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ABSTRACT 

 

This study involves the evaluation of lattice specimens fabricated using additive 

manufacturing as well as investigation of the influence of unit cell connection geometry. Lattice 

topologies of face-centered cells and body-centered cells were modeled, investigated using finite 

element analysis (FEA) for each specimen, manufactured using direct metal laser sintering 

(DMLS) with maraging steel powder, and mechanically tested. The strut diameter of each 

topology was altered to yield four different mass reductions from a solid cube of maraging steel, 

ranging from 55%-90% mass reduction. Three iterations of 1000mm3 lattice specimens were 

investigated. The first iteration consisted 0.5mm plates on the top and bottom of the lattice tested 

only in compression. While the mechanical testing results yielded increasing stiffness to 

increasing strut diameter, the results were poor in comparison to FEA results, ranging from only 

7% to 20% of FEA stiffness results. A second iteration was modeled to enable the testing of 

specimens in either compression or tension as well as the use of an extensometer during testing. 

The results for the second iteration of specimens improved from first iteration and showed that as 

strut diameter is increased, the stiffness and effective modulus of each unit cell increases. All 

stiffness results from the second iteration specimens were greater than that of FEA results, 

ranging from 150% to 215% of FEA stiffness in tension and 125% to 400% of FEA stiffness in 

compression. The final iteration of specimens would add fillets at the strut-additional mass 

connections, testing connection stiffness and effective modulus of increasing fillet size when 

compared to no fillet connections. With the addition of fillets, mass is being added back to the 

unit cell. The most mass added to a unit cell was only a 4% increase in mass. But, with added 

mass came an increase in both stiffness and effective modulus in most parts. A select few of 

these fillet and non-fillet specimens were also tested to failure but without the use of an 

extensometer. While the stiffness results yielded poor comparisons to previous tests, these tests 

characterized the stress concentration behavior between non-fillet and fillet specimens. While 

non-filleted specimens tended to fail at strut-to-additional mass connections, the filleted 

specimens tended to fracture inside the lattice unit cell. 
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NOMENCLATURE 

 

Face-centered unit cell topology = FCC 

Body-centered unit cell topology = BCC 

Finite element analysis = FEA 

Direct metal laser sintering = DMLS 

EOS Direct metal laser sintering M270 machine = M270 

Instron 5569A tensile and compression tester = Instron 
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I. INTRODUCTION 

Generally, in industries such as aerospace and automotive, the lighter a machine is the 

more efficient it will be [1] [2]. One way of reducing the weight is simply removing the internal 

mass of the structural components inside the machines. By taking mass away, there is physically 

less material than before, making the whole vehicle or aircraft lighter. A term related to this 

tactic used in industry is called “mass-decompounding”, which means by using lighter materials 

(even simply cutting material from a part) one can cut overall costs and improve system 

efficiencies [3]. However, by removing material, the mechanical properties of manufactured 

components are influenced due to reduced internal support, which makes them less rigid. To 

maintain mechanical properties, internal lattice structures can be added where solid mass was 

removed. These structures serve as reinforcement to the surface walls of the part where a void 

would not, and have a greater stiffness-to-weight ratio when compared to a solid internal 

material.  

Cellular lattice structures contain the intersections of three parallel planes, producing a 

three-dimensional figure with six faces. Each face is set in one of the three sets of parallel planes, 

thus making a figure known as a parallelepiped [4]. Lattice structures have connections between 

these planes via struts. These struts can be constructed using a wide variety of geometries, sizes 

and orientations. Lattice structures are typically so complex that the only way to fabricate them is 

to use additive manufacturing. Traditional subtractive manufacturing techniques are not suitable 

to produce intricate internal lattice structures, especially in metals, due to their complexity and 

small feature size. The struts and pore size within the lattice are typically smaller than most 

milling tools.  
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In this study, two types of lattices will be looked at: Face-Centered (FCC) and Body-

Centered (BCC), (both only focusing on a single unit cell). For both types, the strut diameter will 

be adjusted within the unit cell to yield different weight and mass reduction from a solid 

1000mm3 cube. This study differs from previous lattice studies performed in that the strut 

geometry will be studied: the addition of fillets to the connection of strut to solid mass. Also, the 

lattice specimens will be fabricated using additive manufacturing techniques using a maraging 

steel powder. 

With the removal of internal mass from a structural component, it can become less rigid. 

But, with lattice structures, the strength-to-weight ratio is much greater than that of solid 

materials, which is more desirable. This study will look at the stiffness-to-weight ratio and 

effective modulus-to-weight ratio in both the FCC and BCC specimens with varying strut 

diameters. Also, potentially determine whith unit cell configuration more closely maintains 

stiffness when compared to a solid cube of maraging steel. To determine each specimen’s 

stiffness and effective modulus, an Instron tensile tester will be used. Specimens will be tested in 

both tension, using wedge grips to grab the added mass sections of each lattice, and compression, 

using a set of compression fixtures and hardened steel plates. These results will be verified and 

compared to an EOS material sheet for the maraging steel powder used as well as compared to 

studies performed using lattice structures and maraging steel. 
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II. BACKGROUND 

A number of topics arise with this study have been the subject of previous investigation. 

Specifically, the topics of cellular lattice designs, lightweight structures, maraging steel or EOS 

MS1, fillets and stress concentration are highly relevant to the current work. Also researched 

were additive and subtractive technologies and the comparison of parts made for each process.  

The effective mechanical properties of a lattice-based component are intricately linked to 

the design of the individual unit cell. Particular designs can be engineered to emphasize energy 

absorbing characteristics. When designing these lattice structures though, the manufacturability 

and printability can be a concern. Yan and Hao studied this as well as the performance of printed 

AlSi10Mg “diamond” cellular lattice structures [5]. They concluded that parts can be 

manufactured through Direct Metal Laser Sintering (DMLS) to have a well-defined geometry, 

yet partially sintered particles were bonded to the surface. This yielded a higher strut diameter 

than modeled, ranging from approximately 10% to 20% increase. The study also showed that as 

strut geometry increased, thus making pore size within the lattice smaller, the compressive 

strength increased. This is expected as more mass is being added to the unit cell which creates a 

greater resistance to a compressive load, increasing the overall effective strength of the unit cell. 

Other studies such as Young [6] and Contuzzi [7] show similar results. Young used a gyroid 

lattice geometry, which is an infinitely connected triply periodic minimal surface that exhibits 

circular struts and a spherical core, and concluded that by increasing the volume size of the 

lattice features within the unit cell (meaning pore size is decreasing) the compressive strength as 

well as the microhardness increases. A microhardness test was performed on all specimens to 

determine an accurate density for each specimen. The microhardness test was also performed on 

individual lattice struts and for all specimens it was determined that all individual struts were 
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fully dense post-building. Contuzzi studied a pillar textile lattice geometry and concluded that 

the more vertical reinforcements in the unit cell, a greater compressive loading capacity was 

achieved. The example used was that by adding eight vertical reinforcements, the loading 

capacity doubled.  

Alsalla studied the effects of build orientation of the lattice structures [8]. The study was 

performed using stainless steel powder and a gyroid lattice. It was concluded that build 

orientation of the lattice influence testing results. Periodic lattices printed in the vertical direction 

had approximately 60% increase in strength when compared to the horizontally printed lattices. 

Elongation under tensile loading was also greater, showing 40% increase in the vertical 

specimens compared to horizontal specimens. This study also concluded that in both vertical and 

horizontal orientations of lattices, the part densities were the same in both specimens. As stated, 

lattice structures have already been introduced into both automotive and aviation industries. For 

example, Boeing has fabricated an ultralight metallic microlattice that can sit on a dandelion 

because it is so light [9]. They claim the lattice is 99% air and is produced using a method 

involving the use of a liquid photo-polymer which solidifies when hit by ultraviolet radiation. 

Only the cross-section of the liquid exposed to the ultraviolet rays become solid, creating a 

lattice-work scaffold, which is then coated with nickel-phosphorous. Once the photopolymer is 

etched away, all that is left is a 3D, hollow lattice of metal. This can show that lattice structures 

can create ultra-lightweight structures, but can maintain mechanical properties or have certain 

responses associated with the material used. Other studies performed about lattice involve 

proposing a theoretical force-based method to calculate the mechanical properties of the lattice 

structure fabricated via selective laser melting [10], cellular samples based on four architectures: 

solid, hollow, lattice structure and rotated lattice structure [11], and evaluation of the 
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manufacturability and performance of SLM produced periodic cellular lattice structures,  density 

and compression properties of the cellular lattice structures [12]. 

Hendrickson studied high production tooling material using DMLS [13]. The study 

looked at MS1 powder as well as stainless steel and aluminum alloy powders. After performing 

uniaxial tensile tests on printed samples, results of maraging steel aligned with published values 

of EOS MS1 [14]. They also looked at the strength and toughness of printed fully dense MS1 via 

Charpy impact testing, Vickers hardness tests, hydro-burst and leak rate. Hendrickson concluded 

that printed maraging steel strength is lower than wrought material, but the toughness of the 

material was more than twice that of wrought material. A study performed by Kempen looked at 

the microstructure and mechanical properties of DMLS produced maraging steel parts as well as 

heat treatment of printed parts [15]. The study concluded that due to the layering process 

performed in DMLS, this causes high density parts to be fabricated as well as introduce natural 

age hardening in the parts. With the addition of heat treatment, ultimate tensile strength almost 

doubles but the elongation decreases nearly by a factor of ten. Other articles about maraging steel 

involve an experimental investigation of Charpy impact testing with maraging steel SLM parts 

and a comparison with titanium alloy powder, Ti-6Al-4V and stainless steel 316L powder [16], 

the investigation of the affect the scan spacing, layer thickness, and various heat treatments on 

microstructure and mechanical properties of maraging steel 300 after selective laser [17], and 

evaluation of the density, surface quality, mechanical properties, and microstructure of differing 

scanning strategies of maraging steel [18]. More details about EOS MS1 powder: material 

properties, printing details, applications of the material, and design guidelines can be found here 

[19].  
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The influence of stress concentration was also reviewed since this study was to test the 

effects of filleted connections verses sharp connections within the lattice unit cell. A group of 

individuals at California State Polytechnic University looked at the effects of stress in different 

geometry discontinuities within a rectangular specimen [20]. They visualized the effects of 

having a discontinuity such as a sharp corner, hole, or quick change in cross section. They 

showed that these locations have an increase in stress when compared to a uniform cross-

sectioned part. A study performed by Joshi and Karma showed the amount of deflection that 

occurs when changing the fillet radius in a spur gear using finite element analysis, FEA [21] 

They concluded that by increasing fillet size to a certain point in which the fillet geometry made 

a perfect circle inside the gear teeth, the deflection in the teeth decreases. Once that point is 

reached and the fillet radii increased further, therefore not making a perfect circle in the teeth 

section of the spur gear, the amount of deflection inside the gear starts to increase. Both of these 

articles indicate that with the addition of fillets to the sharp strut connections within a lattice cell 

should effectively decrease the stress concentration at these locations. And, depending on the 

expected failure mode, the effective strength of the lattice structures could be improved. This 

also agrees with the previously mentioned articles about lattice cells. As you increase cell 

volume, the pore size decreases and the strength of the cell will increase. Further studies about 

fillets, such as the investigation of varying fillet radius within a spur gear and amount of 

deflection that occurs using FEA [22], an experimental study of different fillet configurations at 

the corner of airfoils and how these configurations affect boundary layer growth [23], and the 

resulting stresses that occur within gear teeth with varying fillet sizing [24], have been 

performed.   
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A. Additive Manufacturing Effects 

Differentiating between additive and subtractive manufacturing was also researched. 

Wright points out the pros and cons of each manufacturing process and how each is suited to 

particular parts [25]. Wright points out that any part in metals that is designed for subtractive 

manufacturing should be made in this process and would be a waste of time to build these types 

of parts using additive manufacturing. This is because of the time to fabricate using additive 

manufacturing is much longer due to the volume of computer numerical control (CNC) made 

parts typically are much larger in volume. If built using additive processing techniques, a part 

could take ten times longer or more as opposed to fabricating a part modeled for CNC milling or 

any other subtractive manufacturing technique. Also, CNC parts typically have large cross-

sections and are solid parts, which cause problems inside the build chamber of an additive 

manufacturing machine. These problems will be discussed later. However, Wright does state that 

if a part has features that are impossible to machine, such as a sharp internal corner or any 

internal hollow geometry, additive manufacturing is the only viable option. As pointed out 

before, manufacturing small structures like lattices should only be attempted to fabricate in an 

additive manufacturing machine. Other comparisons between additive and subtractive 

manufacturing can be found here [26] [27]. 
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III. INSTRUMENTATION AND EQUIPMENT 

The structures used in this study were modeled using Dassault Systems SolidWorks. 

SolidWorks is a solid modeling computer-aided design and computer-aided engineering 

software. Through SolidWorks, all geometries were modeled as well as simulated. A finite 

element analysis, FEA, was performed for each geometry to identify each specimen’s stiffness. 

To fabricate each specimen for physical testing, an EOS M270 direct metal laser sintering 

machine was used. To print in the EOS M270, each part model must be saved as a 

stereolithography, .stl, file from SolidWorks first. From there, each specimen’s .stl file will be 

opened in Materialise Magics, another computer-aided engineering software. This software is 

utilized for generating supports for each part printed in metal. This software will analyze the part 

for areas needing support as well as allows the user to manually create supports. Lastly, from 

Magics, the program SliView will be used to slice each part and supports into the correct number 

of cross-sectioned layers in which the EOS M270 will use to scan the part. The layer thickness 

for this study is 40 microns. Once each part is sliced, all parts are loaded into the EOS M270 

software, positioned, and saved as a single build file. Finally, when the build is completed, all 

parts are cut from the build plate using a vertical bandsaw. Any support attached to the part is 

removed from the part. All parts are cleared of excess powder trapped inside the lattice structure 

that was not sintered. After all post-build cleaning processes, each part was tested using an Intron 

5569A tension and compression tester. Both capabilities were used in this study.  
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IV. DMLS PROCESS 

Direct Metal Laser Sintering, DMLS, is an additive manufacturing process in which 

metal particles are sintered together using a high wattage fiber laser. The laser outlines and scans 

each cross-section of the part being printed. Once a layer is scanned, the build platform will 

descend one layer thickness and an arm will recoat a new layer of powder onto the build 

platform so that the next layer can be scanned. This continues layer by layer until the part has 

been scanned entirely. Each part is also scanned directly to a build plate and cut off after the 

build is completed. Since DMLS is simply welding particles together, you need a starting 

material to weld to, hence the need for a build plate. Parts can either be sintered directly to a 

build plate or, through the use of supports, can be offset from the build plate so that when cutting 

parts off of the build plate there is not any damage to the parts by cutting into them. Supports are 

a separate file uploaded to the EOS M270 and has different scanning parameters than the part 

being printed. Support is used on any overhangs in the part as well as areas such as undercuts 

and hollow features to ensure parts build correctly [28]. If any angle in relation to the build plate 

is less than 45o, support will be generated in this area. This is to help with print quality by 

keeping warping within the part as minimal as possible. Warping within a part comes from the 

heating of particles with a laser at high laser scan speeds. This causes high cooling speeds to 

occur once the laser has finished scanning. With this action occurring over and over, layer by 

layer, this causes residual stress to internalize in the part being printed [29]. This stress can cause 

the part to warp and curl as the build is running. If these stresses become too great and the part 

deforms enough, collision with the warped part and the recoating arm can occur. A build cannot 

be restarted with a warped part. Support also keeps everything connected. In DMLS, if the laser 

scans powder that is not connected to anything or is loosely connected to the part, there is a high 
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chance of failure of the build or collision of the loosely scanned particles with the recoating 

blade, which causes the entire building process to be stopped and the build to be discarded. For 

more information about EOS DMLS processes and materials [30]. For more information about 

the DMLS process in general [31] [32] [33]. 
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V. PROCEDURE  

A. Unit Cell Design 

For this study, two different topologies were used: face-centered cells (FCC) and body-

centered cells (BCC). Each specimen lattice was contained within a 10mm x 10mm x 10mm 

cube. The FCC specimens consist of struts only crossing along the faces of the unit cell leaving 

the internal volume of the cube vacant. The BCC specimens consist of struts crossing in the 

center of the unit cell leaving the walls of the cube vacant. All lattice specimen was modeled in 

Dassault Systems SolidWorks. Each topology includes struts at the corners of each cube. Figure 

1 and Figure 2 show each modeled topology from SolidWorks. 

 

  
Figure 1. Face-centered lattice unit cell. Figure 2. Body-centered lattice cell.  

 

Each topology’s strut diameters were adjusted to yield certain weight reductions from a solid 

1000mm3 cube, ranging from approximately 55% reduction to 90% reduction. Two types of 

specimen strut geometry were tested – some with all strut diameters uniform per specimen and 

others with fillets added to the strut-additional mass connection. All calculations of mass and 

weight reduction were performed in SolidWorks using alloy steel as material type. These 
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calculations were determined using SolidWorks’ mass properties tool once a strut diameter was 

specified and modeled. Each specimen was compared to a solid 1000mm3 cube of alloy steel.  

Once all specimens were modeled and weight reductions were calculated, a finite element 

analysis, FEA, was performed for each to calculate the stiffness in each specimen. An assembly 

was created in SolidWorks consisting of the lattice structure, edited to as closely resemble EOS 

maraging steel, and two thick plates, edited to be enormously stiff when compared to EOS 

maraging steel. A single plate was mated on either side of the lattice. The plate on the bottom of 

the lattice was fixed. The top plate had a 4000N force applied in both tension and compression. 

Figure 3 shows the FEA set-up of both the tension and compression simulations.  

(a) (b) 

  
Figure 3. Tension and compression FEA set-up for both (a) BCC and (b) FCC models. 

 

This final FEA was performed after some preliminary testing and 4000N was chosen so that each 

analysis was testing within the elastic region. The load was also chosen due to the FEA being 

performed in SolidWorks being a linear, static analysis so remaining within the elastic region of 

the model is imperative. The mesh used in this analysis was a curvature based mesh, with a 

maximum and minimum element size of 0.858mm and 0.043mm respectively. The minimum 

number of elements in a circle used was 8 and the element growth size ratio was 1.6.  
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The displacement results from the FEA were analyzed and the highest displacement 

result per simulation was used to calculate the specimen’s stiffness. This is due to all the 

displacement being within the lattice model because the plates in either side of the lattice are 

extremely stiff and will not deform significantly to influence the analysis. Now knowing force 

and displacement for each specimen, the stiffness can be calculated using 

 
𝑘 =

𝐹

𝑑
  

where F is the force applied, and d is the displacement result in each FEA performed, both in 

compression and tension. As stated, the lattice structure’s material was edited to a custom 

material. This material was configured to be as close to the properties of EOS MS1, or maraging 

steel [14] since this was the material to be used in fabrication of the specimens. Table 1 shows 

the mechanical properties used for FEA.  

Material property Value 

Tensile strength (MPa) 2000 

Yield strength (MPa) 1900 

Thermal coefficient of 

expansion (K-1) 
1.3 x 10-5 

Thermal conductivity 

(Wm-1K-1) 
20 

Specific heat (J kg-1K-1) 450 

Elastic modulus (GPa) 180 

Poison’s ratio 0.28 

Shear modulus (GPa) 79 

Mass density (kg m-3) 8000 

Table 1. Properties used in FEA to represent EOS MS1. 

 

Figure 4 shows a screenshot of the displacement in the assembly after the simulation. Table 2 

shows all diameters used with the associated weight reduction from a solid cube. 
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Figure 4. Displacement in both tension and compression simulations. 

 

Unit Cell 
Strut diameter 

(mm) 

Weight reduction 

(%) 

FCC 

0.855 88.18 

1.215 77.14 

1.51 65.97 

1.77 54.94 

BCC 

1.27 88.18 

1.83 77.01 

2.30 65.97 

2.75 55.06 

Table 2. Listed strut diameters for each topology with associated weight reduction. 

 

An FEA was also performed with this same set-up using a solid cube in place of the lattice 

structure to compare the stiffness of the lattice specimens to a solid cube stiffness.  
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B. Fabrication 

Once all specimens were modeled and an FEA was performed, all models were saved as 

a stereolithography, .stl, file. The files were first upload to Materialise Magics software, a 

computer-aided engineering and design software. This software was used to properly orient each 

part for the building process as well as to generate the support needed for each part. Figure 5 

shows the properly printing orientation for each specimen with the z-direction being the direction 

each part would be printed, layer-by-layer, from start to finish.  

 

  
Figure 5. Orientation of BCC and FCC specimens. 

 

Figure 6 shows the support generation between the part and build plate that would be 

used in printing. The offset used between part and build plate, or the height of the support 

material, was 5mm. 

Z 

X 
Y 

Y 

Z 

X 
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Figure 6. Supports generated for BCC and FCC specimens. 

 

Support structures are needed when using additive manufacturing technology in metal material to 

connect each part to a build plate. If a part is built directly connected to a build plate, you will cut 

into the part during removal of the specimen from build plate and could damage the specimen 

overall.  

The software SliView was then used to slice each specimen and support into layers. 

SliView allows the user to select the layer thickness the user would like to slice each part into. 

This is so that when reading in the parts into the EOS M270, it will be able to read each part and 

all layers properly. Based on the model, powder being used, and machine parameters, the layer 

thickness used in this study for all parts was 40µm. Finally, with all parts sliced into the correct 

layer thickness, the parts were loaded into the EOS M270 software to be properly positioned and 

duplicated. All parts were set-up with default EOS_DirectPart and EOS_Support scanning 

parameters. 

After the build finished, a vertical bandsaw was used to cut parts from the build plate so 

that post-build finishing could be done. The part supports were removed using either a CNC 

10mm 
10mm 10mm 10mm 
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milling process or using a hand grinder. CNC milling was used only for the first iteration of 

specimens while for the second and third iterations, only a hand grinder was necessary.  

C. Testing 

When all parts were cleaned of supports, mechanical testing was performed on each 

specimen to determine stiffness response in comparison to the FEA stiffness. Figure 7 and shows 

the first iteration printed part for both FCC and BCC specimens. 

(a) (b) 

 

 
Figure 7. Post-machining of printed first iteration (a) BCC and (b) FCC specimens. 

 

Each specimen was modeled to be 11mm x 10mm x 10mm. The lattice was contained within a 

uniform 1000mm3 cube with the addition of 0.5mm thick plates on both bottom and top sides. 

The plates were added to help the fixtures evenly distribute the load over the lattice during 

compression loading. As shown in Figure 8. the bottom plate was machined of all support on the 

underside.  

10mm 10mm 

11mm 11mm 
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Figure 8. Machined surface of first iteration specimens. 

 

The second iteration of specimens added extra mass to each end of the lattice, which facilitated 

easier specimen gripping during mechanical testing. Figure 9 show the model of these parts and 

Figure 10 shows the printed part after removing supports.  

(a) (b) 

    
Figure 9. Second iteration of (a) BCC and (b) FCC specimens with additional masses and 

support generation. 

 

 

 

 

 

11mm 

10mm 

Notches 
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(a) (b) 

  
Figure 10. Printed second iteration (a) BCC and (b) FCC specimens. 

 

10mm were added to the 0.5mm plates from the first specimens. This makes for an overall grip 

section length of 10.5mm and a total height in specimen of 31mm. The addition of the mass was 

to enable either testing in compression or tension of the lattice structures. The additional masses 

would allow the student to use gripping tools during testing in the Intron 5569A. Also, small 

1mm notches were added to these masses as shown in Figure 9. This was to enable the use of an 

extensometer to more accurately measure the displacement between top and bottom faces in the 

lattice during testing. 

The third and final iteration of specimens added fillets to the connections of struts to the 

added masses. Three fillets sizes were modeled per specimen: 0.5mm, 1.0mm, and 1.5mm. The 

reason for the addition is to decrease the sudden change in cross-sectional area between struts 

and the additional mass sections. As research shows, stress concentrations are greatest at sharp 

corners. If the rapid changes in geometry at this connection between struts and additional mass 

can be softened or less sudden, then the load can be applied more uniformly in the lattice rather 

than being heavily concentrated at these sharp edges. With the addition of fillets at these 

31mm 
31mm 

10mm 10mm 
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connections, it is expected that the effective modulus and stiffness of the unit cell will increase, 

more specifically it will increase in tension. Figure 11a and Figure 11b shows the model of each 

fillet.  

 
Figure 11a. BCC modeled specimens with varying fillet sizes.  

 

 
Figure 11b. FCC modeled specimens with varying fillet sizes.  

 

Figure 12a and Figure 12b shows a visual comparison of each fillet after printing and post hand 

grinding support from each specimen.  

 

No 
Fillet 

0.5mm 
Fillet 

1.0mm 
Fillet 

1.5mm 
Fillet 

0.5mm 
Fillet 

1.0mm 
Fillet 

1.5mm 
Fillet 

No 
Fillet 
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Figure 12a. BCC printed specimens with varying fillet sizes post grinding.  

 

 

 
Figure 12b. FCC printed specimens with varying fillet sizes post grinding.  

 

With fillets, you add mass back to the unit cell, which yields a different mass reduction from a 

solid cube than the first and second iterations of specimens printed. But, with high stress 

concentrations at sharp corners, such as the strut connections on the top and bottom of the lattice 

unit cell, the addition of fillets in varying sizes will decrease the corner sharpness which would 

effectively decrease stress concentration at the connections. This should increase the stiffness 

31mm 
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and effective modulus of the unit cell. This study is to test this theory by testing in compression 

and tension these specimens, calculate the stiffness response and compare results across fillet and 

non-fillet parts. This study is unique in that no other study has looked at the effects of an addition 

of fillets to unit cell connections within a lattice structure. But other studies have been performed 

pertaining specifically to lattice structures, such as Yan and Hao [5] who look at the effects of 

increasing the number of struts inside the unit cell and concluding as the strut size increases and 

the mass reduction from a solid decreases that the overall effective strength increases, Contuzzi 

[7] who concluded that by increasing the number of vertical struts inside the unit cell a greater 

loading capacity is achieved. Studies specifically analyzing the effects of stress concentrations, 

such as the investigation of notches and fillets being introduced to a flat plate and the resulting 

elastic and plastic stress concentrations [25] and investigation of different discontinuities, such as 

a hole or sharp corner, and how this differ to a uniform cross-section during testing using photo 

elastic methods. Lastly studies focusing on the effects of fillets, such as looking at the amount of 

deflection that occurs in changing the fillet sizing within a spur gear [22] and the effects of 

different fillet configurations within an airfoil on boundary layer growth that occurs from shock 

waves impacting a low-momentum fluid [23]. 
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VI. RESULTS AND DISCUSSION 

 

Each specimen was modeled to yield a certain weight reduction in both the face-centered 

cells (FCC) and the body-centered cells (BCC) from a solid cube. Once strut diameters were 

chosen for the FCC and BCC models, a finite element analysis (FEA) was performed in 

SolidWorks to calculate the compressive stiffness in each model. Table 3 shows FEA stiffness 

results for all FCC and BCC specimens as well as a solid cube stiffness.  

Unit cell 
Strut diameter 

(mm) 

Weight reduction 

(%) 

FEA compression 

stiffness (kN/mm) 

FCC 

0.855 88.2 75.2 

1.215 77.1 156.5 

1.510 66.0 247.0 

1.770 54.9 346.3 

BCC 

1.270 88.1 115.0 

1.830 77.0 252.7 

2.300 66.1 418.5 

2.750 55.1 622.2 

Solid - - 1888.6 

Table 3. Calculated stiffness’ from FEA load and displacement results. 

 

BCC models yielded a greater FEA stiffness when compared to FCC models with roughly the 

same weight reduction. The FEA performed was a linear, static analysis. The mesh used in this 

analysis was a curvature based mesh, with a maximum and minimum element size of 0.858mm 

and 0.043mm respectively. The minimum number of elements in a circle used was 8 and the 

element growth size ratio was 1.6. Both topologies have increasing stiffness with increasing strut 

diameter, which makes sense since more mass is present in the unit cell and behaves closer to a 

solid cube. 

 Only a linear, static analysis was performed for simplicity and this report mainly focusing 

on the physical behavior of the lattice specimens. Other analysis’ such as nodal analysis or 

buckling analysis can be performed but these analysis’ would not prove a useful comparison 

since the majority of the report analyzed the testing of lattice specimens within the elastic region 
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where no buckling would occur. Also, nodal analysis will average stress and strain results instead 

of not-averaging them. For example, in nodal analysis, one node is shared by several elements 

and each element calculates different stresses and strains at the shared node. These values from 

all adjacent elements are then averaged to obtain a single value. This method of stress and strain 

averaging produces averaged results. In elemental analysis, the adjacent element stresses and 

strain are not averaged because the averaging is done internally within the same element only. 

Having a model and stiffness for each specimen, the first iteration of parts were 

fabricated in an EOS M270 direct metal laser sintering (DMLS) machine. After the build had 

completed, each part was removed of build support via CNC milling and cleared of all loose 

powder inside the lattice unit cell structure. Figure 13 shows surface quality of a printed part.  

 

 
Figure 13. Close-up picture of surface quality in printed specimens.  

 

All parts had rough struts and surfaces, mainly on downward facing surfaces. This is to be 

expected since all supports generated for the overhanging internal geometry were deleted as they 

would be impossible to remove. These overhangs had the most partially sintered material in the 

unit cell in all specimens. 
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After post-processing, the first iteration of specimens was tested in compression in the 

Instron 5569A Dual Column Testing System. Specimen stiffness was calculated from the 

resulting load (N) verses displacement (mm) plot from the Instron 5569A. Since an extensometer 

could not be applied to the specimen, displacement was calculated from crosshead displacement 

inside the Instron 5569A. A sample resulting plot from BCC 1.83mm strut diameter specimen is 

shown in Figure 14. 

 
Figure 14. Sample result plot from BCC 1.83mm specimen. 

 

The blue line is the result from the entire test in the Instron of the specimen. Loading was applied 

until the specimen was past the elastic region and starting to yield. The orange line is selected 

data to average and fit with a trendline in Excel; the calculated slope being the resulting stiffness 

for that particular specimen. The compression testing stiffness of 3 specimens were averaged and 

these results are shown in Table 4 compared to FEA compression stiffness. 
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Unit cell 
Strut diameter 

(mm) 

Compression 

testing stiffness 

(kN/mm) 

Testing stiffness 

to FEA stiffness 

(%) 

FCC 

0.855 12.0 16.1 

1.215 21.6 13.9 

1.510 28.4 11.5 

1.770 30.3 8.79 

BCC 

1.270 17.2 15.0 

1.830 27.7 11.0 

2.300 37.2 8.94 

2.750 42.7 6.98 

Table 4. Percent stiffness of tested specimens to FEA models. 

 

The first iteration of specimen yielded poor stiffness results when compared to the FEA 

performed in SolidWorks. All testing stiffness' were lower than 20% the stiffness calculated in 

SolidWorks. The results show that while increasing strut diameter increases unit cell stiffness, 

the comparison to FEA decreases. The lowest stiffness comparisons were in the highest strut 

diameters for FCC and BCC specimens. One cause of low testing results compared to FEA came 

from the fracturing of the 0.5mm plates during testing. Figures 15a and 15b shows BCC and 

FCC specimens post testing. 

 

(a) (b) 

 

 

 

Figure 15. Fracturing of base plates in both (a) BCC and (b) FCC specimens.  
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The thin plates were influencing the results by causing the load to be carried in the plates as well 

as the lattice structures, when the target was to only have load carried in the lattice. This would 

decrease maximum load results in each lattice tested. Also with the load cell mounted in the 

crosshead of the machine, the load would have to travel through multiple components before 

being applied to the lattice structures themselves: through the load cell, several adaptors and 

pins, the compression fixture, and then into the lattice structures. This could influence total 

displacement in the lattice structures since some small deflection could occur in these other 

components. Finally, it was noticed that both compression fixtures used in testing had slight 

impressions in them from the specimens after testing. The compression fixtures material 

hardness was later discovered to be less than that of EOS MS1. This also influenced the 

maximum loading results as well as total displacement in the lattice structure in relation to 

crosshead displacement.  

Influenced by the low results and failure of the first specimens, the second iteration of 

specimens were modeled with additional mass on the top and bottom of the lattice. 10mm of 

additional solid mass was added to both the top and bottom 0.5mm plate, making for a 10.5mm 

solid section on either side of the lattice. This was to allow grips to be used to hold the specimen 

in place during testing and would enable testing in either compression or tension. Also, the 

addition of a 1mm notch in the top and bottom mass sections would allow an extensometer to be 

placed and used during testing. The extensometer would yield a more accurate displacement 

reading of the lattice structure during testing.  

After the second iteration of specimens were built, the strut diameters for each specimen 

were measured and averaged using digital calipers. These measured strut diameters were 

compared to the modeled diameters. This comparison is shown in Table 5. 
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Unit cell 

Modeled strut 

diameter 

(mm) 

Measured 

strut diameter 

 (mm) 

Difference between 

measured to modeled 

strut diameter (%) 

FCC 

0.855 0.80 -6.4 

1.215 1.12 -7.8 

1.510 1.48 -2.3 

1.770 1.75 -1.4 

BCC 

1.270 1.21 -4.7 

1.830 1.75 -4.4 

2.300 2.24 -2.6 

2.750 2.66 -3.3 

Table 5. Measured verses modeled strut diameter comparison.  

 

All measured strut diameters of specimens after being built were smaller than modeled 

diameters. The best comparison between measured and modeled strut diameters came in the 

higher diameters; the largest printed diameter in the FCC specimens, 1.77mm struts, and the 

second largest in the BCC specimens, 2.3mm struts, yielded the least percent difference to what 

was modeled per topology.  

 The second iteration of specimens were also weighted and compared to weight 

calculations in SolidWorks using mass properties. These weight comparisons of the second 

iteration are shown in Table 6. 

 

Unit cell 

Measured 

strut diameter 

 (mm) 

SolidWorks 

weight 

calculation (g) 

Measured 

weight 

 (g) 

Measured weight to 

SolidWorks 

prediction (%) 

FCC 

0.80 17.56 18.0 102.7 

1.12 18.44 18.7 101.2 

1.48 19.33 19.3 99.7 

1.75 20.22 19.6 97.0 

BCC 

1.21 17.57 18.3 104.0 

1.75 18.46 19.2 103.9 

2.24 19.33 20.0 103.6 

2.66 20.22 20.9 103.4 

Table 6. Weight comparison between modeled and printed second iteration specimens. 

 

All but two specimens, FCC 1.48mm strut and 1.75mm strut, were measured to be heavier than 

calculated in SolidWorks. The largest increase in weight was in the BCC 1.21mm strut with 
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4.0% increase. The largest decrease in weight was in the FCC 1.75mm strut with a 3.0% 

decrease.  

To most accurately compare testing data to FEA data, the FEA was reran with all the 

measured strut diameters of printed specimens. New FEA compression stiffness’ corresponding 

to the measured strut diameters and a comparison to the original FEA of the modeled specimens 

is shown in Table 7.  

Unit cell 

Modeled 

strut 

diameter 

(mm) 

Modeled FEA 

compressive 

stiffness 

(kN/mm) 

Measured 

strut 

diameter 

 (mm) 

Measured FEA 

compressive 

stiffness 

(kN/mm) 

Original FEA 

to new FEA 

stiffness (%) 

FCC 

0.855 75.2 0.80 65.1 -13.4 

1.215 156.5 1.12 130.9 -16.3 

1.510 247.0 1.48 234.2 -5.2 

1.770 346.3 1.75 333.6 -3.7 

BCC 

1.270 115.0 1.21 103.3 -10.2 

1.830 252.7 1.75 228.3 -9.6 

2.300 418.5 2.24 393.3 -6.0 

2.750 622.2 2.66 571.6 -8.1 

Table 7. Measured verses modeled FEA compression stiffness comparison. 

 

As expected, with measured strut diameter being less than the modeled, the FEA also decreases 

since the FEA being performed is a linear, static FEA.  

The second iteration of specimens were modeled to allow testing in either compression or 

tension. Therefore, an FEA in tension for all specimens was performed. These tensile FEA 

results are shown in Table 8. 
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Unit cell 

Measured 

strut diameter 

 (mm) 

FEA tensile 

stiffness 

(kN/mm) 

FCC 

0.80 65.5 

1.12 131.9 

1.48 235.4 

1.75 336.1 

BCC 

1.21 103.7 

1.75 229.1 

2.24 394.5 

2.66 574.1 

Table 8. Tensile stiffness calculated from a FEA in SolidWorks. 

 

The second iteration testing stiffness was calculated differently than in the first iteration. 

As stated, the first iteration stiffness was calculated from the load verses displacement plot. The 

second iteration stiffness was calculated using the effective modulus result from testing for each 

specimen. Below is the derivation used to calculate stiffness from effective modulus. 
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 𝑘 = 𝐸 ∙ 𝐿  

 

E is calculated effective modulus from the resulting true stress, σ, verses true strain, Ɛ, plot, A is 

the cross-sectional area of each lattice specimen, 100mm2, and L is the gage length of the lattice 
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specimen, 10mm. What this derivation shows is that the simple conversion between effective 

modulus and stiffness is only gage length. This can be useful since modulus is a more versatile 

mechanical property and more often used in analysis. The true strain was calculated from the 

extensometer displacement. 

For the second iteration of specimens, all were tested within the elastic region. Stiffness 

results for both FCC and BCC specimens from the second iteration are shown in Table 9. 

Stiffness results were calculated from only 1 specimen of each topology and strut diameter 

configuration.  

Unit cell 

Measured 

strut diameter 

(mm) 

Measured 

tensile stiffness 

(kN/mm) 

Measured 

compressive 

stiffness 

 (kN/mm) 

FCC 

0.80 141.1 133.4 

1.12 199.4 521.5 

1.48 336.8 693.8 

1.75 606.9 536.5 

BCC 

1.21 184.1 142.4 

1.75 335.1 288.2 

2.24 621.8 530.7 

2.66 878.0 1208.2 

Table 9. Compressive and tensile stiffness in each tested specimen. 

 

With increasing strut diameter yields an increase in stiffness. This agrees with previously 

mentioned studies performed by Yan and Hao [5], Young [6], and Contuzzi [7] as well as the 

first iteration of specimens. Comparisons to both tensile and compressive FEA stiffness’ are 

shown in Table 10. 
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Unit cell 

Measured 

strut diameter 

(mm) 

Measured tensile 

stiffness to FEA tensile 

stiffness (%) 

Measured compressive 

stiffness to FEA 

compressive stiffness (%) 

FCC 

0.80 215.6 205.0 

1.12 151.1 398.3 

1.48 143.1 296.2 

1.75 180.5 160.8 

BCC 

1.21 177.5 137.9 

1.75 146.3 126.2 

2.24 157.6 134.9 

2.66 152.9 211.4 

Table 10. Tension and compression testing stiffness’ compared to FEA results. 

 

All stiffness testing results were greater than that of the calculated FEA stiffness in both 

compression and tension. The increase of strut diameter per topology yielded random overall 

increase from FEA stiffness. 

Since all stiffness responses were calculated from resulting effective modulus, each 

effective modulus was compared to the modulus of EOS MS1, 180GPa [14]. A plot of percent 

effective modulus to EOS MS1 verses unit cell density is shown in Figure 16.  

 
Figure 16. Effective percent modulus for non-filleted specimens to solid maraging steel per unit 

cell mass density. 
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Figure 16 shows that for a specified unit cell topology and mass density, a projected percent 

effective modulus to solid maraging steel can be determined. As stated, only one specimen from 

each configuration was tested. For the largest unit cell density in both FCC and BCC specimen, 

the compressive effective modulus results appeared to be outliers since these results were 

drastically different from the trending data. This plot is useful to know for future fabrication of 

either FCC or BCC lattices because it shows which unit cell and density will have a greater 

effective modulus when compared to a partially dense unit cell of maraging steel with no lattice.  

The final iteration of specimens incorporated fillets to all strut connections with the top 

and bottom face within the unit cell. This was to test whether the addition of mass at the cell 

connections would improve overall specimen stiffness in either tension or compression. As 

shown in Figures 11a and 11b, the modeled fillet radii were 0.5mm, 1.0mm, and 1.42mm or 

1.5mm. Due to geometric constrains in SolidWorks, 1.42mm radii fillets would be used in place 

of 1.5mm radii fillets for some specimen.  

Once the final iteration of specimens with fillets were built, each specimen was weighted, 

measured, and compared to modeled specimen. Table 11 and Table 12 show FCC and BCC 

weight comparisons respectively between modeled and printed.  
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Modeled 

strut 

diameter 

(mm) 

Fillet size 

(mm) 

SolidWorks 

weight 

calculation (g) 

Measured 

weight (g) 

Measured weight 

to SolidWorks 

preditction (%) 

0.855 

0.5 17.59 18.0 102.5 

1.0 17.68 18.1 102.4 

1.42 17.83 18.2 102.1 

1.215 

0.5 18.48 18.6 100.6 

1.0 18.60 18.7 100.3 

1.5 18.82 18.9 100.2 

1.51 

0.5 19.38 19.2 99.1 

1.0 19.52 19.3 99.0 

1.5 19.77 19.6 98.9 

1.77 

0.5 20.27 19.6 96.9 

1.0 20.43 19.8 96.9 

1.42 20.65 20.0 96.9 

Table 11. Weight comparisons for all FCC fillet specimens. 

 

The two smallest strut diameter sizes in FCC specimens had an increase in weight across all 

filleted specimens while the two largest strut sizes had a decrease in weight. The largest increase 

in weight came in the 0.855mm strut 0.5mm filleted specimen with an increase of 2.5%. The 

largest decrease in weight was in all the 1.77mm strut specimen with a decrease of 3.1%. 

Modeled 

strut 

diameter 

(mm) 

Fillet size 

(mm) 

SolidWorks 

weight 

calculation (g) 

Measured 

weight (g) 

Measured weight 

to SolidWorks 

preditction (%) 

1.27 

0.5 17.61 18.2 103.4 

1.0 17.74 18.3 103.4 

1.5 17.98 18.5 103.1 

1.83 

0.5 18.50 19.2 103.7 

1.0 18.66 19.3 103.4 

1.5 18.96 19.6 103.2 

2.30 

0.5 19.38 20.1 103.5 

1.0 19.57 20.1 102.9 

1.5 19.89 20.4 102.6 

2.75 

0.5 20.28 20.9 103.1 

1.0 20.48 21.1 103.0 

1.5 20.79 21.4 103.1 

Table 12. Weight comparisons for all BCC fillet specimens. 
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All BCC filleted specimens yielded an increase in weight, consistently 2.9% to 3.7% heavier 

than SolidWorks calculations. The largest increase in weight was in the 1.83mm strut 0.5mm 

filleted specimen with 3.7% increase in weight.  

Table 13 and Table 14 shows FCC and BCC strut diameter comparisons respectively 

between modeled and printed. Individual struts were measured by hand using digital calipers. 

Modeled 

strut 

diameter 

(mm) 

Fillet size 

(mm) 

Measured 

strut diameter 

(mm) 

Measured to 

modeled strut 

diameter (%) 

0.855 

0.5 0.88 102.9 

1.0 0.88 102.9 

1.42 0.88 102.9 

1.215 

0.5 1.23 101.2 

1.0 1.25 102.9 

1.5 1.24 102.1 

1.51 

0.5 1.53 101.3 

1.0 1.54 102.0 

1.5 1.53 101.3 

1.77 

0.5 1.80 101.7 

1.0 1.80 101.7 

1.42 1.80 101.7 

Table 13. Comparison of modeled to measured filleted FCC specimens. 

 

All FCC specimens were measured to have larger strut diameters than modeled. The closest 

measured specimen to modeled was in the 1.215mm 0.5mm fillet radius specimen with only a 

1.2% increase in strut diameter. The largest measured difference was in the 1.215mm strut 

1.0mm fillet radius specimen as well as in all 0.855mm strut specimen with a 2.9% increase in 

strut diameter.  
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Modeled 

strut 

diameter 

(mm) 

Fillet size 

(mm) 

Measured 

strut diameter 

(mm) 

Measured to 

modeled strut 

diameter (%) 

1.27 

0.5 1.30 102.4 

1.0 1.31 102.8 

1.5 1.30 102.4 

1.83 

0.5 1.87 102.2 

1.0 1.87 102.2 

1.5 1.87 102.2 

2.30 

0.5 2.32 100.9 

1.0 2.32 100.9 

1.5 2.32 100.9 

2.75 

0.5 2.75 100.0 

1.0 2.76 100.4 

1.5 2.77 100.7 

Table 14. Comparison of modeled to measured filleted BCC specimens. 

 

All BCC specimens were measured to have larger strut diameters than modeled. The 2.75mm 

strut 0.5mm fillet radius specimen was measured to be exactly as modeled. The largest measured 

difference was in the 1.27mm strut 1.0mm fillet radius specimen with a 2.8% increase in strut 

diameter.  

All filleted specimens were tested in the Instron 5569A in both compression and tension. 

The resulting stiffness’ are shown in Table 15 for FCC specimens and Table 16 for BCC 

specimens. As like the second iteration, only 1 specimen was tested per topology, strut diameter, 

and fillet size configuration. 
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Modeled 

strut 

diameter 

(mm) 

Fillet size 

(mm) 

Measured 

tensile 

stiffness 

(kN/mm) 

Measured 

compressive 

stiffness 

(kN/mm) 

0.855 

0.5 127.5 136.4 

1.0 160.9 93.7 

1.42 149.3 136.5 

1.215 

0.5 228.6 640.3 

1.0 233.6 290.2 

1.5 272.1 336.8 

1.51 

0.5 481.7 1113.3 

1.0 397.5 540.6 

1.5 569.8 516.3 

1.77 

0.5 743.5 739.7 

1.0 819.7 1003.7 

1.42 947.5 613.6 

Table 15. FCC filleted specimen compressive and tensile stiffness’. 

 

Only two of the four FCC specimens, 1.215mm and 1.77mm strut diameters, had results of 

increasing tensile stiffness to increasing fillet radius. No FCC specimen in compression had a 

trend of increasing stiffness to increasing fillet radius. 

Modeled 

strut 

diameter 

(mm) 

Fillet size 

(mm) 

Measured 

tensile 

stiffness 

(kN/mm) 

Measured 

compressive 

stiffness 

(kN/mm) 

1.27 

0.5 204.4 129.4 

1.0 248.7 286.8 

1.5 251.7 396.8 

1.83 

0.5 365.5 227.8 

1.0 410.1 693.1 

1.5 475.0 462.4 

2.30 

0.5 681.7 1206.5 

1.0 751.1 1582.9 

1.5 767.4 1208.2 

2.75 

0.5 934.6 880.2 

1.0 978.8 1827.0 

1.5 1014.5 872.8 

Table 16. BCC filleted specimen compressive and tensile stiffness’. 

 

All BCC specimens resulted in increasing tensile stiffness to increasing fillet radius. No BCC 

specimens showed an increase in compressive stiffness to increasing fillet radius.  
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 Again, with all stiffness values calculated from effective modulus in filleted specimens, a 

comparison between percent effective tensile modulus to EOS MS1 modulus, 180GPa, with 

associated unit cell density for all specimen types was plotted in Figure 17. 

 

 
Figure 17. Effective percent tensile modulus per unit cell mass density of non-filleted and filleted 

specimens compared to solid maraging steel. 

 

Figure 17 will be used in determining the effective percent modulus to EOS MS1 of any lattice 

specimen, FCC or BCC, filleted or non-filleted, in tensile loading corresponding to the desired 

unit cell mass density. All specimens have a positive trend in effective tensile modulus with 

increasing fillet size. 

 Some of the final iteration specimens were tested to failure. Specimens were only tested 

to failure in tension and without the use of an extensometer. Figure 18 shows an example of 

resulting failure test plot of true stress (MPa) vs. true strain (mm/mm).  
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Figure 18. Plot of BCC 1.0mm fillet 1.83mm strut diameter specimen to failure in tension. 

Both stiffness’ per test, the transition stress between stiffness’, and maximum stress per test were 

calculated to determine if there is a correlation between fillet size and transition stress or peak 

stress. The two-calculated stiffness’ per failure test of select FCC and BCC specimens are show 

in Table 17 and Table 18 respectively. The transitional stress and maximum stress per failure test 

for select FCC and BCC specimens are shown in Table 19 and Table 20 respectively.  
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Unit 

Cell 

Strut 

Dia 

Unit cell 

mass 
Fillet size 

1st 

stiffness 

2nd 

stiffness 

(mm) (%) (mm) (kN/mm) (kN/mm) 

FCC 

0.855 

11.8 0.0 13.2 7.5 

12.2 0.5 7.3 5.2 

13.4 1.0 16.5 3.9 

15.2 1.42 14.7 3.9 

1.215 

22.9 0.0 14.8 6.3 

23.4 0.5 15.8 6.3 

24.8 1.0 19.3 8.4 

27.7 1.5 14.8 7.7 

1.51 

34.0 0.0 13.5 8.7 

34.5 0.5 15.0 9.2 

36.4 1.0 15.8. 9.2 

39.5 1.5 16.1 9.3 

1.77 

45.1 0.0 19.7 9.4 

45.7 0.5 16.6 8.3 

47.7 1.0 17.5 9.1 

50.5 1.42 21.4 7.7 

Table 17. Tensile stiffness’ for failure testing of FCC specimens. 

      

Unit 

Cell 

Strut 

Dia 

Unit cell 

mass 
Fillet size 

1st 

stiffness 

2nd 

stiffness 

(mm) (%) (mm) (kN/mm) (kN/mm) 

BCC 

1.27 

11.9 0.0 12.4 6.6 

12.3 0.5 13.5 5.9 

13.9 1.0 15.0 6.4 

16.8 1.5 15.2 7.0 

1.83 

23.0 0.0 19.2 9.1 

23.5 0.5 16.8 9.2 

25.3 1.0 18.8 9.3 

29.2 1.5 19.4 9.4 

2.75 44.9 0.0 17.3 8.0 

Table 18. Tensile stiffness’ for failure testing of BCC specimens. 
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Only 2 of the 4 strut diameters were tested in BCC specimen’s. This is due to loading needed to 

fail specimens being excessive. The 2.75mm strut diameter, non-filleted specimen was tested and 

did not fail. The face inside the gripping section failed instead. It was then decided to only test 

specimens with strut diameters lower than 2mm. 

Failure results were significantly smaller than previously tested specimens. There is also no 

apparent trend in increasing strut or fillet size to increase in tensile stiffness for either the FCC or 

BCC specimens.  

Unit 

Cell 

Strut 

Dia 

Fillet 

size 

Stress at 

stiffness 

transition 

Max 

Stress 

(mm) (mm) (N) (Mpa) 

FCC 

0.855 

0.0 35 62 

0.5 28 56 

1.0 34 55 

1.42 41 54 

1.215 

0.0 42.5 145 

0.5 34.7 191 

1.0 49 182 

1.5 50.6 186 

1.51 

0.0 32 219 

0.5 33 270 

1.0 32 312 

1.5 31 315 

1.77 

0.0 46 244 

0.5 49 370 

1.0 52.5 575 

1.42 47.5 600 

Table 19. Transition stress and maximum stress during failure testing of FCC specimen. 
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Unit 

Cell 

Strut 

Dia 

Fillet 

Size 

Stiffness 

Transition 

Load 

Max 

Stress 

(mm) (mm) (N) (Mpa) 

BCC 

1.27 

0 22.5 127 

0.5 28 128 

1 32 127 

1.5 28 129 

1.83 

0 43.5 263 

0.5 49 296 

1 45.5 309 

1.5 45 307 

2.75 0 40 935 

Table 20. Transition stress and maximum stress during failure testing of BCC specimen. 

While not every FCC and BCC specimen tested to failure yielded increasing maximum stress to 

increasing fillet size, as the strut diameter increases, the maximum stress increases for both FCC 

and BCC specimens. There is no trend between transition stress to either increasing fillet size or 

increasing strut diameter. 

 Figure 19 shows the fracturing of specimens after failure testing. 

 
Figure 19. Failure of non-fillet and fillet specimens. Left to right: No fillet, 0.5mm fillet, 

1.0mm fillet, 1.5mm fillet 

 

Most all non-fillet specimens failed in shear, breaking at the connections of struts to the 

additional masses. As fillets were introduced to the unit cell, failure transitioned to a 

perpendicular fracture to the direction the load was being applied. As the fillet size within the 
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unit cell increased, the unit cells began to fracture in the middle of the lattice rather than at the 

connections between struts and additional masses used for gripping. 
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VII. CONCLUSIONS 

 

 By increasing the strut diameter size within the lattice unit cell, the stiffness and effective 

modulus increases. Body-centered lattices’ yield a higher stiffness and higher effective modulus 

than face-centered lattices’ in all iterations used in this study. In the first iteration, even though 

comparison to finite element analysis (FEA) stiffness results were poor, as strut diameter 

increased so did the stiffness of the unit cell topology. A reason for poor comparison to FEA was 

due to the compression fixtures having a softer material than the specimens being tested, no use 

of an extensometer, and fracturing of the 0.5mm plates on the top and bottom of the lattice 

structures. In the second iteration of body-centered and face-centered topologies, testing stiffness 

and effective modulus increased again as the strut diameter of the unit cell increased. Also, 

testing results yielded greater stiffness than predicted from the linear, static FEA performed in 

SolidWorks. A key to this was the incorporation of 10mm of solid mass on either side of the 

lattice structures to allow the mechanical tester to hold the specimen during testing. Also, with 

the use of an extensometer, a more accurate representation of displacement in the lattice structure 

was displayed. In the last iteration of specimens, with the addition of mass via fillets at the strut 

connections to the top and bottom gripping sections, an increasing trend in stiffness and effective 

modulus occurs. While all specimens do not have increasing percent modulus to increasing fillet 

radius, all specimens have a positive trend in effective tensile modulus with increasing fillet 

radius. There was no trend of increasing stiffness and effective modulus to fillet radius when 

specimens were tested in compression. 

 While tensile failure tests yielded poor stiffness results, the inspection of the fractures 

post testing indicate that the addition of fillets decrease and effectively remove most stress 

concentration at the connections with the struts and additional mass gripping sections. Loading 
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was carried more uniformly in the entire unit cell rather than being highly concentrated at the 

connection locations.   
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VIII. RECOMMENDATIONS 

 Direct metal laser sintering has proven to be an excellent source for fabricating lattice 

structures for production purposes. While this study investigated and characterized a single unit 

cell of body-centered and face-centered cells, lattice structures are more commonly found in 

“networks” of unit cells. In future work, this report recommends the fabrication of multiple unit 

cell specimen: using similar mass volume reduction cells, but fabricate in a system of lattice cells 

to test the behavior of multiple unit cells in connection.  

 This report also only looked at lattice structure mechanical properties with no post-build 

heat-treatment or post-build stress relieving. As reported in BACKGROUND, studies involving 

maraging steel that used post-build heat-treatment found significant increases in strength but 

significant decrease in elongation. Conditional on the applications needed for lattice structures, 

heat treatment could prove useful and would need further investigation from this report. Also 

stress relieving lattice structures could be investigated. While lattice structures do not have large 

cross-sections, the DMLS process could cause lattice structures to withhold some residual 

internal stress due to high laser wattage with high scan speeds, which could influence 

performance of the lattice structure as a whole.  

 It is recommended to explore testing lattice specimens in different mechanical 

apparatuses and in other methods besides tension and compression. This study used only wedge 

type gripping during testing. Possibly using hydraulic or vice grips could improve testing results. 

The study also did not investigate fatigue, flexural, or torsional properties for lattice structures 

due to both time constraints and samples that were fabricated not lending themselves to this. 

These tests would prove noteworthy and possibly vital to completely characterize lattice 

structures.  
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 While this study used a simple linear, static FEA in SolidWorks, it is recommended to 

explore other types of finite element analysis software’s. Different software FEA results 

comparison to the FEA performed in SolidWorks from this study could improve the full 

characterization of these structures further. 

 Lastly, an investigation into the extensometer could be done. With all results from the 

testing conducted with an extensometer being much greater than 100% when compared to FEA 

results, some greater than 300%, it would be worth exploring the output data of the 

extensometer. To fully understand what the extensometer is reading, displaying and in what form 

would prove vital in future work. 
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