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ABSTRACT

PEEKING INTO THE OTHER HALF OF THE GLASS:

HANDLING POLARIZATION IN RECOMMENDER SYSTEMS

Mahsa Badami

April 26, 2017

This dissertation is about filtering and discovering information online while using

recommender systems. In the first part of our research, we study the phenomenon of

polarization and its impact on filtering and discovering information. Polarization is a social

phenomenon, with serious consequences, in real-life, particularly on social media. Thus

it is important to understand how machine learning algorithms, especially recommender

systems, behave in polarized environments. We study polarization within the context of

the users’ interactions with a space of items and how this affects recommender systems. We

first formalize the concept of polarization based on item ratings and then relate it to the

item reviews, when available. We then propose a domain independent data science pipeline

to automatically detect polarization using the ratings rather than the properties, typically

used to detect polarization, such as item’s content or social network topology. We perform

an extensive comparison of polarization measures on several benchmark data sets and show

that our polarization detection framework can detect different degrees of polarization and

outperforms existing measures in capturing an intuitive notion of polarization.

We also investigate and uncover certain peculiar patterns that are characteristic of

environments where polarization emerges: A machine learning algorithm finds it easier to

learn discriminating models in polarized environments: The models will quickly learn to
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keep each user in the safety of their preferred viewpoint, essentially, giving rise to filter

bubbles and making them easier to learn.

After quantifying the extent of polarization in current recommender system bench-

mark data, we propose new counter-polarization approaches for existing collaborative fil-

tering recommender systems, focusing particularly on the state of the art models based on

Matrix Factorization. Our work represents an essential step toward the new research area

concerned with quantifying, detecting and counteracting polarization in human-generated

data and machine learning algorithms.We also make a theoretical analysis of how polariza-

tion affects learning latent factor models, and how counter-polarization affects these models.

In the second part of our dissertation, we investigate the problem of discovering re-

lated information by recommendation of tags on social media micro-blogging platforms.

Real-time micro-blogging services such as Twitter have recently witnessed exponential

growth, with millions of active web users who generate billions of micro-posts to share

information, opinions and personal viewpoints, daily. However, these posts are inherently

noisy and unstructured because they could be in any format, hence making them difficult

to organize for the purpose of retrieval of relevant information. One way to solve this prob-

lem is using hashtags, which are quickly becoming the standard approach for annotation

of various information on social media, such that varied posts about the same or related

topic are annotated with the same hashtag. However hashtags are not used in a consistent

manner and most importantly, are completely optional to use. This makes them unreliable

as the sole mechanism for searching for relevant information. We investigate mechanisms

for consolidating the hashtag space using recommender systems. Our methods are general

enough that they can be used for hashtag annotation in various social media services such

as twitter, as well as for general item recommendations on systems that rely on implicit user

interest data such as e-learning and news sites, or explicit user ratings, such as e-commerce

and online entertainment sites. To conclude, we propose a methodology to extract stories

based on two types of hashtag co-occurrence graphs. Our research in hashtag recommen-

dation was able to exploit the textual content that is available as part of user messages or

vi



posts, and thus resulted in hybrid recommendation strategies. Using content within this

context can bridge polarization boundaries. However, when content is not available, is miss-

ing, or is unreliable, as in the case of platforms that are rich in multimedia and multilingual

posts, the content option becomes less powerful and pure collaborative filtering regains its

important role, along with the challenges of polarization.
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CHAPTER 1

INTRODUCTION

Recommender systems (RS) appeared in early work in cognitive science, information

retrieval and consumer behavior in marketing [1–3]. However, they became an important

research area in the mid-1990s when the central goal of RS was to estimate the rating for

the items to be selected and shown to a user who has not seen those items before [4, 5].

Using this estimation, the system is able to decide whether to recommend the items to the

user or not; intuitively, a RS chooses the items with the highest rating [6]. Over the years,

recommender systems witnessed fast development and wider applications [4,5], where they

are used to learn user“s” preferences, likes and dislikes.

Over the last two decades, a wide variety of recommender systems (RSs) has been

developed across several domains, where researchers have focused mainly on the perfor-

mance of the RS algorithm, primarily meaning providing increasingly accurate rating pre-

dictions [5] [7, 8]. This is a reasonable goal since more accurate prediction will lead to a

better user experience, in general. However, there is still a long way to go in terms of all

aspects of the user’s interaction experience, including accuracy of the algorithm, subjec-

tive aspects such as system satisfaction and user satisfaction [8–11]. Nowadays, users rely

on recommender systems to overcome the information overload problem when navigating

through a vast amount of options and content, on a variety of platforms ranging from tra-

ditional browsers to mobile applications. This reliance on algorithmic guidance is often not

explicitly or intentionally chosen by the user, since many social media services (e.g.face-

book) automatically filter and sort the order of items on a user’s home feed, without an

explicit request from the user to do so.

Figure 1.1 shows a closed feedback loop between a user and a Machine Learning

1



Figure 1.1: Recommender system feedback loop

algorithm, in our case a RS. One intuitive consequence of increased reliance on algorithmic

guidance, combined with the user’s consumption behavior, is the possibility of establishing

a strong loop, called a “positive feedback loop” [12, 13]. This loop is due to the persuasive

qualities of the recommender systems, where users mainly follow a recommender’s advice

[14] and after a while agree with it, unknowingly [15]. According to [16], this may be due

to the human tendency to take the default setting rather than going through the trouble of

developing one’s own unique taste. This may be related to the pheromone, called temporal

discounting [17], where we tend to choose guilty pleasures that provide instant satisfaction

over a long value (e.g. watching a spectacular action movie over an educational experience).

As a result, users will make themselves better ”fit in” with the (recommender) system and

simply consume whatever the system serves them, because it is “easy” to like or consume

[18, 19]. Another reason behind the positive feedback loop is that common RSs usually

employ limited historical data to recommend a product. These products are mostly similar

to what users have already purchased or liked in the past, which causes the loop to narrow

the diversity of the recommended items [20]. As advocated by various philosophers and

researchers, the positive feedback loop then affects customer’s choices by limiting her/his

exposure to alternative views which disturbs the balance of her/his options [13,21–23]. This

phenomenon is called a ”filter bubble [13], and is defined as: “the invisible and personal
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universes of information that might trap users into a relevance paradox confining

them to isolated information neighborhoods and restricting them from seeing

or exploring the vast array of other possibilities” [13,24].

Despite the numerous benefits of personalized recommender systems, narrow-minded

over-specialization, resulting from positive feedback loops, can exacerbate “Filter bubbles”

by not expanding, or even restricting, the users’ exposure to more diverse and non-obvious

options [25]. This in turn can lead to getting locked in by the RS where it creates “self-

fulfilling identities”: Your identity shapes your recommendations, and your rec-

ommendations then shape what you believe, and what you care about [13]. In

addition, recommender systems suffer from the “Rich-get-richer effect where popular items

draw more attention and hence it creates a bias toward more seen products which may hide

better consumer-product matches from the users [26]. This is often inconsistent with users’

preferences, needs, social welfare and business goals [27,28].

Using over-specialized recommender systems can hence make the population more

similar to each other over time, which in turn, leads to concentration biases, called “gravi-

tational force”, that lead to grouping individuals together and further shrinking filter bub-

bles [21]. Narrow-minded personalization techniques can have additional detrimental effects,

such as deconstructing non-prevailing views, opinions, and behaviors [27]. Moreover, daily

interaction between these systems and customers may even lead them to adapting more

extreme attitudes [29] and mis-perceiving facts about events [30].

1.1 Recommender Systems and Polarization

The growing popularity of online services and social networks and the trend to inte-

grate Recommender Systems (RS) within most e-commerce applications and social media

platforms to help filter data to the users, has led to a dynamic interplay between the in-

formation that users can discover and the algorithms that filter such information. This

has given rise to several side effects, such as algorithmic biases [31], filter bubbles [32] and

polarization [33], and human-algorithm iterated bias [34]. Algorithmic bias has also been

3



explored by Baeza-Yates [35] mainly in the information retrieval context. Polarization oc-

curs when information happens to be related to controversial issues where a population is

divided in groups with opposite opinions, fewer individuals with moderate opinions, and

there is no clear majority in “ardent supporters” and “motivated adversaries” [33,36,37].

Polarization around controversial issues have arguably affected recommender sys-

tems (and vice-versa) due to the ill-fated consequences of this phenomenon [38, 39]. An

effective and efficient recommender system needs to be able to apply the most suitable

recommendation method even in the presence of a set of polarized items. Trust based rec-

ommender systems try to offer a solution to this problem by defining a trust network for

each user [40]. These types of recommender systems leverage the user’s trust network’s

opinion on an item to finally decide whether to recommend an item. However, when such

issues emerge on social media, we often observe the creation of “echo chambers” or “Filter

Bubbles”, where there is greater interaction between like-minded people who reinforce each

other’s opinion [38]. These individuals do not get exposed to the views of the opposing side,

and this in turn results in polarization [31]. Allowing users to discover different viewpoints

could allow them to develop unique tastes and diverse perspectives that are not limited

by filter bubbles [18]. In addition, it is important to fully understand the population be-

fore recommending any items. Very few recent studies investigated the effect of datasets

on the recommendation process. For instance, the experiments in [41] have indicated that

population characteristics have an influence on the behavior of the algorithm, with respect

to different measures such as catalog coverage (What recommenders recommend). Hence,

considering characteristics such as polarization would go unnoticed if accuracy measures

were the only criteria considered for assessing the quality of recommendation algorithms,

as is typically the case. Studying the emergence of polarization in human-algorithm inter-

action is related to studying the evolution and impact of bias in user-generated data that

is consumed by recommender algorithms, which in turn makes these algorithms’ predic-

tions biased, as pointed to by Nasraoui and Shafto [42] who proposed new models, inspired

by language evolution, for the bias resulting from iterated interactions between users and
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recommendation algorithms.

1.2 Objectives

The main objective of this research is to survey and understand the interplay be-

tween polarization and recommendations, and to contribute to building a new paradigm

of recommendation systems that are aware of polarization, while still providing high qual-

ity personalized and counter-polarized recommendations, such that the users can control

their degree of counter-polarization. Polarization awareness consists of being able to detect

polarization in the first place, and to expand the domain of options recommended to the

user in a second place. Expanding the domain of recommended options promises to expand

the discovery potential for humans, and thus reduce their filter bubble, as they interact

with filtering and recommendation algorithms. Whether humans prefer to discover more

or less is beyond the scope of this research. However, our counter-polarization paradigm

does provide a user-controlled discovery parameter to give the user the freedom to tune

their bubbles as they wish. The second component of this research targets the domain of

micro-blogging social networks for recommending hashtags.

1.3 Contributions

We summarize our major contributions in the following list:

• Multi-perspective survey of polarization.

• Automated polarization detection methodology.

• Counter-polarization approach to recommendation.

• Theoretical analysis of polarization’s impact on learning RS models and polarization

aware models’ impact on polarization

• Hashtag recommendation and story discovery strategies in social media micro-blogging

services
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Polarization is an important phenomenon, with serious consequences, in real-life,

particularly on social media. Thus it is important to understand how machine learning

algorithms, especially recommender systems, behave in a polarized environment; and to

this end it is important to quantify polarization in existing and future data sets. Our con-

tribution is a significant and essential step toward quantifying and detecting polarization

in ongoing ratings on generic platforms and in benchmark data sets. Hence it supports

future research in the emerging topic of designing and studying the behavior of recom-

mender systems in polarized environments. In the following, we summarize each one of the

contributions.

Studying emergent bias and polarization phenomena in machine learning is by no

means an easy task. In fact, recent work [43] has put in question the prevalent evaluation

strategies and benchmark data sets, traditionally used in recommender system research, be-

cause benchmark data sets have, heretofore, no way of capturing or measuring the bias and

polarization resulting from algorithmic guidance. This difficulty in capturing and testing

the emergence of polarization in user-algorithm interaction, imposes a significant challenge

to research in this emerging field; a challenge that we will address in this dissertation,

first by presenting an original survey of polarization that draws on literature from mul-

tiple perspectives and disciplines; then proposing a new polarization detection method-

ology to measure polarization in generic, rating-based data sets; and finally formulating

theoretically-grounded scenarios for polarization which will allow a simulation-based analy-

sis of the emergence of polarization, as well as designing new counter-polarization strategies

for recommender systems.

1.3.1 Multi-perspective Survey

Our first contribution is a spanning, multi-pronged survey, that draws from diverse

disciplines to review various literature that relates to polarization from near and far, and

with varying levels of formal treatments. Our survey showed that the field is rather not

unified in how polarization is defined and what is done after recognizing it. Very little work
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has gone beyond the simple task of defining or at best trying to measure polarization.

Based on our survey, we found that polarization has been studied from three main

perspectives (and occasionally hybrids thereof), leading us to define the following taxonomy:

1. social polarization: how people congregate with one another,

2. written polarization: how people write about topics,

3. rated and recommended polarization: how people behave, consume and express their

preferences.

1.3.2 Detecting Polarization

Our second contribution is motivated by the fundamental, yet challenging task of

detecting polarized/controversial items across diverse platforms, rather than studying the

evolution of polarization. We thus design and develop an algorithm to identify polariza-

tion/controversy regarding items in any domain (e.g. political, economical, or cultural), and

without prior domain-specific knowledge about the items. Having an algorithm with these

properties allows us to deploy a system in-the-wild, and is valuable for building real world

applications, such as recommender systems. Contrary to other models where polarization

is based on either a social graph or item content, we propose a model that works with

ratings in any domain and on a large scale. Ratings are more intuitive to work with since

they directly capture the distribution of user opinions. In addition, an item itself is not

polarized unless there are users with opposing opinion on the item, so the content may not

be very reliable for polarization detection. In the absence of polarization, the distribution

of opinions is either J-shaped or bell shaped. However, as polarization emerges, the result-

ing distribution shifts to a U-shaped distribution with two peaks emerging around the two

dominant and confronted opinions at the extreme sides of the rating scale [33,44]. Different

examples of such distributions are shown in figure 1.2.

Our new approach to quantify polarization is based on three stages: (i) building an

item ratings’ histogram from user-item rating data; (ii) extracting a set of features from
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the histograms; (iii) training a polarization classifier based on a sample of annotated cases;

and (iv) measuring the item-level polarization score. To verify our approach, we apply a

multi-pooling text classifier, which combines both labeled comments/reviews and a lexical

(words) library, to understand the item’s polarization and its possible relation with the

item’s reviews.

We design a systematic lightweight pipeline, with simple yet effective features, de-

rived mainly from the item ratings, and hence they can be used in any domain, where

explicit or implicit user interest or feedback can be captured. Due to the simplicity, gen-

erality, and speed of this methodology, it can be used with any recommender system, and

on diverse platforms, such as news-reading and public-debate scenarios. We use human

intuition to capture polarization, in other words, “what” would cause someone, trying to

gauge the overall opinion about an item, to be undecided about the overall opinions on this

item by looking at the ratings distribution.

Figure 1.2: Different rating distributions from IMDb.com.

1.3.3 Polarization-Aware Recommender System

Aiming toward alleviating the important problems of over-specialization and con-

centration bias, especially in a polarized environment, and enhancing the usefulness of
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collaborative filtering RS, we propose a new approach to generating recommendation lists

based on a modified Non-Negative Matrix Factorization approach. In particular, we esti-

mate a user’s interest on an item, while considering both (i) the items’ polarization scores,

and (ii) the user’s expression of their willingness to discovery. Our proposed model aims

to achieve a trade-off between accurate personalized recommendations and expanding the

space of items that can be discovered, hence escaping a filter bubble.

In order to give the users a choice to see more items, we believe that a recommender

system should have a systematic mechanism that enables users to discover novel items

caused by the user’s continuous engagement with the system. This is different from recom-

mending a random item by trial and error, to increase arbitrary discovery and serendipity.

We propose two models for combating over-specialization in polarized environments.

These two models are used in the positive feedback loop and are independent of the item

domain and the type of recommender system. The first model works by altering the in-

put ratings based on the automatically detected polarization and the user’s tolerance for

discovery, while the second model consists of a new recommendation model.

We also make a theoretical analysis of how polarization affects learning latent factor

models, and how counter-polarization affects these models.

It is important to note that recommender systems that improve diversity and serendip-

ity are not the same as polarization aware recommender systems. This is because the former

generally require diversity in the actual description or nature of items, which in turn re-

quires content data. Our research primarily focuses on items that can cross polarization

boundaries, where polarization is based on how users interact with the items (ratings) and

not their content.

1.3.4 Empowering Users of Recommender Systems

We investigated and uncovered certain peculiar patterns that are characteristic of

environments where polarization emerges, for instance by monitoring traces of the objective

function that is minimized in matrix factorization. We have found that environments with
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different polarization degrees engender different patterns. The ability to recognize such

patterns, that arise during incremental optimization, can help quickly detect and quantify

the evolution of polarization without the tedious analysis of rating data distributions. This

objective function optimization pattern monitoring-based approach open a new direction

of research in studying and handling polarization, not only in recommender systems, but

also in other machine learning algorithms that also result in filtering information from

humans.Our proposed counter-polarization methodology succeeds to cover items from the

opposite view after a few iterations and can broaden the viewpoint spectrum even faster if

the user is more interested in discovering items from different viewpoints. Endowing humans

with the ability to interactively and adaptively control the breadth of viewpoints offered by

an intelligent polarization-aware recommendation algorithm is an important capability. As

a result, users who are nowadays increasingly and unconsciously entrapped in algorithmic

filters over which they have had no control, can become empowered to break free from their

algorithmic chains. To our knowledge, this feature which allows humans to remain in or

regain control of algorithm-induced filter bubble traps, has heretofore not been allowed or

engineered in existing information filtering systems, whether on social media, e-commerce

or e-learning recommender systems.

1.3.5 Hashtag Recommendation

In the second part of our dissertation, we investigate the problem of discovering re-

lated information by recommendation of tags on social media micro-blogging platforms.

Real-time micro-blogging services such as Twitter have recently witnessed exponential

growth, with millions of active web users who generate billions of micro-posts to share

information, opinions and personal viewpoints, daily. However, these posts are inherently

noisy and unstructured because they could be in any format, hence making them difficult

to organize for the purpose of retrieval of relevant information. One way to solve this prob-

lem is using hashtags, which are quickly becoming the standard approach for annotation

of various information on social media, such that varied posts about the same or related
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topic are annotated with the same hashtag. However hashtags are not used in a consistent

manner and most importantly, are completely optional to use. This makes them unreliable

as the sole mechanism for searching for relevant information. We investigate mechanisms

for consolidating the hashtag space using recommender systems. Our methods are general

enough that they can be used for hashtag annotation in various social media services such

as twitter, as well as for general item recommendations on systems that rely on implicit user

interest data such as e-learning and news sites, or explicit user ratings, such as e-commerce

and online entertainment sites. To conclude, we propose a methodology to extract stories

based on two types of hashtag co-occurrence graphs. Our research in hashtag recommen-

dation was able to exploit the textual content that is available as part of user messages or

posts, and thus resulted in hybrid recommendation strategies. Using content within this

context can bridge polarization boundaries. However, when content is not available, is miss-

ing, or is unreliable, as in the case of platforms that are rich in multimedia and multilingual

posts, the content option becomes less powerful and pure collaborative filtering regains its

important role, along with the challenges of polarization.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 provides a

literature review of recommender systems and sentiment analysis. Chapter 3 presents a

new survey and taxonomy of polarization. Chapter 4 introduces our proposed methods

on handling polarization in recommender systems which is followed by the experiments in

Chapter 5. We present our proposed Hashtag recommendation in Chapter 6 and Chapter

7 presents our experiments. Finally, we make our conclusions in chapter 8.
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CHAPTER 2

BACKGROUND

In this chapter, we review research that is related to our work. As already men-

tioned, our research focuses on recommender systems. Hence, we will start with reviewing

recommender systems methods, along with their effectiveness and capabilities. We describe

polarization/controversy and outline literature related to this phoneme. Our research also

builds on a existing method, Matrix Factorization (MF), which we will review in this chapter

as well.

We will complete our review with an overview of Hashtag annotation work as well

as polarization on social media.

2.1 Recommender Systems

Traditionally, recommender systems (RS) produce a list of recommendation of prod-

ucts for users in e-commerce e.g. Amazon Netflix, Pandora. A RS helps users to find the

items which are more suited to their interest and they typically do this by filtering the

vast amounts of information to suggest new items (e.g. movies, songs and books) to users.

Recommender system can be built with many approaches which are reviewed below [45]:

2.1.1 Random prediction algorithm

This algorithm randomly chooses items from available items and then recommends

the selected ones to the user. Basically, Random prediction algorithm is based on luck,

which leads to recommending unrelated items. In another word, if there are more items in

the set, there is less chance to select better items [5].
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2.1.2 Frequent sequences

This algorithm is based on the frequency of rated items by the user. It uses frequent

patterns to recommend items to the user. However, it requires a minimum purchase or

viewing frequency from the users to be able to make the recommendation [45].

2.1.3 Content based algorithms

Content-based recommender systems exploit the items or users past history in order

to create item or user profiles [45]. Using this profile, it can recommend the items that best

match the items that the user has highly rated in the past. It can also use this history to

find similar users and then recommend their interest to the current user. This similarity can

be based on either items or users and users profiles [46]. A content-based user profile can

indicate the user’s preferences in terms of the keywords or attributes of their preferred items.

These in turn can help the algorithm formulate a relevant query in order to find popular

items using similar keywords. Therefore, content-based algorithms utilize item descriptions

in order to identify items that are of particular interest to the user [6].

2.1.4 Collaborative Filtering algorithms (CF)

Most recommender systems have evolved toward collaborative filtering algorithms

[5, 6, 45], which either need the users to express their interests, or infer the users interests

based on their behavior. A CF algorithm then finds a group of users with similar inter-

est and recommends new items that are part of these similar users interests to the active

user. In other words, CF algorithms make prediction about the users interests by filter-

ing information in order to collect preferences or taste information from many (so called

collaborating) users [45].

Basically, there are two assumptions behind CF algorithms: First, users who had

similar tastes in the past will have similar tastes in the future; second, user’s preferences

remain stable and consistent overtime [6]. In other words, if person A has the same opinion

as person B on an issue, A is more likely to have B’s opinion on a different issue x than to
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have the opinion on x of a person chosen randomly [47].

CF recommender systems filter available information in order to provide an intelli-

gent mechanism for customers to be able to find items in which they are more interested.

CF algorithms have several advantages over other, particularly content-based, approaches:

They are able to filter any type of content e.g. text, artwork, music, mutual funds [47]

without requiring that the items be describable with keywords or attributes. At the same

time, they are able to model complex concepts such as taste and quality, which can be

hard to express explicitly. For example, a collaborative filtering recommendation system

can be used for prediction of television tastes. It means that a list is provided for the

users based on their likes and dislikes. The interesting part of the CF methodology is that

it provides recommendation for only the current (also called active) user; however it uses

information gathered from many other users. Thus, the accuracy of Collaborative Filtering

algorithms depends on the availability of information from many users and more data helps

the algorithm to learn the preferences better.

Generally, Collaborative filtering techniques are divided into two main categories

[48]: memory-based (user-based or item-based neighborhood methods), and model-based

(the most prominent being latent factor models):

2.1.4.1 Memory-based Collaborative Filtering technique (neighborhood-based)

Memory-based collaborative filtering [5, 45] uses the entire collection of user-item

rating data in order to make a prediction. It is also considered a heuristic method since

it utilizes statistical techniques to find a group of users with similar history. Then, the

preference of this neighborhood is combined in order to obtain the recommendations. One

very well-known algorithm which is used with memory-based CF is the nearest neighbor

algorithm [49].

In order to calculate the similarity between user ratings, purchase history, or inter-

ests, there are several measures that can be used such as Cosine similarity and Pearson

correlation [4]. In addition, there are two different approaches for computing the similarity
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between users [46]:

a. Recommendation based on explicit information: in this case users are required to

express their interests on items explicitly. These interests may have several forms such as

rating, like/dislike buttons, reviews, etc.

b. Recommendation based on implicit information: in this case, the algorithm

extracts the users preferences from the available information indirectly, such as whether

the user spent more time looking at an item or repeatedly came back to check the item.

Remember that, in this case, the explicit information may be also available.

CF algorithms can perform very well, but they tend to suffer from sparsity and

scalability problems [45]. As mentioned before, a CF recommender systems accuracy de-

pends on the availability of extensive amounts of information. However, most users only

rate a small proportion of the items available, leading to sparse data sets. In addition, the

latency (waiting time) of each recommendation will increase for large datasets [6], making

scalability a difficult challenge.

2.1.4.2 Model-based Collaborative filtering

Model-based CF recommender systems use machine learning techniques in order to

estimate a global model which fits the data. Then, the model is used to make predictions

for either users or items. However, machine learning approaches require enough training

data points in order to be able to have an accurate prediction. Providing enough training

data points is a challenge for some application.

Different Model-based approaches have been employed in recommender systems,

such as designing a CF system for estimating all missing ratings using Support Vector Ma-

chine (SVM) and heuristics [50]. An approach based on neural networks considers both

user-based and item-based techniques [51]. [52] developed a probabilistic model for recom-

mendation that uses a Bayesian network model and considers only integer ratings. Another

efficient model-based CF algorithm is matrix factorization [53]. This algorithm, basically

represent users and items in a low dimensional latent factors space and try to explain the
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preferences by characterizing both items and users on say, 20 to 100 factors inferred from

the ratings patterns. Recent studies showed that the latent factor CF is one of the most

successful techniques, especially after it was used for the Netflix prize, where it provided

the best results [54]. Matrix factorization is reviewed in the next section.

2.1.4.2.1 Matrix Factorization Recently, due to the efficiency of dealing with large

datasets, several low-dimensional matrix approximation methods have been proposed for

collaborative filtering [55]. All of these methods focus on fitting the user-item rating matrix

using low-rank approximations, and employ the matrix to make further predictions. The

Low-rank matrix factorization methods are very efficient regarding the training since they

assume that only a small number of factors influences the preferences in the user-item rating

matrix, and that a users preference vector is determined by how each factor applies to that

user. Low-rank matrix approximations, based on minimizing the sum of squared errors, can

be easily solved using Singular Value Decomposition (SVD) [56].

An Expectation Maximization (EM) algorithm for solving weighted low-rank ap-

proximation was proposed by [57]. Salakhutdinov et al. presented a probabilistic linear

model with Gaussian observation noise in [58]. In [59], the Gaussian-Wishart priors are

placed on the user and item hyper-parameters.

Recently, latent factor CF algorithms have attracted a lot of attention due to their

efficiency in dealing with large datasets [59–61]. The latent factor approach employs low-

dimensional matrix approximation methods which yield better results in CF algorithms. In

its basic form of low-rank matrix factorization methods, although they consider the user-

item rating matrix, they assume that only a small number of factors influence the user/items

interests. In other words, this method captures both items and user characteristics and

represents them by vectors of factors inferred from available patterns. High correspondence

between item and user factors leads to a recommendation [62]. The Matrix factorization CF

recommender system is capable of combining good scalability with predictive accuracy in

addition to its flexibility for modeling various real-life situations [62]. Another advantage of

MF recommender systems is its incorporation of additional information. It is a very useful

16



characteristic when there is no explicit feedback, since it infers user interests using implicit

information including purchase history, browsing history, search patterns, or even mouse

movements [54].

Matrix factorization models, map both users and items, to a joint latent factor space

of dimensionality f, such that user-item interactions are modeled as inner products in that

space [55].

2.1.4.2.2 Non-Negative Matrix Factorization (NMF) Mathematically speaking,

the general problem of Non negative matrix factorization is to decompose a non-negative

data matrix R with size m × n into two matrix factors P and Q with size of m × k and

k × n respectively, such that:

Rm×n = Pm×k.Qk×n (2.1)

where k ≤ min (nm) is a positive integer representing the rank of matrices P and

Q.

The NMF algorithm finds a basis that is able to represent high-dimensional data,

using a compact set of vectors, effectively inducing a new low-dimensional representation

(referred to as the latent space) of the original data. The vectors of the basis represent

clusters of data objects. Since the basis generated by other algorithms, such as SVD,

cannot be generally interpreted as cluster prototypes, NMF can be a good replacement for

other dimensionality reduction or transformation techniques. This is because the vectors

of the basis generated by NMF are not necessarily mutually orthogonal. Moreover, the

documents projections on the basis vectors have only non-negative values corresponding

to the membership values of a given document with respect to each cluster. These two

properties of NMF make it superior to SVD when it comes to document clustering [63].

The third advantage of NMF is its computational efficiency, since the matrix multiplication

based update equations [64] can be efficiently implemented for large and sparse. This is a

critical point for mining web-scale datasets. Finally, the basis vectors can be used to support
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sophisticated tasks, in addition to dimensionality reduction or clustering, such as the task

of automatically computing associated textual annotations for new unannotated images by

matching, in the reduced dimensional latent space, the new images with annotated images

and then picking the annotation words that appear the most frequently [65].

There are different ways to estimate P and Q [66], the most common one minimizes

the Frobenius norm of the errors between the approximation P, Q and the data matrix R.

The objective function is defined as follows:

J =
∑
i,j∈R

(rij − piq
T
j )

2 +
β

2
(||pi||2 + ||qj ||2) +

λ

2
(pi − qj)

2Wij (2.2)

where R is the set of user-item pairs for which the ratings are available, 1
2(||pi||

2 + ||qj ||2)

is an L2 regularization term weighted by the coefficient β,

where the constraint is P,Q ≤ 0. This is an optimization problem where the cost

function needs to be minimized. In order to find the stationary point of the optimiza-

tion problem (P and Q), a gradient-descent technique is applied. Two approaches have

been typically used: a) stochastic gradient descent and b) alternating least squares (ALS).

Alternating least squares exploits the fact that although the NMF cost function is not si-

multaneously convex, it is convex in either one of the low rank matrices alone [67]. Hence,

by fixing one matrix in the current iteration, it can use the Least Squares technique to

derive the other matrix. Then it alternates this process until convergence. Although there

is no guarantee to find the global optimum, a local optimal point should be a stationary

point due to the optimization principle [68].

2.1.4.2.3 Hybrid Collaborative Filtering Techniques Hybrid CF methods com-

bine collaborative filtering with other recommendation techniques, such as content-based

RS. This combination helps the recommender system avoid the limitations of both content-

based and collaborative filtering approaches [69, 70]. For example, one can apply collabo-

rative and content-based separately and then merge their predictions. A hybrid model is

typically more general and is strengthened with the characteristics of both CF and content-
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based recommender systems [6, 71].

2.2 A Special Recommendation Domain: Hashtag recommendation

Hashtag recommendation, like other item recommendations, can be computed in one

of two ways - collaborative filtering or content-based filtering. The collaborative filtering

approach builds a model based on finding similar users, i.e. with similar behavior, as well as

the users past behavior (e.g. the past preference ratings, page views, or purchases by either

the active user or by other similar users) [6, 7]. The content-based approach utilizes the

items with the most similar characteristics in order to recommend additional items with the

same properties [69, 72]. Moreover, there are hybrid approaches that consider both similar

users and similar items to predict the users interests [73].

Due to the usefulness of tag recommendation, many social media services have been

employing user driven tagging systems, including image tagging (e.g., on Flickr, Instagram),

video tagging (e.g., on YouTube), and web page tagging (e.g., using Del.ico.us), text tag-

ging (e.g., on Twitter). There are many research efforts from different perspectives which

considered online resources, e.g. images, videos, texts, links, etc. [74–78].

Here, we are mostly interested in recommending tags for real-time micro-blogging

posts which are very challenging and sparse due to the twitter application specific limita-

tions, such as the maximum number of characters (140) in a post and the inherent ambiguity

in text.

There has been considerable work in recommending tags, which have focused on

recommending general hashtags [79] while other work utilized user history, neighbors and

other personal documents to predict personalized hashtags [80]. Khabiri [81] recently pre-

sented a content-based hashtag recommendation method based on the content of the tweets.

The recommendation system measures the relevance of words and hashtags based on a co-

occurrence graph. This approach can be used for recommending general hashtags. In

another direction, Yang recently proposed a new approach which considers user-level hash-

tags in a way to see whether or not a hashtag would be used by a user [82]. The approach
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considers some basic properties of users and hashtags (e.g., the number of unique hashtags

used by user u, and the number of tweets containing hashtag h as well as the relevance

between users and hashtags measured by their cosine similarity. Finally they utilize a SVM

classifier for prediction. This approach considers the same set of hashtags for prediction,

since it discounts tweet content and other information about the tweets.

In [83], the authors proposed a variation of TF-IDF that considers hashtag relevancy

and data sparseness. The proposed method relies on a hashtag frequency map which con-

siders the frequency with which a hashtag appears with a given term. In addition, these

approaches consider the hashtags associated with only a small subset of words and ignores

the common hashtags. Compared to KNN and Nave Bayes, the approach achieves a high

performance. Similarly, in a study by Godin, et al. the authors consider the content of

tweets [84]. However, they suggest hashtags based on detecting the hidden topics of the

tweets, which are estimated using a Latent Dirichlet Allocation (LDA) model.

Some approaches have considered both tweet content and user information. These

approaches are mostly based on graph models [85–87] and tensor factorization [6,88], where

the recommendation system considers ¡user, tweet, hashtag¿ triples. For instance, Kywe,

et al. recommend hashtags based on similar tweets as well as similar users [89]. Their

approach considers the similarities between users based on the cosine similarity between

their hashtags and also their tweets, separately. However, this approach considers the

hashtags from similar tweets only when a user has never used hashtags before.

[90] proposed a statistical model for personalized hashtag recommendation based on

¡user, tweet, hashtag¿ using the wisdom of the crowds. Their approach considers (1) tweet-

related features including terms, links, and mentions; (2) user-related features including

user IDs, locations, and social relations; and (3) hashtag-related features which describe

temporal characteristics of hashtag adoption. These features incorporate both latent factors

and explicit features, in order to be used in the ranking function. However using these

approaches increases the complexity of the model which makes it challenging to use for

online recommendation and for processing huge twitter data set.
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In addition to the hashtag recommendation problem, some efforts have focused on

studying patterns of hashtags [91], for instance [92] explained how the rise and fall in hashtag

adoption happens while [91] investigated the patterns of the hashtags to predict if any of

them are still common the next day.

2.3 Evaluation of Recommender Systems

In the past decade, researchers have mostly focused on developing new recommender

system algorithms [45]. They hence typically compared their new methods with rivaling

methods using some numerical evaluation metrics or scores. However, it is now widely agreed

that accurate predictions are crucial but insufficient to deploy a good recommendation

engine [5].

In many applications, people use a recommendation system for more than an exact

anticipation of their tastes. Users are also interested in discovering new diverse items. A

good RS should respond fast while being careful about the users privacy [93]. Therefore,

there are a set of properties which affect the success of recommender systems in the context

of a specific application. Generally, three different types of experiments have been performed

to evaluate a recommender system: offline experiments, user studies, and online experiments

[93]. Each type of experiment tries to capture user satisfaction which is the most important

factor in the success of a recommender system [62].

The most common type of evaluation is to perform offline experiments using avail-

able data sets. During these experiments, the RS is able to model the users behavior and

then estimate some predicted ratings of recommended items. Then some evaluation met-

rics are used to measure the performance of the prediction accuracy. The next step is to

ask a set of users to work with the system and provide information by answering a set

of questions. Finally, the recommender systems is tested on real users as part of online

experiments. Because the users, who are unaware of the purpose of the system, can pro-

vide valuable information, these experiments are considered to be the most trustworthy. In

addition, the recommender systems can be tested on e-commerce websites where they can
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be evaluated based on specialized success metrics, including customer satisfaction with the

recommendations and how often they follow recommendations.

2.3.1 Offline Experiments

An offline experiment uses a pre-collected data set to simulate user behavior when

the users interact with a recommender system. This step is crucial since it helps researchers

make reliable decisions while comparing a wide range of candidate algorithms at a low

cost. A typical example of this process is to filter out inappropriate approaches, leaving a

relatively small set of candidate algorithms to be tested by more costly user studies or online

experiments. However, it is important to use data sets with no bias in the distributions of

users, items and ratings selected.

2.3.2 User Studies

A user study experiment is performed by recruiting a set of test subjects, and asking

them to interact with the recommender system. User studies are able to answer more

questions since they allow researchers to collect qualitative data that is often crucial for

interpreting the quantitative results. However, user study experiments are expensive to

conduct and are practical for only a few scenarios. In addition, the subjects must be chosen

such that they represent the real users of the RS as much as possible.

2.3.3 Online Evaluation

The real effect of the recommendation systems can be tested on real recommendation

applications. This evaluation aids the researchers to investigate the RS better with providing

strongest evidence as the true value of the system. In addition, researchers are able to study

the influence on the behavior of the users in more detail.

As already mentioned, it is important to choose the data in offline experiments, and

the real subjects in a user study, to best simulate the online application. And as in any

type of experiment, one needs to reduce the possibilities of statistical errors. for instance
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by performing significance testing on the results. Significance can be assessed by computing

confidence and p-values.

Several desired criteria capture the quality of a recommender system [45]:

Accuracy: Good recommender systems recommend items which are as close as possible

to a user’s preference including his upcoming action. The accuracy can be measured by

statistical accuracy and decision support accuracy. The statistical accuracy evaluates the

recommender systems based on numerical recommendation scores, such as MAE (Mean

absolute error) and MAP (Mean average precision). The decision support accuracy shows

the effectiveness by using metrics such as Receiver Operating Characteristic (ROC).

Efficiency: A recommender system needs to predict items in a reasonable time. In order

to be able to evaluate the efficiency of a RS we consider memory and computation time.

However, there is a trade-off between accuracy and efficiency, because often, speeding up a

RS may result in pruning a portion of the information.

Scalability: Because real-life recommender systems work in a streaming manner, they

should be able to handle hundreds of thousands of users and items to be practical. As in

the case of efficiency, there is an unavoidable trade-off between the prediction accuracy and

scalability. Moreover, handling concept drifts in data and usage patterns is important in

both modeling and evaluation contexts [94–97].

In the following, we review several criteria that ca be used to evaluate a recommender

system:

User Preference: In this evaluation, we ask the participants to choose one of the systems

[98].

Prediction Accuracy: Depending on the recommender system objective, the prediction

accuracy can be measured by: Root Mean Squared error (RMSE) between the predicted

and actual ratings, Mean Absolute Error (MAE), Precision, Recall, Receiver Operating
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Characteristic or ROC curves, Normalized Distance-based Performance Measure (NDPM),

Normalized Cumulative Discounted Gain (NCDG) [93].

Serendipity: This measure gauges how surprising the successful recommendations are.

Serendipity typically hurts accuracy, so, it is important to balance serendipity with accuracy.

One way to measure the serendipity of a recommender is to ask the users to mark the

recommendations that they find unexpected. This metric is only applicable in user subject

tests in online study experiments.

Diversity: This criterion is generally defined as the opposite of similarity (between rec-

ommended items). It is important for a user to be able to view various recommendations

which will result in shorter search interactions. One way to measure the diversity of a set of

recommended item is based on the sum, average, minimum, or maximum distance between

item pairs [99].

As mentioned before, each recommendation application needs proper metric to eval-

uate the used RS. However, the proper way of gaining such evaluation without intensive

online testing or deferring to the opinions of domain experts is still an open question [93].

2.4 Recommender systems challenges

Traditionally, common recommender systems aim to improve rating prediction ac-

curacy [62]. However, recent work started paying attention to other perspectives such as

combating narrow rating prediction focus [21,100]. Recent real-world and laboratory studies

indicated that improving user rating prediction accuracy alone does not necessarily increase

the level of user-perceived quality [McNee et al., 2006; Jannach and Hegelich, 2009; Jan-

nach et al., 2013; Cremonesi et al., 2011]. Therefore, a new stream of research, that started

focusing on improving other aspects of recommender systems, has been gaining significant

attention. For example, the ability of providing explanations alongside recommendations

is an essential component which can improve the transparency of the working mechanisms

within the recommender system [101]. In addition to the above, other approaches to improve
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recommender systems recently tried to go beyond rating prediction accuracy, for instance

by also considering the diversity of items in a recommendation list [102–104].

It is important to note that recommender systems that improve diversity and serendip-

ity are not the same as polarization aware recommender systems. This is because the former

criteria generally require diversity in the actual description or nature of items, which in turn

requires content data. Our research primarily focuses on items that can cross polarization

boundaries, where polarization is based on how users interact with the items (ratings) and

not their content.

2.5 Sentiment Analysis

Sentiment analysis (SA) is studying peoples opinions, emotions and attitudes toward

an entity. Entities are usually in the format of reviews, comments and blogs. The first step

in the SA classification task is to extract and select text features. Current features include:

Part of speech, Opinion words, and Negations [105].

Generally, sentiment analysis methods can be categorized into three main approaches:

machine learning, lexicon based, and hybrids [106]. Previous work on sentiment analysis has

at least partially relied on expert knowledge, with some of this work aiming to classify the

semantic orientation of words or phrases based on predefined seed words [107, 108]. Some

of the work has focused on categorizing an entire document by manual or semi-manual con-

struction of discriminant word lexicons [109, 110]. The lexicon-based approach focuses on

finding a predefined lexicon which is then used to analyze the text. The Dictionary-based

approach is one of the main strategies based on a lexicon. First, a small quantity of lexi-

con words is collected, then the algorithm searches well known corpora, such as WordNet

for synonyms and antonyms [111]. After the process is finished, manual inspection is re-

quired to detect possible errors. On the other hand, a corpora-based approach aims to find

opinion words with certain specific context orientations. Typically, this relies on syntactic

patterns that occur together with a list of seed words to determine the overall sentiment of

an instance [112].
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Pang, et al. proposed to consider the sentiment analysis as a classification problem

from a machine learning perspective [113], which since then, became a widely used approach

to solve sentiment analysis problems. The sentiment classification methods, using a machine

learning approach, can be roughly divided into supervised and unsupervised learning [114].

The supervised approaches take advantage of a large number of labeled documents, while

the unsupervised methods are used when it is difficult to find labeled documents. Among

supervised sentiment classifiers, the probabilistic classifier uses a mixture model for clas-

sification. The model assumes that the mixture is made of multiple classes. Each class is

a generative model which gives the probability of sampling a particular term [115]. One

popular probabilistic model is the Nave Bayes (NB) classifier. Hanhoon, et.al applied an

improved NB classifier which achieves higher accuracy [115]. Prem et al. proposed a pooling

multinomial Nave Bayes classifier in which the posterior probability of each word given the

document is weighted from two sources, labeled documents and labeled features [116, 117].

They successfully applied this method to analyze the text messages in the ’voice of youth

Africa’ project. Another probabilistic model is the Bayesian Network (BN) classifier which

assumes that all features are dependent. Therefore, the model needs to calculate the joint

probability distribution over all variables (features). This method was used to solve a real-

world problem within a semi-supervised framework [118]. One of the challenges associated

with BN classifiers is their prohibitively high computational cost [118].

Another family of supervised models are linear classifiers. Given the word vector of

a document, and a vector of weights of each word, the linear model assumes the label of a

document is a linear combination between words [114]. Support vector machines (SVM) is

one of the typical techniques, in the linear model family, that aims to determine a linear

separator between different classes [119]. Sindhwani et al. proposed a graph-based semi-

supervised learning technique, which combined both label and unlabeled documents in the

linear regression objective function [120].

the decision tree classifier is considered another important type of sentiment clas-

sifier which provides a hierarchical decomposition of labeled training instance based on
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the attributes. The division is continued untill the leaf nodes contain a small number of

instances [121]. Decision tree classifiers, in the sentiment analysis task, follow standard

packages such as C4.5. Hu and Li developed a topical term description model for sentiment

classification, in which they extract topic terms for particular topics and then differentiate

documents based on those terms [122].

2.5.1 Review Sentiment Classification

Movie reviews contain emotional expressions by users about movies. Understanding

the sentiment of movie reviews is critical to get first-hand information about the movies.

Many prior efforts in this field followed a knowledge-based approach, which simply used the

sentiment-polarity labeled words, defined in a preliminary stage in lexicons, and classified

the text according to its linguistic patterns. An alternative approach is based on train-

ing machine learning models on documents that have been labeled with positive/negative

sentiment, to learn text classifiers that distinguish the sentiments in domain-specific doc-

uments [123]. This solved the problem of adaptation for different and changing domains,

however manual annotation requires too much human labor. Prem et al. proposed an ap-

proach that combined lexical knowledge and a multinomial Naive Bayes classifier model [116]

to build successful sentiment classifiers for complex practical problems [117]. Given a Naive

Bayes classifier, the rule to combine two resources is:

P (wi|cj) =
K∑
k=1

αkPk(wi|cj) (2.3)

where, K is the number of experts; K is 2 for two experts are considered in the proposed

model; Pk(wi|cj)) represents the probability assigned by expert k to word wi occurring in a

document of class cj ; and the weights αk are weights for combining these distributions and

are normalized to sum to one. The weights for individual experts are calculated based on

their error on training examples using:

αk = log (
1− ek
ek

) (2.4)
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where ek is the error of expert k on the training set.

2.6 Chapter Summary

In this chapter, we reviewed the background on recommender systems and sentiment

analysis because of their relevance to our research. In the next chapter, we will present a

new survey of polarization, including a new taxonomy of polarization. We conclude with

discussing how our research relates to existing work in related fields.
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CHAPTER 3

POLARIZATION IN THE ONLINE DOMAIN

In this chapter, we conduct a new survey of the topic of polarization in online

spaces. We start with the closely related but distinct problem of concentration bias in

recommendations, then proceed to the subject of polarization. We conclude with a definition

of the scope of our research, and discuss how our work on polarization relates to but is

distinct from the most closely related previous research on concentration bias, such as

novelty, diversity and unexpectedness.

3.1 Over-personalization and Concentration Bias of Recommendations

Recommender systems typically recommend items that are very similar to

what the users have already purchased or liked in the past [20]. Although this

feature has been the original aim of personalized recommender systems, it may lead to a

strong positive feedback loop which makes the recommender system too personalized. Re-

inforcing similar item recommendation results in a closed loop in which the user and the RS

reinforce each other until the ’ideal’ personalized algorithm gets stuck in always recommend-

ing very similar items to very similar users. This reinforcement feature is inconsistent with

some studies that have shown that diversification improves user satisfaction [25,35,99,124].

Following the same direction, Nguyen [25] aimed to answer the following research question:

Do recommender systems expose users to narrow content over time, at least in the domain

of movies?. To answer this question, they employed a longitudinal dataset to simulate

users’ interactions with RSs and found that RSs indeed expose the users to narrowing sets

of items over time.

[125] argued that there are significant differences between recommender system al-
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gorithms in terms of aggregate diversity. They showed that the rating distributions strongly

vary depending on the RS algorithm and that algorithms such as Popular Rank would lead

to making popular items even more popular. This makes those items constantly appear

in the recommendation lists of more users. Other recommendation approaches such as

Item-based KNN and Matrix Factorization have less of this effect, meaning that the rec-

ommendation of popular items is amplified only slowly over time. Finally, Collaborative

filtering and User-based KNN were found to have less focus on popular items initially, and

thus popular item bias remains stable or decreases again after several iterations.

In another direction, that however, requires full access to the content description of

each item, a common solution to diversification is injecting randomness in the content-based

recommendation process [72]. Another approach is filtering out items which are too similar

(based on content) to items the user has purchased or liked in the past [126]. Some recent

studies tried to identify less ordinary neighborhoods to create a diverse recommendation.

One example includes an inverted k-nearest neighbors, which recommends items that are

disliked by the least similar users [127,128].

3.1.0.1 Novelty, Serendipity, diversity and unexpectedness of Recommenda-

tions

Recommender systems generally recommend items that maximize prediction accu-

racy. However, recent research has stipulated that a good recommender system needs to

recommend items that are: [8, 21,93]:

- Novel - items that the user did not know about.

- Serendipitous - (novel) items that positively surprise users.

- Diverse - a variety of ’relevant’ items.

- Unexpected - non-obvious items for potentially higher user satisfaction.

Novelty: Researchers have been working toward fulfilling these criteria. A common ap-

proach to recommend novel items is by asking users to identify the items they already

know [98]. [129] enhances novelty by partitioning the user profile into several clusters of
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similar items. They use these clusters to recommend items that match well with each

cluster rather than with the entire user profile. In another direction, [130] presented a

taxonomy-based RS that detects hot topics using association rules to improve novelty and

quality of recommendations

Serendipity: Serendipitous recommendations are, by definition, also novel, however, in-

creasing serendipity is challenging. Although the user might autonomously discover novel

items, s/he would not be likely to discover serendipitous items. Some studies aim at de-

tecting these items by finding those that are semantically far from the users’ profile [131],

while others adopt an assumption that users follow earlier adopters who have demonstrated

similar preferences [132].

Diversity: Researchers in the field of RS and Information Retrieval (IR) have studied

the principle of diversity to improve user satisfaction, over a span of the last two decades..

A common approach, pioneered by Billsus and Pazzani, is to decrease similarity among

the items in the recommendation list by removing obvious items as well as very similar

ones within the context of content-based RS [126]. Following the same direction, Zhang

et al. [133] presented a multi-objective function optimization based on similarity and di-

versity. They improved their approach by formulating a binary optimization problem to

capture the trade-off between diversity and recommendation accuracy [134]. Said et al. [128]

presented another interesting approach based on an inverted nearest neighbor model which

recommends items disliked by the least similar users.

Combined Approaches and Other Perspectives to Diversity: There have been

recent studies that tried to promote novelty, diversity, and serendipity, at a slight cost

to accuracy [135–137]. For example, [138] presented several contextual pre-filtering, post-

filtering, and contextual modeling methods to promote accuracy, diversity, and serendipity

under different circumstances.

In another stream of studies, researchers studied the importance of personalization
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and users’ perception of diversity from different perspectives [139]. For example, some

researchers presented different recommendation designs and investigated how the users’

perception improved their satisfaction [122]. [140] argued that the diversification

level in a recommendation list should be adapted to the target users’ individ-

ual situations and needs, and proposed a framework to adaptively diversify

recommendation results for individual users based on latent factor models. To

this end, [141] showed that the combination of personalization and diversification could

achieve significant performance in terms of both diversity and accuracy, compared to pure

personalization or pure diversification-oriented approaches.

In addition, other researchers proposed a different approach to measure aggregated

diversity where the RS is able to recommend across all users as many different items as pos-

sible, without a significant loss of accuracy [102,125,142]. For example, [102] controlled the

promotion of popular items towards the top of the recommendation list in order to suggest

more diverse items. Finally, in order to identify useful sources to achieve a better recom-

mendation, [143] presented a comparative study on social system generated information in

the recommendation process.

Unexpectedness: The field of unexpectedness in knowledge discovery has been well re-

searched since the 1990’s [144–147]. Recently, research has also paid more attention to-

wards unexpectedness in recommender systems, where the algorithm is desired to suggest

unexpected and non-obvious items [148, 149]. [150] presented a general metric to measure

unexpectedness. The metric involves only an unlikely combination of item features and does

not depend on a user’s historic record. In another direction, [21] presented a new formula-

tion of unexpectedness in recommender systems, such as the non-obvious items’ significant

departure from users’ expectations. The recommendation process is based on the utility

of the user, the quality that the user will gain from using the item, and the utility of the

unexpectedness of the recommended product.
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3.2 Polarization

Polarization is a common phenomenon that emerges in public opinion about con-

tentious subjects or topics, and it can be observed in many forms [151]. In one form, users

will congregate into communities (based on friend or follower connections) that are divided

along polarizing issues, as demonstrated by the PEW Report [152]. In another form, users

will congregate into polarized groups based on the tweets and particularly the hashtags

that they choose to use when posting or sharing messages about a certain topic. In yet

another form which is mainly dependent on filtering algorithms, users discover a narrower

proportion of the information on social media, as a result of recommendation system algo-

rithms, that filter the vast amounts of information [153]. Based on our survey, we found

that polarization has been studied from three main perspectives (and occasionally hybrids

thereof), leading us to define the following taxonomy:

1. social polarization: how people congregate with one another,

2. written polarization: how people write about topics,

3. rated and recommended polarization: how people behave, consume and express their

preferences.

The following subsections will dive into each one of these perspectives to understand-

ing polarization, in order.

3.2.1 Social Polarization: Polarization in Social Media and Networks

Over the last few years, researchers have turned to online data to study polariza-

tion, due to the importance of online political opinion formation. [154] studied the linking

patterns of political bloggers with the aim to uncover differences in the structure of the

two communities, such as how often they referred to the opposite viewpoint, topics they

discussed, and conversations across the communities. Specifically, this research considered

blogs that spanned two months before the U.S. Presidential Election of 2004. [154, 155]
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found an interesting common pattern which shows that users are less likely to share posts

from the opposite party. [155] showed this fact by employing a combination of network clus-

tering algorithms on the Twitter graph. Recently, [156] presented an approach to capture

the opinions of a large number of politically active individuals and employed a combination

of the Random Forest classifier over a constructed dataset.

3.2.2 Written Polarization: Polarization in the Textual Domain

In another direction, some researchers have studied polarization/controversy from

the sentiment of terms used in text, such as tweets, articles, and blogs [157–159]. For

example [158] presented an approach based on text sentiment analysis where they computed

the magnitude of positive and negative sentiments as well as the difference between the

amounts of two different polarities. [160] presented three Controversy Rank (CR) models

in order to identify controversial articles on Wikipedia. The models uses the articles edit

histories as the level of controversy. Based on their model, ”an article is controversial when

it has lots of disputes among less contributors and a contributor is controversial when they

are engaged in lots of disputes in less articles”. [157] studied disagreement about an entity

in the Twitter data. To do so, they presented a polarization score by combining the current

sentiment of the text and its historical controversy score over time.

Research in social psychology has shown that emotions have a significant effect

on people’s opinion, judgment and evaluation [161]. Within this theoretical framework,

emotions includes two fundamental dimensions: 1) valence, which captures the feeling of

pleasure or displeasure, and 2) arousal, which measures the strength of a feeling [162]. Re-

searchers have studied the correlation between polarization of reviews and arousal/valence

expressed in the reviews [104].
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3.2.3 Rated and Recommended Polarization: Polarization in Recommender

Systems

As we have seen above, polarization has been investigated from a network perspective

mainly using the social network structure, as well as the content and sentiment of discus-

sions, in order to compute a polarization score [163]. However, this type of information is

expensive to extract or is not always available. Hence, another line of work has studied

polarization based on the ratings provided by users on items, within the context of a rec-

ommender system. Research on polarization in recommender systems has emerged rapidly,

in recent years, as an important interdisciplinary topic [31, 38, 164, 165], with some efforts

trying to decrease online polarization, especially in recommender systems [32,38,163].

Although various models have been proposed from different perspectives, there is

not yet a general agreement on how to define or quantify polarization, let alone how to

handle it. A simple but naive way to detect and quantify a polarized item is to inspect the

standard deviation of the item’s ratings. However, this approach is unable to distinguish

between a flat distribution and U-shaped rating distribution, which represent diversity and

polarization, respectively.

To overcome this limitation, [40] considered the standard deviation of adjacent rat-

ings with respect to the total number of received ratings. The intuition is that different

ratings that are close to each other reflect less disagreement than different ratings that are

on opposite ends of the scale. This study was mainly focused on general disagreement/con-

troversy rather than polarization, where they defined controversial items as:

“Items that receive a variety of high and low scores, reflecting disagreement.”

They defined the level of disagreement for a system, with ratings on a scale from 1

to M , as (α@∆), where ∆ controls the granularity of a window in which adjacent ratings

are being considered. The level of disagreement for item i is computed as follows:

(α@∆)(i) = 1− max
a∈1,...,M−∆+1

(∑a+∆−1
k=a fi(k)∑M
k=1 fi(k)

)
(3.1)
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where fi(k) is the number of items with rating k

The proposed measure was used for trust-based recommender systems where there is

an disagreement in a user’s trust network over an item. In order to evaluate their proposed

trust-enhanced recommender systems, they used the Epinions.com website, where users

can provide feedback on different products. The e-commerce website asks users to indicate

which member they trust and then recommends items based on the users’ personal ’web of

trust’ (WoT).

In another research direction, [104] presented a polarization measure based on the

geometric mean of likes and dislikes’ distributions to investigate the existence of a local and

a global regime U-shaped histogram. They defined (opinion) polarizations as follows:

“Opinion polarization is characterized by a division of the population into a small

number of fractions with high internal consensus and sharp disagreement between them.”

They treated the logarithms of likes ln(L) and dislikes ln(L) as centrally distributed

around their means, since the distributions of likes and dislikes per item are approximately

log-normal. They also evaluated the role of items’ emotion in the creation of polarization and

found evidence that emotions, in particular arousal, has more effect on the polarization of

opinions [166]. This is in line with other research in psychology that shows arousal can lead

to extreme responses. To verify, they applied sentiment analysis on the title/header of each

item to extract sentiment scores. Then after identifying the likes and dislikes distribution,

they calculated the polarization score using the following equation:

ZL =
ln(L)− ln(L)

sd(ln(L))

ZD =
ln(D)− ln(D)

sd(ln(D))

Pol = 2
√
Zl × ZD

(3.2)

Finally, the authors tested the effect of emotions on the polarization score using

logistic regression models.

Following a similar intuition, [33] used a general formula as a function of the dif-
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ference in the two opposite population sizes and their distance. To do so, they first built

a distribution of opinions from a social network, distinguishing two types of individuals,

listeners and elite users. The elite users have a fixed opinion, while the opinions of listeners

depend on their social interactions, particularly with their neighbors. Using this model,

they measured the network polarization. They defined polarization as:

“A population is perfectly polarized when divided in two groups of the same size and with

opposite opinions”.

Assuming that there are two, positive and negative opinions, they first estimated

the normalized distance between these two opinions as follow:

∆A = |A+ −A−| = |P (X > 0)− P (X < 0)| (3.3)

Then, they measured the normalized distance between the two positive and negative

gravity centers using Eq. 3.4 as below:

d =
|gc+ − gc−|
|Xmax −Xmin|

=
|gc+ − gc−|

2
(3.4)

where gc− and gc+ are the gravity centers of the positive and negative opinions, respectively:
gc− =

∫ 0
−1 p(X)XdX∫ 0
−1 p(X)dX

gc+ =
∫ 1
0 p(X)XdX∫ 1
0 p(X)dX

(3.5)

Finally, they proposed using Eq. 3.6 in order to estimate the network polarization

score, which is 1 when the network distribution is perfectly polarized.

µ = (1−∆A)d (3.6)

They applied their methodology to a Twitter conversation about the late Venezuelan

president, Hugo Chavez, to study the effect of polarization. They particularly found that

“a minority of elite users were able to influence the whole online social network, resulting

in a highly politically polarized conversation.”
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In another research, [44] studied the temporal evolution of text-based reviews. In

particular, the authors investigated the self-selection bias, where only users that strongly

disagree with the item’s current average rating will make an effort to provide explicit feed-

back. This can explain the reason behind extreme reviews/ratings by users when they do

not think that the average ratings reflect the true quality of an item. This can make the

users try to maximize their influence on the average rating score, which in turn may lead to

polarization in case there are two groups of users who hold opposite opinions about the item

in question. They defined the polarization degree using the opinion spectrum as follows:

”At times the opinion distribution takes the form of U-shape, where almost all the

mass is divided between the two extreme ratings.”

To measure polarization for a given item, they computed the variance(Vk), mean

(µk), mean deviation (∆k), and kurtosis (Kk) of a given item’s ratings, at time k based on

the ratings r1, ..., rk:

µk =
1

k

k∑
i=1

ri

Vk =
1

k

k∑
i=1

(ri − µk)
2

∆k =
1

k

k∑
i=1

|ri − µi−1|

Kk =
1

k

k∑
i=1

(ri − µk)
4

σ4
− 3

(3.7)

These metrics were computed for an item to study the average behavior of items over

time. In particular, the authors studied the temporal evolution of the ratings by computing

the average values of the different metrics and plotting their trends. The authors found

that users adopt more extreme opinions when they disagree with the average opinion, and

concluded that this may be one reason why polarization increases over time.

To conclude, we note that there is neither reported evaluation on the aforementioned

measures nor a comparison with other polarization metrics.
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3.2.4 The scope of our Research: Rated and Recommended Polarization

3.2.4.1 Distinction Between our Research and Existing Research on Polariza-

tion

Most of the current work on polarization has either been limited to simple artifi-

cial toy problems (two users) [31], or relied on textual content to detect sentiment and

then polarization, or were confined to specific domains where contentious issues lead to

polarization. To date, most content-based studies have been typically conducted within the

context of political (or other controversial domain) news and blogs. We are more interested

in this research in studying the emergence and aggravation of polarization as a result of

recommender systems.

It is along these differentiating features, that our research carves a distinct

niche. More specifically, we do not confine our research to content-based, such

as text, nor to controversial domain-specific issues. We mainly focus on ratings,

in other words, the traces of interactions between users who provide preference

labels and machine learning algorithms that use these labels to learn preference

models.

Even when comparing to existing research that focused on rating-based (or rated)

polarization, our approach presents several differences: In our proposed polarization de-

tection approach, instead of dividing the rating histogram into two sub-populations and

fitting two log-normal distributions, we consider the rating histogram all together at once

to extract valuable information.

In contrast to the existing social network(graph)-based approach, we aim to identify

if an item is polarized, rather than to conclude whether the ’entire’ population is polar-

ized. Obviously, more polarized items make the population more polarized. Therefore, the

population-based polarization can be easily inferred from the item-based polarization. It is

also important to estimate the polarization score for each item individually, since items are

the main component that affects the efficiency of a RS. In other words, we need to know

the polarization score for each item in order to be able to choose the best strategy when
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deciding whether to recommend it to a user. Hence, a population-based polarization score

is not enough for this type of decision.

We also propose a generic model to detect polarization rather than several individual

scores. It is important to be able to finally decide whether an item is polarized. However,

it is hard to define a cut point for the aforementioned scores. Moreover, this cut threshold

needs to be tuned for different datasets and domains, individually, making it difficult to

choose.

In addition to the different methods, we note that although the aforementioned

recent efforts tried to detect polarization, they lack an algorithmic approach that works in

a domain-independent manner, and they used metrics that are either too simple to fully

capture an item’s polarization or too expensive and complicated to be used as a component

of other algorithms, such as recommender systems. In addition, existing efforts to compute

a score require this score to be binarized based on a threshold to finally decide if an item is

polarized or not. Finding this threshold is a challenging task, as it is domain specific.

To overcome these limitations, we propose a data-driven machine learning pipeline

to learn an optimal polarization classifier using features that are engineered based on rating

distributions. When these features are used to build and train a classifier, the result is a

Polarization Detection Classifier (PDT) that works in a domain and language-independent

manner to detect and quantify polarization in a variety of domains. The similarity between

the above-mentioned approaches and ours is limited to the intuition of detecting a U-shaped

ratings distribution. However, our methodology is the first ]individual item rating-

based’ polarization detection classifier which is different from those found in

the literature, because our proposed data science pipeline-based approach is

designed based on a data-driven methodology. In order to handle the case where no

individual ratings are available (e.g. IMDb), we resort to the preliminary extra step of map-

ping reviews to ratings to build a ratings’ histogram. In addition, we extensively evaluate

our polarization pipeline on diverse real world data, and demonstrate that it outperforms

existing polarization scores.
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3.2.4.2 How is Polarization in Recommender Systems Different from Novelty,

Diversity, and Serendipity?

Within the scope of recommender systems, polarization is distinct from the seemingly

related aspects of novelty, diversity and serendipity in recommendations. As an example

let’s consider two users who like either red or blue colors. User 1 likes red outfits more than

blue ones; in other words, s/he gives higher ratings to the red items. On the contrary, User

2 prefers blue items, which makes him/her give higher ratings to these items. Now, let’s

assume that User A has been purchasing only red shirts. A novelty-based recommendation

would be to recommend red pants. Although the user has not seen these red pants before

(hence being novel), s/he is able to discover it on her/his own, probably by searching long

enough, particularly with an explicit intention to find ’matching color’ pants to go with the

red shirts.

A serendipitous recommendation would for example be recommending a red mug to

the user. It is similar to the user’s taste, however it is a novel suggestion which the user

could probably not discover on his/her own, in case s/he keeps exploring the same area

(say, clothes or anything outside the cups and mugs category) over and over again.

Recommending different red items from outfits to books increases diversity signifi-

cantly. However, none of these tricks would make the recommender system recommend a

blue item to red-loving user A. What if a blue belt went perfectly with a red dress? (as

a matter of fact, some designer brands, such as Tommy Hilfiger and Ralph Lauren, seem

to have captured this style and capitalized on it very well!). This scenario gets even worse

if all the rest of the users are divided in two groups, where one group only likes red items

and another only likes blue items. A traditional recommender system would group the red-

loving users even more tightly and drive them even further from the blue-loving users from

the point of view of interest and rating feedback; which would make the chance of being

recommended a blue item, smaller for red-loving users. Despite the very simple color-based

example, the scenario that we have just described is exactly what constitutes a polarization

phenomenon, in this case, it is an increasing rift between users in the red and blue groups.
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In order to give the user more options to discover choices in a polarized environment, we

propose a polarization-aware recommender system.

3.3 Chapter Summary

In this chapter, we reviewed the existing research on polarization and defined a new

taxonomy to distinguish between different families within this nascent research topic. We

further discussed the scope of our research, and pointed to how our work on polarization

relates to the most closely related previous research on concentration bias, such as nov-

elty, diversity and unexpectedness. In the next chapter, we present our new research in

polarization-aware recommender systems and in asking new research questions about the

impact of polarization on the recommendation process.
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CHAPTER 4

PROPOSED METHODS:

POLARIZATION IN RECOMMENDER SYSTEMS

4.1 Introduction

In this chapter, we start by presenting a new data-driven methodology for polar-

ization detection in a set of items rated by a population of users. The approach is based

on a data science pipeline that starts with feature engineering, modeling, evaluation, and

interpretation. We first extract a set features based on items’ rating histograms. Then

we train a 2-class classifier to predict the polarization score for each item. Next, although

our approach does not require the review text to determine polarization scores, we were

curious about how the reviews relate to polarization. For this purpose, we investigate the

possible relationships existing between the polarization score and item reviews. To do so,

we perform Sentiment Analysis on the reviews written by users for each movie.

Finally, we propose a novel approach for countering polarization in a recommender

system. We start with a counter-polarization strategy that can be used regardless of the

type of recommender system. Next, we propose a novel NMF-based recommender system

that can suggest a list of relevant items, while also considering several polarization scenario

factors, such as a user’s willingness to discover more items from the opposite polarity, the

items’ polarization scores, as well as the population polarization.

4.2 Polarization Detection Classifier

We propose a methodology to estimate the polarization of an item using a com-

bination of features computed based on the item’s rating distribution. Our methodology

consists of two main steps: first, we construct a feature set from the histograms; and then,
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Figure 4.1: Proposed Polarization Detection Pipeline

we train a binary classifier model to estimate the polarization score for each item. Figure

4.1 shows the proposed polarization detection pipeline along with the sentiment classifier

component.

4.2.1 Problem Definition

Definition 1 - Polarization: Given an environment G = (U, I,R), user u ∈ R1×n

had rated item i ∈ Rm×1 with rating rui ∈ Rm×n on a scale of x to y. Item i ’s polarization

score φi is defined as the spread of its ratings ri. We say the item is polarized if φi ≥ δ.

4.2.2 Feature Extraction

It is important to distinguish between “polarization” and “diversity”, see figure

1.2a and 1.2b, respectively. Although both are social phenomena and can be sometimes

related, they are not the same. A polarized item is only diverse in two opposite directions

and this is sometimes considered a negative phenomenon in social studies. On the other
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Figure 4.2: Proposed feature set 1, based on an item’s rating histogram

hand, diversity is generally considered desirable as a social good since it represents different

points of views or different varieties of choices. By focusing on the representation of the

polarization phenomena within a distribution of user ratings, we introduce a set of features

which capture polarization from the perspective of how the users react to the items, and

not on the similarity or difference between the items’ descriptions.

In general, there are three types of rating distributions, namely J-shaped, U-shaped

and flat-shaped distributions, as shown in figure 1.2. As we can see, in a U-shaped distri-

bution, the ratings are divided between the two extreme ratings. For this reason, we divide

the distribution into left, center and right segments to identify these conceptual distinc-

tions in the histograms of rating distributions. The segmentation can vary depending on

the application and scale. For each segment, we compute the average rating and the count

of ratings which is represented in Equation 4.1; we call it Feature Set One. The intuition

behind taking into account the popularity of each segment is that polarization for an item

with only a few ratings is probably not as significant as polarization for an item with many

ratings. The six features that we define clearly capture the conceptual distinctions between

polarized and unpolarized items based on the user ratings only, and hence are applicable
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to any domain with any rating scale. Figure 4.2 illustrates the extracted features using a

movie’s rating histogram.

F1 = {(wleft,mleft)} ∪ {(wcenter,mcenter)} ∪ {(wright,mright)}

mleft =
∑4

j=1(hj) wleft =
∑4

j=1(hj×rj)

mleft

mcenter =
∑6

j=5(hj) wcenter =
∑6

j=5(hj×rj)

mcenter

mright =
∑10

j=7(hj) wright =
∑10

j=7(hj×rj)

mright

where rating, rj is on scale from 1 to 10 and

hj = number of items with ratings rj ,∀j ∈ [1, 10]

(4.1)

We extract another set of features, Feature Set Two, inspired by the literature [33,

36, 44, 104]. We start by estimating the best number of Gaussian distributions that can be

fitted to the item’s rating histogram. The next feature is based on an assumption that an

extremely polarized item has two peaks in its rating histogram. As shown in figure 4.3, we

first fit two Gaussian distributions, N (µ1, σ1),N (µ2, σ2) and then compute the following

features:

∆µ = |µ1 − µ2|

∆z = |z1, z2|,

where z1 is the peak of N (µ1, σ1) and z2 is the peak of N (µ1, σ1)

(4.2)

In addition, we calculate the similarity between the two fitted Gaussian distributions

using the Chi-square measure [167].

4.2.3 Classification Model

After extracting the feature set for each item, we train a binary classifier, which

needs ground truth labels. To do so, we asked multiple experts to manually categorize each

item into the polarized or non-polarized class. To aid in annotation, a web application was

created. Each item’s ratings histogram was shown to at least 3 annotators, where they

were given the definition of polarization and were instructed to identify the polarized items.
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Figure 4.3: Proposed feature set 2, based on an item’s rating histogram

In case of a tie, we use a majority voting scheme to decide the final category of the item.

We rely on human intuition to detect polarization. A human is able to tell if an item is

polarized or not by only looking at its rating histogram, often without needing to know

the item’s detailed information. Hence, for the sake of removing any bias, we hid all of the

item’s information, except for the rating histogram, from the annotators.

We trained different binary classifiers and finally chose the Random Forest Classifier

[168] due to its high predictive accuracy and strength in handling imbalanced datasets.

After the classification, the predicted probability of belonging to the ’polarized’ class is

considered as the polarization score for an item.

4.2.4 Item Review Sentiment Classification

In order to check the possible relationship between item polarization and reviews,

we performed sentiment analysis on the reviews from each item, e.g. movie. The label for

each review was based on the rating given by the user to the movie. We discretized the

ratings into a binary scale, i.e. 1 if the rating is higher than 5, and 0 otherwise. From

our observation, building the review sentiment classifier on the whole review data led to

under-fitting, since our collected movies contain various genres, requiring distinct lexicons.
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Figure 4.4: Proposed Polarization Detection Pipeline

On the other hand, building a sentiment classifier for each movie led to over-fitting, since

it does not lead to good generalization for unseen movies. Therefore, we built a different

sentiment classifier for each movie genre. When a movie has multiple genres, we decide

its final sentiment label by voting based on the predicted labels from all genre classifiers.

Figure 4.4 shows the steps of the presented sentiment approach.

We used a multi-pooling review sentiment classifier (see Chapter 2), which combines

both lexical background knowledge and labeled reviews, due to its demonstrated efficiency

and adaptability to diverse contexts [116].
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To understand the correlation between polarization and arousal and valence, we

adopted the approach in [104]. We used a lexicon of affective norms for valence (V) and

arousal (A) of about 14,000 English words [169]. We averaged the V and A scores across

all reviews for each movie, and assigned the score to that movie.

4.3 Handling Polarization in Recommender Systems

4.3.1 Problem Definition

We first define the problem of polarization-aware collaborative filtering (CF).

Definition 2 - polarization-aware collaborative filtering recommendation:

Given a set of ratings R ∈ Rm×n collected from a set of users U ∈ R1×n for a set of

items I ∈ Rm×1, the problem of polarization-aware collaborative filtering recommendation

(CF) can be modeled by the triplet (U, I,R), in a way that a recommender system should

recommend a ranked item set i1, ..., it ∈ I according to 1) the relevance of the item to

the user’s interest, and 2) the item’s polarization score. As a realization from definition 2,

(U, I,R) can be denoted by (u, i, r) which means that user u rated item i with value r.

In this section, we will discuss possible strategies to deal with the undesirable effect

of the polarization phenomenon and present novel algorithmic approaches that can be used

to handle it without compromising too much on relevance-based (i.e. pure rating) predictive

accuracy. Figure 1.1 shows a closed feedback loop between a user and a Machine Learning

algorithm, in our case a Recommender System (RS).

We propose a novel recommendation system based on item-user ratings, item’s po-

larization score and population polarization. In addition, we propose a strategy that can

counteract population polarization, independent of a RS algorithm. This means that it

later can be employed in a pre-filtering stage along with any recommender system algo-

rithm. This approach mainly consists of two strategies. Figure 4.5 displays a flowchart of

the different components.

In principle, several approaches are possible for counter-polarization of recommen-

dations in the presence of polarization:
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Figure 4.5: Proposed strategies for counteracting polarization in a recommender system
feedback loop

1. Applying a pre-recommendation scheme to modify the input data before it is fed into

a recommendation technique.

2. Optimizing a new objective function for a polarization-aware recommendation algo-

rithm, such that the objective considers several factors when making a recommenda-

tion to a user.

3. Applying a post-recommendation scheme to modify the outcomes of a given recom-

mendation framework and thus help mitigate the potentially undesirable effects of

polarization.

One might also think of alternatives such as a straightforward counter-polarization

approach, consisting of just including some randomly selected items from the opposite

view. Temporarily, this would seem to solve the filter bubble problem and increase the

diversity of the recommended list. However it would cause much information loss which

leads to recommending irrelevant items and eventually risks reducing user satisfaction with

the system. In addition, such a remedy is not able to solve the filter bubble problem for a
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long period.

In this research, we are more interested in the first and second approaches; and we

will leave the third option to the future, and particularly to Human Interaction Computer

(HCI) experts. We first propose a pre-recommendation approach to mitigate polarization

from the population before learning any model. This is a useful strategy since most online

system providers are using a RS as a black box; hence, it is difficult to look into the inner

workings of the algorithm to modify it. We also present an approach in the context of the

classical collaborative filtering (CF) Recommender system algorithm. We use latent factor

models, specifically Non Negative Matrix algorithm (NMF), to characterize both items

and users based on a set of factors inferred from user-item rating patterns. However, the

proposed approach is not specific to NMF and can be easily extended to any RS method.

The goal of our proposed recommender system is not to guide the user to the mostly popular

items or the “long” tail of items but rather to include items that help users become aware

of other items that s/he is not able to discover on her/his own.

4.3.2 Pre-recommendation: Countering Polarization

Changing the Recommender System algorithm is not always feasible due to many

black box systems. Hence, modifying the learning model can be hard and time consuming.

In addition, in real-life, recommender system platforms are very complicated and modifying

the learning model relies on understanding the learning model, which can be challenging.

Therefore, a systematic pre-recommendation strategy seems most flexible, since it does not

require changing the algorithm or modeling approach. In this step, we aim to transform the

source data in such a way that it mitigates extreme ratings that make an item polarized. By

doing this, we still keep the user’s relative preferences, yet make it more moderate so that no

extreme recommendation can be generated from a standard recommender system algorithm.

We perform a controlled distortion of the training data based on which a recommender

system is trained to help the users receive more useful recommendations, in the presence of

polarization. This transformation is based both on the user’s willingness to discover more
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items and on the item’s polarization score.

In addition, the proposed pre-recommendation approach is useful for other applica-

tions where a dataset should be either published by an online recommender system provider

or used for other research.

The proposed solution to counteract polarization by making the training dataset less

polarized, employs a stochastic mapping function as defined below:

f : (U, I,R)→ (U, I,R′) with probability p (4.3)

The function transforms a user-item rating based on the rating itself, population

average rating, item’s polarization score and user’s chosen discovery factor, as follows.

r′ui = rui − λu × (r̄ +
gi

gmax
)× Φλu+rui

i if rui ≥ δ

r′ui = rui + λu × (r̄ − gi
gmax

)× Φλu+rui
i if rui < δ

(4.4)

where λu ∈ [0, 1] is the user’s selected discovery factor. At one extreme, It is 1 when

the user indicates that s/he is interested in discovering more items, especially from the

opposite view. At the opposite extreme, if the user sets λ = 0, the result reduces to using

only the classical recommendation algorithm which aims to minimize the squared error on

the set of raw ratings. Note that if a user expresses an interest in considering items from the

opposite view, it does not necessary mean that s/he would definitely like or purchase those

items. The goal here, is to simply give an option to the users to be able to burst out of their

filter bubbles. Φi ∈ [0, 1] is the polarization score which is computed using the Polarization

Detection Classifier. gi ∈ [0, 1] indicates the gap between the two rating extreme ranges for

a polarized item, in other words it measures how polarized the user population’s rating is

for item i. We define the gap gi as the difference between an item’s minimum rating that a

typical user provide as s/he liked the item and maximum rating that the user provides to

show s/he did not like the item. In other words, the gap gi captures the difference between

extreme opinions regarding an item. gmax is simply the difference between the maximum

and minimum rating that a typical user can provide for any item, using the system’s rating

scale. The more polarized a population gets, the higher gi gets. δ indicates which ratings
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are considered as liked versus disliked. This is usually set to rmax−rmin
2 , for example, for

an arbitrary rating 1 ≤ rui ≤ 10 , if the rating scale is (1, 10) then a user likes/dislikes an

item if s/he rates an item more/less than 5. However, this threshold can depend on the

application of the recommender system and the item domain. r̄ is the average of ratings

over the entire population. It helps to moderate more extreme ratings while we keep the

exact value for those ratings close to average.

4.3.3 Polarization-aware Recommender Interactive System

Matrix Factorization (MF)-based recommender systems have shown good perfor-

mance by combining good scalability with predictive accuracy [62]. However, different

matrix factorization-based techniques have quite different behavior with respect to how

many different items they recommend [41]. This is due to the fact that algorithms have

different specific ways to learn their model and then generate predictions. Here, we are

interested in the latent space that is induced using a Non-Negative Matrix Factorization

(NMF) algorithm on a user-item matrix. Thus we investigate the recommended list of items

from an NMF perspective.

In order to have a good recommender system, the specific application domain and

recommendation goals should be taken into account when deciding on an algorithm. For

example for a user, recommending popular items might provide valuable reminders, but

could be of little value when it comes to discovering new items. Here, our goal is to design

a recommendation system which not only recommends relevant items but also includes

opposite views in case the user is interested to discover new items.

Recall that the general problem of non-negative matrix factorization (NMF) is to

decompose a non-negative data matrix R with size m×n into two positive elements matrix

factors P and Q, with size m × k and k × n, respectively, such that k � min (n,m) is a

positive integer representing the rank of matrices P and Q. A classical NMF predicts the

overall rating r̂ij by minimizing ||rij − piqj ||2. However, the item rating alone is not able

to fully consider the polarization phenomenon. Hence, in order to estimate R from (U, I)
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such that the system considers both relevance and polarization, we minimize the following

objective function 4.5. The learned prediction function of the proposed polarization-aware

recommender interactive system (PaRIS) has the following form:

min
pu, qi

JPaRIS =
∑
u∈U

∑
i∈I

(
(1− λu)× ||rui − puqi||2 + λu × ||r′ui − puqi||2

)
r′ui = rui − λu × (r̄ +

gi
gmax

)× Φλu+rui
i if rui ≥ δ

r′ui = rui + λu × (r̄ − gi
gmax

)× Φλu+rui
i if rui < δ

(4.5)

where λu is the user discovery factor, Φi is the item’s polarization score, computed

using the Polarization Detection Classifier, gi measures how extreme the different view

points are, δ indicates which ratings are considered as liked versus disliked. The rest of the

variables are the same as the ones used in Eq. 4.49.

The first part of the optimization equation is the classical NMF optimization crite-

rion; while the second part is the counter-polarization component. The intuition behind the

second part is to bring a user and an item closer in the latent space, if the user is interested

in discovering more and the item is polarized. Recall that if we assume the user only sees

items that are recommended, then the user is not able to discover a polarized item from

the opposite view point on his/her own because a personalized recommender system filter

such an item. The new incremental stochastic Gradient Descent update equations, after

each new input, can be derived as follows:

eui = rui − puqi

e′ui = r′ui − puqi

(4.6)

∂JPaRIS

∂pu
= 2(1− λu)× eui × (−qi) + 2λu × e′ui × (−qi)

∂JPaRIS

∂qi
= 2(1− λu)× eui × (−pu) + 2λu × e′ui × (−pu)

(4.7)

pt+1
u = pu + η

(
2qi((1− λu)eui + λu × e′ui)

)
qt+1
j = qi + η

(
2pu((1− λu)eui + λu × e′ui)

) (4.8)
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4.4 Simulating the Interactive Recommendation Process

Recommendation service providers are typically interested in the long-term effects of

the recommender system on user satisfaction. Although conducting A/B tests is a common

approach, measuring such effects is difficult [41]. Due to the discussed reason, a personalized

recommender system can lead to decreased diversity of the recommendations [41,104,159].

In order to assess the effect of the proposed strategies on the diversity of recommen-

dations in a polarized environment, we conduct an experiment to simulate the interaction

between a user and a recommender system, as shown in algorithm 4.1 . The main idea

of the proposed Polarization-aware Recommender Interactive System - (PaRIS) is to start

with a given rating database and incrementally add new ratings to it as would happen on

a real web platform. The assumption is that the system learns a model from the given

rating database and then uses the model to recommend a set of new items to the user. We

assume that the user chooses only one item randomly from the recommended list and rates

it. Hence the system creates one additional rating per user for the chosen item. The new

rating comes from the ground-truth rating database for that user and item. After adding

the new rating to the dataset, the assumption is that the selection of which items

are actually selected to be rated by the user is to some extent determined by

the deployed recommendation system. We repeated this procedure over all users 100

times to simulate the evolution of the recommendation lists over time. In each iteration, we

measure a) MSE and b) the number of items from a the opposite viewpoint/polarity that

were recommended in this round. We see the proposed simulation approach as a comple-

mentary method to investigate the performance of a recommendation process in a polarized

environment in an offline experimental setting.

4.5 Theoretical Analysis of Polarization’s impact on Models and Counter-

Polarization Methodologies

We start with studying the interaction between polarization and the update equa-

tion for Gradient Descent in NMF. We then show how the proposed counter polarization
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Algorithm 4.1 Polarization-aware Recommender Interactive System - ( PaRIS )

Input: initial user-item matrix (Rtrain), fPDC( Polarization classifier function )
Output: final user-item matrix R

1: procedure Polarization Detection Classifier ( PDC )
2: For each item i ∈ I:
3: hi ← extract rating histogram
4: xi ← extract features from hi
5: φi ← fPDC(xi)
6: Φ← Φ ∪ Φi

7: gi ← maxu (rui)−minu (rui)
maxu (Ru)−minu (Ru)

8: procedure Iterative Recommendation Process ( IRP )
9: For each u ∈ U :

10: Repeat While u rates unrated items:
11: Update model P , Q using input data R by optimizing objective function 4.5
12: with the parameter set of λu, Φi, gi
13: R̄← PQ
14: Find Su which is the set of items sorted in descending order of predicted rating
15: Select top kt items from S and recommend them to u
16: User picks an item i′ randomly and gives rating rui′

17: R← R� rui′ for i′ ∈ Su

18: where � is the I/O operator,meaning that user u provides rating rui′ for item i′

solutions change the impact.

Recall the general problem of non-negative matrix factorization is to decompose a non-

negative data matrix R with size m× n into two factor matrices P and Q with size m× k

and k × n respectively, such that:

Rm×n = Pm×k.Qk×n (4.9)

where k ≤ min (n,m) is a positive integer representing the rank of matrices P and Q, and

the constraint is P,Q > 0.

The most common way to estimate P and Q, is by minimizing the Frobenius norm of

the errors between the approximation P , Q and the data matrix R. The objective function

is defined as follows:

J =
∑

u∈U ,i∈I
(rui − puq

T
i )

2 (4.10)

In order to find the stationary point of the optimization problem (P and Q), an
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Figure 4.6: Relationship between r̂ and r in a polarizing RS: ratings r are pushed toward
the extreme by predicting polarized ratings that (1) exceed the true rating if the item is
liked (rating higher than δ) and (2) are less than the true rating if the item is not liked
(rating less than δ)

incremental gradient-descent technique is applied, as follows:

p(t+1)
u = p(t)u − η(e

(t)
ui q

(t)
i ) (4.11)

q
(t+1)
i = q

(t)
i − η(e

(t)
ui p

(t)
u ) (4.12)

The rationale for polarization is given by the following definition:

1. Definition 3 - Polarizing RS: One way that NMF can be polarizing is if the model

updates will push the ratings toward the extremes, hence further polarizing them, this

could be formulated as follows, and is illustrated in 4.6:

IF r̂
(t)
ui > δ + g then r̂

(t+1)
ui > r̂

(t)
ui (4.13)

IF r̂
(t)
ui < δ − g then r̂

(t+1)
ui < r̂

(t)
ui (4.14)

2. Definition 4 - counter-polarization strategies:
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• Remedy 1 - Pre-recommendation counter polarization: avoid that initial rating

r > δ + g or r < δ − g , using the mapping function 4.3: ⇒ f(r)→ r
′
where r

′

is less polarized

• Remedy 2 - Polarization-aware recommender system: Modify the inner working

Recommender system to learn to reconstruct less polarized ratings r
′
. This will

ideally result in the following change:


IF r̂

(t)
ui ≥ δ Then r̂

(t+1)
ui ≤ r̂

(t)
ui ⇒

∂r̂
∂t ≤ 0

IF r̂
(t)
ui ≤ δ Then r̂

(t+1)
ui ≥ r̂

(t)
ui ⇒

∂r̂
∂t ≥ 0

(4.15)

In the following we use the chain rule to rewrite the gradient of predicted ratings,

where θ are the model parameters.

∂r̂

∂t
=

∂r̂

∂θ
× ∂θ

∂t
(4.16)

For example, in case of Gradient Descent in NMF, where r̂ui = pu.qi and θ = (pu, qi)

we rewrite equation 4.16 as:

∂r̂

∂θ
=


∂r̂
∂pu

= qi

∂r̂
∂qi

= pTu

(4.17)

∂θ

∂t
=


∂pu
∂t

∂qi
∂t

(4.18)

The gradient, for small steps ∆t, can be approximated using a linear approximation by

Taylor Series first order expansion.

Using 4.18, we have:


∆pu
∆t = p

(t+1)
u −p

(t)
u

∆t = η × e(t)×q
(t)
i

∆t = η × (r−r̂t)×q
(t)
i

∆t

∆qi
∆t =

q
(t+1)
i −q

(t)
i

∆t = η × e(t)×p
(t)
u

∆t = η × (r−r̂t)×q
(t)
i

∆t

(4.19)
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we can write 4.19 as follows:


∆pu
∆t = η (r̂−r)

∆t × q
(t)
i

∆qi
∆t = η (r̂−r)

∆t × p
(t)
u

(4.20)

From 4.18 and 4.19:

IF
∂e

∂t
> 0⇒ ∂θ

∂t
< 0 (4.21)

IF
∂e

∂t
< 0⇒ ∂θ

∂t
> 0 (4.22)

Here, we are only interested in the sign of each derivative:

Sgn

(
∆θ

∆t

)
= Sgn

(
r̂ − r

∆t

)
(4.23)

(4.24)

What 4.23 says is that the difference between the predicted and true rating has the

same sign as the gradient of the model parameter. In gradient descent, we know what the

parameter gradient’s sign is: If the gradient of the objective function is positive, then the

parameter updates are such that gradient of the parameters have to be in the opposite

direction (i.e. negative) to minimize the objective function. The opposite is true (if the

objective’s gradient is negative, then the parameter gradient will be positive).

In other words the sign of r̂−r will be the opposite of the objective function gradient

Hence:

Sgn

(
∂θ

∂t

)
= Sgn

(
r̂ − r

∆t

)
(4.25)

(4.26)

Our aim is to show that the polarization rate after the proposed remedies is reduced.

On the other hand, a steeper Slope in gradient descent leads to a faster polarization. Using
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pre-recommendation as a counter-polarization strategy, definition 4-(Remedy 1), we are

interested to show that the magnitude of the gradients:

∣∣∣∣∣∂e
′

∂t

∣∣∣∣∣ <
∣∣∣∣∂e∂t

∣∣∣∣ (4.27)

where e
′
= r

′ − r̂ and e = r − r̂ (4.28)

(4.29)

r̂
′ − r

′
=
(
r̂
′ − r

)
+
(
r − r

′
)

(4.30)

= e−
(
r
′ − r

)
(4.31)

= e+ sgn(r − δ)× λu(r̂ + sgn(r − δ)
gi

gmax
× φλu+rui

i ) (4.32)

(4.33)

From 4.30:

e′ui =


eui + λu(r̂ +

gi
gmax

× φλu+rui
i ) if rui > δ

eui − λu(r̂ − gi
gmax

× φλu+rui
i ) if rui > δ

⇒


e′ui > eui if rui > δ

e′ui < eui if rui < δ

(4.34)

One way to reduce polarization is to control the change that is caused by each

update step in gradient descent. For example, one could try to slow down updates or even

allow updates that would increase the objective function, for instance by using Simulated

Annealing. Also, methods that speed up convergence may be harmful in polarized scenarios,

e.g. Steepest descent, Newton, etc.

4.6 Gap Effects in a Perfect Polarization Scenario

Let us suppose that we havea perfectly polarized population around an item. Users

are either in Group A or Group B and the ratings of Group A are shifted by gi compared
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to the ratings of users in Group B. This means that ru1i = ru′
1i
+ gi, where u1 and u′1 are

users from the opposite poles ( A and B, respectively) whose ratings differ by gi, we assume

for every user in Group B, there is a user in Group A with ratings shifted by gi.

We study this simplified problems and show how the gradient changes with gi. Note

that our perfect polarization assumption means that every user in pole A has their reflection

in the opposite pole B, such that the ratings differ by gi.

We further assume a perfect polarized situation for all items, that is ∀i ∈ I, users

are polarized.

Recall that the original NMF objective function, in a perfectly polarized scenario,

can be divided into separate terms, as follows :

J =
∑
u∈U

∑
i∈I

(rui − puqi)
2 (4.35)

= JA + JB (4.36)

=
∑

u1 ∈UA

∑
i∈I

(ru1i − pu1qi)
2 +

∑
u2 ∈UB

∑
i∈I

(ru2i − pu2qi)
2 (4.37)

(4.38)

Here we assume that there are two groups of users, UA and UB, which are users from

opposite poles with regard to their ratings on item i.

J = JA + JB (4.39)

=
∑

u1 ∈UA

∑
i∈I

(ru1i − pu1qi)
2 +

∑
u2 ∈UB

∑
i∈I

(ru2i − pu2qi)
2 (4.40)

(4.41)

Perfect polarization implies that:

∀u2 ∈ UB : ∃u′1 ∈ UA

∣∣∣ ru2i = ru′
1i
+ gi (4.42)

where u′i is the anti-pole of u2, meaning the anti-pole of a user u is user u′ whose

rating is shifted relative to the rating of user u by the gap amount g.
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We write 4.39 as follows:

J =
∑

u1 ∈UA

∑
i∈I

(ru1i − pu1qi)
2 +

∑
u′
1 ∈UA

∑
i∈I

(ru′
1i
+ gi − pu′

1
qi)

2 (4.43)

=
∑

u1 ∈UA

∑
i∈I

(eu1i)
2 +

∑
u′
1 ∈UA

∑
i∈I

(eu′
1i
)2 (4.44)

∂J
∂qi

=
∑

u1 ∈UA

(eu1ipu1 + eu′
1i
pu′

1
) (4.45)

=
∑

u1 ∈UA

(
ru1ipu1 − p2u1

qi + (ru1i + gi)pu′
1
− p2u′

1i
qi

)
(4.46)

=
∑

u1 ∈UA

(
ru1i(pu1 − pu′

1
)− (p2u1

− p2u′
1
)qi + gipu′

1

)
(4.47)

(4.48)

From 4.45, suppose ∂J
∂qi

> 0, this means that new gap (g′i) will cause an increase in

the step size in the gradient descent update equations. Hence counter-polarization, which

decreases the gap to (g′i < gi), will decrease the update step size in gradient qi.

4.6.1 Pre-recommendation Counter-Polarization - ( PrCP )

Recall pre-recommendation transformation function 4.49:

r′ui = rui − λu × (r̄ +
gi

gmax
)× Φλu+rui

i if rui ≥ δ

r′ui = rui + λu × (r̄ − gi
gmax

)× Φλu+rui
i if rui < δ

(4.49)

r′ui = rui − sgn(r − δ).λu(r̄ + sgn(r − δ)
gi

gmax
)φλu+rui

i (4.50)

(4.51)

Again, we make the following assumptions:

1. Perfectly polarized scenario : every ru2i = ru1i + g

2. λu1 = λu1 = λu
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We now compute the new gap:

g′i = r′u2i − r′u1i (4.52)

= (ru2i − ru1i)− λu1(r̄ +
gi

gmax
)φ

λu1+ru1i
i + λu2(r̄ −

gi
gmax

)φ
λu2+ru2i
i (4.53)

= gi − 2λu

[
r̄
(
φ
λu+ru1i
i + φ

λu+ru1i+gi
i

)
+

gi
gmax

(
φ
λu+ru1i
i + φ

λu+ru1i+gi
i

)]
(4.54)

⇒ g′i < gi (4.55)

This means that :

1. the new gap g′i is smaller Compared to the previous gap gi.

2. as φi increases g
′
i decreases even further to compensate for higher polarization.

To conclude, a PrCP strategy makes the gap change, ∆g = g′i − gi, negative, thus

reducing polarization; furthermore, the gap reduction ∆g is monotonically decreasing with

item polarization levels φi and with the user’s desire for discovery, λu.

4.7 Chapter Summary

In this chapter, we presented a new data-driven methodology for polarization detec-

tion in a set of items rated by a population of users. Next, we investigated the possible

relationships existing between the polarization score and item reviews. To do so, we per-

formed Sentiment Analysis on the reviews written by users for each movie.

Finally, we proposed a novel approach for countering polarization in a recommender

system. We started with a counter-polarization strategy that can be used regardless of the

type of recommender system. Next, we proposed a novel NMF-based recommender system

that can suggest a list of relevant items, while also considering several polarization scenario

factors, such as a user’s willingness to discover more items from the opposite polarity, the

items’ polarization scores, as well as the population polarization.
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CHAPTER 5

EXPERIMENTAL RESULTS:

POLARIZATION IN RECOMMENDER SYSTEMS

5.1 Polarization Detection

5.1.1 Datasets

MovieLens [170] :

The MovieLens datasets are a collection of movie ratings that were put together by the

GroupLens research group at University of Minnesota over the past 20 years. There are

different sizes of the dataset based on number of collected ratings: 1, 10 and 20 million

records. The largest set, the 20M dataset, includes about 140,000 users and 27,000 movies.

The ratings are on a scale from 1 to 5 and the dataset also contains movie information,

such as genre and tags. The tags are provided by the user for each movie.

Jester [171] :

The Jester dataset was put together by Ken Goldberg and his group at the University of

California, Berkeley. Jester is a collection of 6 million ratings for 150 jokes. The ratings are

provided by users of the developed system on the internet. Jester uses continuous ratings

from -10 to 10 and has the highest ratings density, 30%, among other available benchmarks.

In other words, on average, a user has rated 30% of all the jokes.

Book-Crossings [99] :

The Book-Crossings dataset is a collection of book ratings, developed by Cai-Nicolas Ziegler

based on bookcrossings.com. It contains about 1.1 million ratings of 270,000 books rated

by 90,000 users. In addition to the ratings, which are on a scale of 1 to 10, the dataset

contains implicit ratings as well.

Amazon Books [172] :
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The Amazon Books dataset contains book reviews and metadata from Amazon, including

over 8 million reviews spanning May 1996-July 2014. Here, we use 5-core data where users

and items have at least 5 reviews each. A rating is an integer from 1 to 5.

Netflix prize [173] :

This dataset was originally constructed for the Netflix Prize Competition which aimed at

accurately predict movie ratings. It contains over 100 million ratings from over 17,000

movies that are rated by 480,000 users. The data was collected from October 1998 till

December 2005. A rating is an integer from 1 to 5.

IMDb Review Dataset [174] :

This dataset was originally used for a binary sentiment classification algorithm. It contains

a set of 50,000 movie reviews from IMDb. The constructed dataset contains 15 positive

and 15 negative reviews for each movie, and neutral reviews are not included. The polarity

dataset contains substantially more data than previous benchmark datasets, including [175].

Epinions [40,176]:

The Epinions datasets are collected from the e-commence site, Opinions.com, where users

can write about products and give a rating. The users also can evaluate other users by

including them in their ’Web of Trust’. The large dataset contains about 1.5 million reviews

that received over 25 million ratings by 163,634 users. The rating for both reviews and items

is on a scale from 1 to 5.

We evaluate our pipeline on the aforementioned benchmarks. The available datasets

have a major limitation in that several have none or few polarized items. For example

[174, 175] introduced polarity datasets that contain 2,000 and 50,000 movies, respectively.

However, these datasets consider only reviews and ratings associated with these reviews.

This is not enough for identifying polarization since not all users provide reviews; hence, by

not considering those users, we lose informative ratings. Moreover, [174] hand-picked only

30 reviews, with an even number of positive and negative reviews, instead of considering all

the reviews for each movie. This data set is therefore an artifact subset of the entire data.

Due to the above limitations, we constructed a balanced collection of movie ratings
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from IMDb, by crawling polarized movies based on their histograms. After pruning and

annotating the dataset, we ended up with 612 polarized movies, each with at least 50 ratings;

then, we crawled all of the reviews for these movies. We also crawled an almost equal number

of randomly selected non-polarized movies from different genres and years. Similar to other

datasets, the movie popularity distribution follows a log-normal distribution. In the interest

of providing a benchmark for future work in this area, we will release this dataset to the

public.

5.1.2 Discussion

5.1.2.1 IMDb Dataset

The proposed IMDb dataset contains 1,340 movies and 427,074 ratings. The data

was collected the last week of March 2017. Each movie has a rating on a scale from 1 to

10. Figure 5.1a and 5.1b show the movies’ frequencies and rating frequencies, respectively.

We first build a rating histogram of each item in the datasets. Figure 5.5 shows

a snapshot of a movie histogram along with 2 Gaussian distributions of our constructed

dataset. Then, we label each item as polarized or non-polarized using our annotation

methodology as shown in figure 5.2 ( more description in Section 4.2.3). Next, we extract

the proposed feature set ( Sec. ??) for the items. We report 5-fold cross validation results

to make our results comparable with others in the literature. We then train our proposed

Polarization Detection Classifier using the Random Forests algorithm.

(a) Item Frequency (b) Rating Frequency

Figure 5.1: Frequency of movies in the dataset and total ratings histogram
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Figure 5.2: Annotation Platform

We compare our Polarization Detection Classifier (PDC) to several recent models

[33, 36, 44, 104]. All of these methods use metrics that measure the polarization score for

each item based on various criteria. In order to compare them with our classifier, we

learned a threshold for each metric based on a validation set, and then, using this threshold,

we decided whether an item was polarized or not. In addition, we tuned any additional

parameters -e.g. for [40] to fully capture polarization. Figure 5.4 shows the Area Under

Curve (AUC) of the Receiver Operating Characteristic (ROC) curve [177] for each method.

The proposed polarization classifier achieves the highest AUC = 0.92.

We compared these two sets of features to decide which one to choose for further

experiments. Figure 5.3a shows the results of the classifier using feature set 1, 2, and both

of them, respectively. As we can see, considering all features (10 features) does not improve

the accuracy significantly. Considering only feature set 2 decreases the accuracy by about

20%. These results verify that feature set 1 is simple, fast, and accurate for detecting

polarized items, based only on how they have been rated by users.

Figure 5.6 shows the Precision, Recall, and F-score [168] for the polarized and non-

polarized class. PDC outperforms the other approaches significantly. To compare the total

performance achieved by PDC, we also list the AUC for ROC curves in Table 5.2 which

shows that PDC significantly outperforms the other methods in terms of AUC.
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(a) ROC feature Set 1 (b) ROC feature Set 2

(c) ROC for both of the feature Sets

Figure 5.3: ROC comparison for the proposed feature sets

Table 5.2 shows the time taken by PDC compared to the other methods. PDC is

significantly faster, even though we excluded the time needed for finding the best threshold

for other polarization scores, and our approach has a training phase.

Our new approach is a valuable asset in the different domains where polarization

matters, such as recommender systems. To illustrate this, we automatically quantify the

polarization of several benchmark data sets for recommender systems, using our developed

polarization detection pipeline to process these large data sets without the need to label

them manually or to retrain the classifier.

5.1.2.2 Polarization versus Sentiment

For the review sentiment classifier, we built 13 review sentiment classifiers, one for

each genre. We noticed that each genre has a different number of instances for training;
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Figure 5.4: ROC comparison

Figure 5.5: Histograms of 100 randomly selected movies from the crawled IMDb dataset
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Figure 5.6: Performance of PDC compared to existing polarization metrics on polarized and
non polarized data. PDC achieves a competitive tradeoff of precision and recall regardless
of polarization

therefore, the accuracy varied depending on the genre. The accuracy is generally around

0.75±0.15 with Area Under Curve (AUC) 0.7±0.1 for all genres. However, some genres

resulted in low accuracy, e.g. ’Horror’ and ’Thriller’. One possible reason is that lexical

knowledge gives high negative weight to words that are actually positive in horror/thriller

movies. For example, ”This movie is very scary!” expresses positive sentiment in horror

movies, but the lexical knowledge gives a high negative sentiment to this review. As men-

tioned before, Valence and Arousal is highly related to the emotions of people as well.

For example, ’This is a good movie’ has lower arousal score than the sentence ’This is a

very good movie!’, meanwhile they have similar valence scores because they both express a

positive feeling.

To understand the relationship between the ratings-based polarization score and

review sentiments, we compute the Pearson correlation [178] between the polarization score

and sentiment score of each movie. To do so, we first needed to aggregate review sentiments

for each movie. We considered both average and standard deviation of review sentiments.

The reason for considering standard deviation is that if a movie’s sentiment has a larger

standard deviation, this means that the reviews contain different sentiment scores. In other

words, it shows that there is some disagreement between reviews that may indicate a higher
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Figure 5.7: Heatmaps showing Pearson correlation coefficients between text reviews, polar-
ization and emotion (v=Valence, a=Arousal) in polarized and non-polarized items.

polarization. However, the sentiments’ disagreement does not always mean that extreme

opinion (polarization) is present. It may simply show diverse sentiments regarding that

movie. We investigate these assumptions in Figure 5.7, which shows different correlations

for polarized and non-polarized movies. The correlation between the polarization score

and review sentiments is close to zero, showing that reviews by themselves are not enough

to automatically infer polarization status; and that furthermore, due to being domain-

dependent, reviews are unable to fully infer polarization in generic domains. However, in

agreement with the theory in [104], arousal sentiment is associated with higher levels of the

polarization score, due to the hidden strong emotions in the reviews . In addition, there is

a stronger correlation between the sentiments themselves and the polarization score in non-

polarized movies. This is due to the fact that the non-polarized movies have many reviews

(at least 100 for each movie) compared to the polarized movies. Finally, we can conclude

based on our experiments and analysis, that although text-based item reviews are able to

slightly point to the polarization, they are not sufficient to fully capture polarization.
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5.1.2.3 Other Benchmark Data Sets

In this section, we apply our PDC pipeline on various recommender system bench-

mark data sets, including the Netflix Prize [62], IMDb-Polar [174], Book-Crossing [99],

MovieLens (20M) [170] and Amazon books (for several random users) [172]. Table 5.1

shows the percentage of polarized items in each dataset after removing items with less

than 50 ratings. As we can see, there are only a few polarized items for most datasets.

This confirms the fact that the available benchmark datasets do not always fully capture

the realistic distribution of polarized user-item ratings. Hence, they may not be suitable

to study polarization’s interplay with recommender systems. Polarization often emerges

during a discussion about a controversial topic when there are two groups of individuals

with extreme opinions. A typical example is the e-commerce site Opinions.com, in which

users can evaluate other users by including them in their ’Web of Trust’ [40]. The available

benchmark on Opinions.com has been used for trust-based recommender systems mainly for

recommending items that the trust network disagrees with. However, our large scale quan-

tification of this benchmark data set shows that most of the items are diverse ratings (flat

ratings histogram) rather than polarized ratings (U-shaped ratings histogram), as shown in

table 5.1.

TABLE 5.1

Detecting Polarized Items in Different Domains

Book
Crossing

Amazon
books

Epinions
IMDb
Polar

Movie
Lens

Netflix
IMDb
PDC

Num. of
items

1,340 5,912 103 3,581 19,344 10,524 1,340

Num. of
ratings

49,317 25,230 1,561 25,000 138,493 19,847,947 427,074

Num. of
polarized
items

2 12 9 3,581 4 5 612
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TABLE 5.2

A comparison of AUC and time complexity for different methods

PDC
Victor

et al. [40]
Morales
et al. [33]

Matakos and
Tsaparas [44]

Abisheva
et al. [104]

AUC 0.92 0.5 0.72 0.5 0.51

Time (sec.) 1.87 63.93 3.92 3.21 5.27

5.2 Handling Polarization in Recommender Systems

As mentioned in chapter four, we first propose a pre-recommendation approach to

mitigate polarization from the rating data before learning any recommendation model. This

is a useful strategy since most online recommender system providers use a RS as a black box;

hence, it is difficult to look into the inner workings of the algorithm to modify it. We also

present an approach in the context of classical Collaborative Filtering (CF) Recommender

System algorithms. We use latent factor models, specifically the Non-Negative Matrix

(NMF) algorithm, to characterize both items and users on a set of factors inferred from

user-item ratings patterns.

In the context of this work, our major interest is not in changing the user’s rating,

but rather how different recommendation algorithms and strategies affect which items a

user would see (or discover) after working with a recommender system, especially in a

polarized environment. We study the effect of polarization and propose several strategies

to counteract the polarization effect.

In order to investigate the performance of the proposed approach, we need to know

how many of the items in the opposite view are ever actually recommended to the user.

This is different from catalog coverage, which considers how many of the recommended

items belongs to the ”long tail” of items. In this section we will take a deeper look at the

view space coverage and effects of polarization on the algorithms.
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5.2.1 pre-recommendation for Counter-Polarization

To empirically validate our proposed pre-recommendation schema, we first studied

how factors λu,Φi, gi would affect the mapping function from section 4.3. Figure 5.8 shows

how the difference among extreme values affects the initial rating rij in a polarized environ-

ment if a user u has a high discovery factor λ. In figure 5.8(a), we assume that ratings are on

a scale of 1 to 10 and that all items have the same polarization score, ∀i ∈ I, φi = 0.9. Gap

represents the difference between extreme opinions of an item. For example if Gapi = 2,

item i has received two diverging sets of ratings from users. Users who liked this item rated

it 10,9,8,7, while those who did not enjoy the item as much had given ratings in the range

of 1 to 4. So there is a 2-gap between the given ratings; hence, the item ratings histogram

looks like figure 5.9. Similarly, figure 5.8(c) indicates how the transformation affects the

initial ratings for an arbitrary item i, where gi = 2 and the user discover factor λ is 1.

Finally, we study the effect of the user’s chosen discovery factor on transforming the source

data. Here, we assumed that gi = 2 and that the item is polarized, with φi = 0.9. As

shown in the figures, we performed a controlled distortion of the training data from which

a recommender system is learned to help the users receive more useful recommendations

in the presence of polarization. By doing this, we still keep the users’ preferences, yet

make it more moderate so that no extreme recommendation can be generated when using

a conventional recommender system algorithm.

5.2.2 Polarization-aware Recommender System

5.2.2.1 Experimental Settings

Although recommendation system providers are typically interested in the long-term

effect of a proposed RS algorithm on user satisfaction, it is not always feasible. In our case, it

is challenging to control parameters which may affect the polarization degree and hence user

satisfaction. Conducting such experiments requires A/B testing for a couple of months to

carefully study the counter-polarization effect and its consequences on the recommendation

service, as well as user satisfaction [41].
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Figure 5.8: Correlation between Φ, g and rating rui in the pre-recommendation style counter-
polarization approach

It is also important to consider the effect of datasets on the recommendation process.

Recent experiments indicate that rating distribution characteristics have an influence on

the behavior of the algorithm with respect to different measures, such as catalog coverage

[41]. Hence, it is critical to fully understand a dataset before learning a model. However,

information regarding collecting offline datasets is not always available. Especially in the

case of interactive recommender systems, it is often hard to simulate the process of data

collection [42] . Most data publishers provide information regarding the data collection

process, yet there is often hidden biases which affect the recommendation process. For

example, we have showed in table 5.1 that none of the available benchmarks have collected

a sufficient number of polarized items, although these items exist.
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For all these reasons, we study the effect of polarization on recommender systems on

multiple users in a fixed environment, inspired by [31]. The fixed environment represents a

source of information for recommending items to a user. We then conduct a large number of

experiments on this environment to demonstrate the performance of our proposed approach

compared to baseline methods.

5.2.2.2 Evaluation Metrics

We evaluate the performance of our approach in terms of rating prediction accuracy,

using the Mean Squared Error (MSE) [62]. The MSE is the average of the square errors of

the predicted ratings:

MSE =
1

m

m∑
i=1

(ri − r′i) (5.1)

where m is number of items, ri is the true rating of item i and r′i is the estimated

rating.

As part of studying polarization, we also define a metric to evaluate different counter-

polarization strategies. This metric helps us to verify whether an item from the opposite

view is among the recommended items. Considering each user, if any of the items from

the opposite view is included in the recommendation list, then a hit occurred. We define

Opposite View Hit Rate (OVHR) ratio based on the ratio of the number of items from the

opposite view to the total number of recommended items:

OVHR =
Number of recommended items from the opposite view

Total number of recommended items
(5.2)

5.2.2.3 Multi-User Fixed Environment

We consider the following simple environment: Let G = (U, I,R) be an environment

where user u ∈ U can rate item i ∈ I with rating rui ∈ R on a scale of x to y. The item

could be a book, web page, news article, movie, etc. We define a recommender system

algorithm as follows:
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Definition 3 : Let the number of users, |U | = n and number of items, |I| = m. A

recommender system algorithm takes environment G as input along with a user u ∈ U , and

outputs a set of items i1, ..., ikt ∈ I.

Thus, given an environment G, representing which users have rated which items

and a specific user u, a recommender system algorithm’s output is a list of items to be

recommended to u. We assume that u has to pick only one item from the recommendation

list and that s/he then provides a rating rui for the selected item.

In order to analyze the polarization effect on the positive feedback loop, generated

between a recommender system suggesting items for a user and the users providing ratings

for the recommended items, we generate a rating environment with 50 users and 200 items.

Items are evenly divided in two opposite viewpoint sets that we refer to as red items and

blue items. Users are also divided into two groups based on whether they like red or blue

items. These labels are purely for the purpose of analysis and they obviously do not affect

the recommender system algorithms. Each user u ∈ U rates half of the items of I, in such

a way that the rating rui is greater than ζ if s/he likes item i, and less than ζ if s/he does

not like it. This process forms environment G. We also assume that users are rational and

are truly expressing their preferences with ratings on a scale of 1 to 10. For concreteness,

we assumed ζ = 5. In order to make the environment polarized, we assume that user

ua ∈ GroupA likes red items more than blue ones, and hence all of his/her ratings for the

red items are higher than all of his/her ratings for the blue ones. Similarly, we assume that

user ub ∈ GroupB likes blue items more than red ones and hence all of his/her ratings for

the blue items are higher than all of his/her ratings for the red ones. Finally, we generated

environment G with different values of Gap and user’s discovery factor.

We follow the same steps that were presented in Algorithm 1, for the classical NMF

recommendation algorithm, to apply our proposed counter-polarization strategies. In order

to understand the Interactive Recommender System (IRS), we start by showing some ex-

periments that illustrate examples of how such a system works in environment G. In all of

the examples, we set the number of factors in the latent space, kf , to 5 and we compute the
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Figure 5.9: Rating histograms of the items in environment G with polarization ratio 0.25

list of top kt = 5 items to be recommended to each user. The user will give a rating for only

one of the selected items and we take this rating value from the true source of ratings, i.e.

the ground-truth data. We repeat this procedure 100 times (there are 100 unrated items

for each user) to simulate an interactive recommender system scenario. In each iteration,

we measure MSE from the training and testing phases. We also keep track of the items

that a user decided to react by providing a rating.

Figure 5.10 shows traces from the interactive recommendation system for user u ∈

GroupA, which means s/he likes red items more. We generate environment G considering

that gap is 2. This means that 7 ≤ rui ≤ 10 if u ∈ GroupA likes item i while 1 ≤ rui ≤ 4 if

u ∈ GroupA does not like item i. Figure 5.9 shows the rating histogram of items and we can

clearly see that the difference between the range of the two sub-populations of ratings given

to an item is 2. Figure 5.10 shows that a classic state of the art recommender system, in our

case NMF, is always going to recommend red items, to which the user had previously shown

more interest. Although the red items are relevant, the user Red is trapped in a filter bubble
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Figure 5.10: Traces of the interactive recommendation process for user ua who had liked
red items more than blue items

Figure 5.11: Traces of the interactive recommendation process for user ua who had liked
red items more than blue items

that does not allow him/her to explore any items from the opposite color/view, at least not

before the user has seen all of the Blue items, the number of which may be enormous in a real

life setting. This finding is in line with finding in most of the literature [179,180] including

what Dandekar et. al have proved mathematically for an over-simplified theoretical scenario

with simpler CF strategies in [31]. Figure 5.11 shows the testing MSE error for user ua.

MSE decreases as the user provides ratings in each iteration; hence, there are fewer unrated
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items for the user.

Figure 5.12 shows a very interesting “pattern” in the NMF model’s convergence

when using gradient descent optimization, where each line (or colored thread) represents the

decrease of the objective function for an iteration of the interactive recommendation process.

One interesting question that arises is whether this peculiar pattern might be

due to the fact that the environment G is polarized? We will next investigate

this possibility by learning NMF models in several environments with varying polarization

rates. The answer to this question is critical because it might indicate that the

simple task of monitoring the convergence trends of the objective function of

an interactive recommendation system, may hold the key to detect emerging

polarization early on during the interaction between the user and algorithm.

Figure 5.13 provides an answer to this question, where we can see the contrast between the

objective function evolution for varying polarization rates, compared to non polarization.

There is a clear pattern (namely a bump followed by a plateau), in the decrease of the

objective function, that is associated specifically with polarization. Furthermore the error

converges to a smaller value for higher polarization. We interpret this algorithmically,

by the fact that the higher the polarization in the ratings, the larger the gap (extreme

likes and dislikes) between the items’ ratings in the opposite viewpoints. Hence increased

polarization leads to increased separation between the opposite viewpoint ratings, which,

very naturally makes learning the ratings an easier task from a machine learning perspective.

This is analogous to improved class separability in learning class boundaries, which naturally

make learning a model easier. Although we have given a natural explanation

for the model’s lower reconstruction error (hence better prediction) for higher

polarization, this is still surprising (when taken in the context of learning in

polarized environments), and disappointing (machine learning algorithms find

it easier to learn discriminating models in polarized environments: The models

will quickly learn to keep each user in the safety of their preferred viewpoint,

essentially, giving rise to filter bubbles).
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Figure 5.12: Traces of the interactive recommendation process for user ua who had liked
red items more than blue items

Figure 5.13: Traces of the NMF model’s gradient descent convergence plot for several
populations with different polarization degrees
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Figure 5.14: Traces of the interactive recommender system for user ub in environment G
with polarization ratio = 0.8

Figure 5.15: Traces of the interactive recommender system for user ua in environment G
with polarization ratio = 0.8

We repeat the same experiment for user ub ∈ GroupB who likes blue items more

than red items. Figure 5.14 shows the same pattern as user ua which indicates that regard-

less of user groups and item types, the positive feedback loop in a polarized environment

creates a filter bubble which prevents the users from exploring opposite views. In fact, the

polarization causes severe consequences in increasingly polarized environments, as shown in

figure 5.15 .

To make a more comprehensive evaluation of performance of the proposed counter-

polarization approaches, we repeat the experiment with varying the parameter λ for the

proposed counter-polarization methodology. We consider two scenarios:

(a) All users have the same λ, i.e. λu = c ∀u ∈ U , where c is a constant ∈ [0, 1].

(b) User u has his/her own unique λ, λu = cu for user u and λu = 0 ∀u ∈ U − u, where cu

∈ [0, 1], is a user defined constant

Scenario (a) assumes that all users have same discovery factor which indicates a more

unified population regarding exploring the item space. While Scenario (b) assumes only the
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Figure 5.16: Traces of the Interactive Recommendation process when applying the pre-
recommendation counter polarization (PrCP) strategy for user ua

Figure 5.17: Traces of the Interactive Recommendation process with the classical NMF-
based CF recommendation algorithm for user ua

current user u can modify his/her user discovery coefficient λi and the rest of the users

have no interest in discovering new items, which means their λ is set to 0. The intuition

behind this experiment is to study the effect of a user population on recommending items

to a single user and to all users.

We run the experiments for different λ ∈ [0, 0.2, 0.5, 0.7, 1] in environment G with

gap = 2. Then, we compute MSEtest, MSEtrain and OVHR for each user and then take

an average over all 50 users. In order to have a comprehensive comparison, we compute
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Figure 5.18: Interactive Recommendation process with the polarization-aware recommender
system - ( PaRIS ) for user ua

OVHR in two ways:

(a) OVHRu: Compute the ratio of number of items from the opposite view to what the

user has picked from the recommendation list.

(b) OVHRtk : Compute the ratio of number of items recommended to the user from an

opposite view.

Table 5.2 shows that the effects of the two metrics strongly vary depending on the

chosen recommendation algorithm and strategy. Trends in varying d, show that the higher

the user-defined parameter λ, the more she will be recommended items from the opposite

view, as desired by the user. The ability of the user to tune the degree of discovery into

the opposite viewpoint is an important feature in a polarization-aware recommender system

because it allows the user to make decisions about hisher exploration space. This also adds

to the transparency of a RS algorithm.

When comparing the traditional NMF-based RS with our polarization-aware RS, we

see that the traditional NMF-based algorithm achieves good accuracy in rating prediction,

yet it is not able to recommend any item from the opposite view. In contrast, both of our

polarization-aware recommender system approaches are able to recommend a set of items

which are a combination of traditional relevant single-view suggestions as well as items
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from the opposite view. Both the pre-recommendation scheme that can be added to the

traditional NMF-based RS and the Polarization-Aware RS recommend significantly more

items (p ≤ 0.05) from the opposite view compared to the baseline approach, for all the de-

grees of user-defined discovery factors. These differences between different recommendation

processes would go unnoticed if only accuracy measures were considered.

From a different perspective, the polarization-aware recommender system has higher

OVHRu and OVHRkt compared to the NMF-based RS with the pre-recommendation

scheme. One reason behind this, is that we limit the probability of applying the pre-

recommendation approach, p, by the maximum value of 0.5. This probability decreases

as the users interact with the system. In other words, the probability that the user sees

more items from the opposite view is high in the early stages of the interactive recom-

mendation process; then it drops as the system receives more feedback from the user and

updates its model. We assume that the user will pick a random item from the recommended

list, regardless of the color. p is a flexible parameter that leads to more discovery if it is

close to 1. Figure 5.19 shows the results if we define the probability of applying the pre-

recommendation strategy, p, for user u as p = |UIt|
|UI| , where UI is a set of items that have

not been rated by user u and UIt is the set of items that have received ratings from user

u so far, during the interactive recommendation process. As we can see from this figure,

the user sees more blue items. The fluctuation in the MSE plots is due to the fact that

this strategy attempts to estimate the distortion rating rather than the true rating. This

means that the error would be high for the extreme ratings since the pre-recommendation

approach transforms ratings to less extreme ratings, while the error is lower for moderate

ratings since this approach does not change those too much, so these ratings are closer to

the true ratings.

One may assume that having the same user discovery factor for all individuals in the

population would result in higher opposite view hit rates, since all users are interested in

discovering new items and hence the entire population would be less extreme. However, our

experiments reveal a different story. Table 5.3 shows that having the same user discovery
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Figure 5.19: Traces of the Interactive Recommendation process when applying the pre-
recommendation approach, without limiting p, for user ua

factor for all users has less effect compared to increasing the user discovery factor for a

specific user. It shows that having an enthusiastic population does not always result in

counter-polarization. This effect is even more severe in the polarization-aware strategy

where the users do not see any item from the opposite view even when the user population

has λu = 0.5 ∀u ∈ U .

Finally, by looking at the number of recommended items over time, we can see that

the proposed counter-polarization methodology succeeds to cover items from the opposite

view after a few iterations and broadens the viewpoint spectrum even faster if the user is

more interested in discovering items from different viewpoints. Endowing the user with

the ability to interactively and adaptively control the breadth of viewpoints offered by

our polarization-aware recommendation algorithm is an important capability. One conse-

quence of this capability is empowering the users who are nowadays increasingly

and unconsciously entrapped in algorithmic filters over which they have had no

control. To our knowledge, this feature which allows humans to remain in

or regain control of algorithm-induced filter bubble traps, has heretofore not

been allowed or engineered in existing information filtering systems, whether

on social media, e-commerce or e-learning recommender systems.
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TABLE 5.3

Comparison of the counter-polarization methodologies with the classical NMF-based Rec-
ommender system in terms of accuracy and opposite view ratio (OVHRu,OVHRtk)

Opposite View Ratio MSETrain MSETest

OVHRu OVHRtk

mean, std mean, std mean, std mean, std

Classic NMF 0.0± 0.00 22.02± 5.27 138.96± 12.55

P
rC

P S
ce
n
ar
io

(a
) λi = 0.2 4.8%± 0.06 25.0%± 0.035 126.57± 38.13 807.30± 70.51

λi = 0.5 4.8%± 0.07 28.0%± 0.41 122.38± 37.16 805.33± 71.77

λi = 0.7 5.0%± 0.06 2.9%± 0.21 120.14± 34.40 800.23± 64.91

λi = 1.0 5.0%± 0.08 3.1%± 0.048 120.31± 34.96 789.89± 66.54

S
ce
n
ar
io

(b
)

λi = 0.2 5.4%± 0.073 4.9%± 0.021 123.92± 36.76 813.01± 36.76

λi = 0.5 6.2%± 0.075 5.2%± 0.042 122.56± 39.081 804.01± 75.88

λi = 0.7 7.0%± 0.075 5.4%± 0.033 120.97± 35.19 803.65± 64.65

λi = 1.0 6.8%± 0.064 5.8%± 0.03 119.76± 34.93 801.86± 65.07

P
a
R
IS S
ce
n
ar
io

(a
) λi = 0.2 0.0%± 0.00 0.0%± 0.00 57.63± 14.35 223.31± 32.14

λi = 0.5 0.0%± 0.00 0.0%± 0.00 146.51± 41.73 632.21± 57.73

λi = 0.7 5.2%± 0.64 6.4%± 0.24 228.31± 66.45 1082.35± 79.95

λi = 1.0 48.0%± 0.17 32.0%± 0.12 383.80± 108.52 2015.85± 167.46

S
ce
n
ar
io

(b
)

λi = 0.2 5.4%± 0.073 12.32%± 0.31 123.92± 36.76 813.01± 36.76

λi = 0.5 6.0%± 0.08 18.1%± 0.21 124.46± 37.29 299.82± 76.01

λi = 0.7 61.0%± 0.17 31.0%± 0.167 209.73± 59.53 967.103± 145.92

λi = 1.0 67.0%± 0.24 68.0%± 0.24 361.77± 102.74 1883.50± 237.83

We repeated the polarization effect experiment in another environment G′, where

there are three types of items, RED, GREEN and BLUE. we define Group A and Group B

as follows:
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Figure 5.20: Rating histograms of the items in environment G′

(1) if user u ∈ Group A :



7 ≤ rui ≤ 10 for i ∈ IRED,

1 ≤ rui ≤ 10 for i ∈ IGREEN ,

1 ≤ rui ≤ 4 for i ∈ IBLUE

(2) if user u ∈ Group B :



7 ≤ rui ≤ 10 for i ∈ IBLUE

1 ≤ rui ≤ 10 for i ∈ IGREEN

1 ≤ rui ≤ 4 for i ∈ IRED

(5.3)

Figure 5.20 shows the item rating histogram of environment G′ where |IRED| =

|IBLUE | = 50 and |IGREEN | = 50.

Figure 5.21 shows the results of the interactive recommender system framework

using the traditional NMF-based algorithm. Figure 5.21 demonstrates that although there

are some items that are not polarized, the RS algorithm is not able to recommend items

from the opposite view. However, the algorithm does recommend relevant items including
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Figure 5.21: Traces of the interactive recommender system for user ua in environment G′

the unpolarized (green) items which shows the superiority of the NMF algorithm in rating

prediction.
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CHAPTER 6

PROPOSED METHODS :

HASHTAG RECOMMENDATION

6.1 Introduction

In this chapter, we start with a proposed methodology for hashtag recommendation.

In order to recommend hashtags, we propose a general cross-domain hybrid recommenda-

tion model. To do so, we utilize a combination of the tweets textual content in a latent

factor space, learned by MF, and a hashtag similarity graph.

We finish this chapter by discussing research that is centered on active learning and po-

larization. We dissect the most common active learning strategies assumptions and point

to potential weaknesses that result from polarization. We conclude with proposed research

questions for several leading assumptions.

6.2 HashTag Recommendation

Based on our review of hashtag annotation literature in section 2, we can observe

that existing approaches work in the original space. However, our review also concluded

that recommendation methods that exploit a latent factor space lead to more accurate

recommendation prediction. In the latent factor approach, a user or item can be represented

by a set of latent factors using matrix factorization (MF) techniques [62].

Due to this and also in order to handle the problem of sparsity, poor semantics and

high dimensionality in the original bag of word spaces of tweets, we aim to design a recom-

mender system that goes beyond raw user and item level information and represents them

in the latent factor space. In this work, we propose a novel approach which computes tweet

similarity within a common latent factor space that is learned using both tweet content and

90



hashtags. Furthermore, we improve the recommendation system using a hashtag similarity

graph in order to support better ranking.

6.3 Problem Statement

Given a tweet t ∈ T , a hashtag recommender system should recommend a ranked

hashtag set {h1, · · · , hf} where hi ∈ H according to 1) the relevance to the content of

tweets, and 2) the relevance of the hashtags themselves. H is a set of existing hashtags

extracted from the past (training) data, hence this algorithm does not aim to recommend

new non-existing hashtags.

We propose a novel hashtag recommendation system based on the content of each

tweet. This approach mainly consists of two steps: 1) Candidate Tweet selection: retrieve

the most similar tweets featuring hashtags from the data set. 2) Hashtag Ranking: extract

hashtags contained in the top-n similar tweets and select the top-k hashtags based on a

ranking method. Figure 6.1 displays a flow chart of the proposed approach.

Figure 6.1: Flowchart of proposed hashtag recommendation algorithm.
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6.4 Candidate Tweet Selection

In order to recommend a set of hashtags to the current unseen tweet t, first a set

of similar tweets to the current one is selected. This selection is performed based on the

similarity between tweet t and the rest of the training tweets in the latent space. Different

text similarity measures can be used, such as Cosine similarity, Dice Coefficient, Jaccard

coefficient and Levenshtein distance [181, 182]. For this step, we use the cosine similarity

based on TF-IDF weighted vectors. In our context, vi is the vector representing a test tweet

and vj is a vector representing a tweet from the past considered as the training set:

cos(vi, vj) =
(vi, vj)

||vi||||vj ||
(6.1)

We compute the vectors using the term frequency-inverse document frequency (TF-IDF)

weighting scheme as given by 6.3. TF-IDF first computes the relevance (IDF) of each term

compared to the whole tweet corpus. 6.2 defines this relevancy where ti is the given term,

|D| is the total number of tweets and n(ti) is the number of tweets containing ti:

IDF (ti) = log
(|D|)
n(ti)

(6.2)

TF − IDF (ti, d) = TF (ti, d).IDF (ti) (6.3)

In this work, we build a semantic text representation using Matrix Factorization (MF).

In order to capture both words and hashtag domains, we apply both Mixed NMF and

Asymmetric NMF [65]. The first model considers all data domains simultaneously while the

latter tries to capture each domain at each step and attempts to transfer information from

one domain to another. Asymmetric NMF has been recently used in different information

retrieval and automated annotation systems [65].

6.4.1 Mixed NMF Multimodal Hashtag Recommendation

This approach constructs a multimodal training matrix consisting of both words and

hashtags of the training tweets [65]. Mixed NMF considers both domain under V = [VwVh]
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with V(w×n) and V(h×n) containing words and hashtag terms, respectively. NMF factors the

matrix as follows:

V(w+h×n) = W(w+h×k).H(k × n) (6.4)

Where W is the basis of the latent space in which each multimodal object is represented

by a linear combination of the k columns of W .

The next step for the hashtag recommendation system is to manage tweets with

partial information, i.e. tweets without any associated hashtags. Matrix Y(w×n′) represents

the n tweets without any hashtags. Using the same basis, these tweets are mapped to the

latent space constructed before. To do so, we need to find H(k×n′) > 0 which satisfies the

following equation:

Y(w×n′) = W(h×k).H(k×n′) (6.5)

As mentioned before, to compute the new basis factors, we use the same basis from

the last step. In order to find the factor matrix H, we apply a modified version of the NMF

algorithm to update only H. The NMF algorithm finds a basis which is able to represent

clusters of either multimodal or unimodal objects. As a result, it enables us to map both of

them to the same latent space. The coefficients in a column of H express the contribution

and value of membership of each word to the cluster. These clusters in the basis matrix can

be used to find associated hashtags that best describe the original matrix containing the

tweets. This can be done by matching the tweets without hashtags (test set) with tweets

containing hashtags (training set). To do so, we first compute the similarity matrix between

the test and training tweets as follows.

Sn′×n = Hw.H (6.6)

where H represents the training tweets in the latent space and is computed by solving

6.5. The similarity is computed based on the cosine similarity of the TF-IDF bag of words

representations of the tweets, explained earlier in this section.
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6.4.2 Asymmetric NMF Multimodal Hashtag Recommendation

Mixed NMF assumes an equal importance for both hashtags and words in order to

decompose the multimodal information. However, based on [65], an asymmetric approach

(Asym NMF) can also be used to construct the latent space which transfers information

from the richer domain to the other. Inspired by this approach, we first use hashtag domain

of the training tweets as TF-IDF terms. The hashtags, which are the ground truth, are

extracted from the tweets. The reason behind choosing the hashtags for the first step is that

a hashtag generally carries more reliable information about a tweet compared to the raw

text, when it is present, and this makes the hashtag domain richer and more informative.

Using NMF, the hashtag matrix V(h×n) is decomposed as follows:

Vh(h×n) = Wh(h×k).Hh(k×n) (6.7)

In our context, the vectors of the basis matrix Wh are correlated in k latent semantic topics

or clusters. After this step, the semantic representation for all words in the data set is

codified in the matrix Hh. To do so, we need to find Ww(w×k) based on the modified version

of the NMF algorithm, which updates W while H remains fixed:

Vw(h×n) = Ww(w×k).Hw(k×n) (6.8)

Then similar to the mixed NMF approach, the test tweets are projected on the semantic

space using the multimodal basis that was learned before, as follow:

Y(w × n′) = Ww(w×k).Hh(k×n′) (6.9)

Where, Y contains the test tweets containing only words, Ww(w×k) is the output matrix

obtained by solving 6.8 and Hh(k×n′) is the corresponding tweets in the latent space. Finally,

the cosine similarity is computed between the test and training tweets in the latent space

based on Hh(k×n) and Hh(k×n′), where the matrices are based on training and test sets,

respectively. We compute the cosine similarity matrix using 6.1, which can also be done in

matrix form for all tweet pairs as follows:

S(n′×n) = Hh(k×n′)T .Hh(k×n) (6.10)
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Once the similarity matrix, S, is ready, we can select the candidate tweet set. To do so,

first the similarity matrix, S, is sorted for each row in descending order, and then the first

Kn columns are selected. By doing this, we select the top Kn most similar training tweets

to the test tweets. After performing the candidate tweet selection, we need to find relevant

hashtags based on a ranking method which is described in the next section.

6.5 Hashtag Selection

So far, a set of candidate tweets has been selected based on cosine similarity in the

semantic space. The selection of the hashtag recommendation candidates is a crucial part

as only Kh hashtags are selected to be assigned to a tweet or shown to the user who is

creating a new tweet. As shown in [183, 184] a set of 5 − 10 suggestions or options is the

most appropriate number for Kh considering the fact that short-term memory is limited,

making it harder for a user to choose from more than this range. Therefore we select the

top 5 hashtags for recommendations for a tweet.

In order to find these 5 hashtags for each tweet, we propose a method for ranking and

selecting the recommendation of hashtags. The proposed approach for this part consists of

two main steps:

1. Find the relevant hashtags based on the hashtag graph capturing related hashtags.

2. Rank the hashtags and select the top 5 for each tweet.

6.5.1 Step 1: Graph-based relevant hashtag selection

In order to obtain a set of relevant hashtags for each tweet, we build a hashtag

graph. The core idea is to capture relevance among the hashtags in the data. The basic

assumption behind this is that hashtags that are used together frequently are related and

close in meaning. We create this relevancy graph based on either similarity or co-relevance

of the hashtags. The first graph captures how similar the hashtags are while the latter

captures the relationships between the hashtags based on their co-occurrences.
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In order to build the similarity graph, the cosine similarity between tweets which

use the same hashtags is computed. In other words, the weight of the edge between two

hashtags is the average cosine similarity using TF-IDF weighted vectors of tweets which

contain the mentioned hashtags. On the other hand, in the co-occurrence graph, an edge

between two hashtags is weighted in proportion to the count of tweets which contain both

of these hashtags at the same time.

To be more illustrative, Figure 6.2 shows a graph built from a tweet dataset1 (described

more in 7) in which a term like #obama is linked to #election. Due to the use of both

terms in many tweets, the weight of the edge is 0.89. As we can see, the nodes which are

connected share more relevant tweets, thus, they are more likely to occur together in the

same tweet. We will use the hashtag network to improve the hashtag selection step.

Figure 6.2: Cosine similarity-based hashtag graph.

After finding the candidate tweet set, in addition to the hashtags used in the current

candidate tweets, we find the similar hashtags based on either the cosine similarity graph

or co-occurrence graph. Basically, to build the recommendation candidate hashtag set, for

each hashtag used in S, all the connected hashtags in the graph are also considered. In this

case, the candidate hashtag set is expected to be enriched with more relevant hashtags.

1We used Gephi: https://gephi.org/
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6.5.2 Step 2: Hashtag Ranking

After generating the candidate hashtag set, a ranking approach is performed on the

set. We used Recommendation Popularity Rank [185] which ranks the hashtags based on

their counts of occurrence within the recommendation candidate hashtag set selected in

Step 1 above. This method is based on the fact that similar tweets tend to contain the

same hashtags. Therefore a hashtag with higher occurrence frequency is more likely to be

used for the current tweet. Finally, the hashtag recommendation system recommends the

top highly ranked hashtags for each coming tweet.

Algorithm 6.1 and Figure 6.1 illustrate the proposed approach.

Algorithm 6.1 Hashtag Recommender System.

Input: training tweet set V , test tweet set Y , NMF algorithm f (NMF,Mixed NMF or
Asymmetric NMF), hashtag graph G (either similarity or co-occurrence based)
Output: recommend hashtags R

1: Factor V into W and H using NMF algorithm f
2: Use W to factor Y into W and H ′ using NMF algorithm f
3: Compute cosine similarity matrix (S) using H and H ′

4: Sort S in descending order
5: Select first Kn column of S as the candidate tweets set (T )
6: Update T = T ∪ {y if there is a link betweenx and y inG, ∀x ∈ T}
7: Rank T based on frequency in descending order
8: Choose R = top Kn terms from T
9: return R

6.6 Chapter Summary

In this chapter, we propose a general cross-domain hybrid recommendation model.

This model uses the actual words in the latent factors space in combination with a graph-

based representation of how they are related. The model is extensible to new features in

other domains as well. We use a hashtag similarity graph which helps take into account

prevalent hashtags while also rewarding hashtags that are tightly associated with a narrow

subset of words.

97



CHAPTER 7

EXPERIMENTAL RESULTS:

HASHTAG RECOMMENDATION

In this chapter, we present preliminary experiments related to the proposed hashtag

recommendation methodology, presented in Chapter 6. We first describe the dataset and

the preprocessing steps. Then, we introduce the metrics used in evaluation, in addition

to several hashtag recommendation baseline methods. Finally, we present and discuss the

results.

7.1 Data Sets

We collected the tweets coinciding with the run-up to the presidential elections of

2012 using Twitters API2. Due to the massive amounts of data, we crawled 7,829,280

tweets posted during 24 hours starting Tue, 06 Nov 2012 23:30:00 GMT. The basis of our

search queries is a dictionary containing election related words that enable us to capture

polarization as well. In order to limit the tweets, we used Obama, Romney and Election as

the filter words3.

7.2 Data Preprocessing

First, all messages were transformed to lower case, then we removed non-english

tweets and characters, as well as punctuation and numbers. As shown in Table 7.1, only

16% of tweets contain hashtag, and this is a compelling motivation for the need for a good

approach to either recommend hashtags to the user while typing the message or

2http://search.twitter.com/search
3Note that we are cognizant of the fact that Twitter, and more so its public API, offers only a limited

view into the vast variety of social discussions and communication.
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Figure 7.1: Long tail distribution of hashtag frequency.

predict hashtags offline for search, organization and knowledge discovery purposes.

We also removed mentions and URLS, since the recommender system is based on tweets

words only. More importantly, in order to have a fair evaluation, we also removed retweets

which constitute about 38% of the tweets. Considering the retweets boosts the performance

and gives biased results for hashtags in those tweets that are retweeted more than others.

Moreover, 4% of the data consists of tweets with only hashtags or URLs, we discarded them

due to lack of textual information. In order to remove spam and auto-generated tweets,

we also removed tweets with 2 words or less (regardless of URLS and hashtags) which are

about 11% of the dataset based on a heuristic based on observing the data.

Figure 7.1 and 7.2 depict the long tail distribution of hashtag frequencies and the

makeup of the hashtags and their usage, respectively. These figures clearly indicate that

only a small fraction of the hashtags is used with high frequency. This fraction contains

the following hashtags, also shown in figure 7.2: #Obama, #Election, #RomneyRyan

#Romney, #TCOT, #Vote. On the other hand, 98% of the hashtags were used less than

20 times in all the messages, of which the majority of hashtags occurred only once in the

entire data. The fact that stands out about these figures is that the hashtag set is highly

heterogeneous.
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Figure 7.2: Distribution of hashtags.

TABLE 7.1

Overview of the crawled dataset and its characteristics.

Title Number Percentage of total

Number of tweets total 7,829,280 100%

Number of tweets with hashtags 1,311,840 16.8%

Number of retweets 2,979,360 38%

Number of tweets with only
hashtags and URLs

343,440 4.4%

Number of tweets with only 2 or
less words (not considering

hashtags and URLs)

904,320 11.6%

After preprocessing the tweets data, we ended up with 208,160 tweets that were

converted into a bag of words matrix. We then applied the same approach to extract the

bag of words from the hashtags in each tweet. We thus ended up with two bag of words

data matrices corresponding to two domains, text and hashtags, respectively. The details

of the final data set, including the number of hashtags and words are shown in Table 7.2.

To prepare for the evaluation step, we split the data set into training and test sets

to evaluate the generalization ability of the proposed hashtag recommender system.
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Number of Tweets Number of Distinct Hashtags #Number of Words

208,160 68,187 136,383

TABLE 7.2

Details of Twitter dataset.

7.3 Evaluation Metrics

In order to evaluate the performance of our recommendation approach, two metrics

are computed for each experiment. The Mean Average Precision (MAP ) is the sum of

inverse ranks divided by the minimum of relevant words and ranking length:

MAP =
1

|Q|

|Q|∑
i=1

1

ni

ni∑
k=1

Precision (Rik)×Relevance (i, k) (7.1)

where Q is the set of queries, and |Q| is the total number of queries submitted to the

retrieval system. In our case, it is equal to the number of test tweets used for the evaluation.

R is the matrix of ranked similar results for the current tweet. It is a |Q| × n matrix, with

n being the number of tweets compared to, which is the number of test tweets in our case.

Precision(Rik) is the precision value for hashtag i, of the results at recall level k (when k

results are returned). Relevance(i, k) is a binary function that indicates whether the result

i is relevant to the query i or not. ni is the number of results returned. MAP captures the

relevance of the recommended tags compared to the real one.

The second metric is the Hit Rate, another important metric used to verify whether

the recommended hashtags are among the ground-truth or not. Considering each tweet,

if any of the recommended hashtags are among the ground-truth then a hit occurred. We

compute the Hit Rate metric based on the ratio of the number of hits to the total number

of test tweets.

HitRate =
Number of hits

Total number of hashtags
(7.2)

A hit occurs when the ground-truth includes at least one of the predicted hashtags.
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7.4 Experimental Results

7.4.1 Parameter Estimation

Before delving into the performance of the compared approaches, we will explain

how we set the parameters used in the experiments. There are three important parameters

which need to be tuned. The first parameter is kf which indicates the number of latent

factors in applying Non Negative Matrix Factorization, either Mixed NMF or Asymmetric

NMF. The second important parameter is kn which represents the size of the neighborhood

and is necessary in order to determine neighboring tweets that are similar to a test tweet.

The third parameter is the number of recommended hashtags denoted as kt.

In this section, we investigate the impact of the parameters as well as finding the

best values for further experiments. As discussed before, we recommend five hashtags for

each test tweet. We used a grid search to tune all the parameters. In order to find the

best kf , we performed Mixed NMF using several numbers of latent factors in the set 10,

40, 70, 100, 200. Different kf values lead to different latent spaces on which the data is

projected. Figure 7.3 and 7.4 present the MAP and Hit Rate, respectively, for Mixed NMF.

For each figure, we varied the neighborhood size kn to find the best kf . To remove bias,

the experiments are based on 10-fold cross validation. Furthermore, to mitigate the effect

of random initialization, we ran Mixed NMF 10 times and report the average of MAP and

Hit Rate. In addition, the number of iterations for Mixed NMF is set to 1000. In Figure 7.3

and 7.4, we can see the trend for different neighborhood sizes kn, allowing us to determine

the best kf for further experiments. We note that kf = 10 results in the highest MAP and

Hit Rate, and therefore we set kf = 10 for the remaining experiments.

It is also obvious that a higher kf leads to higher MAP and Hit Rates. However,

an important strength of using NMF is to estimate the original space with very few latent

factors compared to the input features, so that it can be applied on large data sets. It

is thanks to these savings that step 1 generates the tweets candidate set using the inner

product using considerably smaller matrices compared to the original data, in terms of
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Figure 7.3: MAP for different values of kn and kf .

dimensionality.

As can also be seen in Figure 7.3 and 7.4, both metrics increase as a result of an

increase in the neighborhood size. It is reasonable that considering more similar tweets leads

to a larger tweet set and as a result of this, more related hashtags are retrieved. However,

increasing the size of the neighborhood also requires more computations. At the same

time, the proportion of increase of MAP and Hit Rate drops as kn increases. Therefore, in

order to select the tweet candidate set, it is better to use a sufficiently large neighborhood

size, kn, to capture similar tweets, while keeping it small enough to avoid any unnecessary

complexity. This led us to set kn = 20 neighbors.

7.4.2 Comparison of Recommendation Methods

In this section, we compare the performance of the proposed methods to several

baseline methods. As mentioned before, the crawled tweets are related to the presidential

elections of 2012. Since the tweets were limited to only one day, one may expect most of

the hashtags to be very similar, essentially reducing to the most popular hashtags, thus
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Figure 7.4: Hit Rate for different values of kn and kf .

eliminating the need for using a hashtag recommendation system. By using the Overall

popularity (OP) method, we will investigate this assumption. This baseline approach as-

sign the most frequent hashtags to all of the test tweets, we call it OP@1. To make it even

more challenging, we also compared with a baseline where we recommended the 5 most fre-

quent hashtags (OP@5) to further challenge the assumption mentioned above. As another

baseline, we also use the K-nearest neighbor approach (KNN) with cosine similarity to find

the tweet candidate set. KNN is a simple yet powerful machine learning approach that has

been widely used for collaborative filtering recommender systems. In order to have a fair

comparison, we use the same kn and hashtag selection techniques for all NMF and KNN

methods. Table 7.3 lists the parameter values for the rest of the experiments.

One important issue is to compute MAP at different levels. Figure 7.5 presents

the MAP values for the proposed approaches and for KNN. As mentioned before, since

we recommended 5 hashtags, we start with computing MAP at level 5 (MAP@5). By

increasing the level of computing the MAP, the value also increases. This increase is due to

considering a larger set of recommended hashtags to compute MAP. As mentioned before,
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TABLE 7.3

Notations, descriptions and values of the parameters.

Notation Description Value

kf Number of NMF factors 10

kn Number of a tweet neighbors 20

kt Number of recommended hashtags 5

NMFite Number of NMF iterations 1000

k-fold Number of folds 10

NMFrun Number of NMF runs 10

TABLE 7.4

for comparison of MAP@5 metric at different level for three different approaches.

Tested Hypothesis KNN ¿ Mixed ASYM ¿ Mixed ASYM ¿ KNN

p-value 0.001 0.001 0.004
p-values

we recommend the top 5 relevant hashtags, so we report MAP at level 5. In addition, we can

see that the Asymmetric NMF approach outperforms the other two approaches. The reason

behind this is likely due to the ability to transfer knowledge from a richer content space

to another content space, while allowing each to have its own latent space, this leads to a

better recommender system. In addition, finding similar tweets in a different space rather

than the original space enables Asymmetric NMF to capture more meaningful information.

Table 7.4 shows the p−values for each pair of methods. The p-values are obtained based on

10 different runs of the algorithm with 10 different NMF initializations. To obtain p-values

we used paired t tests [186]; however in order to hold the normality assumption, we applied

a log normal transformation [186] on the values. As we can see, all the p-values are less than

0.01, leading us to reject the null hypothesis that the differences between two approaches

are not significant, with 99% confidence interval. The conclusion is that the differences are

significant.

Figure 7.6 shows a comparison of all the NMF approaches as well as the other two

baseline methods, OP@1 and OP@5, based on the MAP@5 and Hit Rate metrics. As

can be seen, OP@5 has the highest Hit Rate. This is due to the fact that it considers the
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Figure 7.5: Comparison of MAP at different level for three different approaches.

Figure 7.6: MAP@5 and Hit Rate for different hashtag recommendation methods.
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TABLE 7.5

Comparison of MAP@5 and Hit Rate metrics for Asym and over popularity based ap-
proaches.

Method ASYM vs OP@5 ASYM vs OP@1

p-value for MAP 0.0021 0.001

p-value for Hit Rate 0.0092 0.002
p-value

top 5 frequent hashtags for all tweets. However it has very low MAP@5, which shows how

inefficient it is to always consider the same set of popular hashtags for recommendations.

Moreover, Asymmetric NMF outperforms other rival approaches in terms of both Hit Rate

and MAP@5. Table 7.5 shows the p-values for the comparison of ASYM, OP@5 and OP@1.

The results confirm that Asymmetric NMF is superior in terms of both MAP@5 and Hit

Rate metrics.

7.4.2.1 Graph-based analysis for story revelation

Recommending hashtags is very challenging due to the presence of very similar hash-

tags in terms of meaning and usage. To overcome this problem, we proposed a new approach

for Phase two of this study, which is dedicated to hashtag selection. As mentioned in chap-

ter 4, we propose a graph-based method which enables the recommender system to find

different groups of hashtags which either have been used together or share some similarities

in the previously used tweets. The graph shows the network of hashtags, in which each

hashtag is a node. Two nodes are connected if there is sufficient similarity between them.

The similarity is defined based on either one of two criteria, which are respectively, content-

based or co-occurrence based, as follows: 1) average cosine similarity between the tweets

they have appeared in, and 2) ratio of co-occurrence of the two hashtags in the data set.

Figure 6.2 shows the cosine similarity-based hashtag network. In order to visualize

the graph, we randomly select a subset of 1000 tweets to illustrate the next steps. Fig. ??

shows the hashtags with cosine similarity value exceeding 0.15. Darker and larger nodes

indicate hashtags with higher degree.
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Several interesting facts can be discerned from Figure 6.2. For example, some cliques

can be considered as communities which may contain valuable information. For instance,

Table ?? shows some of these cliques and their descriptions. We can see a very strong

relationship among the nodes of each community. We therefore list the hashtags used in

each community as well as the related news that we could find by querying Google using

the terms in the clique. In other words, each clique conveys a different story that was

being discussed or shared on twitter. The first row in table 7.4 is about an attempted

attack in Colombia on the day of the presidential elections. Although these tweets were

not related to the US presidential election, they were found in the data set, due to the

use of words such as President, Election, Vote, etc. It is interesting to note how the graph

can capture different parallel events, co-occurring with the main topic. Another graph

community, shown in figure 7.7 , corresponds to the campaign sign vandalism reported in

Prince William, Manassas, where a large Romney sign was stolen and a number of signs

were damaged.

7.4.2.2 Graph-based analysis for improved candidate selection in the hashtag

recommender system

The clique-based communities in the hashtag graph illustrate how the hashtag con-

nections are informative and may boost the recommendation system. We therefore leverage

the hashtag network to find relevant hashtags for recommendation. Unrelated to recom-

mendations, we can also use the terms in the hashtag cliques to query a search engine for

verifiable stories.

Although many hashtags share similar tweets, finding the hashtags which tend to

co-occur more often is very helpful. Figure ?? shows the hashtag network graph based

on co-occurrence ratio. As shown in the graph, the center points are the most frequent

hashtags with many other hashtags being connected to them. Similarly to the similarity

graph, this graph also has cliques that reveal stories, some of which are similar to the stories

found using the similarity graph. For example, Table 7.6 shows one of the cliques and its
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Figure 7.7: Cliques found in the cosine similarity-based hashtag graph and corresponding
news stories found by searching using the query consisting of the terms in the cliques.

hashtags which are related to the FARC story mentioned above.

Due to the rich knowledge that is contained in the hashtag network, we used it to

improve the hashtag selection step. After finding the candidate tweet set, in addition to the

hashtags used in the current candidate tweets, we find other similar tags based on either

the cosine similarity graph or co-occurrence graph. This tends to augment the candidate

hashtag set with more relevant hashtags. Figure 7.9 shows the comparison of KNN- Mixed

and Asym NMF with and without using the hashtag graphs to augment the candidate sets.

We can observe that using the hashtag graph significantly improves all of the methods.
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TABLE 7.6

A Clique found in the co-occurrence-based hashtag graph.

Hashtags #antioquia, #electoral, #octubre,
#trendnews, #estados, #farc,

#nueva, #presidente, #elecciones,
#nacional

Figure 7.8: Co-occurrence-based hashtag graph.

This is due to the strong relationship between the words and tweets which improves all the

recommender systems. Using the story carrying hashtag cliques allows the recommender

system to discover and thus recommend more relevant hashtags. This can be seen as a

specialized kind of recommender system: it recommends hashtags that potentially lead to

annotating and most importantly connecting together tweets that are part of the same

evolving story. This is very close to annotating tweets with stories and not just hashtags,

which is another potential future application of the proposed recommendation methodology.

Moreover, we notice that both the cosine similarity and co-occurrence networks have almost

the same effect. To assess the significance of the differences between the two graphs, we

computed the p-value considering 10 experiments to test the null hypothesis that there
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Figure 7.9: Comparison of KNN- Mixed and Asym NMF with and without using the hashtag
graphs to augment the candidate sets.

are no significant differences between these two graph methods. The p-value was found

to be 0.091, which leads us to accept the null hypothesis. In another words, there is no

significant difference between NMF+cosine similarity graph and NMF+co-occurrence graph

approaches. One reason behind this may be that both graphs capture the same information

of hashtags used in the tweets.

TABLE 7.7

of comparison of KNN- Mixed and Asym NMF with and without using the hashtag graphs
to augment the candidate sets.

p-values
ASYM vs ASYM Sim ASYM vs ASYM co ASYM Sim vs ASYM co

p-value for MAP@5 0.001 0.009 0.091

p-value for Hit Rate 0.001 0.012 0.01

In addition, Fig 7.5 shows the superiority of Asymmetric NMF which experiences an

even better improvement by using the hashtag similarity graphs. The Asym NMF+cosine
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similarity graph approach reaches 0.49 and 88.3% for MAP@5 and Hit Rate, respectively,

corresponding to about 10% improvement compared to the highest performing baseline

method, KNN.

Figure 7.10: Story 1 and Story 2 cliques based on ground-truth hashtag network using
cosine similarity.

Figure 7.11: Story 1 and Story 2 cliques based on recommended hashtag network using
cosine similarity

To verify the proposed method, we examined the cosine similarity hashtag network

for both ground-truth and recommended hashtags. To do so, we consider the same 1000

tweets used before and partition them into training and test sets randomly. However, in
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Figure 7.12: Polarization score for Story 1 clique based on ground-truth and recommended
hashtag network using cosine similarity

order to be able to verify the same story that we described above, we consider tweets that

are related to Story 1 and Story 2 as part of both training and test sets. Finally, the test

set ended up with 200 tweets that will be used to evaluate the proposed approach. Figure

7.11 shows the cliques corresponding to Story 1 and Story 2 in the test set, we detect theses

cliques based on ground-truth hashtags in the test set. In the next step, we hide the ground-

truth hashtags and try to recommend new hashtags by building a model on the training

set. Using a greedy clique detection algorithm [187], we found 41 cliques in the ground

truth hashtag graph. After recommending new hashtags to the unseen test tweets, we built

a cosine similarity hashtag network again. Then we used the same greedy clique detection

algorithm and this time, found 53 cliques, showing that the recommended hashtags were

able to connect more related communities together. However, it is important to see how

the hashtags in a clique are related. In order to do so, we found the most relevant hashtag

cliques to Story 1 and Story 2 above. As shown in Figure 7.10, these cliques are now denser
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compared to the cliques in Figure 7.10, while the recommended hashtags remain almost the

same. These results imply that the recommendation system is able to recommend many

more related hashtags for the test tweets using the graph-based candidate set augmentation.

Figure 7.13: Polarization score for the Story 2 clique based on ground-truth and recom-
mended hashtag network using cosine similarity

7.5 Polarization in the Hashtag Community

In order to measure the polarization of hashtags in tweets, we first applied unsu-

pervised lexicon-based sentiment analysis on each tweet and labeled it as positive/negative

sentiment [188] using a sentiment analysis tool optimized to annotate short messages, like

tweets, that contain abbreviations, slang, and other vernacular. It also employs linguistic

rules for negations, amplifications, booster words, emoticons, spelling corrections, etc [188].

After obtaining the sentiment of each tweet, we check all the hashtags appearing in all

tweets, and count the sentiment frequency of those hashtags based on the tweet label. We

then compute an intuitive measure of polarization using the ratio of the number of tweets

in the positive/negative sentiments, with the least frequent tweets in the numerator, so that

the ratio is always below 1. Figure 7.12 and figure 7.13 show the polarization scores for

Story 1 and Story 2 cliques based on the ground-truth and recommended hashtag network

using the cosine similarity. For each connected word, we count the number of positive and

negative tweets, which are shown as C+ and C− respectively. We then computed the av-
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erage polarization score (φh) over all hashtags of each clique. We noticed that proposed

hashtag recommendation did not increase the average polarization score, due to using the

content of the tweets.

To conclude, our research in hashtag recommendation was able to exploit the textual

content that is available as part of user messages or posts, and thus resulted in hybrid recom-

mendation strategies. Using content within this context can bridge polarization boundaries.

However, when content is not available, is missing, or is unreliable, as in the case of plat-

forms that are rich in multimedia and multilingual posts, the content option becomes less

powerful and pure collaborative filtering regains its important role, along with the challenges

of polarization.
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CHAPTER 8

CONCLUSIONS

In this dissertation, we investigated the mechanism of filtering and discovering in-

formation online while using recommender systems. In the first part of our research, we

studied the phenomenon of polarization and its impact on filtering and discovering infor-

mation. Polarization is an important phenomenon, with serious consequences, in real-life,

particularly on social media. Thus it is important to understand how machine learning al-

gorithms, especially recommender systems, behave in a polarized environment; and to this

end it is important to quantify polarization in existing and new data sets. We presented

a domain-independent data science pipeline to automatically detect polarization using the

ratings given by users to items. Our polarization detection framework was shown to detect

different degrees of polarization and to outperform existing measures in capturing an intu-

itive notion of polarization. Our work is an essential step toward quantifying and detecting

polarization in ongoing ratings and in benchmark data sets, and to this end, we used our

developed polarization detection pipeline to compute the polarization prevalence of several

benchmark data sets. It is our hope that this work will contribute to supporting future

research in the emerging topic of designing and studying the behavior of recommender

systems in polarized environments.

We have also investigated and uncovered certain peculiar patterns that are char-

acteristic of environments where polarization emerges, for instance by monitoring traces

of the objective function that is minimized in matrix factorization. We have found that

environments with different polarization degrees engender different patterns. The ability to

recognize such patterns, that arise during incremental optimization, can help quickly detect

and quantify the evolution of polarization without the tedious analysis of rating data dis-
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tributions. This objective function optimization pattern monitoring-based approach open a

new direction of research in studying and handling polarization, not only in recommender

systems, but also in other machine learning algorithms that also result in filtering informa-

tion from humans.

Most importantly, although we have given a natural explanation for the model’s

lower reconstruction error (hence better prediction) for higher polarization, this is still sur-

prising (when taken in the context of learning in polarized environments), and disappointing

(machine learning algorithms find it easier to learn discriminating models in polarized en-

vironments: The models will quickly learn to keep each user in the safety of their preferred

viewpoint, essentially, giving rise to filter bubbles).

Our proposed counter-polarization methodology succeeds to cover items from the

opposite view after a few iterations and can broaden the viewpoint spectrum even faster if

the user is more interested in discovering items from different viewpoints. Endowing humans

with the ability to interactively and adaptively control the breadth of viewpoints offered by

an intelligent polarization-aware recommendation algorithm is an important capability. As

a result, users who are nowadays increasingly and unconsciously entrapped in algorithmic

filters over which they have had no control, can become empowered to break free from their

algorithmic chains. To our knowledge, this feature which allows humans to remain in or

regain control of algorithm-induced filter bubble traps, has heretofore not been allowed or

engineered in existing information filtering systems, whether on social media, e-commerce

or e-learning recommender systems. We also make a theoretical analysis of how polarization

affects learning latent factor models, and how counter-polarization affects these models.

In the second part of our dissertation, we investigate the problem of discovering re-

lated information by recommendation of tags on social media micro-blogging platforms.

Real-time micro-blogging services such as Twitter have recently witnessed exponential

growth, with millions of active web users who generate billions of micro-posts to share

information, opinions and personal viewpoints, daily. However, these posts are inherently

noisy and unstructured because they could be in any format, hence making them difficult
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to organize for the purpose of retrieval of relevant information. One way to solve this prob-

lem is using hashtags, which are quickly becoming the standard approach for annotation

of various information on social media, such that varied posts about the same or related

topic are annotated with the same hashtag. However hashtags are not used in a consistent

manner and most importantly, are completely optional to use. This makes them unreliable

as the sole mechanism for searching for relevant information. We investigate mechanisms

for consolidating the hashtag space using recommender systems. Our methods are general

enough that they can be used for hashtag annotation in various social media services such

as twitter, as well as for general item recommendations on systems that rely on implicit user

interest data such as e-learning and news sites, or explicit user ratings, such as e-commerce

and online entertainment sites. To conclude, we propose a methodology to extract stories

based on two types of hashtag co-occurrence graphs. Our research in hashtag recommen-

dation was able to exploit the textual content that is available as part of user messages or

posts, and thus resulted in hybrid recommendation strategies. Using content within this

context can bridge polarization boundaries. However, when content is not available, is miss-

ing, or is unreliable, as in the case of platforms that are rich in multimedia and multilingual

posts, the content option becomes less powerful and pure collaborative filtering regains its

important role, along with the challenges of polarization.
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[84] Fréderic Godin, Viktor Slavkovikj, Wesley De Neve, Benjamin Schrauwen, and Rik
Van de Walle, “Using topic models for twitter hashtag recommendation,” in Pro-
ceedings of the 22nd International Conference on World Wide Web. ACM, 2013, pp.
593–596. [Cited on page 20.]

[85] Jaewon Yang and Jure Leskovec, “Modeling information diffusion in implicit net-
works,” in Data Mining (ICDM), 2010 IEEE 10th International Conference on. IEEE,
2010, pp. 599–608. [Cited on page 20.]

124



[86] Yung-Ming Li and Ya-Lin Shiu, “A diffusion mechanism for social advertising over
microblogs,” Decision Support Systems, vol. 54, no. 1, pp. 9–22, 2012. [Cited on page 20.]

[87] Andrew L Brooks and Coye Cheshire, “Ad-itudes: twitter users & advertising,” in
Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work
Companion. ACM, 2012, pp. 63–66. [Cited on page 20.]

[88] Elizabeth Wright, Nile M Khanfar, Catherine Harrington, and Lee E Kizer, “The
lasting effects of social media trends on advertising,” Journal of Business & Economics
Research, vol. 8, no. 11, pp. 73, 2010. [Cited on page 20.]

[89] Su Mon Kywe, Tuan-Anh Hoang, Ee-Peng Lim, and Feida Zhu, “On recommending
hashtags in twitter networks,” in International Conference on Social Informatics.
Springer, 2012, pp. 337–350. [Cited on page 20.]

[90] Wei Feng and Jianyong Wang, “We can learn your# hashtags: Connecting tweets to
explicit topics,” in Data Engineering (ICDE), 2014 IEEE 30th International Confer-
ence on. IEEE, 2014, pp. 856–867. [Cited on page 20.]
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[141] Saúl Vargas, Pablo Castells, and David Vallet, “Explicit relevance models in intent-
oriented information retrieval diversification,” in Proceedings of the 35th international
ACM SIGIR conference on Research and development in information retrieval. ACM,
2012, pp. 75–84. [Cited on page 32.]

[142] Neal Lathia, Stephen Hailes, Licia Capra, and Xavier Amatriain, “Temporal diver-
sity in recommender systems,” in Proceedings of the 33rd international ACM SIGIR
conference on Research and development in information retrieval. ACM, 2010, pp.
210–217. [Cited on page 32.]
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