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ABSTRACT

SOME PROBLEMS ARISING FROM MATHEMATICAL MODEL OF DUCTAL

CARCINOMA IN SITU

Heng Li

June 14, 2017

Ductal carcinoma in situ (DCIS) is the earliest form of breast cancer. Three

mathematical models in the one dimensional case arising from DCIS are proposed.

The first two models are in the form of parabolic equation with initial and known

moving boundaries. Direct and inverse problems are considered in model 1, existence

and uniqueness are proved by using tool from heat potential theory and Volterra in-

tegral equations. Also, we discuss the direct problem and nonlocal problem of model

2, existence and uniqueness are proved. And approximation solution of these prob-

lems are implemented by Ritz-Galerkin method, which is a first attempt to deal with

such problems. Based on the finding of the previous two models, the more general

free boundary problem model – nonlinear parabolic partial differential equation with

initial, boundary and free boundary condition is presented. Well-posedness theorems

are proved by applying knowledge of semigroup solution operators. Illustrative ex-

amples are included to demonstrate the validity and applicability of the technique for

all three models.
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CHAPTER I

INTRODUCTION

Ductal carcinoma in situ denotes the initial stage of breast cancer, and the

tumor cell is only confined within the breast ductal. “Ductal” means that the cancer

takes place inside the milk ducts, “carcinoma” refers to any cancer that starts in the

skin or other tissues. For breast, it lies beneath the skin and leads to the nipple, and

the phrase “ in situ ” means “ in its original place.” Although it is non-invasive and

not life-threatening and usually considered as stage 0 of breast cancer, it can increase

the risk of breast cancer in future and sometimes lead to invasive cancer.

Based on the appearance of the tumor cells proliferating within the duct, DCIS

can be classified into two categories: comedo and non-comedo. Usually, the non-

comedo type DCIS tends to be less aggressive than the other one. There are 3

common non-comedo types of DCIS: (1) Solid DCIS: cancer cells completely fill the

affected ducts; (2) Cribiform DCIS: cancer cells do not completely fill the affected

breast ducts; there are gaps between the cells; (3) Papillary DCIS: cancer cells form

themselves in a fern-like pattern within the affected breast ducts.

Over the past 40 years, tumor growth described by mathematical models has

been a significant focus. The model for the growth of a tumor consisting of live cells

was first proposed by Byrne and Chaplain [8, 9]; Ward and King [36, 37] assumed

that the tumor is radially symmetric, and consists of a continuum of live and dead

cells. Also they developed a velocity field in response to local volume variations due

to cell movement. For other publications of tumor growth, for examples, see Adam,

Burton, Friedman and Greenspan. [1, 7, 26, 28].

While there is considerable interest in modeling all aspects of solid tumor
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growth, very little attention has been devoted to early stages cancer, not to say D-

CIS. It is very necessary and useful to model tumor growth in the very early stage.

For example, when noticing a possible breast tumor, a sequence of check-up is nec-

essary; or tumor is resected, but need continuous therapy for patient to make sure

the undetectable metastases are being treated. All these situations are reasonably

modeled as early stage tumors.

Franks and Byrne [25] developed a nutrient limited growth model to study D-

CIS, which involves cell movement, interactions between the expansive forces created

by tumor cell proliferation and the stresses that develop in the compliant basement

membrane. They also determined effect of growth by treatment, protease production

and the inclusion of the surrounding stroma. Also, Xu [38, 39, 40, 41, 42, 43] mod-

ified an existing tumor growth model by Byrne and Chaplain [8, 9] and adapted a

nutrient diffusion limited model with a radially symmetric, cylindrical geometry to

study DCIS, and he noted that the spatial patterns exhibited by stationary model

solutions were consistent with morphologies commonly observed in DCIS. Also, he

proposed some inverse problems related to clinical diagnosis.

It is well known that tumor growth strongly depends upon the availability

of nutrients, which can only be obtained from the surrounding tissue or matrix via

the tumor surface. And the distribution of nutrient is controlled by two processes –

diffusion and consumption, so it is reasonable to model tumor growth by using dimen-

sionless nutrient concentration u(x, t) which satisfies a reaction-diffusion equation.

Assume Fick’s laws is applied to model the diffusion of the nutrient into the

interior of the tumor, with the diffusion coefficient D to be constant. Also assume

that consumption rate is governed by two terms, the first one comes from normal

(that is, nonmitotic) processes, kq(u)n, while the second one describes the additional

amount used during mitosis and is given by αkp(u)n, where n means the living-cell

concentrations.

Combining these assumptions, we have the following reaction diffusion equation

2



for u :
∂u

∂t
+∇ · (cv) = D4u− kq(u)n− αkp(u)n

where v is the local velocity of cells.

For simplification, kq(u), kp(u) usually are linear functions of u. kq(u) =

k1u, kp(u) = k2u. Also, assume v = 0, D = 1, then simplified equation for nutri-

ent concentration u becomes:

∂u

∂t
= 4u− λu, λ = (k1 + αk2)n

If we consider the external resource for the cell, F(x,t), then the above equation

becomes

∂u

∂t
= 4u− λu+ F (x, t) (I)

Note λ could be a constant, a function w.r.t x, t or both.

Also, we assume u(x, t) satisfies the following initial and boundary and free

boundary conditions:

u(x, 0) = f(x), ϕ1(0) < x < ϕ2(0), (II)

u(ϕ1(t), t) = g1(t), 0 < t < T, (III)

u(ϕ2(t), t) = g2(t), 0 < t < T, (IV )

Here we assume the tumor to be within the interval [ϕ1(t), ϕ2(t)] at time t,

where x = ϕ1(t) and x = ϕ2(t) are two growing boundary of tumor.

Finally, the mass conservation consideration implies following relationship:

µ
∫ ϕ2(t)

ϕ1(t)
(u(x, t)− u0)dx =

∂ϕ2(t)

∂t
, ϕ2(0) = s0 > 0 (V )

Here µ, u0, and s0 are known constant.

In this dissertation, we consider the problems related to the following 3 models

in one dimensional case:

3



(1) Consider (I)− (IV ) as our model 1 by assuming the boundaries are known

with λ(t) at (I).

(2) Consider (I)− (IV ) as our model 2 by assuming the boundaries are known

with λ(x) at (I).

(3) Based on the research on previous two models, we consider more compli-

cated free boundary problem model (I)− (V ) with general λ at (I) as model 3.

The rest of dissertation is organized as follows:

In Chapter II, dealing with direct problem of model 1, we establish the integral

form of solution and proved the existence and uniqueness of solution by employing

several transformations and heat potential theory. An algorithm for solving a system

of Volterra equations with weakly singular kernel is presented. Finally, numerical

approximation of direct problems with different types of boundaries are discussed.

In Chapter III, we discuss the direct problem of model 2. The Ritz-Galerkin

method in Bernstein polynomial basis is implemented to obtain an approximate so-

lution of non-classical parabolic equation subject to given initial and known moving

boundary conditions. Also, existence and uniqueness of solution are discussed. Illus-

trative examples are included to demonstrate the validity and applicability of Galerkin

method.

In Chapter IV, we consider a inverse problem of model 1 with determining

the source parameter of parabolic equation. Corresponding existence and uniqueness

theorem and results of numerical experiments are included.

In Chapter V, we discuss the nonlocal problem of model 2, where one of the

boundary conditions is in the form of an integral. We prove the existence and unique-

ness for the solution. To overcome the difficulty of integral in boundary condition,

we still use the Ritz-Galerkin method and obtain the approximate solution.

In Chapter VI, we present well-posedness theorems of free boundary problem

model - nonlinear parabolic partial differential equation with initial, boundary and

free boundary conditions. To validate our findings, results of numerical experiments

4



and simulation are also presented.

Finally, future work and directions are discussed in Chapter VII.
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CHAPTER II

DIRECT PROBLEM FOR MODEL 1

A Introduction

In this chapter, we consider the direct problem of model 1. So far, there are

many publications about parabolic equations with fixed value boundaries, but little

research done for the kind of direct problem presented here. The organization of this

chapter is as follows:

In section B, by employing several transformations and heat potential theory,

we established the integral form of solution and proved the existence and uniqueness

of solution. An algorithm for solving a system of Volterra equations with weakly

singular kernel is presented in Section C. In section D, numerical approximation of

direct problems with different types of boundaries are discussed.

B The Mathematical Problem

Let D ⊂ R be a bounded domain with boundary Γ := ∂D. Consider an initial

boundary value problem of heat equation as follows:

∂u

∂t
=
∂2u

∂x2
− λ(t)u(x, t) + F (x, t), ϕ1(t) < x < ϕ2(t), 0 < t < T ; (1)

with initial condition

u(x, 0) = f(x), ϕ1(0) < x < ϕ2(0); (2)

and boundary conditions

u(ϕi(t), t) = gi(t), 0 < t < T, i = 1, 2, (3)

6



Here λ(t)u(x, t) denotes the nutrient consumption rate. The direct problem is

finding function u(x, t) satisfying (1)−(3) for given λ(t), f(x), gi(t) and ϕi(t)(i = 1, 2).

Now let’s first introduce some definitions and lemmas. Then we transform our

problem to a system of integral equation by using heat potential theory.

The function

G(x, t; ξ, τ) =
1

2
√
π(t− τ)

e−
(x−ξ)2
4(t−τ)

is called fundamental solution of the heat equation
∂u

∂t
=
∂2u

∂x2
. Straightforward differ-

entiation shows that G satisfies the heat equation with respect to the variables x and

t. With the aid of this fundamental solution, heat potentials are constructed, then

we use these potentials for solving our initial boundary value problem.

Definition II.1 For a function µ ∈ C(Γ × [0, T ]) the double-layer heat potential is

given by

v(x, t) =
∫ t

0
µ(τ)

∂G

∂ξ
(x, t; ξ, τ)dτ

and the volume heat potential by

U(ρ) =
∫ t

0
dτ
∫ ϕ2(τ)

ϕ1(τ)
ρ(ξ, τ)G(x, t; ξ, τ)dξ

Lemma II.1 [32] [Jump relation for double-layer potential]

The double-layer heat potential with continuous density µ can be continuously

extended from D × (0, T ] into D × (0, T ] with limiting values

v±(x0, t0) = lim
(x,t)→(x0,t0)

∫ t

0
µ(τ)

∂G

∂ξ
(x0, t0; ξ, τ)dτ ± µ(t0)

2

where ” + ” and ”− ” represent (x, t) approaches to (x0, t0) on Γ from right side and

left side respectively.

Lemma II.2 [27] The volume potential U [F ] satisfies

∂u

∂t
=
∂2u

∂x2
− F (x, t), ϕ1(t) < x < ϕ2(t), 0 < t < T ;

7



with initial condition

u(x, 0) = 0, ϕ1(0) < x < ϕ2(0);

Definition II.2 I is the domain of definition of the given function g and the de-

sired function f. f is to be determined from the following equation: Volterra integral

equation of the second kind:

f(x) = g(x) +
∫ x

a
k(x, y, f(y))dy for x ∈ I

The function k(x, y, z) is called the kernel. It is defined on the domain

(x, y, z) : x ∈ I, y ∈ [a, x], z ∈ R ⊂ I × I ×R.

Lemma II.3 [29][Existence and uniqueness of system of Volterra equations]

We assume g ∈ C(I), k ∈ (I × I ×R). Furthermore, let the kernel k satisfy

the following Lipschitz condition: there is a function L ∈ C(I × I) such that

|k(x, y, z)− k(x, y, z′)| ≤ L(x, y)|z − z′| for all (x, y) ∈ C(I × I), z, z′ ∈ R

then, there is exactly one solution f ∈ C(I) of the Volterra integral equation.

Remark: Since this is a vector equation, it is equivalent to a system consisting

of the m scalar equation

fi(x) = gi(x) +
∫ x

a
ki(x, y, z)dy i = 1, ...,m

Therefore, we get the existence and uniqueness theorem for system of Volterra equa-

tions of second kind.

Now let’s construct the solution involving the heat potential:

Employ the first transformation

w(x, t) = e
∫ t
0
λ(s)dsu(x, t), (4)

then problem (1)-(3) becomes:

8



∂w

∂t
=
∂2w

∂x2
+ e

∫ t
0
λ(s)dsF (x, t), ϕ1(t) < x < ϕ2(t), 0 < t < T ; (5)

w(x, 0) = f(x), ϕ1(0) < x < ϕ2(0), (6)

w(ϕi(t), t) = e
∫ t
0
λ(s)dsgi(t), 0 < t < T, i = 1, 2. (7)

Next employ the second transformation

h(x, t) = w(x, t)− f(x), (8)

the problem (5)-(7) becomes:

∂h

∂t
=
∂2h

∂x2
+ e

∫ t
0
λ(s)dsF (x, t) + f ′′(x), ϕ1(t) < x < ϕ2(t), 0 < t < T ; (9)

h(x, 0) = 0, ϕ1(0) < x < ϕ2(0), (10)

h(ϕi(t), t) = e
∫ t
0
λ(s)dsgi(t)− f(ϕi(t)) := ĥi(t), 0 < t < T, i = 1, 2. (11)

By Lemma II.2, we know U [−ρ(x, t)] satisfies (9) and (10).

where

ρ(x, t) = e
∫ t
0
λ(s)dsF (x, t) + f ′′(x), (12)

then employ the third transformation

v(x, t) = h(x, t)−
∫ t

0
dτ
∫ ϕ2(τ)

ϕ1(τ)
ρ(ξ, τ)G(x, t; ξ, τ)dξ, (13)

the problem (9)-(11) becomes:

9



∂v

∂t
=
∂2v

∂x2
, ϕ1(t) < x < ϕ2(t), 0 < t < T ; (14)

v(x, 0) = 0, ϕ1(0) < x < ϕ2(0), (15)

v(ϕi(t), t) = ĥi(t)−
∫ t

0
dτ
∫ ϕ2(τ)

ϕ1(τ)
ρ(ξ, τ)G(ϕi(t), t; ξ, τ)dξ := v̂i(t), 0 < t < T, i = 1, 2.

(16)

By using double-layer potential, v(x, t) has the following sum form

v(x, t) =
∫ t

0
µ1(τ)

∂G

∂ξ
(x, t;ϕ1(τ), τ)dτ +

∫ t

0
µ2(τ)

∂G

∂ξ
(x, t;ϕ2(τ), τ)dτ. (17)

In order to make the equation (17) be the solution of the problem (14)-(16),

apply Lemma II.1 and boundary condition (16), and derive the following system of

Volterra integral equations of the second kind

µ1(t)

2
+
∫ t

0
µ1(τ)

∂G

∂ξ
(ϕ1(t), t;ϕ1(τ), τ) + µ2(τ)

∂G

∂ξ
(ϕ1(t), t;ϕ2(τ), τ)dτ = v̂1(t),

−µ2(t)

2
+
∫ t

0
µ2(τ)

∂G

∂ξ
(ϕ2(t), t;ϕ2(τ), τ) + µ1(τ)

∂G

∂ξ
(ϕ2(t), t;ϕ1(τ), τ)dτ = v̂2(t).

(18)

According to Lemma II.3, (18) has an unique solution provide ϕ1(t) and ϕ2(t)

are Hölder continuous with exponent α > 1
2

in the interval [0, T ], that is

ϕ1(t), ϕ2(t) ∈ C0,α([0, T ]) = {f(x)| |f(x)− f(y)| ≤M |x− y|,∀x, y ∈ [0, T ],M > 0},

and v̂1(t) and v̂2(t) are continuous in the interval [0, T ]. Thus, we have the following

theorem.

Theorem II.1 Assume that ϕ1(t), ϕ2(t) ∈ C0,α([0, T ]), α > 1
2
, λ(t), g1(t), g2(t) ∈

C[0, T ], f(x) ∈ C2[ϕ1(t), ϕ2(t)] and F (x, t) ∈ C[[ϕ1(t), ϕ2(t)] × [0, T ]]. The problem

(1)-(3) has an unique solution and following form:
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u(x, t) = e−
∫ t
0
λ(s)ds

{
ω(µ1(τ)) + ω(µ2(τ)) +

∫ t

0
dτ
∫ ϕ2(τ)

ϕ1(τ)
ρ(ξ, τ)G(x, t; ξ, τ)dξ + f(x)

}
,

(19)

where ω(µi(τ)) =
∫ t

0
µi(τ)

∂G

∂ξ
(x, t;ϕi(τ), τ)dτ , i = 1, 2.

Proof II.1 From (11),(16) and assumptions, we can obtain v̂1(t) and v̂2(t) are con-

tinuous in the interval [0, T ]. And because ϕ1(t), ϕ2(t) ∈ C0,α([0, T ]), α > 1
2

we

get that (18) has an unique solution. Substituting (18) into (17), we can obtain

the problem (14)-(16) has at least one solution. Suppose there were two solution

v1(x, t) and v2(x, t) of our initial boundary problem (14)-(16). Then the function

v̂(x, t) = v1(x, t) − v2(x, t) would satisfy PDE (14),the initial conditions (15) and

the boundary condition v̂(ϕi(t), t) = 0, i = 1, 2. By the maximum principle, v̂(x, t) =

v1(x, t) − v2(x, t) ≡ 0. Hence, problem (14)-(16) has unique solution. From (4),(8),

(13) and (17), we have the initial boundary problem (1)-(3) has unique solution as

(19).

C The Mathematics of Volterra Procedure

In this section we solve (18) numerically. If we can get the numerical solution

of (18), then consequently u(x, t) of our direct problem (1)−(3) can be obtained. The

(18) is a system of Volterra equations and there are many computer programs that

numerically solve that when the kernel function is without singularity. Among them

is Becker L, Wheeler M [2] and so on. For our case, the kernel function is weakly

singular, so we give the following modified algorithm to avoid the singularity.

Recall the Definition II.2 of system of second kind of volterra equations, we

have that (18) is the case with m = 2, f1(t) = 2v̂1(t), f2(t) = −2v̂2(t),

k1 = −2
∫ t

0
µ1(τ)

∂G

∂ξ
(ϕ1(t), t;ϕ1(τ), τ)dτ

11



= -2
∫ t

0
[µ1(τ)

ϕ1(t)− ϕ1(τ)

4
√
π(t− τ)3

e
−(ϕ1(t)−ϕ1(τ))

2

4(t−τ) + µ2(τ)
ϕ1(t)− ϕ2(τ)

4
√
π(t− τ)3

e
−(ϕ1(t)−ϕ2(τ))

2

4(t−τ) ]dτ ,

k2 = 2
∫ t

0 µ2(τ)∂G
∂ξ

(ϕ2(t), t;ϕ2(τ), τ)dτ

= 2
∫ t

0
[µ2(τ)

ϕ2(t)− ϕ2(τ)

4
√
π(t− τ)3

e
−(ϕ2(t)−ϕ2(τ))

2

4(t−τ) + µ1(τ)
ϕ2(t)− ϕ1(τ)

4
√
π(t− τ)3

e
−(ϕ2(t)−ϕ1(τ))

2

4(t−τ) ]dτ

Now, we build Volterra procedure to approximate the solution µ(t) of

µ(t) = f(t) +
∫ t

0
k(t, s, µ(s))ds (20)

at the equally spaced points

tn = t0 + nh, n = 1, ..., N (21)

where t0 = 0 and N is the total number of steps of size h. Xn denotes the approxi-

mation of µ(t) at t = tn.

Let t = tn, then (20) becomes

µ(tn) = f(tn) +
∫ tn

0
k(tn, t, µ(t))dt, µ(0) = f(0) (22)

To avoid the singularity i.e. t = τ in k(t, τ, µ(τ)), we get an approximation of the

integral in (22) by modifying the composite trapezoidal rule,

k(tn, t, µ(t)) =
h

2
[k(tn, t0, µ(t0)) + 2

n−1∑
j=1

k(tn, tj, µ(tj)) + k(tn, tn−1, µ(tn))] (23)

Replacing µ(tn) by Xn in (22) and (23) , we obtain

Xn = f(tn) + h[
k(tn, t0, µ(t0))

2
+

n−1∑
j=1

k(tn, tj, µ(tj)) +
k(tn, tn−1, µ(tn))

2
], X0 = f(0)

(24)

Let

Θn = f(tn) + h[
k(tn, t0, µ(t0))

2
+

n−1∑
j=1

k(tn, tj, µ(tj))],

then (24) becomes

Xn −
1

2
hk(tn, tn, Xn)−Θn = 0 (25)

Now we see that Xn is the solution of the vector equation

Φ(u) = u− 1

2
hk(tn, tn, u)−Θn = 0 (26)

12



Next, we will get an approximation to the solution Xn of (26) by way of the matrix-

valued function M as following:

M(u) := u− A(u)Φ(u) (27)

where A(u) is an m by m matrix-valued function that is invertible in a neighborhood

of Xn, then Xn is the fixed point of (27).

The Jacobian matrix of Φ is the m by m matrix J(u) with element as following:

J(u)i,j =
∂Φ(u)

∂uj
= δi,j −

1

2
h
∂ki(tn, tn, u)

∂uj
(28)

where δi,j is the Kronecker delta.

It can be shown that if A(u) is equal to the Jacobian matrix of Φ, the iterates

Xp
n defined by following will converge to Xn by Newton’s method

Xp
n = G(Xp−1

n ) = Xp−1
n − J−1(Xp−1

n )Φ(Xp−1
n ) p = 1, 2, 3... (29)

Let z be the solution of the matrix equation

J−1(Xp−1
n )z = Φ(Xp−1

n ) (30)

Thus the iteration formula becomes

Xp
n = Xp−1

n − z (31)

The iterates Xp
n are computed until the infinity norm of vector z is not more than a

given tolerance. Then Xn is assigned the value of the last iteration.

Example 2.1

Now use one example to compare numerical result and exact result.

µ1(t) = t− 2
∫ t

0

se−
1

4(t−s)

4
√
π(t− s)3

ds+
∫ t

0
2µ2(s)

e
−1

4(t−s)

4
√
π(t− s)3

µ2(t) = t− 2
∫ t

0

se−
1

4(t−s)

4
√
π(t− s)3

ds+
∫ t

0
2µ1(s)

e
−1

4(t−s)

4
√
π(t− s)3

13



t ˆµ1(t) ˆµ2(t) exact µ1(t) exact µ2(t)
0.0 0.00007 0.00007 0.0 0.0
0.1 0.10055 0.10055 0.1 0.1
0.2 0.19979 0.19979 0.2 0.2
0.3 0.30027 0.30027 0.3 0.3
0.4 0.40134 0.40134 0.4 0.4
0.5 0.50243 0.50243 0.5 0.5
0.6 0.60326 0.60326 0.6 0.6
0.7 0.70382 0.70382 0.7 0.7
0.8 0.80429 0.80429 0.8 0.8
0.9 0.90502 0.90502 0.9 0.9
1.0 1.00648 1.00648 1.0 1.0

TABLE 1

Numerical result and exact solution of systems of Volterra integral equations for
Example 2.1.

Here fi(t) = t − 2
∫ t

0

se−
1

4(t−s)

4
√
π(t− s)3

ds, i = 1, 2 have singularity, so we approximate

that by polynomial function. Even so we get the numerical result which is close to

the exact result µ1(t) = µ2(t) = t. (See Table 1)

D Numerical Evidence

Here we illustrate our method and volterra algorithm to our direct problem,

which include 4 types of moving boundary. The computations, associated with the

examples, are performed by MAPLE.

Case I Boundaries are linear functions.

Example 2.2

∂u

∂t
=
∂2u

∂x2
− tu(x, t),

1

3
− t < x <

1

2
+ t, 0 < t < 3;

with initial condition

u(x, 0) = x,
1

3
< x <

1

2
; (32)

14



Figure 1. Boundaries for case I

and boundary conditions

u(
1

3
− t, t) =

1

3
− t, 0 < t < 3

u(
1

2
+ t, t) =

1

2
+ t, 0 < t < 3

Then we can get corresponding 3-D plot for u(x, t). (See Figure 2)

Case II Boundaries are smooth curves.

Example 2.3

∂u

∂t
=
∂2u

∂x2
− tu(x, t),

1

4
− t2 < x <

1

2
+ t2, 0 < t < 3;

with initial condition

u(x, 0) = x,
1

4
< x <

1

2
; (33)

and boundary conditions

u(
1

4
− t2, t) =

1

4
− t2, 0 < t < 3

u(
1

2
+ t2, t) =

1

2
+ t2, 0 < t < 3

15



Figure 2. u(x,t)for case I

Then we can get corresponding 3-D graph for u(x, t).(See Figure 4)

Case III Boundaries are periodical functions.

Example 2.4

∂u

∂t
=
∂2u

∂x2
− tu(x, t), −sin(4t)− 2 < x < sin(4t) + 2, 0 < t < 3;

with initial condition

u(x, 0) = x, −2 < x < 2; (34)

and boundary conditions

u(−sin(4t)− 2, t) = −sin(4t)− 2, 0 < t < 3

u(sin(4t) + 2, t) = sin(4t) + 2, 0 < t < 3

Then we can get corresponding contour plot for u(x, t). (See Figure 6)

Case IV Boundaries are smooth functions with asymptotes.

Example 2.5

∂u

∂t
=
∂2u

∂x2
− tu(x, t), − 1

t+ 1
− 2 < x <

1

t+ 1
+ 1, 0 < t < 3;

16



Figure 3. Boundaries for case II

with initial condition

u(x, 0) = x, −3 < x < 2; (35)

and boundary conditions

u(− 1

t+ 1
− 2, t) = − 1

t+ 1
− 2, 0 < t < 3

u(
1

t+ 1
+ 1, t) =

1

t+ 1
+ 1, 0 < t < 3

Then we can get corresponding 3-D graph for u(x, t). (See Figure 8)

E Conclusion

In this chapter, we present existence and uniqueness of model 1–parabolic par-

tial differential equation with initial and known moving boundaries in one dimensional

case. And we give the integral form of solution of problem by applying heat potential

theory and necessary transformations. To validate our findings, results of numerical

experiments and simulation are also presented.

17



Figure 4. u(x,t)for case II

Figure 5. Boundaries for case III
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Figure 6. u(x,t)for case III

Figure 7. Boundaries for case IV
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Figure 8. u(x,t)for case IV
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CHAPTER III

DIRECT PROBLEM FOR MODEL 2

A Introduction

In this chapter, we consider the direct problem of model 2 as following parabolic

equation:

∂u

∂t
=
∂2u

∂x2
− λ(x)u(x, t), ϕ1(t) < x < ϕ2(t), 0 < t < 1, (36)

with initial condition

u(x, 0) = f(x), ϕ1(0) < x < ϕ2(0), (37)

boundary conditions

u(ϕ1(t), t) = g1(t), 0 < t < 1, (38)

u(ϕ2(t), t) = g2(t), 0 < t < 1, (39)

and compatibility conditions

g1(0) = f(ϕ1(0)), (40)

g2(0) = f(ϕ2(0)), (41)

Here λ(x)u(x, t) denotes the nutrient consumption rate at the location x at time t.

The problem is to determine u(x, t) for given λ(x), f(x), ϕ1(t), ϕ2(t), g1(t) and g2(t).

In present chapter, we obtain existence and uniqueness theorem of the model 2.

Furthermore, this is the first time the Ritz-Galerkin method in Bernstein polynomials

basis is applied to solve approximation solution of parabolic equation with known

moving boundaries.
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The Ritz-Galerkin method in Bernstein polynomials basis essentially transfer

equation to a weak formulation by converting a continuous operator problem to a

discrete problem, and then characterize the space with a finite set of basis functions

in use of some constraints on the function space. It has been widely used in many

areas and provide powerful numerical simulation, especially in the field of differential

equation [3, 5, 13, 21, 33, 44, 45].

The chapter is divided as follows. In Section B, we present equivalent forms

of original problem. Section C is devoted to existence and uniqueness of solution.

The properties of Bernstein polynomials are presented in Section D. The numerical

schemes for the solution of equations (36)-(41) are described in Section E. Section

F presents two test examples to support the new method. Finally, conclusions are

made in Section G.

B Equivalent Problems

In this section, we introduce two transformations to convert our problem (36)−

(41) to two equivalent forms. Therefore, we can apply the Ritz-Galerkin method to

the second equivalent form to get approximation solution of problem.

Introduce first transformation:

ξ =
x− ϕ1(t)

ϕ2(t)− ϕ1(t)
. (42)

By doing so, variable x ∈ [ϕ1(t), ϕ2(t)] makes ξ ∈ [0, 1].

Let

v(x, t) = u((ϕ2(t)− ϕ1(t))x+ ϕ1(t), t), 0 ≤ x ≤ 1, t ≥ 0. (43)

Then

u(x, t) = v

(
x− ϕ1(t)

ϕ2(t)− ϕ1(t)
, t

)
= v(ξ, t), (44)

∂u

∂x
=
∂v

∂ξ
· 1

ϕ2(t)− ϕ1(t)
, (45)
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∂2u

∂x2
=
∂2v

∂ξ2
· 1

[ϕ2(t)− ϕ1(t)]2
, (46)

∂u

∂t
=
∂v

∂t
− ∂v

∂ξ
·B(x, t), (47)

where

B(x, t) =
ϕ
′
1(t)(ϕ2(t)− ϕ1(t)) + (x− ϕ1(t))[(ϕ

′
2(t)− ϕ′1(t)]

((ϕ2(t)− ϕ1(t))2
. (48)

Under this transformation (42), the problem (36)-(41) becomes the first equiv-

alent form as following:

∂v

∂t
=

1

[ϕ2(t)− ϕ1(t)]2
· ∂

2v

∂x2
+ B̃(x, t)

∂v

∂x
− λ̃(x, t)v(x, t), 0 < x < 1, 0 < t < 1,

(49)

with initial condition

v(x, 0) = f̃(x), 0 < x < 1, (50)

boundary conditions

v(0, t) = g(t), 0 < t < 1, (51)∫ 1

0
v(x, t)dx =

E(t)

ϕ2(t)− ϕ1(t)
, 0 < t < 1, (52)

and compatibility conditions

g(0) = f(ϕ1(0)) = f̃(0), (53)∫ 1

0
f̃(x)dx =

E(0)

ϕ2(0)− ϕ1(0)
, (54)

where

B̃(x, t) = B(ϕ1(t) + (ϕ2(t)− ϕ1(t))x, t) =
ϕ
′
1(t) + [ϕ

′
2(t)− ϕ′1(t)]x

ϕ2(t)− ϕ1(t)
, (55)

λ̃(x, t) = λ(ϕ1(t) + (ϕ2(t)− ϕ1(t))x), (56)

f̃(x) = f((ϕ2(0)− ϕ1(0))x+ ϕ1(0)). (57)

In order to facilitate the application of the Ritz-Galerkin methods, we introduce

second transformation:
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H(x, t) = v(x, t)− (1− x)g1(t)− xg2(t), (58)

then
∂H

∂t
=
∂v

∂t
− (1− x)

d(g1(t))

∂t
− xd(g2(t))

∂t
, (59)

∂H

∂x
=
∂v

∂x
+ g1(t)− g2(t), (60)

∂2H

∂x2
=
∂2v

∂x2
, (61)

According to the transformation (58) and equations (59)-(61), we have

∂H

∂t
=

1

[ϕ2(t)− ϕ1(t)]2
·∂

2H

∂x2
+B̃(x, t)

∂H

∂x
−λ̃(x, t)H(x, t)+K(x, t), 0 < x < 1, 0 < t < 1,

(62)

with initial condition

H(x, 0) = f̃(x)− (1− x)g1(0)− xg2(0), 0 < x < 1, (63)

boundary conditions

H(0, t) = 0, 0 < t < 1, (64)

H(1, t) = 0, 0 < t < 1, (65)

and compatibility conditions

H(0, 0) = 0, (66)

H(1, 0) = 0, (67)

where

K(x, t) = B̃(x, t)(g2(t)−g1(t))−λ̃(x, t)((1−x)g1(t)+xg2(t))−(1−x)
d(g1(t))

dt
−xd(g2(t))

dt
.

(68)

From (43), (44) and (58), we can obtain

H(x, t) = u((ϕ2(t)− ϕ1(t))x+ ϕ1(t), t)− (1− x)g1(t)− xg2(t), (69)

and

u(x, t) = H

(
x− ϕ1(t)

ϕ2(t)− ϕ1(t)
, t

)
+

(
1− x− ϕ1(t)

ϕ2(t)− ϕ1(t)

)
g1(t)+

x− ϕ1(t)

ϕ2(t)− ϕ1(t)
g2(t). (70)
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C Existence and Uniqueness

In this section the existence and uniqueness of the problem (36)-(41) are dis-

cussed.

In order to facilitate the deduction of the problem, we need to make another

transformation. Let

η =
∫ t

0
[ϕ2(τ)− ϕ1(τ)]−2dτ := A(t), (71)

and

t = ψ(η), (72)

where ψ is the inverse of the mapping η = A(t).

Let

v(x, t) = w(x, η), (73)

it follows from the Chain Rule that

∂v

∂t
=
∂w

∂η
· 1

[ϕ2(t)− ϕ1(t)]2
, (74)

∂v

∂x
=
∂w

∂x
, (75)

∂2v

∂x2
=
∂2w

∂x2
. (76)

Thus, the problem (49)-(54) can be deduced to the following form:

∂w(x, η)

∂η
=
∂2w(x, η)

∂x2
+ B̂(x, η)

∂w(x, η)

∂x
− λ̂(x, η)w(x, η), 0 < x < 1, 0 < t < T,

(77)

with initial condition

w(x, 0) = f̃(x), 0 < x < 1, (78)

boundary conditions

w(0, η) = g1(ψ(η)), 0 < η < T, (79)

w(1, η) = g2(ψ(η)), 0 < η < T, (80)
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and compatibility conditions

w(0, 0) = g1(0) = f̃(0) = f(ϕ1(0)), (81)

w(1, 0) = g2(0) = f̃(1) = f(ϕ2(0)), (82)

where

B̂(x, η) = [ϕ2(ψ(η))− ϕ1(ψ(η))]2B̃(x, ψ(η)), (83)

λ̂(x, η) = [ϕ2(ψ(η))− ϕ1(ψ(η))]2λ̃(x, ψ(η)), (84)

T =
∫ 1

0
[ϕ2(τ)− ϕ1(τ)]−2dτ. (85)

Assumption:

For the function F (x, η, w, p), we assume it satisfy the following conditions:

(a) The function F (x, η, w, p) is defined and continuous on the set

Ω = {(x, η, w, p)|(x, η) ∈ [0, 1]× [0, 1],−∞ < w <∞,−∞ < p <∞}

(b) For each C > 0 and for |w|, |p| < C, the function F (x, η, w, p) is uniformly

Hölder continuous in x and η for each compact subset of

DT = {(x, η)|(x, η) ∈ (0, 1)× (0, 1]}.

(c) There exist a constant CF such that

|F (x, η, w1, p1)| − |F (x, η, w2, p2)| ≤ CF [|w1 − w2|+ |p1 − p2|]

holds for all (wi, pi), i = 1, 2.

Apply the results of [10] [Page 351, Theorem 20.3.3] to the initial boundary

value problem given by equation (77)-(82), we have the following existence and u-

niqueness theorem.

Theorem III.1 If function

F (x, η, w, p) = B̂(x, η)p− λ̂(x, η)w (86)

26



satisfies above assumption, f̃(x) is continuously differentiable such that f̃(x) and

f̃ ′(x) are bounded,and g1(ψ(η)) is continuously differentiable, g2(ψ(η)) is continuous-

ly differentiable, then there exists a unique bounded solution w = w(x, η) of initial

boundary value problem (77)-(82). Moreover, this unique solution has a bounded con-

tinuous derivative with respect to x.

According to the relationship of functions u(x, t), v(x, t) and w(x, η) , we can

easily get the following existence and uniqueness theorem of original problem.

Theorem III.2 Assume that

λ(x) ∈ C[0, 1], f(x) ∈ C1[ϕ1(0), ϕ2(0)], g1(t), g2(t), ϕ1(t), ϕ2(t) ∈ C1[0, 1], (87)

then there exists a unique bounded solution u = u(x, t) of initial boundary value prob-

lem (36)-(41),moreover, this unique solution is with bounded continuous derivative

respect to x.

D Bernstein Polynomials and Properties

The general form of the Bernstein polynomials of mth degree proposed by

Bhatti and Bracken [4] is defined on the interval [0, 1] as

Bi,m(x) =
m!

i!(m− i)!
xi(1− x)m−i, 0 ≤ i ≤ m. (88)

It can be easily shown that each of the Bernstein polynomials is positive and

also the sum of all the Bernstein polynomials is unity for all real x ∈ [0, 1], that is,

m∑
i=0

Bi,m(x) = 1, x ∈ [0, 1]. (89)

Moreover, the Bernstein polynomials have the following properties:

Bi,m(x) = (1− x)Bi,m−1(x) + xBi−1,m−1(x), (90)

Bi,m−1(x) =
m− i
m

Bi,m(x) +
i+ 1

m
Bi+1,m(x), (91)
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B
′

i,m(x) = m(Bi−1,m−1(x)−Bi,m−1(x)), (92)∫ 1

0
Bi,m(x)dx =

1

m+ 1
, i = 0, 1, · · ·m. (93)

Each kth degree Bernstein basis function can be written in the mth degree

Bernstein basis as (see [24])

Bi,k(x) =
m−k+i∑
j=i

k!(m− k)!j!(m− j)!
i!(k − i)!(j − i)!(m− k − j + i)!m!

Bj,m(x), (i = 0, 1, · · · k), as k ≤ m.

(94)

A set of Legendre polynomials, denoted by {Lk(x)} for k = 0, 1, · · ·, are orthog-

onal with respect to the weighting function ω(x) = 1 over the interval [0, 1]. These

polynomials satisfy the recurrence relation [14]

(k + 1)Lk+1(x) = (2k + 1)(2x− 1)Lk(x)− kLk−1(x), k = 1, 2, · · · , (95)

with

L0(x) = 1, L1(x) = 2x− 1. (96)

It can be shown [31] that the Legendre polynomial Lm(x) can be written in the mth

degree Bernstein basis B0,m(x), B1,m(x), · · · , Bm,m(x) as

Lm(x) =
m∑
i=0

(−1)m+i m!

i!(m− i)!
Bi,m(x). (97)

Thus, from (94) and (97), we can obtain that any given polynomial Pm(x)

of degree m can be expanded in the mth degree Legendre and Bernstein base on

x ∈ [0, 1]

Pm(x) =
m∑
k=0

lkLk(x) =
m∑
i=0

ciBi,m(x). (98)

Let V = L2[0, 1] is the vector space of real functions whose domain is the close

interval [0, 1] and all functions in V = L2[0, 1] are assumed to be square integrable.

We define the inner product of f(x) and g(x) as follows

< f(x), g(x) >=
∫ 1

0
f(x)g(x)dx. (99)

Remarks:
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(1) Space

Span{L0(x), L1(x), · · · , Lm(x)} = Span{B0,m(x), B1,m(x), · · · , Bm,m(x)} := Y ⊂ V

and B1,m(x), B2,m(x), · · · , Bm,m(x) are basis of subspace Y of V.

(2) Suppose f(x) ∈ V = L2[0, 1], then there exist a unique best approximation to

f(x) out of Y such as y0(x) ∈ Y ; that is, if y(x) ∈ Y,

‖ y0(x)− f(x) ‖ ≤ ‖ y(x)− f(x) ‖, (100)

moreover

y0(x) =
m∑
k=0

ckBk,m = (c0, c1, · · · , cm)(B0,m(x), B1,m(x), · · · , Bm,m(x))T := CTφ,

(101)

where coefficient matrix CT can be obtained by

CT =< f, φT >< φ, φT >−1 . (102)

E Bernstein Ritz-Galerkin Method

In this section, we apply Ritz-Galerkin method to the second equivalent prob-

lem (62)-(67) in section B, then by (70) we can easily obtain the approximate solution

of original problem (62)-(67).

Consider the parabolic equation

∂H

∂t
=

1

[ϕ2(t)− ϕ1(t)]2
·∂

2H

∂x2
+B̃(x, t)

∂H

∂x
−λ̃(x, t)H(x, t)+K(x, t), 0 < x < 1, 0 < t < 1,

(103)

with initial condition

H(x, 0) = f̃(x)− (1− x)g1(0)− xg2(0), 0 < x < 1, (104)

boundary conditions

H(0, t) = 0, 0 < t < 1, (105)

H(1, t) = 0, 0 < t < 1, (106)
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and compatibility conditions

H(0, 0) = 0, (107)

H(1, 0) = 0, (108)

where

λ̃(x, t) = λ(ϕ1(t) + (ϕ2(t)− ϕ1(t))x), (109)

f̃(x) = f((ϕ2(0)− ϕ1(0))x+ ϕ1(0)), (110)

B̃(x, t) = B(ϕ1(t) + (ϕ2(t)− ϕ1(t))x, t) =
ϕ
′
1(t) + [ϕ

′
2(t)− ϕ′1(t)]x

ϕ2(t)− ϕ1(t)
, (111)

K(x, t) = B̃(x, t)(g2(t)−g1(t))−λ̃(x, t)((1−x)g1(t)+xg2(t))−(1−x)
d(g1(t))

dt
−xd(g2(t))

dt
.

(112)

Let

F (H) =
∂H

∂t
− 1

[ϕ2(t)− ϕ1(t)]2
·∂

2H

∂x2
−B̃(x, t)

∂H

∂x
+λ̃(x, t)H(x, t)−K(x, t) = 0, (113)

We construct Ritz-Galerkin approximation to (113) as following. The approximation

solution H̃(x, t) is sought in the form of the truncated series

H̃(x, t) = H(x, 0) ·

 N∑
i=0

M∑
j=0

ki,j t Bi,N(x)Bj,M(t) + 1

 , (114)

where Bi,N(x), Bj,M(t) are Bernstein polynomials. By compatibility conditions (107)-

(108), it is easy to check that our approximation solution H̃(x, t) satisfies the initial

condition (104) and the boundary conditions (105) and (106).

Now the expansion coefficients ki,j are determined by the Galerkin equations

< F (H̃(x, t)), Bi,N(x)Bj,M(t) >= 0, (i = 0, 1, · · · , N, j = 0, 1, · · · ,M), (115)

where < . > denotes the inner product defined by

< F (H̃(x, t)), Bi,N(x)Bj,M(t) >=
∫ 1

0

∫ 1

0
F (H̃(x, t))Bi,N(x)Bj,M(t)dtdx. (116)

Here (115) is a system of (N + 1)(M + 1) linear equations and we can solve it for the

elements ki,j.
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F Numerical Application

In this section, two test examples using the Ritz-Galerkin methods are de-

scribed in previous sections. The validity and efficiency of our numerical scheme are

demonstrated by providing absolute error.

Example 3.1:

Consider (36)-(41) with

λ(x) = x, (117)

ϕ1(t) = 0, 0 ≤ t ≤ 1, (118)

ϕ2(t) =
1

2− t
, 0 ≤ t ≤ 1, (119)

f(x) = e2x, 0 = ϕ1(0) ≤ x ≤ ϕ2(0) =
1

2
, (120)

g1(t) = e
1
3
t3−2t2+4t, 0 ≤ t ≤ 1, (121)

g2(t) = e
1
3
t3−2t2+4t+1, 0 ≤ t ≤ 1, (122)

which has the exact solution

u(x, t) = ex(2−t)+ 1
3
t3−2t2+4t, (123)

From (62)-(67), we can obtain the following its equivalent problem

∂H

∂t
= (2− t)2 · ∂

2H

∂x2
+

x

2− t
∂H

∂x
− x

2− t
H(x, t) +K(x, t), 0 < x < 1, 0 < t < 1,

(124)

with initial condition

H(x, 0) = ex − 1 + x(1− e), 0 < x < 1, (125)

boundary conditions

H(0, t) = 0, 0 < t < 1, (126)

H(1, t) = 0, 0 < t < 1, (127)
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where

K(x, t) = e
1
3
t3−2t2+4t

(
x(e− 2 + x− ex)

2− t
− (t− 2)2(1− x+ ex)

)
. (128)

From (43), (58) and (123), we can deduce that the problem (124)-(127) has the exact

solution

H(x, t) = e
1
3
t3−2t2+4t (ex − 1 + x(1− e)) . (129)

We applied the method presented in this chapter with N = 2,M = 4 and

solved equation (124).

From Galerkin equations (115), we have
k0,0 = 4.026, k0,1 = 5.411, k0,2 = 7.706, k0,3 = 9.082, k0,4 = 9.311,

k1,0 = 4.027, k1,1 = 5.406, k1,2 = 7.711, k1,3 = 9.077, k1,4 = 9.313,

k2,0 = 4.024, k2,1 = 5.414, k2,2 = 7.701, k2,3 = 9.085, k2,4 = 9.310.

(130)

From equations (114), we can obtain the approximate solution H̃(x, t) of the problem

(124)-(127) as following

H̃(x, t) = H(x, 0) ·

N=2∑
i=0

M=4∑
j=0

ki,j t Bi,N(x)Bj,M(t) + 1

 , (131)

According to (70), we can get following corresponding approximate solution ũ(x, t)

of the problem (36)-(41).

ũ(x, t) = H̃((2− t)x, t) + (1− (2− t)x)e
1
3
t3−2t2+4t + (2− t)xe

1
3
t3−2t2+4t+1. (132)

Similarly, we can get approximate solutions of the problem (124)-(127) and

(36)-(41) for different value of N and M.

In Figure 9, the exact and approximate solutions of H(x, t) with N = 2,M = 4

are plotted.

In Figure 10, the exact and approximate solutions of u(x, t) with N = 2,M = 4

are plotted.

Table 2 and Table 3 present respectively absolute error for H(x, t) and u(x, t)

in Example 3.1 after using the same method with different N and M.
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Figure 9. Exact (red) and approximate (green) solutions of H(x, t) in Example 3.1

Table 4 present L2 norm error for functions H(x, t)−H̃(x, t) and u(x, t)−ũ(x, t)

in Example 3.1 with different N and M.

Example 3.2:

In this example, we solve (36)-(41) with

λ(x) = 0, (133)

ϕ1(t) = sin(
π

2
t), 0 ≤ t ≤ 1, (134)

ϕ2(t) = 1 + sin(
π

2
t), 0 ≤ t ≤ 1, (135)

f(x) = ex, 0 = ϕ1(0) ≤ x ≤ ϕ2(0) = 1, (136)

g1(t) = et+sin(π
2
t), 0 ≤ t ≤ 1, (137)

g2(t) = et+sin(π
2
t)+1, 0 ≤ t ≤ 1, (138)

which has the exact solution

u(x, t) = et+x, (139)

From (62)-(67), we can obtain the following its equivalent problem

∂H

∂t
=
∂2H

∂x2
+
π

2
cos(

π

2
t)
∂H

∂x
+K(x, t), 0 < x < 1, 0 < t < 1, (140)
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TABLE 2

The absolute error for H(x, t) in Example 3.1.

(x, t) N = 2, M = 4 N = 2, M = 6 N = 2, M = 8
(0,0) 0 0 0

(0.1,0.1) 4.51× 10−6 −9.23× 10−7 9.09× 10−9

(0.2,0.2) 8.98× 10−5 1.00× 10−6 −3.19× 10−8

(0.3,0.3) −7.04× 10−6 2.68× 10−6 6.72× 10−8

(0.4,0.4) −1.97× 10−4 −3.49× 10−6 −3.04× 10−8

(0.5,0.5) −1.60× 10−4 −4.19× 10−6 −8.21× 10−8

(0.6,0.6) 1.23× 10−4 4.37× 10−6 1.02× 10−7

(0.7,0.7) 2.80× 10−4 4.62× 10−6 9.62× 10−9

(0.8,0.8) 5.62× 10−5 −4.14× 10−6 −7.34× 10−8

(0.9,0.9) −1.46× 10−4 −4.27× 10−7 5.06× 10−8

(1,1) 0 0 0

TABLE 3

The absolute error for u
(

x
2−t , t

)
in Example 3.1.

(x, t) N = 2, M = 4 N = 2, M = 6 N = 2, M = 8
(0,0) 0 0 0

(0.1,0.1) 7.80× 10−6 −1.64× 10−7 1.62× 10−8

(0.2,0.2) 1.37× 10−4 1.52× 10−6 −4.89× 10−8

(0.3,0.3) −9.19× 10−6 3.39× 10−6 8.52× 10−8

(0.4,0.4) −2.02× 10−4 −3.61× 10−6 −3.25× 10−8

(0.5,0.5) −1.23× 10−4 −3.19× 10−6 −6.21× 10−8

(0.6,0.6) 7.91× 10−5 2.70× 10−6 6.13× 10−8

(0.7,0.7) 1.12× 10−4 1.69× 10−6 −8.15× 10−10

(0.8,0.8) 8.81× 10−6 −1.10× 10−6 −1.74× 10−8

(0.9,0.9) −1.68× 10−5 −1.12× 10−8 5.72× 10−9

(1,1) 0 0 0
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Figure 10. Exact (red) and approximate (green) solutions of u(x, t) in Example 3.1

TABLE 4

The L2 norm error for functions H(x, t) − H̃(x, t) and u(x, t) − ũ(x, t) in Example
3.1.

(N,M) ||H(x, t)− H̃(x, t)||L2([0,1]×[0,1]) ||u(x, t)− ũ(x, t)||L2([ϕ1(t),ϕ2(t)]×[0,1])

(N=2,M=3) 3.34× 10−7 2.74× 10−7

(N=2,M=4) 1.92× 10−8 1.51× 10−8

(N=2,M=5) 2.00× 10−10 1.61× 10−10

(N=2,M=6) 9.25× 10−12 7.07× 10−12

(N=2,M=7) 1.06× 10−13 8.30× 10−14

(N=2,M=8) 2.81× 10−15 2.09× 10−15

with initial condition

H(x, 0) = ex − 1 + x(1− e), 0 < x < 1, (141)

boundary conditions

H(0, t) = 0, 0 < t < 1, (142)

H(1, t) = 0, 0 < t < 1, (143)

where

K(x, t) = et+sin(π
2
t)
(
π

2
cos(

π

2
t)(e− 1)− (1 +

π

2
cos(

π

2
t))(1− x+ xe)

)
. (144)
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From (43), (58) and (139), we can deduce that the problem (140)-(143) has the exact

solution

H(x, t) = et+sin(π
2
t) (ex − 1 + x(1− e)) . (145)

Now apply our Galerkin method with N = 2,M = 4 and solve equation (140).

From Galerkin equations (115), we have
k0,0 = 2.600, k0,1 = 3.321, k0,2 = 4.689, k0,3 = 6.159, k0,4 = 6.389,

k1,0 = 2.600, k1,1 = 3.321, k1,2 = 4.690, k1,3 = 6.158, k1,4 = 6.390,

k2,0 = 2.593, k2,1 = 3.336, k2,2 = 4.674, k2,3 = 6.167, k2,4 = 6.387.

(146)

From equation (114), we can obtain the approximate solution H̃(x, t) of the problem

(140)-(143) as following

H̃(x, t) = H(x, 0) ·

N=2∑
i=0

M=4∑
j=0

ki,j t Bi,N(x)Bj,M(t) + 1

 , (147)

According to (70), we can get corresponding approximate solution ũ(x, t) of

the problem (36)-(41).

ũ(x, t) = H̃(x− sin(
πt

2
), t) + (1− (x− sin(

πt

2
)))et+sin(πt

2
) + (x− sin(

πt

2
))et+sin(πt

2
)+1.

(148)

Similarly, we can get approximate solutions of the problem (124)-(127) and

(36)-(41) for different value of N and M.

In Figure 11, exact and approximate solution of H(x, t) with N = 2,M = 4

are presented.

In Figure 12, the exact and approximate solution of u(x, t) with N = 2,M = 4

are plotted.

Table 5 and Table 6 present absolute error for H(x, t) and u(x, t) respectively

in Example 3.2 for different N and M.

Table 7 shows L2 norm error for functions H(x, t)−H̃(x, t) and u(x, t)− ũ(x, t)

respectively in Example 3.2 for different N and M.
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TABLE 5

The absolute error for H(x, t) in Example 3.2.

(x, t) N = 2, M = 2 N = 2, M = 4 N = 2, M = 6
(0,0) 0 0 0

(0.1,0.1) 1.69× 10−3 −1.36× 10−5 −3.93× 10−7

(0.2,0.2) 1.40× 10−3 1.14× 10−4 −5.00× 10−7

(0.3,0.3) −2.74× 10−3 9.58× 10−5 2.47× 10−6

(0.4,0.4) −7.35× 10−3 −1.48× 10−4 4.35× 10−7

(0.5,0.5) −7.96× 10−3 −2.81× 10−4 −4.25× 10−6

(0.6,0.6) −2.92× 10−3 −5.10× 10−5 −5.68× 10−7

(0.7,0.7) 4.58× 10−3 2.65× 10−4 4.70× 10−6

(0.8,0.8) 7.91× 10−3 1.70× 10−4 −9.47× 10−7

(0.9,0.9) 3.18× 10−3 −1.25× 10−4 −1.45× 10−6

(1,1) 0 0 0

TABLE 6

The absolute error for u(x+ sin(π
2
t), t) in Example 3.2.

(x, t) N = 2, M = 2 N = 2, M = 4 N = 2, M = 6
(0,0) 0 0 0

(0.1,0.1) −1.10× 10−3 8.91× 10−6 2.48× 10−7

(0.2,0.2) −1.05× 10−3 −7.88× 10−5 3.76× 10−7

(0.3,0.3) 1.87× 10−3 −7.79× 10−5 −1.83× 10−6

(0.4,0.4) 5.66× 10−3 1.04× 10−4 −5.49× 10−7

(0.5,0.5) 6.76× 10−3 2.31× 10−4 3.37× 10−6

(0.6,0.6) 3.35× 10−3 7.52× 10−5 9.43× 10−7

(0.7,0.7) −2.45× 10−3 −1.85× 10−4 −3.68× 10−6

(0.8,0.8) −5.56× 10−3 −1.56× 10−4 1.55× 10−7

(0.9,0.9) −2.82× 10−3 6.30× 10−5 1.34× 10−6

(1,1) 0 0 0
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Figure 11. Exact (red) and approximate (green) solutions of H(x, t) in Example 3.2

TABLE 7

The L2 norm error for functions H(x, t) − H̃(x, t) and u(x, t) − ũ(x, t) in Example
3.2.

(N,M) ||H(x, t)− H̃(x, t)||L2([0,1]×[0,1]) ||u(x, t)− ũ(x, t)||L2([ϕ1(t),ϕ2(t)]×[0,1])

(N=2,M=1) 1.12× 10−4 1.12× 10−4

(N=2,M=2) 2.18× 10−5 2.18× 10−5

(N=2,M=3) 7.24× 10−8 7.24× 10−8

(N=2,M=4) 2.24× 10−8 2.24× 10−8

(N=2,M=5) 5.96× 10−10 5.96× 10−10

(N=2,M=6) 4.95× 10−12 4.95× 10−12

Note: In table 7, we notice that L2 norm error for functions H(x, t)− H̃(x, t)

and u(x, t)− ũ(x, t) are same. Actually, we can verify this fact theoretically:

||H(x, t)− H̃(x, t)||L2(Ω1) = ||u(x, t)− ũ(x, t)||L2(Ω2), (149)

where

Ω1 := [0, 1]×[0, 1], Ω2 := [ϕ1(t), ϕ2(t)]×[0, 1] = [sin(
πt

2
), 1+sin(

πt

2
)]×[0, 1]. (150)

In fact, we have

||u(x, t)− ũ(x, t)||L2(Ω2) =
∫ 1

0

∫ ϕ2(t)

ϕ1(t)
(u(x, t)− ũ(x, t))2dxdt (applying equation (70))
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Figure 12. Exact (red) and approximate (green) solutions of u(x, t) in Example 3.2

=
∫ 1

0

∫ ϕ2(t)

ϕ1(t)

(
H

(
x− ϕ1(t)

ϕ2(t)− ϕ1(t)
, t

)
− H̃

(
x− ϕ1(t)

ϕ2(t)− ϕ1(t)
, t

))2

dxdt

=
∫ 1

0

∫ 1

0

(H(x, t)− H̃(x, t))2

ϕ2(t)− ϕ1(t)
dxdt (noting ϕ2(t)− ϕ1(t) = 1)

= ||H(x, t)− H̃(x, t)||L2(Ω1).

G Conclusion

In this part, we deal with model 2, the existence and uniqueness are discussed.

Also, we use the Ritz-Galerkin method in Bernstein polynomial basis to obtain an

approximate solution of our problem. And the parabolic equation with known moving

boundaries are finally converted to algebraic equations, which can be solved quickly.
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CHAPTER IV

INVERSE PROBLEM FOR MODEL 1

A Mathematical Problem

In this section, we discuss a inverse problem where determine the source param-

eter of our parabolic equation for model 1 and corresponding theorem for existence

and uniqueness are given in section A. To support our findings, we also present results

of numerical experiments in Section B. Section C concludes this chapter with a brief

summary.

First, we introduce the inverse problem of parabolic equation with initial value

and known moving boundaries as following:

∂u

∂t
=
∂2u

∂x2
− λ(t)u(x, t) + F (x, t), ϕ1(t) < x < ϕ2(t), 0 < t < T ; (151)

with initial condition

u(x, 0) = f(x), ϕ1(0) < x < ϕ2(0); (152)

boundary conditions

u(ϕi(t), t) = gi(t), 0 < t < T, i = 1, 2, (153)

and with the overspecification at a point in the domain

u(x̄, t) = E(t), ϕ1(t) < x̄ < ϕ2(t) (154)

where f(x), gi(t) and ϕi(t)(i = 1, 2), E(t) are known functions, we need to find func-

tion λ(t) and u(x, t).

40



Without loss of generality, we assume F (x, t) = 0 and let λ̂(t) := e
∫ t
0
λ(s)ds.

From (19) and (154), we have

λ̂(t) =
ω̄(µ1(τ)) + ω̄(µ2(τ)) +

∫ t

0
dτ
∫ ϕ2(τ)

ϕ1(τ)
ρ(ξ, τ)G(x, t; ξ, τ)dξ + f(x̄)

E(t)

=
ω̄(µ1(τ)) + ω̄(µ2(τ)) +K(t) + f(x̄)

E(t)
(155)

where

ω̄(µi(τ)) =
∫ t

0
µi(τ)

∂G

∂ξ
(x̄, t;ϕi(τ), τ)dτ, i = 1, 2.

K(t) =
∫ t

0
dτ
∫ ϕ2(τ)

ϕ1(τ)
ρ(ξ, τ)G(x, t; ξ, τ)dξ

then plug λ̂(t) into (16), we have

v̂i(t) = λ̂(t)gi(t)− f(ϕi(t))−K(ϕi(t))

=
ω̄(µ1(τ)) + ω̄(µ2(τ)) +K(t) + f(x̄)

E(t)
− f(ϕi(t))−K(ϕi(t)) (156)

where

K(ϕi(t)) :=
∫ t

0
dτ
∫ ϕ2(τ)

ϕ1(τ)
ρ(ξ, τ)G(ϕi(t), t; ξ, τ)dξ

finally plug v̂i(t) into (18), we have

µ1(t)

2
+
∫ t

0
M1dτ =

g1(t)

E(t)
f(x̄) +K(t)

g1(t)

E(t)
−K(ϕ1(t))− f(ϕ1(t)),

−µ2(t)

2
+
∫ t

0
M2dτ =

g2(t)

E(t)
f(x̄) +K(t)

g2(t)

E(t)
−K(ϕ2(t))− f(ϕ2(t)).

(157)

where

M1 = µ1(τ)(
∂G

∂ξ
(ϕ1(t), t;ϕ1(τ), τ)− g1(t)

E(t)

∂G

∂ξ
(x̄, t;ϕ1(τ), τ))

+ µ2(τ)(
∂G

∂ξ
(ϕ1(t), t;ϕ2(τ), τ)− g1(t)

E(t)

∂G

∂ξ
(x̄, t;ϕ2(τ), τ));

M2 = µ2(τ)(
∂G

∂ξ
(ϕ2(t), t;ϕ2(τ), τ)− g2(t)

E(t)

∂G

∂ξ
(x̄, t;ϕ2(τ), τ))

+ µ1(τ)(
∂G

∂ξ
(ϕ2(t), t;ϕ1(τ), τ)− g2(t)

E(t)

∂G

∂ξ
(x̄, t;ϕ1(τ), τ));
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Note (157) is the system of volterra equations of second kind with singular

kernel, we can get µi(t), i = 1, 2 by applying volterra algorithm in chapter II, section

C. Thus λ(t) = (ln λ̂(t))′. Moreover, we can get u(x, t) by applying (19).

According by Lemma II.3, we have the following existence and uniqueness of

theorem for our inverse problem.

Theorem IV.1 Assume that ϕ1(t), ϕ2(t) ∈ C0,α([0, T ]), α > 1
2
, g1(t), g2(t) ∈ C[0, T ],

f(x) ∈ C2[ϕ1(t), ϕ2(t)] and F (x, t) ∈ C[[ϕ1(t), ϕ2(t)] × [0, T ]]. The problem (151)-

(154) has an unique solution in form of (155), (19) for λ, u(x, t) respectively.

B Numerical Evidence

To test the efficiency of the our method on a parabolic partial differential

equation with an unknown time-dependent parameter, we present two examples.

Example 4.1 Consider the problem (151)− (154) with

F (x, t) = 0;

f(x) = e
x

100
− 1

100

g1(t) = e
t

10000

g2(t) = e1+ t
10000

ϕ1(t) = cos(t)

ϕ2(t) = 100 + cos(t)

E(t) = e
1
2
− cos(t)

100
+ t

10000

and x̄ = 50, for which the exact solution is

λ(t) = −sin(t)

100

Now applying our method and volterra algorithm we have comparison of exact λ and

numerical λ (See Figure 13)

42



Figure 13. Comparison of exact λ and numerical λ in Example 4.1

And we can get the numerical u(x, t) = ex/100−cost/100+t/10000 in [0, 2π], which

is same as our exact u(x, t). The graph for u(x, t) is presented in Figure 14.

Example 4.2 Consider the problem (151)− (154) with

F (x, t) = 0;

f(x) = x

g1(t) = −t+
1

3

g2(t) = t+
1

2

ϕ1(t) = −t+
1

3

ϕ2(t) = t+
1

2

E(t) = e
−t2
2 (
∫ t

0

µ̃1(τ)( 1
15

+ τ)

4
√
π(t− τ)3

e−
( 1
15+τ)2

4(t−τ) +
∫ t

0

µ̃2(τ)(−1
10
− τ)

4
√
π(t− τ)3

e−
(−1
10 −τ)

2

4(t−τ) )

where µ̃1(τ) = 0.000697− 0.17166τ + 1.37976τ 2 − 2.4062τ 3and µ̃2(τ) = 0.00333−

0.2499τ + 0.73867τ 2 − 2.62058τ 3 and x̄ = 2
5
.
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Figure 14. Plot of exact(numerical) u(x,t)in Example 4.1

The exact solution that we show in Chapter II, Example 2.2 is λ(t) = t.

Now apply our method and volterra algorithm in Chapter II, we obtain graphs for

comparison of λ and u(x, t). (See Figure 15 and 16 )

C Conclusion

In this part, we consider one inverse problem of model 1. Similar to the idea

of Chapter II, mathematically we can determine the coefficient λ(t) and nutrient

concentration u(x, t) of model 1 after obtaining incisional biopsy information. Also,

two numerical examples are presented to validate our method and finding.
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Figure 15. Comparison of exact λ and numerical λ in Example 4.2

Figure 16. Numerical(blue) and exact (red) solution of u(x,t) in Example 4.2
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CHAPTER V

NONLOCAL PROBLEM FOR MODEL 2

A Introduction

In this chapter, we discuss nonlocal problem for model 2 in form of non-classical

parabolic equation with nonlocal and time-dependent boundaries as following:

∂u

∂t
=
∂2u

∂x2
− λ(x)u(x, t), ϕ1(t) < x < ϕ2(t), 0 < t < 1, (158)

with initial condition

u(x, 0) = f(x), ϕ1(0) < x < ϕ2(0), (159)

time-dependent boundary condition

u(ϕ1(t), t) = g(t), 0 < t < 1, (160)

non-local boundary condition

∫ ϕ2(t)

ϕ1(t)
u(x, t)dx = E(t), 0 < t < 1, (161)

and compatibility conditions

f(ϕ1(0)) = u(ϕ1(0), 0) = g(0), (162)

∫ ϕ2(0)

ϕ1(0)
f(x)dx = E(0) (163)

Here λ(x)u(x, t) denotes the nutrient consumption rate at the location x at time t.

The problem is to determine u(x, t) for given λ(x), f(x), ϕ1(t), ϕ2(t) and E(t).
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The main difficulty for this problem is integral term in non-local boundary

condition, which can greatly complicate the application of standard numerical tech-

niques such as finite-difference procedures, finite-element methods, spectral tech-

niques, boundary integral equation schemes, etc. Therefore converting nonlocal

boundary value problems to a more desirable equivalent form is the most important

task, which is usually tough [3, 13, 48].

In this part, to overcome this difficulty and obtain approximate solution of this

problem, we first introduce several transformations and transition function G(x, t) to

convert nonlocal boundary to non-classical boundary and then implement the Ritz-

Galerkin method to solve it efficiently. This chapter is organized as follows. In section

B, we obtain several equivalent forms of our problem. Existence and uniqueness

theorem of problem are presented in Section C. The Ritz-Galerkin scheme is described

in section D. Section E shows two examples to support and validate our numerical

scheme. Finally, conclusions are made in section F.

B Equivalent Problems

In this section, we obtain three equivalent forms of original problem (158) −

(163) by introducing two transformations and an transition function G(x, t). Later,

the second equivalent form is used to prove existence and uniqueness in section C and

third equivalent form is used to get approximation solution of problem by applying

the Ritz-Gelerkin method.

Introduce first transformation:

ξ =
x− ϕ1(t)

ϕ2(t)− ϕ1(t)
. (164)

then variable x ∈ [ϕ1(t), ϕ2(t)] makes ξ ∈ [0, 1].

Let

v(x, t) = u((ϕ2(t)− ϕ1(t))x+ ϕ1(t), t), 0 ≤ x ≤ 1, t ≥ 0. (165)
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Then

u(x, t) = v

(
x− ϕ1(t)

ϕ2(t)− ϕ1(t)
, t

)
= v(ξ, t), (166)

∂u

∂x
=
∂v

∂ξ
· 1

ϕ2(t)− ϕ1(t)
, (167)

∂2u

∂x2
=
∂2v

∂ξ2
· 1

[ϕ2(t)− ϕ1(t)]2
, (168)

∂u

∂t
=
∂v

∂t
− ∂v

∂ξ
·B(x, t), (169)

where

B(x, t) =
ϕ
′
1(t)(ϕ2(t)− ϕ1(t)) + (x− ϕ1(t))[(ϕ

′
2(t)− ϕ′1(t)]

((ϕ2(t)− ϕ1(t))2
. (170)

Under the first transformations (164), the first equivalent form of problem

(158)-(163)is obtained as following:

∂v

∂t
=

1

[ϕ2(t)− ϕ1(t)]2
· ∂

2v

∂x2
+ B̃(x, t)

∂v

∂x
− λ̃(x, t)v(x, t), 0 < x < 1, 0 < t < 1,

(171)

with initial condition

v(x, 0) = f̃(x), 0 < x < 1, (172)

boundary conditions

v(0, t) = g(t), 0 < t < 1, (173)∫ 1

0
v(x, t)dx =

E(t)

ϕ2(t)− ϕ1(t)
, 0 < t < 1, (174)

and compatibility conditions

g(0) = f(ϕ1(0)) = f̃(0), (175)

∫ 1

0
f̃(x)dx =

E(0)

ϕ2(0)− ϕ1(0)
, (176)

where

B̃(x, t) = B(ϕ1(t) + (ϕ2(t)− ϕ1(t))x, t) =
ϕ
′
1(t) + [ϕ

′
2(t)− ϕ′1(t)]x

ϕ2(t)− ϕ1(t)
, (177)
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λ̃(x, t) = λ(ϕ1(t) + (ϕ2(t)− ϕ1(t))x), (178)

f̃(x) = f((ϕ2(0)− ϕ1(0))x+ ϕ1(0)). (179)

Next, introduce second transformation:

w(x, t) = v(x, t)− F (x, t), (180)

where

F (x, t) = (1− 2x)g(t) +
2xE(t)

ϕ2(t)− ϕ1(t)
, (181)

Under this transformation (180), second equivalent form is acquired as follow-

ing:

∂w

∂t
=

1

[ϕ2(t)− ϕ1(t)]2
·∂

2w

∂x2
+B̃(x, t)

∂w

∂x
−λ̃(x, t)w(x, t)+K(x, t), 0 < x < 1, 0 < t < 1,

(182)

with initial condition

w(x, 0) = f̃(x)− (1− 2x)g(0)− 2xE(0)

ϕ2(0)− ϕ1(0)
:= w0(x), 0 < x < 1, (183)

boundary conditions

w(0, t) = 0, 0 < t < 1, (184)∫ 1

0
w(x, t)dx = 0, 0 < t < 1, (185)

and compatibility conditions

w(0, 0) = 0, (186)∫ 1

0
w(x, 0)dx = 0, (187)

where K(x,t) = B̃(x, t)∂F (x,t)
∂x
− λ̃(x, t)F (x, t)− ∂F (x,t)

∂t

=2B̃(x, t)
(

E(t)
ϕ2(t)−ϕ1(t)

− g(t)
)
− λ̃(x, t)

(
2xE(t)

ϕ2(t)−ϕ1(t)
+ (1− 2x)g(t)

)
-
(

(1− 2x)g′(t) +
2x[E′(t)(ϕ2(t)−ϕ1(t))−E(t)(ϕ

′
2(t)−ϕ′1(t))]

(ϕ2(t)−ϕ1(t))2

)
.

From (165),(166) and (180), we can obtain

w(x, t) = u((ϕ2(t)− ϕ1(t))x+ ϕ1(t), t)− (1− 2x)g(t)− 2xE(t)

ϕ2(t)− ϕ1(t)
, (188)
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and

u(x, t) = w

(
x− ϕ1(t)

ϕ2(t)− ϕ1(t)
, t

)
+

(
1− 2(x− ϕ1(t))

ϕ2(t)− ϕ1(t)

)
g(t) +

2E(t)(x− ϕ1(t))

(ϕ2(t)− ϕ1(t))2
. (189)

To obtain desirable form of non-local boundary condition which could be ap-

plied by Ritz-Galerkin method, the transition function is introduced:

G(x, t) =
∫ x

0
w(s, t)ds, (190)

then we easily obtain

∂G(x, t)

∂x
= w(x, t),

∂2G(x, t)

∂x2
=
∂w(x, t)

∂x
,
∂3G(x, t)

∂x3
=
∂2w(x, t)

∂x2
,
∂w(x, t)

∂t
=
∂2G(x, t)

∂x∂t
.

(191)

thus the problem becomes the third equivalent form as following:

∂G2

∂x∂t
=

1

[ϕ2(t)− ϕ1(t)]2
·∂

3G

∂x3
+B̃(x, t)

∂2G

∂x2
−λ̃(x, t)

∂G

∂x
+K(x, t), 0 < x < 1, 0 < t < 1,

(192)

with initial condition

G(x, 0) =
∫ x

0
w(s, 0)ds =

∫ x

0
w0(s)ds, 0 < x < 1, (193)

boundary conditions

∂G

∂x
(0, t) = w(0, t) = 0, 0 < t < 1, (194)

G(1, t) =
∫ 1

0
w(x, t)dx = 0, 0 < t < 1, (195)

and compatibility conditions

∂G

∂x
(0, 0) = w(0, 0) = 0, (196)

G(1, 0) =
∫ 1

0
w(x, 0)dx = 0, (197)

Furthermore, we can obtain the relationship between G(x, t) and u(x, t) as

following:

G(x, t) =
∫ x

0
u((ϕ2(t)− ϕ1(t))s+ ϕ1(t), t)ds− x(1− x)g(t)− x2E(t)

ϕ2(t)− ϕ1(t)
, (198)
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and

u(x, t) =
∂G

∂x

(
x− ϕ1(t)

ϕ2(t)− ϕ1(t)
, t

)
+

(
1− 2(x− ϕ1(t))

ϕ2(t)− ϕ1(t)

)
g(t) +

2E(t)(x− ϕ1(t))

(ϕ2(t)− ϕ1(t))2
,

(199)

C Existence and Uniqueness

In this section the existence and uniqueness theorem of problem (158)-(163)

are discussed.

A. Bouziani [6] investigated solvability of the following parabolic equation with

a nonlocal boundary condition.

∂y

∂t
− ∂

∂x

(
q1(x, t)

∂y

∂x

)
+ q2(x, t)

∂y

∂x
+ q3(x, t)y(x, t) = f̂(x, t), 0 < x < 1, 0 < t < T,

(200)

with initial condition

y(x, 0) = y0(x), (201)

non-local boundary conditions

y(1, t) = 0, (202)∫ b

0
y(x, t)dx = 0, (203)

where 0 ≤ b ≤ 1.

The main results of [6] are Theorem 2.8 and Corollary 2.10, we summary them

as following lemma:

Lemma V.1 ([6]) Suppose 0 < c0 ≤ q1(x, t) ≤ c1, |∂q1(x,t)
∂t
| ≤ c2, |∂q1(x,t)

∂x
| ≤

c3, |q2(x, t)| ≤ c4, |q3(x, t)| ≤ c5, for all 0 ≤ x ≤ 1, 0 ≤ t ≤ T ; If y0(x) ∈ H1
ρ(0, 1)

and f̂(x, t) ∈ L2
ρ(I, L

2
ρ(0, 1)), then there exists a unique weak solution y(x, t) of non-

local boundary value problem (200)-(203), where

ρ(x) =

 x2, 0 ≤ x ≤ b;

b2, b2 ≤ x ≤ 1.

.
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Apply this lemma to our second equivalent form of problem (182)-(187), we can easily

obtain the following theorem.

Theorem V.1 Assume that

λ(x) ∈ C0[ϕ1(t), ϕ2(t)], f(x) ∈ C1[ϕ1(0), ϕ2(0)] and g(t), E(t), ϕ1(t), ϕ2(t) ∈ C1[0, 1],

(204)

then there exists a unique weak solution w(x, t) of non-local boundary value problem

(182)-(187).

According to the relationship of functions u(x, t) and w(x, t) , we can easily

get the following existence and uniqueness theorem.

Theorem V.2 Assume

λ(x) ∈ C0[ϕ1(t), ϕ2(t)], f(x) ∈ C1[ϕ1(0), ϕ2(0)] and g(t), E(t), ϕ1(t), ϕ2(t) ∈ C1[0, 1],

(205)

then there exists a unique weak solution u(x, t) of non-local and time-dependent bound-

ary value problem (158)-(163).

D Numerical Scheme for Nonlocal Problem

In this section, we apply Ritz-Galerkin method to the third equivalent form of

problem (192)-(197) in section B, then by (198)-(199) we can obtain the approximate

solution of original problem easily.

Rewrite the third equivalent form as following:

∂2G

∂x∂t
=

1

[ϕ2(t)− ϕ1(t)]2
·∂

3G

∂x3
+B̃(x, t)

∂2G

∂x2
−λ̃(x, t)

∂G

∂x
+K(x, t), 0 < x < 1, 0 < t < 1,

(206)

with initial condition

G(x, 0) =
∫ x

0
w(s, 0)ds =

∫ x

0
w0(s)ds =

∫ x

0
f̃(s)ds−g(0)x(1−x)− E(0) x2

ϕ2(0)− ϕ1(0)
, 0 < x < 1,

(207)
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boundary conditions

∂G

∂x
(0, t) = w(0, t) = 0, 0 < t < 1, (208)

G(1, t) =
∫ 1

0
w(x, t)dx = 0, 0 < t < 1, (209)

and compatibility conditions

∂G

∂x
(0, 0) = w(0, 0) = 0, (210)

G(1, 0) =
∫ 1

0
w(x, 0)dx = 0, (211)

where

λ̃(x, t) = λ(ϕ1(t) + (ϕ2(t)− ϕ1(t))x), (212)

f̃(x) = f((ϕ2(0)− ϕ1(0))x+ ϕ1(0)), (213)

B̃(x, t) = B(ϕ1(t) + (ϕ2(t)− ϕ1(t))x, t) =
ϕ
′
1(t) + [ϕ

′
2(t)− ϕ′1(t)]x

ϕ2(t)− ϕ1(t)
, (214)

K(x,t) = 2B̃(x, t)
(

E(t)
ϕ2(t)−ϕ1(t)

− g(t)
)
− λ̃(x, t)

(
2xE(t)

ϕ2(t)−ϕ1(t)
+ (1− 2x)g(t)

)
-
(

(1− 2x)g′(t) +
2x[E′(t)(ϕ2(t)−ϕ1(t))−E(t)(ϕ

′
2(t)−ϕ′1(t))]

(ϕ2(t)−ϕ1(t))2

)
.

Let

W (G) =
∂G2

∂x∂t
− 1

[ϕ2(t)− ϕ1(t)]2
· ∂

3G

∂x3
−B̃(x, t)

∂2G

∂x2
+λ̃(x, t)

∂G

∂x
−K(x, t) = 0, (215)

A Ritz-Galerkin approximation to (215) is constructed as follows. The approximation

solution G̃(x, t) is sought in the form of the truncated series

G̃(x, t) = G(x, 0) ·

 N∑
i=0

M∑
j=0

ci,j t Bi,N(x)Bj,M(t) + 1

 , (216)

where Bi,N(x), Bj,M(t) are Bernstein polynomials. From compatibility conditions

(210)-(211), it is easy to see that the approximation solution G̃(x, t) satisfies the

initial condition (207) and the boundary conditions (208) and (209).

Now the expansion coefficients ci,j are determined by the Galerkin equations

< W (G̃(x, t)), Bi,N(x)Bj,M(t) >= 0, (i = 0, 1, · · · , N, j = 0, 1, · · · ,M), (217)
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where < . > denotes the inner product defined by

< W (G̃(x, t)), Bi,N(x)Bj,M(t) >=
∫ 1

0

∫ 1

0
W (G̃(x, t))Bi,N(x)Bj,M(t)dtdx. (218)

Galerkin equations (217) gives a system of (N + 1)(M + 1) linear equations which

can be solved for the elements ci,j using mathematical software.

E Numerical Application

In this section, two numerical examples by using the Ritz-Galerkin methods

are performed. Also, by providing absolute error of exact and numerical solution,the

validity and efficiency of our numerical scheme are presented.

Example 5.1:

Consider (158)-(163) with

λ(x) = x, (219)

ϕ1(t) = 0, 0 ≤ t ≤ 1, (220)

ϕ2(t) =
1

2− t
, 0 ≤ t ≤ 1, (221)

f(x) = e2x, 0 = ϕ1(0) ≤ x ≤ ϕ2(0) =
1

2
, (222)

g(t) = e
1
3
t3−2t2+4t, 0 ≤ t ≤ 1, (223)

E(t) =
e− 1

2− t
e

1
3
t3−2t2+4t, 0 ≤ t ≤ 1, (224)

which has the exact solution

u(x, t) = ex(2−t)+ 1
3
t3−2t2+4t, (225)

From (192)-(197), we can obtain its equivalent problem as following:

∂2G

∂x∂t
= (2− t)2 · ∂

3G

∂x3
+

x

2− t
∂2G

∂x2
− x

2− t
∂G

∂x
+K(x, t), 0 < x < 1, 0 < t < 1,

(226)
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with initial condition

G(x, 0) = ex + (2− e)x2 − x− 1, 0 < x < 1, (227)

boundary conditions
∂G

∂x
(0, t) = 0, 0 < t < 1, (228)

G(1, t) = 0, 0 < t < 1, (229)

where

K(x, t) = e
1
3
t3−2t2+4t

(
(4− 2e)x2 + (2e− 5)x

2− t
− (1− 2x)(t− 2)2 − 2x(e− 1)(2− t)2

)
.

(230)

From (165), (180) and (225), we can deduce that the problem (226)-(229) has the

exact solution

G(x, t) = e
1
3
t3−2t2+4t

(
ex + (2− e)x2 − x− 1

)
. (231)

Now apply our numerical scheme with N = 2,M = 4 and solve equation (226).

From Galerkin equations (217), we have
c0,0 = 4.0227, c0,1 = 5.4178, c0,2 = 7.6963, c0,3 = 9.0875, c0,4 = 9.3101,

c1,0 = 4.0235, c1,1 = 5.4156, c1,2 = 7.6996, c1,3 = 9.0847, c1,4 = 9.3114,

c2,0 = 4.0215, c2,1 = 5.4211, c2,2 = 7.6914, c2,3 = 9.0915, c2,4 = 9.3086.

(232)

From equations (216), we can obtain the approximate solution H̃(x, t) of the problem

(226)-(229) as following

G̃(x, t) = G(x, 0) ·

N=2∑
i=0

M=4∑
j=0

ci,j t Bi,N(x)Bj,M(t) + 1

 , (233)

According to (199), corresponding approximate solution ũ(x, t) of the problem (158)-

(163) is obtained.

ũ(x, t) =
∂G̃

∂x
((2− t)x, t) + e

1
3
t3−2t2+4t(1− 2(e− 2)x(2− t)). (234)

Similarly, approximate solutions of the problem (226)-(229) and (158)-(163)

for different value of N and M can be obtained.
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In Figure 17, the exact and approximate solutions of H(x, t) with N = 2,M =

4 are plotted.

Figure 17. Exact (red) and approximate (green) solutions of H(x, t) in Example 5.1

In Figure 18, the exact and approximate solutions of u(x, t) with N = 2,M = 4

are plotted.

Table 8 and Table 9 present respectively absolute error for H(x, t) and u(x, t)

with different N and M in Example 5.1.

Table 10 present L2 norm error for functions H(x, t) − H̃(x, t) and u(x, t) −

ũ(x, t) with different N and M in Example 5.1.

Example 5.2:

In this example, we solve (158)-(163) with

λ(x) = 0, (235)

ϕ1(t) = sin(
π

2
t), 0 ≤ t ≤ 1, (236)

ϕ2(t) = 1 + sin(
π

2
t), 0 ≤ t ≤ 1, (237)

f(x) = ex, 0 = ϕ1(0) ≤ x ≤ ϕ2(0) = 1, (238)

g(t) = et+sin(π
2
t), 0 ≤ t ≤ 1, (239)
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TABLE 8

The absolute error for H(x, t) in Example 5.1

(x, t) N = 2, M = 4 N = 2, M = 6 N = 2, M = 8
(0,0) 0 0 0

(0.1,0.1) 1.78× 10−7 −2.40× 10−8 1.94× 10−10

(0.2,0.2) 4.55× 10−6 6.29× 10−8 −1.41× 10−9

(0.3,0.3) −2.02× 10−6 1.74× 10−7 5.18× 10−9

(0.4,0.4) −2.12× 10−5 −4.22× 10−7 −5.12× 10−9

(0.5,0.5) −1.56× 10−5 −3.97× 10−7 −7.78× 10−9

(0.6,0.6) 2.88× 10−5 8.99× 10−7 1.90× 10−8

(0.7,0.7) 5.07× 10−5 5.62× 10−7 −6.90× 10−9

(0.8,0.8) −6.04× 10−6 −1.25× 10−6 −1.33× 10−8

(0.9,0.9) −4.42× 10−5 3.04× 10−7 1.54× 10−8

(1,1) 0 0 0

TABLE 9

The absolute error for u
(

x
2−t , t

)
in Example 5.1

(x, t) N = 2, M = 4 N = 2, M = 6 N = 2, M = 8
(0,0) 0 0 0

(0.1,0.1) 5.62× 10−6 −7.64× 10−7 6.23× 10−9

(0.2,0.2) 5.18× 10−5 7.19× 10−7 −1.59× 10−8

(0.3,0.3) −1.01× 10−5 7.21× 10−7 2.22× 10−8

(0.4,0.4) −1.75× 10−5 −3.69× 10−7 −5.51× 10−9

(0.5,0.5) 2.59× 10−5 6.96× 10−7 1.42× 10−8

(0.6,0.6) −8.59× 10−5 −2.72× 10−6 −5.84× 10−8

(0.7,0.7) −2.31× 10−4 −2.43× 10−6 3.45× 10−8

(0.8,0.8) 5.81× 10−5 8.40× 10−6 7.76× 10−8

(0.9,0.9) 5.26× 10−4 −4.53× 10−6 −1.73× 10−7

(1,1) −1.03× 10−3 2.13× 10−5 −3.37× 10−7
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Figure 18. Exact (red) and approximate (green) solutions of u(x, t) in Example 5.1

TABLE 10

The L2 norm error for functions H(x, t)− H̃(x, t) and u(x, t)− ũ(x, t) in Example 5.1

(N,M) ||H(x, t)− H̃(x, t)||L2([0,1]×[0,1]) ||u(x, t)− ũ(x, t)||L2([ϕ1(t),ϕ2(t)]×[0,1])

(N=2,M=3) 7.535× 10−9 9.670× 10−8

(N=2,M=4) 5.088× 10−10 6.302× 10−9

(N=2,M=5) 4.979× 10−12 6.266× 10−11

(N=2,M=6) 2.754× 10−13 3.386× 10−12

(N=2,M=7) 2.972× 10−15 3.711× 10−14

(N=2,M=8) 8.966× 10−17 1.099× 10−15

E(t) = et+sin(π
2
t)(e− 1), 0 ≤ t ≤ 1, (240)

which has the exact solution

u(x, t) = et+x, (241)

From (192)-(197), we can obtain the following its equivalent problem

∂2G

∂x∂t
=
∂3G

∂x3
+
π

2
cos(

πt

2
)
∂2G

∂x2
+K(x, t), 0 < x < 1, 0 < t < 1, (242)

with initial condition

G(x, 0) = ex + (2− e)x2 − x− 1, 0 < x < 1, (243)
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boundary conditions
∂G

∂x
(0, t) = 0, 0 < t < 1, (244)

G(1, t) = 0, 0 < t < 1, (245)

where

K(x, t) = et+sin(πt
2

)
(

(e− 2)π cos(
πt

2
)−

(
1 +

π

2
cos(

πt

2
)
)

(1 + (2e− 4)x)
)
. (246)

From (165), (180) and (241), we can deduce that the problem (242)-(245) has the

exact solution

G(x, t) = et+sin(πt
2

)
(
ex − (e− 2)x2 − x− 1

)
. (247)

Now apply our numerical scheme with N = 2,M = 4 and solve equation (242).

From Galerkin equations (217), we have
c0,0 = 2.5937, c0,1 = 3.3350, c0,2 = 4.6750, c0,3 = 6.1663, c0,4 = 6.3877,

c1,0 = 2.5937, c1,1 = 3.3342, c1,2 = 4.6772, c1,3 = 6.1636, c1,4 = 6.3891,

c2,0 = 2.5888, c2,1 = 3.3461, c2,2 = 4.6623, c2,3 = 6.1738, c2,4 = 6.3858.

(248)

From equations (216), the approximate solution H̃(x, t) of the problem (242)-(245)

can be obtained as following

G̃(x, t) = G(x, 0) ·

N=2∑
i=0

M=4∑
j=0

ci,j t Bi,N(x)Bj,M(t) + 1

 , (249)

According to (199), we can get following corresponding approximate solution

ũ(x, t) of the problem (158)-(163).

ũ(x, t) =
∂G̃

∂x

(
x− sin(

πt

2
), t
)

+
(

1 + (2e− 4)
(
x− sin(

πt

2
)
))

et+sin(πt
2

). (250)

Similarly, we can get approximate solutions of the problem (242)-(245) and

(158)-(163) for different value of N and M.

In Figure 19, the exact and approximate solutions of H(x, t) with N = 2,M =

4 are plotted.
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Figure 19. Exact (red) and approximate (green) solutions of H(x, t) in Example 5.2

In Figure 20, the exact and approximate solutions of u(x, t) with N = 2,M = 4

are plotted.

Table 11 and Table 12 present respectively absolute error for H(x, t) and u(x, t)

with different N and M in Example 5.2.

Table 13 present L2 norm error for functions H(x, t) − H̃(x, t) and u(x, t) −

ũ(x, t) with different N and M in Example 5.2.

F Conclusion

In this chapter, the existence and uniqueness theorem is presented. Then the

Ritz-Galerkin method in Bernstein polynomial basis is implemented to obtain an

approximate solution of non-classical parabolic equation subject to given initial and

nonlocal time-dependent boundary conditions by converting the problem to a system

of algebraic equations. The nonlocal problem builds a solid foundation for us to solve

the free boundary problem model in next chapter.

60



TABLE 11

The absolute error for H(x, t) in Example 5.2

(x, t) N = 2, M = 2 N = 2, M = 4 N = 2, M = 6
(0,0) 0 0 0

(0.1,0.1) 4.12× 10−5 −2.17× 10−7 −7.99× 10−9

(0.2,0.2) 5.20× 10−5 5.44× 10−6 −1.69× 10−8

(0.3,0.3) −2.55× 10−4 4.98× 10−6 1.62× 10−7

(0.4,0.4) −7.74× 10−4 −1.76× 10−5 −9.25× 10−9

(0.5,0.5) −9.17× 10−4 −3.20× 10−5 −4.96× 10−7

(0.6,0.6) −1.60× 10−4 4.19× 10−6 8.07× 10−8

(0.7,0.7) 1.19× 10−3 5.46× 10−5 8.05× 10−7

(0.8,0.8) 1.78× 10−3 2.22× 10−5 −4.60× 10−7

(0.9,0.9) 4.75× 10−4 −4.21× 10−5 −1.75× 10−7

(1,1) 0 0 0

TABLE 12

The absolute error for u(x+ sin(π
2
t), t) in Example 5.2

(x, t) N = 2, M = 2 N = 2, M = 4 N = 2, M = 6
(0,0) 0 0 0

(0.1,0.1) −5.42× 10−4 2.94× 10−6 1.02× 10−7

(0.2,0.2) −4.09× 10−4 −3.95× 10−5 1.37× 10−7

(0.3,0.3) 1.30× 10−3 −2.90× 10−5 −8.45× 10−7

(0.4,0.4) 3.28× 10−3 6.94× 10−5 −7.46× 10−8

(0.5,0.5) 3.44× 10−3 1.15× 10−4 1.71× 10−6

(0.6,0.6) 9.19× 10−4 3.26× 10−6 3.58× 10−8

(0.7,0.7) −2.56× 10−3 −1.28× 10−4 −2.03× 10−6

(0.8,0.8) −3.72× 10−3 −6.40× 10−5 6.31× 10−7

(0.9,0.9) −1.22× 10−3 6.7× 10−5 6.02× 10−7

(1,1) 0 0 0
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Figure 20. Exact (red) and approximate (green) solutions of u(x, t) in Example 5.2

TABLE 13

The L2 norm error for functions H(x, t)− H̃(x, t) and u(x, t)− ũ(x, t) in Example 5.2

(N,M) ||H(x, t)− H̃(x, t)||L2([0,1]×[0,1]) ||u(x, t)− ũ(x, t)||L2([ϕ1(t),ϕ2(t)]×[0,1])

(N=2,M=1) 2.545× 10−6 3.858× 10−5

(N=2,M=2) 5.220× 10−7 7.972× 10−6

(N=2,M=3) 2.068× 10−9 3.183× 10−8

(N=2,M=4) 5.286× 10−10 7.881× 10−9

(N=2,M=5) 1.611× 10−11 2.431× 10−10

(N=2,M=6) 1.162× 10−13 1.686× 10−12
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CHAPTER VI

FREE BOUNDARY PROBLEM MODEL

A Introduction

In this chapter, we focus on the solid DCIS model by considering an one-

dimensional case, which is in form of free boundary problem. The free boundary

problem is a tough problem. Though many publications has been done toward it, the

problem is far from well understood.

The presentation of this part is as follows:

In section B, we introduce mathematical model of DCIS in form of free bound-

ary problem. An equivalent problem and important preliminary results are stated in

section C. An iteration algorithm and well-posedness theorem of this free boundary

problem are presented in section D. In section E, numerical examples and simulation

are discussed. Section F concludes this article with a brief summary.

B Mathematical Model

We model tumor growth pattern by using dimensionless nutrient concentration

u(x, t) which satisfies a reaction - diffusion equation.

∂u

∂t
=
∂2u

∂x2
− λu(x, t) + F (x, t), ϕ1(t) < x < ϕ2(t), t > 0; (251)

Here λ in condition (251) could be a function λ(x), λ(t) or λ(x, t). λu(x, t)

denotes the nutrient consumption rate; F (x, t) is the transfer of nutrient from or to

the neighborhood, which may be positive or negative.
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Also, we assume u(x, t) satisfies the following initial and boundary and free

boundary conditions:

u(x, 0) = f(x), ϕ1(0) < x < ϕ2(0); (252)

u(ϕ1(t), t) = g1(t), 0 < t < T, (253)

u(ϕ2(t), t) = g2(t), 0 < t < T, (254)

Here f(x), ϕ1(t), g1(t), and g2(t) are given.

Finally, the mass conservation consideration implies following relationship:

µ
∫ ϕ2(t)

ϕ1(t)
(u(x, t)− u0)dx =

∂ϕ2(t)

∂t
, ϕ2(0) = s0 > 0 (255)

Here µ, u0, and s0 are known constant.

Our purpose is to determine (u(x, t), ϕ2(t)) which satisfy (251)-(255) for given

λ, F (x, t), f(x), ϕ1(t), g1(t), g2(t), µ, u0 and s0.

To avoid tedious formal complications, we consider the following simplified

version:

(In fact, by introducing several transformations, we am able to get this version

easily, see [46])
∂u

∂t
=
∂2u

∂x2
− λu(x, t), (x, t) ∈ D, (256)

u(x, 0) = f(x), 0 < x < s(0), (257)

u(0, t) = g(t), 0 < t < T, (258)

u(s(t), t) = 0, 0 < t < T, (259)∫ s(t)

0
u(x, t)dx =

∂s(t)

∂t
, s(0) = s0 > 0 (260)

Here, D := {(x, t)|0 < x < s(t), 0 < t < T}. The problem is to determine

(u(x, t), s(t)) for given T, λ, f(x), g(t) and s0.
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C Equivalent Problem

In this section, we obtain equivalent problem of free boundary model— non-

linear parabolic equation with initial-boundary conditions.

First, let’s introduce some necessary notations and preliminary results.

Define

Lp(0, T ;X) = {f(t) : (
∫ T

0
‖ f ‖pX dt)1/p <∞}, 1 ≤ p ≤ ∞

L∞(0, T ;X) = {f(t) :‖ f ‖∞:= ess sup
0≤t≤T

‖ f ‖X<∞}, 1 ≤ p ≤ ∞

W i,p(0, T ;X) = {f(t) : f ∈ Lp(0, T ;X),
df

dt
, ...

dif

dti
∈ Lp(0, T ;X)},

H i(0, T ;X) = W i,2(0, T ;X), 1 ≤ p ≤ ∞

Here X be a Banach space, L(0, T ;X) be the space of all weakly measurable function

from [0, T ] into X.

Now consider the parabolic equation with initial and boundary conditions:

∂u

∂t
+ Au+ F (u) = 0, (x, t) ∈ (0, 1)× (0, T ), (261)

u = 0, (x, t) ∈ {0, 1} × [0, T ], (262)

u = f, (x, t) ∈ [0, 1]× {0}, (263)

where Au = −a(t)∂
2u
∂x2
, F (u) = b(x, t)∂u

∂x
+ λu − p(x, t), u(x, t) is the unknown

function.

Motivated by ([35], Ch 15) we construct semigroup solution operator for (261)-

(263):

Let et4 be semigroup solution operator to the heat equation with initial-

boundary condition (262)-(263). Then we have

et4f(x) =
∞∑
n=1

αne
−λntφn(x), (264)
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where

φn(x) =
√

2 sin(
√
λnx),

√
λn = nπ, αn =< f, φn > (265)

Now if we define

eα(t,τ)4f(x) :=
∞∑
n=1

αne
−λnα(t,τ)φn(x), (266)

Then eα(t,τ)4 is the semigroup solution operator to

∂u

∂t
− a(t)

∂2u

∂x2
= 0 (267)

with initial-boundary condition (262)-(263), where α(t, τ) =
∫ t
τ a(η)dη

Then problem (261)-(263) is equivalent to solve the following integral equation:

u(t) = eα(t,0)4f(x) +
∫ t

0
eα(t,τ)4F (u(τ))dτ, (268)

From ([35], Ch. 15), some important properties of solution operator and its

estimates are as following:

eα4(∂f) = ∂xe
α4
N f (269)

where eα4N is the solution operator to the heat equation on [0,∞]×[0, 1] with Neumann

boundary condition.

e
α(t,τ)4
N f(x) :=

∞∑
n=1

βne
−λnα(t,τ)ψn(x), (270)

where

ψn(x) =
√

2 cos(
√
λnx),

√
λn = nπ, βn =< f, ψn > (271)

Moreover, we have following estimates:

‖ eα(t,0)4f ‖Cr≤ Ct−r/2 ‖ f ‖∞, ‖ eα(t,0)4
N f ‖Cr≤ Ct−r/2 ‖ f ‖∞, (272)

where f ∈ L∞(0, 1), r ≥ 0, t ∈ (0, T ], withC = C(r, T )
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And

‖ eα(t,0)4f ‖Cµ+r≤ Ct−r/2 ‖ f ‖Cµ , (273)

where f ∈ Cr
b [0, 1], µ ∈ [0, 2], r ≥ 0, t ∈ (0, T ]

‖ eα(t,0)4
N f ‖Cµ+r≤ Ct−r/2 ‖ f ‖Cµ , (274)

where f ∈ Cr[0, 1], µ ∈ [0, 1], r ≥ 0, t ∈ (0, T ]

Now, let’s go back to consider (256)-(260), we change variable x ∈ [0, s(t)] to

ξ ∈ [0, 1] by setting

ξ =
x

s(t)
. (275)

Let

H(x, t) = u((s(t))x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ T. (276)

Then

u(x, t) = H

(
x

s(t)
, t

)
= H(ξ, t), (277)

∂u

∂x
=
∂H

∂ξ
· 1

s(t)
, (278)

∂2u

∂x2
=
∂2H

∂ξ2
· 1

s2(t)
, (279)

∂u

∂t
=
∂H

∂t
− ∂H

∂ξ
· xs

′(t)

s2(t)
(280)

Also, from (260) we have

s′(t)

s(t)
=
∫ 1

0
u(s(t)ξ, t)dξ (281)

ln(s(t)) =
∫ t

0

∫ 1

0
u(s(t)ξ, t)dξdτ + C (282)

s(t) = Ce
∫ t
0

∫ 1

0
u(s(t)ξ,t)dξdτ (283)

Since s(0) = s0, then

s(t) = s0e
∫ t
0

∫ 1

0
u(s(t)ξ,t)dξdτ (284)
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then problem (256)-(260) becomes

∂H

∂t
=

1

s2(t)

∂2H

∂x2
+B(x, t)

∂H

∂x
− λH(x, t), (x, t) ∈ D, (285)

with initial condition

H(x, 0) = f(s(0)x), 0 < x < 1, (286)

boundary conditions

H(0, t) = g(t), 0 < t < T, (287)

H(1, t) = 0, 0 < t < T, (288)

s(t) = s0e
∫ t
0

∫ 1

0
H(ξ,t)dξdτ (289)

where

D := {(x, t)|0 < x < 1, 0 < t < T} (290)

B(x, t) =
xs′(t)

s(t)
, f̃(x) = f(s(0)x). (291)

Now we introduce another transformation.

Set

v(x, t) = H(x, t)− (1− x)g(t), (292)

then
∂v

∂t
=
∂H

∂t
− (1− x)

d(g(t))

∂t
, (293)

∂v

∂x
=
∂H

∂x
+ g(t), (294)

∂2H

∂x2
=
∂2v

∂x2
, (295)

Under this transformation (292) and equations (293)-(295), we have

∂v

∂t
=

1

s2(t)
· ∂

2v

∂x2
+B(x, t)

∂v

∂x
− λv(x, t) +K(x, t), (x, t) ∈ D, (296)

with initial condition

v(x, 0) = f̃(x), 0 < x < 1, (297)
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boundary conditions

v(0, t) = 0, 0 < t < T, (298)

v(1, t) = 0, 0 < t < T, (299)

s(t) = s0e
∫ t
0

∫ 1

0
[v(ξ,t)+(1−x)g(t)]dξdτ (300)

where

K(x, t) = B(x, t)g(t)− λ(1− x)g(t)− (1− x)g′(t). (301)

f̃(x) = f(s(0)x)− (1− x)g(0). (302)

Now by using the arguments in ([22] Ch.7) the following lemma is obtained:

Lemma VI.1 (a) Assume that b, λ ∈ L∞([0, 1] × [0, T ]); p(x, t) ∈ L2([0, 1] × [0, T ])

and f ∈ L2(0, 1). Then there exists a unique weak solution of (261)-(263).

(b) If p(x, t) ∈ L2(0, T ;L2(0, 1))andf ∈ H1
0 (0, 1). Also, suppose u ∈ L2(0, T ;H−1

(0, 1)) is a weak solution of the nonlinear parabolic initial boundary value problem

(261)-(263). Then u ∈ L2(0, T ;H2(0; 1)) ∩ L∞(0, T ;H1
0 (0, 1)), u′ ∈ L2(0, T ;L2(0, 1)).

By Sobolev embedding theorem, if u ∈ L2(0, T ;H2(0, 1)), with u′ ∈ L2(0, T ;L2(0, 1)),

then u ∈ C(0, T ;H1(0, 1)).

Now go back to our free boundary problem and we have

Lemma VI.2 Suppose that λ ∈ L∞(0,∞) and nonnegative, f ∈ C1, g ∈ C1 with

bounded g′, 0 ≤ T ≤ ∞ and u = max0≤x≤s(0){f, g}. If u(x, t) satisfies (256)-(260),

then we have following:

(a) 0 ≤ u(x, t) ≤ u for 0 ≤ x ≤ s(t), 0 ≤ t ≤ T

(b) 0 ≤ s′(t) ≤ us(t)for 0 ≤ t ≤ T

(c) 0 ≤ s(t) ≤ s(0)eutfor 0 ≤ t ≤ T

Note (a) is directly from maximum principle. (b) and (c) can be easily obtained

from (281) and (300).
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Theorem VI.1 Suppose f̃ ∈ H1
0 (0, 1), then the problem (296)-(300) has a unique

solution.

Proof VI.1 Let (v1, s1), (v2, s2) are two solutions of (296)-(300), then we have for

i = 1, 2

∂vi
∂t
− 1

s2
i (t)
· ∂

2vi
∂x2
− xs

′
i(t)

si(t)

∂vi
∂x

+ λvi −K(x, t) = 0, (x, t) ∈ D, (303)

with initial condition

vi(x, 0) = f̃(x), 0 < x < 1, (304)

boundary conditions

vi(0, t) = 0, 0 < t < T, (305)

vi(1, t) = 0, 0 < t < T, (306)

si(t) = s0e
∫ t
0

∫ 1

0
[vi(ξ,t)+(1−x)g(t)]dξdτ (307)

Now consider the difference w = v1 − v2, and δ = s1 − s2, we have

∂w

∂t
− 1

s2
1(t)
· ∂

2w

∂x2
− xs

′
1(t)

s1(t)

∂w

∂x
−(

1

s2
1(t)
− 1

s2
2(t)

)
∂2v2

∂x2
−x(

s
′
1

s1

− s
′
2

s2

)
∂v2

∂x
+λw, (x, t) ∈ D,

(308)

with initial condition

w(x, 0) = 0, 0 < x < 1, (309)

boundary conditions

w(0, t) = 0, 0 < t < T, (310)

w(1, t) = 0, 0 < t < T, (311)

δ(t) = s0e
∫ t
0

∫ 1

0
[v1(ξ,t)+(1−x)g(t)]dξdτ

[
1− e−

∫ t
0

∫ 1

0
[w(ξ,t)+(1−x)g(t)]dξdτ

]
(312)

By Lemma VI.1 (a), we have

‖ vi ‖∞≤ Cand ‖ w ‖∞≤ C. (313)
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And by above equation, we have

|δ| ≤ Ct ‖ w ‖L∞([0,1]×[0,t]), 0 ≤ t ≤ T (314)

Then∣∣∣∣∣ 1

s2
1(t)
− 1

s2
2(t)

∣∣∣∣∣ =

∣∣∣∣∣s1 + s2

s2
1s

2
2

∣∣∣∣∣ |δ(t)| ≤ C|δ| ≤ Ct ‖ w ‖L∞([0,1]×[0,t]) (315)

∣∣∣∣∣s
′
1

s1

− s
′
2

s2

∣∣∣∣∣ =
∣∣∣∣∫ 1

0
[v1(ξ, t) + (1− x)g(t)]dξ −

∫ 1

0
[v2(ξ, t) + (1− x)g(t)]dξ

∣∣∣∣
=

∣∣∣∣∫ 1

0
[w(ξ, t) + 2(1− x)g(t)]dξ

∣∣∣∣ (316)

≤ ‖ w ‖L∞(0,1) +C.

Moreover, because f̃ ∈ H1
0 (0, 1), then there exist a constant C such that

‖ vi(t) ‖H1
0 (0,1)≤ C (317)

By using (268), our problem (308)-(312) is equivalent to following:

w(t) = 0−
∫ t

0
eα(t,τ)4xs

′
1(t)

s1(t)

∂w

∂x
dτ −

∫ t

0
eα(t,τ)4F (τ, s1, s2, v2, w)dτ, (318)

where

F (τ, s1, s2, v2, w) = −(
1

s2
1(t)
− 1

s2
2(t)

)
∂2v2

∂x2
− x(

s
′
1

s1

− s
′
2

s2

)
∂v2

∂x
+ λw (319)

By above estimates, we have

|F (τ, s1, s2, v2, w)| ≤
∣∣∣∣∣ 1

s2
1(t)
− 1

s2
2(t)

∣∣∣∣∣ ‖ v2(t) ‖H2(0,1) −
∣∣∣∣∣s
′
1

s1

− s
′
2

s2

∣∣∣∣∣ ‖ v2(t) ‖H1(0,1) + |λw|

≤ C|δ|+ ‖ w ‖L∞(0,1) +C + C (320)

≤ C
[
t ‖ w ‖L∞([0,1]×[0,t]) +2

]
+ ‖ w ‖L∞(0,1)

By (269)-(274), (318) becomes

w(t) = −
∫ t

0

[
eα(t,τ)4 s

′
1(t)

s1(t)
+ ∂xe

α(t,τ)4
N

xs
′
1(t)

s1(t)

]
w(τ)dτ−

∫ t

0
eα(t,τ)4F (τ, s1, s2, v1, v2)dτ,

(321)
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and then

‖ w ‖L∞(0,1) ≤ C
∫ t

0
(t− τ)−r/2 ‖ w ‖L∞([0,1]×[0,t]) dτ (322)

+
∫ t

0
(t− τ)−r/2

[
C
(
t ‖ w ‖L∞([0,1]×[0,t]) +2

)
+ ‖ w ‖L∞(0,1)

]
dτ

For r < 2 and t > 0 small enough, we have

‖ w ‖L∞([0,1]×[0,t])≤ t(2−r)/2
[
C ‖ w ‖L∞([0,1]×[0,t]) +2

]
(323)

Then we have v1(·, t) = v2(·, t) in [0, t]. Therefore, repeat the above argument

we finish the proof.

D Mathematical Algorithm and Well Posedness Theorem

In this section, we design an iteration algorithm to construct the solution of

(296)-(300). Then well-posedness theorem are proved.

Now suppose s0 = s(0) and vn+1 is the solution of following problem:

∂vn+1

∂t
= An(t)

∂2vn+1

∂x2
+Bn(x, t)

∂vn+1

∂x
− λvn+1 +K(x, t), (x, t) ∈ D, (324)

with initial condition

vn+1(x, 0) = f̃(x), 0 < x < 1, (325)

boundary conditions

vn+1(0, t) = 0, 0 < t < T, (326)

vn+1(1, t) = 0, 0 < t < T, (327)

and sn+1(t) is determined by

sn+1(t) = s0e
∫ t
0

∫ 1

0
[vn+1(ξ,t)+(1−x)g(t)]dξdτ (328)

where

An(t) =
1

s2
n(t)

, Bn(x, t) =
xs
′
n(t)

sn(t)
, n = 0, 1, 2, 3, ... (329)
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Theorem VI.2 Suppose f̃ ∈ H1
0 (0, 1), λ ∈ L∞[0, 1], g ∈ L∞[0, 1]withboundedg′ then

there exists a unique solution (vn+1, sn+1) of the problem (324)-(328) with vn+1 ∈

L2(0, T ;H2[0, 1]) ∩ L2(0, T ;H1
0 (0, T ;H1

0 [0, 1]))andsn+1 ∈ C1(0, T ).

Proof VI.2 We use induction method to prove it. When n = 0, s0 = s(0), A0(t) =

1
s20

is a positive constant, B0(x, t) = 0, then by Lemma VI.1, there is a unique solution

the problem (324)-(328) v1 ∈ L2(0, T ;H2[0, 1])∩L2(0, T ;H1
0 (0, T ;H1

0 [0, 1])) and then

v1 ∈ C(0, T ;H1[0, 1]) by Sobolev embedding theorem, hence by (4.5) s1 ∈ C1(0, T ).

Now assume it is true for n = k, then Ak, Bk ∈ L∞(0, T ;L∞(0, 1)). Moreover,

by Lemma VI.2 there exist positive constants δ1, δ2 and N such that

0 < δ1 ≤ Ak ≤ δ2, |Bk| ≤ N (330)

then there exists a unique solution (vk+1, sk+1) of the problem (324)-(328) with vk+1 ∈

L2(0, T ;H2 [0, 1])∩L2(0, T ;H1
0 (0, T ;H1

0 [0, 1]))andsk+1 ∈ C1(0, T ). Moreover, Ak+1, Bk+1

satisfy the condition (328), Therefore, we finish the proof.

Next, we prove the uniform boundedness for vn and sn.

Theorem VI.3 Under the assumption of Theorem 2, we have:

(a) ‖ vn ‖∞L uniformly for all n;

(b) vn is bounded uniformly in C([0, T ], Cr([0, 1]), r < 2;

(c) sn is bounded uniformly in C1[0, T ].

Proof VI.3 (a) follows directly from maximum principle and Lemma VI.2.

(b) By (268), we can express vn+1 as following:

vn+1 = eαn(t,0)4f̃ −
∫ t

0
eαn(t,τ)4xs

′
n(t)

sn(t)

∂vn

∂x
dτ

+
∫ t

0
eα(t,τ)4

[
λvn+1 −K(x, t)

]
dτ, (331)

where

αn(t, τ) =
∫ t

τ

1

s2
n(t)

(332)
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By (269)-(272), (331) becomes

vn+1 = eαn(t,0)4f̃ −
∫ t

0

[
eαn(t,τ)4 s

′
n(t)

sn(t)
+ ∂xe

αn(t,τ)4
N

xs
′
n(t)

sn(t)

]
vn+1(τ)dτ (333)

+
∫ t

0
eα(t,τ)4

[
λvn+1 −K(x, t)

]
dτ, (334)

and then by (273) and this theorem (a), we have

‖ vn+1 ‖Cr ≤ ‖ eαn(t,0)4f̃ ‖Cr +
∫ t

0

[
eαn(t,τ)4 s

′
n(t)

sn(t)
+ ∂xe

αn(t,τ)4
N

xs
′
n(t)

sn(t)

]
vn+1(τ)

Cr

dτ

+
∫ t

0
‖ eα(t,τ)4

[
λvn+1 −K(x, t)

]
‖Cr dτ, (335)

≤ ‖ eαn(t,0)4f̃ ‖Cr +C
∫ t

0
(t− τ)−r/2 ‖ vn+1 ‖L∞ dτ + C

∫ t

0
(t− τ)−r/2dτ

≤ ‖ eαn(t,0)4f̃ ‖Cr +C
∫ t

0
(t− τ)−r/2 ‖ f̃ ‖L∞ dτ + C

∫ t

0
(t− τ)−r/2dτ

≤ ‖ eαn(t,0)4f̃ ‖Cr +Ct(2−r)/2 ‖ f̃ ‖L∞ dτ + Ct(2−r)/2

(336)

By Lemma 2, there exist positive constants δ1, δ2 and N such that

0 < δ1T ≤ αn(t, 0) ≤ δ2T, (337)

Therefore, (2) are true for r ≤ 2.

(c) can be obtained by (b), lemma VI.2 and (328).

Now we prove vn, sn are Cauchy sequence and global existence of problem as

following:

Theorem VI.4 Under the assumption of Theorem 2, the problem (296)-(300) has

a unique solution (v, s) such that v ∈ C([0, T ], Cr([0, 1]), r < 2, and s ∈ C1([0, T ],

where

lim
n→∞

‖ vn(t)− v(t) ‖Cr(0,1)= 0 and lim
n→∞

sn(t) = s(t).

Proof VI.4 Now consider the difference wn = vn+1 − vn, and δn = sn+1 − sn, we

have

∂wn

∂t
− 1

s2
n(t)
·∂

2wn

∂x2
−xs

′
n(t)

sn(t)

∂w

∂x
−(

1

s2
n(t)
− 1

s2
n−1(t)

)
∂2vn
∂x2
−x(

s
′
n

sn
−
s
′
n−1

sn−1

)
∂vn−1

∂x
+λwn, (x, t) ∈ D

(338)
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with initial condition

wn(x, 0) = 0, 0 < x < 1, (339)

boundary conditions

wn(0, t) = 0, 0 < t < T, (340)

wn(1, t) = 0, 0 < t < T, (341)

δn(t) = s0e
∫ t
0

∫ 1

0
[vn+1(ξ,t)+(1−x)g(t)]dξdτ

[
1− e−

∫ t
0

∫ 1

0
[wn(ξ,t)+(1−x)g(t)]dξdτ

]
(342)

By using Theorem VI.1, we have

‖ wn ‖L∞([0,1]×[0,t]) ≤ t(2−r)/2
[
C ‖ wn−1 ‖L∞([0,1]×[0,t]) +2

]
(343)

≤ t(2−r)/2n
[
C ‖ w0 ‖L∞([0,1]×[0,t]) +2

]
, r ≤ 2, 0 ≤ t ≤ 1

then for any n > m > 0,

‖ vn − vm ‖L∞([0,1]×[0,t]) ≤
n∑

k=m

‖ wk ‖L∞([0,1]×[0,t]) (344)

≤
n∑

k=m

(t(2−r)/2)k
[
C ‖ w0 ‖L∞([0,1]×[0,t]) +2

]
(345)

≤ t(2−r)m/2
1

1− t(2−r)/2
[
C ‖ w0 ‖L∞([0,1]×[0,t]) +2

]
so we conclude vn is a Cauchy sequence. By (328), sn is a Cauchy sequence too.

Let v = limn→∞ v
n, ands = limn→∞ sn, hence by last theorem the global existence of

problem (296)-(300) are proved.

Next, we get the continuous dependence theorem of problem (256)-(260).

Theorem VI.5 Under assumptions of theorem 2 solution (u(x, t), s(t)) of problem

(256)-(260) depends upon the data and coefficients continuously.

Proof VI.5 Suppose (u[i], s[i]) are two solution of problem (251)-(255) based on the

data and coefficients f [i], g[i], i = 1, 2;

Similarly, change variable x ∈ [0, s(t)] to y ∈ [0, 1] by setting x = ys(t), then
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∂v[i]

∂t
=

1

(s[i])2

∂2v[i]

∂y2
+

y

s[i]

∂s[i]

∂t

∂v[i]

∂y
− λ[i]v[i], (y, t) ∈ D, (346)

v[i](y, 0) = h[i](y), 0 < y < 1, (347)

v[i](0, t) = g[i](t), 0 < t < T, (348)

v[i](1, t) = 0, 0 < t < T, (349)∫ 1

0
v[i](y, t)s[i]dy =

∂s[i]

∂t
, s(0) = s0 (350)

Choose approximate sequence {f [i]
k } and {g[i]

k } of smooth functions which con-

verge to f [i] and g[i] in norms of corresponding spaces.The same argument of proof in

theorem for v
[i]
k and s

[i]
k follows that v

[i]
k converges to v[i] uniformly on [0, 1]× [0, T ] and

s
[i]
k converges to s[i] uniformly in C1[0, T ], T > 0. Moreover, the estimates of proof in

theorem for v
[i]
k and s

[i]
k are also valid.

Now, consider the difference d(y, t) = v[2](y, t)−v[1](y, t) and δ = s[2](t)−s[1](t),

then (346)-(350) becomes

∂d(y, t)

∂t
=

1

(s[1])2

∂2d(y, t)

∂y2
+

y

s[1]

∂s[1]

∂t

∂d(y, t)

∂y
−λd(y, t) +F (y, t), (y, t) ∈ D, (351)

where

F (y, t) = δ{−(s[2] + s[1])

(s[2]s[1])2

∂2v[2]

∂y2
− y

s[1]s[2]

∂s[2]

∂t

∂v[2]

∂y
+

δ
′
y

δs[1]

∂v[2]

∂y
} (352)

Also, we have

d(1, t) = 0, t ∈ (0, T ) (353)

d(y, 0) = h̃(y), h̃(y) := h[2] − h[1], y ∈ (0, 1) (354)

d(0, t) = g̃(t), g̃(t) := g[2](t)− g[1](t), t ∈ (0, T ) (355)

Now we can split d(y, t) into following:

d(y, t) = U + V + g̃(t)(1− y)2, (356)

where U is the solution of

∂U(y, t)

∂t
=

1

(s[1](t))2

∂2U

∂y2
+
y

s[1]

∂s[1]

∂t

∂U

∂y
−λU(y, t)+F (y, t)−g̃′(t)(1−y)2− 2

(s[1](t))2
g̃(t)

(357)
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U(0, t) = U(1, t) = U(y, 0) = 0 (358)

and V is the solution of

LV :=
∂V (y, t)

∂t
− 1

(s[1](t))2

∂2V (y, t)

∂y2
= 0, (359)

V (0, t) = V (1, t) = 0 (360)

V (y, 0) = h̃(y)− g̃(0)(1− y)2 := ĥ(y) (361)

By [23], we have

max
y∈(0,1)

|U(y, t)| ≤ Kt ‖ δ ‖t + ‖ h̃ ‖1 + ‖ g̃ ‖1 (362)

For V (y, t), by ([27], Page 4-9),we can write

V (y, t) =
∫ +∞

−∞
ĥ(η)Γ(y, t; η, 0)dη (363)

where Γ(y, t; η, τ) is the fundamental solution of operator L and can be con-

structed by parametrix method:

Γ(y, t; η, τ) = Γ0(y, t; η, τ) +
∫ t

τ

∫ +∞

−∞
Γ0(y, t; ξ, σ)Φ(ξ, σ; η, τ)dξdσ (364)

Γ0(y, t; η, τ) =
1

2
√
π 1

(s[1](t))2
(t− τ)

e

−(y−η)2

4(t−τ) 1

(s[1](t))2 (365)

and Φ is determined by LΓ = 0

Therefore, we can rewrite V (y, t) as

V (y, t) =
∫ +∞

−∞
ĥ(η)Γ0(y, t; η, 0)dη+

∫ +∞

−∞
ĥ(η)

∫ t

τ

∫ +∞

−∞
Γ0(y, t; ξ, 0)Φ(ξ, σ; η, 0)dξdσdη

(366)

The above integral is well defined because h̃ and 1
(s[1](t))2

are continuous almost

everywhere and bounded, and h̃(0) = ˜h(1) = 0.
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The first term of integral is dominated by

sup
y∈(0,1)

|h′(y)|
∫ +∞

−∞
Γ0dη ≤ K ‖ h ‖ (367)

To study the 2nd term of integral, recall estimate ([27], page 9),

|Γ0(y, t; ξ, τ)| ≤ K(t− τ)−n|ξ − y|2n−1e
κ(y−ξ)2
t−τ (368)

where κ is a positive constant.

and

|Φ(ξ, σ; η, τ)| ≤ K(σ − τ)−n|ξ − η|2n−3+γe
κ(ξ−η)2
σ−τ (369)

where γ stands the Hölder constant of coefficient 1
(s[1])2

and n ∈ [0, 3−γ
2

]

After we choose appropriate γ, n, the 2nd term of integral can be dominated by

Lt
γ
2 .

Summate the above estimate, we have

|V (y, t))| ≤ K(‖ h ‖1 +t
γ
2 ) (370)

Therefore, by (356), (362) and (370) we have

|v[1] − v[2]| ≤ Kt ‖ δ ‖t + ‖ h[1] − h[2] ‖1 + ‖ g[1] − g[2] ‖1 + sup |Q̃| (371)

Finally, by (350) and (371), we have similar estimate for |s[1] − s[2]|.

Hence, continuous dependence of (u, s) is proved.

Note: Reverse the transformations we can conclude the solution (u, s) of (256)-(260) is

well-posed under assumption f̃ ∈ H1
0 (0, 1), λ ∈ L∞[0, 1], g ∈ L∞[0, 1] with bounded g′.

E Numerical Evidence and Graphical Illustrations

In this section, we perform two numerical examples to test the validity and

efficiency of our numerical scheme.

Example 6.1:
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Consider (251)-(255) with

F (x, t) = 0, (372)

λ = 1− 1

t+ 1
, (373)

ϕ1(t) = 0, (374)

f(x) = 1 + x, (375)

g1(t) = e−t(t+ 1), 0 ≤ t ≤ 1, (376)

g2(t) = e−t(t+ 1)(1 +
2

2e(t+2)e−t − 1
), 0 ≤ t ≤ 1, (377)

µ = 0, u0 = 0 (378)

which has the exact solution

u(x, t) = e−t(1 + x)(1 + t), ϕ2(t) =
2

2e(t+2)e−t − 1
(379)

Now apply our algorithm to this problem, we have numerical solution

û(x, t) = e−t(1 + x)(1 + t)

and by (255) numerical solution

ϕ̂2(t) =
2

2e(t+2)e−t − 1
,

which are same as our exact solution. The graph for u(x, t) and ϕ2(t) are as follow-

ing(Figure 21, Figure 22):

Example 6.2:

Consider (251)-(255) with

F (x, t) = 0, (380)

λ = 1, (381)

ϕ1(t) = 0, (382)
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Figure 21. Graph for u(x,t) in Example 6.1

f(x) = 0, (383)

g1(t) = sin(t), 0 ≤ t ≤ 1, (384)

g2(t) = sin(t)(1 +
2

2ecos(t) − 1
), 0 ≤ t ≤ 1, (385)

µ = 0, u0 = 0 (386)

which has the exact solution

u(x, t) = (1 + x)sin(t), ϕ2(t) =
2

2ecos(t) − 1
(387)

Now apply our algorithm to this problem, we can get numerical solution û(x, t)

(see Table 14 about absolute error of approximate solution and exact solution for u

and Figure 23 about graph of approximate u).

and then by (255), we have ϕ̂2(t), see Figure 24 about comparison of exact and

approximate s(t).

F Conclusion

In this chapter, we discuss the nonlinear parabolic partial differential equation

with initial, boundary and free boundary conditions which comes from one dimen-
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Figure 22. Graph for ϕ2(t) in Example 6.1

sional case of DCIS. Well-posedness theorems of this problem is obtained by using

semigroup operator theory. Results of numerical experiments and simulation are also

presented to validate our findings.
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x t Approximate û(x, t) Exact u(x, t) Absolute error for u(x, t)
0.05 0.1 0.09777 0.1048 0.00705

0.2 0.20303 0.2086 0.00558
0.3 0.30459 0.3103 0.00571
0.4 0.40072 0.4089 0.00817

0.45 0.1 0.14774 0.1448 0.00298
0.2 0.29094 0.2881 0.00287
0.3 0.42976 0.4285 0.00126
0.4 0.56254 0.5647 0.00212

TABLE 14

Absolute error of u(x, t) in Example 6.2

Figure 23. Graph for approximate solution û(x, t) in Example 6.2
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Figure 24. Comparison of exact and approximate ϕ2(t) in Example 6.2
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CHAPTER VII

FUTURE DIRECTIONS

The future research could be conducted in following directions:

The nonlinear PDE with free boundary condition is a very complicated prob-

lem, these is almost no result combining clinical data into the model. Our main

direction is to develop a number of inverse problems relating clinical diagnoses of

cancer, which involve mathematical analysis, numerical simulation and clinical data.

After the breast cancer is possibly detected, there are several options to do:

(1) Do an incisional biopsy to find DCIS development along with changing

speed at the moment.

(2) Conduct a sequence of needle biopsies over a certain time to find the DCIS

development change.

(3) Do a sequence of screening over a certain time to find DCIS change.

These may lead to the inverse problem of finding u, the coefficients λ and free

boundary s(t) in mathematics.

Since we only consider problems of DCIS model in one dimensional case, it

is important to carry out analysis and numerical simulations for higher dimensional

model, in that way, we are able to compare our simulation result with clinical data.

Further investigation of the relation among the coefficients and solution patterns of

the higher dimensional model may provide more revealing results and help us better

understand the tumor growth and diagnoses procedures of DCIS.

Future research based on the findings of this dissertation, as has been shown,

could take multiple directions and thus the method represented in this work holds

fruitful possibilities for further exploration.
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