9. Bruker D8™ diffractometer used for performing XRD of crystalline samples. 

(ii) Raman spectra 

Raman spectroscopy is essentially a technique which relies on the inelastic scattering of a 

monochromatic irradiation source98. The scattered photonic energies are either more or 

less than the incident radiation and this “shift” (denoted the Raman Effect or Raman 

shift), which occurs due to the interaction of the incident radiation with the vibrating 

molecules, contains important information about the bonding and molecular structure98. 

The Raman spectra were studied by using a red HeNe laser having wavelength 632.8 nm 

by an InVia Renishaw™ Raman microscope. The Raman microscope is shown in the 

figure below. 
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Figure 10. The InViaTM Renishaw Raman microscope used for performing Raman spectra. 

(iii) Electron microscopy 

Electron microscopy provides important information regarding the surface morphology, 

microstructure as well as its lattice structure. Scanning electron microscopy is used to 

study the surface properties of the material and provide an idea about its external 

morphology. The SEM works on the principle of a beam of electrons scanning the 

surface of the material, and thereby imaging the microstructure99. The SEM is also used 

to perform Energy dispersive X-Ray spectroscopy (EDX) which provides information 

about the chemical composition of the sample under analysis. A TESCAN SEM and a 

FEI Nova NanoSEM 600 was used for this purpose and are shown in figure 11 below. 
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Figure 11. (a) TESCAN™ SEM and (b) FEI Nova NanoSEM™ 600. 

 

A transmission electron microscope (TEM) on the other hand not only provides external 

morphological information, it is also used to study the lattice information of the sample in 

question. The incident energetic beam of electrons are “transmitted” through the sample 

and are scattered which are then recorded and provide important crystallographic 

information100. A TECNAI™ G2 F30 TEM is used for imaging purposes and is shown in 

figure 12 below. 
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Figure 12. TECNAI™ G2 F30 TEM used for imaging and analysis purposes. 

(iv) X-Ray Photoelectron Spectroscopy (XPS) 

XPS is an important materials characterization technique which is used to provide 

important information regarding the surface properties of the sample. It works on the 

principle of photoelectric principle. When a sample is irradiated by an X-Ray beam of 

required wavelength, it results in an electron being ejected from the sample. Information 

regarding the elements and the nature of bonding, especially at the surface is obtained by 

the XPS spectra101. A Thermo VG Scientific MultiLab™ XPS system consisting of a 

CTX400 X-Ray source is used and shown in the figure below. 
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Figure 13. Thermo VG Scientific MultiLab™ XPS used for surface characterization. 

(v) Particle size and BET measurements 

The principle of particle size measurement involves scattering of laser light by sample 

particles dissolved in a solvent e.g. water. This scattered light is then used to correlate the 

particle size. A Brookhaven 90Plus™ Particle size analyzer was used for the purpose of 

measuring the particle size and is shown in figure 14(a). 

Surface area and porosity are important properties that correlate to the electrochemical 

activity. The surface area measurement is performed by a technique proposed by 

scientists Brunauer, Emmett and Teller and hence the name BET technique. 

Experimentally, it essentially involves adsorbing N2 gas on to the surface of the sample 

followed by desorption cycle under the assumption that the adsorption rate is essentially 

equal to desorption rate. The principle of BET is basically an extension of the Langmuir 

theory102. BET measurements are performed by a Micrometrics TriStar™ Surface Area 

and Porosity Analyzer and is shown in figure 14(b) below. 
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Figure 14. (a) Brookhaven 90Plus™ Particle size analyzer and (b) Micrometrics 

TriStar™ Surface Area and Porosity Analyzer 

3.5.2 Instruments for measuring electrochemical performance 

(i) Cell cycling 

Galvanostatic cell cycling is essential to understand the performance of the cell to 

repeated cycles of charging and discharging. A constant charging and discharging current 

is applied and the capacity output of the cell is monitored. Cell cycling was performed by 

an Arbin BT2043™ instrument and is shown in figure 15. 
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Figure 15. Arbin BT2043™ instrument used for cell cycling. 

(ii) Cyclic voltammetry (CV) and impedance spectra 

CV is a technique which probes the oxidation and the reduction characteristics of the cell. 

A fixed potential scan rate is applied in the forward as well as the reverse direction within 

a designated voltage window and the oxidation and reduction peaks are observed which 

provide information about the electrode processes103.  

Electrochemical impedance spectroscopy (EIS) essentially measures the response of a 

cell to a small a.c. signal. The response in the high frequency region usually corresponds 

to the impedance due to charge transfer across the electrode-electrolyte interface, whereas 

that in the low frequency region corresponds to ionic diffusion in to the electrode104. A 

Biologic SP-200™ potentiostat was used for CV and impedance spectra measurement. 
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Figure 16. Biologic SP-200™ potentiostat for CV and impedance spectra measurement. 
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CHAPTER 4 

THE CuO - PRUSSIAN BLUE SYSTEM 

 

4.1 Background of CuO systems 

Based on the fundamental premise of easy availability, affordability and stability, there 

has been growing interest in the application of CuO as anode materials105,106. However 

most of the efforts of CuO anodes have been towards its application in Li-ion batteries. In 

Li-ion batteries, CuO systems have provided specific capacities as high as 664.1 mAh g-1 

and good stability106,107. Apart from standalone CuO, focus has been more on 

improving/modifying the CuO microstructure so as to be able to improve its reaction 

kinetics as well as enhance capacity retention properties. A CuO/graphene composite has 

been studied by Mai et al. and a reversible capacity of 583.5 mAh g-1 has been obtained 

with capacity retention of about 75.5 % 108. Nanostructured carbon coated CuO having 

hollow spherical morphology has been studied by Xu et al109. The authors have reported a 

maximum specific capacity of 670 mAh g-1 at a discharge rate of 1 C and have been able 

to maintain its capacity for approximately 300 cycles of operation. The superior 

morphological properties of these hollow nanospheres were responsible for the high 

capacity retention109. Mesoporous CuO particles, as studied by Ko et al. have also been 

successful in providing elevated discharge capacities of 650 mAh g-1 especially at low 

discharge capacities of 0.1 C110. Basically they had fabricated a nanocomposite consisting 

of mesoporous CuO “threaded” with carbon nanotubes and the excellent performance has 
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been attributed to this unique morphology110. Along similar lines, CuO/graphene based 

nanocomposites have been fabricated by Wang and coworkers as “high-performance 

anodes” in Li-ion batteries111. According to the authors, the CuO nanoparticles are 

embedded in a 3D graphene network and they have been able to obtain a maximum 

discharge capacity of ∿ 600 mAh g-1 at a current density of 65 mA g-1. The authors have 

attributed this excellent performance to the 3D network which greatly improved the 

electrical conductivity and stability of the overall structure111. CuO nanoparticles grown 

on Cu substrates for Li-ion batteries were tried by Wang and coworkers112. They typically 

fabricated these nanostructures using a Cu(NO3)2 solution precursor into which a Cu foil 

was dipped and the reaction was allowed to proceed hydrothermally. The authors have 

reported a very large first cycle discharge capacity of 1500 mAh g-1 which dropped to 

580 mAh g-1 in the second cycle, at a discharge current of 0.5 C112. This big drop has 

been ascribed to irreversible side reactions and the formation of a SEI layer which 

prevents smooth Li insertion112. Lu and Wang have fabricated ‘sheet-like” CuO 

nanostructures on graphene for applications as anodes in Li-ion batteries113. A microwave 

irradiation technique was used with Cu(CH3COO)2 and graphene nanosheets as the 

precursor materials. The graphene based CuO nanostructures have demonstrated 

enhanced initial discharge capacities of 1092 mAh g-1 as against pristine CuO (non-

graphene based)  which demonstrated an initial discharge capacity of 657 mAh g-1 at 0.1 

C discharge rates113. The authors have attributed this large improvement to improved 

porosity of the graphenated CuO nanostructures113.  Metal organic framework (MOF) 

based precursors has been used as precursors for fabricating porous hollow CuO 

octahedra as anodes in Li-ion batteries by Wu et al114. The octahedra were prepared from 
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Cu3(btc)2 precursors (where btc is benzene 1,3,5-tricarboxylate)114. Electrochemical 

results have demonstrated a rather large initial cycle discharge capacity of 1208 mAh g-1 

(almost twice the theoretical capacity) which stabilized to 470 mAh g-1 after 100 cycles114. 

This significant drop in capacity has been attributed to irreversible side reactions and Li 

storage as well as the formation of SEI layer114.  

However the application of CuO as anode materials in Na-ion batteries has been 

relatively sparse115. Electrochemical analysis of Na+ ions in CuO have been studied by 

Wang et al. who have reported the formation of an intermediate Cu1-xO2 complex during 

cell cycling116. It has also been reported that CuO acts as a conversion anode w.r.t Na 

ions rather than the usual intercalation host material116. Yuan et al. have used Cu foil as a 

precursor to obtain porous CuO arrays as anodes in Na-ion batteries117. They have 

reported a stable specific capacity of 640 mAh g-1 and a maximum of 935 mAh g-1 at a 

relatively high current density of 200 mA g-1. However they have reported low initial 

Coulombic efficiencies of 61 % which have been attributed to SEI layer formation117. An 

aerosol based spray pyrolysis technique was used by Lu et al. to develop carbon coated 

CuO (CuO/C) nanoparticles118. Electrochemical performance indicated that a stable 

discharge capacity of 402 mAh g-1 was still available after about 600 cycles of 

operation118.  

However, there is no detailed analysis of application of CuO as anodes in aqueous 

sodium ion batteries and an investigation of the same is absolutely necessary if the 

advantages of CuO are to be reaped in aqueous media as well.  
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4.2 Rationale and outline 

The aim of this project is to study the effect of microstructure on electrochemical kinetics. 

As noted earlier, kinetics and preserving the structural fidelity of the electrode are two of 

the primary concerns of a Na-ion battery system. Electrode morphology and 

microstructure can be considered to be one of the most important parameters which 

influence the kinetics. Therefore, fabricating and realizing the effect of optimum 

microstructure variation on cell performance is essential to provide improved 

electrochemical kinetics. Consequently, this project focuses on developing several CuO 

microstructures by facile, less energy-intensive but relatively novel techniques. Detailed 

electrochemical analysis is then performed to understand the role the respective 

morphologies play and determine the optimum microstructure which provides the most 

suitable results. 

4.3 Fabrication 

Fabrication methods for the cathode and anode are provided as below: 

4.3.1 Cathode  

Prussian blue (P.B.) was used as the cathode material. For its fabrication, 3 mmol of 

Na4Fe(CN)6.10H2O was dissolved in 40 ml of 0.1 M HCl. This solution was vigorously 

stirred at 500 rpm for 5 min. Once this was done, the resulting solution was dried at 

80 °C in air for 20 hours. This resulted in sodium rich Prussian blue which was used as 

the cathode.  
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4.3.2 Anode 

Four different types of CuO anodes are used in this project, with variations in their 

microstructure. The techniques used to fabricate these are described in detail below in the 

following sections: 

(i) CuO as obtained (CuO_as ob.) – This is the most basic type of the anode used. 

Basically, this is used in the same form as obtained from Sigma Aldrich.  

(ii) CuO ribbons (CuO_ribbons) – The CuO ribbons are prepared by a solution based wet 

chemistry technique. 4 mmol of CuCl2.2H2O is mixed with 0.71 mmol of citric acid and 

60 ml of deionized (D.I.) water is added to prepare a solution with stirring. Subsequently, 

100 mmol of NaOH is added to the previously formed solution and a blue precipitate of 

Cu(OH)2 is immediately formed. This solution is stirred for about 10 – 15 minutes, and 

the precipitate is retrieved after several rounds of thorough centrifugation with ethanol 

and D.I. water. The precipitate was dried on a hot plate and finally heated at 400 °C in a 

muffle furnace to obtain the CuO ribbons. This technique has been used by Wang et al. to 

develop CuO nanowires116.  

(iii) CuO spherical platelets (CuO_platelets) - A similar solution based wet chemistry 

technique was used to fabricate the spherical platelets. The precursors used in this case 

were CuSO4.5H2O, KOH and commercial NH3. Appropriate amounts of 0.4 M 

CuSO4.5H2O solution was mixed with 0.48 M KOH solution followed by the addition of 

0.9 ml of NH3 and 15 ml of D.I. water under stirring to form a uniform dark bluish 

solution. Once this dark blue solution was obtained, it was kept in a water bath and 

incubated at about 68 °C for about 45 minutes. Finally the dark greyish black precipitates 

were centrifuged with ethanol and water and dried on a hot plate at 50 °C overnight 

before use. Qin et al. have used this technique to fabricate porous CuO hollow spheres119. 
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(iv) CuO spheres (CuO_spheres) – Spheres were prepared by a process originally used by 

Wang et al. for fabricating controlled CuO spheres for organic Li-ion batteries107. In this 

case, the precursor materials were Cu(NO3)2 and anhydrous sodium carbonate, 2.42 g and 

1.06 g respectively of which were mixed in 50 ml of D.I. water under stirring. After this, 

this solution was incubated in a water bath at 70 °C for 2 hours and then the bluish green 

precipitates were retrieved by thorough centrifugation and filtration. They were dried 

overnight and finally calcined at 400 °C for 2 hours in a muffle furnace to obtain the CuO 

spheres.  

4.4. Structural characterization 

Structural characterization results and analysis of the cathode and anode are discussed in 

greater detail in the following sections. 

4.4.1 Cathode 

(i) XRD 

Figure 17(a), demonstrates XRD data of the P.B. sample. The prominent peaks labeled 

here are the (220), (400), (420), (511) and (440) peaks, respectively, and all peaks can be 

matched and indexed from the standard ICDD database (01 – 073 – 0687). The absence 

of any impurity peaks indicates the phase purity of the sample.  

(ii) Raman spectra 

The characteristic Raman spectrum is demonstrated in figure 17(b). Once again, there are 

no impurity peaks and two of the important peaks have been labeled at 2151.69 cm-1 and 

287.12 cm-1.          
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(iii) SEM imaging 

Figure 17(c) shows the SEM images of the Prussian blue cathode taken at a resolution of 

2 μm.  As evidently noticeable, the P.B. samples exhibit a highly cubic external 

morphology. These well defined cubes are prevalent throughout the sample and the 

results match very well with published literature120. 

(iv) Particle size analysis 

Figure 17(d) shows the particle size for the P.B. based cathode system. As can be seen 

from the graph, the particles are in the range of 350 nm to 550 nm. The average effective 

size of the particles is approximately 450 nm. 
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Figure 17. (a) XRD spectra of P.B. sample (b) Characteristic Raman spectra of the P.B. 

sample (c) SEM images showing the characteristics P.B. cubes (d) particle size 

distribution of the P.B. samples. 

4.4.2 Anode 

Structural characterization of the various CuO samples are performed and illustrated as 

below. 

(i) XRD spectra  

The XRD of the different CuO morphologies is as provided in the figure below: 
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Figure 18. (a) Represents the full spectrum XRD data with the important peaks labeled 

and impurity peaks starred and (b) is the (002) peak in greater detail. 

 

Figure 18(a) demonstrates the full XRD spectra of the different CuO morphologies. The 

important peaks i.e. the (110), (002), (200) and the (-202) peaks have been labeled 

indexed from the ICDD database (00-002-1041). As can be seen the three different 

morphologies essentially maintain the same general peak positions as the as obtained 

sample. The star marked peaks indicate the remnants of small amounts of Cu(OH)2 

impurities (00-003-0310). Figure 18(b) is an exaggerated illustration of the (002) peak in 

greater detail. Some degree of peak broadening and loss of intensity is noticed indicating 

small amounts of crystallite size variation and loss of crystallinity; however no noticeable 

peak shift suggests consistent lattice parameters with the literature. Therefore they all 

exhibit a monoclinic structure with lattice parameters approximately being a = 4.65 Å, b 

= 3.41 Å and c = 5.11 Å with space group being A2/a (00-002-1041). 
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(ii) SEM imaging 

SEM imaging was performed with a TESCAN SEM. The images of the four different 

CuO samples taken at resolutions of 5 μm are shown in the figure below. 

 

Figure 19. (a) CuO as obtained sample (b) CuO ribbons (c) CuO platelets and (d) CuO 

spheres. 

 



47 
 

Figure 19(a) demonstrates the CuO_as obtained samples. As can be seen, they are rather 

large sized with random shapes and exhibit no particular morphology. Figure 19(b) are 

the images of the ribbon sample and they demonstrate short elongated band like one 

dimensional morphology, hence the name. Figure 19(c) demonstrates the spherical 

platelets (or simply platelets). These samples exhibit small plate like protrusions closely 

bundled together. Overall the plates grouped together roughly resemble a sphere if joined 

together, but since the Ostwald ripening process was done for a short period of time, the 

plates remained as is and is as seen in the figure. The CuO spheres are seen in figure 19(d) 

and demonstrate a well-rounded microstructure. Also the figure indicates a large number 

of these spheres are closely packed together.  

(iii) Particle properties  

Particle properties can be distinguished into particle size and porosity analysis. They are 

explained in detail as follows: 

 

Figure 20. (a) Trend of BET (in black, left y-axis) and particle size (in blue, right y-axis) 

for the different CuO samples. (b) Representative BET adsorption-desorption curve of the 

CuO_platelets sample. 
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Porosity analysis was performed by the BET technique using liquid N2 gas for studying 

the adsorption and desorption properties. The surface area values for each of the samples 

are shown in figure 20(a) in with black trend lines and are on the left y-axis. The as 

obtained CuO samples show relatively less surface area (1.8537 m2g-1). The ribbons show 

a significantly higher surface area of 6.93 m2g-1, indicating a considerable increase in 

porosity. The platelets demonstrate a slightly higher surface area of 7.81 m2g-1 

demonstrating a likewise incremental porosity increase than the platelet sample. The 

spheres exhibit a considerably elevated surface area of 14.89 m2g-1 which indicates that 

the fabrication technique has been able to form significant porosity in the sample. These 

results indicate how different precursor materials, during the fabrication technique, lead 

to formation of morphologies with varying surface areas and consequently varying 

degrees of porosity. Also seen in the figure in the y-axis to the right (in blue trend lines 

and axes) are the average particle sizes. It shows a corresponding reduction in particle 

size with increasing surface area. The as obtained samples have relatively large sizes (≈ 

2740 nm) whereas the spheres demonstrate relatively smaller sizes of approximately 

775 nm. Therefore, it is observed that the overall surface area increases by a factor of 

8.03 from as obtained to spheres. Concurrently, the average particle size drops by a factor 

of 3.53 from the as obtained to the spherical samples. These results match well with the 

images seen in the SEM. Figure 20(b) is the BET adsorption-desorption curve for the 

CuO_platelets sample, provided as a sample representative.  

4.5 Cell assembly 

The electrodes (both the P.B. cathode and the various CuO anodes) are prepared by 

suspending them in isopropanol and stirring to prepare a uniform solution, followed by 
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drop casting on a carbon paper substrate. A Whitman glass fiber separator is used and the 

electrolyte used is 2 M Na2SO4. CR 2032 coin cells are used for the purpose of 

electrochemical measurements. Current rates used are usually 1 C unless otherwise 

mentioned and the voltage window for galvanostatic charging and discharging is 0 V – 

1.6 V. The cell voltages mentioned for the cycling are with respect to the full cell. 

4.6 Electrochemical analysis 

The results of the electrochemical analysis are as discussed below.  

4.6.1 Cell cycling and stability 

The first cycle discharge capacities and the stability plots are provided in the figure below. 

 

Figure 21. (a) Illustrates the first cycle discharge capacities of the different CuO 

microstructures and (b) represents the stability plots of the four different CuO anodes. 

 

First cycle charge and discharge curves (in dashed and solid lines respectively) of the 

CuO platelets and as obtained samples are seen in figure 21(a). Predictably, the platelet 

sample provides a higher initial discharge capacity of 72.55 mAh g-1 than the as obtained 

samples which provide 65.20 mAh g-1. The results are in accordance with surface area of 
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the samples indicating a higher surface area has a direct role in providing higher initial 

capacities. Larger surface area increases the number of reaction sites available, thereby 

improving kinetics and the initial discharge capacities obtained. From the figure, the 

majority of the capacity is obtained in the region around 0.4 V – 0 V, which has been 

reported by other groups as well117.  

From the stability plots in figure 21(b), it is seen that the spheres provide higher starting 

discharge capacity (78.61 mAh g-1) than the platelets, which again, is in the order of their 

surface areas. It is also observed that there is an increase in initial discharge capacity of 

about 20.56 % which corresponds to the ≈ 8 times enhancement in surface area. Also it 

can be seen that the platelets have the best retention performance as it suffers from 

practically no specific capacity loss. This is a testimony to the physical toughness of the 

platelet structures as they are able to withstand the rigors of the cycling process without 

presumably undergoing much loss in their structure or morphology. The spheres provide 

higher starting capacity as pointed out in the earlier section, however they suffer slightly 

more capacity fading ( ≈ 5.31 %) than the platelets. Therefore the higher surface area of 

the spheres tends to help in providing more specific capacity, and the spheres too 

demonstrate reasonable resistance to degradation. The ribbons start off with comparable 

discharge capacities (70.61 mAh g-1) as the platelets; however they undergo steadier 

capacity loss and lose about 12.60 % after 100 cycles. The presence of impurities in the 

ribbon samples render them slightly weaker in terms of stability and this is manifested in 

is stability performance. The as obtained CuO sample loses about 17.08 % of its starting 

capacity during the cycling process. Therefore it is observed that the variation in 



51 
 

morphology plays an important role in determining the stability as well as delivering 

optimum discharge capacity.  

4.6.2 C rate analysis 

C rate analysis essentially studies the capacity performance of the cell to varying rates of 

discharge. It provides important information about how the cell performs at fast as well 

as slow discharge rates and if they are reversible, especially at high rates. C rate analysis 

was performed to further study the kinetics of the various CuO morphologies. The results 

are as plotted in the figure below. 

 

Figure 22. C rate analysis of the various CuO samples.  

 

C rate results indicate a similar trend as seen in the stability results. The CuO_sphere 

samples maintain their rate superiority for slower C rates viz. for 0.5 C and 1 C. At about 

2 C discharge rates, even though the starting discharge capacity is higher, there is very 



52 
 

little to distinguish to CuO_spheres and the CuO_platelets sample. It can be seen that at 

considerably higher C rates i.e. 5 C it is the CuO_platelets sample that perform better, 

especially in terms of stability. Therefore it can be concluded that even though the CuO 

spheres sample have larger surface area and superior kinetics especially at lower C rates, 

at higher C rates it is the CuO_platelets sample that performs better. Its toughness and 

resistance to degradation confers it this ability, whereas very high kinetics can be one 

reason why the CuO_spheres sample degrades faster as it undergoes very vigorous 

reactions on its surface. The CuO_ribbons and the as obtained sample consistently 

perform worse than the other two samples, which is also consistent with results in figure 

13(b). 

4.6.3 Impedance spectra 

Impedance spectra analysis was performed as one of the techniques to probe the kinetics 

of the system. The results are as provided below. 

 

Figure 23. (a) Impedance spectra of CuO_as obtained samples for the pristine, 50th and 

100th cycle of operation (b) Impedance spectra of the CuO_spheres for the pristine, 50th 

and 100th cycles. 



53 
 

The impedance spectra analysis of the CuO_as ob. and the CuO_spheres are shown in 

figure 15. The impedance spectra have been recorded for the pristine cell, after 50 cycles 

of operation and after the completion of the 100th cycle respectively. Significant 

observations can be drawn from figures (a) and (b). It is noticed that the characteristic 

impedance spectra can be resolved into two distinct regions; an inverted semicircular 

region and a linear region. It is this inverted semicircular region that corresponds to 

charge transfer across the electrode-electrolyte interface, which is a direct measure of the 

electrochemical kinetics. As can be seen from the figure, the radius of the semicircles 

increase in a much more exaggerated manner for the CuO_as obtained sample than the 

CuO_spheres. This indicates a much lower electrochemical impedance value for the 

CuO_spheres at each stage of cycling with respect to the as obtained sample. Therefore, 

this can be correlated to the larger surface area of the CuO_spheres sample which in turn 

provides for its superior electrochemical kinetic behavior.  

The impedance spectra comparison of the pristine and post cycled cells of the sphere and 

platelet samples is shown in the figure below. 
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Figure 24. Comparative impedance spectra of pristine and post cycled CuO_spheres and 

CuO_platelets. 

 

From this figure it is seen that the interfacial impedances of the platelet samples under 

both conditions (pristine and post cycled) are lower than those of the spherical samples. It 

can be inferred from here that the sphere samples lose their electrochemical activity in 

this high frequency region (which can be considered to be a close approximation of the 

high C rate regime) at a faster rate than the platelet samples, which consequently 

contribute to their poor performance at high discharge rates.  

4.6.4 Post cycled XRD analysis of mechanism of electrode degradation 

Post cycled XRD was performed to study the degradation of the electrode materials, 

especially to study the comparison between the sphere and the platelet samples. The post 

cycled XRD results (with normalized peak intensities) for the pristine and post cycled 
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platelets and sphere samples are shown in the figure below. The results have been taken 

when the cells have been cycled at 5 C rate. 

 

Figure 25. Comparative post cycled XRD graphs of (a) platelet and (b) spherical samples. 

 

It is observed from figures (a) and (b) that there is considerable peak shift and broadening 

in the case of the spherical sample than the platelet sample, between the 5th and 15th 

cycles. This indicates a greater degree of loss of crystallinity and structural degradation of 

the spherical samples than the platelets. As a result, the platelet sample is able to retain its 

structure better than the spherical sample which explains its improved capacity retention, 

especially at higher discharge rates. High surface area indicating higher porosity can be 

attributed to the relative structural weakness of the spherical samples.  
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4.7 Conclusion 

An analysis has been performed in this project to study the effect of morphology on 

electrochemical kinetics. Results indicate the surface area plays a direct role in 

determining the kinetics at both low and high C rates. An almost two-fold enhancement 

in surface area (spheres over platelets) does provide a higher initial capacity, especially at 

low rates (0.5 C, 1 C), however the effect of this enhancement in surface area is not 

realized at higher C rates where its stability is markedly poor. Therefore, an important 

outcome of this project is that the morphology with the best performing kinetics doesn’t 

not necessarily provide the best stability. As has been demonstrated in the previous 

sections, the CuO_spheres samples perform better when it comes to kinetics and initial 

discharge capacity, but it is the platelet sample which suffers almost no appreciable 

capacity loss. Thus it can be concluded that the development of an optimal microstructure 

is an interplay between several important parameters and a particular morphology should 

be chosen to fit the particular application in question. 
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CHAPTER 5 

THE Fe2O3 - PRUSSIAN BLUE SYSTEM  

5.1. Background of Fe2O3 anodes 

There has been considerable interest recently in the use of iron oxide, especially hematite 

(α-Fe2O3), for a variety of materials science applications. The relative abundance (Fe 

being the fourth most abundant element in the earth’s crust) of iron makes it relatively 

inexpensive to mine and use121. Hematite crystallizes in the rhombohedral corundum 

structure and has found applications as magnetic materials, gas sensors, field emitters and 

as anodes in Li-ion and Na-ion batteries122-125.  

In electrochemistry, α-Fe2O3 has been mostly studied as an anode in Li-ion batteries. 

Pioneering work to understand the functioning of α-Fe2O3 anodes was done by Larcher et 

al. who have conclusively proven that fine nanosized particles behaved distinctly 

different from their micron sized counterparts and this affected the structural stability as 

well as the kinetics126. Different Fe2O3 morphologies have also been tried in Li-ion 

battery applications, especially in organic environments. α-Fe2O3 nanorods as anodes in 

Li-ion batteries has been studied by Li et al127. They used a hydrothermal technique to 

fabricate the hematite particles and a maximum discharge capacity of 908 mAh g-1 was 

reported at a 0.2 C discharge rate127. Hollow spheres of Fe2O3 coupled with polyaniline 

(Fe2O3@polyaniline) were fabricated by Jeong and coworkers for applications as anodes 

in Li-ion batteries128. The fabrication followed a 2-step process involving sonication and 

polymerization of the precursors. A maximum discharge capacity of 950 mAh g-1 was 
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obtained at 0.2 C rate with good capacity retention128. A novel composite of bubbles and 

nanorods were fabricated by Cho et al as anodes in Li-ion batteries129. The structure was 

basically an agglomeration of Fe2O3 spheres in a fibrous C matrix. Stable capacities of 

812 mAh g-1 after 300 cycles with capacity retentions of 84 % from the second cycle 

were obtained129. Fe2O3 has also been used a composite anode, coupled with Co3O4 by 

Wu et al. The composite anodes have been prepared by a simple hydrothermal process 130. 

The overall nanowire morphology was used to enhance the reaction surface area and 

improve kinetics. Initial discharge capacities as high as approximately 1600 mAh g-1 

were obtained with this novel morphology130. Composite anodes consisting of Fe2O3 

nanodisks coupled with reduced graphene oxide layers were fabricated by a hydrothermal 

technique by Qu et al as anodes in Li-ion battery applications. These composite 

electrodes provided very good capacity retention and provide a capacity of 931 mAh g-1 

even after 50 cycles of operation. The authors attribute the significantly enhanced 

performance of the composite anode to nature of the composite anode, arguing that 

reduced graphene oxide has improved electrical conductivity as well as prevented the 

large volume expansion that usually occurs in the Fe2O3 system with intercalation. Fe2O3 

thin films have been studied by Jiang et al89. They have demonstrated a specific capacity 

of 385 mAh g-1 after 200 cycles, retention in this case was 73 % 89. A sol-gel technique to 

fabricate Fe2O3 thin films were further studied by Brezesinski et al. The thin films 

provided high porosities and surface areas (190 m2cm-3) up to 600 ⁰C. A maximum first 

cycle discharge capacity of 185 mAh g-1 were obtained at 1 C discharge capacities with 

an intercalation voltage plateau at 1.8 V. Jian et al. used Fe2O3 nanocrystals anchored on 
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graphene nanosheets as anode materials and have obtained specific capacities as high as 

400 mAh g-1 and no fading over 200 cycles of operation131. 

α-Fe2O3 nanoplatelets and nanoneedles have been studied as anodes in aqueous media 

and they have provided significantly high maximum discharge capacities of 330 mAh g-1 

and 468 mAh g-1 respectively. The authors have pointed out that the discharge capacities 

are based on their high surface areas and hydrolysis was the mainly responsible for 

capacity fading132. Zhang et al. has studied α-Fe2O3/graphene nanocomposites, fabricated 

by solvothermal technique as aqueous supercapacitor anodes and very high capacitances 

of about 615 F g-1 at current densities of 100 mA g-1 have been obtained133. The high 

capacitances have been attributed to their large surface areas (215.3 m2g-1)133. 

However, drawbacks of Fe2O3 are several; structural degradation due to significant 

volume change and consequent low capacity retention especially for Na-ion batteries, 

poor kinetics and insufficient electrical conductivity. Also an exhaustive study of Fe2O3 

anode systems for in aqueous environment is sparse91. Consequently, it is imperative that 

detailed analysis of the hematite system be performed so as to understand its reaction 

mechanism and improve its performance as an aqueous Na-ion battery anode.  

5.2. Project rationale and outline 

It is to be kept in mind that structural stability of the anode is just as important as 

enhanced electrochemical kinetics for the smooth performance of the cell. Improved 

structural stability is essential in providing longevity which is imperative. This project 

focuses on analyzing the effect of modifying the crystal structure of α-Fe2O3 (named 

Fe2O3 from here on) and understanding the structure-property relationship and the effect 

it has on electrochemical performance overall. Modification of the crystal structure can 



60 
 

be achieved by several techniques, the method used here is to dope the hematite structure 

with a different metal atoms. Analysis of improvement of structural stability and of the 

Fe2O3 crystal structure due to doping of foreign atoms will be the central scope of this 

research.  

The Fe2O3 crystal is doped with two different types of atoms in this case: the large sized 

transition metal ion Zn2+ and the smaller sized isovalent Al3+. Progressively increasing 

doping concentrations are used corresponding to the empirical formula Fe2-xZnxO3 and 

Fe2-xAlxO3 (x = 0.02, 0.04, 0.08 and 0.12). Detailed structural and electrochemical 

characterization is then performed to study the effect of the doping on the structural 

characteristics of the modified Fe2O3 and its cycling performance and durability.  

5.3 Anode fabrication 

The two sets of Fe2O3 based anodes; Fe2-xZnxO3 and Fe2-xAlxO3 are both prepared by 

solid state reactions from their precursors. For the Zn doped sample, the precursor used 

was ZnO whereas for the Al doped sample, aluminum acetate (and also aluminum nitrate 

for comparison) was used. Stoichiometric quantities of the precursors and Fe2O3 were 

thoroughly ground together and then heated in a muffle furnace at 800 °C for 8 hours in a 

muffle furnace.  

5.4 Structural characterization 

Complete structural analysis results of the two different anode systems are provided 

below. 
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5.4.1 XRD spectra analysis 

XRD spectra analysis of the Fe2-xZnxO3 and the Fe2-xAlxO3 samples were done by the 

Bruker D8™ diffractometer. The spectral stack of the Fe2-xZnxO3 samples are provided in 

figure 26.  

 

 

Figure 26. XRD spectra stack of pure Fe2O3 along with all the Zn doped samples. (a) 

demonstrates the entire spectra and (b) a more detailed look at the (024) peak. 

 

In figure 26(a), the XRD spectra at the base of the stack is of the as obtained Fe2O3 

sample and the ones on the top are the samples with progressively more Zn doped as 

labeled. Some important representative peaks viz. (012), (104), (113) and the (024) peaks 

have been labeled from the ICDD database (01-0076-4579 and 00-003-0800). The peaks 

match well with the database and also the existing literature134. However, increasing Zn 

content in the as-obtained Fe2O3 samples also indicate the gradual appearance of other 

peaks (marked with red dots) which have been indexed to the spinel cubic ZnFe2O4 phase 

(PDF cards 00-001-1108 and 00-022-1012). The amount of the spinel phase gradually 
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increase with increasing Zn content as is noticed in the greater number of ZnFe2O4 peaks 

in the Fe1.88Zn0.12O3 sample than the Fe1.98Zn0.02O3 sample. However, no other impurity 

peaks, such as ZnO are noticed in the XRD spectra. A similar result has been reported by 

Nikolic et al135. 

Figure 26 (b) demonstrates the (024) peak in greater detail. As can be observed from the 

figure, there is a slight leftward shift in the peak from 49.52 degrees in the pure Fe2O3 

sample (in red at the bottom) to 49.48 degrees for the Fe1.88Zn0.12O3 sample (in blue at the 

top) indicating accommodating the Zn2+ ion causes a lattice expansion, albeit slightly. 

Table 2 below gives an indication of the lattice structure variation (increase) with 

progressive Zn2+ doping.  

 

Table 2 

Comparison of lattice parameters and volumes of the Fe2-xZnxO3 systems  

 

Sample 

 

Parent Fe2O3 

structure 

 
 
 

Lattice 
volume  

(Å3) 

 

ZnFe2O4 lattice 
parameter 

(a=b=c) 
(Å) 

 a (Å) c (Å)   

Fe2O3 5.0249 13.7211 300.02  

Fe1.98Zn0.02O3 5.0281 13.7023 299.99  

Fe1.96Zn0.04O3 5.0281 13.7194 300.37  

Fe1.92Zn0.08O3 5.0299 13.7257 300.71  

Fe1.88Zn0.12O3 5.0327 13.7334 301.22 8.4290 
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As noted, the increase in lattice parameters are very small (0.15 % for ‘a’ dimension and 

0.08 % in ‘c’ dimension and a  ̴ 0.4% lattice volume increase) and therefore it can be 

argued that there is relatively low lattice strain in accommodating the Zn2+ ion in the 

Fe2O3 lattice. Also these results match up well with existing ICDD database values (PDF 

cards 00-006-0502 and 00-001-1108). It can be subsequently inferred that these results 

indicate that the doping of Zn has a two-fold effect on the hematite structure; reasonably 

good incorporation in to the rhombohedral Fe2O3 crystal lattice as well as the formation 

of a distinct new phase i.e. the spinel cubic ZnFe2O4. 

XRD spectra stack of the Fe2-xAlxO3 samples are provided in figure 27 below. The color 

coding used here is similar to the Zn doped samples for similar dopant concentrations. 

 

Figure 27. XRD spectra stack of pure Fe2O3 along with all the Al doped samples. (a) 

demonstrates the entire spectra and (b) a more detailed look at the (024) peak. 

 

The XRD spectra, shown in figure 27(a) demonstrates that the overall peak positions are 

maintained for the Fe2O3 sample with doping indicating incorporation of Al3+ ions in the 
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hematite lattice. However, certain other distinctly important observations can be drawn. 

Firstly, as can be seen from the peaks marked with a red star, there is the increasing 

appearance of Al2O3 peaks with increasing Al3+ doping. The Al2O3 peaks have been 

indexed from the ICDD database (PDF card 00-013-0915). Unlike in the Zn doped case 

previously, no spinel formation is noticed here. Figure 27(b) indicates the (024) peak in 

greater detail. It is noticed that there is a noticeable peak shift towards higher angles 

indicating a contraction in the hematite lattice due to incorporation of the comparatively 

smaller Al3+ ion in the hematite structure. A similar reduction in lattice parameter due to 

Al ion incorporation has been reported by Kleiman-Shwarsctein and Schwertmann136,137. 

Also, as can be seen from the figure, the peaks undergo some broadening and reduction 

in intensity, indicating loss of crystallinity and increasing lattice stress with progressive 

Al incorporation, which can be due to shorter Al-O bond lengths (≈ 1.97 Å) than the 

normal Fe-O bond lengths (≈ 2.09 Å). Lattice parameter variation of the Fe2-xAlxO3 

samples are provided in the table below. 
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Table 3 

Comparison of lattice parameters of the Fe2-xAlxO3 systems.  

 

Sample 

 

Parent Fe2O3 structure 
 

 a (Å) c (Å) 
 

Volume 
(Å3) 

Fe2O3 5.0249 13.7211 300.02 

Fe1.98Al0.02O3 5.0281 13.7287 300.57 

Fe1.96Al0.04O3 5.0191 13.6920 298.70 

Fe1.92Al0.08O3 5.0191 13.7044 298.97 

Fe1.88Al0.12O3 5.0136 13.6882 297.96 

 

The table indicates a net reduction in the ‘a’ and ‘c’ parameters by 0.22 % and 0.23 % 

respectively and a net lattice volume decrease by  ̴ 0.68 %. Consequently, as discussed 

above, the net effect of the isovalent Al3+ ion doping in the Fe2O3 lattice is to produce a 

small lattice volume shrinkage, induce stress and crystallinity loss and formation of 

impurity Al2O3 phase. 

5.4.2 XPS analysis 

XPS analysis was performed to further confirm the chemical signature of pure as well as 

the Zn and Al doped hematite samples (Fe1.92Zn0.08O3 and Fe1.92Al0.08O3 are chosen as 

representatives in each case). The full spectra XPS analysis of the three samples is 

provided in the figure 28. 
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Figure 28. “Full survey” XPS spectra of the Fe2O3 (in green), Fe1.92Al0.08O3 (in blue) and 

Fe1.92Zn0.08O3 (in red). 

 

The XPS spectra of the doped samples also match overall with the pure Fe2O3 samples. 

From this “full survey spectra”, the O1s, Fe2p1/2 and Fe2p3/2, Zn2p3/2 and Zn2p1/2 and Al 2s 

peaks can be noticed as labeled. For greater clarity, the individual peaks have been 

isolated and provided in the figure below for greater clarity. 
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Figure 29. (a), (b), (c) and (d) represent the individual XPS peaks demonstrating the Zn, 

O, Fe and Al characteristic signatures. 

 

From figure 29(a), for the Zn doped sample, the Zn2p3/2 and Zn2p1/2 peaks are noticed at 

1029.6 eV and 1052.8 eV. These Zn peaks correspond well with the bonding states for 

Zn2+ in the ZnFe2O4 spinel. Similarly in the Al doped sample in figure 19(b), the 

presence of the Al2s peak at 128.4 eV corresponds to the state of the Al3+ ion in Al2O3. 

Apart from this, the characteristic O1s peak is found at 535.2 eV and the Fe2p1/2 and 



68 
 

Fe2p3/2 peaks are located at 731.2 eV and 718 eV as seen in figures 19(c) and 19(d). All 

these results match up well with the existing literature138,139. Therefore the XPS results 

provide information regarding the bonding states of the various atoms and also serve to 

conclusively confirm the findings of the XRD.  

5.4.3 Raman spectra analysis 

Raman spectroscopy was performed by an InVia Renishaw Raman microscope using a 

red HeNe laser of wavelength 632.8 nm. The Raman spectra data for the Fe2-xZnxO3 and 

the Fe2-xAlxO3 systems are given below in figures 30(a) and (b). 

 

Figure 30. Raman spectra stack of pure Fe2O3 along with all the Zn and Al doped 

samples. (a) demonstrates the Raman spectra of F2-xZnxO3 samples and (b) Raman 

spectra of the Fe2-xAlxO3 samples. 

 

The Raman spectra peaks of the Fe2O3 correspond to characteristic phonon mode 

vibrations. The prominent Raman shift peaks labeled i.e. 293.08 cm-1, 412.00 cm-1 and 

the 614.59 cm-1 in both figures correspond to the Eg(2), Eg(4) and A1g phonon vibration 
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modes respectively140. It is also seen that some peak broadening and shift does take place, 

indicating lattice stress due to accommodating the dopant atoms. These effects are more 

pronounced in the case of the Al doped samples than the Zn doped ones corroborating to 

the evidence already obtained from the XRD data. 

5.4.4 SEM imaging 

SEM imaging of the pure, Zn doped and Al doped samples was performed by a 

TESCAN™ SEM. The SEM images of the pure Fe2O3 samples are provided in figure 31 

below. 

 

Figure 31. SEM images of the pure Fe2O3 sample at (a) 5 μm and (b) 2μm resolution. 

 

The images show the non-doped Fe2O3 particles exist as rather large sized chunks 

superficially. On closer inspection (at 2 μm), it is seen that these clumps are actually 

made up of much smaller sized particles. The particles represent a beadlike 

microstructure and particle sizes seem to be well below 1 μm.  



70 
 

SEM images of the Fe1.98Zn0.02O3, Fe1.96Zn0.04O3, Fe1.92Zn0.08O3, Fe1.88Zn0.12O3 samples 

are shown below in the figures 32(a) – (d) respectively.  

 

Figure 32. SEM images of (a) Fe1.98Zn0.02O3 (b) Fe1.96Zn0.04O3 (c) Fe1.92Zn0.08O3 and (d) 

Fe1.88Zn0.12O3 samples. 

 

The images indicate that the same bead like morphology has been maintained and exists 

uniformly throughout the microstructure. However, as it is apparent, there is an increase 
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in the size of the particles. This size increase can be attributed to the sintering/solid state 

reaction process.  

Likewise, SEM images of the Fe1.98Zn0.02O3, Fe1.96Al0.04O3, Fe1.92Al0.08O3, Fe1.88Al0.12O3 

samples are provided in figure 33. 

 

Figure 33. SEM images of (a) Fe1.98Al0.02O3 (b) Fe1.96Al0.04O3 (c) Fe1.92Al0.08O3 and (d) 

Fe1.88Al0.12O3 samples. 

 

SEM images in this case also demonstrate the usual bead like microstructure of the Al 

doped Fe2O3 particles. Like the Zn doped case, there is similar size increase of the bead 
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like morphology, again which can be attributed to the sintering process. However, also 

clearly discernible, are rather large sized irregular particles. These particles can be 

considered to be the Al2O3 particles, which have been characterized in the XRD spectra 

as well. Therefore the SEM images provide important information related to the 

similarity and distinct differences between the Zn and Al doped particles. 

5.4.5 Particle size and BET analysis  

Particle size and BET surface area analysis results are as provided in the figure below. 

 

Figure 34. (a) BET surface area trends of the Zn and Al doped samples. (b) Average 

particle size trends of the Zn and Al doped samples. 

 

As can be seen from the figure 34(a), the BET results show that the Zn doped samples 

exhibit higher surface area than the Al doped sample, but only slightly. This discrepancy 

may be due to the large sized Al2O3 particles which lower the overall surface area for the 

Al doped samples.  

Particle size results indicate that the Fe2-xAlxO3 samples exhibit far larger average particle 

size than their Zn doped counterparts. These results seem to be in good agreement with 
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the SEM images. Presence of the large sized Al2O3 particles seem to skew the particle 

size higher for the Al doped samples.  

5.5. Cell assembly 

Both the anode systems (Zn and Al doped) as well as the pure Fe2O3 are suspended in 

isopropanol and then drop casted on a carbon paper substrate. A Whitman glass fiber 

separator is used and the electrolyte used is 2 M Na2SO4. CR 2032 coin cells are used for 

the purpose of electrochemical measurements. Current rates used are usually 1 C unless 

otherwise mentioned and the voltage window for charging and discharging is 0 V – 2 V 

and the voltages are for the full cell. 

5.6. Electrochemical analysis 

5.6.1 Cell cycling and stability 

First discharge cycles for the Fe2O3 and two representative Zn doped (Fe1.96Zn0.04O3 and 

Fe1.88Zn0.04O3) samples and the stability graphs of the pure as well as all the Zn doped 

samples are provided in the figure below. 
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Figure 35. (a) Representation of the first cycle discharge curves for the Fe2O3 (in red), 

Fe1.96Zn0.04O3 (in orange), Fe1.88Zn0.12O3 (in blue) and (b) are the specific capacity 

retention plots of all the Zn doped samples. 

 

As can be seen from figure 35(a), the discharge curves follow a similar trajectory. The 

maximum first cycle discharge capacity is provided by the Fe1.88Zn0.12O3 sample, which 

is 94.41 mAh g-1 and it shows a significant improvement (41.29 %) from the non-

doped/pure Fe2O3 sample which demonstrates a maximum first cycle specific discharge 

capacity of 66.82 mAh g-1. Also the 12 % Zn doped sample exhibits a noticeable plateau 

region especially at low voltages of ≈ 0.25 V, which is practically non-existent in the 

non-doped sample indicating the non-doped sample acts basically as a supercapacitor. 

The first cycle specific discharge capacity values also as seen from the cycling stability 

graphs indicate a steady increase with progressive Zn doping. The stability graphs, as 

plotted in figure 35(b) tell a similar story. An increase in discharge capacities along with 

a similar incremental and progressive increase in the capacity retention is noticed as well. 

Pure Fe2O3 demonstrates capacity retention of about 60.33 %, that of the Fe1.96Zn0.04O3 is 
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76.35 % and finally the Fe1.88Zn0.12O3 sample has specific capacity retention as high as 

93.81 %. It can be inferred that the addition of Zn has had a positive influence on the 

Fe2O3 structure, as it has helped to improve starting capacities as well as enhance 

capacity retention. Presence of ZnFe2O4, can also be considered to be beneficial as it has 

a high theoretical capacity and the system can be thought to behave as a “composite 

anode” where both improve the net result in conjunction.  

Similarly the first cycle discharge curves for the pure Fe2O3 sample along with two 

corresponding representative Al doped samples (Fe1.96Al0.04O3 and Fe1.88Al0.12O3), have 

been provided in figure 36 below. 

 

Figure 36. (a) Representation of the first cycle discharge curves for the Fe2O3 (in red), 

Fe1.96Al0.04O3 (in orange), Fe1.88Al0.12O3 (in blue) samples and (b) are the specific 

capacity retention plots of all the Al doped samples. 

 

Here too, it is observed that the discharge curves have a similar trajectory to that of the 

Zn doped sample, even though the discharge plateaus are not as sharp. There is a small 

increase in first cycle discharge capacities (an 11 % increase from pure Fe2O3 to 
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Fe1.88Al0.12O3). The capacity retention plots also demonstrate slightly improved values 

from the pure Fe2O3 sample (71.26 % retention for the Fe1.98Al0.02O3 sample), indicating 

the positive effect of Al3+ is significantly less than the Zn2+ addition. However, the 

Fe1.88Al0.12O3 sample actually suffers a rather drastic capacity drop, and is only able to 

retain 47.91 % of its initial discharge capacity. Therefore, the advantages derived by 

doping the Fe2O3 structure with Al3+ ions (a small improvement in initial capacities) is 

rapidly overshadowed (noticed as steep drops in capacity retention with increasing Al 

doping) due to formation of Al2O3 impurities and an already stressed lattice, both of 

which serve to rather weaken the parent hematite structure. 

5.6.2. Capacity loss analysis 

The analysis of the capacity loss and electrode degradation is performed analytically to 

understand the mechanism of electrode degradation as well as the stages of the reaction at 

which they take place. The results for these analysis are shown in the figure 37 below. 

 

Figure 37. Indicating the capacity loss trend in greater detail for the (a) non-doped and 

the 8 % and 12 % Al doped samples respectively and (b) for the non-doped and the 8 % 

and 12 % doped Zn samples respectively. 
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Figure 37(a) indicates the capacity degradation of the Al doped systems considering the 

8 % and 12 % doped systems (in blue sphere and triangle respectively) with the non-

doped hematite (in green). The non-doped sample undergoes an initial capacity drop 

(18.16 % in the first 10 cycles) due to significant degradation of the Fe2O3 crystal lattice 

initially. It then drops further by 26.28 % over the next 90 (final drop) cycles. The 8 % Al 

doped sample shows a small improvement in retention properties (initial drop of 13. 44 % 

followed by a final drop of 12.82 %). However, on addition of further Al3+ i.e. for the 12 % 

Al doped system, it is seen that the initial capacity drop (in the first 10 cycles) is 

relatively large, especially (24.87 % drop) followed by another 36.22 % drop over the 

next 90 cycles. This indicates addition of large quantities of Al3+ ions (12 %) is actually 

detrimental to the Fe2O3 lattice. On the other hand, for the 12 % doped Zn2+ sample, it is 

noticed that the initial drop is about only 1.53 % followed by a 4.73 % drop for the 

remaining 90 cycles. Therefore, the addition of Zn2+ and the consequent formation of 

ZnFe2O4 have successfully arrested the capacity drop, thereby indirectly indicating it has 

had a stabilizing effect on the Fe2O3 structure to a large extent. 

5.7 Post cycling analysis 

5.7.1 XRD spectra analysis 

Post cycled XRD was performed on the 12 % doped Zn and Al samples to understand the 

nature of the anodic degradation. The results are provided in the figure below. 
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Figure 38. Pristine and post cycled XRD comparison of the (012) peak for the (a) 12 % 

Zn doped sample and (b) 12 % Al doped sample. 

 

The comparison between the pristine and the post cycled 12 % Zn doped electrode, as 

seen in figure 38(a) shows a small peak shift to the left, which can be attributed as a 

result of interacting with Na+ ions. Small amounts of peak broadening and reduction in 

intensity is also noticed indicating a slight loss in crystallinity. On the other hand, for the 

12 % Al doped sample, a rather prominent peak broadening and reduction in peak 

intensity w.r.t to the pristine electrode is noticed. This can be attributed to the inherently 

larger stress induced in the Al doped samples itself as is evident from figure 27, larger 

volume expansion for the Al doped sample than the Zn doped one suffered during the 

cycling process and unequal expansion of the non-uniform Al2O3 particles which weaken 

the overall sample.. Therefore Zn doping has been able to improve the durability of the 

sample, however, large quantities of Al doping (12 % in this case) has resulted in a 

weakening of the lattice, which suffers significantly more degradation.  
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5.7.2 Impedance analysis 

Impedance analysis for the pristine and the post cycled cells of the non-doped and 12 % 

Al and Zn doped samples respectively and the results are as provided below. 

 

Figure 39. Pristine and post cycled impedance spectra of non-doped and 12 % Al and Zn 

doped samples respectively. 

 

As can be seen from both figures 39(a) and (b), there is a significant increase in the radii 

of the semicircles of all the samples, post cell cycling indicating an increase in the 

electrode-electrolyte resistance. However, this increase is rather large for the non-doped 

sample which signifies that sample undergoes significant activity loss due to structural 

degradation associated with large volume change (capacity retention of only 60.33 %). 

On the other hand, the 12 % Zn doped sample provides the least increase thereby 

indicating that Zn doping has been beneficial and it has lost the least electrochemical 

activity (93.81 % capacity retention). However, for the 12 % Al doped hematite sample, 

it is observed that the impedance increase is almost as large as the non-doped sample 
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indicating it suffers considerable loss of active electrochemical sites (47.91 % capacity 

retention).  

5.7.3. Cyclic voltammetry analysis 

CV analysis was performed on the pristine (in blue) and the post cycled (in red) cells at a 

scan rate of 1 mV s-1 between the cut off voltages of 0 – 2 V and the results of the 

Fe1.88Zn0.12O3 and the Fe1.88Al0.12O3 cells are shown in the figures below as representative. 

 

Figure 40. CV analysis of (a) pristine and post cycled cell for the 12 % Zn doped sample 

and (b) pristine and post cycled cell for the 12 % Al doped sample respectively. 

. 

Figure (a) shows the CV curves of the pristine and post cycled Fe1.88Zn0.12O3 cell. As can 

be noticed, there is very little change in the shape of the post cycled curve and it almost 

matches up well with the pristine CV curve. However, from figure (b) it is noticed that 

the curvature of the CV graph of the post cycled Fe1.88Al0.12O3 cell undergoes significant 

reduction in area. These results, therefore, indicate that Al doped sample undergoes 

considerably more loss in electrochemical activity and electrode degradation than the Zn 
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doped sample. Phase separation of large sized Al2O3 particles towards the grain 

boundaries and preventing an easy route for electrons can also be another reason for the 

poor electrical properties of the Al doped samples141. These results confirm those 

obtained from the post cycled XRD analysis and impedance spectra obtained previously, 

indicating that addition of Al more than 8 % results in greater structural degradation and 

consequently weakened electrochemical performance with progressive cell cycling.  

5.8 Conclusion 

The project was a study on structural stability of hematite anodes and the role that dopant 

atoms have played in that. Tailoring the lattice and analyzing the structure-property 

relation and how they affect the electrochemical performance have been studied in 

considerable detail. Results indicate a positive and negative effect of two different types 

of atoms; Zn and Al respectively. While the Zn atom goes on to improve the overall 

properties of the Fe2O3 system (resulting in improving the capacity and enhancing 

retention), Al doping does provide a small improvement in initial capacity. However 

large quantities of Al doping ultimately leads to weakening of the Fe2O3 structure. Post 

cycled cell analysis provides insights to the mechanism of structural failure that 

predominates in each of the different cases. This project also establishes the important 

role crystallographic structure plays in providing efficient electrochemical performance.  
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CHAPTER 6 

THE TiO2 - PRUSSIAN BLUE SYSTEM 

6.1 Background of TiO2 anode systems 

TiO2 systems have been studied as anodes, especially in Li-ion batteries because of their 

large theoretical capacity and fast diffusion kinetics. Li et al have studies mesoporous 

anatase TiO2 coupled with graphene sheets and have obtained a first cycle discharge 

capacity of 332 mAh g-1 and have attributed their enhanced kinetics to improvement in 

surface area as a result of graphene sheet addition142. Mesoporous TiO2 nanospheres 

coated with carbon have also been studied by Cao et al143. The authors demonstrate very 

good cycling performance and a specific capacity of 96 mAh g-1 at a very high rate of 

100 C. The enhanced properties of the nanospheres are due to the electrochemical and 

structural stability of the spheres, as suggested by the authors143.  Carbon coated TiO2 

microspheres have been fabricated by Oh and coworkers as anode materials in Na-ion 

batteries by a hydrothermal technique144. At 1 C rate, a maximum discharge capacity of 

149 mAh g-1 was obtained and also demonstrated 100 capacity retention up to 50 cycles 

of operation144. Nb doped TiO2 has been used as an anode in Na-ion batteries by Usui et 

al145. They fabricated the doped rutile samples by using a sol-gel process using 

hydrochloric acid and titanium tetraisopropoxide. The best performance was obtained 

from the Ti0.94Nb0.06O2 sample, providing a capacity of 150 mAh g-1 in the 50th cycle of 

operation145.  

 



83 
 

6.2 Rationale and objectives 

This is a brief which is project is devoted to the study and analysis of TiO2 and mixed 

titanate (Na2Ti3O7) as anodes for Na-ion batteries. Both TiO2 and Na2Ti3O7 have 

demonstrated considerable advantages as anodes for Na-ion batteries146,147. Therefore, 

this project is aimed at studying the behavior of both anode materials in aqueous and 

organic electrolyte environments versus a Prussian blue cathode. A significant study of 

these anodes in aqueous media has previously not been presented; this project aims to fill 

the gap. 

The entire research presented in this project (Chapter 6) has been published by the 

author of this dissertation in Journal of Power Sources 286 (2015) pp. 276 – 289. 

6.3 Materials 

The materials in use and their fabrication techniques can be elaborated as follows: 

6.3.1. Anode 

Four different types of anode materials were selected for analysis as follows:  

(i) Amorphous TiO2 (rutile phase), used as-obtained from Sigma Aldrich. 

(ii) Crystalline TiO2 (anatase phase), also used as obtained from Sigma Aldrich 

(99% metals basis) and called as “pristine TiO2”.  

(iii) TiO2-HT (heat treated), obtained by heat treating the pristine TiO2 at a 

temperature of 150 °C for 12 hours. 

(iv) Sodium titanate (Na2Ti3O7), the precursors for its fabrication were TiO2 and 

NaOH pellets. Stoichiometric quantities of the precursors were intimately 

hand-ground and then ball-milled in a SPEX© milling machine for about 5 

hours to obtain the mixture. Then this as-milled mixture was heated in a 

muffle furnace at 750 °C for 20 hours to obtain the Na2Ti3O7 phase.  
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6.4. Structural Characterization 

The characterization results are discussed as follows. 

6.4.1. XRD 

XRD of the different uncycled, pristine TiO2 based anode samples and the uncycled 

Na2Ti3O7 sample is as shown in figure 41(a). In this stack of XRD data, the pristine TiO2 

is yellow, TiO2-HT is red, and Na2Ti3O7 is green. The ICDD database (PDF-002-0387, 

PDF-001-0562 and PDF-014-0085) is used for indexing the peaks and the peaks match 

well with the tetragonal TiO2 phase and the Na2Ti3O7 phase. There is no impurity peaks 

present indicating phase purity. Figure 41(b) shows the pristine TiO2 and the TiO2-HT 

sample together, demonstrating a small drop in peak intensity for the heat treated sample, 

which is due to a degree of loss of crystallinity due to heat treatment.  

 

 

Figure 41. Different XRD data are represented in this figure. (a) XRD spectra of the 

pristine TiO2, TiO2-HT and Na2Ti3O7. (b) XRD spectra stack of pristine and TiO2-HT.  
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6.4.2. TEM analysis 

TEM results are shown in Figure 42. In figure 42(a), the rod like morphology of the 

Na2Ti3O7 is observed and figure 42(b) exhibits the HRTEM resolved lattice fringes, and 

it demonstrates the crystallinity of the sample. The SAED pattern of the sample is shown 

in figure 42(c) and (d). From figure 42(c), d-spacing values of 3.47 Å and 8.92 Å are 

obtained corresponding to the (110) and (001) planes of Na2Ti3O7 (PDF card No. 000-

014-0085), respectively. It should be mentioned here that the sample exhibited a high 

degree of sensitivity to the electron beam tilting to get a reasonable zone axis alignment 

was difficult. Hence the SAED patterns were taken in a way to reduce damage due to 

radiation. 
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Figure 42. (a) TEM image of the 0.5 μm resolution showing rod like morphology. (b) 

HRTEM image taken at 5 nm. (c) SAED pattern demonstrating characteristic d-spacing 

values for the (110) and (001) planes (d)  similar SAED pattern exhibiting the d-spacing 

values for the (013) and (101) planes. 

6.4.3. SEM 

SEM images for the different TiO2 morphologies and Na2Ti3O7 are provided in the figure 

below. 
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Figure 43. (a) is the images of the amorphous TiO2 system (b) pristine TiO2 (c) TiO2-HT 

particles (d) Na2Ti3O7. 

 

Amorphous TiO2 nanoparticles are observed in figure 43(a). A flower like surface 

morphology is observed. The pristine TiO2 sample demonstrates a well-rounded spherical 

microstructure, so too do the TiO2-HT sample as seen in figure 43(c). Figure 43(d) 

demonstrates the Na2Ti3O7 articles which exhibit a rod like elongated morphology, also 

as observed in the TEM. The results conform with published literature148. 
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6.4.4. Raman spectra 

Figure 44(a) represents the Raman spectra data of the different anode systems.  

 

Figure 44. (a) Raman spectra of the different anode systems (b) Raman spectra peaks in 

greater detail to show peak broadening and shift. 

 

The graph at the bottom of the stack (in blue) represents The amorphous TiO2 sample 

exhibits two broad and diffuse peaks at 447.071 cm-1 and 610.242 cm-1, which conform 

to the rutile phase. For the pristine (yellow) and TiO2-HT (red) samples, characteristic 

peaks are noticed at 401.33 cm-1, 520 cm-1, and 632.63 cm-1 and are confirmed by 

published literature149. Figure 44(b) represents the Raman spectra of the pristine (and 

TiO2-HT samples in detail, and a small peak broadening and shift is observed in the HT 

sample due to the annealing process. The peaks of the Na2Ti3O7 phase (in green) also 

conform well to published data150. The position of the characteristic peaks indicate the 

layered titanate structure151
. 
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6.5 Cell assembly 

The electrodes were prepared by mixing with binder (in a 2:1 ratio) and then pasting on 

to current collector at a slightly elevated temperature (120° for 4 hours). For the aqueous 

measurements, open beaker type cells were used rather than coin cells. The electrolyte 

was 0.5 M Na2SO4. For organic measurements, the counter electrode used was a sodium 

metal foil and the electrolyte was 0.5 M NaPF6 dissolved in a 1:1 ratio of EC:DMC. The 

voltages mentioned are for the full cell. 

6.6 Battery performance analysis 

The battery performance results can be sub-divided into two sections as follows. 

6.6.1 Cell cycling and stability analysis 

Figure 45(a) - (d) show the performance of the different anode systems in aqueous 

electrolyte conditions for the 1st and the 20th cycle.  

The Na2Ti3O7 system demonstrates the highest specific capacity of 76.5223 mAh g-1, 

followed by the TiO2-HT system (58.5047 mAh g-1), the pristine TiO2 system 

(52.2486 mAh g-1) The amorphous TiO2 system shows poor values of specific capacity 

(maximum of 28.1855 mAh g-1), due to its inability to host sufficient Na+ atoms in the 

lattice because of the lack of crystallinity in its structure.  
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Figure 45. 1st and 20th cycle discharge capacities for (a) amorphous TiO2 sample (b) 

Pristine TiO2 sample (c) TiO2-HT sample and (d) Na2Ti3O7 sample in aqueous media. 

 

The performance of all these anode systems shows that the Na2Ti3O7 system can retain 

the capacity better than the other systems during the course of cycling. 
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Figure 46. Charge (dashed lines) and discharge (solid lines) curves of the 1st and 100th 

cycle for (a) TiO2 sample and (b) Na2Ti3O7 sample in organic media. 

 

Figure 46 (a) and (b) show the performance of the pristine TiO2 and Na2Ti3O7 anodes in 

organic environment. Na2Ti3O7, once again provides the maximum specific capacity of 

92.1811 mAh g-1. The TiO2 system provides a maximum first cycle specific capacity of 

71.93 mAh g-1 is obtained which drops to 37.16 mAhg-1 after 100 cycles. This 

corresponds to the fact that the TiO2 anode undergoes a more rapid degradation than the 

Na2Ti3O7 system, even when the electrolyte is in the organic environment.  
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Figure 47. Stability analysis of the various anode systems in aqueous media. 

 

Figure 47 show the stability analysis of the various anode systems. Na2Ti3O7 system 

exhibits better stability (86.2% after 20 cycles) than the other anode systems. Pristine 

TiO2 system’s specific capacity drops steadily in the initial cycles and then levels off, 

which is due to initial deformation of TiO2 lattice to accommodate large Na+ ion (55 % 

retention). TiO2-HT does better than pristine TiO2 in terms of stability (73.75 % capacity 

retention over 57.16 % after 20 cycles).  

6.7 Thermal imaging analysis: 

Thermal imaging was performed by an infrared camera to look for any heat generated. 

The imaging was done while the cell was being run in an open beaker format and the 

thermal image profiles are shown in figure 48(a) – (d) below.  
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Figure 48. Figures (a) and (b) represent the thermal image profiles for the TiO2 anodes 

and P.B cathode during the cell cycling. Similarly (c) and (d) are the thermal image 

profiles for the Na2Ti3O7 anode and P.B. cathodes during cycling.  

 

The electrode-electrolyte interface has been demarcated by black dashed lines. Figures 

48(a) is the thermal image for the TiO2 sample and 48(c) is for the Na2Ti3O7 sample. 

Figures 48(b) and 48(d) show the P.B. cathodes. It can be clearly seen that there is a 

significant difference of temperature on the electrode side. Even though no thermal 

modeling has been performed, it is understood that the reaction taking place at the 

electrodes, and the consequent interfacial impedance results in the heat being produced. 
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Therefore, this heat profile can be an indirect indicator of the degradation occurring in the 

electrodes. 

6.8 Conclusion: 

Different types of sodium deficient and sodium rich titania based layered anode structures 

have been studied with a Na rich Prussian blue cathode system. The Na2Ti3O7 anode 

system performs better than the other in both aqueous and organic media. This can be 

attributed to its larger enhanced interlayer spacing which help to easily 

intercalate/deintercalate Na+ ions. TiO2 anode systems however tend to degrade quicker 

due to the greater lattice stress occurring as a consequence of hosting large Na+ ions. The 

HT sample performs slightly better than the pristine sample, which may be due to slightly 

larger interstitial spaces generated. Therefore this brief project demonstrates the 

superiority of layered structures and how it can be used to effectively enhance the 

performance of Na-ion batteries, in both aqueous and organic media, as the case may be. 
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CHAPTER 7 

CONCLUSION 

 

The dissertation has been dedicated to the study of TMOs in aqueous Na-ion batteries. A 

variety of observations are obtained and suitable inferences have been drawn based on 

those. Three different types of anode materials have been tried: CuO, Fe2O3 and TiO2 

with each having their own characteristic properties.  

Detailed studies on multiple CuO morphologies indicate that surface area greatly 

influences the kinetics. Intuitively, a higher surface area as exhibited by the spheres 

indicates improved reaction kinetics and thereby higher initial capacity. However, the 

platelet like samples demonstrate marginally better stability. This, therefore, means the 

“perfect” microstructure necessarily does not mean the one with the one with the highest 

surface area or maximum stability but lies somewhere in between. 

Results of doping in Fe2O3 lattice demonstrate that optimum addition of a foreign atom 

has a very important role to play in determining the electrochemical 

properties/performance of an anode. Incorporation of the larger Zn2+ ion results in the 

formation of a composite anode system which has a net positive effect, on the other hand 

the incorporation of a rather smaller but isovalent Al3+ ion has a net detrimental effect 

due to shrinkage of the lattice as well formation of a Al2O3 which is basically an impurity 

phase and plays a role exactly opposite to that of a composite. Therefore the underlying 

outcome from this research is that the role of doping improves or degrades the 
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performance of anode depending upon the type of dopant atom used and the amount of 

doping. 

The TiO2 anode based project re-establishes further the results obtained from the previous 

two projects, especially the Fe2O3 based project. The difference here lies in the fact that 

the “doping”, or in this case addition of Na+ ions alters the entire crystal from TiO2 to 

Na2Ti3O7, thereby forming a different structure altogether. Here too, results indicate 

Na2Ti3O7 performs better, by virtue of its microstructure and larger lattice volume which 

provides it the ability to intercalate the Na+ ions better.  

Empirically, this dissertation demonstrates the role structural as well as morphological 

modification can play in determining particular electrochemical parameters. Successful 

tailoring of each provides optimal performances. The effect of introducing changes and 

defects in the morphology as well as lattice structure also helps to analyze and prevent 

structural degradation in some cases e.g. with doping Zn2+ in Fe2O3. Various 

experimental techniques have been utilized to study the electrochemical effects and it is 

expected that the results will help to improve the understanding of structural and kinetics 

effects in aqueous Na-ion batteries and facilitate their application. 
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