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ABSTRACT 

EXPLORING A NOVEL NF-ĸB- INHIBITING NANOPARTICLE FOR 

PERIODONTITIS THERAPY 

Kameswara Satya Srikanth Upadhyayula 

April  18, 2017  

Periodontitis is an infection-driven inflammatory disease characterized by gingival 

inflammation and bone loss. The NF-ĸB signaling pathway is pivotal in 

osteoclastogenesis and infection-induced pro-inflammatory responses. The use of 

nanoparticles as a vehicle to deliver drug increases stability, loading capacity, and 

facilitates transmembrane transportation. The hypothesis was that a novel 

nanoparticle carrying therapeutic NBD inhibitory peptides (NBD-nanoparticles) will 

inhibit measures of periodontal disease. In this project, we tested the nanoparticles 

for their ability to directly inhibit osteoclastogenesis and inflammation as an original 

strategy for periodontitis therapy. We also tested the capability of the nanoparticles 

to inhibit gingival inflammation and alveolar bone loss in an animal model. 

Methods: In vitro- In order to test the impact of NBD-nanoparticles on 

osteoclastogenesis, RAW 264.7 cells were stimulated using RANKL and treated 

with NBD-nanoparticles. Controls included treatment with empty nanoparticles and 

no treatment. Seven days later, the cultures were fixed and stained with 
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TRAP, an osteoclast marker, and the number of multinucleated TRAP positive 

cells were counted. 

In order to test the impact of NBD-nanoparticles on pro-inflammatory responses, 

RAW or THP1 cells were stimulated with the periodontal pathogen P. gingivalis, 

treated with NBD-nanoparticles or empty nanoparticle and tested for expression of 

cytokines critical in periodontitis, such as IL-1β, IL-6, TNFα by ELISA. Differences 

were evaluated by ANOVA. 

In vivo - NBD-nanoparticles were tested in a murine ligature-induced periodontitis 

model where mice received a ligation around the second molar, P. gingivalis 

infection and microinjections of NBD-nanoparticles, empty nanoparticles, or PBS 

in the gingiva. Gingival tissue was tested for mRNA expression of pro-inflammatory 

cytokines by real-time PCR. Alveolar bone loss was determined by measuring the 

CEJ-ABC distance. Bacterial culture from oral swabs confirmed bacterial 

persistence. Differences were evaluated by ANOVA. 

Results: NBD-nanoparticles inhibit osteoclastogenesis directly and P. gingivalis-

induced pro-inflammatory cytokine production. NBD-nanoparticle application 

inhibits the gingival expression of periodontitis-related cytokines and alveolar bone 

loss in a murine ligature model. 

Conclusions: NBD-nanoparticle is able to inhibit osteoclastogenesis directly and 

pro-inflammatory cytokines production in vitro. This nanoparticle prevents gingival 

inflammation and bone loss in a murine model for periodontitis. 

Keywords: NBD-nanoparticles, NF-ĸB pathway, periodontal disease, 

osteoclastogenesis, inflammation, alveolar bone loss 
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CHAPTER 1:  INTRODUCTION 

Periodontitis, an inflammatory disease that results in a progressive loss of 

tooth-supporting bone, effects over 47% of the American adult population ranging 

from mild, moderate to severe forms of the disease (Eke et al., 2012). Destruction 

of tissue is pathognomonic of the disease which leads to gingival recession or 

periodontal pockets and the loss of alveolar bone. As a consequence of decreased 

tissue support around the tooth structure, mobility and eventual loss of tooth 

occurs. 

Epidemiological studies estimate that the disease affects 70% of the US adults 

aged 65 years or older (Papapanou, 2012). Globally, it affects 10-15% of the adult 

population according to WHO (Petersen & Ogawa, 2005).  Apart from being the 

most common chronic infection among adults, the treatment also imposes a huge 

economic burden globally (Loesche & Grossman, 2001). A study estimates that 

the projected cost could be over 1 billion dollars if only 10% of the periodontitis 

patients undergo periodontal therapy (Loesche & Grossman, 2001). Ironically, a 

majority of the people suffering from the disease belong to low-income groups and 

are unlikely to get the treatment done (Borrell & Crawford, 2012). 

The interaction between the plaque and the host is considered the primary 

etiological factor in the disease. The dental plaque contains a complex of multi-

bacterial species that together form a biofilm. Plaque if not removed mechanically 

on a regular basis, advances into a matured plaque, which consists of pathogenic 



  2 

bacteria leading to dysbiotic changes. Dysbiosis, a state of impaired microbiota, is 

increasingly being acknowledged as a causative factor in many inflammatory 

diseases. This altered host-microbe cross-talk is also implicated in Periodontitis, 

the most common inflammatory disease of the oral cavity (Hajishengallis & 

Lamont, 2014). 

The periodontal disease, which is one of the main causes of tooth loss, was 

once thought to be a localized infection (Ahn et al., 2012; Southerland et al., 2005). 

However, it is now considered as a risk factor for some cardiovascular, respiratory, 

endocrine, musculoskeletal, and reproductive system related abnormalities by 

being a continuous source of infection (Arigbede et al., 2012; Yakob et al., 2012). 

 

Periodontal disease and oral pathogens: 

The oral cavity, which has a diverse ecosystem, is inhabited by a plethora 

of bacteria which is estimated to be around 700 species. However, not all the 

microorganisms are harmful as the disease is caused only by an increase in the 

abundance of specific microbes (Suzuki et al., 2013). Among the bacteria, 

Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Tannerella 

forsythia (formerly Bacteroides forsythus), Porphyromonas gingivalis, Prevotella 

intermedia, Treponema denticola are important periodontal pathogens (Aruni et 

al., 2015) 

To explain the etiology of the biofilm-induced disease, many theories have 

been put forth based on the role of microorganisms in the initiation and progression 

of the disease. Specific microorganisms, non-specific plaque, specific plaque, red 
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complex, key stone pathogen, poly microbial synergy and dysbiosis are a few 

among them (Hajishengallis & Lamont, 2012). According to the red complex 

concept, a group of three species is associated with the severe forms of disease 

including Porphyromonas gingivalis, Treponema denticola and Tannerella 

forsythia (Socransky et al., 1998). Keystone pathogen theory postulates that the 

low abundance keystone microorganisms can disrupt the tissue homeostasis 

thereby causing tissue destruction (Hajishengallis et al., 2011). Porphyromonas 

gingivalis, one of the red complex organisms and a keystone pathogen has gained 

special attention partly because it is easy to culture and genetically manipulate 

(Hajishengallis & Lamont, 2012).  

 Although the etiology of periodontal disease is attributed to pathogenic 

microorganisms, the mere presence of periodontal pathogens does not cause 

tissue destruction by itself (Graves, 2008). Instead, the microorganisms involved 

in the pathogenesis of the disease act by modulating the host immune response 

(Reynolds et al., 2015). In other words, the bone loss in periodontitis is not just 

because of the invasion of the organism but a consequence of the pro-

inflammatory cytokines produced by the host in response to the pathogenic 

organism (Benedetto et al., 2013; Kato et al., 2014).  

 

Periodontal disease and Inflammation: 

Inflammation is a common physiological response to harmful stimuli such 

as a microbial challenge in this context. Initially, the disease starts as an 

inflammatory response affecting the gingiva, a condition known as gingivitis. 
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Removal of the harmful stimuli, the supra and subgingival plaque, at this stage 

leads to tissue homeostasis resulting in restoration of tissue health.  

However, the unremoved plaque coupled with factors such as poor oral hygiene, 

smoking, and other systemic conditions results in a shift from an acute stage to a 

chronic inflammation. The inflammation is a consequence of host responses to the 

persistent microbial encounter resulting from the unremoved plaque.  

 

Pro-inflammatory cytokines or simply inflammatory cytokines have 

repercussions on the periodontium as a result of tissue destruction and disease 

progression. On the other hand, anti-inflammatory cytokines are associated with 

the attenuation of disease. In general, the pro-inflammatory cytokines have a 

destructive role while the anti-inflammatory cytokines have a protective role 

(Garlet, 2010).  

 

Pro-inflammatory cytokines such as IL1-, IL-6, TNF are considered to 

be the pro-osteoclastogenic factors and contribute to the bone loss, along with 

Receptor activator of nuclear factor kappa-B ligand (RANKL) (Benedetto et al., 

2013; Kato et al., 2014). These cytokines destroy the periodontal tissue and 

result in the attachment loss of the gingiva causing either gingival recession or 

excessive periodontal pockets (Graves & Cochran, 2003). 
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Interleukins are a group of cytokines produced by leukocytes. Pro-

inflammatory cytokines responsible for the pathogenesis of the disease are 

explained briefly here. 

IL-1: 

Interleukin 1 is produced by activated mononuclear phagocytes and is produced 

in response to bacterial antigens and their products (Beuscher et al., 1990). There 

are two types of interleukin1; interluekin1, interleukin 1. Though the two 

subtypes of interleukin 1 bind to the same receptor, they have distinct functions. 

IL-1 is produced by blood monocytes, tissue macrophages, skin dendritic cells, 

and brain microglia. The precursor of IL-1 is inactive and it is activated by 

cleavage of caspase-1. The precursor is released in response to TLR, active 

complement proteins, cytokines and IL-1 itself (Garlanda et al., 2013). Studies 

have shown that IL-1, found in abundance in the crevicular fluid of gingiva, is a 

potent inducer of bone destruction and cause tissue destruction in inflammatory 

diseases including periodontitis (Hou et al., 1995; Hönig et al., 1989). 

IL-6: 

IL-6 is a pro-inflammatory cytokine, which has been found in the gingival crevicular 

fluid of periodontal patients. It plays a key role in acute inflammation and induces 

bone destruction (Graves, 2008). It is produced by B-lymphocytes, monocytes and 

macrophages, keratinocytes, endothelial cells, and fibroblasts. IL-6 is released in 

response to a stimulus such as bacteria or its products and other cytokines such 

as IL-1 and TNFα (Irwin & Myrillas, 1998). The pro-inflammatory cytokine aids in 
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the pathogenesis of the periodontal disease by acting as a bone resorbing factor 

(Graves, 2008). 

 

Cytokine Effect 

IL-1β Bone resorption; pro-inflammatory; fever 

TNF-α 
Bone resorption; pro-inflammatory; fever; 
synergistic with IL-1β 

IL-6 
B-cell differentiation; antibody production; 

osteoclast differentiation 
 

Table 1. Cytokines effect in inflammatory conditions 

Reused from A clinical guide to periodontology: Pathology of periodontal disease Hasan 

& Palmer, British Dental Journal. 

 

TNFα: 

Tissue necrosis factor  is considered one of the most potent cytokines which 

induces osteoclastogenesis in inflammatory conditions such as rheumatoid 

arthritis, orthopedic implant loosening, periodontitis and other chronic inflammatory 

osteolytic diseases (Garlet, 2010; Lam et al., 2000; Zhang et al., 2001). TNFα has 

been confirmed to upregulate the other cytokines such as IL-1β and IL-6 and has 

been found in abundance in the gingival crevicular fluid (Benedetto et al., 2013; 

Garlet, 2010). TNFα acts in the progression of the periodontal disease by multiple 

mechanisms such as expression of chemokines, inflammatory mediators, matrix 

metalloproteinases, osteoclastogenesis, and apoptosis of matrix-producing cells 

(Graves & Cochran, 2003). 
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In summary, these pro-inflammatory cytokines break down the tissue causing 

attachment loss and bone resorption. 

Periodontal disease and bone loss: 

Alveolar bone loss in periodontitis is the main factor including attachment loss, 

which is responsible for tooth mobility or even loss of the tooth. Bone loss is caused 

by the osteoclasts by bone resorption. On the other hand, osteoblasts are the cells 

that help in the bone deposition. In fact, the action of both osteoblasts and 

osteoclasts is necessary for normal development, remodeling and functioning of 

an organism. In health, the osteoblastic and osteoclastic activity are in a balanced 

state where the amount of bone resorption equals the amount of deposition 

resulting in a healthy maintenance of bone (Hienz et al., 2015). 

Osteoclastogenesis is the development of the bone resorbing cells, the 

Osteoclasts. Osteoclasts are terminally differentiated large cells with multiple 

nuclei and originate from mononuclear cells of the hematopoietic stem cell lineage 

(Florencio-Silva et al., 2015). Their unique structure consists of a ruffled border 

seen on the cell surface that helps in secretion of enzymes as well as uptake of 

matrix components. A Clear zone is seen encircling the ruffled border and helps in 

resorption (Teti et al., 1991). Vacuoles and vesicles help in secretion of enzymes, 

digestion or transport of products within the cell (Holtrop & King, 1977). 
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Figure 1: Tartrate resistant acid phosphatase positive (TRAP) Osteoclast 
       Arrow indicates the TRAP-positive cell: osteoclast. 

 

The lysosomes contain large amounts of Tartrate-resistant acid phosphatase 

(TRAP) and is a useful cytochemical marker (Ballanti et al., 1997). Excessive 

osteoclastogenesis shifts the balance in favor of extensive bone loss as seen in 

periodontitis. 

 

NFκB Signaling pathway and Periodontal disease: 

NF-ĸB (Nuclear factor kappa-light-chain-enhancer of activated B cells) signaling 

pathway is critical in osteoclastogenesis and infection-induced pro-inflammatory 

responses for being at the juncture of diverse signaling pathways (Abu-Amer, 

2013; Lawrence, 2009). Blocking this pathway has become an attractive target in 
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inflammatory diseases such as cancer and chronic inflammatory diseases and is 

possible with Nemo Binding Domain (NBD) inhibitory peptide (Pan et al., 2011).  

NF-ĸB consists of transcription factors which are pivotal in cellular growth and 

development, regulating immune and inflammatory responses, and apoptosis 

(Oeckinghaus & Ghosh, 2009). These factors are responsible for a number of 

disease states such as atherosclerosis, heart disease, rheumatoid arthritis, cancer 

and also Periodontitis (Nichols et al., 2001; Okamoto, 2006; Ross et al., 2001; 

Valen et al., 2001; Gilmore et al., 2002). 

 

The NF-ĸB protein family is divided into two subfamilies: the ‘’NF-ĸB’’ proteins and 

‘’Rel’’ proteins. NF-ĸB proteins include p105, p100. The Rel subfamily includes c-

Rel, RelB, RelA (aka p65). Rel proteins contain C-terminal transactivation domains 

and can activate transcription. Long C- terminal domains with multiple copies of 

Ankyrin repeats on the NF-ĸB subfamily of proteins make them inactive. These 

proteins become short to get active by either limited proteolysis or arrested 

translation (p105 to p50 and p100 to p52). This necessitates NF-ĸB subfamily to 

form dimers with members of the Rel subfamily to activate transcription (Gilmore, 

2006). The active form of NF-ĸB is thus a heterodimer consisting p65 and p50 

subunits (Barnes & Karin, 1997). 

 

As the NF-ĸB pathway is involved in many important cellular responses, its tight 

regulation is justified. This is done by the interaction with the inhibitory proteins 

IkB such as IkBα, IkB β, IkB γ, IkB ē which have different affinities for individual 
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NF-ĸB dimers. As such, in most of the cells, NF-ĸB is present in an inactive form 

in the cytoplasm along with IkB protein (Oeckinghaus & Ghosh, 2009). The NF-

ĸB signaling is activated by a stimulus, bacteria/bacterial products in this 

circumstance. The activation of NF-ĸB requires IKKα, IKKβ and the regulatory 

protein NF-ĸB essential modifier IKK γ (or NEMO) which together constitute the 

IKK complex (Hacker & Karin

 
Figure 2: The NF-ĸB Protein family 

Image showing the classification of mammalian NF-ĸB proteins. 
 

The IKK complex phosphorylates IKB leading to ubiquitination and degradation. 

NF-ĸB which is now free can translocate into the nucleus where it initiates 

transcription (Oeckinghaus & Ghosh, 2009). 

 

NF-ĸB activation can occur by two main pathways: Canonical or classical and non-

canonical pathway. Recent studies show that the canonical and the non-canonical 
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pathway are involved in innate immunity and adaptive immunity respectively 

(Bonizzi & Karin, 2004). 

 

  

Figure 3: Schematic depiction of the NF-κB pathway 

The image depicts the mechanism of pro-inflammatory cytokine production and 

osteoclastogenesis through activation of NF-ĸB. 

 

The classical pathway can be stimulated by cytokines such as TNFα, interleukin 1 

(IL-1), antigens and toll-like receptors (TLR4). It is mainly concerned with the 

phosphorylation of IkB α and is dependent on IKKβ and IKK of the IKK complex, 

resulting in the translocation of P65 protein heterodimers (Hayden & Ghosh, 2004; 

Oeckinghaus et al., 2011).  
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Figure 4: Canonical (Left) and Non-canonical (Right) Pathways for the 
Activation of  
NF-κB 
 

Figure reused with permission from Elsevier, Molecular cell, Two Pathways to NF-κB, 
Pomerantz, Baltimore, October 2002. 
 

On the other hand, the non-canonical pathway is induced by specific TNF 

cytokines such as CD40 ligand, BAFF, and lymphotoxin-β except TNF (Bonizzi 

& Karin, 2004; Oeckinghaus et al., 2011). It is dependent on IKKα-mediated 

phosphorylation of P100- RelB, resulting in the formation of p52-RelB complexes 

(Hayden & Ghosh, 2004). 

 

 The NF-ĸB pathway is important in pro-inflammatory signaling through the 

production of cytokines, chemokines, and adhesion molecules (Lawrence, 2009). 

In addition, NF-ĸB signaling transduction is pivotal in the downstream of 
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RANK/RANKL pathway that leads to the development of osteoclasts (Yamaguchi 

et al., 2012).  

 

Periodontal pathogens, Porphyromonas gingivalis, and NFκB Signaling pathway: 

Bacteria, bacterial products, and viruses are known to be the inducers of NF-ĸB, 

which controls of transcription of around 150 target genes (Pahl, 1999). Among the 

bacteria, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, 

Tannerella forsythia (formerly Bacteroides forsythus), Porphyromonas gingivalis, 

Prevotella intermedia, Treponema denticola are important periodontal pathogens 

and are known to be inducers of NF-ĸB  (Kobayashi-Sakamoto et al., 2004; Walter 

et al., 2004; Hasebe et al., 2004; Huang et al., 2004; Kim et al., 2004; Tanabe et 

al., 2008; Tiranathanagul et al., 2004). Also, bacterial lipopolysaccharide (LPS) 

has been shown to activate NF-ĸB signaling pathway (Sen & Baltimore, 1986). 

 

Porphyromonas gingivalis is one of the major etiological organisms in the 

pathogenesis of the periodontal disease that is also known to be an inducer of the 

NF-ĸB (Groeger et al., 2017; Lamont & Jenkinson, 1998). Studies have shown that 

LPS, one of the major constituent of the outer membrane of Porphyromonas 

gingivalis, induces NF-ĸB (Ding et al., 2013). Also, studies have found that the 

activation of NF-kB by P. gingivalis is through IkB kinase (IKK) complex (Carayol 

et al., 2006). In addition, IKK , the regulatory protein is essential for the activation 

of IKK complex in inflammation (May et al., 2000). 
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 LPS consists of three parts: lipid A, a core oligosaccharide, and an O side chain 

(Raetz & Whitfield, 2002). Pathogen-associated molecular patterns (PAMPs) are 

structures within a class of microbes that are recognized by pattern recognition 

receptors (PRRs) present on the cells of innate immunity system (Mogensen, 

2009). Lipid A of LPS is the main PAMP that is recognized by toll-like receptors, a 

pattern recognition receptor (PRR). The LPS binds to toll-like receptors, mainly 

TLR4 and upregulates the expression of nuclear factor-κB (NF-κB) (Wang et al., 

2000). Activation of NF-ĸB signaling pathway by Porphyromonas gingivalis leads 

to the production of pro-inflammatory cytokines particularly interleukin-1β (IL-1β), 

tumor necrosis factor-α (TNF-α) and IL-6 and osteoclastogenesis (Choi et al., 

2005) (Diya et al., 2008). 

 

RANKL/RANK/OPG Pathway, NF-ĸB, and Osteoclastogenesis: 

Many factors such as macrophage colony- stimulating factor (M-CSF), Receptor 

activator of nuclear factor kappa-B ligand (RANKL) influence the formation of 

osteoclasts the RANKL/RANK/OPG Pathway which is upstream of the NF-ĸB 

signaling cascade. 

NF-ĸB pathway is downstream of RANKL/RANK pathway and it is now established 

that this pathway is critical and essential for osteoclastogenesis (Boyce, 2013). 

RANKL, a member of TNF family, is a homotrimeric transmembrane protein 

secreted by osteoblasts and stromal cells (Nelson et al., 2012). It is expressed in 

bone and bone marrow, lymph nodes, thymus, spleen, mammary glands and the 

brain (Liu & Zhang, 2015). 
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Figure 5: The RANKL/RANK/OPG pathway for normal osteoclastogenesis. 
Picture reused with permission from Dr. Brendan F Boyce, Biology of RANK, RANKL, and 
Osteoprotegerin, Arthritis Research & Therapy2007 
 

In Rheumatoid arthritis, RANKL is highly expressed and appears to be responsible 

for the destruction of tissue at the joint (Geusens, 2012). Binding of RANKL to its 

receptor RANK on osteoclast precursors leads to the formation of osteoclasts 

(Khosla, 2001). To counteract the production of osteoclasts, a factor called 

osteoprotegerin (OPG) is produced which binds to RANKL, thus acting as a decoy 

receptor and inhibiting the osteoclastogenesis.  

Receptor activator of NF-κB (RANK) is a member of tumor necrosis factor receptor 

(TNFR) family and a type 1 homotrimeric transmembrane protein present in normal 
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cells, mammary glands and in some cancer cells (Boyce & Xing, 2007). RANKL 

binds to its receptor RANK resulting in osteoclastogenesis via activation of NF-ĸB. 

RANKL/RANK/OPG axis is hence considered the central controller of the 

osteoclastogenesis and function (Florencio-Silva et al., 2015; Kobayashi, 

Udagawa, & Takahashi, 2009). 

 

NF-ĸB pathway and Pro-inflammatory cytokines: 

A coordinate regulation of the signaling pathways that regulate the expression of 

pro-inflammatory and anti-inflammatory cytokines is necessary to maintain 

health. This is because excessive production of pro-inflammatory cytokines 

drives the tissue in favor of destruction. The significance of NF-ĸB pathway in the 

expression of pro-inflammatory genes has been well-documented (Lawrence, 

2009). These pro-inflammatory genes are responsible for the expression of 

cytokines, chemokines, and adhesion molecules. Although cytokines produced 

act independently, there is an associated crosstalk with other cytokines. NFκB 

signaling pathway exhibits a broad control over the network and cascade of 

cytokines by regulating the genes involved in the production of cytokines. 

As previously mentioned, current evidence suggests that the pro-inflammatory 

cytokines such as IL1-, IL-6, TNF contribute to the tissue destruction and bone 

loss in periodontal disease (Benedetto et al., 2013; Kato et al., 2014; Graves & 

Cochran, 2003). Furthermore, the periodontal pathogens Actinomycetes 

actinomycetemcomitans and P. gingivalis have been shown to induce the 

production of IL-1β, TNF-α, IL-6 through NFκB pathway (Kayal, 2013). NF-ĸB 
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pathway is critical in the expression of cytokine genes involved in the 

pathogenesis of periodontitis: IL-1 , IL-6, and TNF (Cogswell et al., 1994) 

(Libermann & Baltimore, 1990; Liu et al., 2000). Hence, the NF-ĸB pathway 

which includes both the canonical and the non-canonical pathway can be 

described as the “mastermind” in the regulation of these pro-inflammatory 

cytokines which are critical in the pathogenesis of periodontal disease. 

 

NBD-nanoparticles:  

Many authors have described this labyrinthine pathway as a “holy grail” of targeting 

the pathway for therapeutic purposes (Firestein, 2004; Lawrence, 2009). One of 

the approaches is to block the pathway with the help of an NBD peptide. The 

NEMO binding domain (NBD) peptide is shown to effectively block the association 

of NEMO with IKK complex thereby inhibiting NF-ĸB activation. This peptide 

targets only the inflammation induced NF-ĸB activity, while sparing the protective 

functions of basal NF-ĸB activity displaying fewer undesired side effects (Strickland 

& Ghosh, 2006). Also, the traditional lipid bilayer system is ineffective in drug 

delivery as the peptides are subjected to rapid protease degradation and limited 

bioavailability due to their inability to pass through the cell membrane. The peptide 

is incorporated into the outer lipid monolayer of the stable perfluorocarbon 

nanoparticle system for effective drug delivery that ensures inhibition of NF-ĸB but 

not complete suppression (Pan et al., 2011b).  

The use of nanoparticles increases stability, loading capacity, and facilitates 

transmembrane transportation of the drug. The efficacy of the NBD-nanoparticles 
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in inhibiting bone loss in relation to periodontitis has not been tested to date. The 

current treatment procedures for periodontitis are expensive, unaffordable by 

those who require the treatment the most and require long-term maintenance by 

the patients to be effective. The NBD-nanoparticles may prove to be a novel 

therapeutic drug treating the disease more effectively, thus reducing the severity 

of the disease. 
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HYPOTHESIS 

We hypothesized that the NBD-nanoparticles can lead directly to inhibition of 

osteoclastogenesis and pro-inflammatory cytokines production in vitro. We also 

hypothesized that this nanoparticle inhibits gingival inflammation and prevents 

bone loss in a murine model for periodontitis. 
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CHAPTER 2: MATERIALS AND METHODS 

In vitro experiments: 

Osteoclastogenesis: 

RAW 264.7 cells (ATCC CLR-2278) were cultured (103 cells) in a 96 well plate in 

α-MEM supplemented with 10% FBS and 100ng/ml murine soluble RANKL 

(sRANKL) (Peprotech®). Nanoparticles of different dosages were added into the 

cell culture (120, 600, 1200 and 2400 pM). Five days later, the cells were stained 

for the enzyme tartrate-resistant acid phosphatase (TRAP) using the Leukocyte 

Acid Phosphatase TRAP Kit (Sigma-Aldrich®). The number of multinucleated 

TRAP-positive cells were counted which represent the multinucleated osteoclasts. 

(Jacome-Galarza et al., 2013). NBD-nanoparticles and nanoparticles were 

obtained from Washington University at St. Louis in collaboration with the 

laboratories of Dr. Samuel A. Wickline and Dr. Hua Pan. 

 

Pro-inflammatory cytokines expression: 

The RAW 264.7 cells (ATCC CLR-2278) and THP 1 cells (Invivogen) were 

separately stimulated with P. gingivalis 33277 (ATCC®) at MOI of 10:1 overnight. 

Cells were treated with different dosages of nanoparticles (120, 600, 1200 and 

2400 pM) along with P. gingivalis 33277 (ATCC®). The culture supernatant was 

harvested after incubating overnight. The cytokine expression of IL-1β, IL-6, and 

TNFα was measured by enzyme linked immunosorbent assay (ELISA).  
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In vivo Experiments: 

Murine ligature induced periodontitis model: 

Mice received a ligature around the second molar, placed in the gingival sulcus.    

(Abe & Hajishengallis, 2013). The ligature-induced periodontitis model is a 

preferred method as it drastically reduces the time to develop periodontitis and by 

exaggerating inflammation and bone loss (Molon et al., 2014; Oz & Puleo, 2011). 

 

Figure 6: illustration of Steps involved in the ligation procedure 

Picture reused with permission from Journal of Immunological Methods, Abe & 

Hajishengallis, (2013). Optimization of the ligature-induced periodontitis model in mice. 

 

A) 5–0 silk suture was passed in between the second molar and third molar using Dumont 

forceps. (B) Suture was passed through between first molar and second molar using 

Dumont forceps. (C) Suture was looped around the second molar (taking care to remove 

the slack) using suture-tying forceps. (D) Suture was tied firmly using a triple-knot and 

excess suture was cut using spring scissors. 
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The mice were infected with 1 x 109 colony-forming units of P. gingivalis (3327; 

American Type Culture) or 2% carboxymethylcellulose vehicle as a control every 

other day for 3 times. Immediately after the ligation, micro-injections of 10μl of 1.2 

nM NBD-Nanoparticles, nanoparticles or phosphate buffer solution (PBS) was 

given in the palatal gingiva between first and second molars on day 1. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Schematic depiction of the protocol for periodontitis induction in 

vivo.  

On the first, third and fifth day of ligation, microinjections of NBD- nanoparticles, 

nanoparticles or phosphate buffer solution (PBS) was given in the palatal gingiva between 

first and second molars. Additionally, they were infected with P. gingivalis on days 1, 3, 

and 5. Seven days later the mice were harvested. Numbers indicate Days. 
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Gingiva harvest and quantification of cytokines:  

After seven days of ligation, the mice were sacrificed and the gingival tissue was 

harvested.  

 

 

 

Figure 8: Illustration of the steps involved in the harvest of gingiva. 

Incision ①, ②, ③ were made first. The red triangle part of the gingiva was grasped and 

the lingual part of gingiva was pulled. Then, incision ④ was made and the black part of 

the gingiva grasped and the buccal part of the gingiva pulled. 

 

RNA was isolated using RNeasy kit (Qiagen). RNA was reversed-transcribed and 

mRNA expression of cytokines - IL-1β, IL-6, TNFα, and RANKL was determined 

by qualitative real-time PCR.  
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Jaw harvest and Morphometrical analysis: 

The skulls were subjected to boiling at 15psi for 10 minutes. After defleshing, the 

maxillae were separated from the skulls. Maxillae were cleaned with gentle 

brushing followed by bleaching overnight. Later, they were stained with 0.5% eosin 

and 1% methylene blue (Abe & Hajishengallis, 2013). Alveolar bone heights were 

assessed using a 40 X objective under a Nikon SMZ800 microscope (Nikon 

Instruments Inc., NY, USA).  

 

Figure 9: Picture of mice maxillary teeth showing the sites of measurement. 

Arrows indicate the site of measurement. Measurements were taken at six different sites- 

the mesial cusp, buccal groove and distal cusp of the first molar, the mesial cusp and distal 

cusp of the 2nd molar, and buccal cusp of the third molar. 

 

Bone heights were measured morphometrically and the images of the maxillae 

were captured using a Nikon Digital Sight DS-U3 camera controller (Nikon 

Instruments Inc.). Measurements were taken at six different sites- the mesial cusp, 

buccal groove and distal cusp of the first molar, the mesial cusp and distal cusp of 
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the 2nd molar, and buccal cusp of the third molar. The readings of CEJ-ABC 

distance at each site were totaled for each mouse. Bone loss was calculated by 

subtracting the six-site total CEJ-ABC distance for the ligated mice from the six-

site total CEJ-ABC distance of the unligated mice. Micro-CT was performed in the 

Department of Radiology at University of Louisville. 

 

Statistical analysis:  

Data were evaluated by ANOVA (InStat v3.06 program, GraphPad) and 

differences were considered significant at the p < 0.05 level. 

 

Human Subjects: No human subjects were used in the experiment. 

 

Vertebrate Animals: C57BL6 mice were purchased from the Jackson laboratory. 

All experimental procedures were performed in accordance with the guidelines of 

the Institutional Animal Care and Use Committee of University of Louisville, IACUC 

number: 15323. 
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CHAPTER 3: RESULTS 

The overall strategy of this research is to investigate the ability of NBD-

nanoparticles to directly inhibit osteoclastogenesis, and the pro-inflammatory 

cytokine response to a bacterial stimulus using in vitro studies. Also, to investigate 

the therapeutic ability of NBD-nanoparticles to inhibit pro-inflammatory cytokine 

production in the gingiva and reduce alveolar bone loss in a murine ligature 

induced periodontitis model. 

 

1) NBD-nanoparticle inhibits RANKL-induced osteoclastogenesis: 

Bone loss in periodontitis is a result of an imbalance in the osteoblastic and 

osteoclastic activity. Since the current evidence attributes the bone loss to 

osteoclastogenesis through the NF-ĸB pathway that is downstream of 

RANKL/RANK pathway, we first investigated whether the NBD-nanoparticle can 

prevent the RANKL-induced osteoclastogenesis in vitro. 

 

Since osteoclasts are derived from monocyte precursors, we used the RAW cell 

line cells which are murine monocyte/macrophages. Furthermore, RAW cells are 

the most extensively used cell line for decades to study the differentiation of 

osteoclasts (Collin-Osdoby et al., 2003; Jacome-Galarza et al., 2013). 
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In order to test the ability of NBD-nanoparticles to prevent RANKL-induced 

osteoclastogenesis, we examined the cells through microscopy, and osteoclastic 

cell formation was determined by the number of multinucleated TRAP positive 

cells. Cells with three or more nuclei were considered  to be osteoclasts. Controls 

included treatment with empty nanoparticles and no treatment. Cells with no 

stimulation (RANKL) were also used. 

 

In the cells without RANKL-stimulation and with or without NBD nanoparticle 

treatment, there were virtually no TRAP-positive cells indicating that RANKL is 

required for differentiation into osteoclasts. As expected, the cells incubated with 

RANKL stimulated the formation of a large number of TRAP positive cells. This 

indicates a crucial role of RANKL in initiating the RANKL/RANK pathway towards 

osteoclastogenesis. After we treated the RAW cells with NBD-nanoparticles, the 

formation of TRAP positive cells was significantly reduced (Fig 10, 11), while the 

empty nanoparticles without NBD did not inhibit osteoclastogenesis (Fig 10). We 

further counted the number of osteoclasts in each well. Our results showed that 

NBD- nanoparticle effectively inhibited the osteoclastogenesis. 
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Figure 10. NBD-nanoparticle inhibits RANKL-induced osteoclastogenesis: 

RAW 264.7 cells were treated with RANKL and 2.4µM of NBD-nanoparticles (NBD-

NP) or Nanoparticles (NP). Untreated cells (RANKL) or empty Nanoparticle (NP) 

treated cells were used as controls. The cells were cultured for 5 days and stained 

with TRAP.  
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Figure 11. NBD-nanoparticle inhibits RANKL-induced osteoclastogenesis. 

RAW 264.7 cells were treated with RANKL and 2.4µM of NBD-nanoparticles (NBD-

NP). Untreated (RANKL only) and empty nanoparticle treated cells were used as 

controls. The cells were cultured for 5 days and stained with TRAP. The 

multinucleated TRAP positive cells were counted per well.  * p<0.05 
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2. NBD-nanoparticle inhibits P. gingivalis-induced pro-inflammatory 

cytokine production: 

It has already been reported that the NF-ĸB pathway is critical in the infection-

induced pro-inflammatory cytokine production. Moreover, considering the role of 

inflammatory cytokines in the destruction of tooth supporting tissue in periodontitis, 

we wanted to examine if NBD-nanoparticles will inhibit infection- induced pro-

inflammatory cytokine expression relevant to periodontitis- IL-1β, IL-6 and TNFα.  

 

For measuring the expression of IL-1β, IL-6 and TNFα by ELISA, either RAW cells 

or THP1 cells were incubated overnight and the supernatant was harvested. The 

cells that did not stimulated with P. gingivalis showed nearly negligible amounts of 

IL-1β, suggesting that there was no NF-ĸB activation in the absence of infection. 

In contrast, a dose dependent significant decrease in the amount of IL-1β was 

noted in the cells that received NBD-nanoparticle treatment. At a treatment dose 

of 2.4 µM of NBD nanoparticles, the amount of IL-1β was almost equivalent to the 

unstimulated cells. This data confirms that the NBD-nanoparticles effectively block 

the production of IL-1β (Fig.12). 

 

Furthermore, cells expressed IL-6 responding to P. gingivalis stimulation, while the 

amount of IL-6 was significantly reduced in the NBD-nanoparticle-treated human 

monocyte cells. A dose-dependent decrease was observed from 0.6 to 1.2 µM 

NBD-nanoparticles (Fig.12). Similarly, in murine macrophage cells, a small amount 

of IL-6 expression was observed in the unstimulated cells treated with the empty 
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nanoparticle (Fig. 13). The amount of IL-6 after treatment with NBD-nanoparticles 

decreased to the level of unstimulated cells confirming that the NBD-nanoparticle 

is capable of inhibiting the IL-6 production in vitro (Fig. 13). 

Next, we investigated the expression of TNFα in murine macrophage cell line for 

testing the efficacy of NBD-nanoparticles. Data showed that the unstimulated cells 

only produce tiny amount of TNFα. Not surprisingly, P. gingivalis stimulation 

induced TNFα production. Our data indicate a dosage-dependent decrease in the 

TNFα levels after treatment with NBD-nanoparticles in P. gingivalis-infected cells 

(Fig.13). This suggests that the NBD-nanoparticle is effective in suppressing TNFα 

production. 

 

In summary, our results corroborate that the NBD-nanoparticles are able to inhibit 

the infection-induced production of IL-1β, IL-6 and TNFα, which are important 

cytokines in the pathogenesis of the periodontal disease. 
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Figure 12. NBD-nanoparticle inhibits P. gingivalis-induced pro-inflammatory 

cytokine production by human monocytes: THP1 cells were treated with 

different dosages (0.6, 1.2, and 2.4µM) of NBD-nanoparticles (NBD) at the time of 

P. gingivalis (Pg) infection (MOI 10:1). The cells without stimulation (NS) were 

used as controls. The cells were cultured overnight and supernatant were tested 

for production of (A) IL-1 and (B) IL-6. Data presented as mean ± SD (n = 3). 
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Fig. 13. NBD-nanoparticle inhibits P. gingivalis-induced pro-inflammatory 

cytokine production by RAW cells. RAW cells were treated with different 

dosages of NBD-nanoparticles (NBD) at the time of P. gingivalis (Pg) infection 

(MOI 10:1).  The cells were cultured overnight and supernatant were tested for 

production of (A) TNFα and (B) IL-6. * p<0.05，**：p<0.01 
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In vivo experiments: 

The overall strategy of the in vivo experiments is to determine the ability of NBD-

nanoparticles to effectively control the inflammation and inhibit alveolar bone loss. 

For this purpose, a murine ligature-induced Periodontitis model was used (Abe & 

Hajishengallis, 2013). 

 

3. NBD-nanoparticle treatment inhibits expression of periodontitis-related 

cytokines:  

We have established that the NBD-nanoparticle can inhibit inflammatory cytokine 

production in vitro. In addition, literature provides evidence that the production of 

pro-inflammatory cytokines via NF-ĸB activation as a host response to the 

microbial attack leads to tissue destruction in periodontitis. So, we wanted to 

investigate the NBD-nanoparticle’s ability to inhibit inflammation in vivo using a 

murine ligature-induced periodontitis model.  

C57/BL6 mice were ligated and received micro-injections of NBD-nanoparticles. 

Additionally, the ligated mice were infected with P. gingivalis three times every 

other day. Controls included  

ligated mice treated with empty nanoparticles or no treatment. On day 8, the mice 

gingivae were harvested and tested for expression of cytokines, including RANKL, 

IL-1β, IL-6 and IL-17 by quantitative RT-PCR. 

 

Our results demonstrated a high level of expression of RANKL, IL-1β and IL-6 

except IL-17 in the untreated mice (Fig. 14). Furthermore, the empty nanoparticle 
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treated mice had no significant difference in the expression levels from the 

untreated mice, although IL-17 relative levels were increased after treatment with 

empty nanoparticles. Nonetheless, literature suggests a controversial dual role of 

IL-17 in protection and progression of inflammatory diseases (Miossec et al., 2009; 

Yu et al., 2007). However, the NBD-nanoparticle seemed to have a consistent 

suppressive effect on all the tested cytokines, which is indicated by the decreased 

relative levels of expression.  

 

These data show that NF-ĸB inhibition by the NBD nanoparticle results in a 

decreased expression of cytokines – RANKL, IL-1β, IL-17 and IL-6 in the gingiva. 

In addition, these results indicate that the NBD-nanoparticle is able to inhibit 

inflammation in the gingival tissues in the murine periodontitis model. 
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Figure 14. NBD-nanoparticle treatment inhibits expression of periodontitis-

related cytokines. Relative expression of pro-inflammatory cytokines in the 

gingivae of mice treated with NBD-nanoparticle (NBD-NP), empty nanoparticles 

(NP), or without treatment (UT). Quantitative real-time PCR (qPCR) was used to 

determine gingival mRNA expression levels for the indicated molecules 

(normalized against GAPDH mRNA levels). The gingivae used were excised from 
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C57/BL6 mice. Results are shown as fold change relative to sham-ligated mice, 

respectively. Each data point represents the mean ± SD of 5 separate expression 

values, each value corresponding to qPCR analysis of an individual mouse. 

Asterisks indicate statistically significant (p < 0.05) differences between NBD-

nanoparticle treated mice and other groups. 

4. NBD-nanoparticle inhibits alveolar bone loss in a ligature model: 

As we have demonstrated that the NBD-nanoparticle is capable of inhibiting the 

formation of the bone resorbing cells (osteoclasts) in vitro, we were interested in 

investigating if the nanoparticle can block the NF-ĸB activation-induced 

osteoclastogenesis leading to less severe bone loss. Thus, to examine the ability 

of NBD-nanoparticles to inhibit alveolar bone loss, a murine ligature-induced 

periodontitis model is used as previously described. Microinjections of NBD-

nanoparticles, nanoparticles or PBS was done. In addition, they were infected with 

P. gingivalis every other day for 3 times. Control mice had sham-ligature and 

sham-infection. Seven days’ post ligation, the mice were euthanized and the skulls 

were harvested. Measurement of CEJ- ABC distance was done morphometrically 

with the help of microscopy (Fig.15) and Micro-CT scan (Fig. 16) at six different 

sites.  

 

Our results showed that there was no significant difference in the CEJ-ABC 

distance in the non-ligated group. Conversely, the ligated mice treated with empty 

nanoparticles or no treatment exhibited more CEJ-ABC distance. However, the 

NBD-nanoparticle treated mice showed a lesser CEJ-ABC measurement. 
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Subsequently, we determined the bone loss, which was obtained by subtracting 

the total CEJ-ABC distance of ligated to that of unligated mice (Fig. 17). Our results 

demonstrated that the bone loss was significantly reduced after treatment with the 

NBD-nanoparticles when compared to that of sham mice. 

These results indicate that the NBD-nanoparticles markedly reduced the bone loss 

in a murine ligature induced periodontitis model. This observation supports our 

hypothesis that the NBD-nanoparticles through inhibition of NF-ĸB pathway 

prevents the osteoclastogenesis thus reducing the bone loss. 
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Figure 15. NBD-nanoparticle inhibits alveolar bone loss in a ligature model: 

 C57Bl/6 mice were ligated around 2nd molar to induce bone loss. The mice were 

treated with NBD-NP, empty NP, or left untreated. The mm distance from the 

cemento-enamel junction (CEJ) to the alveolar bone crest (ABC) was measured 

at 6 most affected maxillary buccal sites and the readings were totaled for each 

mouse. Pictures were captured using a Nikon Digital Sight DS-U3 camera 

controller (Nikon Instruments Inc.) 
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Figure 16. NBD-nanoparticle inhibits alveolar bone loss in a ligature model: 

 C57Bl/6 mice were ligated around 2nd molar to induce bone loss. The mice were 

treated with NBD-NP, empty NP, or left untreated. The mm distance from the 

cemento-enamel junction (CEJ) to the alveolar bone crest (ABC) was measured 

at 6 most affected maxillary buccal sites and the readings were totaled for each 

mouse.  
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Figure 17. NBD-nanoparticle inhibits alveolar bone loss in a ligature model. 

C57Bl/6 mice were ligated around 2nd molar to induce bone loss. The mice were 

treated with NBD-NP, empty NP, or left untreated. The mm distance from the 

cemento-enamel junction (CEJ) to the alveolar bone crest (ABC) was measured 

at 6 most affected maxillary buccal sites and the readings were totaled for each 

mouse. The data are means ± SD (n = 7 for untreated ligated and non-ligated, 9 

for NP ligated and non-ligated, 10 for NBD-NP ligated and non-ligated  mice). The 

CEJ-ABC reading of each mouse was represented by each dot. Bone loss was 

calculated by subtracting the six-site total CEJ-ABC distance for the ligated mice 

from the six-site total CEJ-ABC distance of the unligated mice. Asterisks indicate 

statistically significant (p < 0.05) differences between NBD-NP treated and other 

groups. 
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CHAPTER 4: DISCUSSION 

Periodontitis is characterized by both gingival inflammation and alveolar bone loss. 

NF-ĸB signaling pathway is pivotal in osteoclastogenesis and infection-induced 

pro-inflammatory responses for being at the crossroad of a variety of signaling 

pathways. Porphyromonas gingivalis (P. gingivalis) is one of the most important 

and widely investigated periodontal disease etiological pathogens. Reasons for a 

being an extensively studied organism in periodontitis might range from being a 

key stone pathogen, member of red complex, persistence of the species in 

periodontal patients to easy culture methods and genetic manipulation. In addition, 

inoculation of P. gingivalis in animals induces gingival inflammation and alveolar 

bone loss. Because of their critical role in host immune responses, NF-ĸB must be 

tightly regulated to avoid excessive or defective immune responses. Many authors 

have described NF-ĸB as “holy grail”, “master switch”, “master regulator”, “center 

piece” of inflammatory responses (Abu-Amer, 2013; Firestein, 2004; Lawrence, 

2009). As the evidence shows NF-ĸB to be a key player in the inflammation, the 

pathway has been a therapeutic target for many researchers.  

 

A nanoparticle cargo carrier undergoing FDA-approved clinical trials has been 

linked with therapeutic peptide, Nemo Binding Domain (NBD) inhibitory peptide, 

which prevents NF-ĸB activation. A peptide-nanoparticle complex is formed and 

inhibition of NF-ĸB signaling has been demonstrated. We hypothesized that 
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the NBD-nanoparticles can lead to inhibition of osteoclastogenesis directly and 

pro-inflammatory cytokines production in vitro. We also hypothesized that this 

nanoparticle inhibits gingival inflammation and prevents bone loss in a murine 

model for periodontitis. 

 

A right balance between the bone forming osteoblasts and bone resorbing 

osteoclasts is of utmost importance for the bone homeostasis and maintenance. 

When the balance tips towards formation of excessive osteoclasts, it results in 

bone resorption. Because periodontal disease is characterized by bone loss and 

the NF-ĸB activation leads to formation of bone resorbing cells, we wanted to 

establish the ability of the NBD-nanoparticles to prevent RANKL-induced 

osteoclastogenesis. Our results demonstrated a decrease in the number of TRAP-

positive cells after treatment with the NBD-nanoparticles confirming that the NBD-

nanoparticle is able to inhibit RANKL-induced osteoclastogenesis by blocking the 

NF-ĸB pathway (Fig.11). Furthermore, we wanted to investigate the ability of this 

nanoparticle to inhibit pro-inflammatory cytokine production. Since, periodontal 

disease is a repercussion of chronic inflammation and the NF-ĸB pathway has a 

central role in the production of cytokines especially those that are implicated in 

periodontitis, we examined the expression of these cytokines- IL-1β, IL-6 and 

TNFα (Fig. 12,13). Our data showed a marked reduction in the levels of cytokines 

and suggested that the NBD-nanoparticles are effective in inhibiting the pro-

inflammatory cytokine production by blocking the NF-ĸB. 
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After establishing the action of NBD-nanoparticles in a set of in vitro experiments, 

we studied the ability of these nanoparticles in vivo. For this purpose, we used a 

murine ligature-induced periodontitis model and additionally infected them with P. 

gingivalis to exacerbate the gingival inflammation. Our results were consistent with 

the in vitro experiment data and demonstrated a decrease in the expression of 

inflammatory cytokines important in the pathogenesis of the periodontal disease 

(Fig. 14). Similarly, the NBD-nanoparticle treated group showed less CEJ-ABC 

distance when compared to the untreated (Fig. 17). This data suggests that the 

nanoparticles are effective in inhibiting gingival inflammation and alveolar bone 

loss in a murine ligature-induced periodontitis model. 

 

 Normally, in response to an infection, the IKK complex is activated by the 

binding of IKKγ to the IKKα and IKKβ subunits. This leads to the phosphorylation 

of the IkB rendering the free NF-ĸB to translocate to the nucleus thus initiating 

the expression of genes involved in the production of pro-inflammatory cytokines 

and osteoclastogenesis. The nanoparticle cargo delivers the NBD inhibitory 

peptide in to the cell and the peptide prevents the binding of IKKγ to the Nemo 

binding domain, thus blocking the downstream pathway that leads to the 

production of NF-ĸB. This results in the prevention of inflammation and bone 

loss. 

 

Future studies might be directed at testing the nanoparticles using the other 

bacteria associated with the pathogenesis of the disease. Indeed, this study might 



  45 

provide data on differential expression of cytokines by different bacteria and also 

the amount of suppression of the inflammation and bone loss by the nanoparticles. 

Also, nanoparticles with another peptide as a control can be used to check if the 

action is caused by the NBD nanoparticles. Characterization of the cell types that 

are involved in cytokine production is another direction of future studies. As the 

nanoparticle can be used as a drug delivery vehicle for other peptides, other 

processes of the NFkB pathway can be blocked.  

 

In summary, our experimental results have indicated that this novel peptide- 

nanoparticle complex is effective to inhibit pro-inflammatory cytokine production, 

and RANKL-induced osteoclastogenesis. This nanoparticle inhibits pro-

inflammatory cytokine expression in gingivae and prevents alveolar bone loss in a 

murine model for periodontitis. This novel nanoparticle showed significant 

therapeutic potential to cure periodontitis and other inflammatory diseases. 
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