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ABSTRACT 

 

ENGINEERING APPLICATIONS OF ORGANIC SURFACTANT MODIFIED 

BENTONITE IN SORPTIVE SOIL BARRIERS 

 

Sadra Javadi 

April 26, 2017 

Earthen barriers such as CCLs and GCLs have been employed in geotechnical practices 

to provide a low permeability hydraulic barrier since long time ago. These types of 

barriers exhibited satisfactory performance for many applications such as landfills. The 

performance of low permeability barriers is based on the swelling potential of their 

component, which is mostly Na-bentonite, in contact with polar fluids such as water. 

However, the acceptable range of conductivity cannot be achieved by traditional earthen 

barriers when they are permeated by non-polar fluids such as gasoline. This phenomenon 

occurs due to the incompatibility of earthen barrier constituent with non-polar 

compounds. Also, the traditional earthen barriers are not able to retard the contaminant 

transport due to their negligible reactivity with organic compounds. As a result, the 

application of low permeability barriers was limited to polar and non-contaminated flows. 

In this study, the performance of traditional earthen barriers as a hydraulic and chemical 
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barrier was enhanced by introducing an organically modified amendment (HDTMA-

bentonite) to traditional earthen barrier’s components. 

This study was undertaken to examine the sorption characteristics of partitioning 

organoclays and to evaluate their performances in soil-based barriers. The main goal of 

this study was to quantify the physicochemical properties of organobentonites for their 

applications in waste containment and site remediation. 

It was observed that the intercalation of organic carbon on the surface of unmodified 

bentonites increased the organophilicity of sorbents. As a result, organic contaminants 

exhibited higher affinity toward modified bentonite. It was found that the organophilicity 

of organoclays increased either by increasing the chain length or number of chains. 

Consequently, PM-199 exhibited higher sorptivity compared to HDTMA-bentonite 

because it was synthesized by a double chain surfactant. The effect of grain size on the 

sorption capacity of organobentonites was also studied. The obtained results suggested no 

significant difference in sorption capacity of powder PM-199 and granular PM-199. 

In addition, the effect of chlorination, and aromatic ring on sorptivity of sorbent was 

studied. It was observed that the solubility of organic compounds decreased by increasing 

the chlorinated positions on the aromatic ring. As a result, organophilicity of the organic 

contaminants increased as chlorination and the number of aromatic rings increased. The 

affinity of organic contaminants toward the organic phase of sorbents increased which 

resulted in higher partitioning toward HDTMA-bentonite. 

When the effects of co-solvent on the sorptivity of sorbents was examined, it was 

observed that the Cosolvency of non-polar solvents resulted in higher solubility of 
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organic contaminants in the solution which reduced their affinity toward HDTMA-

bentonite. Also, the effect of temperature on the sorption capacity of HDTMA-bentonite 

was studied. The obtained results indicated that the increase in temperature resulted in 

higher level of kinetic energy in the solution which facilitate the partitioning of benzene 

toward HDTMA-bentonite.  

The feasibility of using the HDTMA-bentonite as an amendment in compacted clay liners 

was evaluated by conducting a soil column experiment. The obtained results from 

swelling experiment suggested that unmodified bentonites have higher swelling tendency 

in polar liquids while modified bentonites have higher swelling capacity in non-polar 

liquids. As a result, the permeability of the silty clay column was enhanced with 

unmodified bentonite when it was permeated by polar solution. On the other hand, the 

permeability of silty clay column was enhanced with modified bentonite when it was 

permeated by non-polar solutions. Additionally, it was observed that only 5% HDTMA-

bentonite amendment enhanced the retardation capacity of the system while it had no 

significant effect on the permeability of the compacted silty clay. The obtained results 

suggested that a small percentage of HDTMA-bentonite can reduce the mass flux of 

contaminant by 90% which suggested that HDTMA-bentonite has a promising 

performance as reactive material for Compacted liner barrier for organic and/or low 

polarity fluids. 

Additionally, the feasibility of using HDTMA-bentonite as a reactive amendment for 

GCL liners were investigated. The swelling behavior of unmodified and modified 

bentonites were studied as a function of: polarity, ion strength, acidic/basic environment. 

It was observed that unmodified bentonites had higher swelling tendency in polar liquids 
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while modified bentonites swelled significantly in non-polar liquids. pH and low ionic 

strength (<0.01 M) did not affect the swelling behavior of studied sorbents. However, the 

swelling of unmodified bentonites decreased drastically in solutions with higher ionic 

strength. 

The permeability of GCL specimens with different percentage of HDTMA-bentonite 

permeated by polar and low polarity solutions were studied. It was observed that the 

permeability of GCL specimens to polar solutions increased by increasing the percentage 

of HDMA-bentonite in GCL soil. However, the permeability of GCL specimens to low 

polarity solutions decreased by increasing the percentage of HDMA-bentonite in GCL 

soil. Also, it was found that a small percentage of PM-199 amendment can provide the 

minimum permeability for GCL specimens permeated by both polar and non-polar 

liquids. It was observed that the permeability of GCL specimens increases by increasing 

the confining stress. 

In addition, the breakthrough test was carried out to study the transport mechanism of 

benzene solution through the GCL specimens. The results suggested that 20% of 

HDTMA-bentonite enhanced the sorptivity and retardation of the GCL barriers 

significantly; however, it did not affect the permeability of the liner system. The 

numerical and analytical approaches were used to estimate the transport parameters of 

benzene by using experimental results.  

Finally, the potential application of HDTMA-bentonite as a reactive component of fast 

flow rate barriers were evaluated. The acquired results suggested that the retardation 

capacity of HDTMA-bentonite increased by decreasing the seepage velocity of the 

column. In addition, the kinetic study and analytical approaches were employed to obtain 
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the retardation factor of the soil columns at non-equilibrium condition. It was noticed that 

both methods resulted in a similar value within an acceptable range of error. This result 

suggested that the non-equilibrium partitioning coefficient measured from kinetic study 

can be employed to calculate a reliable retardation factor in non-equilibrium condition. 

The overall results suggested that HDTMA-bentonite can serve as an efficient reactive 

material in PRBs which not only increased the retardation capacity of the fast flow rate 

columns, but also did not affect the seepage velocity of the system with fast seepage 

velocity. 



 

xi 
 

TABLE OF CONTENTS 

 

ACKNOWLEGMENTS ......................................................................................... iv
ABSTRACT ............................................................................................................vi
LIST OF TABLES .................................................................................................. xi
LIST OF FIGURES .............................................................................................. xvi
1. Chapter One. Introduction ............................................................................... 1 

1.1  Background ................................................................................................... 1 

1.2  Engineering applications ............................................................................... 6 

1.2.1  Low permeability soil barriers .................................................................. 6 

1.2.2  Fast flow rate barrier systems ................................................................. 10 

1.3  Organoclay .................................................................................................. 17 

1.3.1  X-ray diffraction (XRD) ......................................................................... 19 

1.3.2  Scanning electron microscope (SEM) ..................................................... 20 

1.3.3  Total organic carbon analyzer (TOC) ..................................................... 20 

1.4  Geotechnical testing and engineering properties of soils ........................... 21 

1.5  Current application of organoclays ............................................................. 21 

1.6  Scope of this study ...................................................................................... 23 

2. Chapter two. Sorption of organic contaminants onto organoclays ............ 25
2.1  Background ................................................................................................. 25 

2.2  Materials and methods ................................................................................ 33 

2.2.1  PM-199 .................................................................................................... 33 

2.2.2  HDTMA modified bentonite ................................................................... 34 

2.2.3  Organic sorbates ...................................................................................... 38 

2.2.4  Co-solvents .............................................................................................. 38 

2.2.5  Extraction Liquids ................................................................................... 42 

2.2.6  Batch sorption test ................................................................................... 42 

2.3  Results and discussion ................................................................................ 44



 

xii 
 

 

2.3.1  Overall results ......................................................................................... 45 

2.3.2  Effect of molecular characteristics of sorbents on sorption capacity ...... 46 

2.3.3  Effect of the characteristics of sorbates on sorption capacity ................. 50 

2.3.4  Effect of aqueous environment ............................................................... 53 

2.3.5  Kinetic sorption test ................................................................................ 55 

2.4  Conclusions ................................................................................................. 57 

3. Chapter three. Engineering behaviors of compacted clay amended 
with Organoclays ................................................................................................... 60 

3.1  Introduction ................................................................................................. 60 

3.2  Materials and methods ................................................................................ 67 

3.2.1  Standard proctor compaction test ............................................................ 68 

3.2.2  One-dimensional swell test ..................................................................... 71 

3.2.3  Permeability test ...................................................................................... 72 

3.2.4  Breakthrough test .................................................................................... 75 

3.3  Result and discussion .................................................................................. 77 

3.3.1  One-dimensional swell test ..................................................................... 77 

3.3.2  Permeability ............................................................................................ 80 

3.3.3  Breakthrough test .................................................................................... 82 

3.4  Conclusion .................................................................................................. 88 

4. Chapter four. Engineering behaviors of geosynthetic clay liners 
(GCLs) amended with organoclays ...................................................................... 90

4.1  Introduction ................................................................................................. 90 

4.2  Material and methods .................................................................................. 97 

4.2.1  GCL specimen ......................................................................................... 97 

4.2.2  Permeant liquids .................................................................................... 102 

4.2.3  Swell index test of GCL soil components ............................................. 102 

4.2.4  Permeability test .................................................................................... 103 

4.2.5  Breakthrough test .................................................................................. 105 

4.3  Result and discussion ................................................................................ 108 

4.3.1  Swelling index ....................................................................................... 108 

4.3.2  Permeability test .................................................................................... 115 

4.3.3  Breakthrough test .................................................................................. 128 



 

xiii 
 

4.4  Conclusion ................................................................................................ 136 

5. Chapter Five. Non-equilibrium sorption and retardation of organic 
contaminants in permeable reactive barriers (PRBs) amended with 

organoclays ........................................................................................................... 141
5.1  Introduction ............................................................................................... 141 

5.2  Materials and methods .............................................................................. 147 

5.2.1  Column preparation ............................................................................... 149 

5.2.2  Hydraulic conductivity test ................................................................... 150 

5.2.3  Breakthrough test .................................................................................. 151 

5.3  Result and discussion ................................................................................ 154 

5.3.1  Hydraulic conductivity test ................................................................... 154 

5.3.2  Breakthrough test .................................................................................. 155 

5.3.3  Effect of seepage velocity on the retrieved percentage of benzene mass in 
effluent 163 

5.4  Conclusion ................................................................................................ 164 

6. CHAPTER SIX Summary, Conclusions, and Recommendations ................ 166
REFERENCES .................................................................................................. 174
CURRICULUM VITAE..................................................................................... 187



 

ivx 
 

LIST OF TABLES 

 
  

Table 1-1. Summary of hydraulic conductivity for different amendments ........................ 5 
Table 1-2. Conducted laboratory tests to evaluate the engineering properties of soils .... 21 
Table 2-1. Linear models of Langmuir sorption isotherm ................................................ 28 
Table 2-2. Mineralogy of PM-199 (Lee et al. 2012) ........................................................ 34 

Table 2-3. The engineering properties of Ca-bentonite, Na-bentonite, and HDTMA 
bentonite ............................................................................................................................ 36 
Table 2-4. Physical and chemical properties of acetone ................................................... 39 
Table 2-5. Physical and chemical properties of methanol ................................................ 39 
Table 2-6. Physical and chemical properties of the studied contaminants ....................... 40 
Table 2-7. Test matrix of the lab batch sorption ............................................................... 42 
Table 2-8. Sorption kinetics and equilibrium sorption parameters ................................... 57 
Table 3-1. Engineering properties of the natural low plasticity silty clay ........................ 67 
Table 3-2. The specification of standard proctor test ....................................................... 68 
Table 3-3. Compaction test results ................................................................................... 71 
Table 3-4. Physicochemical properties of the permeant fluids ......................................... 74 
Table 3-5. Specification of compacted soil column ......................................................... 75 
Table 3-6. Average fluid conductivities of three compacted soils with varying permeants

 .......................................................................................................................................... 80 
Table 3-7. Summary of contaminant transport parameters for fast and slow flow rate 

condition ........................................................................................................................... 87 
Table 4-1. Advantages and disadvantages of GCL ........................................................... 90 
Table 4-2. Properties of Bentomat 200R .......................................................................... 98 
Table 4-3. The physical parameters of calcium based GCL specimens ......................... 101 
Table 4-4. The physical parameters of sodium based GCL specimens .......................... 101 
Table 4-5. Physical properties of GCL specimens for permeability study ..................... 103 
Table 4-6. Swelling ratio of studied GCL specimens ..................................................... 114 

Table 4-7. Average conductivity of studied GCL specimens permeated by different 
liquids .............................................................................................................................. 115 
Table 4-8. The average permittivity of GCL specimens ................................................ 121 
Table 4-9. Retardation factor and diffusion coefficients for six GCL specimens obtained 

from analytical and numerical methods and the first-moment equation ........................ 134 
Table 5-1. Common treatment medium and targeted contaminants in PRBs ................. 142 
Table 5-2. Advantages and disadvantages of PRB system (Obiri-Nyarko et al. 2014) .. 144 
Table 5-3. physical properties of the coarse and fine sand ............................................. 148 
Table 5-4. Properties of packed columns ........................................................................ 149



 

xv 
 

Table 5-5. The measured hydraulic conductivity ........................................................... 154 
Table 5-6. Required time for seepage of benzene solution through the soil columns .... 158 

Table 5-7. Non-equilibrium partitioning coefficient of HDTMA-bentonite for benzene
 ........................................................................................................................................ 160 
Table 5-8. Retardation factor and diffusion coefficients for seven soil columns obtained 

from analytical and numerical methods and the first-moment equation ........................ 162 
Table 6-1. Results for equilibrium batch sorption study ................................................ 167 



 

xvi 
 

LIST OF FIGURES 

 
  

Figure 1-1. Schematic figure of bottom barrier system (a) single composite liner (b) 
double composite liner ........................................................................................................ 8 
Figure 1-2. Schematic figure of cover system for buried waste ......................................... 8 
Figure 1-3. Schematic setup of USTs with barrier systems (Musy 2008) .......................... 9 
Figure 1-4. Schematic permeable reactive barrier system (Australia. 2012) .................... 10 
Figure 1-5. Low flow rate breakthrough curve for different type of solute injection ....... 14 

Figure 1-6. The effect of partitioning coefficient on the retardation of contaminant 
transport (Freeze and Cherry 1979) .................................................................................. 16 

Figure 1-7. (a) the relative concentration of contaminant versus time (b) contaminant 
distribution during time (Freeze and Cherry 1979) .......................................................... 16 
Figure 1-8. microstructure of (a) calcium bentonite (b) HDTMA-bentonite ................... 18 
Figure 1-9. Different microstructure morphology of organoclays (Giannelis et al. 1999) 19 
Figure 2-1. Linear sorption isotherm ................................................................................ 28 
Figure 2-2. Langmuir sorption isotherm ........................................................................... 29 
Figure 2-3. Freundlich sorption isotherm ......................................................................... 29 
Figure 2-4. Effective factors in the sorption process of sorbates by sorbent .................... 30 
Figure 2-5. XRD result for Ca-bentonite and HDTMA-bentonite ................................... 37 

Figure 2-6. (a) Scanning Electron Microscope (SEM) and Transmission electron 
microscopy (TEM) test of Ca-bentonite (b) Scanning Electron Microscope (SEM) and 

Transmission electron microscopy (TEM) test of calcium bentonite HDTMA-bentonite 38 
Figure 2-7. Schematic figure of the sorption procedure ................................................... 44 
Figure 2-8. Effect of TOC on the partitioning coefficient ................................................ 47 
Figure 2-9. Sorption capacity of PM-199 and HDTMA-bentonite as a function of organic 
cation types for (a) benzene in aqueous solution, and (b) HCB in 30% acetone + 70% DI 

water solution .................................................................................................................... 49 
Figure 2-10. Effect of particle size on the sorption capacity of PM-199 .......................... 50 
Figure 2-11. Chlorination effect on the sorption capacity of HDTMA-bentonite ............ 51 
Figure 2-12. Aromatic benzene ring effect on the sorption capacity of HDTMA-bentonite
 .......................................................................................................................................... 52 

Figure 2-13. Sorption capacity of HDTMA-bentonite as a function of co-solvent for (a) 
benzene, and (b) naphthalene ............................................................................................ 54 

Figure 2-14. Effect of temperature variation on the sorption capacity of HDTMA-
bentonite ............................................................................................................................ 55 
Figure 2-15. Sorption kinetic of (a) naphthalene (b) benzene on HDTMA-bentonite ..... 56



 

xvii 
 

Figure 3-1. Recommended design criteria for the compaction of CCLs (Sharma and 
Reddy 2004) ...................................................................................................................... 62 
Figure 3-2. Acceptable range of water content and dry unit weight for CCLs (Sharma and 
Reddy 2004) ...................................................................................................................... 62 

Figure 3-3. Contaminant transport through (a) conventional CCL (b) reactive geo-
material amended CCL ..................................................................................................... 65 
Figure 3-4. (a) Compaction of soil layer (b) Extruded soil from compaction mold ......... 69 
Figure 3-5. Compaction curve for the studied soil admixtures ......................................... 71 

Figure 3-6. (a) Soil column arrangement for hydraulic conductivity (b) Sealed soil 
column in the pressure chamber ....................................................................................... 73 
Figure 3-7. Experimental setup for breakthrough test ...................................................... 77 

Figure 3-8. Free swelling results for the three studied soil admixture in (a) water (b) 
gasoline ............................................................................................................................. 78 
Figure 3-9. equilibrium sorption isotherms of naphthalene onto HDTMA-bentonite/silty 

clay .................................................................................................................................... 83 
Figure 3-10. Average seepage velocity of naphthalene solution during the breakthrough 

study .................................................................................................................................. 84 
Figure 3-11. Breakthrough curve of naphthalene transport in 95% silty clay + 5% 

HDTMA-bentonite compacted soil column ..................................................................... 86 
Figure 4-1. Variation of hydraulic conductivity with different confining stress (Bouazza 

2002) ................................................................................................................................. 92 
Figure 4-2. effect of hydraulic gradient on the conductivity of a GCL permeated with 

different liquids(Shackelford et al. 2000) ......................................................................... 93 
Figure 4-3. The base GCL, Bentomat 200R ..................................................................... 98 
Figure 4-4. Carved GCL specimen from the base GCL ................................................... 99 
Figure 4-5. Filling the soil mixture in the GCL specimen ................................................ 99 
Figure 4-6. Assembled GCL specimen for column test .................................................. 100 
Figure 4-7. GCL specimen wrapped by Teflon tape ...................................................... 100 
Figure 4-8. Swell index result for studied soil matrixes ................................................. 109 
Figure 4-9. Swell index experiment for three studied soil specimens in gasoline .......... 111 
Figure 4-10. The effect of ionic concentration on the swelling tendency of the proposed 

soil combinations ............................................................................................................ 112 
Figure 4-11. Effect of pH on the swelling of studied sorbents ....................................... 113 
Figure 4-12. Effect of pH on the swelling volume of the Na-bentonite mixture with PM-

199 and HDTMA-bentonite ............................................................................................ 114 
Figure 4-13. Permeability of Na-bentonite GCL specimens with different percentages of 

(a) PM-199 (b) HDTMA-bentonite permeated by water and gasoline ........................... 119 
Figure 4-14. Effect of confining stress on the hydraulic conductivity of Na-amended 

GCLs ............................................................................................................................... 120 
Figure 4-15. Measured hydraulic conductivity during breakthrough test for GCL with (a) 

Ca-bentonite (b) 10% HDTMA-bentonite + 90% Ca-bentonite (c) 20% HDTMA-
bentonite + 80% Ca-bentonite (d) Na-bentonite (e) 10% HDTMA-bentonite + 90% Na-

bentonite (f) 20% HDTMA-bentonite + 80% Na-bentonite ........................................... 125 



 

xviii 
 

Figure 4-16. Average seepage velocity of GCLs with (a) Ca-bentonite (b) 10% HDTMA-
bentonite + 90% Ca-bentonite (c) 20% HDTMA-bentonite + 80% Ca-bentonite (d) Na-

bentonite amended GCL (e) 10% HDTMA-bentonite + 90% Na-bentonite (f) 20% 
HDTMA-bentonite + 80% Na-bentonite ........................................................................ 128 

Figure 4-17. Benzene breakthrough curves through (a) Ca-bentonite based (b) Na-
bentonite based GCL specimens without/with HDTMA-bentonite ............................... 130 
Figure 4-18. Fitted curve applying numerical and analytical solution for (a) Ca-bentonite 
GCL (b) Ca-bentonite GCL with 10% HDTMA-bentonite amendment (c) Ca-bentonite 
GCL with 20% HDTMA-bentonite amendment (d) Na-bentonite GCL (e) Na-bentonite 

GCL with 10% HDTMA-bentonite amendment (f) Na-bentonite GCL with 20% 
HDTMA-bentonite amendment ...................................................................................... 134 
Figure 5-1. Schematic figure of PRB system (DOE-sites 1999) .................................... 142 
Figure 5-2. grain size distribution curve for coarse and fine sand .................................. 148 
Figure 5-3. Hydraulic conductivity test setup with constant head .................................. 151 
Figure 5-4. Schematic setup of breakthrough test .......................................................... 153 
Figure 5-5. Breakthrough curve of benzene transport in column with (a) 10% HDTMA-

bentonite amendment (b) 10% PM-199 amendment ...................................................... 157 
Figure 5-6. partitioning coefficient of HDTMA-bentonite for benzene as a function of 

time ................................................................................................................................. 159 
Figure 5-7. Fitted curve applying analytical solution for column (a) 1 (b) 2 (c) 3 (d) 4 162 
Figure 5-8. Rmass versus seepage velocity ....................................................................... 163 

 



 

1 
 

1 CHAPTER ONE INTRODUCTION 
 

1.1 Background 
 

The increasing growth of population in all over the world (near to 70 million growth of 

population is expected for United States by 2045 (USDOT 2015)) increases the demand 

of waste containment, contaminated site remediation and sustainable development 

(Sharma and Reddy 2004). Inappropriate waste disposal practices in the past has caused 

the contamination of subsurface and groundwater with a variety of environmental 

pollutants (Gates et al. 2009). These contaminants are detrimental to public health and the 

environment and lead to costly remediation actions. At the same time, although the land 

disposal technologies have been developed significant, new materials and improved 

containment systems still merit examination. 

Up until the early 1970s, chemicals used in industrial and municipal activities and their 

byproducts were disposed without much consideration of their transport and fate in the 

subsurface, as well as their impact on the human health and the ecosystem. At the time, 

the collected solid waste was piled up in an open area on the ground surface or they were 

disposed in the open ditches or pits. Due to the absence of legislation and environmental 

laws to control this practice, these areas lacked appropriate liner systems, which led to 

contamination of the surrounding soil. 
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Records indicated that in the past many coal mining piled up coarse tailing and the 

wastewater in an impoundment for a long period of time. The contaminants infiltrated 

into the subsurface and reached to the groundwater table. There are also several reports 

from army bases that have stored toxic chemical waste in unlined pits which led to the 

contamination of surrounding groundwater (Lo and Yang 2001). In early 1970s, 

impermeable caps were constructed over the pits or impoundments to minimize the 

percolation. However, it was until 1980’s that the engineers started to build bottom 

barriers for landfills and surface impoundments (Sharma and Reddy 2004). Many old 

underground storage tanks (USTs) have been used to store chemicals and fuels. USEPA 

estimated that up until 1995, over 400000 sites had been polluted by leakage from 

underground storage tanks. This led to a remedial operation that cost over $4 million 

dollars.  

There are many other examples in addition to the mentioned case studies, which confirm 

the necessity of using barrier systems in containment facilities. Additionally, for the 

remediation of the existing soil/groundwater contaminations, a short-term in-situ barrier 

system is often required to prevent the spreading of contaminants and also to facilitate the 

following remediation (Lee et al. 2012). Other long-term in-situ or ex-situ environmental 

geotechnics may apply in conjunction with short-term containment technologies (Sharma 

and Reddy 2004).  

A waste containment facility can be categorized as either a passive system or an active 

system. Passive system includes the installation of physical low permeable barriers 

around the contaminated site. The purpose of passive system is to isolate the potential 

sources of contamination or contaminated site and minimize the possibility of 
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contaminant spreading to the surrounding environment. Passive system can be used in 

vadose or saturated zone and includes one or combination of the following barrier types: 

(1) vertical barriers to limit the lateral spread of contaminants; (2) bottom barriers to 

prevent the vertical spread of contaminants such as bottom liner for storage tanks and 

landfills; or (3) cover barrier to isolate the stored waste and minimize the infiltration of 

surface water to the system such as landfills. An active containment system includes the 

installation of either pumping well or subsurface drain systems to adjust the hydraulic 

gradient with the purpose of containing groundwater contaminants. In some scenarios, a 

combination of active and passive system may be used in order to contain the 

contaminant plume carried by groundwater flow. Although a passive containment system 

can be incorporated into an active remediation system, this dissertation is focused on the 

in-situ containment practices and the performances of soil-based barriers as a part of a 

passive containment system. 

1. Vertical barriers 

Vertical barriers are also known as vertical cutoff barriers or vertical cutoff walls. The 

function of vertical barriers is to contain the contaminated soils/groundwater or block the 

lateral contaminant flow in subsurface. They can build on the top of a bottom barrier 

system or extend to a low permeability barrier systems. Most commonly, vertical barriers 

are used in combination with pump and treat method. The vertical barriers are 

constructed in different types such as: (1) compacted clay barriers; (2) slurry trench 

barriers; (3) grouted barriers; (4) mixed-in -place barriers, and (5) steel sheet pile barriers. 

One of the most common type of vertical barriers is compacted clay barriers. Compacted 

clay barriers are constructed by compacting silty or clayey materials on subgrade soil or 
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in a trench to construct a liner with a high dry unit weight. The moisture content and the 

type of compaction effort should be controlled to provide a soil barrier with the lowest 

permeability (k10-7 cm/s). The most suitable application of compacted clay barriers is 

in aquitard layer with shallow depth.  

2. Bottom barriers 

Typically, bottom barriers are used to contain the waste site when there is no natural 

stratum with low permeability available at a reasonable depth. Their function is to 

minimize the diffusive and advective transport of contaminants into the subsurface layers 

as much as possible. Different techniques can be applied to construct a bottom barriers 

including grouting or a combination of different methods like tunneling and 

geomembrane installment, and a mixture of grout with slurry. 

 

3. Covers or caps 

Cover barriers are commonly constructed over a buried waste such as landfills to prevent 

the infiltration of liquid or gases and minimize the leachate generation. Cover barriers are 

consisted of six major components: (1) surface layer; (2) protection layer; (3) drainage 

layer; (4) hydraulic barrier layer; (5) gas collection layer; and (6) foundation layer, a 

detailed sketch of typical landfill cover system can be found in part 1.2.1 (Figure 1-2).  

The conclusion of different studies in many cases has confirmed that the compaction of 

local soils does not provide the sufficient permeability requirements for low permeability 

barrier systems (Bagchi 2004). For instance, a layer of silty soil from Chaco – Pampean 

plain in the center and north- east of Argentina could reach to the average hydraulic 

conductivity of 10-8 m/s after the heavy compaction effort (Francisca and Glatstein 2010). 
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Thus, it is necessary to use amendments combined with local soils to make them useful 

for liner system. 

During the past decade, many researches have been done to evaluate the feasibility of 

using various amendments to meet the required permeability for low permeability barrier 

systems. A list of different amendments used in liner system is summarized in Table 1-1 

(Widomski et al. 2015). Among the tested geo-materials, bentonite demonstrated a 

promising performance regarding the permeability for the liner application. Bentonite is 

defined as a natural clay with high swelling tendency, high ion exchange capacity and 

very low water permeability. Other significant characteristics of bentonite are high 

percentage of montmorillonite (60-90%), high water absorption capacity (200-700% 

weight), high swelling potential(7-30 mL), high range of plasticity (140-380%), and 

cation exchange capacity of (0.60-0.90 mol/kg) (Egloffstein 2001). Consequently, 

bentonite-clay barriers have served as the containment systems for a long time.  

Table 1-1. Summary of hydraulic conductivity for different amendments 

Material 
Minimum hydraulic 
conductivity (m/s)

Sources 

Fly ash 3.1 × 10-10 Palmer et al. (2000)

Quicklime 1.0 × 10-10 
Wiśniewska and Stępniewski 

(2007) 
Silica fume 9.03 × 10-10 Kalkan and Akbulut (2004)

Cement 8.53 × 10-10 Kalkan (2006)
Claystone 5.34 × 10-12 Musso et al. (2010)
Red mud 3.73 × 10-10 Kalkan (2006)

Bentonite 1.0 × 10-11 to 5.4 × 10-12 
Komine (2010)&Ahn and Jo 

(2009) 
 

Although different types of barriers can be used individually as the bottom barrier 

systems, compacted clay liners are frequently used in combination with other 

geosynthetic materials; such as geomembrane; as a composite liner system. In addition, 
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recent developments in geosynthetics area make it possible to use geosynthetic clay liners 

(GCLs) as a substitution for compacted clay liners due to their low permeability and cost 

efficiency. 

1.2 Engineering applications 
 

Most commonly, the barrier systems in waste containment facilities are employed to 

serve as low permeability barrier systems, or fast flow rate barrier systems.  

1.2.1 Low permeability soil barriers 
 

Many waste containment systems are required to have one or several low permeability 

hydraulic barriers. The liner system is typically a combination of engineered soils and 

geosynthetic materials and these composite liners must provide a hydraulic conductivity 

less than 10-7 cm/s as bottom barriers and 10-5 cm/s as cover barrier. They are frequently 

used for landfills and underground storage tanks (USTs). the typically layout of the 

composite barrier or soil barriers are briefly introduced next: 

1. Landfill: 

Landfill is the primary containment practice in the United States to dispose the municipal 

solid waste (MSW). Landfills are categorized to sanitary and secure landfills. Sanitary 

landfills are employed for disposal of non-hazardous waste while secure landfills are used 

to dispose the hazardous waste. Hazardous waste is buried in excavated holes or trenches 

which are lined with barrier systems to minimize the leakage of hazardous substances 

into the soil and water bodies. The Resource Conservation and Recovery Act (RCRA) in 

1976 provided guidelines regarding the management of hazardous, non-hazardous wastes 



 

7 
 

and underground storage tanks. In conclusion, a comprehensive regulation has been 

developed by USEPA under two major subtitles: subtitle C, and Subtitle D. 

Subtitle C provides the minimum requirements for proper management and disposal 

practices of hazardous wastes. Based on subtitle C, a landfill used for disposal of 

hazardous wastes should have a leachate collection system, a top flexible membrane 

liner, a system to collect, detect, and remove the leachate, and a composite liner system. 

Also, it is required to cover the landfills that are used for hazardous waste disposal with a 

final cover which minimize the long-term diffusion of liquids through the landfill. The 

cover system should have a permeability value equal or less than the permeability of 

bottom liners. A schematic arrangement of bottom liner legislated by subtitle C is 

presented in Figure 1-1 (b), and Figure 1-2.  

Subtitle D provides the guidelines to manage the municipal solid wastes. It is required by 

subtitle D to employ a leachate collection system and a composite liner system which 

consisted of a compacted clay liner and flexible membrane liner for a landfill used for 

non-hazardous wastes. A schematic arrangement of bottom liner legislated by subtitle D 

is presented in Figure 1-1 (a). 

 

 

(a) 
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(b) 

 

Figure 1-1. Schematic figure of bottom barrier system (a) single composite liner (b) 

double composite liner 
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Figure 1-2. Schematic figure of cover system for buried waste 

 

2. Underground storage tanks (USTs): 
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USTs are referred to a tank and the pipe lines connected to the tank that has at least 10% 

of their entire system underground. Topically, USTs are used to store the pure phase 

chemical or petroleum related products as well as other hazardous substances. In 1984, 

subtitle I of the Solid Waste Disposal Act (SWDA) required the closure of near to 1.7 

million active USTs in United States. 

 Subtitle I: 

Subtitle I encompasses the federal requirement for closure and corrective actions 

regarding the existing and new underground storage tanks (USTs) used to store the 

petroleum and other hazardous compounds. This subtitle has been addressed in 40 CFR 

264.190 through 264.200. Subtitle I aims to provide guidelines for owners and operators 

of USTs regarding the maintenance and closure of the USTs. Under this subtitle, different 

requirements have to be addressed including: 

 

Figure 1-3. Schematic setup of USTs with barrier systems (Musy 2008)  
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1.2.2 Fast flow rate barrier systems 
 

In addition to low permeability barriers, vertical barriers can be used as fast flow rate 

barriers in groundwater remediation practices such as permeable reactive barriers (PRBs). 

PRBs are permeable chemical barriers that designed to degrade or immobilize the 

constituent contaminant in the groundwater flow while passing through them. Permeable 

reactive barriers have received significant attention during the past decade due to their 

considerable capacity for attenuating or removal of a wide range of contaminants. To 

construct the PBRs, a trench with reactive components will be built perpendicular to the 

contaminant flow (Figure 1-4). The pollutants carried by the flow will be immobilized or 

transformed into nontoxic constituents (Vidic and Pohland 1996) 

 

Figure 1-4. Schematic permeable reactive barrier system (Australia. 2012) 

The reactive components of PRBs include reactive material to degrade the volatile 

contaminants, chelators to immobilize the heavy metals, or nutrients and oxygen to 

enhance the bioremediation (Bowman 1999). To facilitate the groundwater flow through 

PRBs, the reactive components are often mixed with porous materials such as sand. 

Reactive components in the PRB system attenuate the transport of variety of groundwater 

contaminants including organic and inorganic contaminants. Organic contaminants such 
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as BTEX, TCE, PCBs, PAHs, and TCA can be treated by employing a barrier with 

reactive material that degrade or sorb the pollutants. Most common reactive materials for 

organic contaminant degradation are zero-valent iron (ZVI), iron (II) porphyrin, resting-

state microorganisms, and dithionite. Other materials to sorb the contaminants include 

zeolite, organobentonites, and activated carbon. The reactive permeable barriers are 

suitable to use in sites with permeable soil, with relatively high speed groundwater flow 

which the contamination zone locates no deeper than 50 ft below ground. 

If designed and installed appropriately, the conventional soil barriers exhibited desirable 

performance and reliability for water with low solute concentrations. However, chemical 

incompatibility was also observed in conventional soil barriers when they were 

permeated by organic liquids and fuels. Previous studies indicated that the permeability 

of natural clay soils increased up to four order of magnitudes when they were permeated 

with pure hydrocarbons liquids (Brown et al. 1983; Brown et al. 1984). Bowders and 

Daniel (1987) investigated the permeability of compacted kaolinite and illite when 

permeated by methanol, acetic acid, heptane, trichloroethylene (TCE), and water. They 

concluded that the permeability of clay increased when the concentration of methanol 

exceeded 80%. They also suggested that the increased permeability was due to the 

shrinkage of the diffuse double layer of the clays in methanol. They also observed that 

pure heptane and TCE would cause the increased flow in the clay liner. 

In addition to significantly increased permeability due to chemical incompatibility, the 

conventional soil barriers also have limited contaminant retention capacity.  Although it 

would take longer time for the contaminant flow to go through the common soil barriers, 

the dissolved organic contaminants might migrate through them at a faster pace. From a 
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perspective of barrier performance, they are not very capable of impeding the mass 

transport of contaminants even if they can minimize the flow. In these situations, an 

effective “chemical barrier” is also required in addition to the existing hydraulic barrier. 

Consequently, novel soil barriers with higher chemical compatibility and enhanced the 

sorption capacity for organic compounds merits examination. 

It was suggested that the chemical incompatibility between the organic liquids and clay 

minerals is due to the differences in polarity of the two (Chiou 1998; Lo and Yang 2001; 

Smith et al. 1988). Typically, inorganic soils like clays are hydrophilic as their 

constituents are mainly aluminosilicate sheets, however, most of the organic compounds 

are non-polar, hydrophobic substances that have lowest affinity to the minerals. 

Consequently, organic-matter enhancement of liner materials has been suggested to 

improve the compatibility of soil and organic compounds as they can be compatible with 

both. The improvement due to the additives could be the stable permeability and 

increased contaminant retention capacity of soil barriers. The increased contaminant 

retention capacity is explained in next few paragraphs. 

There are three major processes that control the transport of contaminant in porous 

media: (1) advection, diffusion and dispersion; (2) chemical mass transfer process such as 

sorption; and (3) biological process. Advection refers to the contaminant transport under 

a hydraulic gradient while diffusion refers to the contaminant transport under a chemical 

gradient. The relative importance of advection and diffusion can be quantified by the 

Peclet number, equation 1-1: 

s
L

v L
P

D
   1-1
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where LP  is the Peclet number, sv  is the seepage velocity (m/s), L  is the travel distance 

for contaminant (m), and D  is the diffusion coefficient (m2/s). The advection process is 

dominant in contaminant transportation at high flow rate systems (e.i., ௅ܲ ൒ 50) whereas 

the diffusion controls the contaminant transportation mechanism in low flow rate systems 

(e.i., ௅ܲ ൑ 1). 

The transport of solute through homogeneous soil is typically described by the one-

dimensional advection-dispersion equation, equation 1-2. 

ܴ
௥ܥ߲
ݐ߲

ൌ ܦ ቆ
߲ଶܥ௥
ଶݔ߲

ቇ െ ߭ ൬
௥ܥ߲
ݔ߲

൰ 1-2

where D is the hydrodynamic dispersion coefficient (m2/s), v is seepage velocity (m/s), x 

is microscopic distance in the direction of transport (m), t is time (s), and Cr is the 

concentration of solute in the pore water of the soil (µg/mL).  

The chemical mass transfer is negligible if the solutes have limited reactions with soils. 

However, if certain chemical reactions (e.g. acid-base reaction; reduction-oxidation 

reaction; dissolution-precipitation; sorption-desorption) can reduce the aqueous 

concentration of the solute, the mass of the solute (or contaminant) will be retarded.  If 

sorption of solute molecules by the porous media is the dominant mechanism, the 

retardation can be described by a retardation factor that is related to the sorptivity of the 

soil. Assuming the distribution of solute (or contaminant sorbate) in solvent and in soil 

sorbent is proportional, the retardation factor R can be determined as equation 1-3 

(Freeze and Cherry 1979): 

ܴ ൌ 1 ൅
௕ߩ
݊
ௗ 1-3ܭ
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where ߩ௕ is dry density of porous media (g/cm3), ݊ is the porosity of the porous media, 

and ܭௗ is the distribution coefficient (mL/g). More details of the equations and 

parameters can be found in chapter 3. 

 

Figure 1-5. Low flow rate breakthrough curve for different type of solute injection 

At the laboratory scale, the retardation factor can be estimated from soil column study. 

the studied contaminants can be introduced to the soil columns through two different 

injection method. The first one is infinite source injection which the contaminated 

solution will be injected to the column continuously until the relative concentration 

(concentration of contaminant in effluent/initial concentration of contaminant) is equal to 

1. It results to a s shape breakthrough curve (red curve). Also, the solution can be 

introduced to the soil column for one pore volume and then it be flushed by water. In this 

case, pulse source injection results in a bell shape breakthrough curve (blue curve). If the 
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component of soil column consists of sorptive material, the pulse signal injection method 

results in a flatten belled shape breakthrough curve with considerably low relative 

concentration at peak followed by a long tail. This phenomenon occurs due to the higher 

sorption capacity of sorptive materials which sorb the contaminants and release them 

with a much-attenuated concentration in a long period of time. This mechanism is called 

retardation. 

At the field scale,  the retardation of contaminants by the soil barriers would lead to a 

slower spreading of the contaminants in the subsurface, or a much smaller plume of 

contaminants within certain time. Pickens and Lennox (1976) demonstrated a solution for 

contaminant transport considering retardation term. They concluded that the contaminant 

transport through a large area as a result of advection and dispersion and they simulated 

the situations when the soil was non-sorptive, slightly sorptive and very sorptive (Kd was 

0, 1 and 10, correspondingly). The concluded result is illustrated in Figure 1-6. 
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Figure 1-6. The effect of partitioning coefficient on the retardation of contaminant 
transport (Freeze and Cherry 1979) 

For either constant (Figure 1-6) or limited source (Figure 1-7) of contaminants, the 

sorptive soil would decrease the size of the contamination plume or reduce the 

contaminant concentration in the subsurface. 

 

Figure 1-7. (a) the relative concentration of contaminant versus time (b) 
contaminant distribution during time (Freeze and Cherry 1979) 

 

Most naturally occurring soils have low sorptivity of nonpolar organic compounds 

(NOCs) due to their low organic content (Park et al. 2011). Various types of reactive 

materials have been proposed as amendments to enhance the sorption/retardation and 

compatibility of liner materials. The proposed materials are: mixture of bentonite and fly 

ash, surfactant modified soils, activated carbon, paper industry sludge, organo-sand, 

zeolite, organo-zeolite, and many other commercial additives. Recently, the surface 

modification of clay minerals has received a great attention because it can produce a 
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strong and stable sorbent media with favorable sorption of common environmental 

pollutants (Redding et al. 2002; Richards and Bouazza 2007; Zhao and Burns 2012). 

Among the surfactant modified soils, organoclays have demonstrated superior 

performances as a fine-grained soil sorption. This effectiveness of organoclay is due to its 

considerable characteristics including higher organic carbon, higher thermal stability, 

organophilicity, hydrophobicity, and higher sorption/retardation capacity (Benson et al. 

2015; de Paiva et al. 2008; Gates et al. 2004; Soule and Burns 2001). Consequently, 

organoclay was chosen as the studied material in this dissertation. 

1.3  Organoclay 
 

Organoclays are typically synthesized from naturally occurring aluminum silicates under 

controlled laboratory conditions. The synthesis of organoclay enriches the base aluminum 

silicate with organic carbons which often leads to their expanded interlayer spacing and 

hydrophobicity. In general, organoclays are synthesized from sodium or calcium 

montmorillonites as they have high cation exchange capacity and desirable interlayer 

spacing for intercalation. Some other clay minerals such as hectorite, mica, sepiolite, 

illite, muscovite, clinoptilolite, kaolinite and vermiculite are also possible base clays for 

the synthesis of organoclays (de Paiva et al. 2008; Soule and Burns 2001).  

Several types of organic matters including quaternary ammonium cations (QACs), 

polymeric quaternary alkylammonium cations and copolymers, alcohols, aldehydes, and 

biomolecules are often used for the organoclay synthesis (Bate et al. 2014; de Paiva et al. 

2008; Lee and Tiwari 2012). Among the available organic surfactants, QAC is the most 
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common cationic surfactant type due to its availability, ease of preparation and stable 

physicochemical behaviors (Sarkar et al. 2012). 

The synthesis of organoclay can be achieved by the cation exchange process in the 

aqueous phase, which is also known as the “slurry method”. Most of the naturally 

occurring inorganic cations in montmorillonite (e.g., calcium cation, Figure 1-8) reside in 

the interlayer spacing of montmorillonite and they tend to hydrate when the soil is soaked 

in water. The inorganic cations will be substituted by the organic cationic surfactant in 

they present in the same aqueous phase. This is typically referred as the cation exchange 

process or primary sorption of organic phase by the clays. After cation exchange, the 

interlayer calcium/sodium cations and water molecules are replaced by the intercalated 

organic cations. 

(a) (b) 

Figure 1-8. microstructure of (a) calcium bentonite (b) HDTMA-bentonite 

 

The structure of polymer/clay composite is categorized based on the microstructure of 

particle-aggregates of the synthesized clays. Most commonly, the polymer/surfactant 

modification of clays will lead to separated or exfoliated silica sheets. Based on previous 

studies, possible patterns of organoclays microstructures are: conventional, intercalated, 

and exfoliated composites (Alexandre and Dubois 2000; Esfandiari et al. 2008; Giannelis 

et al. 1999; Lan et al. 1995), Figure 1-9.The method of synthesizing, structure of clay and 
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polymer, and organic modifiers are the controlling factors in determining the morphology 

of polymer or surfactant/clay composites (Giannelis et al. 1999).  

 

Conventional  Intercalated  Exfoliated 

 

Figure 1-9. Different microstructure morphology of organoclays (Giannelis et al. 
1999) 

 

To optimize the structural stability of the surfactant/clay composites, the modifier 

polymers or surfactants with long carbon chains is often preferred as they can be 

intercalated in interlayer and interact with both clay platelets (Esfandiari et al. 2008).  

Several laboratory characterization techniques can be used to study the microstructure of 

organoclays at the micro-scale level (Nanos to microns). Most commonly, the basal 

spacing of intercalated clays is the most important parameter and it can be related to the 

microstructure of the intercalated surfactants and ultimately, the physicochemical 

properties of organoclays. The most common techniques that are used to study the 

microstructures of clays are: X-ray diffraction (XRD) and scanning electron microscope 

(SEM). 

1.3.1 X-ray diffraction (XRD) 
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The small angle XRD is able to measure the basal spacing of the clay particles. The 

emitted X-rays diffract in different directions after reflecting from the crystalline atoms 

of clay minerals. The intensity of the reflected rays can be measured as the function of 

the reflection angles. The basal spacing of the clay minerals can be measured by plotting 

the intensity versus the reflection angles of the beams (He et al. 2005). The basal spacing 

of organoclays usually are detected in the scanning angles (2θ) ranging from 3 to 6˚ 

(approximately 14.7 to 44.1 Å) (Zhao et al. 2016). Lagaly (1986) proposed an 

arrangement patterns which can be used to measure the number of organic carbon layers 

by using the XRD results. The expansion of the interlayer of the unmodified clays after 

the intercalation of cationic surfactant can be detected by XRD measurement (Xue et al. 

2007). 

1.3.2 Scanning electron microscope (SEM) 
 

SEM is a non-destructive method to create the surface topography and composition of the 

particles in microscale by using the electron beams instead of light beams. SEM 

demagnifies an electron beams generated from a source to scan the surface of the soil in a 

parallel fashion. The reflected beam from the surface of the soil sample produces 

different types of emission and captured by multi detectors. The topographical and 

compositional information can be assessed by analysis of specific type of collected 

electron(Suga et al. 2014). 

1.3.3 Total organic carbon analyzer (TOC) 
 

TOC analyzer measures the quantity of the total organic carbon presents in the soil 

sample. In this method, the soil sample is combusted at a 680˚ C in an environment 
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enriched with oxygen. As a result, the existing carbons in the soil structure will be 

decomposed and converted to carbon dioxide (CO2) in gaseous phase. The CO2 emission 

from the combustion procedure will be cooled down and collected by an infrared gas 

analyzer (Schumacher 2002). The fraction of organic carbon would be determined by 

analysis of the emission and comparison with the calibration curves.  

1.4  Geotechnical testing and engineering properties of soils 
 

The engineering properties of the geo-materials can be evaluated through well-known 

laboratory soil experiments. For this reason, a series of laboratory experiments were 

conducted during this study to quantify the physical and chemical properties of geo-

materials. The test methods used to evaluate the engineering properties of soils are 

summarized in Table 1-2. 

Table 1-2. Conducted laboratory tests to evaluate the engineering properties of soils 

Type of test Standard Target engineering properties 

Atterberg limit test ASTM D 4318-05 
Liquid limit (LL), Plastic 

limit (PL), Plastic index (PI) 

specific gravity test ASTM D 854-B Specific gravity (Gs) 

specific surface area 

test 

Santamarina et al. (2002) and 

Kandhal and Parker (1998) 
Specific surface area (SSA) 

 

1.5  Current application of organoclays 
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Currently, organoclays have been used in various engineering applications such as: 

drilling, site remediation and waste disposal (de Paiva et al. 2008). Although the field 

applications of organoclays in conventional earthen barriers is still limited, several 

studies indicated that they could be very promising amendments in earthen barriers to 

enhance both the hydraulic and chemical performances. Lo (2001) investigated the 

potential use of organoclay-bentonite admixture as a barrier for waste containment. He 

suggested that a small percentage of organoclay (20%) can be mixed with bentonite and 

used as the material of a soil-based liner. He explained that organoclay enhanced the 

removal efficiency of the soil liner and maintain the hydraulic conductivity of the barrier 

at the acceptable range which is required by U.S. Environmental Protection Agency (i.e. 

1 × 10-7 cm/s). Lo and Yang (2001) studied the hydraulic barrier performance of a 

organoclay as the secondary containment for the underground storage tanks. They 

concluded that organoclays can be efficient barriers for advective transport of gasoline. 

they stated that organoclays have a fair resistance to desiccation, weathering, and self-

healing because of their notable swelling tendency in contact with gasoline. Lo and Mak 

(1998) studied the feasibility of employing organoclay in compacted liner systems to 

retard the transport of phenolic compounds. They proposed that using the organoclay in 

compacted clay liners increased the retardation factor of barrier system to phenolic 

compounds, significantly.  

In addition, organoclays have been used as rheological agent in oil-based drilling fluids. 

Caenn et al. (2011)clarified that the oil-based drilling fluids have higher lubricity, 

significant thermal stability, and higher rate of penetration compared to the water-based 

drilling fluids. Organoclay can be dispersed easily in the organic hydrocarbon liquids like 
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diesel and mineral oils due to their organophilic properties. As a result, organoclay 

amendments can enhance the physical and chemical properties of oil-based drilling fluids 

under high pressure and high temperature. 

1.6 Scope of this study 
 

Although many studies have been carried out to investigate the geochemical properties of 

engineered organoclays, their geotechnical behaviors, especially the field performance as 

a sorptive amendment in earthen barrier still merits examination. The goal of this 

dissertation is to bridge the laboratory sorption test with the possible geotechnical 

engineering applications of organoclays in compacted clays, geosynthetic clay liners and 

permeable reactive barriers by investigating the hydraulic performance and contaminant 

retention of organoclays under controlled laboratory conditions. Specifically, this 

dissertation discusses the following topics: 

1. The sorptivity of organoclays, especially partitioning clays as a function of: 

sorbate properties (organic carbon content, surfactant type, grain size); sorbate 

properties (chlorination, water solubility) and the aqueous environment 

(temperature, co-solvent). To obtain the results, several series of batch sorption 

tests were designed and carried out. The details were elaborated in Chapter 2. 

2. The mass transport of representative organic contaminants through soil barriers 

including compacted clay, geosynthetic clay liner and permeable soil admixtures. 

We proposed a new concept of using the organoclays as the active components to 

aid the performance of these materials as chemical barriers. The effect of 

organoclay amendment on the mass flux of contaminants and enhanced 

retardation capacity of the amended barrier materials were investigated. 
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Additionally, the “hydraulic” performance of the same materials was studied, with 

the emphasis being placed on the impact of organoclay additive ion the fluid flow 

of non-polar liquids. For these reason, flexible-wall permeability tests and column 

breakthrough tests were carried out and analyzed.  The details of these 

investigations were elaborated in Chapter 3, 4 and 5.           
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2 CHAPTER TWO SORPTION OF ORGANIC 
CONTAMINANTS ONTO ORGANOCLAYS 

 

2.1 Background 
 

 Sorption process in an aqueous phase defines the distribution of the dissolved 

contaminants (sorbate) between the solution and sorbent (Sharma and Reddy 2004). For a 

variety of environmental pollutants (e.g., polychlorinated biphenyls, polycyclic aromatic 

hydrocarbons, etc.), natural soils typically have very limited sorption unless they are with 

high natural organic matter (NOC) content. In comparison, the engineered organic 

surfactant/clay hybrids, or organoclays, typically have their sorptivity hundreds of times 

greater than their unmodified counterparts (Chiou et al. 1983; Redding et al. 2002; 

Richards and Bouazza 2007; Upson and Burns 2006). They have significant amount of 

organic carbon content and are strong sorbents for chlorinated hydrocarbons and 

petroleum related hydrocarbons (with solubility no greater than a few mg/L). The 

physical/chemical properties of the synthesized organoclay is a function of the 

characteristics of the quaternary ammonium cations (QACs) including the molecular 

structure and quantity, or the morphology of the intercalated QACs. Based on the level of 

interaction, the sorption mechanism can be categorized into: (1) physical sorption which 

also is known as the van der Waals sorption (physisorption), and (2) chemical sorption 

(chemisorption) (Webb 2003). 
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 The physical sorption occurs when a relatively weak van der Waals interaction exists 

between solid and liquid phase. The level of energy generated during physical sorption is 

typically under 80 kJ/mole. In addition, it is possible that the sorbate molecules diffuse on 

the exterior surface of the solid phase and make a weak bond which can be reversed 

easily. However, the physically sorbed molecules do not have the potential to make a 

structural disturbance on the sorption site. Physical sorption can result in either a 

monolayer or a multilayer structure of sorbed molecules on the interaction surfaces which 

have favorable temperature and pressure condition for the physical bonding. 

In contrast, the chemical adsorption is the result of strong chemical bond between sorbate 

and sorbent. The nature of chemical bonds can be either the covalent (electron sharing) or 

ionic (electron charge transferring). The released heat energy during the chemical 

adsorption ranges between 600 kJ/mole to 800 kJ/mole. Because of a strong chemical 

bond in chemisorption, the nature of adsorbate change and form a new species. 

Moreover, the structure of top layers in adsorbent can be changed as well. These changes 

include the relaxation of interlayer spacing and/or the rearrangement of molecular 

structure in the adjacent top layers to the adsorption site. In this class of adsorption, 

typically the adsorption process lasts until the adsorbate can make a direct contact with 

the surface of adsorbent (Webb 2003).  

Mostly, organoclays are produced by exchanging the QACs with the existing inorganic 

cations in interlayer of base clay. The intercalation of QACs into the interlayer space of 

base clay refers to the primary sorption. However, increasing the QAC loading will result 

in propping up the interlayer spacing which creates a favorable organophilic phase for 

sorption of non-polar molecules. This process refers to the secondary sorption. 
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The relationship between the amount of sorbed contaminant by sorbent (S) and the 

remained contaminant in the solution phase (C) at equilibrium is known as isotherm 

(Suzuki 1990). Concentrations in liquid and solid phase are described as a unit mass per 

volume, and absorbed mass of contaminant per unit mass of sorbent, respectively. The 

sorption isotherm models are categorized in three major groups: (1) Linear isotherm (2) 

Langmuir isotherm (3) Freundlich isotherm. 

In the linear isotherm, there is a linear relationship between the absorbed amount of 

contaminant and the remaining concentration of contaminant in the solution defined by 

equation 2-1. 

ܵ ൌ ௗC 2-1ܭ
 

where S is the mass of adsorbed contaminant by the sorbent (µg/g), Kd is the linear 

distribution (partitioning) coefficient (mL/g), and C is the concentration of contaminant 

in the solution at the equilibrium condition (µg/mL). To obtain the Kd value, mass of 

adsorbed contaminant by the sorbent (S) is plotted versus concentration of contaminant in 

the solution at the equilibrium condition (C) and the slope of linear fitted line to the data 

points is defined as distribution coefficient. An example of linear sorption isotherm is 

shown in Figure 2-1. 
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Figure 2-1. Linear sorption isotherm 

In the Langmuir isotherm, a non-linear relationship between the absorbed amount of 

contaminant and the remaining concentration of contaminant in the solution is defined 

based on the concept that there are finite number of sorption sites available on the solid 

surface and sorption process depends on the availability of the sorption sites. Langmuir 

isotherm can be defined mathematically by equation 2-2. 

ܵ ൌ
ܥߚߙ
1 ൅ ܥߙ

 2-2

 

where α is a sorption constant that defines the binding energy (1/mg), and β is the 

maximum mass of contaminant that can be absorbed by sorbent (µg/g). To find the 

sorption constants, there are four different linear models that can be applied to the 

Langmuir sorption data, Table 2-1 (Ho 2006). 

Table 2-1. Linear models of Langmuir sorption isotherm 

Linear model Plot 
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An example of Langmuir sorption isotherm is shown in Figure 2-2. 
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Figure 2-2. Langmuir sorption isotherm 

The Freundlich isotherm is used for higher concentrations which represents highly 

favorable sorption. The Freundlich isotherm model is described mathematically as 

equation 2-3. 

ܵ ൌ ே 2-3ܥܭ

 

where K is the constant of sorption capacity and N is the intensity constant which is 

always less than 1. An example of Freundlich sorption isotherm is shown in Figure 2-3. 

 

Figure 2-3. Freundlich sorption isotherm 

There are many diverse factors which affect the sorption of a sorbate in soil media. The 

mentioned factors can be classified in three major groups: (1) sorbate characteristics such 

as water solubility, (2) soil characteristics such as TOC, and (3) fluid media 

characteristics such as temperature (Sharma and Reddy 2004). The classification of the 
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effective factors on the sorption of organic contaminants by soil media is illustrated in 

Figure 2-4. 

 

Figure 2-4. Effective factors in the sorption process of sorbates by sorbent 
Previous studies indicated that the sorption capacity of partitioning organoclays can be 

affected by both sorbate and sorbent properties. Specifically, greater amount of 

intercalated cationic surfactants with larger size (or consequently, higher amount organic 

carbon loading) would increase the sorptivity of synthesized organoclays while the   type, 

size and functional group could control the affinity of sorbates towards the organoclay 

sorbents., Additionally, the aqueous environmental including the co-solvent, pH, 

temperature and ionic strength can also impact the sorption process. Previously, the most 

common approach to predict the affinity of organic sorbates to the partitioning clays was 

based on their solubility in octanol-water distribution coefficient (KOW) (Chiou et al. 

1998; Di Cesare and Smith 1994; Smith et al. 1988). Chiou et al. (1982) suggested that 

the water solubility of the organic compounds could be one of the primary indicator of 

the affinity of organic compounds toward the organically modified clays. It was 
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suggested that the water solubility of sorbate molecule would decrease if the number of 

aromatic ring and degree of chlorination of the molecule increases and consequently, an 

increased KOW is often observed (Mortland et al. 1986; Zhao et al. 2016). 

The quantity of aliphatic carbon will increase on the surface of organoclays by increasing 

the total organic carbon (TOC). In a QAC modified clay, typically the entangled bulk 

aliphatic chains of the QAC play the role of partitioning medium in the sorption process. 

Many studies have indicated that the sorption capacity of organoclays is directly related 

to their TOC content, especially the organic carbons that was intercalated into the 

interlayer of the clays. Lee et al. (1989) used three organic cations: 

hexadecyltrimethylammonium (HDTMA), dodecyltrimethylammonium (DDTMA), 

nonyltrimethylammonium (NTMA) to modified soils. They observed that organic cation 

with longer aliphatic carbon chain demonstrated higher sorption capacity of nonionic 

organic contaminants (NOCs). Redding et al. (2002) studied the sorption of benzene onto 

two organoclays as a function of TOC and demonstrated that benzene has higher binding 

tendency to partitioning organoclays when the TOC increases. For organoclays modified 

by cationic surfactant with branched carbon chains, Bartelt-Hunt et al. (2003) indicated 

BTEA-bentonite had higher sorption capacity for TCE, benzene, and 1,2-dichlorobenzene 

from aqueous phase.  

The next few paragraphs discuss the effect of aqueous environment on the organoclay 

sorptivity. Previous studies indicated that the co-solvent may inhibit the sorption of 

organic sorbates onto organoclays (Nzengung et al. 1997).The study of Nzengung et al. 

(1996) evaluated the sorption of naphthalene dissolved in solution with different 

methanol fraction (fc) by organobentonites. They concluded that the sorption of 
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naphthalene onto organoclays decreased as the fraction of methanol in solution matrix 

increased. Rao et al. (1985) presented a solvophobic model to quantify the effect of co-

solvent on the sorption capacity of hydrophobic organic chemicals (HOCs) (equation 

2-4): 

 2-4

where  is the sorption coefficient from water (mL/g),  is the partitioning 

coefficient from mixed solvent (mL/g),  is an empirical constant presenting the 

interactions between water and co-solvent,  is an empirical constant presenting the 

interactions between sorbent and solvent, and  is the cosolvency power of the solvent 

which presents the interaction between solvent and the solution. This model suggests the 

equilibrium partitioning coefficient ( ) of HOCs decreases exponentially as the 

fraction of co-solvent (fc) in the solution increases. Fu and Luthy (1986) investigated the 

effect of nonpolar solvents on the sorptivity of hydrophobic solutes onto the silt loam and 

sandy soil. They concluded that the sorption of hydrophobic solutes decreased semi-

logarithmically as the percentage of solvents increased in the aqueous solution.  

Also, the effect of temperature on the sorption tendency of sorbents has been studied. 

Chiou et al. (1979) indicated that the sorption of 1, 1, 1 – trichloroethane increases at 

higher temperature. In another study, Mirmohamadsadeghi et al. (2012) studied the effect 

of temperature in the range of 30 to 50˚ C on the sorption of phenol to HDTMA-

bentonite. They concluded that HDTMA-bentonite reached to its maximum sorption 

capacity at 50˚ C. Also, Sadeghi Ghari and Shakouri (2016) studied the effect of 

temperature on the sorption of toluene on organoclay. The reported that the sorption of 
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toluene by organoclay increases when the temperature increases from 25 to 55˚ C. they 

stated that the observed increase in the sorption capacity of organoclay is due to the 

higher level of interaction between organoclay and solvent. 

Although many studies were conducted to quantify the sorption capacity of different 

organoclay sorbents vs organic sorbates, the fundamental sorption process still merits 

examination. This was due to the complexity of understanding the natures of the sorbents 

and sorbates as well as the difficulty of taking the aqueous environmental conditions into 

consideration. In this chapter, a series of batch sorption studies were conducted to 

quantify the sorption capacity of the organoclay sorbents with known microstructures and 

physicochemical properties. The impact of sorbate, and aqueous environment were also 

examined. Two partitioning clays: HDTMA-bentonite and PM-199 were selected as the 

soil sorbents for the batch sorption tests and benzene, naphthalene, hexachlorobenzene, 1, 

2, 4 –trichlorobenzene, and phenanthrene were selected as the dissolved organic 

contaminants. The major factors involved in sorption study were: (1) sorbate 

(chlorination, water solubility), (2) sorbent (organic carbon content, surface charge, grain 

size), and (3) aqueous environment (temperature, co-solvent).  

2.2 Materials and methods 
 

2.2.1 PM-199 
 

Organoclay PM-199 in powder format was obtained from CETCO Company (Hoffman 

Estates, Illinois). PM-199 is a sodium bentonite (Na-bentonite) that modified by 

bis(hydrogenated tallow alkyl) dimethyl ammonium chloride. The modification was 

achieved by exchanging the naturally occurring sodium cations in the Na-bentonite 
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interlayer with the dimethylammonium cation (Lee et al. 2012). The physical properties 

of PM-199 are summarized in Table 2-3. The specific gravity of PM-199 was measured 

as 1.46 ± 0.2 while the specific gravity of Na-bentonite was around 2.75 (ASTM D854-

B). The diffrences between the specific gravity of PM-199 and Na-bentonite was 

attributed to intercalated organic cations (Burns et al. 2006; Lee et al. 2012; Soule and 

Burns 2001). The mineralogy of PM-199 is summarized in Table 2-2 

Table 2-2. Mineralogy of PM-199 (Lee et al. 2012) 

Mineral (%)
smectite 62
quartz 14

plagioclase feldspar 12
halite 5

potassium feldspar 2
 

2.2.2 HDTMA modified bentonite 
 

Hexadecyltrimethylammonium (HDTMA) cation ([(CH3)3NC16H33
+]) was selected as the 

surfactant to synthesize HDTMA-bentonite because it yields surfactant/clay hybrid with 

higher structural stability under different environmental conditions. A calcium bentonite 

(Ca-bentonite) (Panther Creek 200, American Colloid Company) was used as based clay 

to synthesize the HDTMA-bentonite under a controlled laboratory condition. It was 

reported that the Ca-bentonite contained about 85% montmorillonite (American Colloid 

Company) and 2.58% natural organic-carbon content (McCoy & McCoy Laboratories, 

Incorporated), with a cation exchange capacity (CEC) of 103 meq/100 g (Hazen 

Research, Incorporated).  

The amount of HDTMA cation for the synthesis of HDTMA-bentonite was estimated by: 
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 2-5

where f is the desired percentage of CEC that will be satisfied by organic cation, Mcation is 

the mass of the organic cation that is needed to achieve the designed CEC, CEC is the 

cation exchange capacity of the base bentonite (meq/mol), Mclay is the mass of the 

bentonite that will be used to modify (g), GMWcation is the gram molecular weight of the 

HDTMA-Br (g/mol), and Z is the number of charge moles per each equivalent.  

The weighted salt (Hexadecyltrimethylammonium (HDTMA) bromide 

([(CH3)3NC16H33Br])) was first dissolved in 500 ml of deionized water at 60º C. Next, 

300 g of the calcium bentonite (sieved through #200) was mixed with the prepared 

solution and the slurry was stirred for 30 min. The slurry was covered and placed at room 

temperature for 24 hrs. The modified clay was filtered and rinsed with deionized water 

before it was oven-dried at 110º C for 72 hrs. Finally clay particles was ground and 

sieved by sieve number 40. 

In order to measure the surfactant intercalation, the basal spacing of Ca-bentonite and 

HDTMA-bentonite were measured using the XRD analysis. The spectra of XRD was 

recorded for angles between 2° to 20° (2θ) using CuKa radiation (n=1.5406 Å) at the 

scanning rate of 2°/min. The basal spacing of the Ca-bentonite and HDTMA-bentonite 

were measured as 15.06 Å and 19.44 Å, respectively. The XRD results are shown in 

Figure 2-5. Due to the intercalation process, HDTMA cations penetrated into the 

interlayer of Ca-bentonite and consequently increased the basal spacing of the clay. In 

addition to Ca-bentonite, a commercially available Na-bentonite was purchased from 

CECTCO Company and used as a sorbent for comparison. The engineering properties of 

. . .
cation

clay cation

M
f

CEC M GMW Z
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Ca-bentonite, HDTMA-bentonite, and Na-bentonite are summarized in Table 2-3. 

Additionally, SEM and TEM tests were conducted to examine the microstructures of Ca-

bentonite and HDTMA-bentonite (Figure 2-6).  

Table 2-3. The engineering properties of Ca-bentonite, Na-bentonite, and HDTMA 
bentonite 

Properties References Ca-bentonite 
HDTMA-

bentonite 

Na-

bentonite 
PM-199 

Liquid limit (%) ASTM D4318 88.3 74.9 282.5 50.7 

Plasticity index (%) ASTM D4318 37.3 16.3 221.6 2 

Fraction pass 

through #200 sieve 

(%) 

ASTM D6913 85.5 100 100 100 

Specific gravity ASTM D854-14 2.58 1.75 2.75 1.46 

Specific surface area 

(m2/g) 

Santamarina 

et al. (2002) 
276.28 162.21 628 60.7 

Total organic carbon 

(%) 
ASTM D7348 2.58 21.44 < 1 21.7 

Basal spacing (Å) Ye et al. (2014) 15.06 19.44 12.57 35.58 
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Figure 2-5. XRD result for Ca-bentonite and HDTMA-bentonite 

 

Calcium bentonite HDTMA-bentonite 

(a) 
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(b) 

Figure 2-6. (a) Scanning Electron Microscope (SEM) and Transmission electron 
microscopy (TEM) test of Ca-bentonite (b) Scanning Electron Microscope (SEM) 
and Transmission electron microscopy (TEM) test of calcium bentonite HDTMA-

bentonite 

 

2.2.3 Organic sorbates 
 

Anhydrous benzene with purity of 99.8%, hexachlorobenzene with purity of 99.1% in 

acetone solution, and anhydrous 1,2,4-trichlorobenzene with purity of 99% were 

purchased (Sigma-Aldrich). Also, Phenanthrene and naphthalene in crystal form with 

purity of 97% were purchased (Fisher Scientific Company). The physical and chemical 

properties of the studied contaminants are summarized in Table 2-6. 

2.2.4 Co-solvents 
 

Acetone (W.M.Barr Co.)and methanol (Carolina Co.) were used as the organic solvent. 

The physical and chemical properties of the solvents are summarized in Table 2-4 and 

Table 2-5. 
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Table 2-4. Physical and chemical properties of acetone 

Physical States: Liquid 
Boiling Point: > 133˚ F 

Auto-ignition Point: 869˚ F 
Flash Point (according to TAG Closed 

Cup method): 
0˚F 

Explosive Limits: LEL: 2.5 % at 77˚ F, and UEL: 13 % at 77˚ F
Density: 0.7845 g/cm3 at 77˚ F 

Vapor Pressure (vs. Air or mm Hg): 30.6 kPa at 77˚ F 
Solubility in Water: Complete 

 

Table 2-5. Physical and chemical properties of methanol 

Physical States: Liquid 
Boiling Point: > 148.5˚ F 

Auto-ignition Point: 878˚ F 
Flash Point (according to TAG Closed 

Cup method): 
52˚ to 54˚F 

Explosive Limits: LEL: 6 % at 77˚ F, and UEL: 36 % at 77˚ F
Density: 0.792 g/cm3 

Vapor Pressure (vs. Air or mm Hg): 13.02 kPa at 68˚ F 
Solubility in Water: Complete 
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Table 2-6. Physical and chemical properties of the studied contaminants 
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2.2.5 Extraction Liquids 
 

American Chemical Society (ACS) grade hexanes (Carolina Co.) and anhydrous 

dichloromethane (DCM) with purity of 99.8% (Sigma-Aldrich Co.) were used to extract 

sorbates from the aqueous phase. 

2.2.6 Batch sorption test 
 

2.2.6.1 Sample preparation 
 

The sorption capacity of soils sorbents and the effects of sorbents properties (including 

the grain size, TOC, specific gravity, and specific surface area); sorbates properties 

(including the water solubility and chlorination of the sorbate molecules), and aqueous 

environment (co-solvent fraction and temperature) were investigated. The testing matrix 

of conducted sorption tests is summarized in Table 2-7. 

Table 2-7. Test matrix of the lab batch sorption 

Test NO. Sorbate Co-Solvent Water Temperature Sorbent
1 HCB Acetone (100%) 0% 25˚ C HDTMA-bentonite
2 HCB Acetone (100%) 0% 25˚ C PM – 199 (Powder)

3 
1, 2, 4 - 

Trichlorobenzene 
Acetone (100%) 0% 25˚ C HDTMA-bentonite 

4 Phenanthrene Acetone (100%) 0% 25˚ C HDTMA-bentonite
5 Naphthalene Methanol (30%) 70% 25˚ C HDTMA-bentonite
6 Naphthalene Methanol (30%) 70% 25˚ C Low plasticity silty clay
7 Naphthalene Acetone (100%) 0% 25˚ C HDTMA-bentonite
8 Benzene Methanol (30%) 70% 25˚ C HDTMA-bentonite
9 Benzene 0% 100% 60˚ C HDTMA-bentonite
10 Benzene 0% 100% 40˚ C HDTMA-bentonite
11 Benzene 0% 100% 25˚ C HDTMA-bentonite
12 Benzene 0% 100% 10˚ C HDTMA-bentonite
13 Benzene 0% 100% 25˚ C Ca - bentonite
14 Benzene 0% 100% 25˚ C Na - bentonite
15 Benzene 0% 100% 25˚ C PM – 199 (Powder)
16 Benzene 0% 100% 25˚ C PM – 199 (Granular)
17 Benzene Acetone (100%) 0% 25˚ C HDTMA-bentonite
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As an example, the solution preparation procedure for HCB is described in follow. The 

HCB stock solution with an initial concentration of 1000 µg/mL was used to generate the 

HCB solutions with the desired concentrations to investigate the impact of chlorination 

and water solubility of the sorbate molecules, and also the effect of modifier surfactant on 

the sorption capacity of the sorbents. For this purpose, acetone was used as the solvent to 

prepare the HCB solutions with final concentrations of 1, 5, 10, 20, 30, 40, 60, 80, and 

100 µg/mL. 

Next, a sets of conical centrifuge tubes with teflon coded lid (CORING Co.) with 

capacity of 15 mL were filled with prepared stock solutions. Next, 0.2 g of sorbent was 

added to the second set of batch reactors. Then, the batch reactors were agitated for 24 

hours before centrifuged at 1500 rpm for 30 min. Next, 8 mL of supernatant in batch 

reactor was filtered through a 0.2 µm syringe filters (Acrodisc Co.). The filtered samples 

were extracted with hexane (used for naphthalene) or dichloromethane (used for benzene) 

at a ratio of 10:1 (v/v) to prepare the samples for analysis. The filtered samples were 

analyzed with Gas Chromatography equipped with flame ionization detector and electron 

capture detector (GC-FID/ECD) (Clarus 480, Perkin Elmer Co.). A schematic illustration 

of the batch sorption procedure is shown in Figure 2-7.  

The concentration of the absorbed sorbate by sorbent was measured as: 

 0m

s

V C C
S

M


  2-6

Where S (µg/g) is the concentration of sorbate sorbed by sorbent, C0 (µg/mL) and C 

(µg/mL) are the initial and equilibrium concentrations of sorbate in the solution, 

respectively. VM (mL) is the volume of the batch reactor, and MS (g) is the total weight of 

the sorbent. S was plotted versus C and the slope of the linear fit was determined as the 
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partitioning coefficient, Kd.  

In addition, the sorption kinetics of naphthalene and benzene onto HDTMA-bentonite 

were quantified by a series of non-equilibrium sorption tests. For kinetic study of 

naphthalene, 16 stock solutions consisted of 200 g/mL naphthalene in 70% deionized 

water and 30% methanol were prepared in the batch reactors. For benzene, 32 stock 

solutions with concentration of 200 g/mL in deionized water were prepared in the batch 

reactors. Then 0.2 g of HDTMA-bentonite were added to batch reactor. At 16 preset time 

periods (starting from 15 secs to 48 h), the supernatant was tested for the naphthalene and 

benzene concentration. 

 
Figure 2-7. Schematic figure of the sorption procedure 

 

2.3 Results and discussion 
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2.3.1 Overall results 
 

The effect of major factors including (1) sorbate (chlorination, water solubility), (2) 

sorbent (organic carbon content, surface charge, surface area, grain size), and (3) aqueous 

environment (temperature, co-solvent) on the sorption characteristics of studied sorbents 

were studied. 

The acquired results suggested that the affinity of dissolved organic contaminants to 

organobentonites increased when the number of aromatic rings and chlorination increased 

in organic contaminants. It was observed that the solubility of molecules decreased in the 

order of (phenanthrene>naphthalene>benzene) as the aromatic ring increased. Likewise, 

the solubility of molecules decreased in the order of (hexachlorobenzene>1, 2, 4 –

trichlorobenzene >benzene) as the chlorinated position on the ring increased. This 

happened because of the increased hydrophobicity of organic contaminants which 

resulted in decreased solubility.  

The surface modification resulted in expansion of interlayer in the base clay followed by 

increasing the organic matter loading within the clay interlayer. Consequently, a 

favorable organophilic phase was created in organobentonite which attributed to higher 

affinity of dissolved organic contaminants toward organobentonites compared to 

unmodified sorbents. Also, it was observed that PM-199 showed higher sorption capacity 

to organic contaminants compared to HDTMA-bentonite. The reason was that PM-199 

was synthesized by a double chain surfactant modifier while a single chain surfactant 

modifier was used to synthesize HDTMA-bentonite. As a result, the percentage of 

aliphatic carbon in PM-199 was higher than HDTMA-bentonite which resulted in higher 
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sorption capacity of PM-199. In addition, the obtained results suggested that grain size 

has a negligible impact on the sorption capacity of the sorbents. 

 

Additionally, it was found that the affinity of organic contaminants to organobentonite 

was decreased by increasing the percentage of solvent in the aqueous solution due to the 

cosolvency of the co-solvent which increased the solubility and decreased the sorption 

capacity of hydrophobic organic contaminants. Also, it was observed that the sorption 

capacity of the organobentonites increased by increasing the temperature due to a higher 

level of kinetic energy that was induced to the solution and increased the interaction 

between organobentonite and organic contaminants. 

2.3.2 Effect of molecular characteristics of sorbents on sorption capacity  
 

In this section, the effect of molecular characteristics of sorbents on the sorption behavior 

of organically modified and unmodified sorbents is discussed.  

The obtained results from the batch sorption study of dissolved benzene in aqueous 

solution indicated that the sorption capacity of organobentonites to organic contaminants 

were significantly higher than unmodified bentonites. The partitioning coefficient of PM-

199 and HDTMA-bentonite for benzene solution were measured as 251.4, and 82.97 

mL/g respectively. While, the partitioning coefficient of Ca-bentonite and Na-bentonite 

for benzene solution decreased drastically to 19.83, and 9.75 mL/g respectively. As it 

mentioned previously, the intercalation of QACs with base clays increases the organic 

matter loading within the clay interlayer. Many studies have been done on the effect of 

organic carbon loading on the sorption capacity of sorbents (Bartelt-Hunt et al. 2003; 
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Boyd et al. 1988; Redding et al. 2002). The natural organic carbons existing on the 

surface of sorbents has higher affinity to interact with organic compounds. As a result, 

unmodified bentonites and silty clay presented a negligible sorption capacity to organic 

contaminants because they have limited percentage of natural occurring carbon in their 

structure (Redding et al. 2002). However, organobentonites exhibited significant sorption 

capacity to organic contaminants because the intercalated modifier cations increase the 

carbon loading on the surface of organobentonites (Boyd et al. 1988; Smith and Jaffe 

1994).The effect of TOC on the partitioning coefficient of studied sorbents has been 

shown in Figure 2-8.  

  

Figure 2-8. Effect of TOC on the partitioning coefficient 

In addition, it was noticed that PM-199 exhibited much higher sorption capacity for 

organic contaminant compared to HDTMA-bentonite. This result was validated using 

two sets of sorption study including the sorption of benzene from aqueous solution and 

HCB from 30% acetone + 70% DI water solution to PM-199 and HDTMA-bentonite. 

The partitioning coefficient of PM-199 and HDTMA-bentonite for HCB were measured 
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as 240.67, and 133.83 mL/g respectively. It was found that the higher sorption capacity of 

PM-199 compared to HDTMA-bentonite was due to the higher number of aliphatic 

carbons in PM-199 compared to HDTMA-bentonite. The number of intercalated aliphatic 

carbons can be increased either by increasing the length of carbon chain or the number of 

organic chains, which results in higher sorption of organic compounds (Burns et al. 

2006). Due to the mentioned reason, it was anticipated that PM-199 exhibits higher 

sorptivity compared to the HDTMA-bentonite because PM-199 was synthesized by a 

double chain surfactant compared to HDTMA-bentonite that was synthesized by a single 

chain surfactant. The obtained results are demonstrated Figure 2-9. 

 

(a)
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(b)
Figure 2-9. Sorption capacity of PM-199 and HDTMA-bentonite as a function of 
organic cation types for (a) benzene in aqueous solution1, and (b) HCB in 30% 

acetone + 70% DI water solution 

Also, the sorption capacity of PM-199 in the form of powder and granular for dissolved 

benzene in aqueous solution was investigated to study the effect of particle size as a 

physical property of sorbent on the sorption capacity of sorbent. The results are presented 

in Figure 2-10. The partitioning coefficient of powder PM-199 and granular PM-199 for 

benzene were measured as 251.4, and 231.37 mL/g respectively. As a result, no 

significant differences between the partitioning coefficient of powder and granular PM-

199 was observed. It can be concluded that the particle size has a negligible impact on the 

sorptivity of sorbents. 

                                                 
1 The isotherm for benzene sorption by HDTMA is scaled down by 10. 



 

50 
 

 

Figure 2-10. Effect of particle size on the sorption capacity of PM-199 

 

2.3.3 Effect of the characteristics of sorbates on sorption capacity  
 

Although the molecular characteristics of sorbents has significant impact on their 

sorption capacity, the molecular structure of sorbates can directly affect the sorption 

capacity of geo-material. In this section, the effect of sorbate structure on the sorption 

capacity organic compounds onto HDTMA-bentonite has been investigated. The sorption 

capacity of HDTMA-bentonite as a function of two variable factors including the 

chlorination and the number of aromatic rings has been quantified by conducting a series 

of batch sorption tests. 

Benzene, 1,2,4-Trichlorobenzene, and HCB were selected as the organic contaminants to 

study the impact of chlorination on the sorption capacity of HDTMA-bentonite. For this 

reason, a set of batch sorption test for each organic compound was conducted using 

acetone as co-solvent. The sorption data for each component was fitted with a linear 

isotherm which confirmed that the sorption of studied organic contaminants onto the 
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HDTMA-bentonite occurred due to the partitioning mechanism. The obtained isotherms 

are illustrated in Figure 2-11. 

 

Figure 2-11. Chlorination effect on the sorption capacity of HDTMA-bentonite2 

The partitioning coefficient of HDTMA-bentonite for benzene, 1,2,4-Trichlorobenzene, 

and HCB were measured as 10.76, 59.47, and 133.83 mL/g, respectively. For the sorption 

of three studied compounds to HDTMA-bentonite, the sorption capacity increased as the 

compound chlorinated. It can be said that the chlorination decreases the solubility of 

compounds. In benzene, hydrogen atoms facilitate the hydrogen bonding of benzene with 

acetone which demonstrates a weak partitioning to the HDTMA-bentonite compared to 

the HCB with relatively lower solubility in acetone. As a result, the partitioning 

coefficient of studied compounds decreases in the order of HCB>1,2,4-

trichlorobenzene>benzene, respectively. 

Additionally, benzene, naphthalene, and phenanthrene were selected to study the effect of 

aromatic rings on the sorption capacity of HDTMA-bentonite. Therefore, a set of batch 
                                                 

2 The isotherm for 1,2,4-Trichlorobenzene is scaled down by 10 
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sorption test for each organic compound was carried out using acetone as co-solvent. The 

sorption data for each component was fitted with a linear isotherm. The isotherm 

parameters are illustrated in Figure 2-12. 

 

Figure 2-12. Aromatic benzene ring effect on the sorption capacity of HDTMA-
bentonite3 

The partitioning coefficient of HDTMA-bentonite for benzene, naphthalene, and 

phenanthrene were measured as 10.76, 163.29, and 213.83 mL/g, respectively. It was 

observed that the sorption capacity of HDTMA-bentonite increased when the number of 

aromatic rings increased in the compound structure. The partitioning coefficient of 

benzene is much lower than naphthalene and phenanthrene. It can be attributed to higher 

solubility of benzene in acetone compared to naphthalene and phenanthrene. It suggests 

that organic compounds with higher solubility have lower sorption into sorbent due to the 

partitioning mechanism compared to the organic compounds with lower solubility 

                                                 
3The isotherm for Naphthalene is scaled down by 10 & the isotherm for Phenanthrene is scaled down by 
100 
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(Changchaivong and Khaodhiar 2009). In conclusion, the Kd values decrease in the order 

of phenanthrene>naphthalene>benzene, respectively. 

2.3.4 Effect of aqueous environment 
 

Additionally, the effect of co-solvent on the sorption behavior of organobentonite 

(HDTMA-bentonite) was studied. The stock solutions were prepared by using acetone as 

the non-polar co-solvent and DI water as polar solvent. Benzene and naphthalene were 

selected as organic sorbates. It was observed that the partitioning coefficient of benzene 

in water is 149.59 mL/g and decreased to 75.51 mL/g and 10.76 mL/g by increasing the 

percentage of acetone from 30% to 100%, respectively. it was concluded that the 

dissolved benzene in water has 13 times higher affinity to HDTMA-bentonite compared 

to dissolved benzene in acetone. The acquired results are shown in Figure 2-13  (a). 

Likewise, it was observed that the sorption capacity of HDTMA-bentonite to naphthalene 

dissolved in a aqueous solution consisted of 30% acetone was 1253.4 mL/g and 

decreased to 163.29 mL/g when the naphthalene dissolved in 100% acetone. The 

acquired results are shown in Figure 2-13 (b). This result showed that the capacity of 

HDTMA-bentonite to sorb naphthalene decreased drastically (by 86%) when the solvent 

for naphthalene changed from aqueous solution with 30% acetone to 100% acetone. As a 

result, the partitioning coefficient increases when the co-solvent fraction in the solution 

decreases. Increasing the co-solvent percentages in the solution will be accompanied by 

higher water solubility of organic components which results in lower affinity to the 

sorbents (Nzengung et al. 1996).  Rao et al. (1990) concluded a similar result. They 

explained that the cosolvency of the co-solvent increased the solubility and decreased the 

sorption capacity of hydrophobic organic chemicals. 
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(a) 

 

(b) 

Figure 2-13. Sorption capacity of HDTMA-bentonite as a function of co-solvent for 
(a) benzene4, and (b) naphthalene5 

Moreover, the sorption of benzene onto HDTMA-bentonite was characterized as a 

function of temperature variation. The obtained results are presented in Figure 2-14. 

                                                 
4 The isotherms for benzene sorption (Fc=0 & 30) are scaled down by 10. 

5 The isotherm for naphthalene sorption (Fc=100) is scaled down by 10. 
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Figure 2-14. Effect of temperature variation on the sorption capacity of HDTMA-
bentonite 

The sorption isotherm displayed a linear behavior for the entire range of studied 

temperature. This indicated that the governing reaction process between benzene and 

HDTMA-bentonite in various temperatures was partitioning. The partitioning coefficient 

of HDTMA-bentonite at 60˚ C was measured as 200.16 mL/g and decreased to 176.08, 

149.59, and 58.81 mL/g by lowering the temperature from 40˚ C to 25˚ C and 10˚ C, 

respectively. the results suggested that the sorptivity of benzene in aqueous solution to 

HDTMA-bentonite increases by increasing the temperature. The reason may attribute in 

the higher kinetics energy that will be induced to the solution by increasing the 

temperature. As a result, the kinematic energy of dissolved contaminant compounds 

increases which increases the level of interaction between sorbent and sorbate. Rowe et 

al. (2005) derived the same conclusion for the sorption of benzene to Na-bentonite.  

2.3.5 Kinetic sorption test 
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The results of sorption kinetic are shown in Figure 2-15. The kinetic study revealed that 

the uptaking of naphthalene by HDTMA-bentonite occurred quicker (20 s) when 

compared with the uptaking benzene (20 min). It was observed that approximately 85% 

of sorbed concentration of naphthalene at equilibrium were uptaken by the HDTMA-

bentonite within first 20 seconds while only 5% of benzene was sorbed to the HDTMA-

bentonite in first 20 seconds. These results suggested that the rate of sorption for benzene 

is 17 times lower than naphthalene. After the initial rapid sorption stage, the rest of 

ultimate sorption for both sorbents were attained in a slow sorption stage that was 

completed in 12 hours. 

(a) (b) 

Figure 2-15. Sorption kinetic of (a) naphthalene (b) benzene on HDTMA-bentonite 

The kinetic parameters for both studies were estimated by applying the on-site transfer 

model described by the following equation (Nzengung et al. 1997): 

௧ܥ ൌ ௘ܥ ൅ ሾܥ଴ െ ݌ݔ௘ሿ݁ܥ ൤െ ൬
଴ܥߝ
௘ܥ
൰ ൨ 2-7ݐ

 

where Ct is the solution concentration at time (t) (µg/mL), Ce is the solution concentration 

at equilibrium (µg/mL), C0 is the initial solution concentration (µg/mL), t is time (min), 
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and ε is mass transfer coefficient (1/min). As a result, the mass transfer coefficient (ε) 

was optimized using the partitioning coefficient constant (KP) obtained from batch 

sorption study for studied sorbates, naphthalene and benzene. The measured kinetic 

parameters are summarized in Table 2-8. 

Table 2-8. Sorption kinetics and equilibrium sorption parameters 

Sorbate-Sorbent 
KP (Kd) 
(mL/g)

R2 ε (1/min) 
Equilibrium time 

(h)
Naphthalene/HDTMA-bentonite 1355.50 0.98 0.45 12 

Naphthalene/Silty clay  4.53 0.95 N. A. N. A. 
Benzene/HDTMA-bentonite 149.59 0.95 0.39 12 

Benzene/PM-199 251.4 0.97 N. A. N. A. 
 

The obtained results are in good agreement with previous researches and indicated that 

the equilibrium sorption governed the transport of naphthalene and benzene in soils when 

given the low flow rate or long detention time. Also, it was assumed that the desorption 

of naphthalene and benzene occurs fast as well and the one-dimensional mass transport 

model is valid for the contaminant transport modeling in the next few chapters (Freeze 

and Cherry 1979). 

2.4 Conclusions 
 

In this chapter, the sorption characteristics of two representative organobentonites were 

studied by examining the effects of sorbate properties, sorbents properties and the 

aqueous conditions. It was observed that the surface modification increased the organic 

carbon content of Ca-bentonite from 2.58% to 21.44% for HDTMA-bentonite. The 

increasing of the organic carbon content crated a organophilic phase which increased the 

affinity of organic contaminants toward organobentonite. As a result, the sorption 
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capacity of organobentonites to organic contaminants were considerably higher than 

unmodified bentonite. Also, the result from the sorption study of benzene solution 

confirmed that the partitioning coefficient of PM-199 and HDTMA-bentonite for benzene 

solution were much higher compared to the partitioning coefficient of Ca-bentonite and 

Na-bentonite. In addition, the results from sorption study suggested that PM-199 

exhibited much higher sorption capacity for organic contaminant compared to HDTMA-

bentonite. In addition, the obtained results suggested that grain size has a negligible 

impact on the sorption capacity of the sorbents. 

In addition, the effect of chlorination and water solubility of sorbates on the sorption 

characteristics of HDTMA-bentonite was investigated. The acquired results suggested 

that the affinity of dissolved organic contaminants to organobentonites increased when 

the number of aromatic rings and chlorination increased in organic contaminants. This 

happened because the chlorination and increased aromatic rings result in increased 

hydrophobicity of organic contaminants and result in decreased solubility. It was 

observed that the solubility of molecules decreased in the order of 

(phenanthrene>naphthalene>benzene) as the aromatic ring increased. Likewise, the 

solubility of molecules decreased in the order of (hexachlorobenzene>1, 2, 4 –

trichlorobenzene >benzene) as the chlorinated position on the ring increased. The organic 

contaminants with lower solubility have higher organophilicity which results in higher 

affinity toward organobentonite.  

Finally, the effect of aqueous condition on the sorption characteristics of HDTMA-

bentonite was investigated. The results of this study suggested that the sorption capacity 

of HDTMA-bentonite to the organic contaminants decreased when the fraction of co-
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solvent increased in the solution because the cosolvency of the co-solvent increased the 

solubility and decreased the sorption capacity of hydrophobic organic contaminants. 

Moreover, the effect of temperature on the sorptivity of HDTMA-bentonite was 

evaluated. It was found that the sorption capacity of sorbents to the organic contaminants 

increases when the environment temperature increases. The reason may attribute in the 

higher kinetics energy that will be induced to the solution by increasing the temperature. 

As a result, the kinematic energy of dissolved contaminant compounds increased which 

increases the level of interaction between sorbent and sorbate. 
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3 CHAPTER THREE ENGINEERING BEHAVIORS OF 
COMPACTED CLAY AMENDED WITH ORGANOCLAYS 

 

3.1 Introduction 
 

Compacted clay liner (CCL) is the most common soil liner for landfills or underground 

storage tanks. CCLs are mechanically modified soils to reduce the fluid flow and mass 

transport in the subsurface (Broderick and Daniel 1990). Most commonly, CCLs are 

compacted to a thickness of 600 mm (2ft) or 900 mm (3ft). However, their thickness can 

reach to 1.2 to 3 m or higher, especially for the applications in vertical barriers (or 

vertical cutoff walls). There are several major types of CCL materials: natural soils, soil-

bentonite mixtures and others. Naturally occurring clays are the most common 

components in CCLs. This group of soil consists of significant amount of clay including 

lean clay (CL), fat clay (CH), or clayey sand (SC). A mixture of natural soil and 

bentonite is typically used when the excavated soil from vicinity borrows does not 

contain significant percentages of clay content. Bentonites, mainly composed of sodium 

or calcium smectites are ideal amendments in CCLs to provide low permeability and to 

assure barriers performances (Boynton and Daniel 1985; Rowe et al. 2004).  

The CCLs are typically designed to have a low hydraulic conductivity at the field. Daniel 

and Benson (1990) demonstrated that the hydraulic conductivity of a CCL would 

decrease if (1) the level of energy in compaction effort increased; (2) the water content
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 slightly increased from the optimum water content (Figure 3-1). For the CCL application 

in a horizontal or a vertical barrier, two factors must be considered and it yields an 

acceptable zone on the compaction curve: (1) the CCL must have its hydraulic 

conductivity lower than 10-7 cm/s. A good example is illustrated in Figure 3-1: for the 

reduced proctor test, the compacted soil must have a water content between W1 and W2 

such that the resultant hydraulic conductivity of the soil will be lower than 10-7 cm/s (2) 

density. Typically, the soil must be compacted at a dry density γd greater than 90~95% of 

its maximum dry density γmax such that the soil will be stronger and less compressible. 

Most commonly, the requirement of the hydraulic performance of the CCL defines the 

range of water content in which the soil should be compacted while the requirement of 

strength and deformation defines the lower bound of the dry density of the compacted 

CCL. To meet both requirements, the combination of water content and dry density is 

required to be situated in the acceptable zone, as illustrated in Figure 3-2.  
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Figure 3-1. Recommended design criteria for the compaction of CCLs (Sharma and 
Reddy 2004) 

 

Figure 3-2. Acceptable range of water content and dry unit weight for CCLs 
(Sharma and Reddy 2004) 
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Although the CCLs are designed to provide a low rate of permeability, the previous 

studies indicated that the permeability of CCLs to the certain organic contaminants could 

increase significantly due to the chemical incompatibility. For instance, it was observed 

that the CCL materials shrink in contact with pure phase organic compounds or 

petroleum-related products and cracks are developed in entire CCL profile which cause 

higher hydraulic conductivity (Bowders and Daniel 1987; Broderick and Daniel 1990; 

Fernandez and Quigley 1985).  

Also, the mass flux of contaminant through CCLs can be significant even though the low 

flow rate regime governs the advection of contaminants through CCLs because the filling 

materials in conventional CCLs have non-interactive nature and low sorption capacity 

(Bright et al. 2000; Brown and Burris 1996). The advection-dispersion mechanism 

controls the contaminant mass transport through CCLs with non-interactive components 

because no chemical or biochemical reactions take place in the pore volumes of fillings 

that uptake or reduces the concentration of contaminants (Shackelford 1994).This 

indicates that a low level of pure organic or petroleum derivative contaminants can raise a 

great concern regarding the long term performance of CCL systems (Ma et al. 2015). 

Therefore, additional investigation on the behavior of CCLs in contact with certain 

chemical contaminants is required to enhance the long-term performance of CCL system. 

The obtained results from the recent investigations have proposed the possibility of using 

the chemically reactive geo-materials as an additive in CCL soil to enhance the chemical 

compatibility and the contaminant attenuation capability of CCLs. Consequently, the 

concept of low permeability reactive barrier with reactive geo-material amendments has 

been proposed for the clay liner applications(Lo et al. 1997; Wiles et al. 2005). .The 
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advantages of the proposed reactive barriers over the conventional CCLs is their ability to 

uptake, immobilize and/or degrade the contaminant transport (Figure 3-3) while 

maintaining the hydraulic conductivity of the barrier in a satisfactory range (Crocker et 

al. 1995; Lo and Yang 2001; Wagner et al. 1994). Many different studies have been 

conducted to identify suitable natural or engineered geo-material candidates as reactive 

amendment in CCLs (LaGrega et al. 1994). Other than bentonite, mixture of bentonite 

and fly ash, modified soils, activated carbon, paper industry sludge, and many other 

commercial additives can be used as a CCL component under certain circumstances. By 

all of the studied geo-materials, fly ash, zeolite, organo-zeolite, coated sand and 

organoclays have shown promising potential as reactive amendment in order to improve 

the soptivity of CCLs (Lo and Liljestrand 1996; Prasad et al. 2012; Varank et al. 2011; 

Younus and Sreedeep 2012).Among the proposed amendments, organoclays have 

demonstrated the most effective sorption capacity of organic contaminants (Benson et al. 

2015; de Paiva et al. 2008; Gates et al. 2004; Soule and Burns 2001). 
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(a) 

 

(b) 

Figure 3-3. Contaminant transport through (a) conventional CCL (b) reactive geo-
material amended CCL 

Organoclays are suitable sorbents to uptake nonpolar or low-polarity compounds from 

aqueous phase. The organic surfactant/clay hybrids also have increased swelling 

tendency and plasticity in organic liquids and decreased permeability for non-polar 

liquids.  

Based on previous studies, organoclays are efficient to enhance the retention capacity of 

organic liquids or petroleum products by the CCLs (Lo and Yang 2001; Moon et al. 

2007; Smith et al. 2003; Yang and Lo 2004). It was observed that the permeability of 

organoclays amended CCLs to gasoline decreased two to four orders of magnitude 

compared to the hydraulic conductivity of same system permeated by water (Smith et al. 

2003). Although the organoclays increase the hydraulic conductivity of barrier system 

when permeated with water, a low dosage of organoclay in the CCL soil has limited 



 

66 
 

impact the overall permeability of the CCLs (Yang and Lo 2004). However, a small 

fraction of organoclays in GCL soil increases significantly the attenuation capability of 

non-polar organics, chlorinated organics, polycyclic hydrocarbons and pesticides from 

aqueous phase (Boyd et al. 1988; Jaynes and Boyd 1990; Jaynes and Boyd 1991; Larsen 

et al. 1992; Montgomery et al. 1991; Owabor et al. 2010; Qu et al. 2008; Smith et al. 

1990). Nzengung et al. (1996)proposed that the organic contaminants can be absorbed by 

organically modified clays through the partitioning process, which mostly the partitioning 

coefficient of organoclays may be hundreds of thousands of times greater than those of 

natural soils. 

Many studies have been conducted to assess the barrier performance of low flow rate 

(CCLs) and the corresponding contaminant transport parameters (Acar and Haider 1990; 

Crooks and Quigley 1984; Lai and Lo 2006; Lai et al. 2006). However, relatively limited 

researches have been conducted to evaluate the feasibility of using organoclays as an 

amendment in CCLs for the purpose of attenuating the mass transport of waste 

contaminant (Lee et al. 2012; Lo and Mak 1998). This is because of difficulties in 

controlling the properties of flow and the contamination and long duration of 

breakthrough test in low flow rate systems. The scope of this study is to produce barrier 

systems with new reactive components. The objectives of studying low flow rate barrier 

(CCL) are to quantify the transport parameter when permeating by naphthalene and 

evaluate the attenuation capacity of the system consisting of 95% silty clay and 5% 

HDTMA-bentonite. HDTMA-bentonite was selected as a reactive component of CCL 

because it has relatively high percentage of organic carbon and high sorption capacity to 

absorb organic compounds (organophilicity). The barrier performance of silty clay with 
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HDTMA-bentonite amendment permeating with gasoline (as a representative of 

petroleum product) and PAH (as a representative of NAPLs which are the most common 

pollution in groundwater) was assessed. Initially, the permeability of saturated CCLs 

specimens consisted of silty clay with HDTMA-bentonite amendment were evaluated in 

the flexible wall permeameter. Also, the free swelling experiment to measure the swelling 

index of the clay/HDTMA bentonite in water and gasoline were carried out. Finally, the 

retardation factor and diffusion coefficient of naphthalene in compacted clay/HDTMA 

bentonite soil were quantified using batch sorption study and soil column laboratory test. 

3.2 Materials and methods 
 

Three different soil media including natural low plasticity silty clay, HDTMA-bentonite, 

and Ca-bentonite were used in this study. The low plasticity silty clay (Nugent Sand Co.) 

consisted of 1% gravel, 12% sand, and 87% fine particles (ASTM D422). The physical 

properties of the low plasticity silty clay is summarized in Table 3-1.  

Table 3-1. Engineering properties of the natural low plasticity silty clay 

Properties Low plasticity silty clay 

Liquid limit (%) 26 

Plasticity index (%) 4.5 

Fine content % (<#200 sieve) 87 

Specific gravity 2.62 

Specific surface area (m2/g) 33.5 

Total organic carbon (%) <1 
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3.2.1 Standard proctor compaction test 
 

To determine the optimum water content and the maximum dry density, the standard 

proctor test was carried out for each soil specimen in accordance with ASTM D698, 

Method A. The specification of standard proctor testis summarized in Table 3-2. 

Table 3-2. The specification of standard proctor test 

Method 
Mold 

diameter 
Rammer 
weight 

Rammer 
free-fall 
height 

Number of 
layers 

(and 
blows per 

layer) 

Equivalent 
compaction 

energy 

Standard 
effort 

(ASTM 
D698) 

4 in 

(101.6 mm) 

5.5 lbf 

(24.4 N) 

12 in 

(305 mm) 

3 

(25) 

12400 ft-lbf/ft3 

(600 kN-m/m3) 

 

First, the synthesized HDTMA bentonite, calcium bentonite, and silty clay were oven 

dried for 24 hrs. The compaction test was conducted on 4 soil admixtures of: 100% silty 

clay; 90% silty clay + 10% Ca-bentonite; 90% silty clay + 10% HDTMA-bentonite; and 

95% silty clay + 5% HDTMA-bentonite (by weight). Approximately 2 kg of the designed 

oven dried soil admixtures was weighted and spread out on the pan to cool down. For 

each soil admixture, six specimens with different water content ranging from 10% to 16% 

(with increment of 1%) were prepared and standard proctor test was carried out on each 

specimen. Approximately 2kg of prepared soil was placed into a compaction mold. Next, 

a 5.5 lbf rammer was dropped from the height of 12 inches and transfer the total 

compaction energy (12400 ft-lbf/ft3) to the soil (Figure 3-4(a)). After compaction, the 

collar was removed and the soil was trimmed. Next, the compacted soil was weighted and 
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3 samples were taken from the top, middle, and bottom of the soil column (~100 g) for a 

water content determination, Figure 3-4(b).  

 

  

(a) (b) 

Figure 3-4. (a) Compaction of soil layer (b) Extruded soil from compaction mold 

 

To measure the water content of moist samples, their weight was recorded right after 

sampling. Then, soil samples were oven-dried for 24 hours. Finally, the weight of dried 

samples was recorded. The water content of the samples was calculated by using equation 

3-1. 

100w

s

w
w

w
    3-1
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Where w  is the water content of the soil sample (%), ww  is the weight of water which is 

also the difference between the weight of moist soil ( Tw ) and the weight of the oven-

dried soil ( sw ). Initially, the moist density of the compacted soil was determined using 

equation 3-2. 

 
1000

t md
m

M M

V



  

3-2

where m  is the moist density of the compacted soil, tM is the total weight of soil 

specimen and mold, mdM is the weight of mold, and V  is the volume of compaction mold 

(944 cm3 for the standard effort).  

The dry density d  of the compacted soil specimen was by: 

1
100

m
d w

 


  3-3 

The dry unit weight ( d ) was calculated as: 

 39 807d d
kN.

m
    3-4 

The relationship between water content and dry density of each compacted specimen was 

obtained with sufficient numbers of repeated tests. The maximum dry density and the 

optimum water content of each admixture were determined and shown in Figure 3-5 and 

Table 3-3. 
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Figure 3-5. Compaction curve for the studied soil admixtures 

Table 3-3. Compaction test results 

Soil admixture  W (%) γd (g/cm3)

Silty clay (100%)  13.6 1.85
Silty clay (90%) + Ca‐bentonite (10%) 14.83 1.86

Silty clay (90%) + HDTMA‐bentonite (10%) 13.04 1.82

 

3.2.2 One-dimensional swell test 
 

The one-dimensional swell test was carried out for the three soil admixtures including 

100% silty clay, 90% silty clay + 10% Ca-bentonite, and 90% silty clay + 10% HDTMA-

bentonite according to ASTM D4546. First of all, the three soil admixtures were oven 

dried for 24 h. Next, the water content of the oven dried specimens was adjusted to 13 to 

14%. The soil specimens were mixed and placed into a ring with diameter of 66 mm and 

height of 20 mm, respectively. The surface of the filled soil into the ring was smoothened 

and the ring was placed into the oedometer apparatus. An overburden pressure of 1 kPa 

was applied to each of the soil specimen. Then water or gasoline was added to the soil 
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specimen in the ring. The vertical deformation of the soil specimen was recorded versus 

time. It was observed that the vertical deformation typically stabilized after 24 hours. 

3.2.3 Permeability test 
 

The hydraulic conductivity of three compacted soils: 100% silty clay, 90% silty clay + 

10% Ca-bentonite, and 90% silty clay + 10% HDTMA-bentonite were measured using 

flexible wall permeameter (Trautwein Soil Testing Equipment) following the ASTM 

standard D5084. First each soil specimen was compacted at the determined optimum 

water content following the compaction procedure explained in section 3.2.1. After 

extruding the compacted specimens from the compaction mold, a cylindrical trimming 

mold with 5.08 cm diameter and 10.16 cm in height was used to obtain a compacted soil 

sample with desirable dimensions for the permeability test. Two pairs of porous stone and 

filter paper were saturated before placed on top and below the trimmed soil specimen. 

Next, a membrane stretcher was used to stretch a latex membrane before it wrapped 

around the soil specimen. Next, a Finally, the inflow and outflow tubes were connected to 

the top cap and the chamber was mounted on the base of permeameter (Figure 3-6). 
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(a) (b) 
Figure 3-6. (a) Soil column arrangement for hydraulic conductivity (b) Sealed soil 

column in the pressure chamber 

 

After the chamber was filled with de-aired water, the chamber pressure (cell pressure) 

was set at13.7kPa and the water was fed into the soil column from the bottom to the top. 

To increase the saturation of the soil specimen, back pressure was applied to the 

specimen. The back pressure and cell pressure were increased simultaneously with same 

increment of13.7 kPa each time and the Skempton’s B-value was examined. Typically, 

B-value greater than 95% was achieved for hydraulic conductivity test at the back 

pressure of 192kPa and the cell pressure of 206kPa. 

Initially, the hydraulic conductivity of three specimens was measured using the falling 

head, rising tailwater method (Method C). In addition, the permeability of soil specimen 

with of 90% silty clay and 10% HDTMA-bentonite to the gasoline was measured using 
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the same method. The fluid conductivity of compacted soil sample to the permeant fluid 

k was determined by: 

݇ ൌ
ܽ. ܮ
.ܣ2 ݐ∆

݈݊ ൬
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݄ଶ
൰ 3-5

The falling head, constant tailwater pressure (Method B) was used to measure the 

hydraulic conductivity k of soil column comprised of 95% silty clay and 5% HDTMA-

bentonite which permeated by benzene solution for the breakthrough test: 
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where k is the hydraulic conductivity (m/s), a is the cross-sectional area of the reservoir 

containing the influent liquid (m2), L is the length of specimen (m), A is the cross-

sectional area of specimen (m2), ∆t is the time interval between h1 and h2 (s), h1 is the 

head loss across the specimen at t1 (m), and h2 is the head loss across the specimen at t2 

(m).The physicochemical properties of the permeant fluids are summarized in Table 3-4. 

Table 3-4. Physicochemical properties of the permeant fluids 

Fluids Type Polarity 

Density 

(kg/L) at 20° 

C 

Dynamic 

viscosity (cP) 

Water Deaired 10.2 1 1 

Gasoline Unleaded #87 <3 0.76 0.55 

Naphthalene/methanol 
Crystal/reagent 

grade 
5.1 0.791 0.56 
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The fluid conductivity of each soil specimen was measured when the steady state was 

reached. Typically, the results of three trials were recorded for each test and the average 

was chosen as the reported value. 

3.2.4 Breakthrough test 
 

A compacted soil column specimen consisted of 5% of HDTMA-bentonite and 95% of 

silty clay was constructed to evaluate the efficiency of HDTMA-bentonite amended CCL 

in retention of organic contaminants. The compaction and sample preparation procedure 

were conducted as it was explained in section 3.2.1. The compaction test results 

confirmed that the optimum water content of silty clay remained the same after 10% 

HDTMA-bentonite was added. Consequently, the soil admixture for breakthrough test 

was compacted at the optimum water content of 13% to 14% following ASTM D698 

(Method A). The standard proctor compaction effort resulted in compacted soil column 

with bulk density ranging between 1.78 to 1.85 g /cm3.The soil specimen was wrapped 

with Teflon tape before wrapped with latex membrane to minimize the sorption of 

dissolved naphthalene by the latex membrane. 

Table 3-5. Specification of compacted soil column 

Column Component 95% Silty clay + 5% HDTMA bentonite 

Diameter (mm) 50 

Length (mm) 68 

Gs 2.57 

Unit weight (g/cm3) 2.02 

Porosity 0.3 
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Pore volume (cm3) 42 

 

Prior to the saturation stage, the soil column was flushed with de-aired water for 

approximately 4 pore volume. Then, the saturation stage started which took near to 2 pore 

volumes to complete till the steady state was attained at effluent. The flow rate of effluent 

at steady state stage was measured as approximately 1 mL/hr. To prepare the permeant 

solution, 0.13 g of naphthalene in solid phase was dissolved in 300 mL of methanol and 

diluted with 700 mL of deionized water to acquire a solution with naphthalene 

concentration of 130 g/mL. Naphthalene was selected as the organic contaminant 

because of its relatively simple structure (Chen et al. 2005) and the frequent presence in 

the wastewater of landfill (Javadi et al. 2016; Wolfe et al. 1986). A bladder accumulator 

with viton membrane was used to feed the solution into the soil column. The bladder 

accumulator was filled with the naphthalene solution and 1 pore volume of pulse-type 

contaminant solution (~42 cm3) was injected to the soil column. Next, the inflow was 

switched back to the de-aired water right away. At the same time, samples were taken 

from effluent in vials with capacity of 8 mL. The de-aired water was injected into the soil 

column for additional 12 pore volumes (approximately 30 more days) until the 

concentration of naphthalene in the effluent was below the detection limit. The collected 

effluent samples were extracted from aqueous phase by hexane and analyzed for 

naphthalene concentration by GC, as described in chapter 2. The experimental setup is 

illustrated in Figure 3-7. 
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Figure 3-7. Experimental setup for breakthrough test 

 

3.3 Result and discussion 
 

3.3.1 One-dimensional swell test 
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The swelling tendency of three studied soil admixtures including silty clay, silty clay + 

10% Ca-bentonite, silty clay + 10% HDTMA-bentonite in the water and gasoline are 

presented in Figure 3-8. 

 

(a) 

 

(b) 

Figure 3-8. Free swelling results for the three studied soil admixture in (a) water (b) 
gasoline 
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It was observed that adding 10% of Ca-bentonite to the silty clay soil increased the free 

swelling of the admixture significantly and the hydration of Ca-bentonite is the main 

reason of the notable swelling tendency of the admixture (Chapuis 1990; Sun et al. 2009). 

In comparison, silty clay with 10% of HDTMA bentonite exhibited very limited swelling 

in water as both components had very low hydration in water and also low plasticity. 

(Benson et al. 2015; Sreedharan and Sivapullaiah 2014). However, the admixture of silty 

clay and HDTMA-bentonite demonstrates a considerable swelling tendency in nonpolar 

organic liquids such as gasoline. Tests results (Figure 3-8 (b)) suggested that 10% of 

HDTMA-bentonite + 90% of silty clay had 10 times of swelling in gasoline when 

compared to the 100% silty clay. The above observations can be explained by the 

hydrophobic interactions between non-polar species and intercalated aliphatic carbon 

chains in HDTMA bentonite (Slade and Gates 2004).As naturally occurring clay 

minerals, the pure silty clay or Ca-bentonite had demonstrated a little or negligible 

swelling in gasoline because the mineral hydration and cation hydration were 

predominant interactions between the two and water. However, the HDTMA bentonite, 

with modified and hydrophobic characteristics were able to interact with aliphatic 

aromatic hydrocarbons. Consequently, it appeared that organoclays could be superior 

materials for the containment of petroleum related products or other non-polar fluids 

when compared to natural clays. It is important to note most of the earthen barrier 

materials are under certain overburden stresses other than 1kPa. The effect of confining 

stress on the swelling tendency of the studied soil admixtures was not investigated here. 

It was expected that the higher swelling potential could lower the permeability the 
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admixtures in the same liquid but the overburden stress would also lower the 

permeability as well. 

3.3.2 Permeability 
 

The hydraulic conductivity of three soils including silty clay, 90% silty clay + 10% Ca-

bentonite admixture, and 90% silty clay + 10% HDTMA-bentonite admixture were 

measured. In addition, the permeability of 90% silty clay + 10% HDTMA-bentonite to 

gasoline was measured and the obtained results are summarized in Table 3-6. 

Table 3-6. Average fluid conductivities of three compacted soils with varying 
permeants 

Materials Soil preparation 
Void 
ratio 

Permeant liquid Liquid limit 
Plasticity 

index 

Fluid 
conductivity 

(m/s) 

Intrinsic 
permeability 

(m2) 

Silty clay (100%) 
Compacted 

(ρd=1.85g/cm3) 
0.42 Water 26 4.4 5.04×10-9 5.16×10-16 

Silty clay (90%) + Ca-
bentonite (10%) 

Compacted 
(ρd=1.82g/cm3) 

0.43 water 32 10 7.70×10-10 7.78×10-17 

Silty clay (90%) + 
HDTMA-bentonite 

(10%) 

Compacted 
(ρd=1.78g/cm3) 

0.42 water 30 6.6 1.57×10-8 1.61×10-15 

0.42 Gasoline - - 9.20×10-10 6.7×10-17 

 

The hydraulic conductivity of compacted silty clay was 5.04 ×10-9 m/s while adding 10% 

Ca-bentonite to the component of compacted soil specimen decreased the hydraulic 

conductivity of the compacted admixture to 7.70×10-10 m/s. This was explained as the 

swelling of Ca-bentonite resulted in deceased pores volumes in the soil admixture and 

consequently, lower hydraulic conductivity. However, the hydraulic conductivity of 

compacted soil admixture consisted of silty clay and 10% HDTMA-bentonite was 

1.57×10-8 m/s, approximately 1 order of magnitude higher than the hydraulic 

conductivity of the compacted silty soil. This can be explained by the increased hydraulic 
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conductivity of the HDTMA-bentonite as a results of its hydrophobic surface 

characteristics(Li et al. 1996; Lorenzetti et al. 2005; Moon et al. 2007). 

This occurred because the plasticity index of the soil admixture increased from 4.4 for the 

pure silty clay to 10 for 90% silty clay + 10% Ca-bentonite (Benson et al. 1994; Lo and 

Yang 2001). It was noted that the hydraulic conductivity of silty clay with 10% HDTMA-

bentonite to water increased by approximately 1 order of magnitude compared to 100% 

silty clay which is. HDTMA-bentonite increases the hydrophobicity of the soil specimen, 

and as expected the conductivity of the water through soil pores increases when the 

hydrophobicity of complex increases. 

Previous studies confirmed that organoclays have the swelling potential in non-polar 

liquids similar to natural bentonites in water(Benson et al. 2015).Some other studies also 

suggested that organoclays had very low plasticity in water but could exhibit high 

consistency in non-polar liquids (Soule and Burns 2001). Lo and Yang (2001) explained 

that the soils with higher liquid limit and plasticity index in a certain liquid expressed 

higher swelling capacity which resulted in lower fluid permeability. The permeability of 

compacted soil specimen consisted of 90% silty clay with 10% HDTMA-bentonite to 

gasoline was measured as 9.20×10-10 m/s while the permeability of the same compacted 

soil specimen to water was as high as 1.57×10-8 m/s. The same trend in permeability of 

different soil specimen to water and gasoline was reported by several previous studies 

(Lo and Yang 2001; Moon et al. 2007; Smith et al. 2003).Smith et al. (2003)investigated 

the permeability of compacted BTEA-bentonite and HDTMA-bentonite to water and 

unleaded gasoline. They observed that the permeability of compacted organoclays 

decreased approximately by an order of 2in magnitude when permeated with unleaded 
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gasoline instead of water. Yang and Lo (2004)noted that the permeability of compacted 

BB-40 to gasoline (10-9 cm/s) was four orders of magnitude lower than the permeability 

of Na-bentonite to gasoline (10-5 cm/s). All these studies indicated that compared to the 

naturally occurring bentonite, HDTMA-bentonite has a higher permeability to water, but 

much lower permeability to petroleum related products like unleaded gasoline. It was 

explained that the higher swelling tendency of HDTMA-bentonite in non-polar liquids 

and the increased drag force on the gasoline caused the decreased permeability of 

gasoline in organoclay. Consequently, the permeability of compacted soil specimen 

consisted of 90% silty clay with 10% HDTMA-bentoniteto gasoline was lower than its 

permeability to water. 

It was concluded that small dosage oforganoclayhave a low impact on the overall 

hydraulic conductivity of soil admixtures when used as additives(Bate 2010; Ghavami et 

al. 2016). However, our results suggested that the permeability of compacted silty clay 

and only 10% of organobentonite to gasoline was decrease by half.For the unsaturated 

flow in the same compacted soil admixture, the permeability could be even lower for the 

low-polarity fluids. This suggests that organoclays, especially organobentonitesare 

promising amendment in compacted soils to reduce the advection rate of organic 

contaminant flow. Also, it was not investigated in this study but it was expected that 

combinations of Na-bentonite and organoclay could be effective amendments to reduce 

the advection of water and organic fluids in compacted soil barriers. 

3.3.3 Breakthrough test 
 

From the obtained results in chapter 2, the equilibrium sorption isotherms of naphthalene 

onto HDTMA-bentonite/silty clay is presented in Figure 3-9. 
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Figure 3-9. equilibrium sorption isotherms of naphthalene onto HDTMA-
bentonite/silty clay 

Linear isotherms were observed for the sorption of naphthalene onto two studied soils. 

The measured partitioning coefficient (Kd) of silty clay and HDTMA-bentonite for 

naphthalene were 4.53 and 1355.5 mL/g, respectively.  

The transport of naphthalene through the compacted clay column was performed under 

the low flow rate condition to stimulate the mass transport of organic contaminants 

through the low permeability earthen barriers. The average seepage velocity of the 

effluent permeated solution was monitored during the breakthrough test to assure that the 

steady state condition was available during the experiment. The recorded average seepage 

velocity is presented in Figure 3-10. The average hydraulic conductivity of the 

naphthalene solution was also measured during the breakthrough test as 8.84 × 10-9 m/s 

following ASTM D5084, method B. 
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Figure 3-10. Average seepage velocity of naphthalene solution during the 
breakthrough study 

The breakthrough of naphthalene solution in compacted soil column consisting of 95% 

silty clay and 5% HDTMA-bentonite is shown in Figure 3-11.The maximum 

concentration of naphthalene breakthrough curve in compacted silty clay/HDTMA-

bentonite column appeared after 142 hours which was approximately 9 times lower than 

initial introduced concentration to the column. The high sorption capacity of HDTMA-

bentonite to adsorb naphthalene from aqueous phase resulted in significant low 

naphthalene concentration in effluent. Because a relatively low advection rate mechanism 

governed the mass transport of naphthalene through the compacted soil column, the 

retardation factor for the pulse-type injection was measured from the first moment 

analysis(Shackelford and Redmond 1995; Valocchi 1985). Using the first moment 

method analysis, the retardation factor of naphthalene solution passing through 

compacted silty clay/ HDTMA bentonite soil column was measured as 6.98. For the 

retardation calculation, the initial introduced naphthalene concentration into the column 

(C0) was 130 µg/mL and the pore volume of introduced naphthalene solution into the 
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column (PV0) was 1. The calculated retardation factor was compared with the retardation 

coefficient derived from the partitioning coefficient (Freeze and Cherry 1979), equation 

3-7: 

ܴ ൌ 1 ൅
௕ߩ
݊
. ௗܭ ൌ 1 ൅

2.02
0.3

. ሺ0.05ൈ1355.5 ൅ 0.95ൈ4.5376ሻ ≅ 486 3-7

The latter calculation disclosed a notable difference between the retardation factor 

calculated from first moment analysis and derived from partitioning coefficient. 

Shackelford (1994) explained that the retardation factor equation proposed by Freeze and 

Cherry may be applicable for the fast flow rate regimes which the advection is the 

dominant transport mechanism. However, the retardation factor should be calculated 

from the breakthrough curve for the cases of (1) an infinite constant contaminant source 

with continuous contaminant injection method, or (2) a finite constant contaminant 

source with pulse-signal type contaminant injection method. For the first scenario, the 

retardation factor is equal to the pore volume corresponds to the relative effluent 

concentration of 0.5. For the second scenario, the first moment analysis should be applied 

to estimate the retardation factor (Daniel 1993). Although previous works including the 

research conducted by Shackelford and Redmond (1995) did not consider the 

organoclays as amendment in the compacted soil matrix, the obtained results suggest that 

the same conclusion can be drawn on the breakthrough experiment of naphthalene in 

HDTMA-bentonite amended soil column. 
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Figure 3-11. Breakthrough curve of naphthalene transport in 95% silty clay + 5% 
HDTMA-bentonite compacted soil column 

Moreover, the breakthrough curve revealed that even a small fraction of HDTMA-

bentonite (only 5% by weight) as an amendment to silty clay decreases the mass flux of 

naphthalene in the effluent, significantly. Also, the reduction of mass flux in the effluent 

increases as the percentages of HDTMA-bentonite in soil matrix increases. The mass flux 

of introduced naphthalene solution into the compacted soil column was 0.113 

mg/cm2×day while the retardation process decreased the mass flux of naphthalene to 

0.004 mg/cm2×day in the effluent (approximately reduced 29 times). In addition, the 

mass balance calculation indicated that only 5% of HDTMA-bentonite exhibited such a 

high sorption capacity that 54% of total introduced naphthalene to the soil column was 

still uptaken by the column after 33 days and was releasing gradually. Using numerical 
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modeling, a transport model for equation 1-3 was developed to estimate the diffusion 

coefficient of naphthalene. By curve fitting of the developed model to the breakthrough 

curve, it was concluded that the diffusion coefficient of naphthalene was in the order of 

10-6 cm2/s for the HDTMA-bentonite amended silty clay which was comparable with the 

results from previous researches on the retardation performance of soil barriers (Headley 

et al. 2001). A summary of previous studies on contaminant transport in fast/low flow 

rate systems is presented in Table 3-7. 

Table 3-7. Summary of contaminant transport parameters for fast and slow flow 
rate condition 

Study Contaminants Soil Matrix 
Velocity 
(cm/s) 

Retardation 
Factor 

Diffusion 
Coefficient 

(cm2/s)

 High Flow Rate 

Liu et al. 
(1991) 

Naphthalene 
Lincoln - sand

2×10-3 
5 

N.A. 
Eustis - sand 12 

Thierrin et al. 
(1995) 

Benzene 

Sandy aquifer 2.5×10-2 

1.02 

N.A. 
Toluene 1.04 
p-Xylene 1.12 

Naphthalene 1.32 
Owabor et al. 

(2010) 
Naphthalene Sandy soil 2×10-3 25.77 N.A. 

Larsen et al. 
(1992) 

Naphthalene Aquifer material N.A. 1.61 N.A. 

 Low Flow Rate

Lo et al. (1997) 

benzene, 
toluene, o-

xylene, ethyl- 
benzene, 

phenol, 2-
chlorophenol, 

2,4-
dichlorophenol, 

and 2,4,6-
trichlorophenol 

BB-40 
4.93×10-6 N.A. N.A. 

Li et al. (2002) 
Chromate 

HDTMA-
modified illite 1×10-4 N.A. N.A. 

Shackelford et 
al. (1991) 

Cl- 
Kaolinite & 
Lufkin clay 

N.A. N.A. 
4.4 to 6  10-6

Br- 4.8 to 6.5  10-

6
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Shackelford 
(1995) 

Cl- 
Kaolin 7×10-7 

1.4 3.75  10-6 
Na+ 2.4 5.8  10-6

Lo (2003) 
Total organic 

carbon of 
landfill leachate 

Mixture of BB-
40, bentonite, 

and 
decomposed 
volcanic rock

N.A. 8.92 2.3  10-6 

Shackelford 
and Redmond 

(1995) 

Cl- 
Kaolin 7×10-7 

2.336 2.84  10-6

Na+ 9.53 8.78  10-6 

Rodriguez-
Cruz (2007) 

Linuron 
Modified sandy 

loam with 
ODTMA-

montmorillonite 

N.A. 

69.5 

N.A. 
Atrazine 9 

Metalaxyl 10 

This Study Naphthalene 
HDTMA-
bentonite

3.4×10-5 6.98 ~9×10-6 

 

This study suggests that a small fraction of HDTMA-bentonite amendment (5% by 

weight) in soil matrix have negligible impact on total hydraulic conductivity and 

diffusion coefficient of soil admixture. However, even a small fraction of HDTMA-

bentonite amendment can increase the sorption capacity and enhance the retardation of 

naphthalene in compacted soil and it may enhance the sorption characteristics of the 

compacted clay for other organic contaminants as well. As a result, organoclay 

amendments can enhance the sorption capacity of the barrier systems and decrease the 

mass flux of contaminant through the barriers while they do not impose a considerable 

change to the advection and diffusion rate of contaminants. 

3.4 Conclusion 
 

In this chapter, the permeability of compacted soil barrier consists of silty clay and 

HDTMA-bentonite. Obtained results suggested that 10% of HDTMA-bentonite additive 

has a negligible impact on the free swelling behavior of silty clay in water. However, the 

HDTMA-bentonite amended silty clay demonstrated a significant swelling tendency to 

gasoline because of the interaction between the organophilic surfactants in the HDTMA 
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bentonite and non-polar liquid. Although the 10% HDTMA-bentonite as an amendment 

to compacted silty clay increased the hydraulic conductivity of the system to water, 

slightly (5.04×10-9 m/s to 1.57×10-8 m/s), but it decreased the permeability of the 

compacted clay system to gasoline approximately 1 order of magnitude (9.20×10-10 m/s). 

the acquired results from this study in conjunction with previous studies suggest that a 

small fraction of organoclay amendments have a limited impact on the hydraulic 

conductivity of compacted silty clay while they enhance the capability of the barrier 

system to confine the transport of organic or low-polarity fluids. The breakthrough study 

revealed that a small percentage of HDTMA-bentonite additive (~5%) to the compacted 

silty clay enhances the retardation capacity (approximately 7) of the system to the mass 

transport of organic contaminant (naphthalene). Although the breakthrough rate of the 

naphthalene through compacted HDTMA-bentonite amended silty clay did not increase 

significantly, the absorbed mass of naphthalene by HDTMA-bentonite was released in a 

considerably low paste (average of 0.004 mg/cm2×day and peak of 0.011 mg/cm2× day 

compared to the source of 0.113 mg/cm2×day). The overall results in this study suggest 

that HDTMA bentonite or other organophilic clays hold the promise of being the 

amendment material in a CCL barrier for organic and/or low polarity fluids. 
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4 CHAPTER FOUR ENGINEERING BEHAVIORS OF 
GEOSYNTHETIC CLAY LINERS (GCLS) AMENDED 

WITH ORGANOCLAYS 
 

4.1 Introduction 
 

Conventional Geosynthetic Clay Liners (GCLs) consists of a layer of sodium or calcium 

bentonite sandwiched between two layers of woven/nonwoven geotextiles (Bouazza 

2002). GCLs have been used as low permeability components in composite hydraulic 

barriers in the United States since 1980, and their design and applications have gained 

increasing popularity due to their reliable performances. Most commonly, GCLs have 

been used in composite liner systems; capping of landfills; liquid waste ponds; barrier 

system for the hydrocarbon spills; liners of underground storage tanks; containment 

systems of gas and fluids in mining industry and transportation facilities (Lorenzetti 

2005; Nathalie Touze-Foltz 2012; Touze-Foltz et al. 2012).Compared to the conventional 

low-permeability barriers (e.g. compacted clay), GCLs have significant advantages such 

as availability, consistent low hydraulic conductivity (kw< 10-10 m/s), low cost, limited 

thickness, and easy installation (Bouazza 2002).Detailed comparison  of advantages and 

disadvantages of GCL is summarized in Table 4-1  (Bouazza 1997). These advantages 

were recognized and consequently, increased the interest of GCL application in 

environmental geotechnics 

Table 4-1. Advantages and disadvantages of GCL
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Advantages Disadvantages 

Rapid installation/less skilled labor/low cost 
Low shear strength of hydrated bentonite (for 

unreinforced GCLs) 
Very low hydraulic conductivity to water if 

properly installed
GCLs can be punctured during or after 

installation 
Can withstand large differential settlement Possible loss of bentonite during placement

Excellent self-healing characteristics Low moisture bentonite permeable to gas

Not dependent on availability of local soils 
Potential strength problems at interfaces with 

other materials 
Easy to repair Smaller leachate attenuation capacity

Resistance to the effects of freeze/thaw cycles Possible post-peak shear strength loss

More airspace resulting from the smaller 
thickness 

Possible higher long term flux due to a 
reduction in bentonite thickness under an 

applied normal stress 

Field hydraulic conductivity testing not 
required 

Possible increase of hydraulic conductivity due 
to 

compatibility problems with contaminant if not 
prehydrated with compatible water source

Hydrated GCL is an effective gas barrier 
Higher diffusive flux of contaminant in 
comparison with compacted clay liners

Reduce overburden stress on compressible 
substratum (MSW) 

Prone to ion exchange (for GCLs with sodium 
bentonite) 

Prone to desiccation if not properly covered (at 
least 0.6m of soil) 

 

Typically, the common range of hydraulic conductivity of GCLs under the different 

confining stresses is in the range of 2 × 10-12 to 2 × 10-10 m/s (Figure 4-1).Petrov et al. 

(1997) suggested that the higher confining stress decreases the bulk void ratio of the 

GCL. Consequently, the hydraulic conductivity of the GCL tendto decrease asthe 

confining stress increases. 
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Figure 4-1. Variation of hydraulic conductivity with different confining stress 
(Bouazza 2002) 

A higher hydraulic gradient is commonly used when examining the hydraulic 

performance of low flow rate systems because it would reduce the duration of the tests. 

However, exceeding a certain level of hydraulic gradient will cause the consolidation of 

the specimen due to seepage force and possibly result in a lower hydraulic conductivity 

(Shackelford et al. 2000).Typically, the acceptable range of hydraulic gradient for GCL 

layers lays is in the range of 50 and 500 (Daniel et al. 1993; Petrov et al. 1997; Shan and 

Daniel 1991). Petrov et al. (1997) investigated the effect of hydraulic gradient on the 

conductivity of a GCL permeated with deionized water, and 0.6/2 M NaCl solutions. The 

retrieved results are presented in Figure 4-2. 
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Figure 4-2. effect of hydraulic gradient on the conductivity of a GCL permeated 
with different liquids(Shackelford et al. 2000) 

Petrov et al. (1997) proposed that the hydraulic gradient has a negligible effect on the 

hydraulic conductivity of GCLs (<factor of 2). Previously, Rad et al. (1994)suggested the 

same concept. 

Although GCLs have a long history of successful engineering applications and have 

demonstrated reliable hydraulic performance to decrease the advective flow, the 

following limitations were observed in the field, including: (1) possible defects due to 

manufacture, transportation and installation (2) susceptibility and incompatibility (e.g. 

increased permeability, shrinkage) with certain chemicals, especially organic liquids (3) 

significant diffusive transport of contaminants even the advection is low. The above-

mentioned limitations, especially the chemical impartibility of conventional Na-bentonite 

GCL or Ca-bentonite GCL with organic fluid may directly impair their performance in 

soil barriers (e.g. liners of underground storage tank), which may raise short-term or 

long-term concerns. Specifically, it has been reported that the organic compounds with 
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higher concentration or low-polarity organic fluids may dehydrate the clay minerals and 

consequently increase the hydraulic conductivity of the liner systems due to desiccation 

(Ruhl and Daniel 1997). In addition, the clay materials exposed to organic liquids tends 

to shrink considerably which results in different levels of cracks and increases the 

hydraulic conductivity of barrier system (Bowders and Daniel 1987; Lake and Rowe 

2004). Ruhl and Daniel (1997) investigated the hydraulic performance of GCLs 

permeating with simulated municipal solid wastes. They discovered that the permeability 

of studied GCLs to the leachates of the solid wastes was about four orders of magnitude 

higher than the permeability of GCLs to the tap water. Additionally, Daniel et al. (1993) 

and Shan and Daniel (1991) evaluate the permeability of a GCL permeated with varying 

fluids. Their results suggested the GCL used to have a permeability for water as low as 

10-9 cm/s, however, when permeated with organic liquid(s), the permeability of GCL 

increased drastically to 10-5 cm/s. 

Other fluid properties, including ionic strength and pH could affect the hydraulic 

performance of GCL as well. Jo et al. (2001) studied the impact of ionic concentration on 

the swelling tendency and hydraulic conductivity of non-prehydrated GCLs. They noted 

that the GCLs permeated by solutions with higher ionic concentration or with high-

valence cations exhibited higher hydraulic conductivity compared to solutions with 

monovalent cations or water. Shackelford et al. (2000) investigated the hydraulic 

performance of GCLs permeated by non-standard solutions and they draw similar 

conclusions. Bradshaw et al. (2016)conducted tests to evaluate the effect of pH on the 

saturated hydraulic conductivity of studied GCL. They suggested that the hydraulic 

conductivity decreased when the pH of the permeant solution increased.Ye et al. (2014) 
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explored the effect of pH on the hydraulic conductivity of compacted bentonite and 

concluded that compacted bentonite has higher hydraulic conductivity in the basic 

solution. 

Most commonly, the chemical incompatibility observed for the GCL field applications 

are due to the contact with petroleum-related products, landfill leachate, fuels, and 

industrial wastewater (Bradshaw et al. 2016).  Typically, the organic compounds, or the 

organic liquids in the waste or wastewater are the components that are not compatible 

with inorganic soils like Na-bentonite or Ca-bentonite.  Additionally, although the 

conventional Na-bentonite or Ca-bentonite based GCLs exhibited lower permeability for 

aqueous solutions, they also had a much lower contaminant retention capacity for 

dissolved organics(Broderick and Daniel 1990). Because of the above reasons, the 

performance of conventional GCL as both hydraulic barrier and chemical barrier can be 

fair or poor. Different sorptive/reactive geo-materials have been suggested as an 

amendment in compacted soil liners (Lo et al. 1997).. Similarly, certain amendments with 

enhanced reactivity with organic solute and/or organic fluid could enhance the chemical 

compatibility of the conventional GCLs  Many studies have been carried out to 

investigate the feasibility of using fly ashes, zeolites, organo-zeolites, coated sands and 

organoclays as reactive amendments to the GCLs(Lo and Liljestrand 1996; Prasad et al. 

2012; Varank et al. 2011; Younus and Sreedeep 2012).  

Recent studies suggested that the permeability of organobentonites decreases by 

decreasing the polarity of the permeant fluid. For instance, the permeability of 

organoclays to non-polar liquid like fuels is much lower compared to polar or semi-polar 

liquids(Ghavami et al. 2016). Lorenzetti et al. (2005) studied the effect of different 
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percentages of organoclays amendment on the hydraulic conductivity of GCLs. They 

indicated that the hydraulic conductivity of GCLs can be affected significantly by 

different fraction of organoclays, especially when the fraction of organoclay amendment 

is greater than 20% of total weight of filling material in GCLs. Their results showed that 

the hydraulic conductivity of GCL permeated by water increases as the percentages of 

organoclay amendment increases. However, it was observed that a small fraction of 

organoclays (less than 10% by weight) has limited impact on the hydraulic conductivity 

of GCLs while it can reduce the permeability of the GCL to organic liquids and may 

retard the mass transport of organic contaminants significantly. Although organoclays 

increase the hydraulic conductivity of the compacted clay systems, the bentonite 

component compensates the defect of hydraulic conductivity and maintains the 

conductivity of the system at a low rate. It was proposed that a combination of 

organoclay and bentonite could be used as earthen barrier materials because they can 

enhance the sorption and retardation capacity of the barrier systems to organic 

contaminants while they can provide a relatively low hydraulic conductivity for waste 

disposal practices. 

Although previous studies yield great insights into the interactions between bentonites, 

permeant fluids and ions, the organic compounds retention of GCLs under a slow 

advective flow condition remained relatively unknown. This was due to: (1) the time 

required to perform the study of organic contaminant mass transport through a low flow 

rate GCL is too long (more than weeks); (2) the difficulty to control the organic 

contaminant source during the test; (3) the lack of analytical solution to interpret the 
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observed retention or retardation of organic contaminants in GCLs; and also (4) the 

limited chemical interactions between conventional GCLs and the organic compounds. 

In this study, the permeability of conventional Ca-bentonite/Na-bentonite GCLs and Ca-

bentonite/Na-bentonite GCLs amended with organobentonite were investigated. Water, 

benzene solution, methanol, and gasoline were chosen as the permeant liquids and the 

effects of confining stress, pH, and ionic strength on the permeability of GCLs were 

studied. Lab batch sorption test and contaminant breakthrough in the GCLs were carried 

out and benzene was selected (a representative of BTEX) as the organic contaminant. The 

retarded transport of benzene through Ca-bentonite/Na-bentonite GCL with different 

fraction of organobentonites was observed and analyzed. 

 

4.2 Material and methods 
 

4.2.1 GCL specimen  
 

A roll of Bentomat 200R GCL was provided by CETCO Co. (Figure 4-3). The Bentomat 

200R consists of a layer of granular bentonite sandwiched between a nonwoven and 

woven geotextile layers. The geotextile layers and granular bentonite as the middle layer 

are needle punched together. The properties of Bentomat 200R is summarized in Table 

4-2 (CETCO 2014): 
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Figure 4-3. The base GCL, Bentomat 200R 

Table 4-2. Properties of Bentomat 200R 

Material property Test method Required values 

Bentonite Swell Index ASTM D 5890 24 mL/2g min. 

Bentonite Fluid Loss ASTM D 5891 18 mL max. 

Bentonite Mass/Area ASTM D 5993 0.75 lb/ft2 (3.6 kg/m2) min. 

GCL Tensile Strength ASTM D 6768 30 lb/in (53 N/cm) MARV 

GCL Peel Strength ASTM D 6496 1 lb/in (1.75 N/cm) min. 

GCL Index Flux ASTM D 5887 1 × 10-8 m3/m2/sec max. 

GCL Hydraulic Conductivity ASTM D 5887 5 × 10-9 cm/sec max. 

GCL Hydrated Internal Shear 

Strength 

ASTM D 5321 

ASTM D 6243 

150 psf (7.2 kPa) typical 

 

The entire surface of GCL was inspected for any damages or defects. A porous stone was 

used as a base to cut a circular sample of GCL, which matches to the exact size of the 

base and cap used in the column study. In this study, GCL specimens were carved from 

the base GCL with the dimension of 4 inches (101.6 mm) in diameter, Figure 4-4. 
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Figure 4-4. Carved GCL specimen from the base GCL 

The original soil filling in the Bentomat 200R was replaced by a certain weight of desired 

soil filling. A mixture of calcium and sodium bentonite and desired percentages of 

HDTMA bentonite was used as the filling (D6766). The edges of the specimens were 

moisturized by a squirt bottle to prevent the filling lost at the edges (Rowe et al. 2000), 

Figure 4-5. 

 

Figure 4-5. Filling the soil mixture in the GCL specimen 

To have an even flow distribution through the sample, a pair of porous stone were placed 

at top and bottom of each specimen. The initial thickness of constructed GCL specimens 

were typically measured between 7 and 8 mm, Figure 4-6. 
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Figure 4-6. Assembled GCL specimen for column test 

To ensure the compatibility with the permeant fluids, polytetrafluoroethylene (PTFE) 

tubes were used in the entire flow-through system. Also, the GCL specimens were 

wrapped finally by the Teflon tape to prevent the decay of initial concentration of 

benzene due to the sorption by the latex membrane, Figure 4-7. 

 

Figure 4-7. GCL specimen wrapped by Teflon tape 



 

101 
 

At the final step, the GCL specimens were wrapped by latex membrane. to seal the 

membrane to the top cap and the base, a pair of O-ring was placed around the specimen. 

The physical properties of GCL specimens are summarized in Table 4-3 and Table 4-4. 

Table 4-3. The physical parameters of calcium based GCL specimens 

Column 
Component 

100% Ca-bentonite 
90% Ca-bentonite + 

10% HDTMA-
bentonite 

80% Ca-bentonite + 
20% HDTMA-

bentonite 

Diameter (mm) 101.6 101.6 101.6 

Height (mm) 7.8 8 7.9 

Specific gravity 
of soil filling 

(Gs) 
2.62 2.53 2.44 

Porosity 0.64 0.69 0.67 

Pore volume 
(cm3) 

40 37 33 

 

Table 4-4. The physical parameters of sodium based GCL specimens 

Column 
Component 

100% Na-bentonite 
90% Na-bentonite + 

10% HDTMA-
bentonite 

80% Na-bentonite + 
20% HDTMA-

bentonite 

Diameter (mm) 101.6 101.6 101.6 

Height (mm) 7.5 7.7 7.8 

Specific gravity 
of soil filling 

(Gs) 
2.63 2.54 2.45 

Porosity 0.68 0.67 0.64 

Pore volume 
(cm3) 

37 40 40 
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4.2.2 Permeant liquids 
 

Anhydrous benzene with purity of 99.8% was diluted by deionized water to reach to the 

target concentration for this study, which was 300 to 400 µg/mL. To achieve the desired 

concentration, 0.3 to 0.4 g of liquid benzene was extracted by a 10 µL glass syringe 

(Hamilton Co.) from the source and placed into a flask (Fisher scientific Co.) with the 

capacity of 2 L. one liter of deionized water was added to the flask and stirred in an 

Ultrasonic Bath (VWR Co.) for 30 mins. The obtained stock solutions were stored at 

room temperature for less than 1 hour before the tests. Additionally, pure methanol 

(Carolina Biological Supply Co.) and unleaded gasoline (grade 87) were used as low 

polarity liquids for the permeability tests. 

 

4.2.3 Swell index test of GCL soil components 
 

Previous studies indicated that the permeability of GCL is typically related to the 

swelling tendency of the filling soil in the permeant liquid (Jo et al. 2001). The swell 

index tests were conducted to evaluate the swelling tendency of studied soils ,following 

the ASTM standard D5890-11.Initially, the studied soils were oven dried at 90 ºC for 24. 

Next, the soils were sieved through the No. 100 sieve (Phanikumar and Shankar 2016). 2 

g of sieved dry soil grains was then added to a 100mL graduated glass cylinder filled with 

90 mL of one of the selected liquids (DI water, methanol, gasoline, sodium chloride 

(NaCl) solution, and basic/acidic solutions). Additional liquid was then added to the 

cylinder until the 100 mL mark was reached. NaCl solutions with ionic concentrations of 

0.01 M, 0.1 M, and 1 M were prepared and used for the swelling tests. the volume of 

suspended soil was measured for the first 24 hours. 
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4.2.4 Permeability test 
 

To investigate the impact of the polarity of the fluids on the permeability of 

organobentonite amended GCLs, 16 GCL specimens were constructed following the 

method described in 4.2.1. 6 GCL specimens were filled with Ca-bentonite, Na-bentonite, 

10% HDTMA-bentonite + 90% Ca-bentonite, 10% HDTMA-bentonite + 90% Na-

bentonite, 20% HDTMA-bentonite + 80% Ca-bentonite, and 20% HDTMA-bentonite + 

Na-bentonite. and three permeant liquids with high polarity (water), intermediate polarity 

(methanol) and low polarity (gasoline) were used. Additionally, 10 Na-bentonite GCL 

specimens with different percentage of HDTMA-bentonite and PM-199 were constructed 

to examine the effect of organobentonite amendments. The physical properties of GCL 

specimens are summarized in Table 4-5. 

Table 4-5. Physical properties of GCL specimens for permeability study 

GCL specimen 
Water content 

(%)
Average dry density 

(g /cm3)
Mass per unit area 

(g /cm2)
Ca-Bentonite 8% 1.26 0.95
Na-Bentonite 8% 1.10 0.83

10% HDTMA-Bentonite + 
90% Ca-Bentonite 

10% 0.93 0.75 

20% HDTMA-Bentonite + 
80% Ca-Bentonite 

9% 1.00 0.77 

10% HDTMA-Bentonite + 
90% Na-Bentonite 

10% 1.03 0.80 

20% HDTMA-Bentonite + 
80% Na-Bentonite 

9% 1.26 0.90 

30% HDTMA-Bentonite + 
70% Na-Bentonite 

9% 1.05 0.89 

50% HDTMA-Bentonite + 
50% Na-Bentonite 

10% 1.11 0.84 

70% HDTMA-Bentonite + 
30% Na-Bentonite 

10% 1.00 0.75 

10% PM-199 + 90% Na-
Bentonite 

9% 1.18 0.83 

20% PM-199 + 80% Na-
Bentonite 

9% 1.15 0.84 

30% PM-199 + 70% Na-
Bentonite 

10% 1.12 0.81 
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50% PM-199 + 50% Na-
Bentonite 

8% 1.06 0.77 

70% PM-199 + 30% Na-
Bentonite 

9% 1.08 0.79 

HDTMA-Bentonite 8% 1.15 0.98
PM-199 8% 1.09 0.95

 

The permeability of studied GCLs were carried out in a flexible wall permeameter 

following ASTM D6766. The conductivity (k) of permeant liquids based on the falling 

head test method can be measured as follow: 

1
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where tk  is hydraulic conductivity (m/s), a  is cross-sectional area of the reservoir 

containing the influent liquid (m2), L  is length of the specimen (m), A  is cross-sectional 

area of the specimen (m2), h1is the head loss (m) across the specimen at time t1 (s), h2is 

the head loss (m) across the specimen at time t2 (s), and t is the elapsed time (s) between 

determination of h1 and h2. 

Also, the intrinsic permeability was calculated for each GCL specimen. The intrinsic 

permeability is independent of the fluid properties and represents the pore distributions 

and connectivity in the porous media. The intrinsic permeability is defined as: 

t
i

k
k

g


   4-2

where ik  is intrinsic permeability (m2),   is kinematic viscosity of the permeant fluid 

(m2/s), tk  is hydraulic conductivity (m/s), and g  is the gravitational acceleration (m/s2). 

After the assembly of the GCL specimens, de-aired water was flushed through the 

specimens under a relatively high hydraulic gradient (100) to flush two pore volumes of 

water in a short period of time. A relatively lower hydraulic gradient (25) was applied to 



 

105 
 

the GCL specimens when permeated with organic liquids (methanol and gasoline). This 

was similar to the procedure by Ruhl and Daniel (1997). The GCL specimens were 

saturated for 4 days until the flow reached steady state. For each specimen, the confining 

pressure (cell pressure) was kept constant at 34.47 kPa during entire test. The steady state 

flow was at 1.1±0.2 mL/hour and 0.9±0.2 mL/hour for Na-bentonite and Ca-bentonite 

based GCL specimens, respectively.  

4.2.5 Breakthrough test 
 

Breakthrough test was conducted to evaluate organic contaminant transport through the 

compacted soils, certain volume of the contaminant solution was introduced to each soil 

column with known soil constituents. Effluent was collected and analyzed for the 

concentration of the contaminant remained in the flow. Finally, the breakthrough curve 

was obtained by plotting the concentration of contaminant (or the relative concentration, 

the ratio of the effluent concentration to the source concentration) in the effluent versus 

time. Also, the collected pore volumes of effluent samples were recorded during the 

sampling. In this study, the mass transport of benzene through the GCL specimens 

with/without sorptive amendments (HDTMA-bentonite) was recorded during the 

breakthrough test. As explained in permeability test, the GCL specimens were flushed 

with de-aired water prior to the breakthrough test. The benzene solution with initial 

concentration of 300 to 400 g/ml was fed to the GCL specimens using a bladder 

accumulator. The pulse-type contaminant injection method was selected as one pore 

volume of benzene solution was injected into the each GCL specimen, followed by the 

de-aired water until the test was completed. The breakthrough tests were terminated after 

the concentration of benzene in effluent was lower than the detection limit. For all 



 

106 
 

specimens, the flow rate of benzene solutions was monitored during the breakthrough 

test. The effluent samples were collected in10 mL conical centrifuge tubes (CORING 

Co.) and filtered through 0.2 m syringe filters (Acrodisc Co.). The liquid-liquid 

extraction was performed to extract the dissolved benzene from the filtered solution. 

Dichloromethane (DCM) was choose as the extraction liquid and it was mixed with the 

filtered solution in using a separatory funnel at a ratio of 10:1 (v/v). Then the separatory 

funnel was shaken gently and left at rest until the two separate phases were observed. The 

DCM liquids were analyzed in Gas Chromatography equipped with Flame Ionization 

Detector (Clarus 480, Perkin Elmer Co.). As explained in chapter 3, the retardation factor 

Rd of contaminant transport under low-flow rate condition was estimated as (Valocchi 

1985): 

 

ܴௗ ൌ
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where Rd is the dimensionless retardation factor, C0 (µg/mL) and C (µg/mL) are the 

initial and equilibrium concentrations of naphthalene in aqueous phase, respectively; PV 

(mL) is the corresponding pore volume to each measured concentration, ∆PV (mL) is the 

differential pore volume between each sampling step, and PV0 (mL) is the initial injected 

pore volume of the solution into the soil column. 

In addition, the diffusion coefficient and the retardation factor were estimated by the 

numerical and analytical solutions. Assuming the steady state flow and equilibrium 

sorption, the contaminant transport through the porous media can be described by a one-

dimensional advection-dispersion-retardation equation (equation 1-3). To determine the 

soil parameter including retardation factor and diffusion coefficient, an implicit finite 
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difference scheme was employed to fit the laboratory data. as following: 
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where k corresponds to the distance dimension, j corresponds to the time dimension, C is 

the concentration of the effluent in time j and location of k (µg/mL), D is the diffusion 

coefficient (cm2/s), Rd is the retardation factor, ∆t is the time step (s), and ∆x is the 

distance step (cm). Two criteria have to be met to assure the convergence of the solution. 
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The convergence criteria was met by setting the time step to 0.1 and the distance step to 

0.1. Two parameters were determined by finding the best fit: (1) the retardation factor 

(Rd), and (2) the diffusion coefficient (D). An initial value for D was assumed based on 

the common range of D reported in previous studies (~10-6 cm2/s) and the best fitted 

curve was attained by changing D and Rd, simultaneously.  

In addition, the laboratory results were compared with an analytical solution to equation 

1-3 considering the pulse-type injection method (Genuchten et al. 2013). The pulse-type 

injection can be defined as: 
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And the solution to equation 1-3 can be obtained as follow: 
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where, 
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where C(x,t) is the solute concentration (µg/mL), C0 is the initial concentration of 

injected pulse (µg/mL),  Ci is the initial concentration of studied semi-infinite domain 

(µg/mL), v is the longitudinal fluid flow velocity (cm/s), t is the time of breakthrough (s), 

and D is longitudinal diffusion coefficient (cm2/s). Likewise, both Rd and D were 

changed simultaneously to find the best curve fitting in this solution. 

4.3 Result and discussion 
 

4.3.1 Swelling index 
 

The results of swell index test are shown in Figure 4-8. It can be noticed that the 

unmodified bentonites, especially Na-bentonite, exhibit a significant swelling in water 

because of strong hydration of inorganic cations in the interlayer. When sodium or 

calcium bentonites are dry, the interlayer spacing are typically 9~10Å as the cations 

formed surface complex on the sillica sheets. However, the bonding between the 

inorganic cations and montmorillonite sheets are very week and can be easily interrupted 

by polar fluids such as water (Oweis and Khera 1998). The water molecules would form 

hydration shells around the Na+ and Ca2+ cations and prop open the interlayer spacing 

(from 14 Å ~16 Å) (Ayral-Cinar et al. 2016; Doh and Cho 1998). Additionally, the 

hydration  of Na+ in water is the highest because it has a strong dipole polarity, 1.854 (Lo 
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and Yang 2001). Consequently, the volume of particle aggregates increases as the 

hydration prevails in the interlayer of the bentonites.  

In comparison, the swelling index of HDTMA-bentonite and PM-199 in water are 

significantly lower (5 mL/2g). Because the naturally occurring interlayer cations (Na+ or 

Ca2+) of bentonite were replaced by quaternary ammonium cations, the surfactant-coated 

surfaces of modified bentonite became hydrophobic. The cation hydration was no longer 

the prevailing mechanism of organobentonite swelling in water. The swelling of Na-

bentonite and HDTMA-bentonite admixture or Na-bentonite and PM-199 admixture 

decreased slightly from 24 mL/2g for 100% Na-bentonite to 21 mL/2g for 80% Na-

bentonite + 20% HDTMA-bentonite, and 22 mL/2g for 80% Na-bentonite + 20% Pm-

199. 

 

Figure 4-8. Swell index result for studied soil matrixes 

The swelling of Na-bentonite in gasoline and methanol were inherently low (3.2 and 3.3, 

respectively). Similarly, Ca-bentonite swelled much less in gasoline and methanol as well 
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(3.8 and 4.5, respectively). This because the dominant constituents of the gasoline or 

methanol such as normal alkanes, benzene, and p-xylene have symmetric molecular 

structures which result in the dipole polarity of zero or near zero (Lo and Yang 2001). 

Because of this reason, the adsorption of gasoline or methanol molecules by the interlayer 

of Na+ or Ca2+ bentonites was minimum and the interlayer swelling of the two were 

inhibited. The low swelling capacity of the unmodified bentonite can also be interpreted 

from the dielectric constant of the solution (ɛ).Graber and Mingelgrin (1994) explained 

that the swelling of bentonite decreases steadily when the dielectric constant of the 

solution decreases. They indicated that the maximum volumetric swelling of bentonite 

was in the water as it has the highest value of dielectric constant (ɛ = 80.20). 

In contrast, HDTMA-bentonite and PM-199 had significant swelling in gasoline, Figure 

4-9. The swelling indices of HDTMA-bentonite and PM-199 in gasoline were 23.5 and 

32.2, respectively. Also, a slight swelling of HDTMA-bentonite and PM-199 in methanol 

were observed (6.1 and 7.2, respectively). Previous studies suggested that the swelling 

tendency of organobentonite in organic liquid is related to the TOC of the liquid (Benson 

et al. 2015). Typically, the TOC of gasoline and methanol are higher than 10000 ppm (Lo 

and Yang 2001). Because of the hydrophobic interactions between the intercalated 

surfactants and the non-polar solvent molecules, the modified clay minerals show higher 

tendency to adsorb organic liquids. Additionally, PM-199 exhibited higher swelling 

capacity in gasoline/methanol compared to the HDTMA-bentonite. This was due to the 

fact that PM-199 had a double chain quaternary ammonium cation while HDTMA-

bentonite was modified by a single chain quaternary ammonium cation. 
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Figure 4-9. Swell index experiment for three studied soil specimens in gasoline 

The results of swelling tests indicated that the organoclays and unmodified clays may 

exhibit very different swelling tendency in different liquids. The swelling tendency of 

unmodified bentonite increased when the polarity of the solution increased while 

organobentonites exhibited a lower swelling capacity when the polarity of solution 

increased.  Notably, the organobentonites had increased swelling when the soaked in 

gasoline, which indicated both had a higher compatibility with gasoline, or other 

petroleum products.  

The lower ionic concentration of 0.01 and 0.1 M of NaCl had limited impact on the 

swelling index of Na and Ca-bentonites. However, the swelling of Na-bentonite 

decreased to 4.3 mL/2 g at very high ionic strength (1M) (Figure 4-10). This was because 

the free energy gradient that induced by the elevated ionic concentration in the bulk 
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solution dragged the water out of the interlayer of Na and Ca-bentonites (McBride 1994; 

Sposito 1981). Because of the same reason, it was observed that the permeability of GCL 

increases significantly when the ionic concentration of the fluid is very high  (Jo et al. 

2001). PM-199 and HDTMA-Bentonite had limited and consistent swelling in the NaCl 

solution with varying ionic strength. It can be concluded that although the 

organobentonites swell inherently less in aqueous solution, they are also less susceptible 

to the ionic concentration. The low percentage of organobentonites (10% and 20%) in the 

admixture with Na-bentonite did not affect the overall swelling tendency of Na-bentonite. 

 

Figure 4-10. The effect of ionic concentration on the swelling tendency of the 
proposed soil combinations 

In addition, the effect of pH on the swelling tendency of the soils were examined and 

results are presented in Figure 4-11. It was observed that the pH had limited effect on the 

swelling tendency of the all soils (in the range of 4-10). The observation in this study was 

similar to the results of  a sedimentation experiment of sodium bentonite in the HCl and 

NaOH solutions (Shackelford (1994). However, previous studies have also indicated that 
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the swelling of Na-bentonite can be significantly affected when the pH level of the 

solution is greater than 12 or less than 3 (Jo et al. 2001).The effect of pH on the swelling 

volume of the Na-bentonite in combination with different percentage of HDTMA-

bentonite and PM-199 in presented in Figure 4-12. Organobentonites have a limited 

swelling capacity in aqueous solutions with different pH level (4,7, and 10). Thus, the 

small dosage of organobentonites (10% and 20%) mixed with Na-bentonite did not affect 

the overall swelling tendency of Na-bentonite (Figure 4-12). 

 

Figure 4-11. Effect of pH on the swelling of studied sorbents 
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Figure 4-12. Effect of pH on the swelling volume of the Na-bentonite mixture with 
PM-199 and HDTMA-bentonite 

Although the free-swelling tests directly compared the stability of suspended particles in 

aqueous phase, soil swelling in GCL could be under a partially saturated, confined 

environment. During the permeability and breakthrough tests, the thickness of dry and 

hydrated GCL specimens were measured to yield better insights into the swelling of soils 

confined between geotextiles. The GCL specimens were subjected to the isotropic 

confining stress of 34.47 kPa during the entire experiment and no additional overburden 

stress were applied to the GCLs. The initial thickness (Hi) and the final thickness (Hf) of 

GCL specimens were measured before and after the tests. the ratio of Hf to Hi was 

determined as the swelling ratio of the GCL specimen (Lorenzetti et al. 2005). The 

measured swelling ratio of the five studied specimens are summarized in Table 4-6. 

Table 4-6. Swelling ratio of studied GCL specimens 

GCL specimen components Swelling ratio 
Ca-bentonite 1.25 

10% HDTMA-bentonite +90%Ca-bentonite 1.21 
20% HDTMA-bentonite + 80% Ca-bentonite 1.19 

Na-bentonite 2.05 
10% HDTMA-bentonite + 90% Na-bentonite 2.00 
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20% HDTMA-bentonite + 80% Na-bentonite 1.87 
 

It was observed that GCL specimens exhibited considerable swelling in vertical direction 

ranging from 20~30% for calcium amended GCLs and around 100% for sodium 

bentonite amended samples. It was believed that the excessive swelling of several GCL 

specimens occurred because the geotextiles of GCL specimens were not stitched together. 

In general, it is expected that the swelling tendency of GCL specimens decreases when 

the percentage of organoclays increases. However, no significant differences were 

detected between the swelling ratio of calcium/sodium bentonite amended GCLs and 

HDTMA-Bentonite amended GCLs due to the small fraction of HDTMA-bentonite in the 

filling matrix (maximum 20% by weight). 

4.3.2 Permeability test 
 

The fluid conductivities (k) and intrinsic permeability of constructed GCL specimens to 

different liquids are summarized in Table 4-7. 

Table 4-7. Average conductivity of studied GCL specimens permeated by different 
liquids 

GCL component Permeant Liquid k (m/s) Intrinsic permeability (m2) 

Ca-bentonite 
water 3.0 × 10-10 2.16 × 10-17

benzene solution (C0 = 300 
to 400 g/mL)

3.1 × 10-10 2.23 × 10-17 

10% HDTMA-
bentonite + 90% Ca-

bentonite 

water 4.6 × 10-10 4.5 × 10-17

benzene solution (C0 = 300 
to 400 g/mL)

3. 5 × 10-10 3.42 × 10-17 

methanol 2.75 × 10-8 2.1 × 10-15

20% HDTMA-
bentonite + 80% Ca-

bentonite 

water 8.6 × 10-10 7.82 × 10-17

benzene solution (C0 = 300 
to 400 g/mL)

8.1 × 10-10 7.37 × 10-17 

methanol 7.7 × 10-8 5.49 × 10-15

Na-bentonite 

water 1.7 × 10-11 1.49 × 10-18

benzene solution (C0 = 300 
to 400 g/mL)

1.8 × 10-11 1.48 × 10-18 

methanol 5.4 × 10-8 3.5 × 10-15
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gasoline 7.2 × 10-7 4.27 × 10-14

10% HDTMA-
bentonite + 90% Na-

bentonite 

water 2.8 × 10-11 2.47 × 10-18

benzene solution (C0 = 300 
to 400 g/mL)

2.73 × 10-11 2.41 × 10-18 

methanol 2.62 × 10-8 1.81 × 10-15

gasoline 2.72 × 10-7 1.72 × 10-14

20% HDTMA-
bentonite + 80% Na-

bentonite 

water 5.7 × 10-11 4.11 × 10-18

benzene solution (C0 = 300 
to 400 g/mL)

5.62 × 10-11 4.05 × 10-18 

methanol 1.52 × 10-8 8.6 × 10-16

gasoline 4.12 × 10-8 2.13 × 10-15

HDTMA-bentonite 
water 4.5 × 10-8 3.56 × 10-15

methanol 6.7 × 10-9 4.15 × 10-16

gasoline 1.5 × 10-10 8.5 × 10-18

 

The hydraulic conductivity of Ca-bentonite and Na-bentonite GCLs were measured as 3.0 

× 10-10 and 1.7 × 10-11 m/s, respectively. The hydration of inorganic cations (Na+ or Ca2+) 

leads to the interlayer expansion of the bentonite particle aggregates and consequently, 

the expansion of the bulk volume. Since bentonite soil filling in GCL was confined 

between two layers of geotextile, the volume expansion of soil filling was inhibited and 

instead, the bentonite ended up with a lower pore volume and decreased size of meso-

pores. This process controls the permeability of water in the GCL as hydrated GCL tend 

to have much lower hydraulic conductivity. Mesri and Olson (1971) demonstrated that 

the higher plasticity of clayey soils is related to their higher swelling and lower hydraulic 

conductivity. They explained that the clay, especially colloidal particles typically have 

thicker double layer which resulted in stronger interactions with water molecules. Benson 

et al. (1994) suggested that the hydraulic conductivity of the geo-materials decreases 

when the plasticity index or swelling potential increases. The dissolved organics had no 

or low impact (e.g. 5% of difference) on the hydraulic conductivity of the Ca-bentonite 

and Na-bentonite GCLs.  



 

117 
 

Previous study indicated that the hydraulic conductivity of calcium or sodium bentonite 

GCL increases as the mass ratio  of organoclay additives increases (Lorenzetti et al. 

2005). The increased hydraulic conductivity is attributed to the hydrophobic 

characteristics of organoclays surfaces, which tends to impose decreased drag forces on 

water in the pore space. As a result, the hydraulic conductivity of Na-bentonite GCL 

specimen with 20% of HDTMA-bentonite was reported to be 5.7 × 10-11 m/s, 

approximately three times higher than the hydraulic conductivity of 100% Na-bentonite 

GCL. The same trend was observed for the Ca-bentonite based GCLs. The hydraulic 

conductivity of Ca-bentonite GCL was measured as 3.0 × 10-10 m/s and it increased to 8.6 

× 10-10 m/s by adding 20% HDTMA-bentonite to the Ca-bentonite. 

The interaction between sodium or calcium bentonite and low polarity liquids are very 

limited as the inorganic cations cannot be solvated or hydrated by the larger, non-polar 

organic molecules. Consequently, the swelling of Na-bentonite and Ca-bentonite were 

inhibited in the low polarity fluids like gasoline or methanol. The permeability of 

methanol and gasoline were at 5.4 × 10-8 m/s and 7.2 × 10-7 m/s (almost 3 orders of 

magnitude higher water) in the Na-bentonite GCL, respectively. 

The correlations of the permeability (to water and gasoline) of GCL specimens and the 

mass percentages of PM-199/HDTMA-bentonite amendments are illustrated in Figure 

4-13. The obtained results for the GCL specimens with HDTMA-bentonite amendment 

suggest that the GCL soil should have at least 43% HDTMA-bentonite in order to obtain 

a low permeability (1 × 10-9 m/s) to gasoline and water at the same time. However, the 

acquired results for GCL specimens with PM-199 amendments suggest that 28% PM-199 

amendment in Na-bentonite GCLs can provide a permeability of 6 × 10-10 m/s for 
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gasoline and water at the same time. Moon et al. (2007) evaluated the permeability of a 

compacted HDTMA-bentonite specimen to gasoline. They suggested that a compacted 

specimen consisted of 100% HDTMA-bentonite could provide the permeability to 

gasoline as low as 2.53 × 10-10 m/s. in another study, Yang and Lo (2004) investigated 

the permeability of a compacted organoclay (BB-40) specimen to gasoline. Their result 

suggested that the organoclay compacted specimen could reach to a permeability as low 

as 6× 10-11 m/s for gasoline. The obtained results in this study suggested that a GCL 

specimen with 100% HDTMA-bentonite/PM-199 could provide such a low permeability 

to gasoline that was reported for compacted organoclay specimen. However, it can be 

concluded that PM-199 is more efficient amendment for the GCL specimen compared to 

HDTMA-bentonite. Because a lower percentage (10~20%) of PM-199 not only 

maintained a low permeability of GCL to water (less than 10-10 m/s) but also decreased 

the permeability of GCL to gasoline by approximately two orders of magnitude (10-6 m/s 

to 10-8 m/s). 
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(a) 

 

(b) 

Figure 4-13. Permeability of Na-bentonite GCL specimens with different 
percentages of (a) PM-199 (b) HDTMA-bentonite permeated by water and gasoline 
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Previous studies indicated that increasing the confining stress in the permeameter would 

decrease the void ratio of GCL soil, which typically leads to lower hydraulic 

conductivities (Shackelford et al. 2000; Shan and Daniel 1991).The effect of confining 

stress on the hydraulic conductivity of Na-bentonite GCL and GCL with 10% and 20% 

HDTMA-bentonite amendment is presented in Figure 4-14. The fluid confining pressure 

applied to the GCL specimens were 34.47, 68.94, 137.89, 206.84, and 275.79 kPa. It was 

observed that the hydraulic conductivity of Na-bentonite GCL and GCL with 10% 

HDTMA-bentonite + 90% Na-bentonite decreased as the confining stress increased from 

5 to 20 kPa.  

 

Figure 4-14. Effect of confining stress on the hydraulic conductivity of Na-amended 
GCLs 

The quantity of solution that permeates through a certain area of the liner system (GCL) 

during a certain period of time under a specific hydraulic gradient is defined as 

permittivity. The permittivity is determined as the ratio of the permeability to the 

thickness of the GCL specimen: 
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k

t
 

 
4-8

where    is permittivity (1/s), k  is the permeability of GCL specimen (cm/s), and t  is 

the thickness of the GCL specimen (cm). 

The average permittivity of the studied GCL specimens permeated by water and benzene 

solution are summarized in Table 4-8. It was observed that the permittivity of Na-

bentonite/Ca-bentonite based GCLs are comparable with the permittivity of conventional 

compacted clays (1.6 × 10-9 s-1).  

Table 4-8. The average permittivity of GCL specimens 

GCL component Permeant liquid Permeability (m/s) Thickness (cm) Permittivity (1/s)

Ca-bentonite 
water 3.0 × 10-10

0.8 
3.75 × 10-8

benzene solution 3.1 × 10-10 3.875 × 10-8

10% HDTMA-
bentonite + 90% 

Ca-bentonite 

water 4.6 × 10-10

1.2 
3.83 × 10-8

benzene solution 3.5 × 10-10 2.91 × 10-8 

20% HDTMA-
bentonite + 80% 

Ca-bentonite 

water 8.6 × 10-10

1.3 
6.61 × 10-8

benzene solution 8.1 × 10-10 6.23 × 10-8 

Na-bentonite 
water 1.7 × 10-11

0.75 
2.26 × 10-9

benzene solution 1.8 × 10-11 2.4 × 10-9

10% HDTMA-
bentonite + 90% 

Na-bentonite 

water 2.8 × 10-11

0.77 
3.63× 10-9

benzene solution 2.73 × 10-11 3.54× 10-9 

20% HDTMA-
bentonite + 80% 

Na-bentonite 

water 5.7 × 10-11

0.78 
7.3 × 10-9

benzene solution 5.62 × 10-11 7.2 × 10-9 

 

Based on the measured fluid conductivities, it was estimated that the advective 

breakthrough in the Ca-bentonite GCL, GCL with 10% HDTMA-bentonite + 90% Ca-

bentonite, and GCL with 20% HDTMA-bentonite + 80% Ca-bentonite would require 

308, 297, and 185 days (thickness divided by conductivity) under a hydraulic gradient of 

1. However, the advective breakthrough time for the fluid flow to transport along Na-

bentonite GCL and GCL with 10% HDTMA-bentonite + 90% Na-bentonite would 
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require 4823 and 3392 days under a gradient of 1. Furthermore, around 7233 days is 

needed for the advection of the solution through a compacted clay layer. 

The advection of benzene solution through GCL specimens were monitored during the 

breakthrough test and the calculated fluid conductivities as a function of time were shown 

in Figure 4-15. Also, the acquired data for hydraulic conductivity was used to determine 

the average seepage velocity of the contaminant flow. The measured average seepage 

velocities during the breakthrough of the benzene solution are illustrated in Figure 4-16. 

 

 

(a) 
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(b) 

 

(c) 
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(d) 

 

(e) 
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(f) 

Figure 4-15. Measured hydraulic conductivity during breakthrough test for GCL 
with (a) Ca-bentonite (b) 10% HDTMA-bentonite + 90% Ca-bentonite (c) 20% 

HDTMA-bentonite + 80% Ca-bentonite (d) Na-bentonite (e) 10% HDTMA-
bentonite + 90% Na-bentonite (f) 20% HDTMA-bentonite + 80% Na-bentonite 

 

 

(a) 
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(b) 

 

(c) 
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(d) 

 

(e) 
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(f) 

Figure 4-16. Average seepage velocity of GCLs with (a) Ca-bentonite (b) 10% 
HDTMA-bentonite + 90% Ca-bentonite (c) 20% HDTMA-bentonite + 80% Ca-

bentonite (d) Na-bentonite amended GCL (e) 10% HDTMA-bentonite + 90% Na-
bentonite (f) 20% HDTMA-bentonite + 80% Na-bentonite 

 

4.3.3 Breakthrough test 
 

Two series of breakthrough tests on the Ca-bentonite based and Na-bentonite based GCL 

specimens were conducted to examine the mass transport of benzene through the GCL 

when subjected to sorption and retardation. The acquired breakthrough curves for both 

types of GCL specimens are presented in Figure 4-17.  
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(a) 

 

(b) 
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Figure 4-17. Benzene breakthrough curves through (a) Ca-bentonite based (b) Na-
bentonite based GCL specimens without/with HDTMA-bentonite 

The breakthrough experiments typically lasted more than 2 weeks (~8 to 13 pore 

volumes) for the Ca-bentonite based GCL specimens while it took more than 3 weeks 

(~13 to 15 pore volumes) for the Na-bentonite based GCL specimens. The sampling was 

continued until the concentration of benzene in the effluent was below the detection limit 

of GC equipment. 

 The seepage velocity of benzene solution permeating Na-bentonite and Ca-bentonite 

GCL specimens were measured as 4.98 × 10-6 and 5.64 × 10-6 m/s which were at the same 

range. However, the seepage velocity of GCL specimen with 20% HDTMA-bentonite + 

80% Na-bentonite to benzene solution remained at the range of 6.6 × 10-6 m/s and 

addition of 20% HDTMA-bentonite did not change the seepage velocity of Na-bentonite 

amended GCL significantly. As mentioned previously, it is because of strong hydration 

of Na-bentonite with polar liquids with resulted in such low permeability. In contrast, the 

seepage velocity of GCL specimen with 20% HDTMA-bentonite + 80% Ca-bentonite to 

benzene solution was measured as 3.12 × 10-6 m/s which was about one order of 

magnitude higher than the he seepage velocity of Ca-bentonite GCL specimen. The peak 

of mass flux in Na-bentonite GCL occurred at approximately 3 pore volumes, one pore 

volume later when compared to Ca-bentonite GCL. This happened because of lower 

hydraulic conductivity of Na-bentonite compared to Ca-bentonite and longer advective 

breakthrough of benzene solution in Na-bentonite GCL.  

The required time for breakthrough, or retarded transport of benzene in Na-bentonite 

GCL with 10% of HDTMA-bentonite was significantly longer than what required for Na-
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bentonite GCL. However, this difference was not observed between GCLs with Ca-

bentonite GCL and Ca-bentonite + 10% HDTMA-bentonite.  

In the HDTMA-bentonite amended GCL specimens, organic contaminants are absorbed 

by the HDTMA-bentonite and the absorbed mass of contaminants releases with a lower 

rate of mass per unit time (quantified by the mass flux). The peak corresponding to the 

maximum relative concentration of effluent in Ca-bentonite based GCL specimens with 

0%, 10%, and 20% of HDTMA-bentonite were detected after approximately 2, 3, and 4 

pore volumes, respectively. In comparison, the peak corresponding to the maximum 

relative concentration of effluent in Na-bentonite based GCL specimens with 0%, 10%, 

and 20% of HDTMA-bentonite were detected after 3, 5, and 8 pore volumes, 

respectively. The decreased peak concentration was accompanied with the possible 

breakthrough within the first pore volume due to the diffusion of contaminant molecules 

(Shackelford 1994). 

It was observed that 10% of HDTMA-bentonite amendments in Ca-bentonite GCL did 

not make a notable difference in reducing the mass flux of benzene. This could be the 

result of (1) lower dosage of HDTMA-bentonite (2) the diffusive transport of benzene 

through the shorter path (8~10 mm, compared with 2~3 ft of compacted clays) overcame 

the retardation mechanism. In contrast, the 20% of HDTMA-bentonite amendments in 

Ca-bentonite GCL caused the delayed occurrence of the max mass flux of benzene (two 

pore volumes compared to Ca-bentonite GCL) and also decreased the magnitude of the 

relative concentration at peak. The peak mass flux of benzene through Ca-bentonite GCL 

was decreased by 5 times when 10% HDTMA-bentonite was added and further decreased 

to 10 times when 20% of HDTMA-bentonite amendments were added. 
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Interpretation of the breakthrough test results 
 
Initially, the retardation factor of benzene transport through the GCL specimens was 

determined using the first-moment equation. However, it yielded underestimated 

retardation factors as less than 100% of the introduced mass of benzene was collected in 

the effluent. Consequently, both numerical and analytical solution was employed to 

estimate the retardation factor and diffusion coefficient of the benzene transport in GCL 

specimens (Figure 4-18). 

 

Numerical solution Analytical solution 

(a) 

(b) 
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(c) 

(d) 

(e) 
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(f) 

 
Figure 4-18. Fitted curve applying numerical and analytical solution for (a) Ca-

bentonite GCL (b) Ca-bentonite GCL with 10% HDTMA-bentonite amendment (c) 
Ca-bentonite GCL with 20% HDTMA-bentonite amendment (d) Na-bentonite GCL 

(e) Na-bentonite GCL with 10% HDTMA-bentonite amendment (f) Na-bentonite 
GCL with 20% HDTMA-bentonite amendment 

The retardation factors and diffusion coefficients for all breakthrough tests were obtained 

and compared with the calculated retardation factors from the first-moment equation 

(Table 4-9). 

Table 4-9. Retardation factor and diffusion coefficients for six GCL specimens 
obtained from analytical and numerical methods and the first-moment equation 

GCL 
component 

first-moment 
analysis 

Numerical solution Analytical solution 

Retardation 
factor 

Retardation 
factor 

Diffusion 
coefficient 

(cm2/s)

Retardation 
factor 

Diffusion 
coefficient 

(cm2/s)
Ca-bentonite 2.68 6.9 1.8 × 10-6 5 7.1 × 10-6

90% Ca-
bentonite + 

10% 
HDTMA-
bentonite 

3.45 14 2.0 × 10-6 9 1.5 × 10-6 

80% Ca-
bentonite + 

20% 
HDTMA-
bentonite 

5.15 68 5.8 × 10-6 52 4.6 × 10-6 

Na-bentonite 4.52 10 1.5 × 10-6 7 6.3 × 10-6

90% Na- 5.52 26 2.0 × 10-6 20 7.0 × 10-6
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bentonite + 
10% 

HDTMA-
bentonite 
80% Na-

bentonite + 
20% 

HDTMA-
bentonite 

9.38 85 5.0 × 10-6 73 2.0 × 10-6 

 

The calculated retardation factors from numerical and analytical solutions suggested that 

these two methods result in results within a same range. the mathematical models resulted 

in retardation factors of (5 to 7) and (7 to 10) for Ca-bentonite and Na-bentonite GCLs, 

respectively. For unmodified bentonites, the calculated retardation factors from 

mathematical modeling were reletively close to the acquired results from the first 

moment analysis. The retardation factors calculated from the first moment analysis were 

2.68, and 4.52 for Ca-bentonite and Na-bentonite GCL specimens, respectively. 

However, the mathematical modeling resulted in significantly higher retardation factors 

compared to the first moment analysis method as the percentages of HDTMA-benotnite 

increased in the GCL soil. It was observed that the retardation factors obtained from the 

first moment analysis method increased linearly by increasing the percentage of 

HDTMA-bentonite. In contrast, the obtainde results from mathematical solutions showed 

a significant sharp increase in retardation factor by increasing the percent of HDTMA-

bentonite in the GCL soil. 

The higher retardation factors indicated lower mass flux of benzene throught the GCLs 

and longer time of benzene breakthrough. Specifically, the peak mass flux of benzene 

was at 0.007mg/cm2×day in Ca-bentonite GCL and it decreased by almost half to the 

0.004 mg/cm2×day for Ca-bentonite GCL with 20% HDTMA-bentonite amendment. For 
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Na-bentonite GCL, the peak mass flux of benzene was approximately 0.005mg/cm2×day 

and it decreased to the 0.002 mg/cm2×day in Na-bentonite GCL amended with 20% 

HDTMA-bentonite. Also, the average mass flux of benzene at source for Ca-bentonite 

based GCL specimens was at the range of 0.1658 mg/cm2×day while it decreased to 

0.1132 mg/cm2×day for the Na-bentonite based GCL specimens. Therefore, it is 

recommended to employ either numerical or analytical solution to measure the 

retardation factor when 100% of mass does not retrived in effluent. 

 

4.4 Conclusion 
 

In this chapter, the swelling capacity of studied soils including Ca-bentonite, Na-

bentonite, HDTMA-bentonite, PM-199, and soil admixtures including 10%/20% 

HDTMA-bentonite, and 10%/20% PM-199 with Na-bentonite exposed to different 

solutions were evaluated. It was observed that Ca-bentonite and Na-bentonite had higher 

swelling capacity in water due to strong hydration of Ca2+ and Na+. However, their 

swelling capacity decreased drastically in low polarity liquids (gasoline and methanol) 

because of symmetric molecular structure of low polarity liquids which resulted in the 

dipole polarity of zero or near zero and lower adsorption of their molecules by Ca-

bentonite and Na-bentonite. In contrast, organobentonites exhibited higher swelling 

tendency in low polarity liquids because the intercalated surfactants increased the 

organophilicity/hydrophobicity of the organobentonite followed by higher adsorption of 

low polarity compounds. Because of the mentioned reason, the swelling capacity of the 

soil admixtures in gasoline increased as the percentage of organobentonite increased 

while the reverse trend was detected for the swelling tendency of soil admixtures in 
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water. In addition, the effect of ionic strength on the swelling capacity of the studied soils 

were evaluated. It was observed that the swelling capacity of the organobentonites did not 

change as a function of ionic strength and they did not exhibit a notable swelling in the 

solutions with different ionic strength. In contrast, bentonite soils showed a significant 

swelling capacity in solution with low ionic concentration (0.01 M NaCl). However, the 

swelling tendency of bentonite soils decreased by increasing the concentration of ionic 

solution because the higher ionic concentration dragged water molecules out of bentonite 

interlayers and resulted in lower swelling capacity. Additionally, the effect of basic and 

acidic solution was investigated on the swelling capacity of the studied soils. It was 

observed that basic and acidic solution (4<pH<10) did not affect the swelling capacity of 

studied soils. However, it is expected that the swelling tendency of the bentonites 

decrease in strong acidic and basic solutions.  

Also, the hydraulic performance of GCL with organobentonite amendment for different 

fluids were evaluated. It was observed that the permeability of bentonite GCL specimens 

to water was 3.0 × 10-10 for Ca-bentonite and 1.7 × 10-11 m/s for Na-bentonite. The 

hydration of inorganic cations resulted in the interlayer expansion due to the adsorption 

of water molecules by inorganic cations. Consequently, the bentonite ended up with a 

lower pore volume and decreased size of meso-pores which resulted in lower 

permeability of bentonite GCL specimens to water. However, Na-bentonite and Ca-

bentonite had limited interaction with low polarity liquids (gasoline and methanol) and 

the inorganic cations could not hydrate by the larger, non-polar organic molecules. 

Consequently, the permeability of the Na-bentonite GCL specimens to gasoline and 

methanol increased to 7.2 × 10-7 m/s and 5.4 × 10-8 m/s, respectively. In contrast, 
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HDTMA-bentonite exhibited low permeability to low polarity liquids. The low 

permeability of HDTMA-bentonite to gasoline and methanol is attributed to the inherited 

organophilic characteristics of organobentonites. As a result, the organobentonites have 

higher solvation in low polarity liquids. The higher adsorption of large molecules of 

methanol and gasoline by the intercalated surfactant in the interlayer of organobentonites 

results in the interlayer expansion of organobentonites. Consequently, the 

organobentonites molecules swell and fill the available pores in the structure of GCL 

specimens. As a result, the permeability of GCL specimen with 100% HDTMA-bentonite 

was as low as 1.5 × 10-10 m/s. Based on the mentioned reason, the permeability of GCL 

specimens to low polarity liquids decreased by increasing the percentage of HDTMA-

bentonite in the GCL soil. In conclusion, the permeability of Na-bentonite GCL specimen 

with 20% of HDTMA-bentonite was measured as 4.12 × 10-8 m/s which was lower than 

the permeability of Na-bentonite GCL specimen to gasoline. 

In addition, the permeability of Na-bentonite based GCL specimens with different 

percentage of HDTMA-bentonite/PM-199 to both polar (water) and non-polar (gasoline) 

liquids was measured. It was found that the minimum permeability of 1 × 10-9 m/s for 

gasoline and water could be achieved for Na-bentonite GCL with HDTMA-bentonite 

amendment by using 43% HDTMA-bentonite in the GCL soil. While, it was observed 

that only 28% PM-199 amendment in Na-bentonite GCLs can provide an approximate 

permeability of 6 × 10-10 m/s to gasoline and water. Other studies reported that the 

permeability of compacted organobentonite specimens to gasoline was in order of 10-10 

m/s. The same range of permeability to gasoline and water was achieved by adding 28% 

PM-199 amendment to the Na-bentonite GCL specimen. For this reason, it was 
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concluded that PM-199 could serve more efficiently than HDTMA-bentonite as an 

amendment to Na-bentonite GCLs because it could provide a lower permeability for both 

polar and non-polar liquids. 

Moreover, the effect of confining stress on the hydraulic conductivity of three GCL 

specimens including Na-bentonite, 10% HDTMA-bentonite + 90% Na-bentonite, and 

20% HDTMA-bentonite + 80% Na-bentonite was investigated. It was observed that the 

hydraulic conductivity of GCL specimens decreased when the confining stress increased 

from 34.47kPa to 275.79 kPa. This phenomenon happened because the void ratio in GCL 

specimens decreased by increasing the confining stress. 

Only slight increases in retardation of benzene through GCL specimens with 10%/20% of 

HDTMA-bentonite amendment was observed, due to the lower fraction of HDTMA-

bentonite and their relatively lower sorption capacity for benzene. However, Na-bentonite 

GCL specimens exhibited relatively higher retardation factor compared to Ca-bentonite 

based GCL specimens. The reason could be because of lower permeability of Na-

bentonite GCL specimens to benzene solution which increased the interaction time 

between HDTMA-bentonite and benzene solution. The average effluent mass flux of 

benzene at peak started from 0.007mg/cm2×day for Ca-bentonite GCL and decreased by 

half to the 0.004 mg/cm2×day for Ca-bentonite GCL with 20% HDTMA-bentonite. 

However, the average effluent mass flux of benzene at peak started from 

0.005mg/cm2×day for Na-bentonite GCL and decreased to the 0.002 mg/cm2×day for Na-

bentonite GCL with 20% HDTMA-bentonite. The breakthrough of benzene lasted 13 and 

23 days in Ca-bentonite and Na-bentonite GCL specimens with HDTMA-bentonite 

amendment, respectively. It suggested that 100% of benzene mass breakthrough would 
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take much longer time in HDTMA-bentonite amended GCLs. In addition, a numerical 

model and analytical solution were employed to calculate the retardation factor and 

diffusion coefficient corresponding to 100% of benzene mass breakthrough. The 

analytical solution revealed that the corresponding retardation factors to 100% mass of 

benzene were much higher compared to the experimental results, especially for GCL 

specimens with higher percentage of HDTMA-bentonite. However, the obtained results 

from numerical modeling approach were slightly higher than those from the analytical 

solution. The mentioned difference was anticipated because of the discretization error in 

the numerical modeling procedure. The obtained diffusion coefficient from both 

procedures were in good agreement with previous studies. Overall, this study suggests 

that using HDTMA-bentonite or other organically modified clay amendments may 

enhance the attenuation of organic compounds but also decrease the permeability of low 

polarity fluids in GCL. 
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5 CHAPTER FIVE NON-EQUILIBRIUM SORPTION AND 
RETARDATION OF ORGANIC CONTAMINANTS IN 

PERMEABLE REACTIVE BARRIERS (PRBS) AMENDED 
WITH ORGANOCLAYS   

 

5.1 Introduction 
 

Permeable reactive barriers (PRB) is an in-situ technology that is mostly used in fast flow 

rate conditions such as groundwater to remediate the contaminants carried by the flow 

using reactive barrier components. PRBs consist of a permeable vertical curtain of 

reactive materials which is constructed perpendicular to the groundwater flow. When the 

contaminant plume flows through the PRB under the natural hydraulic gradient, the 

reactive materials interact with the plume and retard the mass transport of the 

contaminant and immobilize the contaminants or transform them to the non-toxic 

compounds (Carey et al. 2002; Powell et al. 1998; Skinner and Schutte 2006). A 

schematic illustration of PRB system is shown in Figure 5-1. 

 In addition, it is possible to employ the PRB system in horizontal orientated filter layer 

to control the downward migration of contaminants (Technologies 2017). In most cases, 

groundwater flow pass through the PRB system naturally under the existing hydraulic 

gradient. However, sheet piles or low permeability slurry walls may be required in other 

cases to conduct the groundwater flow toward the PRBs. PRBs can be constructed in a
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 single layer, in combination with low permeability barriers (e.g. sheet pile), or in a series 

to remediate individual contaminants.  

A summary of different common treatment media that have been considered for PRB 

application are listed in Table 5-1. 

 

Figure 5-1. Schematic figure of PRB system (DOE-sites 1999) 

Table 5-1. Common treatment medium and targeted contaminants in PRBs 

Common treatment medium Targeted contaminants 

zero valent iron Halocarbons, reducible metals 

limestone Metals, acid waters 

precipitation agents (gypsum, 

hydroxyapatite) 
Metals 

sorptive agents (Fe hydroxide, granular 

activated carbon, zeolites, organoclay, 

coal) 

Metals (such as Ni, Pb, Cd, Cr, Hg) and 

organics (such as benzene, toluene, 

ethylbenzene, xylene, nitrobenzene, 
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dichloroethane, trichloroethane, 

perchloroethylene, petroleum hydrocarbons 

reducing agents (organic compost, 

dithionite, hydrogen sulfide) 
Reducible metals, Trichloroethylene 

metal couples halocarbons 

biologic electron acceptors (oxygen 

release compound -oxygen source, 

nitrate) 

benzene, toluene, ethylbenzene, xylene 

 

To attain an efficient PRB in the field, three major factors must be taken into 

considerations. First, the required time for a desired cleanup should be less than the 

detention time of the flow in the PRB system. In the case that the reaction rate is slow, 

partial interaction between reactive material and contaminants could happen. The second 

requirement is to employ economical efficient materials as reactive components as in 

some scenarios, the replacement or regeneration of the materials must be affordable. 

Most importantly, it is required that the reactive components do not cause contamination 

to the groundwater themselves.  

In addition, a detailed site characterization and site assessment must be conducted prior to 

the installment of barrier system to ensure the efficiency of the PRB system in removing 

the contaminants in the groundwater flow. Typically, the geological and hydrogeological 

information, the existing contaminants, and the geochemistry are evaluated before the 

implementation (Gavaskar et al. 2000). The advantages and disadvantages of PRB system 
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has been summarized in Table 5-2 (Carey et al. 2002; Henderson and Demond 2007; 

Powell et al. 1998; Puls 2006). 

Table 5-2. Advantages and disadvantages of PRB system (Obiri-Nyarko et al. 2014) 

Advantages Disadvantages 

Relatively cheap passive technology, low 
maintenance cost, and negligible cost for 

disposal of treated contaminants

Only the contaminants passing through 
PRBs can be treated 

Applicable for multi contaminates 
Detail site characterization and site 

assessment is required prior to the barrier 
installation 

Able to remediate a wide range of 
contaminants 

Efficient for the plumes no deeper than 20 
m beneath ground surface

The contaminated site can be running while 
the remediation is ongoing

Lack of data regarding the longevity of the 
PRBs 

No surface contamination causing from 
PRBs  

Possible difficulties in construction and 
performance 

Occasional monitoring to assure the 
functionality of the system

Possibility of reactive material replacement 
in long term 

No groundwater loss during the treatment 
process 

Require monitoring especially in the case 
of persistent contaminants or low 

groundwater flow 
 

The selection of suitable reactive component for PRB depends on the type of target 

contaminants in groundwater flow. The treatment mechanism can be based on organic, 

inorganic, or combined reaction scheme. A multiple phase contaminants can be 

remediated by employing a single or combined treatment procedure, or using 

single/multi-media. Particularly, some hydrocarbons and certain heavy metals can be 

treated through the sorption mechanism using fine-grained soils. The possible treatment 

mechanisms include chemical precipitation mechanism, Oxidation-reduction mechanism, 

zero-valent metal reaction, and sorption reaction which are explained in following 

paragraphs. 
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In chemical precipitation mechanism, slightly soluble compounds that contain ions are 

used to interact and precipitate the dissolved inorganic species like heavy metals and 

result in an insoluble salt such as sulfate, or carbonate metal salts containing the 

contaminants. Oxidation-reduction mechanism which also is known as “redox” attenuate 

the dissolved inorganic contaminants through the precipitation process by changing the 

valance state of contaminants during the redox process. In zero-valent metal reaction, 

metal provide the electron for reduction of chlorocarbons by removing the chlorine from 

the structure of chlorocarbons and releasing it to the solution as a combination of chloride 

and ferrous iron (Fe2+). 

The sorption reaction can be categorized in three groups including hydrophobic, 

hydrophilic, and ion exchange type. Many different materials have been used to sorb the 

organic and inorganic compounds from arouse phase. The sorption media are suitable for 

PRB application because the equilibrium sorption process occurs in a short amount of 

time. However, the sorption materials have a specific sorption capacity. The 

breakthrough of contaminants starts as soon as the sorption materials reach to their 

maximum capacity. In conclusion, an additional means is required in conjunction with 

sorptive material which remove or replenish the sorption medium. 

The sorption reaction has been studied well for the strong organic sorbents which have 

very low water solubility, strongly hydrophobic, and highly stable for biodegradation. 

These compounds transfer from the water phase to the available organic carbon in the 

solid phase geo-materials through the partitioning process. Consequently, it can be 

concluded that the contaminants carried by groundwater flow can be removed efficiently 

from the aquifer system by increasing the organic carbon content of aquifer materials. 
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However, the sorption capacity of the selected materials is one of the most important 

characteristics which needs to be considered before selecting the treatment materials. The 

organically modification of sorptive materials can increase their sorption capacity and 

makes them favorable sorptive material for different scenarios. 

Most commonly, zero-valent iron (ZVI), natural zeolites, activated carbon (AC), lime and 

other alkaline materials, apatite, transformed red mud (TRM), oxide, and sodium 

dithionite have been employed as the reactive component of PRB system (Liao et al. 

2010; Nakagawa et al. 2003; Peric et al. 2004; Simon and Meggyes 2000; Triay et al. 

1989). Among the possible options for PRB reactive materials, organoclays have gained 

more attention because of their higher sorption capacity to the common groundwater 

contaminants such as aromatic hydrocarbons (Guerin et al. 2002; Lee et al. 2012). In 

addition, organoclays demonstrated that they uptake contaminants from groundwater 

through the sorption process. As mentioned previously, the equilibrium sorption process 

occurs in a fast rate which makes it a favorable mechanism for the fast flow rate systems 

such as PRBs. The sorption mechanism can be used in aquifers with low organic carbon 

by utilizing organoclay complex as reactive material for PRBs. In this case, the 

organoclay can make a mineral complex with aquifer minerals which increase the 

sorption capacity of the minerals. Various surfactant can be utilized to create the organo 

complex with aquifer solid minerals. However, the interaction time between organoclays 

and dissolved contaminant should be enough to let the organo complex adsorb the 

contaminants. Otherwise, the non-equilibrium sorption mechanism would be dominant 

and the introduced contaminants would be attenuated partially. Lee et al. (2012) 

investigated the feasibility of using organoclays to remove PAHs from groundwater flow. 
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They suggested that organoclays can be employed efficiently for fast flow rate systems. 

They observed that organoclays blocked the advective transport of non-aqueous-phase 

liquid (NAPL) while they allowed the water with dissolved PAHs to pass through the 

PRB system and sorbed the dissolved PAHs. 

In a fast flow rate permeable systems, the level of interaction between groundwater 

contaminants and PRB materials is typically relied on both the sorptivity of the PRB 

materials and the contact time between the contaminants and PRB materials (Carey et al. 

2002; Chen et al. 2011; Henderson and Demond 2007; Puls 2006; Wilkin and Puls 

2003).A non-equilibrium condition often exists in such a scenario, even if the sorption of 

organics onto organoclays are relatively fast (Chapter 2). Consequently, kinetic study is 

required to understand the sorption capacity of the system at non-equilibrium condition. 

The scope of this study is to investigate the potentials of using organobentonites as 

reactive amendment in PRB materials and also provides quantitative results to aid design 

and possible implementation of such applications Two sets of soil columns with of 10% 

of organobentonites (HDTMA-bentonite and PM-199) with different hydraulic 

conductivities (ranging from 10-4 to 10-7 m/s) were prepared and the impact of or seepage 

velocity on the sorption and retardation of the organic contaminants were examined. In 

addition, a model was established to relate the non-equilibrium partitioning coefficients 

and retardation factors as a function of time.  

5.2 Materials and methods 
 

Six different soils (low plasticity silty clay, HDTMA-bentonite, ASTM 20-30, coarse 

sand, fine sand, and PM-199 powder) were used to prepare the binary soil admixtures for 
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this study. Coarse sand and medium sand were classified as SP (poorly graded sand) 

according to ASTM D422 and their grain size distribution curves are illustrated in Figure 

5-2. The physical properties of the ASTM 20-30, coarse and fine sand are summarized in 

Table 5-3. 

 

Figure 5-2. grain size distribution curve for coarse and fine sand 

Table 5-3. physical properties of the coarse and fine sand 

Properties Coarse sand Fine sand ASTM 20-30 

Cc 1.14 1.06 1.15 

Cu 2.2 2 1 

Type of gradation Poorly graded Poorly graded Poorly graded 

Specific gravity 2.67 2.65 2.65 

Total organic carbon (%) <1 <1 <1 
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For this study, pure benzene was dissolved in deionized water to prepare the permeant 

stock solution with approximate concentration of 100 µg/mL following the procedure 

explained in chapter 2. The stock solutions were stored at room temperature for less than 

1 hour before the tests. 

5.2.1 Column preparation 
 

To study the effect of seepage velocity on the contaminant sorption and transport 

mechanisms, two sets of soil columns were designed. The first set of tests were 

performed in 4 packed columns with 10% HDTMA-bentonite and 90% of (1) coarse 

sand, (2) ASTM 20-30 sand, (3) silty clay, and (4) silty clay (slightly compacted). The 

second set of tests were performed in 3 packed columns with 10% PM-199 (powder) and 

90% of (1) ASTM 20-30 sand, (2) fine sand, and (3) silty clay (loose). The percentages of 

organoclays were kept constant at low ratio of 10% (by weight) because the high sorption 

capacity of the studied organoclays could yield low effluent concentration that can’t be 

easily tested in GC.  The physical properties of the soil columns are summarized in Table 

5-4. 

Table 5-4. Properties of packed columns 

Column NO. Soil component Soil mass (g) 
Specific 

gravity 

Pore volume 

(mL) 

Dry density 

(g/cm3) 
Porosity 

Column 1 

10% 

HDTMA+90% 

coarse sand 

110 2.53 44 1.49 0.6 

Column 2 

10% 

HDTMA+90% 

ASTM 20-30 sand 

110 2.58 30 1.02 0.52 

Column 3 
10% 

HDTMA+90% 
75 2.53 30 1.02 0.42 
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silty clay  

Column 4 

10% 

HDTMA+90% 

silty clay (slightly 

compacted) 

90 2.53 38 1.22 0.41 

Column 5 

10% PM-199 

(POWDER)+90% 

ASTM 20-30 sand 

110 2.58 31 1.49 0.6 

Column 6 

10% PM-199 

(POWDER)+90% 

Fine sand 

110 2.58 31 1.49 0.42 

Column 7 

10% PM-199 

(POWDER)+90% 

silty clay 

75 2.53 44 1.02 0.4 

 

Cylindrical glass columns with length of 15 cm and diameter of 2.5 cm with Teflon 

coded caps (Kimble Chase Co.) were used for the column studies. Columns were first 

cleaned with methanol and deionized water. Teflon tubing was used in this experiment 

for inlet and outlet flow lines to minimize the sorption of benzene to the wall of tubing.  

 

5.2.2 Hydraulic conductivity test 
 

The hydraulic conductivity of seven soil columns were measured using constant head 

method following ASTM D 2434. The prepared columns were fixed on a stand and 

connected to the water reservoir. To saturate and squeeze the trapped air pockets out of 

the columns, the water was flushed through the columns from bottom to top until the 

stable water head at water reservoir and steady state at effluent was achieved. The 

effluent was collected in a container. Meanwhile the required time to collect the effluent 



 

151 
 

and the water head were recorded for each column. The hydraulic conductivity was 

measured using equation 5-1: 

QL
k

Ath
   5-1

where k is the hydraulic conductivity (cm/s), Q is the quantity of water discharge (cm3), 

L is the length of column (cm), A is the cross-section area of column (cm2), t is the total 

time for water discharge (s), and h is the water head difference. 

 

Figure 5-3. Hydraulic conductivity test setup with constant head 

5.2.3 Breakthrough test 
 

The breakthrough tests were carried out to obtain the retardation capacity of each binary 

soil admixture in the seven packed columns. This part of experiment was designed to 

evaluate the sorptivity of benzene by the organoclay amendments when given a fast 

seepage velocity and possibly, a non-equilibrium sorption scenario in PRBs. 
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The pre-saturated columns from the hydraulic conductivity experiment were used for the 

breakthrough study. A bladder accumulator with viton membrane was used to feed the 

benzene solution into the soil columns. For this reason, pressure control panel was used 

to inject the solution. Initially, bladder accumulator was filled with benzene solution and 

1 pore volume of pulse-type contaminant solution was injected to the soil columns. Then, 

the flow was switched to the deionized water. Following the test procedure explained in 

chapter 4, The effluent samples were collected and analyzed for the concentration of 

benzene. The columns were flushed with deaired water until the concentration of benzene 

in effluent was reached below the detection limit. The breakthrough curve for benzene 

solution was obtained by measuring the concentration of benzene in the effluent. The 

schematic setup of breakthrough experiment is presented in Figure 5-4. 
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Figure 5-4. Schematic setup of breakthrough test 

To analyze the breakthrough test results, the non-equilibrium partitioning coefficient of 

benzene was estimated from the kinetic study (chapter 2). Also, the numerical and 

analytical solutions were obtained to estimate the contaminant transport parameters 
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following the same procedure explained in chapter 4. The obtained results from 

mathematical modeling was compared with the non-equilibrium partitioning coefficient 

of benzene to verify the accuracy of models.  

5.3 Result and discussion 
 

5.3.1 Hydraulic conductivity test 
 

The hydraulic conductivity (k) and corresponding seepage velocities (vs) for seven 

studied columns were measured and the obtained results are summarized in Table 5-5. 

Table 5-5. The measured hydraulic conductivity 

Column components Void ratio (e) Vs (m/s) k (m/s) 

Column 1 1.5 1.36 × 10-3 1.33 × 10-4

Column 2 1.08 2.83 × 10-4 4.61 × 10-5 

Column 3 0.72 3.29 × 10-5 2.25 × 10-6 

Column 4 0.69 3.17 × 10-6 4.07 × 10-7 

Column 5 1.5 1.15 × 10-3 1.12 × 10-4 

Column 6 0.72 4.13 × 10-4 2.83 × 10-5 

Column 7 0.66 1.77 × 10-5 3.32 × 10-6 

 

The hydraulic conductivity of soil columns with HDTMA-bentonite amendment was at 

1.33 × 10-4 m/s for column 1 and decreased to 4.07 × 10-7 m/s for slightly compacted soil 

column 4. The same trend was observed regarding the hydraulic conductivity of soil 

columns with PM-199 amendment. The hydraulic conductivity of column 5 was 

measured as 1.12 × 10-4 m/s while it decreased to 3.32 × 10-6 m/s for column 7. It was 

observed that the hydraulic conductivity of soil columns were function of void ratio. 
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Taylor (1948) suggested an equation for coefficient of permeability which considered the 

properties of both soil medium and permeant fluid, equation 5-2. 

݇ ൌ ௦ܦܥ
ଶ ߤ
ߛ

݁ଷ

ሺ1 ൅ ݁ሻ
ܵଷ 5-2

where C is the shape factor, ܦ௦ is the effective particle diameter, e is the void ratio, 	ߤ is 

the viscosity of the permeant fluid, ߛ is the unit weight of the soil, and S is the degree of 

saturation. It was observed that the void ratio of packed columns with HDTMA-bentonite 

amendment started from 1.5 for the column with highest flow rate (column 1) and 

decreased to 0.69 for the column with lowest flow rate (column 4). Consequently, the 

hydraulic conductivity in HDTMA-bentonite amended columns started at higher end for 

column 1 as 1.33 × 10-4 m/s and decreased to 4.07 × 10-7 m/s for column 4 at the lowest 

end. Likewise, the void ratio of packed columns with PM-199 amendment started from 

1.5 for the column with highest flow rate (column 5) and decreased to 0.66 for the 

column with lowest flow rate (column 7). As a result, the hydraulic conductivity in PM-

199 amended columns started at higher end for column 5 as 1.12 × 10-4 m/s and decreased 

to 3.32 × 10-6 m/s for column 7 at the lowest end. 

In this study, the obtained results suggested that the void ratio decreased by decreasing 

the particle size of soil column constituent. As it was anticipated, the hydraulic 

conductivity of soil columns decreased by mean particle sizes. 

5.3.2 Breakthrough test 
 

The breakthrough time increased as the coarse particle fraction decreased in the soil 

columns. For columns 1, 2, 5, and 6 the tests typically lasted about 20 to 30 minutes (for 

25 to 30 pore volumes). However, columns 3, 4, and 7 lasted more than 2 weeks (for 20 
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to 25 pore volumes). The seepage velocity started from 1.3 × 10-3 m/in soil columns s 

filled with admixture of HDTMA-bentonite and coarse sand and it decreased to 3.17 × 

10-6 m/s for soil column with HDTMA-bentonite and silty clay. Similar trend was 

observed as the seepage velocity in PM-199 ASTM with 20-30 sand was measured at 

1.15 × 10-3 m/s and it decreased to 1.77 × 10-5 m/s in PM199 and silty clay. The peak of 

mass flux in both columns of HDTMA-bentonite + coarse sand and PM-199 + ASTM 20-

30 sand appeared after 3 pore volumes. However, the peak of mass flux in HDTMA-

bentonite + silty clay occurred 2 pore volumes earlier than PM-199 + silty clay. This was 

explained as a result of higher sorption capacity of PM-199 compared to HDTMA-

bentonite. The obtained breakthrough curve for columns with 10% organoclay 

amendments are illustrated in Figure 5-5.  

 

(a) 
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(b) 

Figure 5-5. Breakthrough curve of benzene transport in column with (a) 10% 
HDTMA-bentonite amendment (b) 10% PM-199 amendment 

 

The delayed arrival and decrement of the peak mass flux was attributed to the sorption of 

benzene by the soils. A retardation factor is typically used to describe such a hindered 

transport of organic contaminant. Most commonly, the retardation factor is determined by 

the sorptivity of the soil sorbent (ܴ ൌ 1 ൅ ఘ

௡
݇ௗ) and the partitioning coefficient Kd in this 

equation indicates the affinity of contaminant sorbate towards soil sorbent. However, the 

partitioning coefficient Kd is typically determined by batch sorption tests and it represents 

a distribution of contaminants between soil sorbent and aqueous phase under the 

equilibrium condition. In the PRBs, because the breakthrough time of contaminant 

through the reactive materials could be less than the time required for equilibrium 

sorption, the equation tends to yield overestimated Kd and consequently, overestimated 
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retardation factor. It is necessary to investigate the non-equilibrium sorption and the 

resultant retardation factor given the fast flow situation.  

Table 5-6. Required time for seepage of benzene solution through the soil columns 

Column components Vs (m/s) Time (min) 

10% HDTMA + 90% coarse sand 1.36 × 10-3 1.83 

10% HDTMA + 90% ASTM 20-30 sand 2.83 × 10-4 8.81 

10% HDTMA + 90% silty clay 3.29 × 10-5 75.93 

10% HDTMA + 90% silty clay (slightly 

compacted) 
3.17 × 10-6 786.88 

10% PM-199 (POWDER) + 90% ASTM 

20-30 sand 
1.15 × 10-3 2.16 

10% PM-199 (POWDER) + 90% Fine 

sand 
4.13 × 10-4 6.05 

10% PM-199 (POWDER) + 90% silty clay 1.77 × 10-5 14.08 

Initially, breakthrough time of contaminant flow in each column was calculated based on 

the seepage velocity (Table 5-6): 

s

L
t

V
   5-3

Where t is the breakthrough time (s), L is the length of the column (cm), and Vs is the 

seepage velocity (cm/s). The obtained breakthrough time was then used to estimate the 

non-equilibrium partitioning coefficient through the aqueous concentration of benzene 

from the kinetic study (chapter 2).  

௧ܥ ൌ ௘ܥ ൅ ሾܥ଴ െ ݌ݔ௘ሿ݁ܥ ൤െ ൬
଴ܥߝ
௘ܥ
൰ ൨ 5-4ݐ

For kinetic study, the concentration of dissolved benzene in the solution as a function of 

time (Ct) was recorded. In addition, the initial concentration of the benzene in the 

solution was measured as (C0). Also, the equilibrium concentration of benzene in the 
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solution was measured as (Ce). An initial value for the mass transfer coefficient (ε) was 

chosen and the resultant curve from equation 5-4 was plotted. The value of ε was altered 

to fit a curve to the experimental results. Consequently, the suitable value of ε was found 

and the concentration of benzene as a function of time was calculated by using equation 

5-4. the partitioning coefficient of HDTMA-bentonite as a function of time was 

calculated by dividing the absorbed mass of benzene to the solid phase over the remained 

concentration of benzene in the solution for each time step. The calculated partitioning 

coefficient of HDTMA-bentonite for benzene as a function of time is presented in Figure 

5-6. 

 

Figure 5-6. partitioning coefficient of HDTMA-bentonite for benzene as a function 
of time 

Based on the results in Figure x, it can be concluded that approximately 20 minutes is 

needed for the equilibrium sorption of benzene onto HDTMA-bentonite. Consequently, 

the partitioning coefficient obtained from equilibrium batch sorption test is not valid 

anymore for non-equilibrium sorption condition with the breakthrough time less than 20 

mins. Specifically, out of the 7 packed columns, the benzene transport and retardation in 
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5 columns (column 1,2,5,6,7,Table 5-7) must be considered as non-equilibrium sorption 

case. 

Table 5-7. Non-equilibrium partitioning coefficient of HDTMA-bentonite for 
benzene 

Column 

number Column components 
Breakthrough 

Time (min) 

K (mL/g) 

 Kt Kd 

1 10% HDTMA + 90% coarse sand 1.83 13 ---

2 10% HDTMA + 90% ASTM 20-30 sand 8.81 110 --- 

3 10% HDTMA + 90% silty clay 75.93 --- 149.59 

4 
10% HDTMA + 90% silty clay (slightly 

compacted) 
786.88 --- 149.59 

5 
10% PM-199 (powder) + 90% ASTM 20-

30 sand 
2.16 N.A. 

6 10% PM-199 (powder) + 90% Fine sand 6.05 N.A. 

7 10% PM-199 (powder) + 90% silty clay 14.08 N.A. 

 

The calculation to determine the overall sorptivity and retardation factor of the soil 

admixture is illustrated below: 

Considering negligible sorptivity of coarse sand, the overall distribution coefficient (Ka) 

can be calculated as: 

1

n

i i
i

a
i

K W
K

W



 
5-5

where iK  is the partitioning coefficient of each sorbent (at equilibrium or non-

equilibrium condition), and iW  is the mass percentage of each sorbent in the column soil. 
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Following the mentioned procedure, the distribution coefficients was measured for 

studied columns. Then, the retardation factor was calculated using equation 5-6. 

	ܴ ൌ 1 ൅ ఘ

௡
 ܭ 5-6

the K value used for column 1 and 2 were the non-equilibrium distribution coefficients 

that was measured through the kinetic study while the retardation factor for column 3, 

and 4 were measured using the equilibrium distribution coefficients (Kd).	The calculated 

partitioning coefficient and retardation factors for the studied columns are summarized in 

Table 5-8. 

Analytical solution was employed to calculate the retardation factor corresponding to 

100% mass of benzene in effluent, Figure 5-7. The acquired results are summarized in 

Table 5-8. 

 

(a)  (b) 
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(c)  (d) 

Figure 5-7. Fitted curve applying analytical solution for column (a) 1 (b) 2 (c) 3 (d) 4 

Table 5-8. Retardation factor and diffusion coefficients for seven soil columns 
obtained from analytical and numerical methods and the first-moment equation 

Column number 

Calculated from kinetic study 
Experimental results fitted 

by analytical solution

K (mL/g) 
Retardation 

factor 
Retardation 

factor 

Diffusion 
coefficient 

(cm2/s)
1 1.3 4.23 4 2.4 × 10-6

2 11.0 22.57 19.2 1.2 × 10-6

3 14.59 37.33 41.1 6.2 × 10-6

4 14.59 45.51 58.6 1.8 × 10-6

 

The retardation factor calculated from the non-equilibrium partitioning coefficient and 

estimated from analytical solution was 4.23, and 4 for soil columns 1, respectively. Also, 

the retardation factor for column 2 was obtained from the non-equilibrium partitioning 

coefficient and the analytical solution as 22.57, and 19.2, respectively. The retardation 

factor obtained from analytical solution and kinetic study showed only a 5% difference in 

column 1 whereas in column 2 there was a 15% difference. These results suggested that 

the kinetic study was a suitable method to calculate the non-equilibrium partitioning 

coefficient and yield a reasonable retardation factor for non-equilibrium condition. 
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Additionally, the estimated diffusion coefficient for all columns were at the range of 10-6 

cm2/s which were at an acceptable range compared to previous studies. 

5.3.3 Effect of seepage velocity on the retrieved percentage of benzene mass in effluent 
 

The retrieved percentage of benzene mass was defined as equation 5-7.  

100out
mass

in

M
R

M
    5-7

 

where Rmass is the retrieved percentage of benzene mass (%), Min is the initial mass of 

benzene which was introduced to the packed column (µg), and Mout is the mass of 

benzene which was collected in effluent (µg). By using the mass balance analysis, Rmass 

were measured as 80%, 71%, 45%, and 31% for column 1 to 4, respectively. Rmass is 

plotted versus the seepage velocity in Figure 5-8.  

 

Figure 5-8. Rmass versus seepage velocity 
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It was observed that Rmass decreased exponentially from 80% for column 1 with seepage 

velocity of 1.36 × 10-3 m/s to 31% for column 4 with seepage velocity of 3.17 × 10-6 m/s. 

The Rmass in column 1, and 2 were measured as 80% and 71% respectively, which had 

higher seepage velocity compared to column 3, and 4. However, Rmass decreased to 45% 

and 31% for column 3, and 4 respectively. It suggested that the sorbed mass of benzene 

by HDTMA-bentonite needed longer breakthrough time by decreasing the permeability 

of the system. The acquired results suggested that the HDTMA-bentonite amended PRBs 

could have promising performance as permeable reactive barriers. Because they have a 

reasonable range of permeability between 4.07 × 10-7 m/s to 1.33 × 10-4 m/s as a 

permeable barrier. In addition, it was observed that the dissolved organic contaminants 

(benzene) required a long breakthrough time (~787 min) with a significantly low mass 

flux in column with lowest seepage velocity (column 4). 

5.4 Conclusion 
 

In this chapter, the transport of benzene through the fast flow rate columns at different 

seepage velocity was investigated. It was observed that the permeability of the packed 

columns decreased as the void ratio decreased. This happened because the soil grains 

with finer particle size occupied the pores within the soil structure and reduced the 

advective transport of the fluid (water) through the packed column. In addition, the 

barrier performance of HDTMA-bentonite and PM-199 as reactive amendment to the 

PRBs were explored. It was observed that the breakthrough of benzene in PM-199 

amended soil columns occurred 3 pore volumes later than the HDTMA-bentonite 

amended columns.  Also, the mass flux of benzene through the PM-199 amended 
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columns was much lower than the HDTMA-bentonite amended columns. This happened 

because of higher affinity of benzene to PM-199 compared to HDTMA-bentonite. 

It was noticed that the non-equilibrium condition was dominant in columns with high rate 

of seepage velocity (1.36 × 10-3 to 2.83 × 10-4 m/s). For this condition, the retardation 

factor was obtained from two approaches (1) kinetic study; (2) analytical solution. The 

results of retardation factor for non-equilibrium condition showed a good agreement 

between the calculated results from kinetic study and estimated result from analytical 

solution. This result suggested that the non-equilibrium partitioning coefficient measured 

from kinetic study can be employed to calculate a reliable retardation factor in non-

equilibrium condition. Also, the acquired results suggested to employ the analytical 

solution to estimate the retardation factor for equilibrium condition. 

Moreover, it was observed that the Rmass decreased by decreasing the seepage velocity of 

the soil column which assured the promising performance of HDTMA-amendment as 

reactive material in PRBs. Because not only they provide the required range of 

permeability for permeable barriers, but also, they decrease the mass flux of benzene 

which resulted in longer required breakthrough time. The overall results in this chapter 

suggest that HDTMA-bentonite or other organophilic clays are efficient reactive 

materials for PRB barriers to uptake the dissolved aromatic hydrocarbons from 

groundwater flow. 
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6 CHAPTER SIX SUMMARY, CONCLUSIONS,  
AND RECOMMENDATIONS 

 

Earthen barriers such as CCLs and GCLs have been employed in geotechnical practices 

to provide a low permeability hydraulic barrier since long time ago. These types of 

barriers exhibited satisfactory performance for many applications such as landfills. The 

performance of low permeability barriers is based on the swelling potential of their 

component, which is mostly Na-bentonite, in contact with polar fluids such as water. 

However, the acceptable range of conductivity cannot be achieved by traditional earthen 

barriers when they are permeated by non-polar fluids such as gasoline. This phenomenon 

occurs due to the incompatibility of earthen barrier constituent with non-polar 

compounds. Also, the traditional earthen barriers are not able to retard the contaminant 

transport due to their negligible reactivity with organic compounds. As a result, the 

application of low permeability barriers was limited to polar and non-contaminated flows. 

In this study, the performance of traditional earthen barriers as a hydraulic and chemical 

barrier was enhanced by introducing an organically modified amendment (HDTMA-

bentonite) to traditional earthen barrier’s components. 

This research studied the geotechnical behavior and field performance of an engineered 

organobentonite (HDTMA-bentonite) as an amendment for sorptive soil barriers. The 

HDTMA-bentonite was synthesized under a controlled laboratory condition and the 

sorptivity of HDTMA-bentonite in along with other sorbents including a commercially
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 available partitioning clay (PM-199), Ca-bentonite, and Na-bentonite were investigated 

as a function of: sorbate properties (organic carbon content, surfactant type, grain size); 

sorbate properties (chlorination, aromatic ring) and the aqueous environment 

(temperature, co-solvent). To quantify the sorptivity of the studied sorbents, a series of 

equilibrium batch sorption test were conducted. The obtained results were analyzed and 

summarized in Table 6-1. 

Table 6-1. Results for equilibrium batch sorption study 

Studied 
sorbents 

Studied 
Sorbate 

Solvent 
solution 

Function of 

Sorbate/sorbent/
aqueous 

environment 

Results 

PM-199, 
HDTMA-
bentonite, 

Na-
bentonite, 

Ca-
bentonite 

benzene DI water TOC 

The natural or intercalated 
organic carbons on the surface or 

interlayer of unmodified 
soil/organobentonite increase the 
organophilicity of the sorbents. 

As a result, 

the sorptivity increased by 
increasing the organic carbon 

content. Organobentonites 
exhibited much higher sorptivity 

to organic contaminants 
compared to unmodified soils. 

PM-199, 

HDTMA-
bentonite 

Benzene DI water 

Surfactant type 

Sorptivity of PM-199 is higher 
than HDTMA-bentonite. The 
intercalated surfactant in PM-

199 is a double chain surfactant. 
Consequently, PM-199 has 

higher aliphatic carbon compare 
to the HDTMA-bentonite which 
has a single chain intercalated 

surfactant 

HCB 

30% 
acetone + 
70% DI 
water 

PM-199 
(powder), 

Benzene DI water Particle size No significant differences were 
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PM-199 
(granular) 

observed 

HDTMA-
bentonite 

Benzene, 
1,2,4-

trichlorob
enzene, 
HCB 

acetone chlorination 

The solubility of organic 
compounds decreased by 
increasing the chlorinated 

positions on the aromatic ring. 
As a result, organophilicity of 

the organic contaminants 
increased as chlorination 
increased. The affinity of 

organic contaminants toward the 
organic phase of sorbents 

increased which resulted in 
higher partitioning to HDTMA-

bentonite (hexachlorobenzene>1, 
2, 4 –trichlorobenzene 

>benzene). 

HDTMA-
bentonite 

Benzene, 
naphthale

ne, 
phenanth

rene 

acetone aromatic ring 

The solubility of organic 
compounds decreased by 

increasing the aromatic ring. As 
a result, organophilicity of the 

organic contaminants increased 
as the number of aromatic rings 

increased. The affinity of 
organic contaminants toward the 

organic phase of sorbents 
increased which resulted in 

higher partitioning to HDTMA-
bentonite 

(phenanthrene>naphthalene>ben
zene) 

HDTMA-
bentonite 

 

benzene 

DI water, 
acetone, 

30% 
acetone + 
70% water Co-solvent 

The sorption capacity decreased 
as the co-solvent percentage 
increased. Cosolvency of co-

solvent increased the solubility 
and decreased the sorption 

capacity of hydrophobic organic 
contaminants. 

naphthale
ne 

acetone, 
30% 

acetone + 
70% water 
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HDTMA-
bentonite 

benzene DI water 
Temperature (10, 

25, 40, 60˚ C) 
The sorptivity of HDTMA-

bentonite to 

 

The hydraulic performance, and transport of naphthalene as a representative of NAPL 

was studied through the compacted soil column which consisted of 5% HDTMA-

bentonite and 95% silty clay. The obtained results showed that a small percentage of 

HDTMA-bentonite (< 10%) does not affect the swelling tendency of the silty clay in 

water while it leads to significant swelling of the HDTMA-bentonite amended silty clay 

in gasoline. The significant swelling of HDTMA-bentonite in gasoline can be explained 

as the high interaction of organophilic surfactants in the HDTMA bentonite and non-

polar liquid. On the other hand, a small percentage of HDTMA-bentonite (< 10%) 

amendment in compacted silty clay slightly increased the permeability of column to 

water while it decreased the permeability of column to gasoline significantly. In addition, 

it was observed that only 5% HDTMA bentonite amendment enhanced the retardation 

capacity of the system while it had no significant effect on the permeability of the 

compacted silty clay. The obtained results suggested that a small percentage of HDTMA-

bentonite can reduce the mass flux of contaminant by 90% which suggested that 

HDTMA-bentonite has a promising performance as reactive material for Compacted liner 

barrier for organic and/or low polarity fluids. 

Additionally, the feasibility of using HDTMA-bentonite as a reactive amendment for 

GCL liners were investigated. The swelling behavior of Na-bentonite as the major 

component of GCL, CA-bentonite, HDTMA-bentonite, PM-199, soil admixtures 

including 10%/20% HDTMA-bentonite + Na-bentonite, and 10%/20% PM-199 + Na-

bentonite were studied as a function of: polarity, ion strength, acidic/basic environment. 
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It was observed that Na-bentonite had the maximum swelling in water due to the strong 

hydration of Na+ with polar liquids. In addition, Ca-bentonite exhibited a medium 

swelling in contact with water due to weaker hydration of Ca2+ compared to Na+ with 

polar liquids. In contrast, it was observed that organobentonites did not show any 

significant swelling in polar liquid (water) due to their hydrophobic characteristics. 

Consequently, the swelling of soil admixtures decreased by increasing the percentage of 

organobentonite.  

Unmodified bentonite showed a negligible swelling tendency in low polarity liquids such 

as methanol and gasoline (Gheibi et al. 2016). The acquired result suggested that Ca2+ 

and Na+ did not hydrate in low polarity liquids due to the incompatibility of unmodified 

bentonites with low polarity liquids. In contrast, organobentonites swelled significantly as 

the polarity of the liquid decreased (Khabiri et al. 2016). Consequently, the swelling of 

soil admixtures increased by increasing the percentage of organobentonite.  

It was also observed that the solution with low ionic concentration (0.01 M NaCl) and pH 

level in the range of 4 to 10 did not affect the swelling tendency of studied soils and soil 

admixtures. However, the swelling tendency of unmodified bentonites decreased 

drastically by increasing the concentration of ionic strength due to the drag force of ions 

which pull the water molecules out of clay interlayer. 

The study on the permeability of GCLs revealed that Na-bentonite GCLs demonstrated 

lower permeability to polar liquids compared to Ca-bentonite GCLs. Also, the 

permeability of GCL specimens to polar liquids increased slightly by increasing the 

percentage of HDTMA-bentonite in the GCL soil. However, the obtained results 

suggested that the permeability of Na-bentonite and Ca-bentonite increased significantly 
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when permeated by low polarity liquids such as methanol and gasoline. It was because of 

the chemical incompatibility of unmodified bentonites with low polarity liquids. In 

contrast, the chemical compatibility of GCL soils with low polarity liquids enhanced by 

increasing the percentage of HDTMA-bentonite to the GCL soils. 

The permeability of Na-bentonite GCL with different percentage of PM-199 and 

HDTMA-bentonite to polar (water) and non-polar (gasoline) liquids were also studied 

(Gheibi and Bagheripour 2010; Gheibi and Bagheripour 2011; Gheibi and Bagheripour 

2011; Gheibi et al. 2011). It was observed that the minimum permeability of the GCL 

when is permeated by both liquids can be obtained by adding 28% of PM-199 to the Na-

bentonite GCL soil. Also, the permeability of the GCL specimens decreased by 

increasing the confining stress due to confinement of existing pores within GCL soil. 

The transport of benzene as a representative of BTEX through the GCL specimens which 

consisted of (0, 10, 20%) HDTMA-bentonite + Na-bentonite and (0, 10, 20%) HDTMA-

bentonite + Ca-bentonite were also studied. The column tests were performed to obtain 

the breakthrough curve for benzene transport. It was observed that 20% HDTMA-

bentonite amended GCL decreased the mass flux of benzene by half compared to 

unmodified GCL specimens while its effect on the permeability of the unmodified GCL 

specomens was insignificant (Gheibi and Gassman 2014; Gheibi and Gassman 2014; 

Gheibi et al. 2014). Due to the retardation mechanism, 100% of introduced mass was not 

received in effluent and a long breakthrough time was required for the sorbed benzene 

(Gheibi and Gassman 2015). As a result, an analytical and numerical approach was 

employed to estimate the retardation factor and diffusion coefficient of benzene transport 

through the column because the retardation factor obtained from the experimental data 
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did not account for 100% of benzene mass. The acquired results suggested that Na-

bentonite with a small percentage of HDTMA-bentonite (20%) can enhance the 

retardation factor and chemical compatibility of the GCL liners under a low advective 

flow condition.  

Finally, two soil columns  with of 10% of organobentonites (HDTMA-bentonite and PM-

199) with different seepage velocities were prepared to investigate the potentials of using 

organobentonites as reactive amendment in PRB materials. The results of permeability 

experiments suggested that the seepage velocity decreased by decreasing the void ratio. 

This happened because the soil grains with finer particle size occupied the pores within 

the soil structure and reduced the advective transport of the fluid (water) through the 

packed column. Also, the peak mass flux of benzene through the PM-199 amended 

columns was much lower than the HDTMA-bentonite amended columns. It was observed 

that the partitioning of benzene onto HDTMA-bentonite in columns with fast seepage 

velocity did not reach equilibrium condition (Gheibi and Gassman 2016; Gheibi et al. 

2017). To obtain the transport parameters of benzene under non-equilibrium condition, 

two approaches including kinetic study and analytical solutions were employed. The 

results of retardation factor for non-equilibrium condition showed a good agreement 

between the calculated results from kinetic study and estimated result from analytical 

solution (Niaki and Jahani 2012; Niaki and Jahani 2013). This result suggested that the 

non-equilibrium partitioning coefficient measured from kinetic study can be employed to 

calculate a reliable retardation factor in non-equilibrium condition. In addition, the 

obtained results suggested that the retardation capacity of the PRBs increased by 

decreasing the seepage velocity. The overall results suggested that HDTMA-bentonite 
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can serve as an efficient reactive material in PRBs which not only increased the 

retardation capacity of the fast flow rate columns, but also did not affect the seepage 

velocity of the system with fast seepage velocity. 

This obtained results from this study showed the promising application of organoclays as 

an amendment for CCL and GCL barriers (Ebrahimi et al. 2017; Ebrahimi et al. 2016; 

Ebrahimi et al. 2016; Mirbagheri et al. 2014). Also, it was concluded that organoclays are 

sufficient sorbents to uptake the dissolved contaminants in the fast flow rate barriers such 

as PRBs. There are several areas or directions of future study, which we could further 

enhance the work presented in this dissertation. 

1. Feasibility of using organoclays as a sorbent of common runoff contaminants for 

permeable pavement (PP) systems. 

2. Feasibility of using organoclays as a sorbent of common runoff contaminants for 

permeable pavement (PP) systems. 

3. Feasibility of using organoclays as a sorbent of common runoff contaminants for 

permeable pavement (PP) systems. 

4. Feasibility of using organoclays as a sorbent of common runoff contaminants for 

permeable pavement (PP) systems. 
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