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ABSTRACT 

ADVANCES IN TUMOR-TARGETED THERAPY USING NANOMEDICINE  

 

Divya Karukonda 

July 31st, 2017 

 

 Despite continuous improvement and significant progress made in 

diagnostic and therapeutic approaches for cancer, it is still the leading cause of 

death worldwide. Although conventional chemotherapy has made significant 

advances in improving patient survival the indiscriminate destruction of normal 

cells leads to severe side effects and poor clinical outcomes. Thus, there is a 

need for effective delivery of drugs to the tumor site avoiding normal tissues to 

reduce toxicity in the rest of the body. For this reason, a novel multidisciplinary 

field called Nanotechnology has evolved in recent years and advances in this 

field have contributed to the development of nanoscale materials to overcome 

the lack of specificity of conventional chemotherapeutic agents for optimized 

cancer therapy. Nanoparticles can be designed to preferentially target the tumor 

site and deliver high drug payloads by either passive or active targeting. Passive 

targeting exploits the preferential drug accumulation in tumor cells through 

enhanced permeability and retention (EPR) effect. On the other hand, active 
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targeting uses functionalized nanoparticles to carry a drug to the specific site. 

This targeting strategy is becoming a new standard in cancer treatment. A 

selective and tumor site-specific treatment can be achieved by using various 

ligands such as aptamers, antibodies, peptides, and small molecules. Targeting 

nanocarriers serve as a highly promising strategy for effective cancer treatment, 

as shown by encouraging results in many recent studies. This thesis highlights 

the diversity of nanoparticle types, targeting mechanisms and active targeting 

strategies. I will also discuss an emerging field of nano drug delivery using 

biological nanovesicles called exosomes. Finally, I will discuss the current clinical 

status of nanoparticle formulations. 
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CHAPTER I 

INTRODUCTION 

Cancer and therapy 

Cancer is the leading cause of death worldwide despite continuous 

improvement in the therapeutic strategies and early detection. Cancer incidence 

has been increasing in recent decades and American Cancer Society estimates 

that the number of new cases are projected to increase by 50% worldwide from 

14 million in 2012 to 22 million by 2030. In 2017, 1,688,780 new cancer cases 

and 600,920 cancer deaths are estimated to occur in the United States (1). 

Cancer is a complex disease caused by uncontrolled growth and division of 

abnormal cells due to gene mutations. As a result of mutational changes, cancer 

cells exhibit certain characteristics including proliferation, resistance to signals 

that inhibit their growth and resistance to apoptotic signals that cause cell death, 

which make it difficult to treat the disease (2). Cancer cells interact with the 

microenvironment to acquire different capabilities during the multistep 

development of a tumor particularly, overcome immune response for survival, 

activate stromal cells to inappropriately promote angiogenesis, and invade 

through tissues, and metastasize to distant organs induced by tumor 

microenvironment components (3).  
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Standard treatment for cancer includes combinations of surgery, radiation 

and chemotherapy (chemo). Other treatment options include hormonal therapy 

and targeted therapy (including immunotherapy such as monoclonal antibody 

therapy). The choice of therapy depends upon the location, grade of the tumor 

and the stage of the disease. Over the last decade a number of potent anticancer 

drugs have been developed with various mechanisms of action such as blocking 

nucleic acid biosynthesis, interfering with gene transcription, causing cell cycle 

arrest, inducing apoptosis, and inhibiting angiogenesis (4). 

Limitations of conventional therapy 

Conventional chemotherapy that targets DNA is very effective and has 

resulted in improved survival rates of cancer patients. However, it has several 

limitations such as poor solubility, poor selectivity, non-specific drug distribution, 

fast clearance rate, systemic toxicity, multi-drug resistance, cancer reoccurrence, 

off- target effects along with severe side effects (5).  These limitations pose a 

significant challenge in the effective treatment of cancer. Most of the 

chemotherapeutics in the market at present such as doxorubicin, paclitaxel, and 

vincristine have less selectivity toward the target and are systemically distributed 

without selective localization to site of tumor. Thus, higher doses are required to 

achieve pharmacological levels at the target site and this leads to increased 

toxicity to the normal tissues causing severe side effects. An example of this is 

anthracycline drug causing cardiotoxicity, severe in some cases (6). In order to 

avoid toxic side effects, chemo drugs are often given at lower doses, which are 
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less than the required doses resulting in subsequent failure of therapy 

accompanied by development of drug resistance and metastatic disease. 

Hence, eradication of cancer still remains a major problem due to its 

heterogeneous nature and inability of chemotherapeutics to reach the tumor site 

without damaging the normal healthy tissues.         

Effective solution  

Delivering drug to the disease site is a major hurdle for many of the 

diseases including cancer. Because of the limitations noted above there has 

been enormous interest in developing an innovative technologies that can deliver 

drug at the target site. Over a century ago Paul Ehrlich introduced a concept of 

“Magic Bullet” for targeted drug delivery (7). It has two entities: the first one is 

that the drug should recognize the target and the second is that the drug should 

provide therapeutic action at the targeted site. Cell- or tissue-specific targeting is 

achieved by encapsulating a  drug and targeting moiety in an appropriate 

pharmaceutical carrier which is the revised version of Ehrlich magic bullet (8). 

Nanoparticles can be designed including all three entities and could be used as 

both therapeutics and diagnostics. A number of studies show that most of the 

limitations of conventional drugs can be overcome by nanotechnology and that 

nanoparticles as carriers have huge potential to overcome the limitations of 

chemotherapeutics (9, 10). 



4 
 

Nanotechnology in cancer 

Nanotechnology involves use of nanometer scale materials and systems 

by controlling the matter on a level of atomic, molecular and supramolecular 

scale. (11-14). The size of nanomaterials is around 10-100 nm and their unique 

size is ideal for increased solubility, oral bioavailability, rate of dissolution, 

surface area, high therapeutic loading and rapid onset of therapeutic action upon 

intracellular uptake (15). In contrast, conventional drugs are rapidly cleared from 

the body, reducing the amount of drug at the tumor site (16). Nanocarriers with 

drugs incorporated increase the half-life of drugs in circulation, allowing a greater 

amount of drug to reach the target site (11). Anticancer drugs in nano 

formulations exhibit enhanced therapeutic index due to improved 

pharmacokinetics, tissue distribution, and enhanced accumulation or release of 

the drug at the tumor site (17). The nano-sized particles exhibit more 

extravasation and permeability into tumor tissues with leaky vasculature in 

contrast to neo-vasculature of normal tissues, minimizing off-target toxicities, and 

enhancing delivery to site of action. Their small size also facilitates oral, nasal, 

ocular, and parenteral routes of drug administration. Thus, nanoparticle drug 

delivery systems can serve as the successful tools to anticancer therapy. 

A variety of nanostructures have been investigated such as synthetic 

biodegradable polymers, lipids (liposomes), mesoporous silica nanoparticles 

(MSNs), micelles, quantum dots, carbon nanotubes, and gold nanoparticles for 

the treatment of cancer (18-22). A summary of their properties is presented in 

Table (1) (23) 
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Liposomes, first discovered by Dr. Alec Bangham in 1961 (24), and are 

extensively explored as the  nanocarriers for the targeted drug delivery. A 

separate field of liposomal technology research was started by the approval of 

first nano drug - DoxilR which is a big hit in the market. The   field of liposomal 

literature is only focused on liposomes without the term nano until 2000. 

Liposomes are closed vesicles surrounded by a lipid bi-layer membrane 

composed of phospholipids. Their hydrophilic core can be used for the 

entrapment and delivery of water-soluble drugs. These vesicles are uni- or muti-

lamellar and have a potential to carry both hydrophilic and lipophilic molecules 

entrapped within the lipid bilayer. Availability of liposomes with diverse properties 

makes them the most intelligent drug carrier systems available (25) 

Polymeric micelles are nano-sized vectors that contain amphiphilic block 

copolymers which assemble to form nanoscopic core-shelled colloidal structures 

termed micelles. Their advantage is in trapping drugs physically within the 

hydrophobic cores or linking drugs covalently to component molecules of the 

micelle. Additionally, they proved to be an excellent novel drug delivery system 

due to their high stability in physiological conditions, high loading capacity, and 

high accumulation of drug at target site (26). 

Dendrimers are a class of polymeric materials. First discovered in the 

early 1980’s by Donald Tomalia and colleagues (27), these  hyper-branched, 

tree-like, structured polymeric molecules originate from the Greek word dendron, 

meaning a tree. As the chains growing from the core molecule become longer 

and more branched, they adopt a globular structure. Dendrimers become 
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densely packed as they extend out to the periphery, forming a closed membrane-

like structure. Their sizes range between 1.9 nm and 4.4 nm, the smallest 

nancoarriers so far developed. Dendrimer-drug interactions or drug loading in 

dendrimers may be achieved by various approaches: simple encapsulation in the 

interior of dendrimers (illustrated in Fig. 1) involves electrostatic interactions and 

covalent conjugations to the surface of the dendrimers. They serve as an ideal 

carrier for drug delivery due to several advantages, for example, they can be 

modulated for target-specific drug delivery, have a defined molecular weight, are 

of a small size, and have good entrapment efficiency , thus offering a good 

surface for functionalization (28). 

The general term nanoparticles (NPs), describes a wide range of nano 

systems including organic polymeric NPs, composed of synthetic or natural 

polymers or proteins (i.e, albumin), solid lipid nanoparticles comprising of 

physiological lipids, as well as inorganic NPs such as semiconductor NPs, iron 

oxide NPs, quantum dots and gold NPs (29) 

Polymeric nanoparticles are widely investigated nanoparticles in clinical 

trials, and received much attention after the initial work of Langer and Folkman in 

1976 (30). Because of their biodegradability, biocompatibility, high drug loading, 

stability and flexibility, polymeric nanoparticles are used for controlled release of 

drug. They usually consist of a general core-shell structure and are also 

subdivided into various categories according to their basic chemical and core 

shell composition and their morphology, including nanocapsules (NCs) and 

nanospheres (NSs). Nanocapsules are hollow spherically-shaped vesicular 
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particles, where the drug is confined to a hollow core, usually composed of oil 

droplets, which is surrounded by a polymeric shell or membrane (31). 

Nanospheres are solid colloidal matrix systems, ideally uniform in their core-shell 

polymer partition, where a drug is dispersed or dissolved in the polymer matrix 

(32) (Fig. 1). Various synthetic and natural polymers currently being investigated 

for the design and potential applications of nanoparticles are polyethylene glycol 

(PEG), poly lactic acid (PLA) and poly D,L-lactide co-glycolide) (PLGA) and their 

copolymers PEG-PLA, PEG-PGA, PLGA and PEG-PLGA; these nanocarriers are 

the most widely investigated synthetic polymers for drug and gene delivery (33-

38). 
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Figure 1. Basic structure of nanoparticles used for cancer therapy entrapped 

with drug (Source : With permission from Katayoun et al., 2015 Active-targeted 

Nanotherapy as Smart Cancer Treatment ) (39).  
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Table 1 

Summary of characteristics and representative applications of various nano 

systems 

Nano 
particle 

Size(nm) 
Characteristic 
properties 

Applications Ref 

Carbon-
nanotubes 

0.5-3 
Cylindrical tube of 
crystal carbon sheets, 
Biocompatible 

Drug, gene and 
peptide delivery 

(23) 

Dendrimers <10 

Highly branched 
synthetic polymeric 
structures, 
low polydispersity, 
Biocompatible 

Controlled drug 
delivery 

(28) 

Liposomes 50-100 

Phospholipid bilayered 
vesicles, Biocompatible 
and good entrapment 
efficiency 

Passive and active 
drug delivery of 
drugs, gene, 
peptides and 
others 

(25) 

Polymeric 
micelles 

10-100 

Hydrophobic core 
wrapped by single layer 
of hydrophilic polymers, 
high drug entrapment, 
payload, biostability 

Active and passive 
drug delivery, cell 
specific targeting 

(26) 

Polymeric 
NPs 

10-1000 

Biodegradable, 
Biocompatible, 
complete protection of 
drug 

Site selective 
delivery, excellent 
carrier for 
controlled and 
sustained drug 
delivery 

(23) 

Gold <100 
Small size with large 
surface area, 
biocompatible 

Hyperthermia, 
drug delivery, 
diagnostic assay, 
radiotherapy 
enhancement 

(40) 
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Despite the variety of nanomaterials designed for tumor targeting, only a 

limited number of formulations are clinically approved (Table 4). Treatment 

efficacy is often impeded by nonspecific drug distribution and lack of specificity to 

the target tissue site. Ideally, enhancing drug accumulation at the site of tumor 

will lower the systemic exposure and result in a more efficient and patient-friendly 

treatment. Several drug-targeting strategies can be engaged to reach target 

tissues. These include active and passive targeted drug delivery which are 

described in Chapter II. Targeted delivery of anticancer agents is a rapidly 

evolving and is a highly promising field of research.  Indeed, targeted drug 

delivery potentially increases the local concentration of the fraction of the 

systemically administered dose reaching the tumor site, minimizing toxicity to the 

adjacent healthy cells. A particular focus has been the active targeting of nano 

drug delivery systems for the treatment of cancer because of the discovery of 

new molecular targets, a deep understanding of biology of cancer, and the failure 

of conventional treatment. Together, these lead to the enormous interest in 

developing tumor targeted nanomedicine for the development of novel drug 

delivery systems. 
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CHAPTER II 

DRUG TARGETING MECHANISMS 

The key to success in cancer treatment is the therapeutic concentration at 

the tumor site. The concentration of therapeutic agent reaching the tumor tissue 

should be precise after crossing and penetrating all the biological barriers in the 

body. Once the drug is at the active site, it should selectively destroy the cancer 

cells, avoiding healthy tissues to reduce adverse effects and toxicity. To achieve 

these goals, nanoparticle drug delivery systems use the characteristics of the 

disease tissue to target their payloads. The drug-loaded nanoparticles reach the 

tumor site by two of the principal mechanisms: passive and active drug targeting.  
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Figure 2. Passive and active targeting to enhance permeability and retention. , 

Nanoparticles (NPs) can be passively extravasated through leaky 

vascularization, allowing their accumulation at the tumor region (A). In this case, 

drugs may be released in the extracellular matrix and then diffuse throughout the 

tissue or tumor. Active targeting (B) can enhance the therapeutic efficacy of 

drugs by increasing accumulation and cellular uptake of NPs through receptor-

mediated endocytosis. (Source: With permission from Suwassa et al., A focus on 

nanoparticles as drug delivery system) (41). 

http://www.medscape.com/viewarticle/770397_3
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Passive drug Targeting 

Nanoparticles drug delivery systems use pathophysiological 

characteristics of the tumor vasculature through the enhanced permeability and 

retention (EPR) effect. The EPR concept was originally described by Maeda et 

al., 1986 and this theory is based on the characteristics of tumor vasculature of 

leaky blood vessels and lack of lymphatic drainage (42). This allows the diffusion 

of longer circulating nanoparticles to the tumor site, avoiding health tissues, and 

thereby being selectively site-specific (43, 44). Most passive-targeting 

nanoparticles are surface-coated with PEG for biocompatibility, e.g., SP1049C, 

Genexol- PM, NK911 (45, 46) in early clinical trials for treating various types of 

cancer. 

However, high heterogeneity of the EPR effect in tumors which varies 

from patient to patient and within same subject is a significant limitation to this 

strategy (47). The determination of precise impact of the EPR effect on 

nanoparticle accumulation in tumor tissues becomes difficult since a variety of 

parameters including size, shape, and zeta potential of nanoparticles are 

involved in this process. Only a small part of injected dose is accumulated in 

target cancer tissues which becomes a significant restriction in passive drug 

strategy (42). In view of these limitations of passive targeting a considerable 

amount of work is done and focused on developing active drug-targeting 

strategies.  
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Active drug Targeting:  

Active drug targeting is aimed at delivery of active drug selectively to the 

tumor site. Active drug-delivery strategies comprise use of a targeting ligand or 

moiety attached on the surface of nanocarrier, which recognizes and enables the 

nanoparticle to bind to receptors (tumor-specific epitope) overexpressed on 

tumor cells. These receptors serve as tumor markers which are either expressed 

at lower levels or essentially not expressed on normal cells. The interaction 

between ligand and receptor is affected by binding affinity and selectivity of the 

targeting unit and by the targeted receptor’s capacity (48). Receptor levels 

depend not only on synthesis and stability, but also on recycling rate after 

receptor activation and internalization (49). Hence the binding affinity of the 

targeting ligand and number of ligand units conjugated and decorated on the 

surface are the important factors affecting targeting efficiency. To target the 

nanoparticles effectively to the desired site it is essential to have sufficient 

quantity of ligands/targeting moieties along with high affinity binding to cell 

surface receptors (50). Therefore, the most important feature of the targeting 

ligand is to induce receptor-mediated endocytosis causing the internalization of 

the drug carrier into the desired tumor tissue specific intracellular site (51, 52).  

Currently there are many approaches available for active targeting to 

tumor cells. All the ligands that can be attached to the nanoparticles can serve 

as targeting moieties. There are wide variety of tumor-targeting moieties 

including small molecules, peptides, monoclonal antibodies, aptamers and 
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nucleic acids which specifically recognize receptors overexpressed on tumor cell 

surface which will be discussed in Chapter III. 

 

 

 

Figure 3. Types of ligands decorated on surface of nanoparticles for tumor 

targeting.  
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CHAPTER III 

TYPES OF LIGANDS FOR ACTIVE TARGETING 

The identity and characteristics of the targeting ligands are extremely 

important for circulation time, cellular uptake, affinity, and extravasation. 

Targeting ligands can be broadly classified as proteins (mainly antibodies and 

their fragments), nucleic acids (aptamers), or other small molecules (peptides, 

vitamins, and carbohydrates). 

Monoclonal Antibodies (mAb) 

Targeting cancer with a mAb was described by Milstein in 1981 (53). 

mAbs bind to a receptor on the cell surface to induce several antibody-based 

anticancer mechanisms including antibody-dependent cellular cytotoxicity 

(ADCC) and complement-dependent cellular toxicity (CDC) (54, 55). The 

feasibility of antibody-based tissue-targeting has been clinically demonstrated 

with 17 different mAbs approved by the US Food and Drug Administration (FDA) 

(56). The mAb rituximab (Rituxan) was approved in 1997 for treatment of 

patients with non-Hodgkin's lymphoma — a type of cancer that originates in 

lymphocytes (57). A year later, Trastuzumab (Herceptin), an anti-HER2 mAb 

that binds to ErbB2 receptors, was approved for the treatment of HER2+ breast 

cancer (58). The first angiogenesis inhibitor for treating colorectal cancer, 

Bevacizumab (Avastin), an anti-VEGF mAb that inhibits the growth of new blood 
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vessels, was approved in 2004 (59). Today, over 200 delivery systems based on 

antibodies or their fragments are in preclinical and clinical trials (60). Recent 

developments in the field of antibody engineering have resulted in the 

production of antibodies that contain animal and human origins such as chimeric 

mAbs, humanized mAbs (those with a greater human contribution), and 

antibody fragments. However, there are several limitations to this approach 

including immunogenicity, large size, and cost of mAb synthesis, rapid 

clearance, and environmental factors. The use of antibody fragments like Fab 

and single chain variable fragments reduce the immunogenicity by keeping high 

antigen binding specificity (52). 

Aptamers 

Aptamers are another emerging class of targeting ligands which are short 

single-stranded RNA or DNA sequences of oligonucleotides that can be 

designed as targeting ligand capable of binding to target receptors on the 

surface of cancer cells with high selectivity and affinity (61). They form unique 

three-dimensional structures with high ligand binding specificity needed for 

target affinity. They are small size (~15 KDa), less immunogenic when 

compared to antibodies, and can be chemically synthesized. Several aptamers 

have been developed to bind specifically to receptors on cancer cells, and can 

be considered suitable for nanoparticle-aptamer conjugate therapy (62). 

Docetaxel (Dtxl)-encapsulated nanoparticles with aptamer (targets the antigen 

on the surface of prostate cancer cells) functionalized surface were delivered 

with high selectivity and efficacy in vivo (63). Similarly, doxorubicin encapsulated 
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DOTAP nanoparticles functionalized with DNA-based aptamer demonstrated a 

significant reduction in tumor growth in a tumor xenograft model (64). RNA- 

based aptamers have also been developed which can selectively bind to the T 

cell factor 1 and beta catenin in colon cancer cells (65-67). Locked nucleic acid- 

modified aptamers (LNA) used in iron oxide saturated lactoferrin nanocarriers 

demonstrated improved survival rate in colon cancer xenograft (68). RNA-A10 

aptamer PMSA (prostate specific membrane antigen) has also been reported for 

better therapeutic efficacy (69-71). 

Protein/peptides  

A variety of proteins/peptides have been investigated for tumor targeting. 

Several endogenous proteins which bind specifically to cell surface receptors 

have been used for targeting purposes (72). For example, transferrin, a protein 

involved in transport of iron, binds specifically to transferrin receptors which are 

overexpressed in variety of malignancies. Choi et al. showed that transferrin 

decorated PEGylated gold nanoparticles accumulated specifically in cancer cells 

avoiding nonspecific transport of nanoparticles to the healthy cells (73, 74). 

Muthu et al. demonstrated the enhanced efficacy of transferrin-functionalized 

vitamin E-based micellar nanosystems in MDA-MB 231 breast cancer cells (18). 

Jain et al. showed that transferrin-based nanosystems improved the antitumor 

activity against breast cancer cells (21). Krishna et al. developed a unique 

transferrin receptor targeting using apotransferrin protein as drug carrier for 

nanoparticles (75).  



19 
 

In addition to proteins, various peptides have also been used as targeting 

ligands, which are specific to the receptors overexpress on tumor cells. In order 

to find the best suitable peptide for targeting ligand, several peptide phage 

display libraries are available for identification of specific targeting ligands (76). A 

tumor homing penta-peptide CREKA that recognizes fibrin-associated plasma 

protein has been used as a targeting ligand on iron oxide nanoparticles and 

liposomes (77). Also penta-peptide LFC-131, an antagonist for CXCR4, a 

chemokine responsible for majority of inflammatory related cancers, has been 

used as a targeting ligand on polymeric nanoparticles for targeting CXCR4 

overexpressed in cancer cells (78). Peptides have also been reported for the 

receptor proteins viz. interleukin 11 receptor α (IL-11Rα) and 78 KDa glucose-

regulated protein (GRP78) in prostate and breast tumors (79-81). Among the 

different peptides, RGD peptide is a commonly used targeting ligand, which 

selectively binds to αvβ3, αvβ5 integrin (angiogenesis markers) overexpressed in 

endothelial and smooth muscle cells of tumor blood vessels. In an earlier 

investigation by Danhier et al. (2009) RGD-decorated paclitaxel-loaded 

nanoparticles demonstrated significantly enhanced tumor growth inhibition and 

prolonged animal survival (82). RGD-conjugated PLGA NPs have also shown 

enhanced antitumor efficacy in vivo (83).  
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Small molecules 

Small molecules with molecular weight less than 500 Da are a promising 

class of targeting ligands because of their small size, low cost of synthesis, and 

high stability. Pomper et al. identified small hydrophilic molecules from urea-

based PMSA inhibitors which specifically target PMSA receptor overexpressed 

on the surface of prostate cancer cells (84). Chandran et al. developed 

docetaxel-encapsulated PLA/PCL-based targeted nanoparticles using PMSA as 

a targeting moiety (85). This moiety proved to be an efficient targeting ligand for 

the uptake of nanoparticles by PMSA-overexpressing cells. This small molecule 

is also used as a targeting ligand for the development of a novel polymeric 

nanoparticle BIND-014, composed of biodegradable hydrophobic PLA polymeric 

core and hydrophilic PEG. This is the first targeted- and controlled-release 

polymeric nanoparticle to reach clinical phase I trials for cancer chemotherapy 

(86). 

Among the different targeting strategies, vitamins are another class of 

molecules widely investigated for tumor targeting. The vitamins employed for 

targeting include folate, vitamin B12, thiamine, and biotin. The principal 

advantages associated with vitamins, particularly folic acid, include stability (both 

on the shelf and in the body), relative cost (low), lack of toxicity and 

immunogenicity, and wide flexibility for diverse chemical reactions (87). Folic acid 

has been widely investigated as a ligand in targeted drug delivery (88-90). Folic 

acid has high affinity for folate receptors which are over expressed in many types 

of solid tumors such as ovarian, lung, uterine, breast, head and neck cancers 
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(91). Besides the different tumors, folate has also been used as targeting ligand 

for delivery of many drug conjugates and delivery systems including liposomes, 

polymeric NPS through folate receptor mediated endocytosis (92). Folic acid- 

functionalized PLGA nanoparticles and deoxycholic acid-o-carboxymethylated 

chitosan-folic acid micelles have shown enhanced efficacy of doxorubicin and 

paclitaxel, respectively (93, 94).  
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Table 2 

Examples of targeting ligands used in anticancer nanoformulations 

Targeting 
ligand 

Receptor Nanoformulation Indication Ref 

Folate 
Folate 
receptor 

PLGA polymeric NPs- 
Doxorubicin 

Breast cancer (93) 

Folate 
Folate 
receptor 

Deoxy cholic acid-o- 
carboxymethylated 
chitosan-folic acid 
micelles- Paclitaxel 

Breast cancer (94) 

Folate 
Folate 
receptor 

Chitoson polyplex 
liposomes- Nucleic acid 

Melanoma (95) 

RGD 
αvβ3,αvβ5 
integrin 
receptors 

RGD modified 
liposomes-paclitaxel 

Hepatocellular 
carcinoma 

(96) 

Transferrin 
Transferrin 
receptor 

Lipid coated PLGA 
Nps- Aromatase 
inhibitor 

Breast Cancer (97) 

Transferrin 
Transferrin 
receptor 

Vit E TPGS micelles-
Doxirubicin 

Breast Cancer (18) 

Transferrin 
Transferrin 
receptor 

PLGA polymeric NPs- 
Methotrexate 

Brian cancer (21) 

EGFR 
EGFR 
receptor 

DSPE-PEG lipid 
polymeric complex 

Hepatocellular 
Carcinoma 

(98) 

EGFR 
EGFR 
receptor 

Poly(lactic acid-co-l-
lysine) nanoparticles 

Hepatocellular 
Carcinoma 

(99) 

Fibrin 
associated 
plasma 
proteins 

Clotted 
Plasma 
proteins of 
tumor vessels 

CREKA conjugated 
liposomes-Doxirubicin 

Breast Cancer (77) 

Aptamers Tumor DNA 
DOTAP Liposomes-
Doxirubicin 

Breast Cancer (100) 

Aptamers CD133 
PEGYLATED PLGA 
NPs 

Hepatocellular 
Carcinoma 

(101) 

Aptamers 
EGFR 
receptor 

Triple function RNA 
NPs 

Triple-
negative 
Breast Cancer 

(78) 



23 
 

Bioconjugation for surface-functionalization of nanocarriers 

In spite of the availability of a wide variety of targeting ligands, surface 

functionalization remains a challenge. The major requirement for surface 

functionalization is the presence of a targeting ligand on the NPs surface until the 

active load is delivered to the target site. To make the functionalization stable 

over the NP surface, a conjugation strategy that covalently links the ligands over 

the surface of the NPs by using simple chemistry was established (102, 103). 

The selection of the appropriate conjugation strategy is an important step, as the 

chemicals used for the conjugation may affect the targeting ligand during the 

process of conjugation (104). The most commonly used covalent conjugation 

approaches are through amide linkages, which link carboxyl group to amine 

using carbodiimide chemistry. It occurs by activation of carboxylic group present 

on the NP surface by EDC (1-ethyl-3-(3-dimethyl amino propyl) carbodiimide and 

NHS (N-hydroxysuccinimide) forming reactive intermediate which couples with 

amine groups present in targeting ligand. 

The chemical conjugation approach has been reported by Kocbek et al. to 

functionalize the PLGA NPs by using Mb as targeting ligand and by Acharya et 

al. who developed the nanoparticle bioconjugate by using epidermal growth 

factor (EGF) as A targeting ligand (105, 106). In addition to the use of carboxylic 

and amino groups, thiol functional groups have also been reported to form 

disulfide bonds for surface functionalization (107). Thiol group can react with 

other thiol group to form disulfide bond and also react with maleimide group to 

form thioether groups. Shaik et al. used the similar concept of forming disulfide 
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bond to conjugate anti-My9 antibody to stealth liposomes (107). Similarly, several 

other reports also demonstrated disulfide bond formation as a conjugation 

strategy between maleimide processing NPs and thiol-bearing ligands and vice 

versa (83, 104, 108). The highly specific, non-covalent reaction between avidin 

and biotin has been used to functionalize avidin containing liposomes with 

biotinylated antibodies (109). Other reaction complexes with streptavidin and 

neutravidin are also in public domain for conjugation (110). Although these non-

covalent binding techniques are available, the immunogenic reactions due to the 

source of avidin make this approach the second choice after covalent 

conjugation (111). 

‘Click’ chemistry is another interesting technique to conjugate targeting 

moieties to NPs (112). The use of click reactions became prevalent because of 

their high efficiency, specificity, ease of availability of reagents, low nonspecific 

binding, and physiological stability as compared to traditional crosslinking 

carbodiimide chemistry. Click chemistry is a single step reaction carried out 

under mild conditions in aqueous solutions producing high yield of product. It 

involves reaction between azide and alkyne under various conditions and the 

major classes of reactions involved are cooper-catalyzed azide-alkyne 

cycloaddition (CuAAC), Strain- promoted azide-alkyne click chemistry (SPAAC) 

and Tetrazine-trans-cyclooctene (TCO) ligation (113, 114). Koo et al. have 

reported the biorthogonal copper free click chemistry for tumor targeted delivery 

of nanoparticles (115). 
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Exosome-mediated drug delivery as an emerging nanomedicine approach 

Exosomes are lipid bilayer biological nanoparticles secreted by all the 

cells in the body, present in almost all the body fluids, and play an important role 

in cell–to-cell communication (116-119). Exosomes are emerging as potential 

drug delivery nano vehicle (Figure 4). Exosomes have the advantages of being 

less immunogenic and showing better biological tolerability and cellular 

internalization compared with synthetic NPs (118, 120-122). There is a growing 

interest in exploiting these biological NPs for delivering chemotherapeutics and 

genetic material to the tumor site. With this growing interest, surface 

functionalization of exosomes for selective delivery of chemotherapeutics and 

siRNAs to cancer cells have been reported (123-125). Exosomes isolated from 

different sources and the different small molecules delivered are summarized in 

Table 3. 
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Figure 4. Diagram depicting the structure of exosome carrying lipid, DNA, RNA 

and protein (Source: With permission from Munagala et al., 2016 Bovine milk 

derived exosomes for drug delivery) (126).  
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Table 3 

Therapeutic applications of Exosomes as nanocarriers  

Source Cargo 
 
Target cancer 
type 

 
Outcome 

Ref 

Bovine milk Witheferin- A 
Breast and 
Lung cancer 

Tumor growth 
inhibition 

(126) 

Bovine milk Celastrol Lung cancer 
Tumor growth 
inhibition 

(127) 

Bovine milk Paclitaxel Lung cancer 
Tumor growth 
inhibition 

(128) 

Mouse Dendritic 
cells 

Doxorubicin Breast cancer 
Tumor growth 
inhibition 

(129) 

 Breast cancer 
cells 

Doxorubicin 
Breast and 
Ovarian cancer 

Tumor growth 
inhibition 

(130) 

Prostate cancer 
cells 

Paclitaxel 
Prostate 
cancer 

Increased 
cytotoxicity 

(131) 

Machrophage Paclitaxel Lung cancer 
Tumor growth 
inhibition 

(132) 

Mesenchymal 
stem cells 

mir-122 
Hepatocellular 
carcinoma 

Tumor growth 
inhibition 

(133) 

Mesenchymal 
stem cells 

mir-143 Osteosarcoma 
Inhibition of 
migration 

(134) 

Monocytic cell c-Myc siRNA Lymphoma 
Induction of 
apoptosis 

(135) 

HEK 293 cell PlK-1 siRNA Bladder cancer 
Induction of 
apoptosis 

(136) 
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The field of exosomes as NPs is rather young and its use as a nanocarrier 

to deliver  cytotoxic drugs and phytochemical compounds has recently been 

explored with encouraging results  (126, 127, 129, 130, 137-139). For example, 

Tian et al., 2014 and Srivastava et al., 2016 reported enhanced efficacy of 

doxorubicin exosomal formulations (129, 138). Moreover, some studies have 

shown enhanced therapeutic efficacy of cytotoxic drugs and natural compounds 

while encapsulating these compounds in exosomes (127, 130, 131, 137, 139). 

Saari et al. showed that cytotoxic effect of paclitaxel to prostate cancer cells 

increased when encapsulated in exosomes (131). Milk derived exosomes have 

been reported to enhance therapeutic response of withaferin A (126) and 

celestrol (127), as well as to enhance the stability and therapeutic response of 

anthocyanidins (139) in various cancers. Zhuang et al. showed that the 

exosomal formulations of curcumin inhibited LPS-induced inflammation in a 

mouse model compared with  free curcumin and reported their positive effects 

against brain tumor when given through intranasal route (137).  

Due to their high complexity and variable composition, the cell specificity 

of these exosomes is not predictable, leading to non-specific targeting. Such off- 

target effects can be minimized through active targeting by functionalizing 

extracellular vesicles with targeting ligands. Exosomes are functionalized in 

several ways by decorating with specific ligands to improve the targeting ability 

(129, 140, 141). Folic acid-functionalized milk-derived exosomes were shown to 

enhance the therapeutic efficacy of withaferin A against lung cancer in vitro and 

in vivo (126). The peptide i-RGD, which is specific to the αvβ3 integrin receptor 
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that overexpressed in cancer cells, has been reported to fuse to the exosomal 

membrane proteins and lipids, i.e., Lamp2b and glycosylphosphatidylinositol 

(142). Alvarez et al. showed siRNA delivery to mouse brain by functionalizing 

exosomes with RVG peptide by fusing with Lamp2b exosomal membrane 

protein. These RVG exosomes could bind to specific receptor overexpressed in 

brain tumors. Tian et al. used the same mechanism to deliver doxorubicin to 

breast cancer cells (129). Chemical conjugation techniques, similar to those 

used for NPs, have also been used for the functionalization of exosomes (143).  

Kooijmans et al. reported a post insertion technique for exosome 

functionalization. In this technique, EGFR nanobody-conjugated PEG 

phospholipid micelles were mixed with extracellular vesicles derived from Neuro 

2A cells (143). Click chemistry has also been used for making functionalized 

exosomes (144). 

Clinical status 

To date only a handful of nanoformulations are FDA approved and 

available for clinical use. Liposomal formulations like DoxilR, Myocet, 

DaunoXome, Depocyt, polymeric nanoparticles such as AbraxaneR, and 

polymeric micelles like Glenexol-PM are FDA approved. The majority of the FDA-

approved nanomedicines were developed based on passive targeting which 

utilizes the EPR effect, due to the leaky vasculature of the tumor. There are 

certain functionalized nanoformulations which have been specifically designed to 

undergo ligand-mediated targeting selective to tumor site. The clinical status of 

novel nanoformulations has been summarized in Table 4.  
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MCC-465 is a novel PEGylated liposomal formulation encapsulating 

doxorubicin tagged with human monoclonal antibody fragment F(ab’)  in Phase I 

clinical trial against metastatic stomach cancer (145). Recently, a PEGylated 

liposomal formulation of doxorubicin functionalized with F (ab’) fragment of 

antibody cetuximab (C225) was approved for clinical use (146). Liposomal 

formulation of oxaliplatin (SGT53) functionalized with single chain antibody 

fragment (TfRscFv) as targeting ligand is in a Phase I of clinical trial (147). 

Cyclodextrin-based nanoparticles (CALAA-01) is the first nanoformulation in 

clinical trial for the siRNA delivery to tumor site (148). Heat-activated PEGylated 

liposomes containing doxorubicin (Thermodox) is in Phase III clinical trial for 

treating liver cancer (149). Similar to liposomal formulations, some polymeric 

nanoparticles are at different stages of clinical trials. PEG-poly(aspartic acid) 

polymeric nanoparticles like NK 105 and NK 911, and PEG-cyclodextrin 

nanoparticles like CRLX101 are in phase I and phase II clinical trials (150). 

Targeted-polymeric nanomedicines like BIND-014, PEGylated PL(G)A docetaxel 

formulation has completed the phase I and is now in Phase II clinical trials (86). 
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Table 4  

Summary of nanoformulations in market and clinical development    

Nano 
Carrier 
type 

Product 
Name  

Formulation  Drug  Indication  
Clinical 
Status 

Liposo
mes 

Doxil® 
(Caelyx® in 
EU) 

PEGylated 
liposome  

Doxorubicin  

Breast 
cancer, 
ovarian 
cancer, 
multiple 
myeloma, 
Kaposi’s 
sarcoma 

Approved 

Myocet®  
Non-
PEGylated 
liposome  

Doxorubicin  
Breast 
cancer  

Approved 

DaunoXome
®  

Non-
PEGylated 
liposome  

Daunorubici
n  

Kaposi’s 
sarcoma  

Approved 

DepoCyt® 
Non-
PEGylated 
liposome 

Cytarabine 

Lymphomat
us 
meningitis, 
leukaemia, 
glioblastom
a 

Approved 

Lipoplatin 
PEGylated 
liposome 

Cisplatin 
Various 
malignancie
s 

Phase III 

S-CKD602 
PEGylated 
liposome 

CKD-602  
Various 
malignancie
s  

Phase I/II 

NL CPT-11 
PEGylated 
liposome 

Irinotecan 
(CPT-11) 

Glioma Phase I 

CPX-1 Liposome Irinotecan 
Colorectal 
cancer 

Phase II 

LE-SN38  Liposome  SN-38  
Colorectal 
cancer  

Phase II 

MBP-426  
Tf-NGPE-
liposome  

Oxaliplatin  
Various 
malignancie
s  

Phase II 
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MCC-465  

Human 
antibody 
fragment 
(GAH)-
PEG-
liposome  

Doxorubicin  
Gastric 
cancer  

Phase I 

Thermodox
™  

Heat-
activated 
PEGylated 
liposome  

Doxorubicin  

Liver 
cancer, 
breast 
cancer  

Phase III 

CPX-351  Liposome  
Cytarabine+
daunorubici
n  

Acute 
myeloid 
leukaemia  

Phase II 

SGT-53  

Transferrin-
targeted 
DNA 
plasmid 
liposome  

P53 gene  

Various 
solid 
malignancie
s  

Phase I 

Polyme
ric 
nanopa
rticles  

Abraxane® 
(ABI-007)  

Albumin-
bound 
nanoparticle 
(nab)  

Paclitaxel  
Breast 
cancer  

Approved 

BIND-014  
PEG-PLGA 
nanoparticle  

Docetaxel  

Various 
solid 
malignancie
s  

Phase I 

Docetaxel-
PNP  

Polymeric 
nanoparticle  

Docetaxel  

Various 
solid 
malignancie
s  

Phase I 

CRLX101  
Cyclodextri
n-PEG 
nanoparticle  

Camptothec
in  

Various 
malignancies  

Phase II 

CALAA-01  

Cyclodextri
n-PEG-
transferrin-
nanoparticle  

Anti-RRM2 
siRNA  

Various solid 
malignancies  

Phase I 

Polyme
ric 
micelles 

Genexol-
PM®  

PEG-PLA 
micelle  

Paclitaxel  

Breast 
cancer, lung 
cancer, 
ovarian 
cancer  

Approved 

NK911  
PEG-PAA 
micelle  

Doxorubicin  
Various solid 
malignancies  

Phase III 

NK105  
PEG-PAA 
micelle  

Paclitaxel  
Gastric 
cancer  

Phase II 



33 
 

NC-6004 
(Nanoplain™
)  

PEG-
polyglutami
c acid 
micelle  

Cisplatin  
Pancreatic 
cancer  

Phase II 

NK012  
PEG-PGA 
micelle  

SN-38  
Various solid 
malignancies  

Phase II 

SP1049C  
P-
glycoprotein 
micelle  

Doxorubicin  
Various 
malignancies  

Phase II 

Paclical®  
Polymeric 
micelle  

Paclitaxel  
Ovarian 
cancer  

Phase III 

NC-4016  
Polymeric 
micelle  

Oxaliplatin  
Various solid 
malignancies  

Phase I 

Polym
er-drug 
conjug
ate 
nanop
articles 

Oncaspar®  PEG-drug  
L-
asparaginas
e  

Leukaemia  Market 

PK1 
(FCE28068)  

HPMA-drug  Doxorubicin  

Breast 
cancer, lung 
cancer, 
colorectal  
cancer  

Phase II 

DOX-OXD 
(AD-70)  

Dextran  Doxorubicin  
Various 
malignancies  

Phase I 
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CHAPTER IV 

CONCLUSION 

The rapid advances in the field of nanomedicine have created a new 

trend and opened the doors for the development of different tools and strategies 

for anticancer therapy. Nanoparticle drug formulations have the potential to 

overcome the limitations of conventional chemotherapy by their ability to 

selectively target cancer cells over healthy tissue. Properly designed 

nanoparticles have the ability to accumulate in tumors either by passive or 

active targeting and enhance the cytotoxic effects of antitumor agents. Several 

nanoformulations of anticancer drugs are being evaluated in phase II/III clinical 

trials while relatively few have been approved for clinical use. Nanotechnology 

provides an opportunity to revisit and reformulate the drugs that have been 

shelved due to poor oral bioavailability, lack of selectivity to the desired target, 

or extreme toxicity. Biological nanoparticles, i.e., exosomes, provide another 

promising avenue for delivery of small and macromolecules. Nevertheless, the 

field of nanotechnology has the potential to shift the paradigm of treatment for 

cancer with an ever- growing arsenal of non-targeted and targeted 

nanomedicines.  
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Future perspective 

         In spite of various advantages of NPs, efficient delivery of drugs has never 

been completely achieved due to lack of ideal drug delivery system. The major 

limitations being low biocompatibility and toxicity. Their characterization, cost, 

scalability, inability to evade host immune system, limited circulation time and 

safety issues still remain as a challenge (151). Exosomes seem to overcome 

several of the limitations associated with the conventional nanoparticles. They 

have ability to target tissues by utilizing the intrinsic mechanisms of extracellular 

vesicles. Exosomes are biocompatible, potentially nontoxic, less immunogenic, 

and provide desired long-term safety for therapeutic use. They have the natural 

ability to carry nucleic acids and other therapeutic molecules cross membranes 

that are difficult to cross such as the blood brain barrier (BBB). There are 

several recent studies published which isolated exosomes from different 

sources like biological fluids and cell culture media using variety of strategies 

(129, 142, 152). However, they still suffer from biocompatibility and scalability 

issues. Particularly cost–effective, mass-scale production, drug loading and 

targeting strategies are limitations, which lessen the throughput of this field. 

More recent development of milk exosomes seem to overcome many of these 

limitations (126-128, 139). However, immune-compromised subcutaneous 

xenograft mouse models used in these studies have some limitations as the 

formulations are not being tested in tumor microenvironment.  

Tumor growth is complex and heterogeneous microenvironment consist of 

different immune cells. So it is crucial to develop nanoformulations that can 
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adapt to the microenvironment and improve the selective targeting to tumors. 

Apart from few, most of the formulations have not yet been in clinic considering 

this aspect. The studies need to be performed with more sophisticated 

humanized mouse models (i.e., patient-derived tumor xenograft models) and 

also in different immunocompetent animal models (such as spontaneous tumor 

models, carcinogen-mediated tumor models) which take tumor 

microenvironment into consideration. This will better match the system of human 

disease and create a wide scope for clinical translatability. 
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