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ABSTRACT 

       A SMART HIGHWAY WORK ZONE MERGE SYSTEM ENABLED BY 

CONNECTED VEHICLES 

Abdulmaged Algomaiah 

July 20, 2017  

 
Typical traffic control and operations at work zones usually are not very effective in 

mitigating the work zone bottleneck. A major reason is that the common early merge 

behaviors limits utilizing the available capacity in the closed lane, especially under 

moderate to high traffic demands. Recently, using late merge strategy is encouraged to 

prevent early merge behavior and fully utilize the closed lane and therefore increase 

capacity of work zone. The development of late merge strategy was not enough to 

substantially improve the situation due to the lack of compliance and communication 

among drivers. This thesis suggests and investigates a smart work zone merge system 

enabled by connected vehicles. The main principle is to enhance the opportunity of 

cooperative late merge via the new technology, connected vehicles (CV). When 

connected vehicles share information and negotiate the best movements for the benefit of 

traffic flow, drivers will be able to receive merging suggestions. The system is called 

Cooperative Late Merge System (CLMS) where the layout is quiet similar to late merge 

system with additional advanced elements. The CLMS has been introduced and 

investigated by using simulation software package (VISSIM). Microscopic car-following
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 and lane-changing models were selected and updated to fit with the main goal of the 

system and the purpose of this study. This paper uses Hidas (2005) lane-changing model 

and car-following model (Wiedemann 99) provided by VISSIM. Simulation experiment 

was designed to include a traditional work zone system and a late merge system in order 

to compare them with the performance of the CLMS. The experiment design considered 

eight different variables with multiple levels. Simulation output included major measures 

of effectiveness (MOEs) including throughput, capacity, V/C ratio, delay and queue 

length. The CLMS has demonstrated an improved traffic operation performance at all 

considered MOEs, especially, in the case of moderate traffic demand. The system is 

capable of increasing throughput and capacity of work zone as well as decreasing the 

delay and queue length at most of traffic conditions.  
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   CHAPTER I 

1 INTRODUCTION 

 
Highway work zones are a major bottleneck in highway systems because of the sudden 

reduced capacity due to dropped lanes. Therefore, work zones can cause serious 

congestion and safety issues. In practice, the typical traffic control and operations at work 

zones usually are not very effective in mitigating the work zone bottleneck. A major 

reason is that the common early merge behaviors limit utilizing the available capacity in 

the closed lane especially under moderate to high traffic demands. Researchers 

encouraged using late merge strategy in congested conditions by fully utilizing the closed 

lane till the work zone tapper in order to increase the throughput at the work zone (Pesti 

et al., 1999; McCoy, et al., 2001; Beacher et al., 2005; Redwan et al., 2009). However, in 

reality, effective implementation of late merge is usually restricted by the low driver 

compliance rate, which is attributed to the dynamic driver’s behaviors. Without 

communication between vehicles, drivers’ maneuvers in the merge area are based on 

individual behaviors and aggressiveness. Although late merge theoretically would 

improve the merge efficiency, the lack of information exchange and coordination 

restrains this strategy from being effective when implemented in the field. This thesis will 

introduce a study that is dedicated to improving the aforementioned work zone capacity 

issue by implementing the Connected Vehicles (CV) technology. It proposes 
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Cooperative Late Merge System (CLMS) and evaluate the new system using microscopic 

traffic simulation software (VISSIM). The performance of the proposed system that 

utilizes CV technology is compared with ordinary late merge work zone and traditional 

work zone.  

1.1 Problem Statement 

There is a lack of information exchange and coordination between drivers in the merging 

process at work zones, which restricts the benefit of late merge system and thus reduces 

the capacity of the work zone. 

1.2 Research Objectives 

The objectives of the study are the following: 

• Develop late merge system (CLMS) and update the lane-changing microscopic 

models to reflect the CV technology; 

• Evaluate the performance of the CLMS compared to ordinary late merge system 

and traditional work zone; 

• Test different compliance rate and market penetration rate; 

• Develop guidelines about selection of appropriate work zone traffic control 

strategy that can be considered by transportation agencies. 
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1.3 Thesis Organization 

The thesis starts with a literature review that covers work zone capacity, merging 

strategies and CV technology in work zone. The chapter investigates the conducted 

studies in improving the capacity of work zone, in developing merge strategies and in 

implementing CV in work zone. Then, it is followed by a methodology chapter that 

describes the layout of the CLMS, traffic modeling, simulation modeling and measure of 

effectiveness. The results are then analyzed in the operations performance chapter in 

terms of capacity, overall delay and queue length. The last chapter is conclusions and 

recommendations, which draws the thesis to a close.   
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   CHAPTER II 

2 LITERATURE REVIEW  

The major goal of freeways is to facilitate the flow of traffic by providing uninterrupted 

movement along the road. Work zones prevent the benefits by reducing the capacity of 

the freeway and slowing the traffic. However, eliminating work zones is not an option 

due to the demand of frequent maintenance and rehabilitation of freeways. Therefore, 

there have been early attempts to mitigate the effect of work zone and increase its 

capacity. 

2.1 Work Zone Capacity 

During late 1970s and early 1980s, several studies examined the capacity of work zones 

with minimal traffic control devices (Al-Kaisy, Zhou and Hall 2000). Dudek and 

Richards (1982) conducted studies in Houston and Dallas, and found that the average 

capacity of work zones varies with the freeway number of lanes and number of closed 

lanes. A three-lane section with one closed lane resulted an average of 1500 veh/hr/ln, 

while a two-lane freeway section with one closed lane generated 1130 veh/hr/ln. The 

study also observed that the layout of work zones and type of construction influence work 

zone capacity. This is supported by the Highway Capacity Manual (HCM 2000) as it 

found different capacity results by different studies. 
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Krammes and Lopez (1992)

 

found a model of

 

work zone capacity that has several 

adjustment factors. Work zone capacity in their
 
model is given by:

 

 

𝐶 = 1600+ (𝐼 − 𝑅) × 𝐻 × 𝑁       (1) 

Where: 

 𝐼 is the adjustment factor related to work zone activity;  

𝑅 is the adjustment factor related to ramps;  

𝐻 is the adjustment factor for heavy vehicles, and  

𝑁 is the number of open lanes in the work zone. 

 

Dixon et al. (1996) claimed that the capacity of work zones is related to the merging 

behavior of upstream and downstream (at the taper). The difference between the two 

types of merging and its influence on capacity encouraged researchers to explore merging 

strategies, particularly, early merge and late merge concepts.  

 

2.2 Work Zone Merging Strategies 

In conventional work zones, the advanced warning sign of the closed lane is far from the 

taper. Drivers tend to merge to the open lane from the moment they realize which lane is 

closed. Such behavior significantly increases the traffic in the open lane, while the closed 
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lane remains unutilized. With the high traffic volume, the immediate result is traffic back 

up in the open lane. This problem encouraged researchers to consider employing different 

strategies to improve work zone mobility. The main two strategies are Early Merge (EM) 
and Late Merge (LM).

 

2.2.1 Early Merge 

Nemeth and Rouphail (1982) tested a new simulation modeling and concluded that early 

merge can significantly prevent the number of forced merges in the case of high traffic 

volume. Mousa et al. (1990) also tested another simulation modeling and found that 

travel times were escalated due to the existence of slower vehicles that cause higher delay 

for a longer distance than if vehicles were divided between the two lanes till the taper. 

The authors claimed that this may enhance the probability of queue jumping.  

A practical application of early merge was investigated by Tarko et al (2001) and 

implemented by Indiana Department of Transportation (INDOT).  The system considered 

using variable messaging signs to instruct drivers to merge early. These signs were 

activated to flash the message “No Passing When Flashing,” by using sensors. Each 

device was responsible for activating the upcoming sign upstream of the established 

queue. By merging early, the results revealed a lower number of aggressive maneuvers 

during the merge process. The researchers emphasized that this strategy was 

advantageous with low to moderate traffic volume. 
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Figure 1 Early Merge System by INDOT (Tarko et al., 2001) 

 

2.2.2 Late Merge 

Pesti et al. (1999) investigated the traffic flow characteristics of late merge work zone 

control strategy. A field study took a place in a late merge work zone on northbound I-79 

north of Canonsburg, Pennsylvania. The two-lane corridor dropped to one-lane and the 

data collected using videotape recording for 4 days. The evaluation results from the field 

data indicated that LM is more effective than the conventional merge system. Work zone 

capacity using LM was increased by 18% comparing to the conventional merge. 
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However, the study indicated that to get the most benefit out of LM, drivers have to fully 

understand the system and comply with it.

 

McCoy, et al. (2001) proposed a hybrid design of conventional merge and dynamic late 

merge that changes depending on the traffic conditions. When traffic volume is low or 

moderate, the speed is relatively high and late merge may cause confusion to the drivers, 

which increase the chances of crashes. Therefore, the researchers suggested using 

conventional merge during off-peak and switching to late merge during on-peak. In their 

system, the dynamic late merge consisted of a series of advance signs that are activated 

when congested is detected by the sensors and the signs would then instruct the drivers to 

use both lanes till the merge point. The signs would be deactivated and merge would 

return to the conventional method when the sensors detected the decongestion.  

Beacher et al. (2005) investigated the performance of late merge comparing to 

conventional merge using simulation models developed by VISSIM for both type of 

traffic controls. Conventional and late merge systems were tested under different traffic 

volumes, heavy vehicle percentage, lane closure configurations and desired speed. The 

researchers found that the use of late merge is recommended in the case of two-lane 

freeway with one closed lane and three-lane freeway with two closed lanes closure 

configuration. 
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2.2.3

 

Dynamic Merge Systems in Practice

 

In practice, there are several late merge systems applied with different elements and 

different configurations. Since early 2000s, Department of Transportation for several 

states tested late merge system including, but not limited to Pennsylvania, Minnesota, 

Maryland, Michigan and Florida. 

2.2.3.1 Pennsylvania DOT and Minnesota DOT Practices  

The Dynamic Late Merge (DLM) was purposed by (McCoy et al., 2001), which aimed to 

reduce congestion and delay. The system warns drivers about work zone 2 miles before 

the taper. The first “USE BOTH LANES TO MERGE POINT SIGN” is placed 1.5 miles 

from the taper. 350 feet from the taper, the sign “MERGE HERE – TAKE YOUR 

TURN” is located. Other static signs suggested by MUTCD such as “ROAD WORK 1 

MILE” and “LEFT LANE CLOSED 1500 FT”, are distributed along the road. All signs 

in this system are places in both sides of the freeway. This configuration is applied by 

Pennsylvania DOT and Minnesota DOT (see Figure 1).  
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Figure 2 Late Merge System by Pennsylvania DOT and Minnesota DOT (McCoy et al., 
2001) 

 

Pennsylvania DOT field study reported incompliance cases from both passenger cars and 

trucks. However, higher percentages remained in the closed lane, which indicates that 

most of drivers comply with late merge system. Minnesota DOT report found that the use 

of the closed lane increased by 30-40% during on-peak, while increased by 60% during 

off-peak. The system tested by Pennsylvania DOT resulted an increase in throughput 

from 1460 to 1540 pcph (Pesti et al., 1999). Minnesota DOT observed an increase in 

throughput from 1500 to 1560 vph (URS, 2003).  

2.2.3.2 Maryland DOT Practice 

The static late merge designed by Maryland State Highway Administration warns drivers 

about work zone about 3 miles before the taper and advise them to “USE BOTH – 

LANES TO MERGE POINT” 2 miles before the taper on both sides of the freeway. 

Drivers are asked to merge 500 feet before the taper by using a sign on both sides of the 
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road stating “MERGE HERE –

 

TAKE YOUR TURN”. Other static signs suggested by 

MUTCD such as “ROAD WORK 1 MILE” and “RIGHT LANE CLOSED ½ MILE”, are 

distributed along the road. A late merge design with the same spacing was also applied by 

Michigan DOT (see Figure 3).  

 

 

Figure 3 Late Merge System by Maryland SHA and Michigan DOT (Kang et al., 2006) 

  

Maryland SHA applied the system in two different sites and reported an average increase 

in throughput from 1505 to 1718 vph (Kang et al., 2006).  

2.2.3.3 Michigan DOT Practice  

Grillo et al. (2008) purposed a system that advices drivers to about the work zone about 3 

miles before the taper. Late merge is advices about 2 miles before the taper with one sign 

on the closed lane side stating “USE BOTH LANES” and another one 1.5 miles before 
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the taper stating “STAY IN YOUR LANE” on the closed side as well. The s ign 

“MERGE HERE –

 

TAKE YOUR TURN” is located 1500 feet from the taper on the 

closed lane. Other static signs suggested by MUTCD such as “ROAD WORK AHEAD” 

and “LEFT LANE CLOSED AHEAD”, are distributed along the road. The system is 

applied by Michigan DOT in

 

several sites including Interstate 94. 

 

 

 

Figure 4 Modified Late Merge Design Suggested by Grillo (2008) 

 

Michigan DOT applied a field study in different sites and found that the compliance rate 

is approximately between 55 – 65%. An increase in throughput from 990 to 1207 vph 

was reported in average (Grillo et al, 2008). 
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2.2.3.4

 

Florida DOT Practice 

 

Redwan et al. (2009) modified the dynamic late merge to warn drivers 3 miles before the 

taper and advise them to “MERGE AHEAD” 1.5 miles. Both signs are placed on the 

closed lane side of the freeway. The merge advising sign is located 1000 feet from the 

taper. Other static signs suggested by MUTCD such as “ROAD WORK 1 MILE” and 

“RIGHT LANE CLOSED ½ MILE”, are distributed along the road. This modifies late 

merge system is applied by Florida DOT.  

 

 

Figure 5 Modified Late Merge Design Suggested by (Redwan et al., 2009) 

The suggested layout resulted in an increase from 881 to 970 vph in throughput for short-

term work zone (Redwan et al., 2009). 
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The following table summarizes the aforementioned systems

 

in terms of the distance 

from the taper to the first work zone warning sign, no merge sign “USE BOTH LANES”, 

late merge sign “MERGE HERE”, compliance rate and result. 

 

 

Table 1 Summary of the Distances for Late Merge Systems 

System Work Zone 
Warning 

No Merge Late 
Merge 

Compliance 
Rate 

Result 

Pennsylvania 
DOT 

2 miles 1.5 miles 350 feet N/A Increased 
throughput 
from 1460 
to 1540 
pcph 

Minnesota 
DOT 

2 miles 1.5 miles 350 feet 30-40% on-
peak 
60% off-
peak 

Increased 
throughput 
from 1500 
to 1560 vph 

Maryland DOT 3 miles 2 miles 500 feet N/A Increased 
throughput 
from 1505 
to 1718 vph 

Michigan DOT 3 miles 2 miles 500 feet 55-65% Increased 
throughput 
from 990 to 
1207 vph 

Florida DOT 3 miles 1.5 miles 1000 feet N/A Increased 
throughput 
from 881 to 
970 vph 

 



 15 

2.3

 

Lane - Changing Models

 

Lane changing model is a model that mathematically describe the decision and process of 

changing a lane along the freeway. Over the last two decades, researchers developed 

different models assuming logical driver behavior. A few studies have modeled the 

merging behavior in work zone to determine the desired merging location as well as the 

probability that drivers succeed in completing the merging maneuver. Most of the 

merging probability models are based on gap acceptance models describing when the 

leading and following gaps are accepted by the driver of the subject vehicle (Yang and 

Koutsopoulos, 1996 and Ahmed, 1999). Moreover, Kita (1999) estimated merging 

probability based on game theory model. Other studies considered utilizing rule-based 

model and minimum space gap criterion in order to decide if the current gap is desired or 

not (Chowdhuty et al., 1997; Nassab et al., 2005; Hidas 2002, 2005). With the emerging 

of technology in vehicles, Talebpour et al. (2015) presented a lane-changing model that 

considers the flow of information of connected vehicles using game-theory approach.  

Gipps (1986) found a model that considers the importunity of the lane-changing 

maneuver depending on the breaking behavior and driver’s gap acceptance. The model is 

based only on the availability a safe gap with a certain size in the target lane. Gipps’ 

model has been widely utilized in numerous researches because the feasibility of lane-

changing is based on relatively simple conditions. Gipps’s model is given by the 

following equation: 
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𝑣𝑛(𝑡 + 𝑇) = 𝑏𝑛𝑇 + [𝑏𝑛
2𝑇2 − 𝑏𝑛(2(𝑥𝑛−1(𝑡) − 𝑠𝑛−1 − 𝑥𝑛(𝑡)) − 𝑣𝑛(𝑡)𝑇 −

𝑣𝑛−1(𝑡)
2

𝑏𝑛−1
𝑒𝑠𝑡 ]1/2 (2) 

Where:  

𝑣𝑛(𝑡 + 𝑇) is the maximum safe speed;  

𝑏𝑛 is the maximum braking rate;  

𝑇 is the time between calculations of speed and position;  

𝑥𝑛(𝑡) is the location of the front pumper; and  

𝑏𝑛−1
𝑒𝑠𝑡  is the estimate braking of following vehicle by 𝑛 

 

For the analysis of bottleneck situations such as lane dropping, Fritzsche (1994) revealed 

a new microscopic traffic simulation model. However, the lane-changing rules are 

constant without consideration of cooperative or forced lane-changing behavior. 

Therefore, Yang and Koutsopoulos (1996) developed more detailed rule-based lane-

changing model, specifically, for freeways where the lane change is either mandatory or 

discretionary. The model was constructed with a probabilistic framework considering 

lane-changing behavior in case of goals conflict. In case of merging into traffic, the 

model considers a gap as acceptable only if both of the following and leading gaps are 

acceptable. However, the study seemed to have a lack of parameter estimation. 

In an attempt to model lane change decisions with discrete choice modeling approach, 

Ahmed (1999) performed an extensive study. His work generated a probabilistic model to 
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describe lane - changing decisions that considers mandatory and discretionary lane

changing as well as the situation of forced merge. In fact, the model was a major 

contribution as it also incorporates gap acceptance probability. The critical gap

 

functional 

form he guaranteed

 

is given by the following equation

: 

 

𝐺𝑛
𝑐𝑟,𝑔

(𝑡) = exp(𝑋𝑛
𝑔(t)𝛽𝑔𝑣𝑛 + 𝜀𝑛

𝑔(𝑡))      (3) 

 

Where:  

𝑔 is leading and following gap;  

𝑋𝑛
𝑔(𝑡) and βg are variables and corresponding parameters;  

𝑣𝑛 is an individual random term distributed normally; and  

𝛼𝑔  is the parameter of vn + εn
g(t), which is a generic random term 

  

Toledo (2003) used also a discrete choice modeling approach to model decision and 

maneuver of lane-changing model. The model considered using maximum likelihood 

estimation techniques for calibration and applied four classifications to explain variables 

in lane changing decisions; neighborhood variables, path and plan variables, network 

knowledge and experience, and driving style and driving capabilities. Toledo 

implemented the integrated lane changing model in a simulation platform, as Ahmed 

(1999) did, and compared the anticipated measurements with the results.  
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Hidas

 

(2005) classified the mandatory lane - changing into defined three different 

classifications of lane changing decisions: free, forced and cooperative lane changes. 

Forced lane -changing, is when the driver is forced by a merging vehicle to slow down 

suddenly , which causes emergency breaking. However, cooperative lane- changing is 

when a driver slow down to enlarge the gap for the other driver to merge. The interaction 

in cooperative lane-changing is described by Hidas starts when the subject vehicle 

indicates its willing to merge into the target lane. Then, the follower vehicle perceives the 

situation and decides to cooperate by slowing down to create a larger gap. Finally, the 

subject vehicle notices that the follower vehicle cooperated and as a result the gap enough 

for to executes the maneuver. He described the minimum leading and following gaps by 

the following equation: 

Hidas applied his lane changing decision model in a simulation software and examined 

the influence of the lane-changing model. The results showed that the estimated speed-

flow relationship by his model was close to the curve estimated by the Highway Capacity 

Manual (HCM) 1994.  

2.4 Connected Vehicles Applications in Work Zone 

Intelligent Transportation System (ITS) is a set of information and communication 

technologies that are applied in the field. Changeable Message Signs (CMS) was one of 

the early use of ITS in work zone. Dynamic late merge system requires several CMS and 
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other ITS devices such as sensors and roadside units. Recently, researchers have paid 

strong attention to Connected Vehicles (CV) and Autonomous Vehicles (AV) and its 

applications on freeway as the most advanced ITS technology that can potentially 

improve mobility and safety of transportation network. ( Uhlemann, 2015 ).
 

Federal Highway Administration (FHWA) identified several CV’s  applications for 

further research such as Stop Sign Gap Assist (SSGA), Curve Speed Warning (CSW) and 

Reduced Speed Zone Warning (RSZW). The technology utilizes Dedicated Short-Range 

Communication (DSRC) to connect Vehicles-to-Vehicle and (V2V) and Vehicle-to-

Infrastructure (V2I) to exchange data (Chang et al., 2015).  

Maitipe (2011) tested using V2V and V2I in work zone by disseminating traffic 

information such as locations of vehicle congestion and travel times. The proposed 

system utilizes roadside units in the work zone to share information with vehicles. The 

field study proved the ability of DSRC to inform CV drivers about the traffic conditions. 

Davis, L. (2016) went further by demonstrating how CV without any roadside unit can 

improve flow at a bottleneck. The system depended on Cooperative Adaptive Cruise 

Control (CACC) to mitigate self-organized congestion. The simulations results proved 

that CV can reduce congestion at bottleneck caused by a lane drop of two-lane freeway, 

even in the case of low market penetration rate. 

Wade and Razavi (2016) evaluated the potential benefits of deploying CV on a traffic 

network in the presence of a work zone in terms of safety. The results revealed that 

network safety is correlated with the behavior model used. Also, when the market 
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penetration rate of CV was under 40%, the traffic network was safer, while market 

penetration rate above 40% reduc es the network safety. Abdulsattar et al. (2017) also 

assessed the impacts of CV on rear - end collisions in work zone using an agent -based 

modeling approach. The main preliminary results demonstrated that CV would reduce 

this type of collision in work zone and the relationship between safety benefits and 

market penetration rate is nonlinear. 
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    CHAPTER III 

3 METHODOLOGY 

This thesis aims to utilize CV technology in work zones and apply a dynamic late merge 

system in order to improve the capacity of the freeway section. The cooperation concept 

and its application in the dynamic late merge system with different phases and different 

scenarios was the key element in this paper. The proposed configuration has been 

designed with consideration of the nature of work zone merging process as well as the 

layouts of several states’ DOT and their capacity and safety results. Then, the car-

following and lane-changing models have been selected and modified using C++. 

Different variables and parameters have been considered to test their influence on the 

system in terms of capacity, delay and queue length. With all that in mind, the experiment 

has been designed with 62,100 simulation runs to gain adequate results that would lead to 

a sufficient analysis of the system.  

3.1 Cooperation Late Merge System (CLMS) 

In this thesis, a cooperative late merge system (CLMS) is proposed and developed. The 

CLMS is designed based on 3 levels. The three levels reflect an increasing level of 

connectivity and vehicle automation (see figure 6). The first level depends on V2V 

technology with the aid of a roadside unit that broadcasts information about the road 

condition. CVs in the first level negotiate between each other and instruct drivers to apply 
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cooperative late merge. In the second level, the roadside unit is upgraded to be a control 

unit that communicates with CVs and receives information from them in order to instruct 

them to apply cooperative merge. The third level is based on adding AV to the second 

stage. The following graph describes the overall idea and major components of CLMS in 

its three stages: 
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Figure 6 Description of Three Stages of CLMS 

The capacity of work zone is influenced by the number of lanes on the freeway and the 

number of dropped lanes. Due to the complexity of considering several number of lanes 
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and multiple dropped lanes, the CLMS in this thesis will focus on two-lane freeway with 

one dropped lane. Also, the thesis will concentrate only on Level 1 of CLMS in order to 

conduct a deep analysis of the system performance.  

CLMS Level 1 consists of No Merge Area and Late Merge Area with different 

dimensions, purposes and components. No Merge Area has a broadcast unit that notifies 

CV about staying in their lanes and not to merge as well as a series of MUTCD signs. 

Late Merge Area also has a roadside unit, but to notify CV about starting merging area. 

In this area, CV will connect and share information to apply cooperative merge. The 

components and control algorithm of Level 1 CLMS is described in the following 

sections.  

 

Figure 7 Major components of Level 1 CLMS 
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3.2 Traditional Work Zone 

In traditional work zone, a series of signs are placed to warn drivers about work zone and 

lane closure. The main goal is to ensure that drivers are aware of lane dropping to reduce 

speed and allow merging for vehicles in the closed lane. However, the system is not 

specifically designed to improve the capacity of work zone and reduce the overall delay 

of vehicles. Most of DOTs use the traditional work zone layout suggested by MUTCD, 

which gives the drivers the choice to merge at any position before the taper. Traditional 

Work Zone will be considered in the simulation. In performance analysis, CLMS will be 

compared with the traditional work zone.  

 

3.3 Late Merge System 

Late merge is an increasingly common practice by different DOTs as it is found to 

improve the capacity of work zone comparing to traditional work zone. However, the 

relatively low compliance rate by drivers limit the benefit of the system. The late merge 

system consists of a series of signs that instruct drivers to use both lanes and merge 

downstream closer to the taper. It mainly depends on the signs and drivers’ compliance 

with the instructions to implement the system. In this study, the performance of CLMS 

will be compared with late merge system as well.  



 26 

3.4 CLMS Level 1: Decentralized Cooperative Merge  

Common late merge systems rely on drivers’ understanding of signs and their compliance 

with signs’ instructions, which, in the field, has shown limited benefits. Taking advantage 

of CVs can enhance the system by notifying drivers about signs’ instructions and guide 

them via Driver Vehicle Interface (DVI) to cooperate with other vehicles to merge. The 

designed system is called decentralized, where agents in CVs negotiate merging decisions 

and processes among each other. The CLMS-Level 1 relies on roadside units 

(Broadcasting Units) that notify CVs about the beginning of No Merge Area and Late 

Merge Area. It also counts on the capability of V2V communication to exchange driving 

information in order to increase the chance of cooperative merge.  

 

CLMS-Level 1 is an agent-based system with each vehicle being represented by a 

computer agent that communicates with other vehicles through DSRC communications. 

The agent will process information received and follow the CLMS level-1 rules. It will 

then provide drivers merging suggestions. If the vehicle is driving in the open lane, it will 

be suggested to cooperate and yield for the car in the closed lane. On the other hand, if 

the vehicle is driving in the closed lane, it will be suggested to merge when the vehicle in 

the open lane is willing to cooperate. The driver will choose to take the suggestion or 

ignore it according to his/her own desire. This factor is described by a compliance rate in 

CLMS Level 1.  The following flowchart describes the logic of CLMS in work zone area 

for both CV and non-CV: 
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Figure 8 Flowchart of the Logic of CLMS in Work Zone Area 

 

Along the freeway, drivers are free to change their lanes at any time as long as there is no 

sign to restrict them. However, in the no merge area before work zone, drivers are asked 

to stay in their lanes without lane-changing and to merge later close to the taper. Then, in 

late merge area, drivers are asked to cooperate for merging.  
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The system aims to enhance cooperation between CVs in order to apply late merge and 

improve work zone capacity. When CVs are instructed to apply late merge through 

broadcasting units on the roadside, the CVs’ agents can negotiate the merging process for 

the work zone capacity interest. By utilizing Dedicated Short-Range Communication 

(DSRC), CVs can exchange travel information such as location, speed and acceleration. 

When a CV in the open lane detected the existence of another CV in the closed lane of 

the late merge area, it will notify the driver to reduce or increase the speed. The CV in the 

closed lane will notify the driver to merge in the gap created by the CV in the open lane.  

 

With consideration of various possible interactions between merging, following, and 

leading vehicles in the open and closed lanes, the algorithm of the level 1 CLMS is 

composed of the following mutually exclusive and collectively exhaustive scenarios. 

3.4.1 Cooperative Merge Scenarios in CLMS 

The location of CVs in the late merge area, which varies from one scenario to another, is 

the key element of the system. The market penetration rate plays a significant role in the 

occurrence of certain scenarios. For example, a low market penetration rate would 

increase the probability of having a scenario of a CV being surrounded by non-equipped 

vehicles. However, a high market penetration rate would increase the probability of 

having a scenario of a CV being surrounded by CVs. The following table summarizes the 

different scenarios considered in this system: 
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Table 2 Summary of Scenarios Considered in CLMS 

Scenario Number 
of CVs in 
Open 
Lane 

Number 
of CVs 
in 
Closed 
Lane 

Subject 
Vehicle 

Following 
Vehicle 

Leading 
Vehicle 

Description 

1 0 0 Non-CV Non-
CV/CV 

Non-
CV/CV 

No 
Communication 
between 
vehicles and 
merging 
depends on 
driver courtesy   

2 0 1 CV Non-CV Non-CV No 
Communication 
between 
vehicles and 
merging 
depends on 
driver courtesy 

3 1 1 CV CV Non-CV Following 
vehicle 
instructed to 
cooperate by 
slowing down 

4 1 1 CV Non-CV CV Leading vehicle 
instructed to 
cooperate by 
speeding up 

5 2 1 CV CV CV Mix of both 
scenario 3 and 
4 

6 1 2 CV CV CV Following 
vehicle 
instructed to 
cooperate by 
slowing down 
to let both CVs 
merge 
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7 1 2 CV CV CV Following 
vehicle 
instructed to 
cooperate by 
slowing down 
to let both CVs 
merge 

8 2 2 2 CVs CV CV Mix of both 
scenario 6 and 
7 

 

3.4.1.1 Scenario 1 

There is a chance that Late Merge Area has only non-equipped vehicles, which reduces 

the probability of cooperative merge. This scenario is similar to the conventional late 

merge system, which relies on drivers’ compliance and courtesy in helping vehicles in the 

closed lane to complete merging process. In this case, non-equipped vehicles follow 

normal car-following and lane-changing model and their cooperation depends on their 

compliance with the system. Since drivers in the open lane are asked to give other drivers 

in the open lane the chance to merge by using the sign “TAKE YOUR TURN”, there is a 

chance of cooperative merge by non-equipped vehicles as it was observed by several 

studies for typical late merge system. Therefore, the compliance rate will decide the ratio 

of non-equipped vehicles that will show courtesy to other drivers and yield for merging to 

be completed. However, the reaction of the driver of the non-equipped vehicle in the 

closed lane can be slower compared with CV because he/she requires an adequate gap 

encouraging him/her to make a merging decision.  
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Figure 9 Scenario 1 in CLMS 

3.4.1.2 Scenario 2 

In this scenario, CV in the closed lane is surrounded by non-equipped vehicles, which 

makes it unable to communicate with surrounded vehicles. This restricts cooperative 

merge and makes merging probability dependent only on the courtesy of non-equipped 

vehicles in the open lane. In fact, this scenario is similar to Scenario 1 as CV in this case 

will act as non-equipped vehicle. 

 

Figure 10 Scenario 2 in CLMS 
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3.4.1.3 Scenario 3 

In this scenario, CV in the open lane is able to communicate with the following vehicle, 

which makes merging probability higher. The following vehicle can reduce the speed to 

increase the gap and allow the subject vehicle in the open lane to complete the merge as 

appear in Figure 10. Technically, the agent of the CV in the closed lane requests merging 

from the agent of the CV in the open lane, providing it with its speed, location and 

acceleration. The agent of the CV in the open lane calculates the required speed reduction 

that would result from the merging process. If it is feasible, the driver is notified to 

reduce speed to a certain value and if the driver complied and started decelerating, the 

agent sends merging confirmation to the agent of the vehicle in the closed lane 

(downstream) to complete merging process if it is possible.  

 

Figure 11 Scenario 3 in CLMS 

 

In order to apply cooperative merge in such a case, Downstream Flowchart is created as 

the following: 
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Figure 12 Flowchart of the CLMS Logic in Downstream Scenarios 

 

The communication between CVs starts when the CV in the open lane of Late Merge 

Area searches for adjacent CV in the closed lane. When a CV is identified, the agent 

recognizes whether it is downstream or upstream. If it is downstream, it will follow 

Downstream Flowchart, while if it is upstream, then it will follow Upstream Flowchart. 

In Downstream Flowchart, if the speed of the CV in the closed lane is lower than 75% of 

the CV in the open lane, the communication is neglected and CV in the open lane starts 

searching for another CV. If the speed is equal to or higher than 75%, the CV in the open 
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lane collects data from CV in the closed lane including speed, acceleration and distance. 

It then estimates the current following gap and the minimum following gap for merging. 

If the current following gap equals minimum following gap, CV in the open lane 

maintains its speed. If the current following gap is smaller than minimum following gap, 

the CV in the open lane decelerates to enlarge the gap, while if it is larger, it accelerates 

to reduce the gap. The CV in the closed lane inspects the current following and leading 

gap. If they both equal or larger than the minimum, it starts lane changing mode.  

3.4.1.4 Scenario 4 

In this scenario, the CV in the open lane is a leading vehicle and the possible solution is 

to increase the speed to enlarge the gap for the CV in the open lane to complete the merge 

(see Figure 12). This scenario would be restricted by the available gap between the 

leading vehicle and vehicle in front of it. In fact, the agent of the CV in the closed lane 

requests merging from the agent of the CV in the open lane (upstream) and the agent of 

the CV in the open lane asks the driver to increase the speed to the speed limit if it is 

possible. If the driver complied and started accelerating, the agent sends merging 

confirmation to the agent of the vehicle in the closed lane in order to complete merging 

process if it possible.  
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Figure 13 Scenario 4 in CLMS 

 

Upstream Flowchart describes the process of applying cooperative merge as the following: 

 

Figure 14 Flowchart of the CLMS Logic in Upstream Scenarios 
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In Upstream Flowchart, the CV in the open lane collects data from leading vehicle. It 

then estimates the headway (HW). If the HW equals to the Desired Headway (DH), CV 

in the open lane maintains its speed. If HW is smaller than DH, the CV in the open lane 

decelerates to have a safe gap with the leading vehicle, while if it is larger, it accelerates 

to enlarge the gap. The CV in the closed lane inspects the current following and leading 

gap. If they both equal to, or larger than the minimum, it starts lane changing mode.  

3.4.1.5 Scenario 5 

In this scenario, CV in the open lane is surrounded by leading and following CVs. This 

case would make it easier to enlarge the gap as the following vehicle can reduce its speed 

and the leading vehicle can increase its speed (see Figure 15). The communication 

process between the CV in the open lane and following vehicle follows Downstream 

Flowchart, while with the leading vehicle it follows Upstream Flowchart. The advantage 

of this scenario is that if the following or leading driver declines to comply with the CV 

order, there is a chance that the other would cooperate to help completing the merging 

process.  
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Figure 15 Scenario 5 in CLMS 

 

 

3.4.1.6 Scenario 6 

When there is only one following CV in the open lane and two CVs in the closed lane, 

the CV in the open lane can reduce the speed to increase the gap for the nearest subject 

vehicles to complete the merge (see Figure 16). The communication process between 

agents follows Downstream Flowchart. The second CVs in the open lane would also have 

the chance to merge with the first one. If not, the first merged CV can then cooperate and 

create a gap for the second vehicle in the open lane to merge.  

 



 38 

 

Figure 16 Scenario 6 in CLMS 

3.4.1.7 Scenario 7 

In this scenario, there is one leading CV in the open lane and two CVs in the closed lane 

(see Figure 17). The CV in the open lane can increase the speed to increase the gap for 

the nearest CV in the open lane to complete the merge. The communication process 

between agents follows Upstream Flowchart.  The second CVs in the open lane would 

also have the chance to merge with the first one. If not, the first merged CV can then 

cooperate and create a gap for the second vehicle in the open lane to merge.  

 

Figure 17 Scenario 7 in CLMS 
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3.4.1.8 Scenario 8 

In this scenario, there are two CVs in the open lane and two CVs in the closed lane (see 

Figure 18). The leading vehicle can increase the speed to enlarge the gap, while the 

following vehicle can reduce the speed to allow the two CVs to complete the merge. In 

this situation, the first CV, which is closer to the taper, has the priority to merge followed 

by the second CV. This scenario can be achieved by following both Downstream and 

Upstream Flowchart. 

 

 

Figure 18 Scenario 8 in CLMS 

3.4.2 System Configuration and Key Components  

The dynamic late merge system is based on several Portable Changeable Message Signs 

(PCMSs) that is activated when congestion is detected. PCMSs instruct drivers to use 

both lanes to the merge point when traffic conditions require late merge. Other MUTCD 

advance warning signs are also statically installed to aware drivers about the work zone. 

Therefore, it is very important to identify the main components with their appropriate 

distances. Figure 6 illustrates this dynamic late merge system and its main components.  
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Figure 19 System Configuration and Key Components 

 

The following table describes the distances in CLMS-Level 1: 

 

Table 3 Distances of CLMS Layout 

Distance Description 
DNM  Distance of No Merge Area from the taper 
DLM Distance of Late Merge Area from the taper 
DD Distance of the detector from the taper 
DBU1 Distance of the first Broadcasting Unit from the taper 
DBU2 Distance of the second Broadcasting Unit from the taper 

  

System components have to be located appropriately to ensure that the whole system can 

work efficiently. As appears in Figure 2, there are several Advance Warning Signs, which 

are static. All this type of signs is located within the range that suggested by MUTCD. 

DLM is the distance of Late Merge Area, where vehicles are supposed to eventually 

merge. DNM is the distance of No Merge Area, where vehicles are supposed to stay in 
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their lanes. It is worth noting that the sign of “USE BOTH LANES” must be placed 

before the sign that indicates which lane is closed. 

           

DD is the distance from the taper to the detector that measures the traffic volume and 

speed of vehicles. DBU1 is the distance of the first Broadcasting Unit from the taper. The 

function of the first broadcasting unit is to inform CVs about No Merge Area and instruct 

drivers to use both lanes. Therefore, it has to be placed somewhere close to the first “USE 

BOTH LANES” sign and the CV driver should be notified within the sight distance of 

the sign. DBU2 is the distance of the second Broadcasting Unit from the taper. The 

function of the second broadcasting unit is to inform CVs about Late Merge Area and 

instruct drivers to cooperate with other drivers to complete merging process. This second 

broadcasting unit has to be placed somewhere close to “MERGE HERE” sign and the CV 

driver should be notified within the sight distance of the sign. 

3.4.3 Distance Variables 

The advanced warning area is a section on freeway where drivers are informed about 

upcoming work zone. As suggested by MUTCD, there are three main advisory signs to 

be placed before work zone taper. The furthest sign from the taper informs drivers that 

there is a road work ahead. It is followed by another sign that advises drivers about which 

lane is closed. Then, a sign is placed closer to the taper advising drivers to merge. 

MUTCD suggests certain spacing for the distance between the three main advisory signs 

depending on the road type. 
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The system takes into consideration different type of distances as suggested by MUTCD. 

Specifying the distance for each variable is a key element in the development of a late 

merge system with an improved throughput. To warn driver about the work zone and to 

reduce their speed, an advisory sign should be placed at least 1 mile before the taper as 

suggested in Table 2. As mentioned earlier in Table 2, most of late merge systems start to 

warn drivers about 2 or 3 miles from the taper. In this system, the first sign “ROAD 

WORK AHEAD” is placed 2 miles before the taper.  

3.4.3.1 No Merge Distance (DNM) 

Another advisory sign about which lane is closed should be placed at least 2500 feet from 

the taper. The location of the closed-lane sign is significant as it is the first notification 

about which lane vehicles are going to merge to. When vehicles observe the sign, there is 

a high probability to execute an early merge rather than late merge. Therefore, “USE 

BOTH LANES” sign has to be placed just before closed lane sign. In this system, 

“RIGHT LANE CLOSED AHEAD” sign is placed half mile (2640 feet) before the taper. 

That being said, DNM is going to be more than 2640 feet from the taper. Thus, “USE 

BOTH LANES” sign is placed 400 feet before “RIGHT LANE CLOSED AHEAD” sign, 

which means DNM equals 3140 feet.  

3.4.3.2 Late Merge Distance (DLM) 

Studies conducted by different DOTs have considered different late merge distances in 

their systems as Table 2 shows. Dynamic Late Merge (DLM) System designed by 

Maryland State Highway Administration allocates the merge point 500 feet away from 
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the work zone taper (Kang et al., 2006). However, Pennsylvania DOT and  Michigan 

DOT uses a PCMS that displays “Merge Here/ Take Your Turn” 500 feet prior to the 

taper (Datta et al, 2008). Other system allocate the merge point at 1000 and 1500 feet 

from the taper.  

The main factor deciding whether to implement early merge or late merge is arriving 

vehicles rate. When arriving vehicles rate is low, early merge is encouraged and vehicles 

are free to merge at any point. However, when arriving vehicles rate is moderate and 

close to the capacity of the freeway, late merge is necessary to improve the capacity of 

work zone (Grillo, et al, 2008).  

In early merge, merging location is various and it is unnecessary to determine a specific 

point as vehicles are free to merge at any point. However, late merge requires merging 

close to the taper and as arriving vehicles increases the need to merge closer to the taper 

increases to exploit more space of the closed lane. Also, the high arriving vehicles means 

high density and therefore less chance to find merging gap before reaching the taper.  

Tympakianaki et al. (2014), studies the flow-density relationship for the merge area. 

When arriving vehicles rate is low, merging conflicts are less and throughput is 

correspondingly low. As arriving vehicles increase, the chance of merging conflicts is 

very high, but throughput may increase as well until reaching critical arriving vehicles, 

where throughput attains the downstream capacity. Therefore, throughput (VT) is 

inversely proportional to arriving vehicles (VA) and the equation as the following: 

 

𝑉𝑇 =
𝑉𝐴

𝑎
          (4) 
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Where:  

VT is vehicles throughput; 

VA is number of arriving vehicles; and 

𝑎 is a variable  

 

 

The expected curve in the relation between VA and VT follows a negative polynomial 

function as the following: 

 

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐        (5) 

Where:  

𝑓(𝑥) is the throughput (VT);  

𝑥 is the number of arriving vehicles (VA); and  

𝑎, 𝑏 and 𝑐 are constants. 

 

Several studies recommend applying late merge in moderate traffic volume. Minnesota 

DOT recommends that late merge is to be used when the traffic volume exceeds 1,500 

vehicles per hour (Kang et al., 2006). When the system is activated, the value of DLM 

corresponds to the increase of VA. Therefore, the relation between VA, VT and DLM has 

to be examined.  

The throughput can be influenced by changing the late merge distance, which suggests 

testing different DLM. Therefore, simulation is needed for different late merge distance to 

determine the optimal DLM value. Although the system is designed as DLM equals 1000 
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feet, the values of 200, 500 and 1000 feet will be tested.  

3.4.3.3 Detectors Distance (DD) 

The detectors are connected to the control unit to measure average queue length, speed 

and traffic volume of the segment in order to trigger late merge system. In most of 

dynamic late merge systems, multiple sensors are used to recognize high congestion 

levels. Minnesota DOT uses Remote Traffic Microwave Sensor (RTMS) that is located 

1,500 feet from the taper and a Doppler radar installed at the taper. The purpose of RTMS 

is to measures the average speed of vehicles traveling in both lanes and the total volume, 

while the Doppler radar measures speed only. Minnesota DOT utilizes RTMS in its late 

merge system, which is located one mile before the work zone taper. In this system, 

RTMS-G4 is appointed to provide volume, occupancy, speed and classification 

information. A single RTMS-G4 can replace multiple inductive loop detectors and supply 

needed data. The location of RTMS-G4, DD, is 1500 feet from the work zone taper. 

3.4.3.4 Broadcasting Units (DBU1 and DBU2) 

One of the main additional components in the CLMS are broadcasting unites that 

communicant with agents in CVs and broadcast the upper and lower bound of restricted 

merge areas. CV’s drivers should receive the notification about the restricted areas at the 

same time they can start reading the sign. The PCMs are assumed to have a standard 

letter height of 18 inches, which gives a best impact reading distance of 180 feet and a 

maximum readable distance of 750 feet. Therefore, it would be reasonable to receive the 

notification within 750 feet from the PCMs (Ullman et al., 2005). 
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Since the range of communication of the broadcasting unit can cover 750 feet, it will be 

placed with the first “USE BOTH LANES” sign (DBU1 = 3140 feet) with a 

communication range setting of 750 feet. Therefore, the distance of “USE BOTH 

LANES” message from the taper as the following: 

γ = α+ DBU1          (6) 

Where: 

γ is USE BOTH LANES sign distance; 

α is a constant of 750 feet; and 

DBU1 is distance of the first broadcasting unit 

The second Broadcasting Unit is placed with the “MERGE HERE” sign (DBU2 = 1000 

feet, 500 feet, or 200 feet) according to the Late Merge Area. However, as this type of 

message instruct drivers to merge at a certain point, it would be reasonable to notify CVs 

about merging area as close to the sign as possible. Therefore, the best impact reading 

distance will be used as a communication range setting of 180 feet. The distance of 

“MERGE HERE” message from the taper as the following: 

γ = α+ DBU1          (7) 

Where: 

γ is Merge Here Message sign distance; 

α is a constant of 180 feet; and 
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DBU1 is distance of the first broadcasting unit 

All mentioned distances are taken into consideration in the experiment design and it is 

planned to investigate the impact of these distances on the operations of the CLMS-Level 

1. The following table summarizes the values of all distances considered in this system: 

Table 4 Values for Distances in CLMS 

Distance Value (ft) 
DNM  3140  
DLM Variable (e.g. 200, 500, 1000) 
DD 1500 
DBU1 3140 
DBU2 Variable (e.g. 200, 500, 1000) 

 

3.4.4 Compliance Rate Effect 

Compliance rate plays a significant role in the model and influences the effectiveness of 

late merge system. A study from Pennsylvania DOT revealed that late merge signs are 

confusing and drivers believe that other drivers typically do not follow the instructions of 

signs. Hence, there is a lack of effective communication between the traffic control 

devices and the drivers. As CV displays instructions for the driver on dashboard, the lack 

of communication can be improved and more CVs would merge in the right position.  

Therefore, the compliance rate of CV and non-equipped vehicles can be different. 

However, measuring the difference in terms of compliance rate between CV and non-

equipped vehicles has been unexamined and it would require field study. In this 

experiment, CV and non-equipped vehicles will be tested under various compliance rate 

(). In non-equipped vehicles, Michigan DOT study found that the average compliance 
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rate of merging closer to the taper for drivers can reach 60%, while Minnesota DOT 

observed 30% to 40% of compliance rate. Another compliance rate, which can influence 

the effectiveness of the system, is the compliance rate of cooperative merge. Again, the 

display of instructions about merging using DVI in CVs would improve late merge and 

cooperative merge probability comparing with non-equipped vehicles. Also, DVI would 

encourage CVs in the closed lane to make merging decision and accept relatively smaller 

gaps comparing to non-equipped vehicle. Thus, the main difference between CVs and 

non-equipped vehicles in terms of gap acceptance will be reflected in the lane changing 

model (see next section). As mentioned earlier, measuring the difference between CV and 

non-equipped vehicles in terms of compliance rate is unexamined. However, the 

instructions displayed by DVI is assumed to increase the compliance rate by certain 

percentage comparing to non-equipped vehicles. The relation between CVs and non-

equipped vehicles is described as the following: 

NV =           (8) 

CV = NV + 𝑥         (9) 

Where:  

 is the general compliance rate; 

NV is the compliance rate by non-equipped vehicles; 

CV is the compliance rate by CV; and  

𝑥 is a variable. 
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Substantially, the system is influenced by compliance rates in four different cases 

including CVs for No Merge Area, non-equipped vehicles for No Merge Area, CVs for 

cooperative merge and non-equipped vehicles for cooperative merge.  

The following table summarizes the four different cases, where compliance rate can 

influence the system: 

Table 5 Compliance Rates Considered in CLMS 

Compliance 
Rate 

Parameter Value Impacted 
Lane 

Communication 
Ways 

Non-equipped 
vehicles for No 
Merge Area 

NM, NV 30% and 60% Closed lane Windows 

CVs for No 
Merge Area 

NM, CV 40%, 50%, 
60%, 70%, 80 
and 90% 

Closed lane Windows and 
In-Vehicle 

Non-equipped 
vehicles for 
cooperative 
merge 

C, NV 30% and 60% Open lane Windows 

CVs for 
cooperative 
merge 

C, CV 40%, 50%, 
60%, 70%, 80 
and 90% 

Open lane Windows and 
In-Vehicle 

 

3.4.5 System Operations 

As previously mentioned, late merge system is to be implemented when arriving vehicles 

rate exceeds the threshold. Maryland State of Highway Administration activates late 
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merge when the system detects occupancy rate of 15%. However, some of the systems 

designed by DOTs use the speed as a threshold to activate late merge. When the average 

speed measured by the detector is less than the trigger speed, late merge is activated. In 

70 mph speed limit site, Michigan DOT uses thresholds of 35 mph or 45 mph to trigger 

the system for a period of at least five minutes. (Weng and Meng., 2011) found that in a 

work zone with speed limit of 60 mph, congestion observed and queue started to build up 

at speed of approximately 45 mph and 35 mph, and arriving vehicles rate of 

approximately 900 vphpl and 1,000 vphpl. However, the arriving vehicles rate is 

measured in vehicle per hour in the open lane only, which does not represent the total 

arriving vehicles rate.  

From all mentioned studies, it appears that late merge is implemented when the average 

speed dropped to a lower level between 35 mph and 50 mph. In this system, several 

traffic volumes will be tested to find when late merge could improve the throughput. 

Then, late merge in the CLMS can be activated when the sensors detect a certain traffic 

volumes and deactivate it in all other cases.  

3.4.6 Traffic Flow Modeling in CLMS Level 1 

Modeling the traffic flow considers mainly the movement in longitudinal axis and lateral 

axis. Car-following model represents the longitudinal movement, while lane-changing 

represents the lateral movement in traffic flow modeling.  
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3.4.6.1 Car-Following 

There are different models that describe the car-following and they can be used according 

to the considered parameters and the purpose of the study. The traffic microsimulation 

software, VISSIM, utilizes Wiedmann 99, which is a psycho-physical model constituted 

by several thresholds. Wiedemann 99 model consists of ten calibration parameters, where 

each of them controls a particular aspect of the car-following model. Table 7 summarizes 

the parameters that control the car-following model in VISSIM. 
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Table 6 Parameters of VISSIM Car-following Model (PTV, 2016) 

Parameter Description 
Default 
Value 

CC0 
Standstill distance: 
Desired distance between lead and following vehicle at v 
= 0 mph 

4.92 ft 

CC1 
Headway Time: 
Desired time in seconds between lead and following 
vehicle 

0.90 sec 

CC2 
Following Variation: 
Additional distance over safety distance that a vehicle 
requires 

13.12 ft 

CC3 
Threshold for Entering ‘Following’ State: Time in 
seconds before a vehicle starts to decelerate to reach 
safety distance (negative) 

-8.00 sec 

CC4 
Negative ‘Following’ Threshold: 
Specifies variation in speed between lead and following 
vehicle 

0.35 ft/s 

CC5 
Positive ‘Following Threshold’: 
Specifies variation in speed between lead and following 
vehicle 

0.35 ft/s 

CC6 
Speed Dependency of Oscillation: 
Influence of distance on speed oscillation 

11.44 

CC7 
Oscillation Acceleration: 
Acceleration during the oscillation process 

0.82 ft/s2 

CC8 
Standstill Acceleration: 
Desired acceleration starting from standstill 

11.48 ft/s2 

CC9 
Acceleration at 50 mph: 
Desired acceleration at 50 mph 

4.92 ft/s2 

 

As discussed earlier, cooperative merge influences the headway as the driver would 

forfeit its desired headway and increase the gap by slowing down to allow other vehicles 

to merge. Therefore, the headway in the car-following model in this system can be 

influenced by another driving behavior, which is cooperative merge.  
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3.4.6.2 Lane Changing 

Lane changing is generally described by unnecessary and necessary decisions. First, 

unnecessary decision can happen in free lane-changing statues, where the level of traffic 

volume is low. On the other hand, necessary lane-changing happens when the vehicle 

must change the lane because of an obstacle or emergency case. A necessary lane-

changing is defined in VISSIM as lane change that is necessary for a vehicle to reach its 

final destination in the network (PTV, 2016).  VISSIM lane changing behavior is 

characterized by maximum and accepted deceleration rates for the following vehicle. 

As the system is built on the concept of cooperation between drivers in late merge area 

where one lane is closed and lane-changing is necessary, rule-based lane changing model 

estimated by Hidas (2005) is adopted to add cooperative merge behavior to VISSIM lane-

changing rules. Lie et al. (2017) also used Hidas model to fine-tuning ADAS algorithm 

parameters in connected vehicle environment. The model considers the desired spacing 

(Di) as a linear function of the speed. 

Di = 𝛼𝑣𝑖 + 𝛽         (10) 

Where: 

Di is the speed of the vehicle;  

𝑣𝑖 , 𝛼 and 𝛽 are constants. 

 Hidas (2005) classifies the necessary lane-changing into forced and cooperative lane-

changing. Forced lane-changing, is when the driver is forced by a merging vehicle to 

slow down suddenly, which causes emergency breaking. However, cooperative lane-
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changing is when a driver slow down to enlarge the gap for the other driver to merge. The 

interaction in cooperative lane-changing is described by Hidas as the following: 

• It starts when the subject vehicle indicates its willing to merge into the target lane,  

• Then, the follower vehicle perceives the situation and decides to cooperate by 

slowing down to create a larger gap,   

• Finally, the subject vehicle notices that the follower vehicle cooperated and as a 

result the gap enough for to executes the maneuver. 

In this model, forced lane-changing is neglected, while cooperative merge is integrated 

into VISSIM lane-changing rules to represent the lateral movement in the system. During 

free lane-changing status before work zone instructions, Hidas model will be fully 

utilized. 

The lane-changing model by Hidas (2005) is influenced by several factors as summarized 

in the following table: 

 

Table 7 Parameters in Hidas Lane_Changing Model 

Parameter Description  
𝑔𝑙  Space Gap between Subject Vehicle and Leading Vehicle 
gf Space Gap between Subject Vehicle and Following Vehicle 
gmin Minimum Safe Constant Gap 
gl,min Minimum Gap with Leading Vehicle for Merging 
gf,min Minimum Gap with Following Vehicle for Merging 
vs Speed of Subject Vehicle 
vl Speed of Leading Vehicle 
vf Speed of Following Vehicle 
cl Acceptable Gap Parameter with Leading Vehicle 
cf Acceptable Gap Parameter with Following Vehicle 
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The gap between the subject vehicle and leading and following vehicle has to meet a 

certain criterion as the following: 

 

𝑔𝑙 ≥ 𝑔𝑙,𝑚𝑖𝑛  and  𝑔𝑓 ≥ 𝑔𝑓,𝑚𝑖𝑛       (11) 

 

Where: 

𝑔𝑙  is the space gap between subject vehicle and leading vehicle; and  

𝑔𝑓  is the space gap between subject vehicle and following vehicle. 

 

In cooperative and non-cooperative cases: 

𝑔𝑙,𝑚𝑖𝑛 =𝑔𝑚𝑖𝑛 +{
𝑐𝑙(𝑣𝑠 − 𝑣𝑙)if𝑣𝑠 > 𝑣𝑙
0otherwise

      (12) 

𝑔𝑓,𝑚𝑖𝑛 =𝑔𝑚𝑖𝑛 +{
𝑐𝑓(𝑣𝑓 − 𝑣𝑠)if𝑣𝑓 > 𝑣𝑠
0otherwise

    (13) 

Where:  

𝑔𝑚𝑖𝑛 is a minimum safe constant gap (jam gap);  

𝑐𝑙 and 𝑐𝑓 are constants; 

 𝑣𝑠 is the speed of the subject vehicle; 

𝑣𝑙 is the speed of the leading vehicle; and  

𝑣𝑓 is the speed of following vehicle 

 

As mentioned earlier, the instructions from DVI would encourage CVs in the closed lane 

to make merging decision and accept relatively smaller gap comparing with non-

equipped vehicle. Therefore, Acceptable Gap Parameter with Leading and Following 
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Vehicles,𝑐𝑙 and 𝑐𝑓 respectively, can be changed in CVs to reflect the difference with 

non-equipped vehicles. However, there is a lack of studies that investigate the effect of 

CV on the gap acceptance. Hence, a new parameter will be introduced in this model to 

reflect the percentage of reduction in the gap acceptance for CVs. In Hidas (2005), 𝑐𝑙 and 

𝑐𝑓 were estimated from the collected video data and modified for an average of 0.9. The 

same parameter value will be used for non-equipped vehicles in this study. In contrast, 

CVs will be assigned with reduced values to reflect the expected reduction of gap 

acceptance parameter. Two values are chosen to represent the percentage of reduction 

(20% and 40%). The following table summarizes acceptable gap parameter values for CV 

and non-CV: 

Table 8 Acceptable Gap Parameters 

Parameter Non-equipped Vehicle CV 
𝑐𝑙 0.9  0.9 - 20% = 0.72 

0.9 - 40% = 0.54 
𝑐𝑓 0.9  0.9 - 20% = 0.72 

0.9 - 40% = 0.54 
  

The minimum safe constant gap (𝑔𝑚𝑖𝑛) is a parameter that varies from a driver to 

another. Hidas model considers a minimum safe constant gap of (6.7 feet) and does not 

specify the difference with heavy vehicles.  Heavy vehicles require about double the 

distance that passenger vehicles require (Nobukawa et al., 2016). Therefore, in the case 

of heavy vehicles,  𝑔𝑚𝑖𝑛 is considered as (13.4 feet) 

 

Table 9 Minimum safe constant gaps 

Parameter Passenger Vehicle Heavy Vehicle 
𝑔𝑚𝑖𝑛 6.7 feet 13.4 feet 
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In CLMS, several lane-changing models will be used along the freeway and they are 

different according to the area. In early merge area where there are no instructions, Hidas 

2005 is used with free lane-changing. In no merge area, Hidas 2005 is utilized with (No 

Merge Effect) as drivers are instructed to stay on lane. Eventually, late merge takes place 

using CLMS based on Hidas 2005 Model (See Figurer 20) 

 

Figure 20 Summary of Lane-changing Models in CLMS 

 

3.4.7 Simulation Modeling 

Microscopic traffic simulation is an effective method in traffic operations to evaluate 

multiple scenarios as it considers the effects of microscopic characteristics such as driver 

behavior and vehicle characteristics (Elefteriadou, 2014). VISSIM is a well-known 

microscopic modeling software that can be used to model various scenarios of traffic 

operations (PTV Vision , 2016).  

A two-lane freeway section on Interstate 64 between Louisville and Frankfort, Kentucky 

was modeled in VISSIM using links and connectors. The drop of one lane was modeled 

using connectors to connect the two lanes to a one lane work zone to represent the lane 
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closure configuration. A static route decision started at the beginning of the network till 

the end to ensure that the number of vehicles entering the freeway is equal to the number 

of vehicles going through the work zone and leaving the network. The lane-changing 

model was modified to reflect Hidas 2005 with cooperation effect by developing a new 

C++ code. The compiled code in Dynamic Link Library (DLL) extension was added as 

an external driving model to control lane-changing process each 0.1 second.  

 

 

Figure 21 The Actual Site of Simulated Experiment (I-64 East) 

 

3.4.7.1  Experimental Design 

In this work, the simulation is developed to study the capacity of work zones and the 

effect of several variables on the system. However, due to the difference of the layout and 

components of the three systems, each one includes different number of examined 

variables.  

 



 59 

System 1: Traditional Work Zone 

 

In traditional work zone, drivers are warned about the work zone, but there is no control 

strategy for the merging process. Therefore, the variables of traditional work zone in this 

experiment are limited to the traffic characteristics such as traffic volume, heavy vehicles 

percentage, and lane distribution. Traffic volumes include low, moderate and high 

numbers for two-lane freeway (1200, 1600, 2000, 2400, 2800 and 3200 veh/h). Heavy 

vehicles have different driving behavior comparing to passenger vehicles due to the 

difference in size and weight. Thus, the effect of heavy vehicles on the system will be 

tested by three levels (0%, 10% and 20%). As the scenario is built on a two-lane freeway 

that drops to one lane, the effect of the traffic distribution onto the two lanes will be 

considered (30%|70%, 50%|50% and 70%|30%) where the first percentage is for the right 

closed lane and the second percentage is for left open lane.  

 

System 2: Work Zone with Late Merge Strategy 

 

Beside the three traffic characteristics in traditional work zone, late merge control 

strategy includes additional variables such as late merge area and compliance rate. As 

mentioned earlier, the area where drivers are instructed to merge-in varies from system to 

another. Therefore, it is vital in this study to consider three levels of late merge area (200 

feet, 500 feet and 1000 feet). Previously mentioned studies (Table 2) about late merge 

have found that compliance rate varies from 30% to 65%. In this study, the impact of 

compliance rate of non-CV will be studied though two levels (30% and 60%).  
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System 3: CLMS (Level 1) 

In addition to all mentioned variables in System 1 and System 2, the CLMS will consider 

compliance rate for CV, gap acceptance reduction and market penetration rate. CV are 

expected to have higher compliance rate due to the fact that drivers are notified by both 

signs and DVI. Therefore, the influence of several compliance rate levels will be studied 

(50%, 60%, 70%, 80%, 90% and 100%). Also, the influence of the expected gap 

acceptance reduction will be tested through two levels (20% and 40%). The percentage of 

CV out of the total passenger cars in the system will be considered by 5 levels including 

(20%, 40%, 60%, 80% and 100%).  

The following table summarizes the examined variables: 

 

Table 10 Variables Considered in Experiment Design 

Variable 
Number of 
Levels Value 

Traditional 
WZ 

Late 
Merge 
WZ 

CLMS 

Traffic Volume 
(veh/h) 6 

1200 

✓ ✓ ✓ 

1600 
2000 
2400 
2800 
3200 

Heavy Vehicles 
Percentage (%) 

3 
0% 

✓ ✓ ✓ 10% 
20% 

Lane Distribution 
(%/lane) 3 

30% 
✓ ✓ ✓ 50% 

70% 

Late Merge 
Distance (feet) 

3 
200 

 ✓ ✓ 500 
1000 

2 20%   ✓ 
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Reduction in Gap 
Acceptance (%) 

40% 

Market Penetration 
Rate (%) 

5 

20% 

  ✓ 
40% 
60% 
80% 
100% 

Non-CV 
Compliance Rate 
(%) 

2 
30% 

 ✓ ✓ 60% 

CV Compliance 
Rate 

6 

50% 

  ✓ 

60% 
70% 
80% 
90% 
100% 

 

Taking into consideration that there should be a scenario for each combination of all 

mentioned variables, the numbers of simulation scenario as the following: 

 

Table 11 Summary of Number of Simulation Scenarios 

System Simulation Scenarios 
Traditional Work Zone  54 
Late Merge Work Zone 324 
CLMS 1692 

Total Simulation Scenarios 2070 

 

It is worth mentioning that testing all combinations of variables in CLMS will result an 

excessive number of scenarios (19440) that would need a year of continuous running. 

Hence, all levels of variables will be considered, while the compliance rate of CV will be 

fixed. Then, the combinations of the compliance rate levels of CV, non-CV and traffic 
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volumes will be tested, while other variables are fixed. This way, a reasonable number of 

simulation scenarios can be conducted.  

 

Required Number of Runs for Each Simulation Scenario 

The sample size equation modified by Virginia Department of Transportation is a tool to 

determine the required number of simulation runs. 

 

𝑁 =
(𝑍)2(𝑆𝑠)

2

𝐸2
          (14) 

 

Where:  

N is necessary sample size;  

Z is the number of standard deviations away from the mean corresponding to the 

desired confidence level;  

S is sample standard deviation; and  

E is tolerable error in terms of the sample mean.  

 

This methodology is considered as an iterative process and each new round of 

calculations have to be performed on the results of the necessary sample runs to see if the 

numbers are adequate. Taking into consideration that this process, in the case of several 

dependent and independent variable, may become time consuming and costly, a threshold 

of 30 runs can be established (Virginia Department of Transportation, 2013). Thus, this 

experiment will consider using examine each scenario with 30 runs. Given that the 

number of simulation scenarios is 2070, the total number of runs is 62,100. 
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3.4.8 Measure of Effectiveness  

The effectiveness of a system can be seen through the improvement of certain 

measurements.  By consulting previous literature, the major criterion of work zone 

improvement is measured by the increase of throughput. Also, other criteria such as the 

overall delay and the queue length can be analyzed to evaluate the improvement of the 

level of service (Elefteriadou, 2014). The following measure of effectiveness (MOEs) 

will be considered: 

• Throughput: the number of vehicle passing through the one-lane work zone per 

hour (veh/h). 

• Capacity: the maximum traffic demand the system can efficiently operate 

• V/C: volume-to-capacity ratio where 1 is when volume approach capacity and 

highway segment is fully saturated. 90% degree of saturation is the targeted 

threshold (Systematics, 2009) 

• Overall Delay: the additional time taken by the vehicle to travel the whole corridor 

comparing with the ideal time to do that with the posted speed limit (sec/veh) 

Overall Delay = actual travel time – ideal time  

• Queue Length: the length of the formed queue from the taper (feet) 
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Table 12 Measure of Effectiveness (MOEs) 

MOEs Unit Description 
Throughput Veh/h It reflects the work zone output in terms of 

vehicles per hour. 
Capacity Veh/h  It represents the work zone intake in terms 

on vehicles per hour. 
V/C Ratio It reflects the degree of saturation under 

different traffic demands. 
Delay Sec/veh It describes the cost of the work zone in 

terms of seconds per vehicle. 
Queue Length feet It indicates the length of the traffic backup 

and can be very important in case of the 
existence of nearby ramps. 

 

To measure the mentioned performance measures, couple of statistical tests need to be 

implemented. Using Minitab Statistical Software, multiple regression analysis and T-tests 

are completed with 95% confidence interval. 
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CHAPTER IV 

4 ANALYSIS OF OPERATIONS PREFORMANCE 

 

The analysis of the CLMS is performed with consideration of traditional work zone 

system and late merge system. It starts with the performance of CLMS and other system 

by determining significant variables that impact operations. The relation between 

significant variables and the MOEs is illustrated by multiple linear regression models. 

Multiple linear regression models take the following form: 

  Y Xi i i    0 1         (15) 
 
Where:  

Yi  is the dependent variable; 
X i  is the level of the independent (predictor) variable; 
0  is the mean of Y when X=0 (Y-intercept);  
1  is the change in mean of Y when X increases by 1 (slope); and 
 i  is the random error term (constant). 

 
  

MOEs are plotted with significant variables, assuming some general traffic characteristics 

such as heavy vehicle percentage. To demonstrate the difference between the three 

systems, t-tests were conducted using a software package (Minitab). 
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4.1 CLMS Performance 

As previously mentioned, MOEs are dependent variables while the rest of variable are 

independent. The following table summarizes the dependent variables with their symbols, 

values range and applicable system.  

 
Table 13 Description of Variables in Compared Systems 

Variable Symbol  Values Range System 
Traffic Demand γ 1200 veh/h – 3200 veh/h Traditional WZ 

Late Merge System 
CLMS 

Lane Distribution ρ 30|70% , 50%|50% , 
70%|30% 
LD = (right lane 
percentage) 

Traditional WZ 
Late Merge System 
CLMS 

Heavy Vehicle 
Percentage 

φ 0% – 20%  Traditional WZ 
Late Merge System 
CLMS 

Late Merge Area ψ 200  feet – 1000 feet Late Merge System 
CLMS 

Compliance Rate for 
CV 

σCV 50% –  100%  CLMS 

Compliance Rate for 
Non-CV 

σNon-CV 30% and 60% Late Merge System 
CLMS 

Reduction Factor for 
Gap Acceptance 

ϝ 20% and 40% CLMS 

Market Penetration 
Rate 

ω 20% –  100%  CLMS 

 

There are certain variables that all systems have such as traffic demand, heavy vehicles 

percentage, and lane distribution. Some other variables are uniquely related to a specific 

system such as reduction factor and market penetration rate. The following table 

summarizes the potential variables that may affect each system: 
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Table 14 Potential Contributing Factors for All Systems 

System Variable 
Traditional Work Zone γ ρ φ - - - - - 

Late Merge γ ρ φ ψ σNon-CV - - - 

CLMS γ ρ φ ψ σNon-CV σCV ϝ ω 

 

4.1.1 Work Zone Throughput 

Throughput is the measurement of number of vehicles that can proceed through a certain 

point in an hour. The higher number of throughput indicates the ability of the system to 

move vehicles efficiently. Capacity of work zone is also represented by the maximum 

throughput of the system. Therefore, throughput has to be investigated to find the 

capacity of the work zone. Each system has different variables that affect the throughput 

and hence impact the capacity of work zone.  

In traditional work zone, traffic demand is the only significant variable impacting 

throughput of the system. The two other considered variables, heavy vehicle percentage 

and lane distribution, have no significant effect on the system. With the traffic backup in 

the open lane, lane distribution and heavy vehicle were not significantly able to change 

throughput. The following table summarizes the statistical test of throughput in 

traditional work zone system: 

Table 15 Statistical Test for Throughput in Traditional Work Zone 

Variable Coef SE Coef   T-Value   P-Value    VIF 
Constant 1105.9 51.6   21.43     0.000  
φ 251 134  1.87 0.067 1.00 
γ  0.1421 0.0160 8.87 0.000* 1.00 
ρ 34.7    67.0 0.52 0.607 1.00 

* Significant Variable 
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By considering the significant variable in regression analysis, the following regression 

model, with R2 = 0.59, describes throughput of traditional work zone: 

 

Λ = 1148.4 + 0.1421 γ       (16) 
 

Where: 

Λ is throughput of traditional work zone; and 

γ is traffic demand 

 

In late merge system, heavy vehicle percentage, traffic demand and compliance rate of 

non-CV appear as significant variables that affect the throughput of the system. The high 

number of heavy vehicles would prevent late merge from achieving higher throughput, 

while the compliance rate would improve throughput by applying late merges.  

The following table summarizes the statistical test of throughput in late merge system: 

 

 

Table 16 Statistical Test for Throughput in Late Merge System 

Variable Coef SE Coef   T-Value   P-Value    VIF 
Constant 971.1 35.3   27.53 0.000  
φ  -129.1 40.2 -3.21 0.001* 1.00 
γ  0.24602 0.00883 27.86 0.000* 1.00 
ρ 68.5  36.9 1.85 0.065 1.00 
ψ -0.0067 0.0183 -0.37 0.715 1.00 
σNon-CV  -129.1 40.2 -3.21 0.001* 1.00 

* Significant Variable 

By considering the significant variables in regression analysis, the following regression 

model, with R2 = 0.73, describes throughput of late merge system: 
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Λ = 1001.6 + 601.1 φ + 0.24602 γ - 129.1 σNon-CV     (17) 
 
Where: 

Λ is throughput of late merge system; 

φ is heavy vehicle percentage 

γ is traffic demand 

σNon-CV is compliance rate for non-CV 

 

In CLMS, heavy vehicle percentage is a significant variable along with the reduction 

factor of gap acceptance. In fact, accepting a smaller gap for merging increased the 

throughput of the system. The following table summarizes the statistical test of 

throughput in the CLMS: 

Table 17 Statistical Test for Throughput in CLMS 

Variable Coef SE Coef   T-Value   P-Value    VIF 
Constant 1055.9      17.6 59.87 0.000  
φ  366.9 34.7 10.57 0.000* 1.00 
γ  0.24743    0.00415 59.62 0.000* 1.00 
ρ  51.9 17.4 2.99 0.003* 1.00 
ψ -0.00894 0.00859 -1.04 0.293 1.00 
ω 9.6 10.0 0.96 0.339 1.00 
ϝ  -230.4 28.4 -8.13 0.000* 1.00 

* Significant Variable 

 

By considering the significant variables in regression analysis, the following regression 

model, with R2 = 0.69 describes throughput of late merge system: 

 

Λ = 1056.5 + 366.9 φ + 0.24743 γ + 51.9 ρ - 230.4 ϝ    (18) 
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Where: 

Λ is throughput of CLMS 

φ is heavy vehicle percentage 

γ is traffic demand 

ρ is lane distribution 

ϝ is reduction factor for gap acceptance 

 

The following table summarizes the significant variables affecting vehicle throughput in 

each system. 

Table 18 Summary of Significant Variables Impacting Throughput 

System Variable 
Traditional Work Zone γ ρ* φ - - - - - 

Late Merge γ* ρ* φ ψ σNon-CV * - - - 

CLMS γ* ρ* φ ψ σNon-CV σCV ϝ* ω 

* Significant Variable 
 

To compare the three system, only significant variables are taken into consideration. 

However, heavy vehicle percentage is assumed as a reasonable value of 10% for the sake 

of conciseness.  The following graph illustrates the performance of the three systems with 

significant variables.  

 



 71 

 

Figure 22 Comparison of Throughput in All Systems 

 

 
From the figure above, it appears that late merge system is substantially impacted by 

different compliance rate when the traffic demand increases. On the other hand, the 

difference between lane distributions in the CLMS is not visually noticed. Comparing 

performance of late merge system with the CLMS, it appears that at the traffic demand of 

1600 veh/h the CLMS started to perform better. At the traffic demand of 2400 veh/h, the 
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increased throughout while traffic demands are 2000, 2400 and 2800 veh/h. This because 

late merge strategy is feasible during low to moderate traffic conditions (Beacher at el., 

2004).To test the significance of the difference between the CLMS and late merge 

system, comparisons between the two systems in case of moderate traffic demands 2000, 

2400 and 2800 veh/h were conducted. The t-test results showed significant difference 

between late merge system and the CLMS. The following table summarizes t-test results: 

 

Table 19 T-Test Results for the Difference in Throughput for All Systems 

 TWZ LMS CLMS 
 σNon-

CV 
σNon-

CV 
ϝ = 0.2 ϝ = 0.4 

ρ ρ 
0.3 0.6 0.3 0.5 0.7 0.3 0.5 0.7 

TWZ          

LMS 
 σNon-

CV 
0.3 0.00*         

σNon-CV 0.6 0.00* 0.00*        

CLMS 

ϝ = 
0.2 

ρ  0.3 0.00* 0.00* 0.91       
ρ  0.5 0.00* 0.00* 0.99 0.12      
ρ  0.7 0.00* 0.00* 0.83 0.00* 0.03     

ϝ = 
0.4 

ρ  0.3 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*    
ρ  0.5 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.89   
ρ  0.7 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.73 0.83  

*Significant  
There is no significant difference  
The mean of sample in column is significantly higher than mean of sample in row  
The mean of sample in row is significantly higher than mean of sample in column  

 

From T-test results, it appears that there is significant difference between all systems in 

terms of throughput. The CLMS shows significantly higher throughput than late merge 

system and traditional work zone as expected. By looking carefully at the comparison 

table, the CLMS when reduction factor is 0.2 is not significantly different from the late 

merge system with compliance rate of 0.6. The effect of reduction factor is noticeable and 
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the T-test results confirmed that there is significant difference between 0.2 and 0.4. The 

results also indicated lack of difference between lane distribution rates when the 

reduction factor is 0.4.  

4.1.2 Work Zone Capacity 

Capacity is measured to determine the maximum number of vehicles that the freeway can 

efficiently operate. It is represented by the maximum throughput at different traffic 

demands.   

In traditional work zone, lane distribution is the only significant variable impacting 

capacity of the system. It seems that the capacity is more sensitive to the lane distribution 

because the highest throughput is influenced by the difference of number of vehicles in 

each lane. The following table summarizes the statistical test of throughput in traditional 

work zone system: 

Table 20 Statistical Test for Capacity in Traditional Work Zone 

Variable Coef SE Coef   T-Value   P-Value    VIF 
Constant 1537.94 1.68   913.51     0.000  
φ 3.33 5.98 0.56 0.598 1.00 
ρ  15.00 2.99 5.01 0.002* 1.00 

* Significant Variable 

 

By considering the significant variable in regression analysis, the following regression 

model, with R2 = 0.80, describes capacity of traditional work zone: 

 

Λ = 1538.28 + 15.00 ρ        (19) 
 

Where: 
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Λ is capacity of traditional work zone 

ρ is lane distribution 
 

In late merge system, heavy vehicles percentage and compliance rate of non-CV appear 

as significant variable that affect the capacity of the system. The high number of heavy 

vehicles would prevent late merge from achieving higher throughput, while the 

compliance rate would improve throughput by applying late merges. The following table 

summarizes the statistical test of throughput in late merge system: 

 

Table 21 Statistical Test for Capacity in Late Merge System 

Variable Coef SE Coef   T-Value   P-Value    VIF 
Constant 1827.6 40.0 45.67 0.000  
φ  -195.0 96.8 -2.01 0.050* 1.00 
ρ 78.6 48.4 1.62 0.111 1.00 
ψ 0.0236 0.0239 0.99 0.328 1.00 
σNon-CV  -232.8 52.4 -4.44 0.000* 1.00 

* Significant Variable 

 
By considering the significant variables in regression analysis, the following regression 

model, with R2 = 0.32, describes throughput of late merge system: 

 

Λ = 1882.9 - 202.2 φ - 236.1 σNon-CV      (20) 

 

Where: 

Λ is capacity of late merge system 

φ is heavy vehicle percentage 

σNon-CV is compliance rate for non-CV 
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In CLMS, heavy vehicle percentage is a significant variable along with the reduction 

factor of gap acceptance. In fact, accepting smaller gap for merging increased the 

throughput of the system. The following table summarizes the statistical test of 

throughput in the CLMS: 

 

Table 22 Statistical Test for Capacity in CLMS 

Variable Coef SE Coef   T-Value   P-Value    VIF 
Constant 1872.3.3 15.4 121.79 0.000  
φ  -181.3 35.4 -5.13 0.000* 1.00 
ρ  31.3 17.7 1.77 0.078 1.00 
ψ  -0.03196 0.00875 -3.65 0.000* 1.00 
ω 3.5 10.2 0.34 0.735 1.00 
ϝ  -308.3 28.9 -10.67 0.000* 1.00 

* Significant Variable 

By considering the significant variables in regression analysis, the following regression 

model, with R2 = 0.37, describes throughput of late merge system: 

 

Λ = 1890.0 - 181.3 φ - 0.03196 ψ - 308.3 ϝ     (21) 

Where: 

Λ is capacity of CLMS 

φ is heavy vehicle percentage 

ϝ is reduction factor for gap acceptance 

 

The following table summarizes the significant variables affecting vehicle capacity in 

each system: 
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Table 23 Summary of Significant Variables Impacting Capacity 

System Variable 
Traditional Work Zone γ ρ* φ* - - - - - 

Late Merge γ ρ φ* ψ σNon-CV * - - - 

CLMS γ ρ φ* ψ σNon-CV σCV ϝ* ω 

* Significant Variable 
 

To compare the three system, only significant variables are taken into consideration. 

However, heavy vehicle percentage is assumed as a reasonable value of 10% for the sake 

of conciseness.  The following graph illustrates the performance of the threes systems 

with significant variables.  

 

 

Figure 23 Comparison of Capacity for All Systems 
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By looking at Figure 23, the CLMS shows relatively higher capacities comparing to other 

systems. The effect of compliance rate on late merge is noticed as 60% compliance rate 

would improve the capacity of late merge system. The CLMS is influenced by both 

reduction factor and late merge area.  

 

Table 24 T-Test Results for the Difference in Capacity 

 TWZ LMS CLMS 
 σNon-

CV 

σNon-

CV 

ϝ = 0.2 ϝ = 0.4 
ψ ψ 

0.3 0.6 200 500 1000 200 50
0 

100
0 

TWZ          

LMS 
σNon-CV 

0.3 0.00
* 

        

σNon-CV 
0.6 0.00

* 
0.02
* 

       

CLM
S 

ϝ 
= 
0.
2 

ψ  200 0.00
* 

0.00
* 

0.00
* 

      

ψ  500 0.00
* 

0.14 0.00
* 

0.00
* 

     

ψ  100
0 

0.00
* 

0.60 0.21 0.00
* 

0.00
* 

    

ϝ 
= 
0.
4 

ψ  200 0.00
* 

0.00
* 

0.00
* 

0.00
* 

0.00
* 

0.00
* 

   

ψ  500 0.00
* 

0.00
* 

0.00
* 

0.00
* 

0.00
* 

0.00
* 

0.2
7 

  

ψ  100
0 

0.00
* 

0.00
* 

0.00
* 

0.00
* 

0.00
* 

0.00
* 

0.5
6 

0.
8 

 

*Significant  
 
There is no significant difference  
The mean of sample in column is significantly higher than mean of sample in row  
The mean of sample in row is significantly higher than mean of sample in column  

 
 

From T-test results, it appears that there is significant difference between all systems in 

terms of throughput. The CLMS shows significantly higher throughput than late merge 
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system and traditional work zone as expected. By looking carefully at the comparison 

table, the CLMS when reduction factor is 0.2 is not significantly different from the late 

merge system with compliance rate of 0.6. The effect of reduction factor is noticeable and 

the T-test results confirmed that there is significant difference between 0.2 and 0.4. When 

the reduction factor is 0.2, late merge area of 200 feet in the CLMS provides significantly 

higher capacity comparing to 500 and 1000 feet. When the reduction factor is 0.4, longer 

late merge area can improve the capacity of the CLMS. 

  

4.1.3 Volume-to-Capacity (V/C) 

 

The V/C, volume-to-capacity, can provide an indication about the saturation of the 

segment. Traffic engineers commonly target a V/C of 0.9. Therefore, the traffic demand 

when V/C = 0.9 was detected and investigated.  

 

When 0.9 V/C ratio is the independent variable, heavy vehicle percentage appears as a 

significant variable in the traditional work zone system. The following table summarizes 

the statistical test of traffic demands when V/C = 0.9 in the traditional work zone system: 

 

Table 25 Statistical Test for 0.9 V/C in Traditional Work Zone 

Variable Coef SE Coef   T-Value   P-Value    VIF 
Constant 1817 121    14.99     0.000  
φ  -1558 431   -3.62 0.011* 1.00 
ρ -233     215 -1.08 0.322 1.00 

* Significant Variable 
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By considering the significant variables in regression analysis, the following regression 

model, with R2 = 0.65, describes throughput of late merge system: 

 

Λ =  1701.1 - 1558 φ         (22) 
 
 

Where: 

 
Λ is 0.9 V/C of traditional work zone 

φ is heavy vehicle percentage 

 

In late merge, however, traffic demands when V/C = 0.9 is not explained by any of the 

considered variables. The following table summarizes the statistical test of 0.9 V/C in the 

late merge system:   

 

Table 26 Statistical Test for 0.9 V/C in Late Merge System 

Variable Coef SE Coef   T-Value   P-Value    VIF 
Constant 2398 134    17.93     0.000  
φ -3945 335 -11.76 0.639 1.00 
ρ -79   168 -0.47 0.639 1.00 
ψ 0.0735 0.0830 0.88 0.381 1.00 
σNon-CV 340 183 1.86 0.068 1.00 

* Significant Variable 

 

In the CLMS, heavy vehicle percentage, lane distribution and market penetration rate are 

significant variables. The market penetration rate increases the input traffic demand when 

V/C = 0.9. In other words, the higher number of CVs improves the capacity of the 
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CLMS. The following table summarizes the statistical test of traffic demands when V/C 

= 0.9 in CLMS: 

 

Table 27 Statistical Test for 0.9 V/C in CLMS 

Variable Coef SE Coef   T-Value   P-Value    VIF 
Constant 2392.0      58.6  40.83     0.000  
φ  -3433 135 -25.46 0.000* 1.00 
ρ  -163.4      67.4 -2.42 0.016* 1.00 
ψ  -0.0822 0.0334 -2.46 0.114 1.00 
ω  103.0 38.9 2.65 0.009* 1.00 
ϝ  119 110 1.08 0.280 1.00 

* Significant Variable 

 

By considering the significant variables in regression analysis, the following regression 

model, with R2 = 0.71, describes throughput of late merge system: 

 

Λ =  2309.7 - 3433 φ - 163.4 ρ + 103.0 ω      (23) 

 

Where: 

Λ is 0.9 V/C of CLMS 

φ is heavy vehicle percentage 

ρ is lane distribution 

ω is market penetration rate 

 

The following table summarizes the significant variables impacting traffic demand when 

V/C = 0.9 in each system: 



 81 

Table 28 Significant Variables Impact 0.9 V/C for All Systems 

System Variable 
Traditional Work Zone γ ρ* φ - - - - - 

Late Merge γ ρ φ ψ σNon-CV - - - 

CLMS γ ρ* φ * ψ σNon-CV σCV ϝ ω* 

* Significant Variable 
 

To compare the three system, only significant variables are taken into consideration. 

However, heavy vehicle percentage is assumed as a reasonable value of 10% for the sake 

of conciseness.  The following graph illustrates traffic volume of each system when 0.9 

V/C is achieved. 

 

 

Figure 24 Comparison of 0.9 V/C for All Systems 
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As the graph shows, late merge system improved the traffic volume of 0.9 V/C compared 

to the traditional work zone system. Ultimately, the CLMS shows a significant 

improvement with the increase of market penetration rate. Although, lane distribution is a 

significant variable, only 70%|30% lane distribution prevented the improvement in 0.9 

V/C ratio with the increase of market penetration rates of 40% and 100%.  

It appears that the difference between the CLMS in case of 20% market penetration rate 

and late merge system is insignificant. However, in the scenarios of 40% and higher, the 

difference can be noticed.  

 
Figure 25 Comparison of V/C for All Systems When Lane Distribution is 30% 
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Figure 26 Comparison of V/C for All Systems When Lane Distribution is 50% 
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Figure 27 Comparison of V/C for All Systems When Lane Distribution is 70% 
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Table 29 Values of 0.9 V/C for Compared Systems 

 

TWZ LMS 

CLMS 
ρ = 0.3 

ω 
0.2 0.4 0.6 0.8 1.0 

TWZ        
LMS 0.02       

CLMS ρ = 
0.3 ω 

0.2 0.05 0.65      
0.4 0.00 0.00 0.00     
0.6 0.00 0.00 0.00 0.05    
0.8 0.00 0.00 0.00 0.00 0.43   
1.0 0.00 0.00 0.00 0.00 0.04 0.25  

*Significant  
 
There is no significant difference  
The mean of sample in column is significantly higher than mean of sample in row  
The mean of sample in row is significantly higher than mean of sample in column  

 
 

From T-test results, it appears that there is significant difference between all systems in 

terms of throughput. The CLMS shows significantly higher throughput than late merge 

system and traditional work zone as expected. By looking carefully at the comparison 

table, the CLMS, when market penetration rate is 20%, is not significantly different from 

the late merge system. However, other market penetration rates of CV in CLMS means 

significantly higher demand at 0.9 V/C compared to late merge system. Also, there is no 

significant difference between market penetration rate of 60% and 80% as well as 

between 80% and 100%. 
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4.1.4 Work Zone Delay 

 

Delay is measured by comparing the ideal time taken to drive a segment to the actual 

time. It is an indicator of the time spent in the work zone for each vehicle on average. 

Higher overall delay is a negative indication of the traffic operation of the work zone.  

 

In traditional work zone, heavy vehicle percentage, and traffic demand are significant 

variables. Heavy vehicles need longer gap to merge which may result a longer wait at the 

taper. This waiting for a gap by heavy vehicles forces other vehicles on the closed lane to 

wait which increases the overall delay. The following table summarizes the statistical test 

of overall delay in traditional work zone system: 

 

Table 30 Statistical Test for Delay in Traditional Work Zone 

Variable Coef SE Coef   T-Value   P-Value    VIF 
Constant 213.99 6.60     32.44        0.000  
φ  134.1 17.1 7.83 0.000* 1.00 
γ  0.00873 0.00205 4.27 0.000* 1.00 
ρ -2.95    8.56 -0.34 0.732 1.00 

* Significant Variable 
 

 

By considering the significant variables in regression analysis, the following regression 

model, R2 = 0.61, describes delay of traditional work zone system: 

 

Λ =  212.51 + 134.1 φ + 0.00873 γ       (24) 

Where: 

Λ is delay of traditional work zone 
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φ is heavy vehicle percentage 

γ is traffic demand 

 

In late merge system, heavy vehicle percentage, traffic demand and the compliance rate 

of non-CV are significant variable. It appears that higher compliance rate decreases the 

delay as more vehicles apply late merge, which is beneficial to the system. The following 

table summarizes the statistical test of overall delay in late merge system: 

 
Table 31 Statistical Test for Delay in Late Merge System 

Variable Coef SE Coef   T-Value   P-Value    VIF 
Constant 5.20 4.44     1.17    0.242  
φ  188.55 9.29 20.29 0.000* 1.00 
γ  0.01140      0.00111 10.27 0.000* 1.00 
ρ 5.75 4.65 1.24 0.217 1.00 
ψ 0.00257 0.00230 1.12 0.264 1.00 
σNon-CV  -36.49 5.06 -7.21 0.000* 1.00 

* Significant Variable 
 
By considering the significant variables in regression analysis, the following regression 

model, with R2 = 0.47, describes delay of traditional work zone system: 

 

Λ = -6.78 + 258.5 φ + 0.02476 γ + 53.2 σNon-CV    (25) 

Where: 

Λ is delay in late merge system 

φ is heavy vehicle percentage 

γ is traffic demand 

σNon-CV is compliance rate for non-CV 
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With heavy vehicle percentage and traffic demand, late merge area and reduction factor 

are significant variables in the delay of CLMS. When the late merge area is small, lower 

delay was observed. The following table summarizes the statistical test of overall delay in 

the CLMS: 

Table 32 Statistical Test for Delay in CLMS 

Variable Coef SE Coef   T-Value   P-Value    VIF 
Constant -41.34 7.75 -5.34  0.000  
φ  327.9 15.3 21.49 0.000* 1.00 
γ  0.01622 0.00182 8.89 0.000* 1.00 
ρ  7.91      7.63 1.04 0.300 1.00 
ψ  -0.04503 0.00377 11.93 0.000* 1.00 
ω  2.12 4.40 0.48 0.630 1.00 
ϝ  158.3 12.5 12.70 0.000* 1.00 

* Significant Variable 
 

By considering the significant variables in regression analysis, the following regression 

model, with R2 = 0.34, describes delay of traditional work zone system: 

 

Λ =  -37.53 + 327.9 φ + 0.01687 γ + 0.04532 ψ + 157.4 ϝ   (26) 

Where: 

Λ is delay in CLMS 

φ is heavy vehicle percentage 

γ is traffic demand 

ψ is late merge area 

ϝ is reduction factor for gap acceptance 
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The following table summarizes the significant variables affecting overall delay in each 

system: 

 

Table 33 Significant Variables Impact Delay for All Systems 

System Variable 
Traditional Work Zone γ * ρ φ * - - - - - 

Late Merge γ* ρ φ * ψ σNon-CV*  - - - 

CLMS γ* ρ φ * ψ * σNon-CV σCV ϝ* ω 

* Significant Variable 

 

To compare the three system, only significant variables are taken into consideration. 

However, heavy vehicle percentage is assumed as a reasonable value of 10% for the sake 

of conciseness. The effect of compliance rate for non-CV will be discussed later. The 

following graph illustrates the delay of the three systems with the significant variables. 
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Figure 28 Comparison of Delay for All Systems 
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The T-test results shows significant difference between late merge system and the CLMS. 

The following table summarizes T-test results: 

 

Table 34 T-Test Results for the Difference of Delay 

 TWZ LMS CLMS 
 σNon-

CV 
σNon-

CV 
ϝ = 0.2 ϝ = 0.4 

ψ ψ 
0.3 0.6 200 500 1000 200 500 1000 

TWZ          

LMS 

 σNon-

CV 
0.3 0.00         

σNon-

CV 
0.6 0.00 0.00        

CLMS 

ϝ 
= 
0.2 

ψ 
200 0.00 0.00 0.02       
500 0.00 0.00 0.00 0.02      
1000 0.00 0.00 0.04 0.00 0.00     

ϝ 
= 
0.4 

ψ 
200 0.00 0.00 0.60 0.06 0.00 0.00    
500 0.00 0.00 0.00 0.00 0.00 0.00 0.00   
1000 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00  

*Significant  
 
There is no significant difference  
The mean of sample in column is significantly higher than mean of sample in row  
The mean of sample in row is significantly higher than mean of sample in column  

 
From T-test results, it appears that there is significant difference between all systems in 

terms of delay. The CLMS shows significantly lower delay than late merge system and 

traditional work zone as expected. By looking carefully at the comparison table, the 

CLMS, when reduction factor is 0.4 and late merge area is 1000 feet, the CLMS is not 

significantly different from late merge system. When late merge area is 500 feet and the 

reduction factor is 0.4, late merge system is even better than the CLMS, while other late 

merge areas have significantly lower delay.  
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4.1.5 Work Zone Queue Length 

 

Queue length is a measurement of the length, in feet, of traffic backup that caused by the 

bottleneck. One of the major objectives of late merge strategy is to shorten the queue 

length by filling up the empty space in the closed lane.  

In traditional work zone, heavy vehicle percentage, and traffic demand are significant 

variables in the queue length as found previously in the overall delay. The following table 

summarizes the statistical test of overall delay in traditional work zone system: 

 

Table 35 Statistical Test for Queue Length in Traditional Work Zone 

Variable Coef SE Coef   T-Value   P-Value    VIF 
Constant 1673.81 0.02   93471.60 0.000  
φ  -0.1798 0.0465 -3.87 0.000* 1.00 
γ  0.000013 0.000006 2.33 0.024* 1.00 
ρ 0.0019   0.0232 0.08 0.935 1.00 

* Significant Variable 

 

By considering the significant variables in regression analysis, the following regression 

model, with R2 = 0.28, describes throughput of late merge system: 

 

Λ = 1673.81 - 0.1798 φ + 0.000013 γ      (27) 

Where: 

Λ is queue length of traditional work zone 

φ is heavy vehicle percentage 

γ is traffic demand 
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In addition to heavy vehicle percentage and traffic demand, the compliance rate of non-

CV is also significant variable in late merge system. Again, higher compliance rate 

decreases the delay as more vehicles apply late merge, which distributes the traffic on the 

two lane and reduces the length of the open lane. The following table summarizes the 

statistical test of queue length in late merge system: 

Table 36 Statistical Test for Queue Length in Late Merge System 

Variable Coef SE Coef   T-Value   P-Value    VIF 
Constant -161.7 59.1   -2.74    0.007  
φ  1537 124 12.42 0.000* 1.00 
γ  0.1139     0.0148 7.70 0.000* 1.00 
ρ 61.7 61.9 1.00 0.319 1.00 
ψ -0.0052 0.0306 -0.17 0.865 1.00 
σNon-CV  -1458.0 67.4 -21.64 0.000* 1.00 

* Significant Variable 

 

By considering the significant variables in regression analysis, the following regression 

model, with R2 = 0.68, describes throughput of late merge system: 

            

Λ = -175.4 + 1596 φ + 0.1357 γ + 1537.3 σNon-CV     (28) 

Where: 

Λ is queue length of late merge system 

φ is heavy vehicle percentage 

γ is traffic demand 

σNon-CV is compliance rate for non-CV 
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With heavy vehicle percentage and traffic demand, late merge area and reduction factor 

are significant variables in the delay of CLMS. When the late merge area is small, lower 

queue length was observed. The following table summarizes the statistical test of queue 

length in the CLMS: 

 

Table 37 Statistical Test for Queue Length in CLMS 

Variable Coef SE Coef   T-Value   P-Value    VIF 
Constant -122.3 40.9 -2.99 0.003  
φ  2675.1 80.5 33.25 0.000* 1.00 
γ  0.15518 0.00962 16.14 0.000* 1.00 
ρ 79.4      40.2 1.97 0.049 1.00 
ψ  0.2206 0.0199 11.08 0.000* 1.00 
ω 11.6 23.2 0.50 0.619 1.00 
ϝ  597.2 65.7 9.09 0.000* 1.00 

* Significant Variable 

 

By considering the significant variables in regression analysis, the following regression 

model, with R2 = 0.49, describes throughput of late merge system: 

 

Λ = + 2785.7 φ + 0.3006 γ + 0.2024 ψ - 599.5 ϝ - 479.8   (29) 

Where: 

Λ is queue length in of CLMS 

φ is heavy vehicle percentage 

γ is traffic demand 

ψ is late merge area 

ϝ is reduction factor for gap acceptance 
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The following table summarizes the significant variables affecting the queue length in 

each system: 

 
Table 38 Significant Variables Impact Queue Length for All Systems 

System Variable 
Traditional Work Zone γ* ρ φ* - - - - - 

Late Merge γ* ρ φ* ψ σNon-CV* - - - 

CLMS γ ρ φ* ψ* σNon-CV σCV ϝ* ω 

* Significant Variable 

 

To compare the three system, only significant variables are taken into consideration. 

However, heavy vehicle percentage is assumed as a reasonable value of 10% for the sake 

of conciseness. The effect of compliance rate for non-CV will be discussed later. The 

following graph illustrates operations of the three systems with the significant variables: 
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Figure 29 Comparison of Queue Length for All Systems 

 

The relations between significant variables and the queue length follow the same pattern 

in the overall delay. As appear in figure 29, the performance of traditional work zone was 

steady because the queue extended till the end of simulation network during all 

simulation scenarios. The effect of the reduction factor appear in the CLMS (500 feet) as 

the queue length was substantially improved when it is 0.4. This can be visually seen 

around the traffic demand of 1800 veh/h. Moreover, 0.4 reduction factor provides lower 

queue length in the three CLMS systems on average. By comparing the CLMS with the 

late merge system, it appears that CLMS operates with lower queue length in all traffic 

demands. 
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The t-test results showed significant difference between late merge system and the 

CLMS. The following table summarizes t-test results 

Table 39 T-Test Results for the Difference of Queue Length 

   σNon-

CV 
σNon-

CV 
ϝ = 0.2 ϝ = 0.4 

ψ ψ 
0.3 0.6 200 500 1000 200 500 1000 

TWZ          

LMS 

 σNon-

CV 
0.3 0.00         

σNon-

CV 
0.6 0.00 0.00        

CLMS 

ϝ 
= 
0.2 

ψ  200 0.00 0.00 0.02       
ψ  500 0.00 0.00 0.46 0.00      
ψ  1000 0.00 0.00 0.00 0.00 0.00     

ϝ 
= 
0.4 

ψ  200 0.00 0.00 0.50 0.15 0.82 0.00    
ψ  500 0.01 0.00 0.00 0.00 0.00 0.00 0.00   
ψ  1000 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00  

*Significant  
 
There is no significant difference  
The mean of sample in column is significantly higher than mean of sample in row  
The mean of sample in row is significantly higher than mean of sample in column  

 
 

From T-test results, it appears that there is significant difference between all systems in 

terms of queue length. The CLMS shows significantly lower queue length than late 

merge system and traditional work zone as expected. By looking carefully at the 

comparison table, the CLMS, when reduction factor is 0.4 and late merge area is 1000 

feet, the CLMS is not significantly different from late merge system. When late merge 

area is 500 feet and the reduction factor is 0.4, late merge system is even better than the 

CLMS, while other late merge areas have significantly lower delay.  
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4.2 Effect of Compliance Rate 

 
As mentioned earlier, compliance rate plays a significant role in applying new systems 

and due to the excessive number of experiments, the effect of compliance rate of CV and 

non-CV are investigated separately in this subsection. The scenarios consider only traffic 

demands and compliance rates of CV and Non-CV while other variable were fixed on 

certain values. The following table summarizes the variables and parameters in 

compliance rate effect experiment: 

 

Table 40 Variables Considered in Compliance Rate Effect 

Variable  Value 
γ 1200 veh/h – 3200 veh/h 
ρ  50%|50% 
φ 10% 
ψ 200  feet 
σCV 50% –  100%  
σNon-CV 30% and 60% 
ϝ 40% 
ω 60%  

 

Compliance rate of both CV and non-CV is a significant variable in throughput, delay 

and queue length. The following table summarizes the statistical test of compliance rates 

in the CLMS: 
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Table 41 Significant Variables Impact Compliance Rate on CLMS 

 Variable Coef SE Coef   T-Value   P-Value    VIF 

Throughput 

Constant 1016.3 44.6 22.81 0.000  
γ 0.1854 0.0104 17.9 0.000*  
σCV 204.3 47.2 4.33 0.000* 1.00 
σNon-CV 65.4 41.4 1.58 0.019* 1.00 

Capacity 

Constant 1619 88.9 18.2 0.000  
γ - - - - - 
σCV 124 110 1.13 0.042* 1.00 
σNon-CV 218.6 96.2 2.27 0.021* 1.00 

0.9 V/C 

Constant 2379 221 10.74 0.000  
γ - - - - - 
σCV -311 230 -1.35 0.226 1.04 
σNon-CV -688 261 -2.64 0.391 1.04 

Delay 

Constant -34.8 14.5 -2.4 0.019  
γ 0.04308 0.00336 12.81 0.000*  
σCV 65.3 15.3 4.26 0.000* 1.00 
σNon-CV 17.5 13.5 1.3 0.017* 1.00 

Queue 
Length 

Constant -241 110 -2.19 0.032  
γ 0.03234 0.0256 12.65 0.000* 1.00 
σCV 464 116 3.99 0.000* 1.00 
σNon-CV 133 102 1.30 0.018* 1.00 

* Significant Variable 

 

By considering the significant variables in regression analysis, the following regression 

models with R-Squared values, describes the MOEs of CLMS in terms of compliance 

rates of CV and Non-CV: 

 

Λ = 1016.3 + 0.1854 γ + 204.3 σCV + 65.4 σNon-CV    (30) 

Where: 

Λ is throughput in CLMS 

σCV is compliance rate for CV 
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σNon-CV is compliance rate for non-CV 

R2 = 0.82 

 

Λ = 1619.0 + 124 σCV + 218.6 σNon-CV      (31) 

Where: 

Λ is capacity in CLMS 

σCV is compliance rate for CV 

σNon-CV is compliance rate for non-CV 

R2 = 0.41 

 

Λ = -34.8 + 0.04308 γ + 65.3 σCV + 17.5 σNon-CV    (32) 

Where: 

Λ is delay in of CLMS 

σCV is compliance rate for CV 

σNon-CV is compliance rate for non-CV 

R2 = 0.73 

 

Λ = -241 + 0.3234 γ + 464 σCV + 133 σNon-CV     (33) 

Where: 

Λ is queue length in of CLMS 

σCV is compliance rate for CV 

σNon-CV is compliance rate for non-CV 

R2 = 0.72 
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To visually determine the effect of compliance rate, the following graphs of throughput, 

capacity, V/C, delay and queue length for two levels of non-CV compliance rates and 

five levels of CV compliance rates are plotted: 

 

 

Figure 30 CV Compliance Rate Effect on Throughput in CLMS 

 
As figure 30 illustrates, the increase of compliance rate in the CLMS leads to an increase 

of throughput. At lower traffic demand, all systems with different compliance rates 

operated similarly. When the compliance rate increase, the graph shows increase in 

throughput in both late merge system and the CLMS. T-test was conducted to test the 
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significance of the difference between compliance rates. The following tables summarize 

t-test results: 

 

Table 42 T-Test of Compliance Rate Effect on Throughput When σNon-CV = 0.3 

 

TWZ 

LMS CLMS (σNon-CV = 0.3) 

σNon-CV σCV 

0.3 0.6 0.5 0.6 0.7 0.8 0.9 1.0 

TWZ          

LMS σNon-

CV 

0.3 0.00         

0.6 0.00 0.00        

CLMS 

(σNon-

CV = 

0.3) 
σCV 

0.5 0.00 0.00 0.00       

0.6 0.01 0.00 0.02 0.33      

0.7 0.00 0.00 0.00 0.00 0.73     

0.8 0.00 0.03 0.00 0.00 0.01 0.00    

0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  

*Significant  
There is no significant difference  
The mean of sample in column is significantly higher than mean of sample in row  
The mean of sample in row is significantly higher than mean of sample in column  

 

As the table shows, throughput increases significantly with the growing of compliance 

rate in most cases. There is no significant difference between 50% and 60% as well as 

between 60% and 70% in the CLMS. 
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Table 43 T-Test of Compliance Rate Effect on Throughput When σNon-CV = 0.6 

 CLMS (σNon-CV = 0.6) 

σCV 

0.5 0.6 0.7 0.8 0.9 1.0 

CLMS 

(σNon-CV 

= 0.6) 
σCV 

0.5       

0.6 0.08      

0.7 0.00 0.54     

0.8 0.00 0.01 0.00    

0.9 0.00 0.00 0.00 0.06   

1.0 0.00 0.00 0.00 0.00 0.00  

*Significant  
 
There is no significant difference  
The mean of sample in column is significantly higher than mean of sample in row  
The mean of sample in row is significantly higher than mean of sample in column  

 

When Non-CV compliance rate is 60% in the CLMS, throughput increases significantly 

with the growing of compliance rate in most cases. There is no significant difference 

between 50% and 60%, 60% and 70%, and 80% and 90%. 
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Figure 31 Compliance Rates Effect on Capacity in CLMS 

 

Because capacity is represented by a single value in this experiment, the values in the 

graph can be compared. It seems that compliance rate in CV is more sensitive comparing 

to non-CV. Adding 10% of compliance rate in CV can make more evident difference 

than adding 30% in non-CV.  
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Figure 32 CV Compliance Rate Effect on Delay in CLMS 

 

As figure 32 illustrates, late merge system has higher delay comparing with the CLMS. It 

can be noticed that there is a difference between the two compliance rates in late merge 

system. The difference between compliance rates in the CLMS seems minimal. 

Therefore, T-test is conduct to demonstrate the significance of difference between 

compliance rates. 
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Table 44 T-Test of Compliance Rate Effect on Delay When σNon-CV = 0.3 

 

TWZ 

LMS CLMS (σNon-CV = 0.3) 

σNon-CV σCV 

0.3 0.6 0.5 0.6 0.7 0.8 0.9 1.0 

TWZ          

LMS σNon-

CV 

0.3 0.00         

0.6 0.00 0.00        

CLMS 

(σNon-

CV = 

0.3) 
σCV 

0.5 0.00 0.00 0.09       

0.6 0.00 0.00 0.02 1.00      

0.7 0.00 0.00 0.00 0.48 0.67     

0.8 0.00 0.03 0.00 0.02 0.04 0.19    

0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.08   

1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06  

*Significant  
There is no significant difference  
The mean of sample in column is significantly higher than mean of sample in row  
The mean of sample in row is significantly higher than mean of sample in column  

 

From Table 45, it appears that there are significant differences between compliance rates 

in late merge and the CLMS. The difference of 10% in the CLMS, in terms of delay, is 

not significant as it requires 20% and more to show significant decrease. 
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Table 45 T-Test of Compliance Rate Effect on Delay When σNon-CV = 0.6 

 CLMS (σNon-CV = 0.6) 

σCV 

0.5 0.6 0.7 0.8 0.9 1.0 

CLMS 

(σNon-CV 

= 0.6) 
σCV 

0.5       

0.6 0.32      

0.7 0.05 0.20     

0.8 0.00 0.03 0.09    

0.9 0.00 0.00 0.01 0.52   

1.0 0.00 0.00 0.00 0.00 0.41  

*Significant  
 
There is no significant difference  
The mean of sample in column is significantly higher than mean of sample in row  
The mean of sample in row is significantly higher than mean of sample in column  

 

From the table above, the CLMS, when Non-CV compliance rate is 60%, has lower delay 

when compliance rate of CV is higher. The difference of 10% in the CLMS is not 

significant as it requires 20% and more to show significant decrease. 
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Figure 33 Non-CV Compliance Rate Effect on Queue Length in Late Merge System 

 

As figure 33 shows, late merge system has higher delay comparing to the CLMS. It can 

be noticed that there is a difference between the two compliance rates in late merge 

system. The difference between compliance rates in the CLMS seems minimal. 

Therefore, T-test is conduct to demonstrate the significance of difference between 

compliance rates. 
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Table 46 T-Test of Compliance Rate Effect on Queue Length When σNon-CV = 0.3 

 

TWZ 

LMS CLMS (σNon-CV = 0.3) 

σNon-CV σCV 

0.3 0.6 0.5 0.6 0.7 0.8 0.9 1.0 

TWZ          

LMS σNon-

CV 

0.3 0.00         

0.6 0.00 0.00        

CLMS 

(σNon-

CV = 

0.3) 
σCV 

0.5 0.00 0.00 0.09       

0.6 0.00 0.00 0.02 1.00      

0.7 0.00 0.00 0.00 0.48 0.67     

0.8 0.00 0.03 0.00 0.02 0.04 0.19    

0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.08   

1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06  

*Significant  
There is no significant difference  
The mean of sample in column is significantly higher than mean of sample in row  
The mean of sample in row is significantly higher than mean of sample in column  

 

From Table 45, it appears that there are significant differences between compliance rates 

in late merge and the CLMS. The difference of 10% in the CLMS, in terms of queue 

length, is not significant as it requires 20% and more to show significant decrease. 
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Table 47 T-Test of Compliance Rate Effect on Queue Length When σNon-CV = 0.6 

 CLMS (σNon-CV = 0.6) 

σCV 

0.5 0.6 0.7 0.8 0.9 1.0 

CLMS 

(σNon-CV 

= 0.6) 
σCV 

0.5       

0.6 0.32      

0.7 0.05 0.20     

0.8 0.00 0.03 0.09    

0.9 0.00 0.00 0.01 0.52   

1.0 0.00 0.00 0.00 0.00 0.41  

*Significant  
There is no significant difference  
The mean of sample in column is significantly higher than mean of sample in row  
The mean of sample in row is significantly higher than mean of sample in column  

 

From the table above, the CLMS, when Non-CV compliance rate is 60%, has lower delay 

when compliance rate of CV is higher. The difference of 10% in the CLMS is not 

significant as it requires 20% and more to show significant decrease. 

4.3 Evaluation of CLMS 

 
From the analysis above, the CLMS has shown an improvement of the traffic operation in 

terms of throughput, capacity, demand at 0.9 V/C, delay and queue length. There is a 

significant gap between the CLMS and the traditional work zone system in moderate and 

high traffic demands. Therefore, most of comparisons were between CLMS and late 
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merge system. The analysis demonstrated that the CLMS, as any other late merge system, 

operates well during moderate traffic demand. Additionally, the system has proved an 

improved operations in some MOEs at high traffic demands. 

 

The improved performance of CLMS is dependent on the measure of effectiveness and 

other variables such as traffic demand, lane distribution, compliance rate and market 

penetration rate. Therefore, the following section includes a selection guide for the 

CLMS and other system according to MOEs and specific variables.  
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CHAPTER V 

5 DISCUSSIONS AND CONCLUSIONS 

As the results showed that the CLMS improved the performance in most of MOEs, this 

section discusses and concludes the experiment findings. 

5.1 Discussions 

There are different MOEs that can be inspected to decide the feasibility of a system. 

Therefore, this study considered several MOEs including throughput, capacity, V/C, 

delay and queue length. The three compared systems showed different performance 

against each MOE. First of all, traditional work zone has never performed better than any 

other system and therefore, most of comparisons were limited between late merge system 

and the CLMS. The simulation results revealed an overall improved performance of the 

CLMS compared to traditional work zone system and late merge system. At the low 

traffic demand where volume is significantly lower than capacity, all systems can 

demonstrate efficient traffic operations. At the same time, the performance at high traffic 

demand is relatively similar between late merge system and the CLMS. At moderate 

traffic demand, the CLMS has demonstrated an improved performance.  



 113 

Throughput results at lower traffic demand are the same due to the high capacity-to-

volume ratio at such low traffic. Thus, using traditional work zone system would be more 

feasible because of its lower cost and its easy operation plan. When traffic demand is 

moderate, using CLMS would result in better throughput. The results of traffic demand 

suggest using late merge system although the difference is not substantially higher. To 

improve capacity-to-volume ratio (V/C), the CLMS with a market penetration rate of 

40% or higher can do the job. Again, late merge system performed efficiently at higher 

traffic demand when V/C is the major MOEs. 

Delay results proved that late merge system can be efficient at both lower and higher 

traffic demand. The CLMS performed well at moderate traffic demand and it was 

sensitive to the late merge area depending on the reduction factor. When reduction factor 

is 0.2, the CLMS should have a late merge area of 200 feet, while in the case of reduction 

factor of 0.4, a late merge area of 500 feet can perform efficiently.  

Traditional work zone system showed significantly high queue length over all traffic 

demand. The main reason is because of early merge behavior, the traffic backup in the 

open lane reached the maximum length of simulation network. At all traffic demands, the 

CLMS appeared with an improved performance. It is suggested using late merge area of 

200 feet when reduction factor is 0.2, while in the case of reduction factor of 0.4, a late 

merge area of 500 feet is optimal.  

As mentioned earlier, the CLMS has the operation plan to activate the system at certain 

traffic demand. Therefore, activating CLMS at the traffic demand threshold would 

improve operations performance of work zones.  
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5.1.1 Selection Guidelines 

By examining the three work zone systems with different MOEs, the CLMS has shown 

improved operations. Indeed, compliance rates and market penetration rates are 

significant variables that would enhance the CLMS. Also, traffic characteristics such as 

heavy vehicle percentage and lane distribution play significant roles in finding the value 

of MOEs. A general selection guide was developed based on the analysis to determine 

the appropriate system (see the following table). 

 

Table 48 Selection Guide for Work Zone Control Strategy 

 Traffic Demand (Veh/h) 
1200 1600 2000 2400 2800 3200 

Throughput       

Capacity 
ϝ = 0.2 ψ = 200 ψ = 200 ψ = 200 ψ = 200 ψ = 200 ψ = 200 
ϝ = 0.4 ψ = 1000 ψ = 1000 ψ = 1000 ψ = 1000 ψ = 1000 ψ = 1000 

0.9 V/C  ω ≥40% ω ≥40% ω ≥40%   

Delay 
ϝ = 0.2   ψ = 200 ψ = 200 ψ = 200  
ϝ = 0.4   ψ = 500 ψ = 500 ψ = 500  

Queue 
Length 

ϝ = 0.2 ψ = 200 ψ = 200 ψ = 200 ψ = 200 ψ = 200 ψ = 200 
ϝ = 0.4 ψ = 500 ψ = 500 ψ = 500 ψ = 500 ψ = 500 ψ = 500 

 
Traditional Work Zone  
Late Merge System  
CLMS  

 

ψ Late Merge Area 
ϝ Reduction Factor for Gap Acceptance 
ω Market Penetration Rate 
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5.2 Conclusions and Future Research 

In conclusion, work zone traffic operations can be improved by applying different control 

strategy. The development of late merge strategy was not enough to substantially 

improve the situation due to the lack of compliance and communication among drivers. 

The CLMS principle is to enhance the opportunity of cooperative late merge via the new 

technology, connected vehicles (CV). The main principle is based on improving the lack 

of communication and encourage drivers to cooperate in merging process. By developing 

the system and designing the layout, different scenarios of interactions between CV and 

non-CV were considered. These scenarios facilitated planning the main logic of the 

CLMS and drawing flowcharts of the algorithm. Microscopic car-following and lane-

changing models were selected and updated to fit with the main goal of the system and 

purpose of this study. The study of recognized lane-changing microscopic models led to 

choosing Hidas (2005) because it considers the cooperation effect on lane-changing 

behavior. To reflect possible scenarios, lane-changing model was updated and 

programmed to operate on the simulation software package (VISSIM). In this study, car-

following model (Wiedemann 99) provided by VISSIM was utilized as it fits the purpose 

of simulation. 

Simulation experiment was designed to include a traditional work zone system and a late 

merge system in order to compare them with the performance of CLMS. The experiment 

design considered eight different variables with multiple levels. These variables include 

traffic characteristics, and design and deriving behavior parameters. Testing all variables 

different levels of traffic demand, heavy vehicle percentage, lane distribution, late merge 

distance, compliance of CV and non-CV, reduction factor of gap acceptance and market 
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penetration rate created 2070 simulation scenarios. To ensure the statistical significance 

of the results, 30 runs for each simulation scenario were conducted, which resulted a total 

of 62,100 simulation runs. 

Simulation output included major measures of effectiveness including throughput, 

capacity, V/C ratio, delay and queue length. The data was interpreted using statistical 

tests and graphs to analyze the performance of the three systems. The analysis results 

revealed the significant variables that impact each system and found multiple regression 

models for each of them. 

The CLMS demonstrated an improved traffic operation performance at most of traffic 

demands in all considered MOEs, especially, in the case of moderate traffic demand. The 

system is capable to increase throughput and capacity of work zone as well as to decrease 

the delay and queue length at most of traffic conditions. From the system performance, 

the following points can be concluded: 

• The CLMS provided significantly improved throughput, especially, at traffic 

demands between 1600 and 2800 veh/h; 

• When reduction factor was 0.2, the capacity of the CLMS was at its highest when 

late merge area was 200 feet; 

• When reduction factor was 0.4, the capacity of the CLMS was at its highest when 

late merge area was 1000 feet; 

• The traffic demand when V/C = 0.9 could be significantly increased when market 

penetration rate was 40% and higher; 

• Delay was significantly lower at the CLMS at traffic demands between 2000 and 

2800 veh/h when reduction factor was 0.2 and late merge area was 200 feet; 
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• Delay was significantly lower at the CLMS ta traffic demands between 2000 and 

2800 veh/h when reduction factor was 0.4 and late merge area was 500 feet; 

• At all traffic demands, queue length was lower when reduction factor was 0.2 and 

late merge area was 200 feet; 

• At all traffic demands, queue length was lower when reduction factor was 0.2 and 

late merge area was 500 feet 

• The CLMS is impacted by the compliance rate of both CV and non-CV 

• There is a significant difference between 30% and 60% compliance rate of non-

CV in the CLMS in all MOEs; 

• There is significant differences between compliance rates of CV in all MOEs, 

except in some cases when 10% increase did not show a sign of significance. 

 

In this study, the change of gap acceptance by CV drivers were assumed due to the lack 

of research about the effect of CV on gap acceptance. To achieve more accurate results 

about the performance of CLMS in particular and using other CV application in general, 

Future studies should consider conducting a study about the gap acceptance behavior by 

CV drivers. Also, the level of compliance rate for both CV and non-CV should be 

measured in future studies. Another study can investigate the performance of CLMS 

Level 2 and CLMS Level 3 as well.  
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APPENDIX 

 

T-test Results from Minitab 
 

Example from Throughput: 
 

 

 

Two-sample T for TWZ vs LMS_0.3 

 

          N     Mean  StDev  SE Mean 

TWZ       9  1530.00   9.80      3.3 

LMS_0.3  27   1636.1   61.9       12 

 

 

Difference = μ (TWZ) - μ (LMS_0.3) 

Estimate for difference:  -106.1 

95% CI for difference:  (-148.6, -63.6) 

T-Test of difference = 0 (vs ≠): T-Value = -5.07  P-Value = 0.000  DF = 34 

Both use Pooled StDev = 54.3642 

 
 
Two-sample T for TWZ vs LMS_0.6 

 

          N     Mean  StDev  SE Mean 

TWZ       9  1530.00   9.80      3.3 

LMS_0.6  27   1693.7   37.7      7.3 

 

 

Difference = μ (TWZ) - μ (LMS_0.6) 

Estimate for difference:  -163.7 

95% CI for difference:  (-189.8, -137.7) 

T-Test of difference = 0 (vs ≠): T-Value = -12.77  P-Value = 0.000  DF = 34 

Both use Pooled StDev = 33.3216 

 

 

 

Two-sample T for TWZ vs CLMS0.4_0.3 

 

              N     Mean  StDev  SE Mean 

TWZ           9  1530.00   9.80      3.3 

CLMS0.4_0.3  45   1692.3   55.8      8.3 

 

 

Difference = μ (TWZ) - μ (CLMS0.4_0.3) 

Estimate for difference:  -162.3 

95% CI for difference:  (-200.0, -124.6) 

T-Test of difference = 0 (vs ≠): T-Value = -8.64  P-Value = 0.000  DF = 52 

Both use Pooled StDev = 51.4312 

 

 

Two-sample T for TWZ vs CLMS0.4_0.5 

 

              N     Mean  StDev  SE Mean 

TWZ           9  1530.00   9.80      3.3 

CLMS0.4_0.5  45   1693.9   58.0      8.6 
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Difference = μ (TWZ) - μ (CLMS0.4_0.5) 

Estimate for difference:  -163.9 

95% CI for difference:  (-203.1, -124.7) 

T-Test of difference = 0 (vs ≠): T-Value = -8.39  P-Value = 0.000  DF = 52 

Both use Pooled StDev = 53.4795 

 

Two-sample T for TWZ vs CLMS0.4_0.7 

 

              N     Mean  StDev  SE Mean 

TWZ           9  1530.00   9.80      3.3 

CLMS0.4_0.7  45   1696.6   60.2      9.0 

 

 

Difference = μ (TWZ) - μ (CLMS0.4_0.7) 

Estimate for difference:  -166.6 

95% CI for difference:  (-207.2, -125.9) 

T-Test of difference = 0 (vs ≠): T-Value = -8.22  P-Value = 0.000  DF = 52 

Both use Pooled StDev = 55.5000 

 

 

Two-sample T for TWZ vs CLMS0.2_0.3_1 

 

                N     Mean  StDev  SE Mean 

TWZ             9  1530.00   9.80      3.3 

CLMS0.2_0.3_1  45   1765.2   15.1      2.3 

 

 

Difference = μ (TWZ) - μ (CLMS0.2_0.3_1) 

Estimate for difference:  -235.20 

95% CI for difference:  (-245.76, -224.64) 

T-Test of difference = 0 (vs ≠): T-Value = -44.70  P-Value = 0.000  DF = 52 

Both use Pooled StDev = 14.4083 

 

 

Two-sample T for TWZ vs CLMS0.2_0.5_1 

 

                N     Mean  StDev  SE Mean 

TWZ             9  1530.00   9.80      3.3 

CLMS0.2_0.5_1  45   1770.0   13.5      2.0 

 

 

Difference = μ (TWZ) - μ (CLMS0.2_0.5_1) 

Estimate for difference:  -239.96 

95% CI for difference:  (-249.49, -230.43) 

T-Test of difference = 0 (vs ≠): T-Value = -50.53  P-Value = 0.000  DF = 52 

Both use Pooled StDev = 13.0059 

 

Two-sample T for TWZ vs CLMS0.2_0.7_1 

 

                N     Mean  StDev  SE Mean 

TWZ             9  1530.00   9.80      3.3 

CLMS0.2_0.7_1  45   1775.8   11.6      1.7 

 

 

Difference = μ (TWZ) - μ (CLMS0.2_0.7_1) 

Estimate for difference:  -245.78 

95% CI for difference:  (-254.06, -237.49) 

T-Test of difference = 0 (vs ≠): T-Value = -59.52  P-Value = 0.000  DF = 52 

Both use Pooled StDev = 11.3084 
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Two-sample T for LMS_0.3 vs LMS_0.6 

 

          N    Mean  StDev  SE Mean 

LMS_0.3  27  1636.1   61.9       12 

LMS_0.6  27  1693.7   37.7      7.3 

 

 

Difference = μ (LMS_0.3) - μ (LMS_0.6) 

Estimate for difference:  -57.6 

95% CI for difference:  (-85.6, -29.6) 

T-Test of difference = 0 (vs ≠): T-Value = -4.13  P-Value = 0.000  DF = 52 

Both use Pooled StDev = 51.2725 

 

 

Two-sample T for LMS_0.3 vs CLMS0.2_0.3_1 

 

                N    Mean  StDev  SE Mean 

LMS_0.3        27  1636.1   61.9       12 

CLMS0.2_0.3_1  45  1765.2   15.1      2.3 

 

 

Difference = μ (LMS_0.3) - μ (CLMS0.2_0.3_1) 

Estimate for difference:  -129.09 

95% CI for difference:  (-148.31, -109.86) 

T-Test of difference = 0 (vs ≠): T-Value = -13.39  P-Value = 0.000  DF = 70 

Both use Pooled StDev = 39.5953 

 

 

Two-sample T for LMS_0.3 vs CLMS0.2_0.5_1 

 

                N    Mean  StDev  SE Mean 

LMS_0.3        27  1636.1   61.9       12 

CLMS0.2_0.5_1  45  1770.0   13.5      2.0 

 

 

Difference = μ (LMS_0.3) - μ (CLMS0.2_0.5_1) 

Estimate for difference:  -133.84 

95% CI for difference:  (-152.89, -114.80) 

T-Test of difference = 0 (vs ≠): T-Value = -14.01  P-Value = 0.000  DF = 70 

Both use Pooled StDev = 39.2330 

 

 

Two-sample T for LMS_0.3 vs CLMS0.2_0.7_1 

 

                N    Mean  StDev  SE Mean 

LMS_0.3        27  1636.1   61.9       12 

CLMS0.2_0.7_1  45  1775.8   11.6      1.7 

 

 

Difference = μ (LMS_0.3) - μ (CLMS0.2_0.7_1) 

Estimate for difference:  -139.67 

95% CI for difference:  (-158.52, -120.81) 

T-Test of difference = 0 (vs ≠): T-Value = -14.77  P-Value = 0.000  DF = 70 

Both use Pooled StDev = 38.8403 

 

 

Two-sample T for LMS_0.6 vs CLMS0.2_0.3_1 

 

                N    Mean  StDev  SE Mean 

LMS_0.6        27  1693.7   37.7      7.3 

CLMS0.2_0.3_1  45  1765.2   15.1      2.3 
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Difference = μ (LMS_0.6) - μ (CLMS0.2_0.3_1) 

Estimate for difference:  -71.46 

95% CI for difference:  (-84.04, -58.87) 

T-Test of difference = 0 (vs ≠): T-Value = -11.33  P-Value = 0.000  DF = 70 

Both use Pooled StDev = 25.9148 

 

Two-sample T for LMS_0.6 vs CLMS0.2_0.5_1 

 

                N    Mean  StDev  SE Mean 

LMS_0.6        27  1693.7   37.7      7.3 

CLMS0.2_0.5_1  45  1770.0   13.5      2.0 

 

 

Difference = μ (LMS_0.6) - μ (CLMS0.2_0.5_1) 

Estimate for difference:  -76.21 

95% CI for difference:  (-88.52, -63.90) 

T-Test of difference = 0 (vs ≠): T-Value = -12.35  P-Value = 0.000  DF = 70 

Both use Pooled StDev = 25.3578 

 

 

Two-sample T for LMS_0.6 vs CLMS0.2_0.7_1 

 

                N    Mean  StDev  SE Mean 

LMS_0.6        27  1693.7   37.7      7.3 

CLMS0.2_0.7_1  45  1775.8   11.6      1.7 

 

 

Difference = μ (LMS_0.6) - μ (CLMS0.2_0.7_1) 

Estimate for difference:  -82.03 

95% CI for difference:  (-94.05, -70.02) 

T-Test of difference = 0 (vs ≠): T-Value = -13.62  P-Value = 0.000  DF = 70 

Both use Pooled StDev = 24.7459 

 

Two-sample T for LMS_0.6 vs CLMS0.4_0.3_1 

 

                N    Mean  StDev  SE Mean 

LMS_0.6        27  1693.7   37.7      7.3 

CLMS0.4_0.3_1  45  1692.3   55.8      8.3 

 

 

Difference = μ (LMS_0.6) - μ (CLMS0.4_0.3_1) 

Estimate for difference:  1.5 

95% CI for difference:  (-22.7, 25.7) 

T-Test of difference = 0 (vs ≠): T-Value = 0.12  P-Value = 0.903  DF = 70 

Both use Pooled StDev = 49.8231 

 

 

Two-sample T for LMS_0.6 vs CLMS0.4_0.5_1 

 

                N    Mean  StDev  SE Mean 

LMS_0.6        27  1693.7   37.7      7.3 

CLMS0.4_0.5_1  45  1693.9   58.0      8.6 

 

 

Difference = μ (LMS_0.6) - μ (CLMS0.4_0.5_1) 

Estimate for difference:  -0.1 

95% CI for difference:  (-25.1, 24.8) 

T-Test of difference = 0 (vs ≠): T-Value = -0.01  P-Value = 0.992  DF = 70 

Both use Pooled StDev = 51.4002 

 

 

Two-sample T for LMS_0.6 vs CLMS0.4_0.7_1 
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                N    Mean  StDev  SE Mean 

LMS_0.6        27  1693.7   37.7      7.3 

CLMS0.4_0.7_1  45  1696.6   60.2      9.0 

 

 

Difference = μ (LMS_0.6) - μ (CLMS0.4_0.7_1) 

Estimate for difference:  -2.8 

95% CI for difference:  (-28.5, 22.9) 

T-Test of difference = 0 (vs ≠): T-Value = -0.22  P-Value = 0.827  DF = 70 

Both use Pooled StDev = 52.9674 

 

 

Two-sample T for CLMS0.2_0.3_1 vs CLMS0.2_0.5_1 

 

                N    Mean  StDev  SE Mean 

CLMS0.2_0.3_1  45  1765.2   15.1      2.3 

CLMS0.2_0.5_1  45  1770.0   13.5      2.0 

 

 

Difference = μ (CLMS0.2_0.3_1) - μ (CLMS0.2_0.5_1) 

Estimate for difference:  -4.76 

95% CI for difference:  (-10.76, 1.25) 

T-Test of difference = 0 (vs ≠): T-Value = -1.57  P-Value = 0.119  DF = 88 

Both use Pooled StDev = 14.3238 

 

 

Two-sample T for CLMS0.2_0.3_1 vs CLMS0.2_0.7_1 

 

                N    Mean  StDev  SE Mean 

CLMS0.2_0.3_1  45  1765.2   15.1      2.3 

CLMS0.2_0.7_1  45  1775.8   11.6      1.7 

 

 

Difference = μ (CLMS0.2_0.3_1) - μ (CLMS0.2_0.7_1) 

Estimate for difference:  -10.58 

95% CI for difference:  (-16.21, -4.94) 

T-Test of difference = 0 (vs ≠): T-Value = -3.73  P-Value = 0.000  DF = 88 

Both use Pooled StDev = 13.4456 

 

Two-sample T for CLMS0.2_0.3_1 vs CLMS0.4_0.3_1 

 

                N    Mean  StDev  SE Mean 

CLMS0.2_0.3_1  45  1765.2   15.1      2.3 

CLMS0.4_0.3_1  45  1692.3   55.8      8.3 

 

 

Difference = μ (CLMS0.2_0.3_1) - μ (CLMS0.4_0.3_1) 

Estimate for difference:  72.93 

95% CI for difference:  (55.82, 90.05) 

T-Test of difference = 0 (vs ≠): T-Value = 8.47  P-Value = 0.000  DF = 88 

Both use Pooled StDev = 40.8445 

 

 

Two-sample T for CLMS0.2_0.3_1 vs CLMS0.4_0.5_1 

 

                N    Mean  StDev  SE Mean 

CLMS0.2_0.3_1  45  1765.2   15.1      2.3 

CLMS0.4_0.5_1  45  1693.9   58.0      8.6 

 

 

Difference = μ (CLMS0.2_0.3_1) - μ (CLMS0.4_0.5_1) 

Estimate for difference:  71.33 

95% CI for difference:  (53.58, 89.08) 
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T-Test of difference = 0 (vs ≠): T-Value = 7.99  P-Value = 0.000  DF = 88 

Both use Pooled StDev = 42.3704 

 

 

Two-sample T for CLMS0.2_0.3_1 vs CLMS0.4_0.7_1 

 

                N    Mean  StDev  SE Mean 

CLMS0.2_0.3_1  45  1765.2   15.1      2.3 

CLMS0.4_0.7_1  45  1696.6   60.2      9.0 

 

 

Difference = μ (CLMS0.2_0.3_1) - μ (CLMS0.4_0.7_1) 

Estimate for difference:  68.62 

95% CI for difference:  (50.24, 87.01) 

T-Test of difference = 0 (vs ≠): T-Value = 7.42  P-Value = 0.000  DF = 88 

Both use Pooled StDev = 43.8790 

 

 

Two-sample T for CLMS0.2_0.5_1 vs CLMS0.2_0.7_1 

 

                N    Mean  StDev  SE Mean 

CLMS0.2_0.5_1  45  1770.0   13.5      2.0 

CLMS0.2_0.7_1  45  1775.8   11.6      1.7 

 

 

Difference = μ (CLMS0.2_0.5_1) - μ (CLMS0.2_0.7_1) 

Estimate for difference:  -5.82 

95% CI for difference:  (-11.09, -0.55) 

T-Test of difference = 0 (vs ≠): T-Value = -2.20  P-Value = 0.031  DF = 88 

Both use Pooled StDev = 12.5724 

 

 

                N    Mean  StDev  SE Mean 

CLMS0.2_0.5_1  45  1770.0   13.5      2.0 

CLMS0.4_0.3_1  45  1692.3   55.8      8.3 

 

 

Difference = μ (CLMS0.2_0.5_1) - μ (CLMS0.4_0.3_1) 

Estimate for difference:  77.69 

95% CI for difference:  (60.69, 94.68) 

T-Test of difference = 0 (vs ≠): T-Value = 9.08  P-Value = 0.000  DF = 88 

Both use Pooled StDev = 40.5654 

 

Two-sample T for CLMS0.2_0.5_1 vs CLMS0.4_0.5_1 

 

                N    Mean  StDev  SE Mean 

CLMS0.2_0.5_1  45  1770.0   13.5      2.0 

CLMS0.4_0.5_1  45  1693.9   58.0      8.6 

 

 

Difference = μ (CLMS0.2_0.5_1) - μ (CLMS0.4_0.5_1) 

Estimate for difference:  76.09 

95% CI for difference:  (58.45, 93.73) 

T-Test of difference = 0 (vs ≠): T-Value = 8.57  P-Value = 0.000  DF = 88 

Both use Pooled StDev = 42.1015 

 

 

Two-sample T for CLMS0.2_0.5_1 vs CLMS0.4_0.7_1 

 

                N    Mean  StDev  SE Mean 

CLMS0.2_0.5_1  45  1770.0   13.5      2.0 

CLMS0.4_0.7_1  45  1696.6   60.2      9.0 
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Difference = μ (CLMS0.2_0.5_1) - μ (CLMS0.4_0.7_1) 

Estimate for difference:  73.38 

95% CI for difference:  (55.10, 91.65) 

T-Test of difference = 0 (vs ≠): T-Value = 7.98  P-Value = 0.000  DF = 88 

Both use Pooled StDev = 43.6193 

 

 

Two-sample T for CLMS0.2_0.7_1 vs CLMS0.4_0.3_1 

 

                N    Mean  StDev  SE Mean 

CLMS0.2_0.7_1  45  1775.8   11.6      1.7 

CLMS0.4_0.3_1  45  1692.3   55.8      8.3 

 

 

Difference = μ (CLMS0.2_0.7_1) - μ (CLMS0.4_0.3_1) 

Estimate for difference:  83.51 

95% CI for difference:  (66.64, 100.38) 

T-Test of difference = 0 (vs ≠): T-Value = 9.84  P-Value = 0.000  DF = 88 

Both use Pooled StDev = 40.2637 

 

 

Two-sample T for CLMS0.2_0.7_1 vs CLMS0.4_0.5_1 

 

                N    Mean  StDev  SE Mean 

CLMS0.2_0.7_1  45  1775.8   11.6      1.7 

CLMS0.4_0.5_1  45  1693.9   58.0      8.6 

 

 

Difference = μ (CLMS0.2_0.7_1) - μ (CLMS0.4_0.5_1) 

Estimate for difference:  81.91 

95% CI for difference:  (64.39, 99.43) 

T-Test of difference = 0 (vs ≠): T-Value = 9.29  P-Value = 0.000  DF = 88 

Both use Pooled StDev = 41.8109 

 

 

Two-sample T for CLMS0.2_0.7_1 vs CLMS0.4_0.7_1 

 

                N    Mean  StDev  SE Mean 

CLMS0.2_0.7_1  45  1775.8   11.6      1.7 

CLMS0.4_0.7_1  45  1696.6   60.2      9.0 

 

 

Difference = μ (CLMS0.2_0.7_1) - μ (CLMS0.4_0.7_1) 

Estimate for difference:  79.20 

95% CI for difference:  (61.04, 97.36) 

T-Test of difference = 0 (vs ≠): T-Value = 8.67  P-Value = 0.000  DF = 88 

Both use Pooled StDev = 43.3389 

 

 

Two-sample T for CLMS0.4_0.3_1 vs CLMS0.4_0.5_1 

 

                N    Mean  StDev  SE Mean 

CLMS0.4_0.3_1  45  1692.3   55.8      8.3 

CLMS0.4_0.5_1  45  1693.9   58.0      8.6 

 

 

Difference = μ (CLMS0.4_0.3_1) - μ (CLMS0.4_0.5_1) 

Estimate for difference:  -1.6 

95% CI for difference:  (-25.4, 22.2) 

T-Test of difference = 0 (vs ≠): T-Value = -0.13  P-Value = 0.894  DF = 88 

Both use Pooled StDev = 56.8827 
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Two-sample T for CLMS0.4_0.3_1 vs CLMS0.4_0.7_1 

 

                N    Mean  StDev  SE Mean 

CLMS0.4_0.3_1  45  1692.3   55.8      8.3 

CLMS0.4_0.7_1  45  1696.6   60.2      9.0 

 

 

Difference = μ (CLMS0.4_0.3_1) - μ (CLMS0.4_0.7_1) 

Estimate for difference:  -4.3 

95% CI for difference:  (-28.6, 20.0) 

T-Test of difference = 0 (vs ≠): T-Value = -0.35  P-Value = 0.725  DF = 88 

Both use Pooled StDev = 58.0151 

 

 

Two-sample T for CLMS0.4_0.5_1 vs CLMS0.4_0.7_1 

 

                N    Mean  StDev  SE Mean 

CLMS0.4_0.5_1  45  1693.9   58.0      8.6 

CLMS0.4_0.7_1  45  1696.6   60.2      9.0 

 

 

Difference = μ (CLMS0.4_0.5_1) - μ (CLMS0.4_0.7_1) 

Estimate for difference:  -2.7 

95% CI for difference:  (-27.5, 22.0) 

T-Test of difference = 0 (vs ≠): T-Value = -0.22  P-Value = 0.828  DF = 88 

Both use Pooled StDev = 59.0993 
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