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Figure 19. TFAM-TG Mice Maintained TFAM Expression in HF.  

Fig. 19A. These confocal microscopy and ICC images (i-iv) provide intra-cellular visualizations of TFAM within 

the corresponding experimental groups. TFAM is identified in green fluorescence and nuclei are identified by blue 

fluorescence.  

Fig. 19B. This graph exhibits the fluorescent intensity of TFAM 8-weeks after TAC and was provided by the data 

collected from the Image J software. Each fluorescent intensity corresponds to TFAM’s presence within the 

specific experimental groups. With respect to TFAM fluorescent intensity, the TFAM overexpression Sham group 

was significantly greater relative to the C57 Sham group.  Also, the TFAM TAC group was shown to be 

significantly greater in intensity of TFAM relative to the C57 TAC group.  

Fig. 19C. This graph displays TFAM proteins expression 8 weeks after the aortic banding surgery. Lysates were 

analyzed by western blotting for TFAM protein expression. The TFAM overexpression Sham group was 

significantly greater in protein expression of TFAM relative to the C57 Sham group. The TFAM overexpression 

TAC group was significantly greater in protein expression of TFAM relative to the C57 TAC group. Both TAC 

groups were significantly decreased in TFAM protein expression when compared to their Sham counterparts.  The 

bands were quantified using densitometry and the data was graphed for an N of 5 using SEM for significance. 

Values are expressed as +/- SEM. N=5. * p < 0.05, ** p<0.025, *** p<0.001. 
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Figure 20. TFAM-TG Mice Decreased NFAT4 Expression in HF. 

Fig. 20A. These confocal microscopy and ICC images (i-iv) provide intra-cellular visualizations of NFAT4 within 

the corresponding experimental groups. TFAM is identified in green fluorescence and nuclei are identified by blue 

fluorescence.  

Fig. 20B. This graph exhibits the fluorescent intensity of NFAT4 8-weeks after TAC and was provided by the data 

collected from the Image J software. Each fluorescent intensity corresponds to NFAT4’s presence within the 

specific experimental groups. With respect to NFAT4 fluorescent intensity, the TFAM TAC group was shown to 

be significantly lower in intensity of NFAT4 relative to the C57 TAC group.  

Fig. 20C. This graph displays NFAT4 proteins expression 8 weeks after the aortic banding surgery. Lysates were 

analyzed by western blotting for NFAT4 protein expression. The TFAM overexpression TAC group was 

significantly lower in protein expression of NFAT4 relative to the C57 TAC group. Both TAC groups were 

significantly increased in NFAT4 protein expression when compared to their Sham counterparts.  The bands were 

quantified using densitometry and the data was graphed for an N of 5 using SEM for significance. Values are 

expressed as +/- SEM. N=5. * p < 0.05, *** p<0.001. 
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Figure 21. TFAM-TG Mice Decreased MMP9 Expression in HF. 

Fig. 21A. These confocal microscopy and ICC images (i-iv) provide intra-cellular visualizations of MMP9 within 

the corresponding experimental groups. MMP9 is identified in green fluorescence and nuclei are identified by blue 

fluorescence.  

Fig. 21B. This graph exhibits the fluorescent intensity of MMP9 8-weeks after TAC and was provided by the data 

collected from the Image J software. Each fluorescent intensity corresponds to MMP9’s presence within the 

specific experimental groups. With respect to MMP9 fluorescent intensity, the TFAM TAC group was shown to 

be significantly lower in intensity of MMP9 relative to the C57 TAC group.  

Fig. 21C. This graph displays MMP9 proteins expression 8 weeks after the aortic banding surgery. Lysates were 

analyzed by western blotting for MMP9 protein expression. The TFAM overexpression TAC group was 

significantly lower in protein expression of MMP9 relative to the C57 TAC group. Both TAC groups were 

significantly increased in MMP9 protein expression when compared to their Sham counterparts.  The bands were 

quantified using densitometry and the data was graphed for an N of 5 using SEM for significance. Values are 

expressed as +/- SEM. N=5. * p < 0.05, ** p<0.025. 
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Figure 22. Up-regulated Calpain 1 Expression In HF  

Fig. 22A. These confocal microscopy and ICC images (i-iv) provide intra-cellular visualizations of Calpain1 

within the corresponding experimental groups. Calpain1 is identified in green fluorescence and nuclei are 

identified by blue fluorescence.  

Fig. 22B. This graph exhibits the fluorescent intensity of Calpain1 8-weeks after TAC and was provided by the 

data collected from the Image J software. Each fluorescent intensity corresponds to Calpain1’s presence within the 

specific experimental groups. With respect to Calpain1 fluorescent intensity, the TFAM TAC group was shown to 

be significantly greater in intensity of TFAM relative to the C57 TAC group.  

Fig. 22C. This graph displays Calpain1 proteins expression 8 weeks after the aortic banding surgery. Lysates were 

analyzed by western blotting for Calpain1 protein expression. The TFAM overexpression TAC group was 

significantly greater in protein expression of Calpain1 relative to the C57 TAC group.  The bands were quantified 

using densitometry and the data was graphed for an N of 5 using SEM for significance. Values are expressed as 

+/- SEM. N=5. * p < 0.05, ** p<0.025, *** p<0.001. 
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Figure 23. Decreased SERCA2a Expression in HF 

Fig. 23A. These confocal microscopy and ICC images (i-iv) provide intra-cellular visualizations of SERCA2a 

within the corresponding experimental groups. SERCA2a is identified in green fluorescence and nuclei are 

identified by blue fluorescence.  

Fig. 23B. This graph exhibits the fluorescent intensity of SERCA2a 8-weeks after TAC and was provided by the 

data collected from the Image J software. Each fluorescent intensity corresponds to SERCA2a’s presence within 

the specific experimental groups. With respect to SERCA2a fluorescent intensity, the TFAM overexpression 

Sham group was significantly greater relative to the C57 Sham group.  Also, the TFAM TAC group was shown to 

be significantly greater in intensity of TFAM relative to the C57 TAC group.  

Fig. 23C. This graph displays SERCA2a proteins expression 8 weeks after the aortic banding surgery. Lysates 

were analyzed by western blotting for SERCA2a protein expression. The TFAM overexpression Sham group was 

significantly greater in protein expression of SERCA2a relative to the C57 Sham group. The TFAM 

overexpression TAC group was significantly greater in protein expression of SERCA2a relative to the C57 TAC 

group. Both TAC groups were significantly decreased in SERCA2a protein expression when compared to their 

Sham counterparts.  The bands were quantified using densitometry and the data was graphed for an N of 5 using 

SEM for significance. Values are expressed as +/- SEM. N=5. * p < 0.05, ** p<0.025, *** p<0.001. 
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Figure 24. Interplay of TFAM Over-expression & Cardiac Remodeling Factors 

Fig. 24. The diagram above depicts the figurative comparison of WT control and TFAM overexpression 

cardiomyocytes. It shows the positive conclusion of reduced cardiac remodeling by decreasing MMP9 expression 

and shows TFAM over-expression inhibits NFAT activation. In lack of such inhibition, NFAT would stimulate 

ROS production via NOX 2 & 4 which activates ROS driven MMP9 expression. MMP9 activation is a noted 

pathological marker for cardiac remodeling. Our original hypothesis regarding TFAM activation of SERCA2a and 

reduction of Calpain 1 was not observed. 
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Figure 25. Visual re-evaluation of the Proposed Mechanism of TFAM- Mediated 

Cardiomyocyte Protection 

Fig. 25. This diagram depicts the re-evaluation of the hypothesized mechanism for TFAM’s role in cardiomyocyte 

protection (Fig.3). With respect to the hypothesis, the mechanism for TFAM knockdown was verified but the 

mechanism for TFAM over-expression exhibits two inconsistencies. In the failing cardiomyocyte with TFAM 

over-expression, SERCA2a expression was decreased while the expression of Calpain 1 was increased.  
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CHAPTER V 

 

DISCUSSION OF RESULTS 

 

 

We demonstrate for the first time that TFAM maintains an inhibitory 

relationship with the NFAT4-ROS-MMP9 proteolytic pathway in TFAM transgenic 

mice subjected to aortic-banding-induced HF. We also found a mechanistic 

inconsistency in the SERCA2a-Calpain 1 pathway in banded TFAM transgenic mice. 

This finding varied in respect to the literature and our initial proposed mechanism. 

These findings have been expressed in both models of TFAM reduction and over-

expression.  

         We preface this discussion with our findings on TFAM reduction and 

overexpression experimentation. Through in vitro experiments, we observed a 

significant decrease in TFAM protein expression in the TFAM-specific (CRISPR-

cas9) knockdown treatment (Fig.4) and the oxidative stress treatment (Fig.9). 

Additionally, in the in vivo experiments, the aortic-banded WT mouse group 

exhibited a significant decrease in TFAM protein expression (Fig.19). Within this 

experimental analysis, we discovered that NFAT4 and ROS-activated MMP9 are 

significantly increased. 
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Using TFAM reduction, in the in vitro model, we verified the inverse 

relationship between TFAM and the NFAT4-ROS-MMP9 mechanism. NFAT4 

increases NADPH oxidases 2 & 4 to produce ROS in pathological conditions 

(Williams and Gooch 2014). CRISPR knockdown of TFAM increased NFAT4 

expression (Fig.6), increasing cytoplasmic ROS, as found through DHE staining 

(Fig.8). The interaction between TFAM and NFAT4 was first found in the Fujino 

groups work, stating that TFAM mechanistically inhibits NFAT4 transcriptional 

activation (Fujino et al. 2012). 

In HF models in which TFAM is decreased, NFAT4 induces ROS production 

and activates hypertrophic gene expression. NFAT activates pathological cardiac 

hypertrophy, which we confirmed in the WT-TAC models. In TFAM reduction, there 

is a significant increase in heart weight/body weight ratio in comparison to the control 

groups. Furthermore, we observed a significant weight gain, which we deemed a 

result of edema, in the WT-TAC model compared to the control. Other papers have 

found similar results in HF models (Veeraveedu et al. 2017; Ikeda et al. 2015).  

Through histology staining, we also observed cardiac muscle misalignment in 

the WT-TAC model. This observation was supported by H&E staining (Fig.18A), 

which tested for histopathologies. The aortic banding procedure in WT mice resulted 

in myofiber deformation, nuclei misalignment, and inflammation. Additionally, we 

confirmed that TFAM reduction within the WT-TAC group has increased collagen 

intensity, as found through Masson’s Trichrome Staining (Fig.18B). These findings 

were accompanied by molecular changes in MMP9.  
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In vitro experimentation shows that significantly decreasing TFAM induces 

ROS activated MMP9 (Fig.8C). Exogenous treatment of 127 micromolar H2O2 to HL-

1 cardiomyocytes significantly increased MMP9 protein expression (Fig. 11). Though 

other groups administered 200 micromolar H2O2 to HL-1 cardiomyocytes we 

experienced increased cell death and standardized the treatment. In AV fistula 

volume-overload (VO) heart failure, TFAM overexpression suppressed MMP up 

regulation and limited mitochondrial oxidative stress (Ikeda et al. 2015).  

In TFAM knockdown such as found in the failing heart of control animals 

(Fig.19), excess ROS in the cytoplasm induces MMP9, which we and other groups 

have found increased (Givvimani et al. 2010; Cox et al. 2002). MMPs are 

collagenases and MMP9 excessively degrades collagen but in cardiac remodeling 

collagen turnover is faster than elastin, leading to a stiffening myocardium (Mishra et 

al. 2013). This interplay is a major factor in hypertrophy and heart failure. 

Increased NFAT4 stimulates a cardiac remodeling cascade inducing ROS 

production to increase MMP9, which degrades the extracellular matrix of 

cardiomyocytes. MMP9 is a distinguishing factor in pathological cardiac remodeling 

(Mishra et al. 2013). This observation correlates with known studies showing that 

increased activation of MMPs is observed in TFAM ablation and oxidative stress 

models  (Larsson et al. 1998; Lamparter and Maisch 2000). 

As was expected, TFAM overexpression initiated a chain reaction of 

decreased NFAT and ROS-activated MMP9. In the in vitro and in vivo experiments, 

TFAM overexpression vectors significantly increased TFAM protein expression in 
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Hl-1 cardiomyoctes and in the TFAM transgenic mouse model (Fig.4C). In the 

TFAM over-expression model, NFAT4 is reduced (Fig.6). Administration of TFAM 

vector with H2O2 treatment had significantly reduced NFAT4 & MMP9 with respect 

to the H2O2 group alone (Fig. 10 &11).  

 Through TFAM’s inhibition of NFAT, we conclude that aortic banding in 

TFAM-TG mice prevented hypertrophy. In TFAM over-expression, we note a 

significant decrease in NFAT4, which correlates to our visual confirmation of 

reduced hypertrophy in the TFAM-TG banded group. Through analysis of heart 

weight/body weight ratio, we observe a reduction in cardiac hypertrophy with TFAM 

overexpression (Fig.17). Our results are similar to the current literature In AVF 

induced HF models, TFAM overexpression reduced protease activity and cardiac 

hypertrophy (Ikeda et al. 2015). Studies show that TFAM overexpression attenuates 

cardiac dilation and dysfunction in myocardial infarction induced heart failure models 

(Ikeuchi et al. 2005). 

Oxidized proteins are prevalent in heart failure models, TFAM and 

mitochondrial repair enzymes serve to reduce oxidation when overexpressed. 

Overexpression of mitochondrial repair factors in TAC induced HF, decreased left 

ventricular remodeling (Wang et al. 2011). 

In banded TFAM transgenic mice, TFAM overexpression reduced cardiac 

histopathologies. Since NFAT is involved in T-cell modulation, we may be breaching 

a novel role of TFAM in heart failure inflammation. By reducing NFAT, we prevent 
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potential inflammatory cell signaling pathways from negatively affecting the failing 

myocardium. 

The inhibitory activity of TFAM to reduce NFAT4 pathological hypertrophy 

and ROS-driven MMP9, may delay the myocardium remodeling state, before 

becoming end-stage heart failure. TFAM overexpression protected the aortic banded 

myocardium from cardiac hypertrophy. The LV mass of the WT-TAC was 

significantly heavier than the TFAM-TAC, noting that both were still significantly 

greater than the controls. This suggests that TFAM overexpression reduces the 

hypertrophic and cardiac remodeling process resulting in reduced LV mass (Fig.15).  

         This mechanistic pathway NFAT4-ROS-MMP9 induces cardiac hypertrophy 

and remodeling. Cardiac remodeling includes both intracellular and extracellular 

remodeling factors that induce significant molecular and morphological changes to 

cardiomyocyte structure and function. Remodeling encompasses degradation of the 

extracellular matrix (ECM), pathological hypertrophy, fibrosis, and resultant organ 

dysfunction. This study provides further insight into TFAM’s therapeutic potential in 

TFAM knockdown/overexpression, oxidative stress, and aortic banding induced HF. 

Through this work we have shown that TFAM overexpression has the potential to 

reduce cardiac remodeling factors MMP9 and NFAT4 (Fig. 25). Analysis of 

functional and molecular data, within this work may give insight into the TFAM-

NFAT-ROS-MMP9 pathway. 

         The TFAM-SERCA2a-Calpain 1 pathway reveals a potential avenue for 

further exploration. Our work suggests that there is an anomaly regarding TFAM’s 
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interaction with SERCA2a. Following the proposed mechanistic pathway, we found 

that SERCA2a protein expression was as equally significantly reduced in both TFAM 

transgenic and control TAC groups (Fig.23). This finding correlates with reduced 

SERCA2a expression in HF models (Cutler et al. 2009). The downstream effect of 

reduced SERCA2a is increased Ca2+ activated Calpain 1 protein expression was 

significantly increased in the banding animals compared to their controls (Fig.22). 

SERCA2a has a major functional role in physiological Ca2+ regulation and 

cardiomyocyte physiology. The Watanabe group found that exogenous over-

expression of TFAM increased transcriptional activation of SERCA2a (Watanabe et 

al. 2011).  As a result, we hypothesized that TFAM over-expression would heighten 

SERCA2a protein expression, due to an increase in SERCA2a transcriptional 

activation. We presumed that this prominent expression of SERCA2a proteins would 

then drive more cytoplasmic Ca2+ into the SR, reducing Ca2+-activated calpain 

proteases. However, our results, although consistent, did not reflect this mechanism in 

our in vivo or in vitro experiments. In retrospect, we can explain these unexpected 

discoveries as the effect of proteolytic degradation of SERCA2a and inhibition of 

SERCA2a gene transcription. We further analyze the role of epigenetic and 

inflammatory interactions with SERCA2a in HF.  

 In vitro, the TFAM knockdown vector revealed an intensification of 

SERCA2a protein expression when TFAM protein expression was reduced by 50%. 

The TFAM over-expression vector also significantly increased SERCA2a protein 

expression. In vivo, however, TFAM over-expression did not increase SERCA2a 



82 

 

 

 

 

 

protein concentration in the failing myocardium. Quantitatively, there were no 

significant differences in SERCA2a protein concentration in the failing hearts of both 

WT and TFAM-TG mice. Upon analysis of these results, we must reevaluate the 

original proposed mechanism behind TFAM’s interaction with SERCA2a.   

 After a thorough review of the literature, we recognized two potential methods 

of SERCA2a decline that possibly caused our results to waver from our hypothesis: 

proteolytic degradation of SERCA2a protein and inhibition of SERCA2a gene 

transcription. Of the many proteases activated by Ca2+, Calpain 1 protease was 

significantly increased within the TAC heart failure model and is unaffected by 

TFAM overexpression (Fig.22). Calpain 1 may degrade the subunits of the SERCA2a 

protein, affect its inhibitors phospholambin and sarcolipin but evidence supporting 

this conjecture is nil and is in need of further exploration. Knocking down TFAM 

increased SERCA2a expression within HL-1 cardiomyocytes. We observe this as an 

immediate compensatory mechanism to reduce free Ca2+ in a stress-induced 

environment. This excess Ca2+ invites proteolytic degratory enzyme Calpain 1, to 

degrade contractile proteins. Interestingly, the excess Ca2+ in the cytoplasm activates 

calpain 1 in the CRISPR Vector group in which SERCA2a expression is significantly 

higher. Therefore, Ca2++-driven calpain 1 levels remain higher than the compensatory 

activity of the SERCA2a pump. Post-translational modifications like degradation 

would result in decreased protein expression of SERCA2a as found in our results. 

SERCA2a inhibition may also be a result of up-stream modifications to SERCA2a 
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mRNA and SERCA2a promoter, these regions may be altered leading to reduced 

SERCA2a protein expression. 

MicroRNAs (miRNA) are small non-coding RNA’s, that function in RNA 

silencing and posttranscriptional regulation of gene expression. MiRNA’s modify 

messenger RNA (mRNA), through cleavage and destabilization. In HF, many 

MiRNAs are dysregulated leading to further cardiomyocyte failure. Of these many 

regulators, miR-25 is significantly expressed in the heart failure myocardium and has 

been shown to inhibit SERCA2a. Mir 25 acts like an SiRNA targeting mRNA for 

degradation instead of transcription. Its inhibitory activity to block SERCA2a, the 

loss of SERCA2a in HF, and its significant upregulation in the HF myocardium led us 

to contemplate whether Mir-25 is inhibiting SERCA2a in the TFAM-TG TAC model 

where our hypothesis does not match our results.  

From a different standpoint; In the presence of a chronic inflammatory state, 

such as found in heart failure, additional mechanistic components are at play. The 

cytoplasmic environmental changes found in heart failure drive adverse mechanistic 

pathways, due to inflammatory cytokine up-regulation (Cocco et al. 2017). We 

recognize that there is a rise in TNF alpha in chronic inflammatory states, as well as 

in tissue samples of HF patients (Valgimigli et al. 2005). According to Huang et al., 

SERCA2a transcription is suppressed via the NFkB-ERK 1,2 pathway (Huang et al. 

2014). This activity was observed in a cardiac hypertrophic state of chronic 

inflammation. We observed that a reduced immune response, the in vitro TFAM 

vector model allowed for a significant increase in SERCA2a in Hl-1 cardiomyocytes 
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(Fig. 5). The inflammatory response of the in vivo model may prohibit SERCA2a 

expression at the transcriptional level. Additionally, TFAM regulates interactions 

with TNF alpha in chronic stress environments. 

TFAM is viewed as an endogenous danger signal in damaged cells, due to 

chronic inflammation. Mechanistically, TFAM engages the RAGE factor, (an 

inflammatory response element) initiating the activation of TNF-alpha (Julian et al. 

2013). TNF-alpha, or Tumor Necrosis Factor Alpha, is a cell-signaling cytokine 

involved in inflammation; it is also a mediator of apoptotic cell death (Baxter et al. 

1999). TNF alpha is up-regulated in inflammatory diseases and in heart failure 

(Ogasawara et al. 2017; Valgimigli et al. 2005; Wang, Jia, et al. 2017). Molecular 

evaluation of TNF alpha’s mechanistic regulation over Ca2+ presents TNF alpha’s 

role in activating IP3R and RyR Ca2+ channels, releasing Ca2+ into the cytoplasm 

(Wang, Guo, et al. 2017). 

SERCA2a, a Ca2+ transporter, is functionally inhibited in heart failure; it was 

found that TNF-alpha inhibits the SERCA2a promoter region via methylation (Kao et 

al. 2010). Epigenetic modifications to SERCA2a promoter region reduce its 

transcriptional activity. TNF alpha induces NFkB, which physically binds to the 

SERCA2a gene promoter, blocking its transcription (Tsai et al. 2015). According to 

Huang et al, ERK 1, 2 suppress SERCA2a transcription via NFkB-related 

mechanisms (Huang et al. 2014). This activity was observed in a cardiac hypertrophic 

state. TFAM’s activation of TNF-alpha may be a possible mechanistic pathway 
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responsible for reducing SERCA2a in the TFAM transgenic animals with pressure 

overload HF. 

There is a possibility that the inflammatory response involved in HF and the 

induction of extrinsic cell death pathways involving TNF-alpha may be inhibiting 

SERCA2a’s therapeutic potential in the TFAM transgenic model. Inhibition of TNF-

alpha in TFAM transgenic animals may be necessary to proper assessment of TNF-

alpha’s role in the SERCA2a inhibition during HF. 
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CHAPTER VI 

 

SUMMARY, CONCLUSION, & FUTURE DIRECTIONS 

 

 

Cardiovascular diseases are a leading cause of death worldwide. Heart failure 

or the inefficiency of the heart to pump blood, has a high fatality rate five years post 

onset (Mozaffarian et al. 2016). Mitochondrial factors such as TFAM play a vital role 

in inhibiting cardiac remodeling factors, which lead to cardiac hypertrophy and heart 

failure. Heart failure has reduced TFAM expression, increased oxidative stress, Ca2+ 

mishandling, and protease expression leading to cardiomyocyte functional decline 

(Lauritzen et al. 2015). Previous studies involved in TFAM knockdown have resulted 

in reduced mitochondrial biogenesis, dilated cardiomyopathy and neonatal death 

(Larsson et al. 1998).   

TFAM over-expression in in vivo and in vitro studies resulted in 

cellular/functional recovery by reducing oxidative stress and remodeling factors. 

Furthermore, evidence suggests that TFAM plays a vital role in the physiological and 

pathological myocardium. Therefore, mitochondrial-TFAM driven therapeutics are 

under consideration as a promising approach in various diseases. We studied the 

potential treatment capabilities of TFAM by examining its molecular and functional 

effects on the myocardium.  
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We hypothesized that TFAM overexpression reduces pathological cardiac 

remodeling and associated factors in heart failure. In testing this hypothesis, we 

aimed to first analyze the effect of oxidative stress, TFAM CRISPR knockdown and, 

TFAM over-expression on Hl-1 cardiomyocytes. The TFAM knockdown vector 

induced oxidative stress and caused an accumulation of proteolytic and hypertrophic 

remodeling factors. TFAM knockdown triggers a catabolic reaction in which MMPs 

degrade the extracellular matrix of cardiomyocytes. In administering hydrogen 

peroxide to HL-1 cardiomyocytes, we mimicked the robust oxidative stress 

environment of heart failure. Within this objective, we found that TFAM expression 

is significantly reduced in both oxidative stress and TFAM-knockdown vector. 

TFAM reduction significantly increased cardiac remodeling factors such as Calpain 

1, MMP9 and NFAT4. In contrast, TFAM overexpression plays a major role in 

inhibiting the up-regulation of ROS producing factors and transcription factors that 

activate hypertrophic gene regulation. Within this study, we gained support for 

TFAM’s necessary role in cardiomyocyte function.  

In an in vivo model, we hypothesized that TFAM transgenic mice subjected to 

aortic banding would have reduced cardiac hypertrophy post-HF. In this study, we 

found that the aortic banding surgical procedure changed cardiac histopathology and 

function. This change was demonstrated via histology, echocardiography and blood 

pressure which showed that TFAM overexpression reduced functional morphologies 

post-banding. We verified, through visual confirmation and measuring heart 
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weight/body weight ratio, that TFAM overexpression reduced aortic banding induced 

hypertrophy.  

The third aim addresses the effect of TFAM overexpression on molecular 

cardiac remodeling factors. Molecular insight into the remodeling cascade shows 

reduced protease and hypertrophic expression in TFAM over-expression models. 

Molecular techniques, including western blotting and IHC, reveal that TFAM over-

expression reduces the NFAT4-ROS-MMP9 cardiac remodeling cascade. However, 

our initial hypothesis, regarding TFAM activation of SERCA2a and reduction of 

Calpain 1, was not confirmed. Many regulatory elements of this potential anomaly 

have been reviewed in the discussion section.  

This study provides mechanistic support of TFAM’s potential to reduce 

mechanistic factors involved in cardiac pathologies. Therefore, TFAM 

overexpression treatment is a possible cardio-therapeutic approach to reducing ROS-

induced pathological remodeling.  
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Future Directions 

 Within this section, we discuss the potential of TFAM as a therapeutic in 

diabetic HF, exosomal delivery, natural compounds that increase TFAM, and the 

limitations we face in TFAM-based therapeutic research.   

 

Diabetes & HF 

Diabetes is a devastating, chronic condition that affects millions of 

Americans. As diabetes evolves into a serious public health issue, researchers strain 

to advance the management of diabetic HF. Diabetes significantly increases the risk 

of cardiomyopathies. As we have observed in this work on TFAM’s role in the 

inhibition of cardiac remodeling, considerable molecular changes occur within the 

failing cardiomyocyte of HF control animals. We found evidence of TFAM’s ability 

to mitigate the NFAT-ROS-MMP9 pathway, but TFAM’s cardioprotective potential 

in diabetic HF remains unexplored. Therapeutic mechanistic avenues that reduce left 

ventricular dysfunction in the WT HF models are not as effective in diabetic 

cardiomyopathies. Therefore, we should direct future efforts to the mitigation of 

oxidative stress and hypertrophy in diabetic HF. 

Mitochondrial therapeutic targets such as TFAM are crucial to the reduction 

of oxidative stress. As noted in the literature, hyperglycemia-induced oxidative stress 

is significantly increased in the diabetic myocardium (Dludla et al. 2017; Mandavia et 

al. 2013). Metabolic abnormalities found in diabetes are far more likely to result in 

cardiac hypertrophy and fibrosis (Tarquini et al. 2011). As confirmed in our results, 
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TFAM over-expression reduces cardiac hypertrophy and fibrosis; therefore, it may 

also reduce hyperglycemia-induced hypertrophy. The Santos group found that 

hyperglycemia diminishes mitochondrial biogenesis and TFAM, suggesting that 

mitochondrial dysregulation in diabetes may be, in part, due to TFAM loss. ROS 

causes molecular dysfunction, creating oxidative damage throughout the diabetic 

myocardium. Clinical methods to reduce oxidative stress are limited, and the world is 

in dire need of exogenous mitochondrial therapy, such as that produced by TFAM 

over-expression. 

  

Exogenous Delivery Mechanisms 

There exists multiple vehicular methods of transporting regulatory elements; 

such transport mechanisms include viruses, bacterial & viral vectors, and 

nanoparticles. The literature thoroughly depicts disadvantages of the various delivery 

methods, particularly the stimulation of immunogenic factors. Exosomes range from 

30-100nm in size and have the potential to be therapeutic game changers in future 

biomedical technology. These nanoparticles are non-immunogenic and transport 

molecules with efficient delivery. Infused within their membranous vessels are 

mRNA, miRNA, siRNA, proteins, and nucleic acids that incite alteration in gene 

expression. Evidence of therapeutic advances using an exosomal delivery system is 

ubiquitous in the literature. As conferred in the Discussion section, Mir-25 is vital to 

the inhibition of the SERCA2a pump. Exosomal delivery of a TFAM over-

expression/Mir-25 inhibitor cocktail may have significant cardioprotective effects in 
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WT and diabetic HF models. This method may ameliorate both Ca2+- and ROS-

induced dysfunction. 

 

Natural Methods to Increase TFAM 

Natural methods that exaggerate TFAM, increase mitochondrial function, and 

prevent disease exist in ancient medicinal ingredients. Compounds such as grape seed 

procyanidin B2 (GSPB2), daidzein, humanin, and honokoil increase mitochondrial 

copy number and biogenic function while reducing oxidative stress. GSPB2 inhibited 

glucose-induced apoptosis and suppressed ROS production. Additionally, mRNA 

expressions of NRF-1, TFAM, and mtDNA copy number vastly increased upon 

treatment (Cai et al. 2016). Yoshino et al. describe effects of the dietary substance soy 

isoflavone daidzein on muscle mitochondria. This soy extract directly promotes 

TFAM expression by increasing mitochondrial biogenesis through activation of PGC-

1 alpha(Yoshino et al. 2015). Humanin is a natural mitochondrial peptide that 

significantly increased mtDNA copy number, up-regulated TFAM, activated STAT3, 

and decreased caspase-3 activation and intrinsic apoptosis (Sreekumar et al. 2016). 

Natural remedies have been studied in traditional medicine; as we analyze these 

compounds, we find the mechanistic route to natural therapy. 

Honokoil is a lignan isolated from magnolia tree bark and seed cones. In 

cardiac hypertrophy, honokoil, a known anti-cancer, anti-oxidative, and anti-

inflammatory substance, reduces mitochondrial stress through activation of SIRT-3. 

Sirtuin-3 protects the myocardium from hypertrophy by inhibiting NFAT and 
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lessening ROS production. The PGC-1alpha –Sirtuin & TFAM axis plays a major 

role in cardiomyocyte stability (Pillai et al. 2017). FAs observed, honokoil will 

increase TFAM levels, resulting in greater mitochondrial stability and reduced 

hypertrophy. Therefore, the cardioprotective nature of TFAM in diabetic 

cardiomyopathies is a novel possibility and idea. Within the Future Directions of this 

work, we observe that not only biomedical derivations of TFAM, but also natural 

compounds shown to induce TFAM expression, exist and should be tested for 

therapeutic potential. 

 

Limitations of TFAM’s Therapeutic Potential 

It would be immeasurably beneficial to explore and analyze both naturally and 

biomedically derived methods of ameliorating cardiomyopathies through the 

enhancement mitochondrial efficiency. The extent of TFAM’s therapeutic potential is 

also a notable question for any further research in TFAM therapeutics. Limitations of 

TFAM therapeutic potential exist. As we are aware, cancer cells thrive in high 

biogenic environments (Xie et al. 2016). TFAM expression intensifies within a 

variety of cancers, and TFAM is a target of inhibition in cancer research (Mo et al. 

2013). The over-expression of TFAM in a cancer model may cause the cancer to 

metastasize at a faster rate. Additionally, TFAM’s role in protecting and physically 

wrapping around mtDNA would be similar within cancer cells. This may, in fact, 

protect the cancer cell mitochondria, and block current cancer therapies. 
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Mechanistic analysis of TFAM’s function in TFAM over-expression models 

and its potential role in diabetic HF through exosomal delivery and natural 

compounds are in need of further exploration. 
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Department of Physiology 

Ph.D. Physiology  

Expected Graduation date: August 2017  

 

University of Louisville School of Medicine  

Department of Physiology 

M.S. Physiology & Biophysics 

Graduated: May 2016 

 

St. John’s University  
Department of Biology  

B.S. Biology (Cum Laude); Physics Minor 

Graduated: May 2014 

 
RESEARCH EXPERIENCE 
University of Louisville, Louisville KY 

Department of Physiology 

 

Suresh C. Tyagi Cardiovascular Remodeling Laboratory 

National Institute of Health, Ruth L. Kirschstein Pre-doctoral Research Fellow 

Grant #: 1F31HL132527-01 

 

Mentor: Suresh C. Tyagi, Ph.D.  
 

Ph.D. Candidate/NIH Fellow  

(July 2016-Present) 
 

 

Project: TFAM’s Protective Role in Cardiomyocyte Stability 
 

o In Vitro Aims: 

● Focus: Investigating Mitochondrial Transcription Factor A (TFAM) role in Cardiomyocyte 

stability. Assessed via lipofectamine transfection of TFAM over-expression vector and 

CRISPR-cas9 TFAM knockdown vector in HL-1 cardiomyocytes. Molecular analysis of 

TFAM, NFAT, SERCA2a, Lon protease, Calpain 1, and MMP 9 followed. 

● Kunkel GH, Theilen N, Nair R, Tyagi SC “Mechanisms of TFAM Mediated Cardiomyocyte 
Protection” Can J Physiol Pharmocol. (July 2017)  

● Kunkel GH, Chaturvedi P, Tyagi SC. 2016 “Mitochondrial Pathways to Cardiac Recovery: 
TFAM” Heart Fail Rev (June 2016) 
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o In Vivo Aims: 

● Focus: Investigating the effects of heart failure surgery model “Aortic Banding” (TAC) on 
TFAM transgenic mice (TFAM-TG).  

● Mastered thoracic surgical procedure TAC in mice.  

● UofL/Kleinert Surgery Institute Microsurgery Certificate (May 2017)  

● Analyzing cardiovascular effects of the surgical procedure on mouse models via assays: 

Echocardiography, heart rate (HR), blood pressure, histology and immunohistochemistry 

(IHC). 

 

Ph.D. Student/IPIBS Fellow  

(August 2014 – June 2016) 

● Focus: Interaction of Calpains and Matrix-metalloproteinases (MMP’s) in cardiomyopathies 
utilizing mitochondrial interventions.  

● Published two review articles focused on cardiomyocyte protease activity  
● Present annually at two conferences; national conference (Experimental Biology Conference), 

regional conference (American Physiological Society – Kentucky Chapter Meeting) 
● Investigate the relationship between calpain and matrix metalloproteinase activity and Ca2+ 

mishandling/ROS production in cardiomyopathies 
● Analysis of protein and RNA content via isolation methods from cardiomyocytes  
● Practicing ex-vivo cardiomyocyte isolation from cardiac tissue  

 
St. John’s University, Queens NY 

Department of Biology 

(January 2012- May 2014) 

 

Irvin N. Hirshfield Laboratory    

Undergraduate Student Researcher 

Mentor: Irvin N. Hirshfield, Ph.D.   

● Focus: Antibiotic treatment of Polymixin B to E.coli mutant IH9 (resistant to acid and 

hydrogen peroxide)  

● Analyzed growth and antibiotic treatment resistance of E.coli small colony variants IH3 & 

IH9 

● Tested for membrane permeability of E.coli mutants (IH3 & IH9) 

● Three unpublished research articles for undergraduate research credit (15 page min.) 

 

Baylor College of Medicine Houston, TX 

Division of Thrombosis Research 

(Summer 2013)  

 

Miguel A. Cruz Laboratory   

SMART Summer Student Researcher 

Mentor: Miguel Cruz, Ph.D.  

● Biochemical studies focused on mapping the binding site of Vimentin to the Von Willenbrand 

Factor (VWF) 

● Conducted Thrombosis research on the functional aspects of VWF binding platelets upon 

vimentin interaction with A2 domain 

● Analyzed Vimentin/VWF interaction via ELISA assays and Western Blotting 

● Oral presentation at Baylor College of Medicine Summer Symposium 

● Unpublished research article (McNair Scholars requirement, 20 pages) 
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SCIENTIFIC PUBLICATIONS  
● Kunkel GH, Theilen N, Nair R, Tyagi SC “Mechanisms of TFAM Mediated Cardiomyocyte 

Protection” Can J Physiol (July 2017)  
● Familtseva A, Jeremic N, Kunkel GH, Tyagi SC. 2016 "Folate and Methionine Cycle in the 

epigenome of hyertension via TOLL- Like Receptor 4" Am J Physiol (April 2017) 

● Theilen N, Kunkel GH, Tyagi SC “The Role of Exercise and TFAM in Skeletal Muscle 
Atrophy” 2016 J Cell Physiol. (Dec. 2016) 

● Familtseva A, Chaturvedi P, Kalani A, Jeremic N, Metreveli N, Kunkel GH, Tyagi SC. 2016 

“Toll-like Receptor 4 Mutation Suppresses Hyperhomocysteinemia- Induced Hypertension” 
Am J Physiol Cell Physiol AJP (Aug 2016) 

● Kunkel GH, Chaturvedi P, Tyagi SC. 2016 “Mitochondrial Pathways to Cardiac Recovery: 
TFAM” Heart Fail Rev (May 2016) 

● Kunkel GH, Chaturvedi P, Tyagi SC. 2015 “Resuscitation of a Dead Cardiomyocyte” Heart 
Fail Rev (Nov 2015) 

● Kunkel GH, Chaturvedi P, Tyagi SC. 2015. “Epigenetic Revival of a Dead Cardiomyocyte 
through mitochondrial interventions” BioMol Concepts (Aug 2015) 

● Chaturvedi P, Kunkel GH, Familsteva A, Tyagi SC. 2016 “Exercise mitigates calpain 1 
induced cardiac dysfunction through PCP-4 in diabetes role” Mol Cell Biochem (In Press) 

 

ABSTRACTS & POSTERS  
● Experimental Biology Conference (2015, 2016) 

● American Physiological Society-Kentucky Chapter Meeting (2015,2016) 

● Research Louisville (2015) 

● SACNAS Conference (2015, 2016) 

● International Academy of Cardiovascular Sciences – Young Investigators Forum (2015) 

● American Physiological Society – Kentucky Chapter Meeting (2015) 

● Baylor College of Medicine “SMART” summer program (2013) 
 
ORAL PRESENTATIONS 

● Invited Speaker: American Physiological Society-KY Chapter Cardiovascular Scientific 

Meeting (2017) 

● Invited Speaker: St. John’s University Biology Department Research Seminar (2015) 
● STJ Biology Honor Society (2013 & 2014) 

● McNair Scholars National Research Conference (2014) 

 
GRANTS 

● Graduate Student SACNAS Travel Scholarship (October 2016) 

● Ruth L. Kirschstein NIH Pre-doctoral Fellowship (July 2016-present) 

● IPIBS Graduate Research Fellowship (August 2014 – June 2016) 

● UofL, School of Med. IPIBS Travel Grant for SACNAS conference (2015) 

● UofL, Dpt. Physiology & Biophysics Travel Grant for EB conference (2015, 2016) 

● Graduate Student Council Travel Grant (2015, 2016) 

● McNair Scholars Stipend for Summer Research (2013) 

● NIH – NHLBI for Baylor College of Medicine Summer Research (2013) 

 
AWARDS & MEMBERSHIP 

● Experimental Biology Travel Award (2017) 
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● APS-KY Scientific Meeting Awarded “Meritorious Graduate Student Oral Presentation 
Award” at Western Kentucky University (2017) 

● Acknowledged in “Trainee Spotlight” on UofL School of Medicine website 
http://louisville.edu/medicine/grad-postdoc  (June 2016-October 2016)  

● Appointed Graduate Student Officer on UofL School of Medicine Diversity Committee (2016 

– present) 

● Co-founder/Vice President: UofL SACNAS Chapter (Graduate Organization) (2015 – 

present) 

● St. John’s University (STJ) Biology Gold Key Honorable Mention (2014) 
● Member of American Physiological Society (2014 – present) 

● McNair Scholars Research Program (2012 – 2014) 

● Member of American Society of Microbiology (2013) 

● Founder/President of St. John’s U. Chapter of Phi Sigma National Biological Sciences Honor 
Society (2013) 

● Founder: Glen Oaks Volunteer Ambulance Corp. (GOVAC) - STJ Biology Honor Society 

(BHS) Emergency Medical Technician connection program (2013) 

● Founder: Tutoring Affiliation between BHS and Biology & Chemistry departments (2013) 

● Inducted Member of Sigma Pi Sigma National Physics Honor Society (2012) 

● Member of STJ Society of Physics Students (2011) 

● Deans List recipient (2011 – 2014) 

● St. John’s University Academic Scholarship (2010) 
● Vincent O’Connor Leadership Award (2009) 
● St. Francis Preparatory High School Leadership Scholarship (2009 – 2010) 

● St. Francis Preparatory High School Academic Scholarship (2006 – 2010) 

 

SKILLS 
● Radnoti Perfusion: Cardiomyocyte Isolation 

● RNA & Protein Isolation 

● Western Blotting  

● PCR 

● Cell Culture 

● Ultrasound/Echocardiography 

● Surgical Techniques (Mouse & Rat Model) 

● UofL/Kleinert Surgery Institute Microsurgery Certificate (May 2017)  

● Nationally Certified EKG Technician (2011 – 2015) 

● Nationally Certified Phlebotomist (2011 – 2015) 

● New York State Certified Emergency Medical Technician (EMT) (2010 –present) 

● CPR/First Aid Instructor (2011 – 2012) 

 
MENTORED STUDENTS  

● Nicholas Theilen, M.S. (PhD Student) 

● Rohit Nair (MS Student): Graduated August 2016 

● Christopher Kunkel, B.S. (Summer Student – 2017) 

 

EXTRACURRICULAR ACTIVITIES 
● UofL Graduate School (IPIBS) Recruiter (2015-present) 

● Member of Black Knights Men’s Hockey Team (2016-present) 

● EMT – Glen Oaks Volunteer Ambulance Corp. (2011 - 2014) 

● Founded/Managed (BHS) Hayden Nichols Fundraiser (2014) 

● Team leader for Breast Cancer Walk Team STJ – BHS (2014) 

http://louisville.edu/medicine/grad-postdoc
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● Interviewer for GOVAC – BHS connection program  (2013) 

● Director BHS tutoring (2013) 

● Tutor: General & Organic Chemistry (2013 – 2014) 

● Emergency Center Assistant (Texas Children’s Hospital) (2013) 
● Phlebotomy Teachers Assistant, Queens borough community College (2/2011 – 8/2011)                                                

● CPR & First Aid Instructor, St. Francis Prep. (9/2010 – 5/2011) 

● Volunteer, Little Neck Nursing Home (2007 – 2009) 

 

LITERARY PUBLICATIONS 
● Kunkel, G. H., & Ozuna, H. (2017, January 2). Graduate Students Attend SACNAS 

Conference. UofL Diversity Newsletter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


