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ABSTRACT 

 
Hip fractures are one of the most prevalent fragility injuries occurring over 

258,000 times per year in the U.S. alone and resulting in not only a huge social 

and economic burden but also a resounding increase in the mortality rate among 

the injured individuals. These hip fractures most commonly result from a fall to 

the side impacting the greater trochanter and propagating a fracture across the 

femoral neck. Low bone density in the form of osteopenia or osteoporosis 

increases the risk of these fractures.  

Current treatment options for low bone density are least effective at 

strengthening the hip compared to other sites in risk of fracture. So, based on the 

principles of cutting edge bone remodeling research, a unique therapeutic 

exercise device was designed specifically to improve bone quality at the most 

critical location prone to fracture: the superior-lateral femoral neck where the 

fracture first initiates during a fall. The exercise involves dynamically abducting 

the user’s legs into the pads of the device positioned proximally on the outer 

thigh. The exercise/device is intended to work by inducing enough strain on the 

bone to stimulate the body’s natural bone remodeling mechanisms to increase 

bone density in the proximal femur and consequently prevent a fracture from 

arising if a fall to the side does occur.  
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 In order to test the proposed exercise, experiments simulating the 

exercise were completed using a prototype device and (1) an artificial composite 

femur, (2) an ex-vivo cadaveric femur and (3) in-situ in a cadaver. Strains were 

measured at three critical locations on the femurs, including the lateral neck, 

medial neck and medial shaft. Additionally, a computer model representing a 

femur and the applied loading conditions of the exercise was developed and a 

finite element analysis (FEA) was performed. The results of the FEA were 

compared to the experimental results and used to optimize the exercise and test 

its safety and effectiveness. 

During the in-situ cadaver experiment, the strain magnitudes measured in 

the femoral lateral neck reached 1511.3 microstrain (µε) in compression, with a 

strain rate of 36,954 µε/s (SD=8,933). The FEA confirmed these strain values 

and revealed at an optimal pad position, peak strains were 2467.3µε (tension) in 

the medial shaft, 1507.6µε (tension) in the medial neck and -2451.6µε 

(compression) in the lateral neck.  

When compared to published bone mechanical stimulation research, 

these results suggest that the proposed exercise has the potential to produce 

high enough strain magnitudes (>1,000µε) and strain rates (>10,000µε/s) in the 

critical location of the superior-lateral femoral neck in order to induce anabolic 

bone remodeling, while being well below the fracture limit in any area of the 

femur. This suggests that the proposed exercise could be a beneficial therapy for 

strengthening the proximal femur and may aid in the prevention of hip fractures. 
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I. INTRODUCTION 
 
 
 

A. Clinical problem 
 

Hip fractures are one of the most common traumatic fractures and yet can 

have some of the most prevalent and devastating consequences. Unfortunately, 

as the elderly population is rising we expect to see this problem grow with time. 

In 2010, over 258,000 people age 65 years and older were hospitalized for hip 

fractures in the United States and the amount is expected to rise 11.9% by 2030 

(Stevens & Rudd, 2013).  Not only are hip fractures one of the most prevalent 

fractures but they are also the most expensive fracture, costing the U.S. 

population $12.2 billion in 2005 (Burge et al., 2007).  

However, beyond its prevalence and economic impacts, probably the most 

alarming implication of hip fractures is the resultant increased mortality rate. In 

the year following hip fracture, patients are more than four times more likely to 

die than aged matched controls (Farahmand et al., 2005). For women the one 

year mortality rate has been shown to be 21.9%-29.0% and in men 32.5%-40% 

(Brauers et al., 2009, Huntjens et al., 2010), and in general the probability of 

death can be even higher within the first few months following fracture 
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(Farahmand et al., 2005). Since “hip fracture” is not listed as the primary cause of 

these deaths and instead due to secondary consequences of the fracture, it is 

not rated as one of the top ten cause of death in the United States. However, the 

number of deaths that result from these fractures are comparable to death rates 

of diabetes (the 7th leading cause of death), and higher than the death rates of 

influenza and pneumonia (the 8th leading cause of death) (Heron, 2016). This is 

an astoundingly high number of deaths resulting from something that may be, to 

some extent, preventable.  

Bone quality is a very important risk factor in hip fractures. Older adults 

with poor bone quality have a significantly increased chance for these types of 

fragility fractures (Kanis et al., 2008). 

 

FIGURE 1 - Schematic comparing healthy bone to osteoporotic bone in the proximal 

femur (A.D.A.M. Health Solutions). 
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Poor bone quality is also very common in elderly people, which makes this 

population more susceptible to hip fractures. Not only can the natural aging 

process lower bone mineral density (BMD), but with the addition of bone 

diseases such as Osteoporosis, the bone quality and strength is reduced even 

more and as a result the bones can become weak and fragile. 

In 2016, the National Osteoporosis Foundation estimated that 54 million 

Americans have low bone density, with over 12 million having severely poor bone 

quality (osteoporosis) and the remaining 44 million with poor bone quality 

(osteopenia). That is nearly half of the US population ages 65 and older that 

have low bone density. Additionally, the lumbar spine and proximal femur are 

common areas prone to bone loss and therefore more vulnerable to fracture 

(Figure 1). 

 

B. Background 
 

1. Bone Remodeling 
 
 
The human body is constantly undergoing the process of bone 

remodeling. It is known that about 10% of the skeleton is remodeled each year. 

In healthy remodeling there is a particular balance that is maintained between 

bone reabsorption and bone formation. This metabolism is closely monitored by 

the body in order to keep appropriate growth rates and differentiation. 

Unfortunately, this critical balance is hindered with age and osteoporosis, where 

the reabsorption rate can surpass the rate of formation and consequently make 

the bones brittle and weak (Narra, 2013).  
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However, our skeleton doesn’t only just remodel to repair and grow, but 

it’s also mechanically sensitive to the loads we apply to it. Bone cells are “smart” 

in the way that they strengthen the bones where we need them to be strong in 

order to prevent fracture or damage when we preform the tasks of our everyday 

life.  For this reason, bone adapts to habitual loading and can change depending 

on its environment. This intrinsic ability helps develop and remodel the skeleton 

according to its functional demands (Wolff, 1892).  

The Mechanostat Theory dives into the specifics of this mechanically 

sensitive remodeling process and describes that the response is actually due to 

local elastic deformations of bone cells (i.e. strain). When bone experiences an 

externally applied force, strains are sensed by the mechanosensitive cells and if 

the strain magnitudes are high enough it can elicit remodeling. Specifically, bone 

that is exposed to less than 100µε is associated with disuse and bone is 

resorbed and loses mass. Whereas, strains applied within the adaptive window 

of 100-1000µε elicits homeostatic remodeling where bone mass is maintained 

(remodeling may occur but with no net gain or loss). Strains applied consistently 

with magnitudes of over 1000µε (particularly within 1000-1500µε window) 

stimulate bone growth and therefore increase bone mass and bone strength. Yet, 

loads above 3100µε can begin to form microdamage and remodeling changes 

from lamellar bone formation to woven bone formation. Fracture may occur at 

strains around 25,000µε depending on age and bone quality (Frost, 1987; Frost, 

2003; Jee, 2009).  
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2. Mechanical Stimulation & Animal Literature 

 
Alternatively, other studies using mechanical stimulations to promote 

anabolic bone remodeling have shown that strain magnitude is not the only 

important factor. Frequency and strain rate also have an important effect, as well 

as exposing the bone tissue to unfamiliar, maybe even non-physiological loading 

conditions. Two basic loading methodologies have been used to experimentally 

induce bone remodeling through mechanical stimulation: low amplitude – high 

frequency, and high amplitude – low frequency loading conditions.    

 

Low amplitude – High frequency: 

For example, extensive research by Rubin and colleagues (2002) show 

ultrasound treatment utilizing extremely low strain amplitudes (<10µε) at very 

high frequencies (30 Hz), and high strain rates have been able to show a positive 

effect on bone healing and also has the ability to increase trabecular bone mass 

or prevent trabecular bone loss. Additionally, whole body vibrational therapies 

using high frequency (>10Hz) and low strain amplitude (0.5-100 µε) stimulation 

have been studied; results indicate that high frequency signals of far less than 

five microstrain can promote bone formation (Judex & Rubin, 2010). 

 

High amplitude – Low frequency: 

Contrasting research on mechanical stimulation of turkey ulnas using axial 

loads at low frequency (2.5 Hz) for 5000 cycles/day, at strain magnitudes of 

1000µε and strain rates of 15,000µε/s, results in increased intracortical turnover 
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FIGURE 2 - Sketch representing the lower hindlimb of a mouse positioned for in-

vivo mechanical loading using three-point bending. Downward movement  

of the loading point produces tibial bending with tension on the medial  

surface (Silva & Brodt, 2008). 

(Rubin et al., 1996). Similarly, Fritton and colleagues (2008) also demonstrates 

cancellous bone mass loss can be prevented by axial mechanical loading on 

mouse tibia at 4 Hz, 1200 cycles/day at strains of 1200µε. Research by Robling 

(2001) also shows that dynamically loading rat ulnas at 2 Hz for 1200 cycles/day 

at strain magnitudes of 3500µε triggers an adaptive response.  

 

Furthermore, Brodt & Silva (2010) showed by axially loading mouse tibias 

at strains of 900-3100µε with 10 second resting time in between each load for 60 

cycles/day, results in a strong cortical response and increased cortical area in 

young and old mice. They also showed that 3-point bending (Figure 2) is a good 

tool that can be used to cause high strain magnitudes in the tibias and activate 

bone formation at the endocortex and periosteum. Results also showed that 
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generally bone formation increased with increasing peak force (Silva & Brodt, 

2008). 

All of this research demonstrates that strain rate may be just as important 

as strain magnitude and whether using mechanical stimulation of low amplitude 

(of only hundreds of microstrain) at high frequency or high amplitude (1000-

3000µε) at low frequency, generally strain rates around the 10,000µε/s range can 

evoke an anabolic cortical response.  

3. Exercise Literature 

In addition to using mechanical stimulation in animal models to study bone 

remodeling, research has also been conducted looking at the direct effects of 

human exercise and resistance training to the bone mineral density and cortical 

bone geometry in the femoral neck. 

  Kohrt et al. (1997) studied the effects of exercise training in BMD in older, 

sedentary women.  It was discovered that exercises that introduced stress to the 

skeleton through ground-reaction forces (for example walking, jogging and stairs) 

had a larger effect on femoral neck BMD than joint-reaction force exercises 

(weight lifting and rowing). 

Research done by Lang and colleagues (2014), found that resistance 

training in humans such as squats and deadlifts three times a week, for 16 

weeks, increased vertebral and femoral neck cortical BMD, and standing hip 

abductions and adductions increased trochanteric cortical volume.  

More recently, the osteogenic effects of recreational soccer and resistance 

training on elderly men has also been investigated. In 2014, Helge et al. found 
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that four months of recreational soccer increased BMD in the proximal femur and 

the effects continued to develop even after 12 months. 

This can also be seen in the work of Narra and colleagues in 2013. Narra 

categorized female athletes into groups depending on their typical training 

activity and compared them to age-matched controls. The groups included high 

impact (high and triple jump), odd impact (racket and soccer playing), high 

magnitude (power lifting), repetitive low impact (endurance running) and 

repetitive non-impact (swimming). Results suggested that the high impact group 

had weaker antero-superior regions of the femoral neck, but stronger inferior 

weight-bearing regions. This indicates that since the loading scenario was 

essentially a higher intensity of stance loading that the femoral neck only got 

stronger in the inferior regions where high compressive stresses were applied.  

Narra (2013) also reported that the odd-impact group had stronger 

superior, posterior and anterior regions of the femoral neck. Signifying that odd-

impact exercises that stress the femoral neck in varying directions in which it is 

unaccustomed, correlates with a stronger overall cross section of the femoral 

neck; this makes the proximal femur more resistant to loading conditions other 

than just normal gait.  

What is common to all of these studies is that exercise can have an effect 

on BMD in the femoral neck and suggests that exercise can be used as a 

therapy to increase bone strength or prevent further bone loss. It is also obvious 

that the exercises that are more dynamic with high impact loading conditions 

seem to induce more osteogenesis, as compared to resistance training with more 
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FIGURE 3 - Plain X-ray of a hip fracture (Dierselhuis, 2010). 

static, low impact loading conditions. However, the intensity of the exercise is not 

only important to encourage remodeling, but the direction of loading dictates 

where the bone remodeling occurs.  

4. Biomechanics of Hip Fractures 

Specifically a “hip fracture” is a fracture within the femoral neck or 

intertrochanteric region of the femur (Figure 3). A resounding 95% or more of hip 

fractures are caused by falls, most commonly falling to the side and impacting 

the greater trochanter (Parkkari et al., 1999;  Hayes et al., 1993). 

 

Research has been performed on the mechanics and propagation of these 

fractures and how it relates to the bone geometry and remodeling tendencies 

(Bakker, 2009). During normal gait, maximum stresses occur in the neck region 
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of the femur, with maximum compressive stress in the inferior region and tensile 

stress in the superior region (Figure 4).  

 

Therefore, over the course of a person’s life, the femur is intended and 

remodeled for this loading condition. Consequently, in older individuals the 

superior cortex becomes considerably thinner than the inferior cortex, which is 

visible in the femoral neck cross section shown in Figure 5.  For a fall to the side, 

these stress characteristics are reversed, with compressive stress in the superior 

region and tensile stresses in the inferior region (Figure 4) (Bakker, 2009; 

Yoshikawa, 1994). Since the femur is very rarely loaded in opposition, when a fall 

to the side does occur, the majority of the fractures involve a two-step failure 

process. The fracture initiates on the weak, thin superior neck first and then a 

FIGURE 4 - Stress distribution and magnitude in the femoral neck during (a) walking and 

(b) a fall to the side (Bakker, 2009). 
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FIGURE 5 - (a) A representative cross section of the adapted femoral neck of an 

older individual; showing a thinner superior cortex as compared to a thicker inferior 

cortex (b) location of cross section in ‘a’ (Bakker, 2009). 

second macroscopic crack develops in the inferior neck or medial 

intertrochanteric region (Bakker, 2009). 

 

Therefore, strengthening the supero-lateral neck in compression and the 

inferior-medial neck in tension is critical for preventing fracture.  

 

C. Proposed Solution / Research 

Most of the current solutions to femoral neck fractures involve drug 

therapy to increase overall bone density throughout the body or surgical 

intervention after a fall or fracture already occurs. However, the following thesis is 

a proposed solution for a preventative exercise therapy to strengthen the femur 

in the critical locations so that if a fall were to occur, then it would be less likely to 

result in fracture. As an additional supplementary benefit, exercising the lower 

body not only will strengthen the bone where it is needed but may also 
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FIGURE 6 - Demonstration of the body position and movement of the proposed 

exercise using a prototype device. 

strengthen the abductor muscles that contribute to balance and strength in 

walking and standing, which may prevent a fall in the first place.  

The proposed exercise involves using an exercise device (Figure 6) for 

use at home or in a gym setting during a directed or self-monitored exercise 

program. It is designed for people entering the stages of poor bone health, 

including elderly individuals. In order to perform the exercise, the user should be 

in a sitting position (hips at 90 degrees), with the resistance pads positioned 

touching the proximal outer thigh at the location just below the lateral 

prominences of the greater trochanter. Knees should be flexed approximately 90 

degrees with both feet on the floor spaced about shoulder width apart. Using 

quick, dynamic motions the user should abduct both legs simultaneously and 

forcibly push against the two resistance pads with the outer thighs and then 

return to the neutral starting position.  
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FIGURE 7 - Abduction of the legs causes an inertial force at the knees, which when 

impacting a pad on the outer thigh, is balanced by reaction forces at the pad and 

hip. This creates compressive strains on the lateral side of the femur and tensile 

strains on the medial side of the femur. 

The initial hypothesis is that the exercise protocol should include twenty 

repetitions of this action with a pause (>10 s) between each repetition. Three or 

four sets of 20 repetitions should be performed three to five days a week. This 

protocol is modeled after the loading regimen designed by Brodt & Silva (2010) 

described in the previous section, which utilizes a triangle loading and unloading 

waveform with a 10-second rest period between each loading event.  

The concept of using bending to promote cortical bone formation will also 

be employed: by moving the knee outward during the exercise, it creates a 

inertial force, which on impact of the outer thigh against the pad develops a 2nd 

force which is driven though the femoral neck and is eventually resisted by a 3rd 

reaction force at the joint (Figure 7).  
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Essentially the exercise exploits 3-point bending to replicate the loading 

conditions of a fall to the side at a lesser magnitude and higher frequency with 

the hope to induce the body’s natural bone remodeling process in the critical 

regions prone to fracture.  

The target population of this exercise would generally include anyone 45 

and older who are either at risk of a hip fracture due to bone quality problems or 

have a close relative (such as a grandparent or parent) who has already 

experienced a hip fracture. More specifically, it would benefit the 44 million 

Americans that already have osteopenia or patients entering the osteoporotic 

stage of bone degradation. Additionally, it could be advantageous for anyone 

who is aware of the importance of good bone heath and desires to prevent a hip 

fracture from occurring. 

Since there is no current way to non-invasively measure the strains in-vivo 

in the femur during the proposed exercise in human patients, a series of 

experimental tests using artificial bones as well as cadaver studies were 

performed. Subsequently, a Finite Element Analysis (FEA) computer model was 

designed and validated using the experimental data in order to optimize the 

exercise as well as prove its safety and effectiveness.  
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Figure 8 - Strain gauges were mounted on the top and bottom of the lap bar, as 

indicated by the red arrows. 

 

 

 

 

II. METHODS & MATERIALS 

 

A. Exercise Device 

The first generation prototype exercise device used in this research was 

fabricated prior to the experiments outlined in this thesis, using extruded 

aluminum and associated fasteners (80/20, Inc.). The basic structure shown in 

Figure 8 includes a lap bar and two vertical impact pads that are adjustable to the 

width of the patient’s hips.  
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TABLE I 
STRAIN GAUGE SPECIFICATIONS 

icro-Measurements Precision Sensors 

Part # MMF019403 

Grid Resistance (in Ohms): 120.0 +/- 0.3% 

TC of gauge factor %100°C: (+1.3 +/- 0.2) 

Gauge factor @ 24°C = 2.110 +/- 0.5% 

Transverse Sensitivity: (+1.0 +/- 0.2%) 

 

 

B. Device Sensor Calibration 

Strain Gauges (specifications in Table I) were mounted (per the protocol in 

Appendix I) centered on the top and bottom of the lap bar of the device. These 

strain gauges were connected using a half bridge and then connected to the data 

acquisition system (DAQ) and LabVIEW program. Using a MTS machine the 

pads of the exercise device were slowly pushed outward at 1mm/s for total of 

20mm. As the pads are pushed outward the lap bar bends, the deformation 

causes the electrical resistance of the strain gauges to change, which in turn 

changes the voltage measured across the gauges.   

 

 

 

 

By recording the force measured by the MTS machine (F) and bridge voltage 

measured across the strain gauges (V), a correlation curve was created     

(Figure 9) so that the force being applied to the pads could be calculated from 

the strain gauges. Using this linear relationship the LabVIEW program was edited 

so that real time impact force measurements could be measured as the exercise 

was simulated.  

 

(1)              F=1.5978V+1.4439 
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C. Realistic Human Capability 

1. Force Determination  

In order to determine realistic forces applied to the pads of the device, 

data was collected from several students as they performed the proposed 

exercise. It was found that using the device with the pads positioned proximal on 

the femur, peak forces achievable ranged from 350.2-557.9 N, with an average 

of 445.9 N. Since the nature of the exercise is very dynamic and the soft tissue of 

the upper thigh is striking the pads, the intensity in which the subjects hit the pad 

varied the comfort levels of the exercise. About 350 N was reported as soft 

impacts, 450 N hard but comfortable, and 550 N very hard and somewhat 

uncomfortable. Therefore, the goal of 450 N was chosen for the following 

experiments as an appropriate amount of force being applied to the pads.  

 

FIGURE 9 - Calibration curve developed for the exercise device. Variables include the 

applied force of the MTS machine vs. the voltage read by the strain gauges on the device. 



18 
 

2. Kinematic Information 

Since the force applied to the pads was measured through the bending of 

the material of the bar, it does not necessarily correlate perfectly to the actual 

reaction force at the pad.  In this way, the “calibration” of the force at the pad 

from the experiments was inherently inaccurate. Instead it was used more for a 

guide on the intensity of the exercise. So with the purpose of determining more 

appropriate input variables for the FEA model, kinematic data was used to 

translate the realistic 450 N force, into the angular velocity of the femur.  To do 

this, a high speed camera was set up directly above a student as they performed 

the exercise. Reflective tracking dots were placed on both knees. Video was 

recorded at 200 frames/second and then uploaded into MaxTraq (Figure 10).  

A stationary point was selected at the approximate position of both femoral 

heads and the position of each knee was traced as the legs moved throughout 

the exercise. Using the neutral starting position of the legs, the angular velocity 

was calculated throughout each abduction (see Figure 10).  Just like the forces 

applied to the pads, the velocities also varied depending on intensity. It was 

calculated that the impacts ranged from 3.2 rad/s for soft impacts to 5.8 rad/s for 

FIGURE 10 - Sequential MaxTraq images of the exercise being performed tracing 

the angle of the legs during abduction in order to calculate the angular velocity. 
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very hard and somewhat uncomfortable impacts, with an average of 4.7 rad/s for 

hard but comfortable impacts.  

Therefore, a secondary correlation was developed relating experimental force 

(F) applied to the pad, to angular velocity (ω) of leg during exercise:  

 

(2)     F=78.66ω+91.45, R²=0.98. 

 

D. Artificial Femur Experiment 

In order to observe the strain distribution throughout the femur during the 

exercise, a simulation of the exercise was conducted using an artificial femur 

(specifically a 4th generation Sawbone™ composite femur, Pacific Research 

Laboratories, Vashon Island, WA) and an artificial hip joint. This sawbone models 

cortical bone using a mixture of short glass fibers and epoxy resin around a foam 

core and is designed to be an artificial representation of an anatomical bone and 

have similar tensile and compressive strengths. First, the composite femur was 

instrumented with three strain gauges. Placement of these strain gauges was 

near the critical locations of the lateral neck (LN), medial neck (MN) and medial 

shaft (M3). Exact placements were determined using the procedure developed 

by Zani et al. (2015), seen in Figure 11. The strain gauges were also mounted 

per the protocol in Appendix I.  
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 Next, an artificial hip was created using a wooden block with an 

appropriate size (63.5 mm) drill hole, similar to that of an acetabulum (Figure 12). 

Plastic/PVC tubing was used to ensure a tight fit of the femoral head but allowing 

relatively low friction movement mimicking an actual hip joint. The artifical 

acetabulum fixture was secured to a table and the exercise device was placed 

above, simulating the realistic positioning as much as possible.  

Since only one femur was used in the experiment (as opposed to both 

legs being abducted simultaneously in the exercise), one side of the bar was 

secured to the table with a vice. To simulate the soft tissue of the outer thigh a 

viscoelastic rubber cube was used with properties similar to soft tissue. This cube 

was placed in between the sawbone femur and the pad.  

 

FIGURE 11 - Strain gauge placement was based off of the work of Zani et al. (2015). 

Three critical locations were chosen as Lateral Neck (LN), Medial Neck (MN) and 

Medial Shaft (M3). These placements were determined based on the  

Head Diameter (HD), and Biomechanical Length (BL). 
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FIGURE 12 - Set of the sawbone experimentation, including (a) an artificial hip,    

  (b) an instrumented sawbone positioned into the artificial hip and (c) overall set-up 

for simulating the exercise. 

 

c 

a b 

 

The knee of the sawbone was then manually manipulated to simulate the 

motion of the exercise. With both condyles flat on the table, an operator pushed 

the knee outward so that the femur impacted the soft tissue/pad and then 

returned to the neutral start position. This was repeated at intensities that 

matched the 350-550N ranges described previously. By using the strain gauge’s 

specifications and measuring the votage across the gauges, strains vaules were 

simultaneously recorded at 1000 Hz at the three locations of the femur.  

 



22 
 

E. Ex-vivo Cadavaric Femur Experiment 

Understanding that a sawbone is an approximation of the size and shape 

of a femur for the general population, with properties relative to bone, the 

previous experiment better represted a healthy adult with good bone quality 

performing the exercise. Therefore, in order to observe the strain distributions 

during the exercise in our target population of osteoportic patients, the 

experiment was repeated using an explanted cadaver femur from an elderly 

female donor (Figure 13). The explanted cadaver femur was instrumented using 

the same placement and mounting protocols as the previous experiment. The 

femur was placed in the same artificial hip with an additional PVC spacer to 

ensure a tight fit on the smaller femoral head and the exercise was simulated and 

results recorded in the same way as the sawbone experiment. 

F. In-Situ Cadaver Experiment 

With the goal of simulating the exercise with even more accuracy, the 

experiment was repeated in a whole cadaver. This incorperates the inertial 

effects of the mass of the soft tissue, as well as the effects of connective tissue 

FIGURE 13  – Placement of the three strain gauges M3, MN, and LN  

on the explanted cadaver femur. 

MN 
M3 
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and ligaments (granted inactive, but still present), and both legs abducting 

simultaneouly. 

In order to accomplish this, a Kocher-Langenbeck surgical approach was 

used to access to the superior-lateral femoral neck. A strain gauge was placed in 

the LN location, similar to the previous experiments. Since the lateral neck is the 

most critical location of stress, only this strain gauge was assessed in this 

experiment in order to limit any further disruption of the surrounding anatomy.  

The cadaver was placed in an upright sitting position with the lower legs 

draped over the table and feet propped on a stool, the exercise device was 

placed in the proximal position (Figure 14), and the knees were manually 

abducted outward so that the outer thighs impacted the pads at the appropriate 

intensity. Force and strain results were recorded the same way as the previous 

two experiments.  

FIGURE 14 – The in-situ cadaver experimental setup. 
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G. In-Silico Computational Solidworks Model 

In order to evaluate the strains occurring throughout the femur and not only 

the three specific locations of the experimental strain gauges, a computational 

FEA model was created to determine safety and effectiveness of the exercise, as 

well as to optimize pad material properties and location of impact of the femur.  

1. Model & FEA 

A SolidWorks computational model made from the CT scan of the cortical 

shell of a sawbone was used for the FEA. In order to allow for frictionless 

movement of the femoral head in the acetabulum, a portion of the femoral head 

which interacts with the acetabulum was replaced with a perfect spherical face 

(Figure 15a). Additionally, a corresponding spherical acetabulum was made and 

fixed in space (Figure 15b, Figure 17a). To prevent rotation of the knee, the two 

lateral surfaces of the condyles were only allowed to move along the top plane of 

the model (Figure 17c). 

FIGURE 15 - Alterations made to the model include (a) making a portion of the femoral 

head spherical and (b) adding a corresponding spherical acetabulum. 
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FIGURE 16 - The design of the two part pad including a representation of the    

soft tissue (A) and the pad (B). 

 A two part pad was designed where section A was representative to the 

size, shape and material properties of the imitation soft tissue cube used in 

experimentation, and section B representative of the pad of the exercise device 

(Figure 16). To prevent movement of the pad, the back surface of the section B 

was fixed in space (Figure 17b).  

 

A no-penetration boundary condition was set between the femoral head 

and the acetabulum, and between the femur and the soft tissue/pad. Section A 

and B of the pad were bonded together. 

The pad was positioned the same as in the experimentation, proximally on 

the femur, between 90mm-95mm below the top of greater trochanter. For 

modeling purposes, the starting position of the femoral shaft was 1.0 mm away 

from the pad to allow the impact to be observed, whereas the proposed exercise 

starts with the pad slightly pre-compressed on the thighs.  
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FIGURE 17 - Boundary condition of the FEA model: (a) the outer surface of the 

acetabulum fixed in space, (b) the back surface of pad fixed in space, (c) the lateral 

faces of the condyles restricted to movement normal to the top plane only. Also, the 

externally applied forces including (d) the initial angular velocity applied to the entire 

femur in rotation around Axis 1. 

In order to simulate the motion of the exercise, an initial angular velocity 

was applied to the entire femur with center of rotation set as the axis in the center 

of the femoral head (Figure 17d). The angular velocity of 4.7 rad/s was chosen 

based on the results of the kinematic experiments performed earlier. Once the 

femur impacted the pad it was allowed to bounce back respectively based on the 

boundary conditions and material properties set.  

A nonlinear-dynamic, Large Problem Direct Sparse solver was used with 

Large Displacement and Large Strain Formulation.  A high quality, solid, 

curvature based mesh with 4 Jacobian points was used (Figure 18). Maximum 
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FIGURE 19 - Location of three sensors M3, MN and LN in the FEA model 

that correspond to the experimental strain gauge placement. 

element size was 8.0mm and minimum element size was 1.6mm, totaling 

>37,500 elements with maximum aspect ratio 31.9. Data was stored at 1000 Hz.  

Sensors for measuring strains were included in the model by selecting 

elements at the locations of the strain gauges (Figure 19) by following Zani’s 

(2010) protocol. First principal strain results were used to find maximum tensile 

strains, and third principal strains results were used to find maximum 

compressive strains. 

 

FIGURE 18 - Mesh results of the FEA model. 
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TABLE II 
SAWBONE MATERIAL PROPERTIES 

 

TABLE III 
POOR QUALITY BONE  

MATERIAL PROPERTIES 
 

Three versions of the model were created so that the results of the 

sensors could be directly compared to the results of the strain gauges in the 

experimentation and therefore validate the model.  

 

2. Sawbone FEA 

The material properties of the femur and the acetabulum were based on 

4th generation sawbone material properties that can be seen in Table II.  

 

 

 

3. Cadaveric Femur FEA 

For the second version of the model the bone material properties changed 

to represent poor quality bone to better reflect to the cadaver bone used as well 

as the target population (Table III). However, the geometry of the model 

remained the same, which could cause variation in the results since thinner 

cortical walls could elicit more strains in certain area like the superior-lateral 

neck. The same initial velocity and boundary conditions were applied.  

 

 

Elastic Modulus  16 GPa 

Poisson’s Ratio  0.3 

Mass Density 1640 kg/m² 

Tensile Strength  100 MPa 

Compressive Strength 157 MPa 

Elastic Modulus  11.5 Gpa 

Poisson’s Ratio  0.3 

Tensile Strength  95 MPa 

Compressive Strength 100 MPa 
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4. Cadaver FEA 

Compared to the previous models where only the femur was represented, 

the in-situ cadaver experiment includes the effects of the mass of the soft tissue. 

Since in the proposed exercise and the cadaver experiment the feet are 

supporting the mass of the lower legs, thus the mass of the upper legs is what 

contributes to increased inertial effects. So in order to account for these 

differences in the model, the density of the femur was increased to represent the 

weight of the entire upper leg (6.22 kg). Since the cadaver was a smaller elderly 

female, this weight was taken from anthropometric data on the 5th percentile 

female population (Appendix II), which is also representative of the target 

population. The material properties representing poor bone quality remained the 

same and the same initial velocity and boundary conditions were applied.  

5. Optimization 

In order to design the exercise to elicit as much strain in the critical 

location of the superior-lateral neck as possible, the effects of: pad placement, 

pad material properties, and applied force were investigated.  

The pad was placed at 3 different locations (80mm, 100mm, and 120mm, 

below the top of the greater trochanter) along the lateral side of the femur and 

strains at the three critical locations were evaluated (Figure 20). Material stiffness 

properties were also altered and resulting strains assessed.  
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6. Safety & Effectiveness 

The importance of the computer model was not only to compare the 

results of the experiments to a general femur model to optimize the experiment, 

but also to evaluate the strains throughout the femur and not just the three 

locations measured experimentally. By doing so, the areas that are likely to be 

remodeled can be identified and it can be assured that the proposed exercise at 

the suggested intensities will not cause harm to the patients. Therefore, the 

stresses and strains calculated by the model were compared to the laws of 

remodeling and to known fracture limits.   

 

 

Figure 20 – Pad placement at a) 80mm b) 100mm and c) 120mm below the top of 

the grater trochanter. 
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FIGURE 21 - Strain gauge results for the artificial sawbone experiment, including ten 

different impacts of the pad (impacts ranging from 350-550N of applied force)  

for all three strain gauges M3, MN and LN. 

 

 

 

 

III. RESULTS 

 

A. Artificial Sawbone Data 

For the artificial sawbone experiment at impacts of 450 N, the 

corresponding strains were LN=-367.5µε, M3=838.1µε, and MN=456.3µε. 

Average strain rates were LN: -7,518µε/s (SD=1388), M3: 17,474µε/s (SD= 835), 

MN: 12,871µε/s (SD=1149). The highest tensile strains were measured in the 

medial shaft across from the pad where the cortex was subjected to the most 

bending. Lateral neck strains were in compression and the medial neck strains 

were in tension, which indeed replicates the loading condition of a fall to the side.  
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FIGURE 22 - Anterior (left) and posterior (right) view of the artificial sawbone FEA 

results of (a) 3rd principal compressive strains and (b) 1st principal tensile strains. 

In order to evaluate the accuracy of the FEA model a percentage (D) was 

calculated to compare the experimental strain values (E) to the computational 

FEA strain values (C).  

(3)             𝐷 = [
|𝐸−𝐶|
𝐸

]×100 

For the sawbone FEA, both medial shaft (M3) and lateral neck (LN) strain 

values were within 2.5% of the experimental data (858.4µε and -376.78 µε 

respectively) (Figure 22).  

 

However the medial neck (MN) had 44% less strain (255.6 µε) in the 

model than measured in the experiment. This discrepancy can be explained by 
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experimental off-axis loading. While performing the experiment, as the operator 

abducted the knee to impact the pad, there was likely some inadvertent 

distraction of the knee that could lead to increased experimental tensile strains in 

the medial neck. Since the artificial acetabulum encompasses the entire femoral 

head, any distention that would be applied while abduction occurred would 

magnify these tensile strains. To test this assumption, a force was applied to the 

FEA model in the appropriate direction and it appears that the medial neck is 

roughly 2/3 more sensitive to this distention than the lateral neck.  

However, this distension would not occur in the actual exercise, and for 

that reason the FEA model of the exercise utilizes only pure rotational velocity, 

with the only distention influence due to mass and inertia. Thus, this theory 

explains why the FEA model results had less strain than the experiments, and it’s 

concluded that the FEA model medial neck strains would be more accurate than 

what was captured during the experimentation. This explanation could be further 

tested by intentionally axially distracting and compressing the femur during the 

experiment to determine the effects on femoral neck strains. 

Another important factor that the FEA model revealed is that the locations 

of the strain gauges/sensors did not necessarily capture the maximum strain 

values in their regions. This suggests that strain amplitudes were actually higher 

than what was recorded experimentally. In the sawbone model peak strains were 

26.2% higher (322.6µε) in the medial neck, and 91.6% higher (-722.1µε) in the 

superior-lateral neck (Figure 23) than what was measured by the sensors. The 

medial shaft sensor did capture the peak strains in the shaft (858.7µε).  



34 
 

FIGURE 23 - FEA compressive strain results showing peak strain location in the 

lateral neck is not within the gauge / sensor location. 

 

B. Ex-Vivo Cadaveric Femur Data 

For the following ex-vivo cadaveric femur experiment, strain magnitudes at 

450N impacts were LN= -766.5 µε, M3= 1100.9 µε, and MN= 589.1 µε, Average 

strain rates were LN: 14,910 µε/s (SD=2138), M3: 22,937 µε/s (SD=2417), MN: 

13,379 µε/s (SD=2054). These strains magnitudes were 108.5%, 31.4% and 

29.1% higher, respectively, than the sawbone strain results. Additionally, the 

strain magnitudes were considerably higher in the lateral neck which reached 

69.6% of the strains in the medial shaft, as compared to 43.8% in the sawbone 

model. This can be explained by the lower bone quality, and thinner superior 

cortex of the elderly cadaveric specimen as compared to the representative 

healthy sawbone.  
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For the FEA results that represent the ex-vivo cadaver experiment, the 

medial shaft strains at the sensors (M3=1114.2 µε) were within 2% of the 

experimental strains however, as expected the medial neck (MN = 252.9µε) and 

lateral neck (LN = -430.12µε) strain values at the sensors were significantly lower 

than experimental strains; this may also be in part due to experimental off-axis 

loading, but most likely due to the anatomical geometry differences between the 

cadaver femur and the model. Since the model is based on the cortical shell of a 

sawbone, the cadaver femur is likely to have a much thinner cortical wall within 

the femoral neck, especially in the superior-lateral neck. This would correlate to 

much higher experimental strains in the femoral neck of the cadaveric bone, but 

would not be reflected in the model. However, even without the reduced wall 

thickness, peak strains in the supero-lateral neck of the FEA model still reached 

over 850µε.   

C. In-Situ Cadaver Data 

Lastly, the in-situ cadaver experimental strains at a realistic 450N impacts 

were LN= -1511.3µε with a strain rate of 36,954µε/s (SD=8933). This is over four 

times the strain magnitude seen in the lateral neck of the sawbone experiment 

and while this was predicted to be larger due to the added mass and inertial 

effects, it is also expected to be the most accurate strain representation of all 

three experiments. These strain magnitudes and strain rates are within the 

remodeling range and suggest that this exercise at this intensity could produce 

an anabolic remodeling response in the lateral femoral neck. 
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Similarly, after the computer model was changed to represent the in-situ 

cadaver which included the mass of the upper leg, strains in all three locations 

increased significantly. It only took an applied 4 rad/s of initial velocity in the FEA 

to reach 1500µε at the sensor location in the lateral neck which is within 1% of 

the in-situ cadaver experimental data for a 450N force. Peak strains were 

3217.6µε in the medial shaft, 1589µε in the medial neck and -2736.7µε in the 

lateral neck. These strain magnitudes are well above the strains needed to 

achieve remodeling. 

 

 

 

 

 

 

 

 

 

 

FIGURE 24 - FEA tensile strain results for a) the peak medial neck and shaft strains, 

b) anterior view and c) posterior view of the femur. 



37 
 

 

D. Optimization 

 Due to the thickness of the imitation soft tissue block used in the 

experiments, most of the interaction happened between the femur and the soft 

tissue and therefore, varying the pad properties (without varying the soft tissue 

properties) had little to no effect on strain in the FEA model. However, the 

amount of soft tissue will vary depending on the user and therefore when 

designing the final pad, material properties will need to be considered. For 

maximizing the strain results, the pad should be as stiff as possible; however, 

this needs to be carefully balanced with comfort of the exercise. The users 

should be able to achieve the amount of force applied to the pads as described in 

FIGURE 25 - FEA compressive strain results for a) the peak lateral neck strains,  

b) anterior view and c) posterior view of the femur. 



38 
 

this paper, without causing harm or discomfort. In the same way, while a smaller 

contact surface would be ideal for maximizing strain; surface area of the pad will 

also need to be designed for comfort and prevention of soft tissue damage and 

bruising.  

 Pad placement did have a significant effect on strain distribution. The 

model was simulated with the added weight of the upper leg at a soft, 

comfortable impact intensity of 3.2 rad/s at three different locations of the pad 

(120mm, 100mm and 80mm from the top of the greater trochanter). These 

results can be seen in Table IV. Peak strains in the shaft, medial neck and lateral 

neck were all greater than 1500µε but below 3000µε. As the pad was moved 

more proximally, peak tensile strains in the shaft and medial neck decreased 

whereas the peak compressive strains in the lateral neck increased. Therefore, 

the pad placed more proximally is the most ideal location since it maximizes the 

lateral neck strains and minimizes the shaft strains.  

 

 

 

 

 

 

E. Proof of Concept: Safety and Effectiveness 

The results outlined in Table V suggest that the proposed exercise, even 

at a soft comfortable impact range, can reach remodeling strain magnitudes in 

  80mm 100mm 120mm 

Shaft 2467.3 µε 2550.1 µε 2741.6 µε 

Medial Neck 1507.6 µε 1548.4 µε 1570.6 µε 

Lateral Neck -2451.6 µε -2273.5 µε -2268.6 µε 

Ratio M3 : LN : MN 1.00 : 1 : 0.6 1.12 : 1 : 0.68 1.20 : 1 : 0.69 

TABLE IV 
STRAIN RESULTS AT DIFFERENT PAD PLACEMENTS 
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TABLE V 
OVERVIEW OF RESULTS 

*All values in microstrain (µε) 

most of the lateral neck, with peak strains reaching -2451.6µε. At the optimal 

position (with the pad as proximal as possible), peak strains in the remainder of 

the femur are below the fracture rate and are highest (2467.3µε) in the medial 

shaft directly across from the pad. If the pad is moved more distally the strains in 

lateral neck decrease, but are still within the remodeling window, and the strains 

in the shaft increase. At high intensities this may enter the shaft into the 

remodeling window (>3100µε) that can cause microdamage and promote woven 

bone formation, however, these impacts are still well below the fracture limit 

(>25,000µε).  

Based on bone mechanical stimulation animal literature, the experimental 

strain rates in the lateral neck are also high enough (>10,000µε/s) to promote 

anabolic bone remodeling, and suggest that this exercise may be a valuable 

therapy for strengthening the proximal femur.  
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IV. DISCUSSION 

 

A. Limitations 

The model was designed to get general strain distributions throughout the 

femur for the proposed exercise and was greatly simplified to be computationally 

effective in order to be able to process the data in a realistic timeframe. However, 

this model differs from the real experiment in several ways which could have an 

effect on the results. First, the model was based only on cortical bone, since this 

is the target of the research and the most likely to remodel, however it does not 

take into account the underlying effects of cancellous bone. Secondly, since the 

model had linear elastic isotropic material properties for the bone, it does not 

take into account the directional sensitivity of bone, nor does it take into account 

the viscoelasticity of bone tissue.  

Also as explained earlier, the geometry of bone has a major role in strain 

distribution. However, the geometry of the femur can differ greatly between 

individuals and for that reason the sawbone was chosen for the computational 

model to represent the general population, but it needs to be understood that 

strains results have the possibility to vary greatly from patient to patient. Soft 

tissue will also have a significant effect on the exercise; it varies greatly between 
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individuals and is very difficult to model with accuracy, which is why the imitation 

soft tissue block was used in these experiments. Additionally, bone material 

properties will likewise vary with individuals. Poor bone quality was used in these 

experiments and modeling in order to represent the population already entering 

the osteopenia/osteoporotic stages. Active muscle and ligaments will also have a 

powerful influence on the movement of the exercise, the force distribution and 

the impact, but because of its complexity, will realistically only be able to be 

evaluated in human trials.   

B. Considerations & Future Development 

While the target population for this research are people likely to start loosing 

bone mass or those already in the osteopenia/osteoporotic stages, bone quality 

may already be diminished and may not be able to handle as much applied 

stress as a healthy bone. Thus, resultant strain values need to be well below the 

fracture limits for a healthy individual in order to ensure safety. It should be 

considered that users with poor bone health may not need to impact the pads as 

hard as those with healthier bone in order to achieve similar strain magnitudes in 

their exercise regimen. 

Since the users are likely to be older individuals or those already in poor 

health, they may not have the ability to achieve the amount of force needed to 

impact the pads hard enough. For that reason further research and development 

is being done to create a device that will abduct the legs for the user, or use high 

frequency - low amplitude impacts directly to the greater trochanter to induce 

remodeling. A phone application utilizing the phone’s accelerometer and 



42 
 

gyroscope will be developed to measure the user’s impact intensity to ensure 

they are in the correct ranges, as well as to measure the user’s performance and 

frequency of use.    

Pending completion of this research and development of the final devices, 

clinical trials will be performed to further evaluate the safety and efficacy of this 

exercise. This will be a prospective randomized controlled trial of volunteer 

subjects using the final device as part of a regular exercise program for six 

months. To evaluate bone formation, baseline pre-study measurement of bone 

mineral density by dual-energy x-ray absorptiometry (DEXA) will be taken before 

the users start the exercise regimen and then again after six months of 

performing the exercise.  Serum and/or urine markers of bone turnover will also 

be measured as well as abductor muscle strength and balance in one leg-

standing. Results will conclude if the exercise has a significant beneficial effect 

on bone quality in the superior-lateral region of the proximal femur.  
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V. CONCLUSION 

 

Preliminary experimental and FEA model results show that the proposed 

exercise has the potential to produce high enough strain magnitudes (>1000µε) 

and strain rates (>10,000µε/s) in the superior-lateral femoral neck in order to 

induce anabolic bone remodeling, while being well below the fracture limit in any 

area of the femur. This suggests that the proposed exercise could be a beneficial 

therapy for strengthening the proximal femur and may aid in the prevention of hip 

fractures. Subsequent steps to obtain IRB and FDA approval for clinical trials 

should now be initiated. 
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VII. APPENDIX I. 

STRAIN GAUGE MOUNTING INSTRUCTIONS 

 

-For gauge placement on Lap Bar, steps 1-13 were used. An additional dummy 
gauge was placed on a neutral 80/20 bar to complete the half bridge.  
 
-For gauge placement on the sawbone and cadaver bones, step 1 was skipped. 
An additional dummy gauge was place on a neutral sawbone to complete the half 
bridge. 
 
Protocol: 

1. Degrease metal with CSM-1 
2. Use “Conditioner A” acidic surface cleaner, use sandpaper to remove 

polish and abrase surface 
3. Wipe with cloth 
4. Clean with 70% isopropyl alcohol and gauze 
5. Wipe again with Conditioner A and gauze 
6. Use “M. Prep Neutralizer” and gauze and wipe dry 
7. Use forceps to align strain gauge and place on material 
8. Place extra nodes below gauge 
9. Cover with cellophane tape, press and pull back on tape slowly and lift 

gauge and nodes off surface 
10.  Place small amount of Loctite liquid on back of gauge and node 
11.  Return tape back into position making sure gauges are in place on 

surface, apply pressure on gauge and node for 5 minutes 
12.  Remove cellophane tape, gauge and node should be adhered to surface 
13.  Repeat as necessary 
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VIII. APPENDIX II 

ANTHROPOMORPHIC DATA (Winter, 2005) 
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