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ABSTRACT 

OBSERVATION AND ESTIMATION STUDY FOR SENSORLESS CONTROL OF LINEAR VAPOR 

COMPRESSORS 

 

Joseph Latham 

July 14, 2017 

Linear vapor compressors have become widely investigated for refrigeration applications due to 

their high efficiency in comparison to the more common rotary type compressors.  However, the nature of 

the linear compressor adds complexity to the control of these machines.  The unconstrained motion of the 

piston in a linear compressor allows for continuous modulation of the compressor output, but requires 

knowledge of the mechanical dynamics to effectively control the compressor and prevent collision of the 

piston with the cylinder head. This control is made more difficult by the highly nonlinear nature of the 

force of gas compression acting against the piston. As this gas force changes so does the resonant 

frequency of the system. Efficient control of the compressor requires knowledge and tracking of this 

resonant frequency in addition to other objectives. Sensorless control of the system is preferred for 

reliability, ease of production, and cost effectiveness.  To this end a series of nonlinear observers and a 

combination of controllers have been developed for the linear vapor compressor. 
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1 INTRODUCTION 

Rising energy costs and environmentally motivated legislation has led to increased research and 

development in the area of high efficiency domestic appliances.  In the realm of refrigeration this has 

resulted in a renewed interest in linear vapor compressors over the historically more common rotary type. 

Linear compressors offer a gain in efficiency over the rotary compressor due to the fact that the motor force 

is inherently linear and therefore requires no mechanical conversion to actuate the piston [1]. Along with 

other factors this has allowed linear compressors to demonstrate improvements in efficiency of 10-20% 

over that of traditional rotary compressors driven by induction motors [2]. 

Despite these gains in efficiency there is an increase in complexity in the use of a linear compressor 

over a rotary device.  Whereas in a rotary compressor the piston stroke (peak-to-peak displacement) is 

defined and constrained by the diameter of rotation, in a linear compressor the piston is free, allowing the 

stroke to be variable.  This is an advantage in that it allows for the modulation of the compressor output, 

however it adds complexity in that the force of gas compression is free to change the piston’s path.  These 

effects necessitate an additional level of control to achieve efficient and stable operation of a linear 

compressor [3].  This control necessitates knowledge of the piston dynamics, which could most directly be 

obtained through use of some type of sensor as in [4], [5].  However, due to the extreme environment in a 

refrigerator compressor, i.e. refrigerant and oil, it is not cost effective to place a sensor inside the 

compressor. Moreover, the shell is hermetically sealed and if a sensor is to be used, at least two additional 

wires are required to penetrate the shell, which may not be acceptable in production. Hence sensorless 

control of the piston is generally preferred [6].   

Efforts in this space include an external self-sensor circuit which utilizes voltage and current 

measurements to create a position signal [7] as well as algorithms such as those presented in [6], [8], [9], 

[10] which utilize the same signals to arrive at a position signal computationally.  However, each of these 

methods has one or more significant weaknesses.  For instance, [6] requires the taking of numerical
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derivatives which amplifies the noise present in measured signals. The methods in [6], [8], and [9] require 

integration of signals which, due to unavoidable biases in voltage detection circuits, may become 

unbounded.  In [10] this problem is addressed and is avoided by utilizing a high-pass filter to eliminate any 

DC bias in the velocity signal being integrated.  However, since the real position signal has a significant 

DC component which varies with the force of gas compression, this method is incapable of accurately 

estimating this component and thus the absolute position. 

Control of a linear compressor typically consists of two main objectives; resonance control to ensure 

maximum efficiency and stroke control to prevent collision and modulate output.  Resonance control 

requires identification and tracking of the system resonant frequency which changes with gas force. In [11] 

this tracking is achieved using a perturb and observe algorithm to search for the maximum power point.  

The nature of this algorithm results in ‘hunting’ or undesirable oscillation in the frequency.  In [12] the 

resonant frequency is calculated directly from the system mechanical dynamics, but requires a linearization 

of the gas force, which is not accurate, or at least very limited given that gas force is highly nonlinear. A 

method was developed for identifying resonance via the relative phase between motor current and piston 

position in [13] and similarly between current and velocity in [14], [15]. Both of these methods require 

signals which must be estimated if the methods are to be implemented sensorlessly. A current controller has 

been designed using a hybrid proportional-integral/neural network controller a sinusoidal current trajectory 

once the resonant frequency has been identified [16]. 

The second objective is control of the top dead center position, which corresponds to the minimum 

distance between the piston and the cylinder head.  The purpose of this control is two-fold, modulation of 

the compressor output and avoidance of collision with the cylinder head.  For the purpose of collision 

avoidance especially, knowledge of the absolute position is critical, which makes the majority of existing 

methods presented unsuitable. 

In this work a series of nonlinear observers are utilized to obtain observations for signals in the 

mechanical dynamics. Each of these observers includes a robust integral of sign of error (RISE) term to 

compensate for uncertainties in the system dynamics. The first observer uses a motor current measurement 

along with knowledge of the motor voltage and the system’s electrical model to arrive at an observed 

velocity. Unlike other methods, which essentially solve the electrical dynamic equation for velocity, this is 
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a robust feedback based observer. The second observer utilizes a velocity measurement along with 

knowledge of the system’s mechanical model to arrive at an observation for piston acceleration. This 

observer avoids the need to take noisy numerical derivatives to obtain an acceleration signal such as in [6]. 

A Lyapunov stability analysis is presented in [17] to prove stability and convergence for these two 

observers with experimental results providing further validation.  By using the observed velocity from the 

first observer in place of the velocity measurement required by the second observer the two observers are 

able to run in parallel using only a single current measurement.  A gas force observer, derived separately, 

requires measurement of both position and velocity and so cannot be implemented sensorlessly either alone 

or in parallel.  As such this observer is intended for laboratory use where full state measurements are 

available and is useful for characterization of the gas force. 

The developed velocity and acceleration observers are then utilized to obtain observations of per-

cycle system states which are relevant to the system control objectives. The observed velocity signal is used 

to obtain knowledge of the phase difference between the piston velocity with respect to the motor current. 

This observed phase difference is used as an indicator of system resonance and is used to achieve the 

system level control objective of maximum efficiency via a search algorithm based controller. 

The observed acceleration signal is used in tandem with the observed velocity and motor current to 

obtain knowledge of the minimum position of the piston, known as top dead center.  Unlike the majority of 

methods present in the literature this is an absolute position estimation which includes the DC bias induced 

by the force of gas compression and requires no numerical derivatives. Thus this observed top dead center 

position can be used to achieve the top dead center control objective and thus prevent collision and 

modulate compressor output.  This controller uses the peak motor current as its control input since this 

current is proportional to the motor force which actuates the motor.  This desired motor current is then used 

as a reference to a third controller which achieves regulation control of the amplitude of the motor current.  

Alternatively, a tracking controller is also presented which achieves control of the current waveform via a 

trajectory whose frequency is set by the resonance controller.  By controlling the current over the entire 

cycle instead of only at its peak this controller offers a more sophisticated and direct control over the piston 

dynamics at the cost of added complexity. 
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As the afore-mentioned observers require a priori knowledge of the system model and parameters, this 

work also includes an investigation of estimation schemes for the parameters of the various dynamics 

which comprise the linear compressor system model.  Least-squares algorithms are commonly used to 

calculate parameters over a specified interval of samples. In [17] we see how this method can be applied to 

time-varying parameters in linear systems and [8] shows an implementation specifically for linear 

compressors. 

For this work an adaptive least-squares algorithm as described in [18] was investigated. This 

algorithm has been shown to be effective in estimation problems for other systems with similar models 

[19], [20].  Due to the fact that gas force is highly nonlinear and difficult to measure, this method is 

considered only for the electrical dynamics, requiring measurement of the motor current, voltage, and 

piston velocity. The need for a velocity measurement makes this method unsuitable for sensorless 

application, but it may be usable for production testing. It should be noted that due its dependence on 

parameter values it is not possible to use the velocity observer developed in place of this measurement.  

Doing so would create a null-space [21] in which a unique solution is unattainable for either problem. 

The remainder of this work will proceed as follows: in Section 2 the system model will be presented 

with its constituent thermodynamic, mechanical, and electrical dynamic equations, in Sections 3 and 4 the 

simulation and experimental platforms, respectively, which were used in testing of the developed 

algorithms will be detailed; in Section 5 parameter estimation schemes for the electrical and mechanical 

parameters of the compressor are developed using the adaptive least-squares algorithm; in Section 6 real-

time observers are developed for the piston velocity, acceleration, force of gas compression, position and 

pressures; in Section 7 we show how the velocity and acceleration observers can be used to obtain 

observations of relevant per-cycle system states; in Section 8 we show how these per-cycle observations 

can be utilized to develop regulation controllers which together achieve the joint system level of objectives 

of stroke control and resonance tracking; in Section 9 a more sophisticated current controller is presented as 

a possible replacement for the regulation controller put forth in Section 8.  Concluding remarks are 

provided following this section. 
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2 LINEAR VAPOR COMPRESSOR SYSTEM MODEL 

A representation of the construction of a linear compressor is given in Figure 1. As shown, this device 

consists of a compression chamber whose piston is actuated by a linear motor.  This construction creates 

three levels of coupled dynamics within the system.  At the lowest level the oscillation of the piston in the 

chamber causes compression, decompression, suction, and discharge of the working gas as it cyclically 

pumps gas from lower to higher pressures.  The thermodynamics which dictate this compression cycle 

cause a resultant force on the piston which couple into its mechanical dynamics.  This mechanical dynamic 

is then cross-coupled with the electrical dynamics of the current induced in the stator coils via the motor 

force coupled into the mechanical dynamics and the back EMF coupled into the electrical dynamics. 

 

Figure 1.  Representation of a typical linear vapor compressor [16].  



6 

 

 

2.1 THERMODYNAMIC SYSTEM MODEL 

The thermodynamics which dictate the chamber pressure 𝑃(𝑡) can be represented by the pressure-

displacement diagram shown in Figure 2. This diagram shows the chamber pressure as a function of the 

piston position 𝑥(𝑡), as it relates to the discharge and suction pressures, 𝑃𝑑 ∈ ℝ and 𝑃𝑠 ∈ ℝ, respectively.  

We can see from this figure that the chamber pressure 𝑃(𝑡) is always greater than or equal to the suction 

pressure 𝑃𝑠. 

 

Figure 2. Pressure-displacement curve for a linear vapor compressor [16]. 

 

As shown in Figure 2 four different stages make up the compression cycle, resulting in a piecewise 

continuous chamber pressure 𝑃(𝑡).  The resultant force imposed on the piston by this gas compression, 

denoted as 𝐹𝑔(𝑡) ∈ ℝ, is related to the pressure difference across the piston head as shown in the following 

equation:  

 𝐹𝑔 ≜ 𝐴𝑝(𝑃(𝑡) − 𝑃𝑏) (1) 

where 𝑃(𝑡) ∈ ℝ is the pressure of the compression chamber, 𝐴𝑝 ∈ ℝ is the cross-sectional area of the 

piston, and 𝑃𝑏 ∈ ℝ is the pressure on the back side of the piston head.  In a typical compression cycle, 𝑃𝑏  

can be assumed to be equal to the suction pressure 𝑃𝑠.  From the assumption that 𝑃𝑏 = 𝑃𝑠, we can see from 

Fig. 2 and (1) that 𝐹𝑔 ≥ 0 for all 𝑡.  A detailed description of the piecewise chamber pressure and gas force 
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through the four stages shown in Figure 2 is given in Table 1 below.  Note that the parameter 𝑛 ∈ ℝ 

denotes the specific heat ratio for the working gas. 

Table 1 

Pressure and Gas Force Definitions for Isentropic Compression Cycle 

Region Description 𝑃(𝑡) 𝐹𝑔(𝑡) 

[1] − [2] 

 

Compression Stage - Suction valve closes at BDC [1] 

and gas is compressed as piston moves back towards the 

head.  Chamber pressure increases from suction to 

discharge pressure in an isentropic process. 

𝑃𝑠 (
𝑋𝐵𝐷𝐶
𝑥(𝑡)

)
𝑛

 𝐴𝑝 (𝑃𝑠 (
𝑋𝐵𝐷𝐶
𝑥(𝑡)

)
𝑛

− 𝑃𝑠) 

[2] − [3] Discharge Stage - Discharge valve opens when 

chamber pressure reaches discharge pressure at [2].  

Chamber pressure remains constant while valve is open. 

𝑃𝑑 𝐴𝑝(𝑃𝑑 − 𝑃𝑠) 

[3] − [4] Decompression Stage - Discharge valve closes at TDC 

[3] and gas is decompressed as piston moves away from 

the head. Chamber pressure decreases from discharge to 

suction pressure in an isentropic process. 

𝑃𝑑 (
𝑋𝑇𝐷𝐶
𝑥(𝑡)

)
𝑛

 𝐴𝑝 (𝑃𝑑 (
𝑋𝑇𝐷𝐶
𝑥(𝑡)

)
𝑛

− 𝑃𝑠) 

[4] − [1] Suction Stage - Suction valve opens when chamber 

pressure reaches suction pressure at [4].  Chamber 

pressure remains constant while valve is open. 

𝑃𝑠 𝐴𝑝(𝑃𝑠 − 𝑃𝑠) = 0 

 

2.2 MECHANICAL SYSTEM MODEL 

The mechanical dynamics of this system can be expressed mathematically as follows 

 𝐹𝑚 + 𝐹𝑔 = 𝑀𝑥̈ + 𝐶𝑥̇ + 𝐾(𝑥 − 𝐿0) (2) 

 𝐹𝑚 = 𝛼𝐼 (3) 

where 𝐹𝑚(𝐼) ∈ ℝ is the motor force, 𝑀 ∈ ℝ is the mass of the piston, 𝐶 ∈ ℝ is the coefficient of 

friction, 𝐾 ∈ ℝ is the combined stiffness of the springs connecting the piston to the chassis, 𝑥(𝑡) ∈ ℝ is the 

position of the piston with respect to the cylinder head, 𝑥̇(𝑡), 𝑥̈(𝑡) ∈ ℝ are respectively the first and second 
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derivatives of 𝑥(𝑡), i.e. velocity and acceleration, and 𝐿0 ∈ ℝ is the equilibrium position of the piston with 

respect to the cylinder head. In (3) 𝛼 ∈ ℝ is the motor constant and 𝐼(𝑡) ∈ ℝ is the motor current. 

A set of terms are used within this work to refer to per cycle metrics which describe the stroke of the 

piston under steady-state conditions.  The point during a cycle at which the piston is closest to the cylinder 

head is referred to as top dead center and is here denoted as 𝑥𝑇𝐷𝐶 ∈ ℝ.  The point at which the piston is 

farthest from the cylinder head during a cycle is referred to as bottom dead center and is denoted as 𝑥𝐵𝐷𝐶 ∈

ℝ.  The distance traveled between these two points is referred to as the stroke length and is denoted as 

∆𝑥𝑆𝐿 ∈ ℝ which can be defined as 

 ∆𝑥𝑆𝐿 ≜ 𝑥𝐵𝐷𝐶 − 𝑥𝑇𝐷𝐶 . (4) 

The point halfway between top and bottom dead center is to as the midstroke and is denoted as 𝑥𝑚𝑖𝑑 ∈

ℝ.  Based on the dynamics of (2) and the fact that 𝐹𝑔(𝑡) ≥ 0 we can see that increasing gas force has the 

effect of increasing the midstroke of the piston away from 𝑥0. 

This system has a frequency at which the mechanical efficiency reaches its maximum, referred to as 

the resonant frequency. Since the mechanical output power of the linear motor is a product of the motor 

force and the piston velocity, we can see that this power and therefore the system efficiency is maximized 

when the force 𝐹𝑚(𝑡) is in phase with the piston velocity 𝑥̇(𝑡).  From the dynamics in (2) and (3) we can 

see that this phase difference is a function of the system frequency excited by the current 𝐼(𝑡).  For a 

standard mass-spring-damper system the resonant frequency is fixed, however, the addition of the nonlinear 

gas compression force causes this frequency to change with the thermodynamic load. 

 

2.3 ELECTRICAL SYSTEM MODEL 

An equivalent electrical circuit model for the linear motor which drives the compressor piston is 

shown in Fig. 3. From this circuit model an electrical dynamic equation can be written as 

 𝑣𝑎 = 𝐿𝑖𝐼̇ + 𝑅𝑖𝐼 + 𝛼𝑥̇ (5) 

where 𝑣𝑎(𝑡) ∈ ℝ is the voltage applied to the motor, 𝐼(̇𝑡) is the derivative of the motor current, 𝐿𝑖 ∈

ℝ is the inductance of the motor windings, and 𝑅𝑖 ∈ ℝ is the resistance of the motor windings.  This model 

is a simplification of the machine dynamics in that it assumes that all machine parameters are constant.  In 
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reality the motor constant 𝛼 and the inductance 𝐿𝑖 vary with position 𝑥(𝑡) due to the finite length of the 

stator [16]. 

Ri Li

)(tv a )(tx

)(tI

 

Figure 3. Equivalent electrical circuit model of a linear motor. 

 

2.4 POWER ELECTRONIC SYSTEM MODEL 

For this application a voltage source inverter is used to generate the voltage applied to the motor 

𝑣𝑎(𝑡).  Figure 4 below shows the h-bridge topology used for this system.  This generalized topology shows 

a bulk capacitance supporting a DC bus voltage 𝑉𝑑𝑐.  The source of this DC bus may be a battery, the 

output of another converter, or in most cases a rectifier. In this model we assume that the ripple on this DC 

bus is negligible and thus that 𝑉𝑑𝑐 can be treated as a constant. 

 

Figure 4. H-bridge inverter topology. 
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As shown this topology consists of two pairs of series-connected semiconductor switching devices, 

each comprising what is referred to as a switching leg.  The switches in each leg are driven with 

complementary gate signals with appropriate dead-time to prevent shoot-through events, i.e. a case when 

both switches are “on” at the same time, which would result in the DC source being short-circuited.  

Through the management of these gate signals each switching leg is capable of outputting a voltage of 

±𝑉𝑑𝑐 at its midpoint.  By considering the differential voltage between the two switching leg outputs we can 

see that the output voltage 𝑣𝑎(𝑡) has three potential voltage states: −𝑉𝑑𝑐 , 0, 𝑉𝑑𝑐.  A pulse width modulation 

scheme can then be used to design a duty cycle for each switching leg which achieves a desired AC 

reference voltage.  A unipolar PWM switching scheme is selected for this application for its superior total 

harmonic distortion (THD) over other schemes [22]. 

Provided that the switching frequency 𝑓𝑠𝑤 of the PWM is sufficiently higher than the frequency of the 

reference AC voltage which is being generated we find that the frequency spectrum of the inverter output 

voltage 𝑣𝑎(𝑡) is identical to that of the reference AC voltage with additional sidebands starting at 2𝑓𝑠𝑤 [22]. 

Assuming that the inductance of the motor 𝐿𝑖 is sufficiently high, we can assume that these high frequency 

sidebands are effectively filtered and have negligible effect on the system.  Thus in our later analysis of the 

system electrical dynamics we can ignore the high frequency switching effects and consider that the 

inverter output is equal to the reference voltage, i.e. that the inverter is an ideal AC source.  Note that this 

assumption is valid only if the frequency of 𝑣𝑎(𝑡) is sufficiently smaller than 𝑓𝑠𝑤. 
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3 SIMULATION PLATFORM 

The Matlab/Simulink software package was used for simulation of the system model detailed in 

Section II to be used for validation of the subsequently developed algorithms.  The parameters used for this 

model are given in Table 2 below.  These parameters reflect the nominal values of the real compressor 

utilized in the experimental platform described in the subsequent section.  This model includes a C-coded 

S-function block which is used to model the highly nonlinear piecewise compression cycle 

thermodynamics.  The PLECS Blockset was also used to model the h-bridge inverter detailed in Section 

2.4.  This model uses a DC bus of 𝑉𝑑𝑐 = 350 [𝑉] and a switching frequency of 𝑓𝑠𝑤 = 2 [𝑘𝐻𝑧]. This 

configuration mirrors the actual inverter utilized in the experimental setup and detailed in the following 

section.  A variable step ode45 solver was utilized for this simulation model. 

 

Table 2 

Linear Vapor Compressor Simulation Model Parameters 

Parameter Name Value Units 

𝑅𝑖 Stator Winding Resistance 6.3 [𝛺] 

𝐿𝑖 Stator Winding Inductance 0.346 [𝐻] 

𝛼 Motor Constant 75.7 [𝑁 𝐴⁄ ] 

𝑀 Piston Mass 0.65 [𝑘𝑔] 

𝐶 Piston Friction Coefficient 4.5 [𝑁 ∙ 𝑠 𝑚⁄ ] 

𝐾 Spring Constant 66,700 [𝑁 𝑚⁄ ] 

𝑃𝑑  Discharge Pressure 120 [𝑝𝑠𝑖] 

𝑃𝑠 Suction Pressure 16.6 [𝑝𝑠𝑖] 

𝐴𝑝 Piston Area 5.3×10−4 [𝑚2] 
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𝑛 Specific Heat Ratio of Refrigerant 1.07  

 

The majority of algorithms developed and presented in this work have been tested both in simulation 

and experimentally.  For the sake of brevity, simulation results are only provided in cases where successful 

experimental results are unavailable. 

  



13 

 

 

 

 

4 EXPERIMENTAL PLATFORM 

4.1 HARDWARE DESIGN 

An experimental setup was constructed for real-time implementation of the developed algorithms.  A 

block diagram of this experimental setup is shown in Figure 5.  The compressor was setup to compress air 

with the suction valve open to room air.  The discharge valve was connected to a nozzle, to adjust the outlet 

flow and allow for the buildup of pressure within the system.  A pressure gauge was placed in series with 

the nozzle to measure of the discharge pressure of the compressor. An H-bridge inverter with a 350 [V] DC 

bus provided by an AC/DC converter and a 2 [kHz] unipolar switching scheme [22] with the same topology 

shown in Figure 4 was used to generate the motor voltage 𝑣𝑎(𝑡) applied to the linear compressor.  A LEM 

LA25-NP Hall-effect current sensor was used to obtain the current measurement 𝐼(𝑡).  A U.S. Digital 

EM1-0-250-I optical encoder with a corresponding LIN-250-1-1 transmissive linear strip was used to 

measure the displacement 𝑥(𝑡).  This measurement was used as a reference for testing of sensorless control 

schemes and also utilized in a number of offline algorithms. 

H-Bridge
Inverter EM1

encoder

M
LA25-NP 
current 
sensor

cRIO-9022 /
cRIO-9113





v a

xIPWM





Vdc
AC

AC/DC 
Converter

 

Figure 5.  Block diagram of experimental hardware setup. 

 

A National Instruments CompactRIO device consisting of a cRIO-9022 controller and a cRIO-9113 

chassis with onboard Virtex-5 LX50 FPGA was selected for execution of the developed algorithms.  NI 
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modules were selected to meet the I/O requirements of the project.  An NI-9401 digital output module was 

used for generation of the PWM signals which control the inverter switching as well as other digital 

communication. An NI-9411 digital input module was used for reading the digital pulse trains generated by 

the encoder. Finally, an NI 9215 analog input module was used for measurement of the current sensor 

voltage output. A numerical derivative was used to obtain a velocity signal 𝑥̇(𝑡) from the measured 

displacement 𝑥(𝑡). A 4th order Butterworth filter with cutoff frequency of 200 [Hz] was used to filter the 

measured current and velocity signals.   

 

4.2 SOFTWARE DESIGN 

In order to execute the variety of control, observation, and estimation schemes developed in this work 

a robust and flexible software setup was developed in the LabVIEW development suite.  This setup consists 

of a hierarchy of three main programs, or virtual instruments (VIs) as they are called in LabVIEW, which 

each run on a different hardware target.  As mentioned in the previous section the CompactRIO consists of 

two parts, a chassis with onboard FPGA and a controller with a real-time processor.  The CompactRIO was 

setup to run in FPGA mode for maximum performance and functionality, meaning that all I/O are accessed 

at the FPGA level.  For this reason all data acquisition and algorithms are executed on the FPGA in a 

program which we will refer to as the FPGA VI.  This FPGA VI is typically run at a sample and loop rate 

of 50 [kHz] although faster sample rates were achievable. 

Real-time waveform data to be used for visualization is transferred losslessly to the Real-Time VI via 

DMA (direct memory access) FIFO (first in, first out) data structures.  This Real-Time VI runs on the real-

time processor of the CompactRIO and its primary function is to control data transfer between the FPGA 

VI and the Host VI which runs on the host PC.  This data transfer includes the waveform data previously 

mentioned as well as commands from the Host VI to the FPGA VI and indicator data from the FPGA VI to 

the Host VI.  Communication between the Real-Time VI and the Host VI is achieved over a hardwired 

Ethernet connection. 

The primary function of the Host VI is to serve as a user interface (UI) allowing for visualization and 

recording of the desired waveform data as well as control over all algorithm parameters.  The Real-Time VI 

and Host VI were written in such a way that they are easily interfaced with a variety of versions of the 
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FPGA VI.  In turn all versions of the FPGA VI, even those implementing vastly different algorithms, 

incorporated the same data transfer code to allow them to be used interchangeably.  A representation of the 

software architecture described is shown in Figure 6 below. 

 

 

Figure 6.  Diagram of software architecture and hardware integration for NI CompactRIO platform. 
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5 PARAMETER ESTIMATION 

5.1 ELECTRICAL PARAMETERS 

5.1.1 ESTIMATOR DESIGN 

An adaptive least-squares estimator is to be developed for estimation of the electrical parameters of 

the linear motor model presented in Section 2.3 based on the dynamics in (5).  For the proceeding 

mathematical analysis the following assumptions are made.  

Assumption 1: The parameters  𝑅𝑖, 𝛼 and 𝐿𝑖 are unknown with 𝑅𝑖 being a constant and 𝛼 and 𝐿𝑖 being 

slowly time-varying such that 𝛼̇(𝑡) ≈ 0 and 𝐿̇𝑖(𝑡) ≈ 0. 

Assumption 2: The variables 𝑣𝑎(𝑡), 𝐼(𝑡), 𝐼(̇𝑡), 𝑥(𝑡), 𝑥̇(𝑡) are all piecewise continuous and bounded 

and, with the exception of 𝐼(̇𝑡), all are measurable. 

Assumption 3: The initial conditions of the variables 𝑣𝑎(𝑡0), 𝐼(𝑡0), 𝐼(̇𝑡0), 𝑥̇(𝑡0) are all equal to zero; 

i.e. estimation begins when the machine is at rest and unexcited. 

An adaptive least-squares estimator for the unknown electrical parameters, 𝛼, 𝑅𝑖 , and 𝐿𝑖 is to be 

designed utilizing the electrical dynamic equation (5).  To facilitate the estimator development this equation 

is rewritten as a linear combination of constants and variables as follows: 

 𝛷 ≜ 𝑊𝜃𝑒 (6) 

where 𝛷(𝑡) ∈ ℝ, 𝑊(𝑡) ∈ ℝ1×3 are defined as follows 

 𝛷 ≜ [𝐼]̇ (7) 

 𝑊 ≜ [𝑣𝑎 −𝐼 −𝑥̇] (8) 

and 𝜃𝑒 ∈ ℝ
3 represents the unknown parameters to be estimated 

 𝜃𝑒 ≜ [
1

𝐿𝑖
    
𝑅𝑖
𝐿𝑖
    
𝛼

𝐿𝑖
]
𝑇

. (9) 
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To implement the estimator design it is required that all signals in (6) be measureable, but this is not 

the case for 𝛷(𝑡) due to its dependence on 𝐼(̇𝑡).  A filtering technique is utilized to overcome this 

dependence.  The plant of estimation to be used is a linearly stable, strictly proper low-pass filter 𝐻𝑒(𝑠) ∈ ℂ 

defined in the Laplace domain as 

 
𝐻𝑒(𝑠) ≜

𝑏𝑒
𝑠 + 𝑏𝑒

 
(10) 

where 𝑏𝑒 ∈ ℝ
+ is a constant gain and 𝑠 ∈ ℂ is the Laplace variable.   This value determines the cutoff 

frequency of the filter and should be selected in consideration of noise cancellation versus signal 

attenuation. Convolving this filter with the signal 𝛷(𝑡) a filtered plant output 𝛷𝑓(𝑡) ∈ ℝ can be defined as 

follows 

 𝛷𝑓(𝑡) ≜ ℎ𝑒(𝑡) ∗ 𝛷(𝑡) (11) 

where ℎ𝑒(𝑡) ∈ ℝ is the inverse Laplace transform of 𝐻𝑒(𝑠).  Substituting (6) into (11) a form of the 

filtered signal 𝛷𝑓(𝑡) can be written as follows 

 𝛷𝑓(𝑡) ≜ 𝑊𝑓(𝑡)𝜃𝑒 (12) 

where 𝑊𝑓(𝑡) ∈ ℝ
1×3 is defined as 

 𝑊𝑓(𝑡) ≜ ℎ𝑒(𝑡) ∗ 𝑊(𝑡). (13) 

The dependence of 𝛷𝑓(𝑡) on 𝐼(̇𝑡) can then be eliminated by utilizing the differentiation property of 

Laplace transforms as shown below 

 𝐼̇(𝑠) = 𝑠𝐼(𝑠) − 𝑖(𝑡0) (14) 

where 𝐼(𝑠) ∈ ℂ is the Laplace transform of 𝐼(𝑡).  Given from Assumption 3 that 𝑖(𝑡0) = 0, this term can be 

eliminated from (14).  From this a modified filter 𝐻𝑒′(𝑠) ∈ ℂ can be defined as  

 
𝐻𝑒
′ (𝑠) ≜

𝑏𝑒𝑠

𝑠 + 𝑏𝑒
 

(15) 

Utilizing this modified filter, 𝛷𝑓(𝑡) can be rewritten in terms of the measurable signal 𝐼(𝑡) as follows 

 𝛷𝑓(𝑡) = ℎ𝑒
′ (𝑡) ∗ 𝐼(𝑡) (16) 

where ℎ′𝑒(𝑡) ∈ ℝ is the inverse Laplace transform of 𝐻′𝑒(𝑠).  The object of the estimator is to update 

values of the estimate vector 𝜃̂𝑒 according to the error of the estimates.  Estimate error is defined as follows 

 𝜃̃𝑒 ≜ 𝜃𝑒 − 𝜃̂𝑒 . (17) 
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Due to the fact that 𝜃𝑒 is unknown, the error signal 𝜃̃𝑒 cannot be directly calculated.  However, an 

alternate error signal, 𝛷̃𝑓(𝑡), can be generated by first substituting the estimate vector 𝜃̂𝑒 into (12) to obtain 

an estimate of the plant input 𝛷̂𝑓(𝑡) as shown 

 𝛷̂𝑓 ≜ 𝑊𝑓𝜃̂𝑒 (18) 

 𝛷̃𝑓 ≜ 𝛷𝑓 − 𝛷̂𝑓 . (19) 

By substituting (12) and (18) into (19) and utilizing (17) it can be seen that this error signal is related 

to the actual estimate error as follows 

 𝛷̃𝑓 = 𝑊𝑓𝜃̃𝑒 . (20) 

From the error signal 𝛷̃𝑓(𝑡) an adaptive update rule using the least-squares estimation method can be 

developed as follows 

 𝜃̇̂𝑒 ≜ −𝑘𝑒
𝑃𝑒𝑊𝑓

𝑇𝛷̃𝑓

1 + 𝛾𝑒𝑊𝑓𝑃𝑒𝑊𝑓
𝑇 (21) 

where 𝑘𝑒 ,  𝛾𝑒 ∈ ℝ
+ are constant gains and 𝑃𝑒(𝑡) ∈ ℝ

3×3 is the covariance matrix defined by the update 

equation 

 𝑃̇𝑒 ≜ −𝑘𝑒
𝑃𝑒𝑊𝑓

𝑇𝑊𝑓𝑃𝑒

1 + 𝛾𝑒𝑊𝑓𝑃𝑒𝑊𝑓
𝑇  (22) 

where 𝑃𝑒(𝑡0) = 𝜌𝑒𝐼3, 𝜌𝑒 ∈ ℝ
+ is a constant gain, and 𝐼3 ∈ ℝ

3×3 is the standard identity matrix.  These gain 

values 𝑘𝑒 ,  𝛾𝑒 and 𝜌𝑒 directly affect the convergence rate of the system as well as its sensitivity to noise.  

The value of 𝜃̂𝑒 resulting from the update law in (21) can be used to infer estimates of the unknown 

parameters 𝛼, 𝑅𝑖, and 𝐿𝑖 by means of the following set of equations 

 
𝛼̂ =

𝜃̂𝑒3
𝜃̂𝑒1

, 𝑅̂𝑖 =
𝜃̂𝑒2
𝜃̂𝑒1

, 𝐿̂𝑖 =
1

𝜃̂𝑒1
 (23) 

Remark 5.1.1: From (23) it is clear that special care needs to be taken to avoid 𝜃̂𝑒1(𝑡) = 0.  To 

achieve this condition, the projection algorithm described in Section 2.3.1 of [18] must be utilized.  This 

algorithm takes into account 𝜃̂𝑒1(𝑡) and 𝜃̇̂𝑒1(𝑡) to keep 𝜃̂𝑒1(𝑡) > 0, while maintaining stability and 

convergence of the least-squares estimation strategy. 

Theorem 5.1.1: The least-squares algorithm described by (21) and (22) ensures that 𝜃̃𝑒(𝑡) → 0 as 𝑡 →

∞ provided the following sufficient conditions are met: (i) the plant of estimation is strictly proper, (ii) the 
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input is piecewise continuous and bounded, (iii) the output of the plant of estimation is bounded, and (iv) 

the following persistence of excitation condition holds 

 
𝛽1𝐼3 ≤ ∫ 𝑊𝑓

𝑇(𝜏)𝑊𝑓(𝜏)𝑑𝜏
𝑡+𝛿

𝑡0

≤ 𝛽2𝐼3 (24) 

where 𝛽1, 𝛽2, 𝛿 ∈ ℝ
+ are constants and 𝐼3 ∈ ℝ

3×3 is the standard identity matrix. 

Proof: To prove that 𝜃̃𝑒(𝑡) → 0 as 𝑡 → ∞, Theorem 2.5.3 from [18] is followed directly.  Condition (i) 

is proved to be valid as the plant of estimation described in (10) can be seen to be strictly proper.  

Condition (ii) is met by recognizing that the reference input to the plant 𝛷(𝑡) is solely dependent upon the 

signal 𝐼(̇𝑡) which as stated in Assumption 2 is bounded and piecewise continuous.  To prove condition (iii) 

is met: by utilizing standard linear analysis tools it can be shown that since 𝛷(𝑡) is bounded 𝛷𝑓(𝑡), 𝛷̇𝑓(𝑡) ∈

ℒ∞.  Condition (iv) is dependent on the way in which the system is excited.  As such, it will be shown in 

the implementation of this algorithm in Section 5.1.2 that the operating conditions used satisfy this 

condition. 

 

5.1.2 EXPERIMENTAL RESULTS  

The parameter estimator described in (21) and (22) was implemented on the experimental platform 

under the conditions stated.  The resulting gas force is highly nonlinear and imparts significant harmonic 

content into the mechanical dynamics.  This harmonic content is propagated into the electrical dynamic 

equation via the velocity in the back EMF term (5), thus fulfilling the persistence of excitation mentioned 

in Theorem 5.1.1. Gain values of 𝑏𝑒 = 100, 𝑘𝑒 = 40, and 𝜌𝑒 = 0.2 were selected via trial and error for 

optimal convergence and noise sensitivity. 
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Figure 7.  Estimation results for the electrical parameters 𝛼, 𝑅𝑖 , 𝐿𝑖. 

 

Two different trials were performed using different sets of initial conditions.  The first trial used 

values of 𝛼̂(𝑡0) = 70 [𝑁 𝐴⁄ ], 𝑅̂𝑖(𝑡0) = 5 [𝛺] and 𝐿̂𝑖(𝑡0) = 0.4 [𝐻], while the second used values of 

𝛼̂(𝑡0) = 80 [𝑁 𝐴⁄ ], 𝑅̂𝑖(𝑡0) = 8 [𝛺] and 𝐿̂𝑖(𝑡0) = 0.2 [𝐻]. The results of this experiment are shown in 

Figure 7.  From this we see little to no dependence on initial values for the estimates of 𝛼 and 𝐿𝑖, while a 

stronger dependence is seen for 𝑅𝑖.    Using the average of the convergence values for each trial, the 

following parameter estimates were identified for use in the observer algorithms: 𝛼̂ = 75.6 [𝑁 𝐴⁄ ], 𝑅̂𝑖 =

6.47 [𝛺], 𝐿̂𝑖 = 0.318 [𝐻].  A DC resistance test provides further confidence for the resistance estimate with 

a result of 6.5 [𝛺]. 
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We can make sense of the differences in convergence of the three parameters by considering the 

relative magnitudes of the parameter/signal pairs in (6).  From (23) we can see that the convergence of 𝑅̂𝑖 is 

exclusively dependent on 𝜃̂𝑒2  which corresponds to the regressor term 𝑊2 from (8). Using the rms values 

mentioned previously and the average converged estimator values, an rms of the parameter/signal pair 

𝑊2𝜃̂𝑒2  can be estimated as 10.13 [A/s] while the rms of 𝑊1𝜃̂𝑒1  and 𝑊3𝜃̂𝑒3  are 417.92 [A/s] and 385.13 

[A/s], respectively.  The difference in the relative magnitude of the term 𝑊2𝜃̂𝑒2  compared to the other terms 

in (6) for this excitation explains why weaker convergence is seen for 𝜃̂𝑒2  and therefore 𝑅̂𝑖 [18].  Selection 

of a more balanced excitation could alleviate this problem, but such an excitation would be of no practical 

interest to this application, and since a DC resistance test is easily obtainable there is no motivation to do 

so. 

 

5.2 MECHANICAL PARAMETERS 

5.2.1 ESTIMATOR DESIGN 

The proceeding mathematical analysis requires an additional assumption to be added to those 

presented in Section 5.1.1.  

Assumption 4: The machine is operating under such conditions that the gas force 𝐹𝑔 is constant and 

equal to zero. 

Estimation of the unknown mechanical parameters, 𝑀, 𝐶, and 𝐾 utilizing an adaptive least-squares 

algorithm is performed utilizing the mechanical dynamic equations (2) and (3). Coupling these two 

equations and simplifying them via Assumption 5 the following form of the mechanical dynamics can be 

written 

 𝛹 ≜ 𝑌𝜃𝑚 (25) 

where 𝛹(𝑡) ∈ ℝ, 𝑌(𝑡) ∈ ℝ1×3 are defined as follows 

 𝛹 ≜ [𝑥̈] (26) 

 𝑌 ≜ [−𝑥̇ −(𝑥 − 𝐿0) 𝐼] (27) 

and 𝜃𝑚 ∈ ℝ3 represents the unknown parameters to be estimated 
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 𝜃𝑒 ≜ [
𝐶

𝑀
    
𝐾

𝑀
    
𝛼

𝑀
]
𝑇

. (28) 

To implement the estimator design it is required that all signals in (25) be measureable, but this is not 

the case for 𝛹(𝑡) due to its dependence on 𝑥̈(𝑡).  A filtering technique is utilized to overcome this 

dependence.  The plant of estimation to be used is a linearly stable, strictly proper low-pass filter 𝐻𝑚(𝑠) ∈

ℂ defined in the Laplace domain as 

 
𝐻𝑚(𝑠) ≜

𝑏𝑚
𝑠 + 𝑏𝑚

 
(29) 

where 𝑏𝑚 ∈ ℝ+ is a constant gain.   This value determines the cutoff frequency of the filter and should be 

selected in consideration of noise cancelation versus signal attenuation. Convolving this filter with the 

signal 𝛹(𝑡) a filtered plant output 𝛹𝑓(𝑡) ∈ ℝ can be defined as follows 

 𝛹𝑓(𝑡) ≜ ℎ𝑚(𝑡) ∗ 𝛹(𝑡) (30) 

where ℎ𝑚(𝑡) ∈ ℝ is the inverse Laplace transform of 𝐻𝑚(𝑠).  Substituting (25) into (30) a form of the 

filtered signal 𝛹𝑓(𝑡) can be written as follows 

 𝛹𝑓(𝑡) ≜ 𝑌𝑓(𝑡)𝜃𝑚 (31) 

where 𝑌𝑓(𝑡) ∈ ℝ
1×3 is defined as 

 𝑌𝑓(𝑡) ≜ ℎ𝑚(𝑡) ∗ 𝑌(𝑡). (32) 

The dependence of 𝛹𝑓(𝑡) on 𝑥̈(𝑡) can then be eliminated by utilizing the differentiation property of 

Laplace transforms as shown below 

 𝑋̈(𝑠) = 𝑠𝑋̇(𝑠) − 𝑥̇(𝑡0) (33) 

where 𝑋̇(𝑠) ∈ ℂ is the Laplace transform of 𝑥̇(𝑡).  Given from Assumption 3 that 𝑥̇(𝑡0) = 0, this term can 

be eliminated from (33).  From this a modified filter 𝐻𝑚′(𝑠) ∈ ℂ can be defined as  

 
𝐻𝑚
′ (𝑠) ≜

𝑏𝑚𝑠

𝑠 + 𝑏𝑚
 

(34) 

Utilizing this modified filter, 𝛹𝑓(𝑡) can be rewritten in terms of the measurable signal 𝑥̇(𝑡) as follows 

 𝛹𝑓(𝑡) = ℎ𝑚
′ (𝑡) ∗ 𝑥̇(𝑡) (35) 
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where ℎ′𝑚(𝑡) ∈ ℝ is the inverse Laplace transform of 𝐻′𝑚(𝑠).  The object of the estimator is to update 

values of the estimate vector 𝜃̂𝑚 according to the error of the estimates.  Estimate error is defined as 

follows 

 𝜃̃𝑚 ≜ 𝜃𝑚 − 𝜃̂𝑚. (36) 

Due to the fact that 𝜃𝑚 is unknown, the error signal 𝜃̃𝑚 cannot be directly calculated.  However, an 

alternate error signal, 𝛹̃𝑓(𝑡), can be generated by first substituting the estimate vector 𝜃̂𝑚 into (31) to obtain 

an estimate of the plant input 𝛹̂𝑓(𝑡) and a corresponding error signal as shown 

 𝛹̂𝑓 ≜ 𝑌𝑓𝜃̂𝑚 (37) 

 𝛹̃𝑓 ≜ 𝛹𝑓 − 𝛹̂𝑓 . (38) 

By substituting (31) and (37) into (38) and utilizing (36) it can be seen that this error signal is related to the 

actual estimate error as follows 

 𝛹̃𝑓 = 𝑌𝑓𝜃̃𝑚. (39) 

From the error signal 𝛹̃𝑓(𝑡) an adaptive update rule using the least-squares estimation method can be 

developed as follows 

 𝜃̇̂𝑚 ≜ −𝑘𝑚
𝑃𝑚𝑌𝑓

𝑇𝛹̃𝑓

1 + 𝛾𝑚𝑌𝑓𝑃𝑚𝑌𝑓
𝑇  (40) 

where 𝑘𝑚,  𝛾𝑚 ∈ ℝ+ are constant gains and 𝑃𝑚(𝑡) ∈ ℝ
3×3 is the covariance matrix defined by the update 

equation 

 𝑃̇𝑚 ≜ −𝑘𝑚
𝑃𝑚𝑌𝑓

𝑇𝑌𝑓𝑃𝑚

1 + 𝛾𝑚𝑌𝑓𝑃𝑚𝑌𝑓
𝑇  (41) 

where 𝑃𝑚(𝑡0) = 𝜌𝑚𝐼3, 𝜌𝑚 ∈ ℝ+ is a constant gain.  These gain values 𝑘𝑚,  𝛾𝑚 and 𝜌𝑚 directly affect the 

convergence rate of the system as well as its sensitivity to noise.  The value of 𝜃̂𝑚 resulting from the update 

law in (40) can be used to infer estimates of the unknown parameters 𝑀,𝐶, and 𝐾 by means of the 

following set of equations 

 
𝑀̂ =

1

𝜃̂𝑚3

𝛼, 𝑅̂𝑖 =
𝜃̂𝑚1

𝜃̂𝑚3

𝛼, 𝐿̂𝑖 =
𝜃̂𝑚2

𝜃̂𝑚3

𝛼 (42) 
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Note that the estimates above require knowledge of the motor constant 𝛼.  This knowledge can be 

obtained from the estimate 𝛼̂ in (23), assuming that the electrical parameter estimator has been run 

previously. 

Remark 5.2.1: From (42) it is clear that special care needs to be taken to avoid 𝜃̂𝑚3
(𝑡) = 0.  To 

achieve this condition, the projection algorithm described in Section 2.3.1 of [18] must be utilized.  This 

algorithm takes into account 𝜃̂𝑚3
(𝑡) and 𝜃̇̂𝑚3

(𝑡) to keep 𝜃̂𝑚3
(𝑡) > 0, while maintaining stability and 

convergence of the least-squares estimation strategy. 

Theorem 5.2.1: The least-squares algorithm described by (40) and (41) ensures that 𝜃̃𝑚(𝑡) → 0 as 𝑡 →

∞ provided the following sufficient conditions are met: (i) the plant of estimation is strictly proper, (ii) the 

input is piecewise continuous and bounded, (iii) the output of the plant of estimation is bounded, and (iv) 

the following persistence of excitation condition holds 

 
𝜀1𝐼3 ≤ ∫ 𝑌𝑓

𝑇(𝜏)𝑌𝑓(𝜏)𝑑𝜏
𝑡+𝜎

𝑡0

≤ 𝜀2𝐼3 (43) 

where 𝜀1, 𝜀2, 𝜎 ∈ ℝ
+ are constants and 𝐼3 ∈ ℝ

3×3 is the standard identity matrix. 

Proof: To prove that 𝜃̃𝑚(𝑡) → 0 as 𝑡 → ∞, Theorem 2.5.3 from [18] is followed directly.  Condition 

(i) is proved to be valid as the plant of estimation described in (29) can be seen to be strictly proper.  

Condition (ii) is met by recognizing that the reference input to the plant 𝛹(𝑡) is solely dependent upon the 

signal 𝑥̈(𝑡) which as stated in Assumption 2 is bounded and piecewise continuous.  To prove condition (iii) 

is met: by utilizing standard linear analysis tools it can be shown that since 𝛹(𝑡) is bounded 𝛹𝑓(𝑡), 𝛹̇𝑓(𝑡) ∈

ℒ∞.  Condition (iv) is dependent on the way in which the system is excited.  As such, it will be shown in 

the implementation of this algorithm in Section 5.2.2 that the operating conditions used satisfy this 

condition. 

 

5.2.2 SIMULATION RESULTS 

The simulation model presented in Section 3 was used to validate the adaptive least-squares algorithm 

for the mechanical parameters of the linear compressor. The plant model was modified such that the force 

of gas compression was equal to zero per Assumption 4. 
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Because of the lack of gas force in this simulation a different method was required to fulfill the 

persistence of excitation mentioned in Theorem 5.2.1. A dual frequency voltage excitation was selected for 

this purpose with frequencies of 21 and 49 [Hz] utilized and a peak voltage of 40 [V] for each. Gain values 

of 𝑏𝑚 = 10, 𝑘𝑚 = 50, and 𝜌𝑚 = 50 were selected via trial and error for optimal convergence and noise 

sensitivity. Initial values of 𝜃̂𝑚(𝑡0) = [10 1𝑒5 100]𝑇 were used for the estimator. Estimates for the 

parameters 𝑀, 𝐶, and 𝐾 were calculated according to (42) using the value of 𝛼 given in Table 2. Fig. 8 

shows the results of the simulation and the convergence of all three parameters to the known values used in 

the plant model. 

 

Figure 8.  Simulation results for adaptive least-squares mechanical parameter estimation scheme. 
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6 REAL-TIME OBSERVERS 

6.1 VELOCITY OBSERVER 

The goal of this observer is to accurately observe the piston velocity using only the measured motor 

current and knowledge of the applied voltage as well as parameter knowledge.  From this information a 

model-based observer is developed for the piston velocity.  Development in the subsequent sections will 

show how this observation can be used to obtain valuable operational information such as system 

resonance, and ultimately piston position. 

6.1.1 OBSERVER DEVELOPMENT 

A nonlinear observer is developed for the piston velocity. To facilitate the development of the 

velocity observer, the electrical dynamics in (5) can be rewritten as 

 𝐼̇ =
1

𝐿𝑖
𝑣𝑎 −

𝑅𝑖
𝐿𝑖
𝐼 − 𝑓𝑉 (44) 

where 𝑓𝑉(𝑡) ∈ ℝ is a scaled velocity signal and is defined as follows: 

 𝑓𝑉 ≜
𝛼

𝐿𝑖
𝑥̇. (45) 

The proceeding mathematical analysis necessitates a new set of assumptions (previous assumptions are 

ignored).  

Assumption 1: The signals 𝑣𝑎(𝑡) and 𝐼(𝑡) are measurable. 

Assumption 2: The variables 𝑣𝑎(𝑡), 𝐼(𝑡), 𝐼(̇𝑡), 𝑥(𝑡), 𝑥̇(𝑡), 𝑓𝑉̇ (𝑡), 𝑓𝑉̈(𝑡) are all piecewise continuous and 

bounded, hence there exist positive bounding constants 𝜁1𝑉 , 𝜁2𝑉 ∈ ℝ
+ such that |𝑓𝑉̇(𝑡)| < 𝜁1𝑉 , |𝑓𝑉̈(𝑡)| < 𝜁2𝑉 

Assumption 3: The machine parameters 𝐿𝑖 , 𝑅𝑖 , and 𝛼 are known a priori and are constants with respect 

to time. 
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The nonlinear observer to be designed for the signal 𝑓𝑉(𝑡) is denoted as 𝑓𝑉(𝑡) ∈ ℝ.  For a given 𝑓𝑉(𝑡), 

(44) can be utilized to obtain an observation for 𝐼(̇𝑡) defined as 

  𝐼̇̂ ≜
1

𝐿𝑖
𝑣𝑎 −

𝑅𝑖
𝐿𝑖
𝐼 − 𝑓𝑉 . (46) 

Taking the integral of (46) gives the following observation for 𝐼(𝑡): 

 𝐼 = ∫ (
1

𝐿𝑖
𝑣𝑎(𝜎) −

𝑅𝑖

𝐿𝑖
𝐼(𝜎))

𝑡

𝑡0
𝑑𝜎 − ∫ 𝑓𝑉(𝜎)𝑑𝜎

𝑡

𝑡0
+ 𝐼(𝑡0). (47) 

Utilizing (46), (47) and the observation 𝑓𝑉(𝑡) the following error signals can be defined for the observer: 

 𝑓𝑉 ≜ 𝑓𝑉 − 𝑓𝑉 (48) 

 𝑒𝑉 ≜ 𝐼 − 𝐼 (49) 

 𝑒̇𝑉 = 𝐼̇̂ − 𝐼̇. (50) 

Substituting (44) and (46) into (50) and utilizing (48) gives the following relationship between 𝑒̇𝑉(𝑡) and 

𝑓𝑉(𝑡): 

  𝑒̇𝑉 = 𝑓𝑉 . (51) 

A filtered error signal 𝑠𝑉(𝑡) is defined as 

        𝑠𝑉 ≜ 𝑒̇𝑉 + 𝑒𝑉 . (52) 

From the subsequent stability analysis the following observer is designed for the scaled velocity:   

  𝑓̇𝑉 ≜ (𝑘1𝑉 + 1)𝑠𝑉 + 𝑘2𝑉𝑠𝑔𝑛(𝑒𝑉) (53) 

where 𝑘1𝑉 , 𝑘2𝑉 ∈ ℝ
+ are constant gains and 𝑠𝑔𝑛(∙) is the signum function.  The dependence of (53) on 

𝑠𝑉(𝑡) makes it unrealizable per Assumption 4. A realizable from of 𝑓̂
𝑉
(𝑡) can be obtained by substituting 

(52) into (53) and integrating both sides of the resulting equation to obtain the following: 

 𝑓̂
𝑉
= (𝑘1𝑉 + 1) [𝑒𝑉(𝑡) − 𝑒𝑉(𝑡0) +∫ 𝑒𝑉(𝜎)𝑑𝜎

𝑡

𝑡0

] + 𝑘2𝑉∫ 𝑠𝑔𝑛(𝑒𝑉(𝜎))𝑑𝜎

𝑡

𝑡0

+ 𝑓̂
𝑉
(𝑡0). (54) 

Remark 6.1.1:  The observer presented in this section may be of particular interest for production-

level applications as it does not require measurement of any of the mechanical states of the compressor. 

Remark 6.1.2:  The stability analysis presented in the appendix proves that the nonlinear observer 

𝑓𝑉(𝑡) defined in (54) converges to the observed signal 𝑓𝑉(𝑡).  Utilizing (45), a velocity observer 𝑥̂̇𝑉(𝑡) can 

be written as  
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 𝑥̂̇𝑉 ≜
𝐿𝑖
𝛼
𝑓𝑉 . (55) 

It is clear from (55) that the accuracy of this observer is directly dependent on the accuracy of the 

parameters used. 

 

 

 

6.1.2 STABILITY ANALYSIS 

Theorem 6.1.1: The scaled velocity observer given in (54) ensures that 

 𝑓𝑉(𝑡) → 𝑓𝑉(𝑡)   𝑎𝑠    𝑡 → ∞ (56) 

provided that the observer gain 𝑘2𝑉 is selected to meet the following sufficient condition: 

 𝑘2𝑉 > 𝜁1𝑉 + 𝜁2𝑉 . (57) 

Proof: See Appendix. 

 

 

6.1.3 EXPERIMENTAL RESULTS 

The observer described in (54) was implemented on the experimental platform using a current 

measurement and knowledge of the applied voltage. Model parameters for the observer were selected based 

on the average results of the electrical parameter estimation detailed in Section 5.1.2. A value of 𝑘2𝑉 =

1.5×105 was selected to fulfill the gain condition given in (57) based on the expected range of operating 

conditions.  A gain of 𝑘1𝑉 = 4×10
4, which acts similarly to a proportional-integral gain, was selected via 

trial and error for optimal convergence and noise sensitivity.  Similar performance was seen for values of 

𝑘2𝑉 > 1×105 and 𝑘1𝑉 > 2×10
4 with upper limits for these gains determined by the variable limits of the 

real-time processor to avoid overflow. At 𝑡 = 0 the observer was initialized. 

The results of this experiment are shown in Fig. 9 and 10.  Fig. 9 shows the observer error 𝑒𝑉(𝑡) 

defined in (49) as it converges to approximately zero.  Fig. 10 shows the observed velocity 𝑥̂̇𝑉(𝑡) derived 

via (55) in comparison with the velocity signal 𝑥̇(𝑡) obtained from the encoder measurement.  Once the 
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observer has converged, the ratio of the rms of the error between the observed and actual velocities, taken 

as a percent of the rms of the actual velocity, is calculated as 2.39%. We can see from Fig. 9 and 10 that the 

velocity observer is converging much faster than the current observer.  From (51) this gives an indication 

that 𝑒̇𝑉(𝑡) is converging much faster than 𝑒𝑉(𝑡). 

 

Figure 9.  Convergence of observer error 𝑒𝑉(𝑡). 

 

Figure 10.  Comparison of velocity, measured 𝑥̇(𝑡) and observed 𝑥̂̇𝑉(𝑡). 

 

6.2 ACCELERATION OBSERVER 

Our objective is to develop an observer for piston acceleration using measurements for piston 

velocity, motor current, and parameter knowledge.  This observer removes the need for numerical 

derivatives which unavoidably amplify the measured noise.  Due to its reliance on mechanical 

measurements this observer is not suitable for production purposes, however the following subsection will 

show how this observer can be modified to remove the need for a piston velocity measurement.  

Subsequent sections will also show how the resulting acceleration signal can be used to obtain knowledge 

of the absolute piston position. 
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6.2.1 OBSERVER DEVELOPMENT 

A nonlinear observer is to be developed to observe piston acceleration while accounting for 

uncertainties in the mechanical dynamics. To facilitate the development of the acceleration observer, the 

mechanical dynamics described in (2) and (3) can be combined and rewritten as 

 𝑥̈ =
𝛼

𝑀
𝐼 + 𝑓𝑈  (58) 

where 𝑓𝑈(𝑡) ∈ ℝ represents the lumped uncertain terms and is defined as follows: 

 𝑓𝑈 ≜ −
𝐶

𝑀
𝑥̇ −

𝐾

𝑀
𝑥 +

1

𝑀
𝐹𝑔. (59) 

The proceeding mathematical analysis necessitates a new set of assumptions (previous assumptions 

are ignored).  

Assumption 1: The signals 𝐼(𝑡) and 𝑥̇(𝑡) are measurable. 

Assumption 2: The variables 𝐼(𝑡), 𝑥(𝑡), 𝑥̇(𝑡), 𝑥̈(𝑡), 𝑥(𝑡), 𝑓𝑈(𝑡), 𝑓𝑈̇(𝑡), 𝑓𝑈̈(𝑡) are all piecewise 

continuous and bounded, hence there exist positive bounding constants 𝜁1𝑈 , 𝜁2𝑈 ∈ ℝ
+ such that |𝑓𝑈̇(𝑡)| <

𝜁1𝑈 , |𝑓𝑈̈(𝑡)| < 𝜁2𝑈. 

Assumption 3: The machine parameters 𝑀 and 𝛼 are known a priori and are constants with respect to 

time. 

The nonlinear observer to be designed for the uncertain terms comprising 𝑓𝑈(𝑡) is denoted as 𝑓𝑈(𝑡) ∈

ℝ where the observer is to ensure that 𝑓𝑈(𝑡) → 𝑓𝑈(𝑡) as 𝑡 → ∞.  Utilizing 𝑓𝑈(𝑡) with (58), an observed 

acceleration can be defined as 

  𝑥̂̈𝑈 ≜
𝛼

𝑀
𝐼 + 𝑓𝑈. (60) 

Taking the integral of (60) gives the following observation for velocity: 

 𝑥̂̇𝑈 = ∫
𝛼

𝑀
𝐼(𝜎)

𝑡

𝑡0

𝑑𝜎 + ∫𝑓𝑈(𝜎)𝑑𝜎

𝑡

𝑡0

 (61) 

Utilizing (60), (61) and the observation 𝑓𝑈(𝑡) the following error signals can be defined for the 

observer: 

 𝑓𝑈 ≜ 𝑓𝑈 − 𝑓𝑈 (62) 

 𝑒𝑈 ≜ 𝑥̇ − 𝑥̂̇𝑈 (63) 
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 𝑒̇𝑈 = 𝑥̈ − 𝑥̂̈𝑈 (64) 

Substituting (58) and (60) into (64) and utilizing (62) gives the following relationship between 𝑒̇𝑈(𝑡) and 

𝑓𝑈(𝑡): 

  𝑒̇𝑈 = 𝑓𝑈. (65) 

A filtered error signal 𝑠𝑈(𝑡) is defined as 

 𝑠𝑈 ≜ 𝑒̇𝑈 + 𝑒𝑈. (66) 

From the subsequent stability analysis the following observer is designed for the uncertainty signal:   

  𝑓̇𝑈 ≜ (𝑘1𝑈 + 1)𝑠𝑈 + 𝑘2𝑈𝑠𝑔𝑛(𝑒𝑈) (67) 

where 𝑘1𝑈, 𝑘2𝑈 ∈ 𝑅
+ are constant gains.  The dependence of (67) on 𝑠𝑈(𝑡) makes it unrealizable per 

Assumption 7. A realizable from of 𝑓̂
𝑈
(𝑡) can be obtained by substituting (45) into (46) and integrating 

both sides of the resulting equation to obtain the following: 

 𝑓𝑈 = (𝑘1𝑈 + 1) [𝑒𝑈(𝑡) − 𝑒𝑈(𝑡0) + ∫ 𝑒𝑈(𝜎)𝑑𝜎
𝑡

𝑡0

] + 𝑘2𝑈∫ 𝑠𝑔𝑛(𝑒𝑈(𝜎))𝑑𝜎
𝑡

𝑡0

+ 𝑓𝑈(𝑡0). (68) 

Remark 6.2.1:  This observer may be of interest for production-level applications as it does not 

require measurement of any of the mechanical states of the compressor provided that a velocity observer 

such as the one described in Section 4 is used in place of the measured velocity. 

Remark 6.2.2:  The stability analysis presented in the appendix proves that the nonlinear observer 

𝑓𝑈(𝑡) defined in (47) converges to the uncertainty signal 𝑓𝑈(𝑡). 

 

6.2.2 STABILITY ANALYSIS 

Theorem 6.2.1: The observer defined in (68) ensures that 

 𝑓𝑈(𝑡) → 𝑓𝑈(𝑡)   𝑎𝑠    𝑡 → ∞ (69) 

provided that the observer gain 𝑘2𝑈 is selected to meet the following sufficient condition: 

 𝑘2𝑈 > 𝜁1𝑈 + 𝜁2𝑈 . (70) 

Proof: See Appendix. 
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6.2.3 EXPERIMENTAL RESULTS 

The uncertainty observer described in (68) was implemented on the experimental platform using the 

filtered current and velocity measurements described previously. Additionally, a numerical derivative was 

used to obtain an acceleration signal from the velocity measurement to be used for comparison.  The 

nominal mass value listed in Table 2 was utilized for the algorithm along with the motor constant identified 

in Section 5.1.2.  A value of 𝑘2𝑈 = 1×10
5 was selected to fulfill the gain condition given in (70) based on 

the expected range of operating conditions.  A gain of 𝑘1𝑈 = 2×104, which acts similarly to a 

proportional-integral gain, was selected via trial and error for optimal convergence and noise sensitivity. 

Similar performance was seen for values of 𝑘2𝑈 > 7.5×10
4 and 𝑘1𝑈 > 1×104 with upper limits for these 

gains determined by the variable limits of the real-time processor to avoid overflow. 

 

Figure 11.  Comparison of velocity, measured 𝑥̇(𝑡) and observed 𝑥̂̇𝑈(𝑡). 

 

Figure 12.  Comparison acceleration, measured 𝑥̈(𝑡) and observed 𝑥̂̈𝑈(𝑡). 
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Figure 13.  Uncertainty observer 𝑓𝑈(𝑡). 

 

Fig. 11-13 show the results of this experiment.  Fig. 11 shows that the observed velocity converges to 

the actual and that observer error 𝑒𝑈(𝑡) is driven to zero.  Fig. 12 likewise shows that the observed 

acceleration accurately models the measured acceleration with the ratio of the rms error, taken as a 

percentage of the rms of the actual acceleration, calculated as 1.21% once the observer has converged. Fig. 

13 shows that the uncertainty observer is bounded, validating assertions made in the stability analysis. 

 

 

6.3 TWO-STAGE OBSERVER 

The goal of this observer is to combine the velocity and acceleration observers presented in the 

previous two subsections into a single observer which is able to observer acceleration using only a motor 

current measurement as well as the parameter knowledge mentioned in the previous two subsections. 

6.3.1 OBSERVER DEVELOPMENT 

A more practical implementation of the observers in (54) and (68) can be realized by replacing the 

velocity measurement required by the uncertainty observer with the output of the velocity observer defined 

in (55), running the two observers in parallel.  This requires the error signal defined in (63) to be redefined 

as 𝑒𝑈 ≜ 𝑥̂̇𝑉 − 𝑥̂̇𝑈. Unfortunately, it is not possible to prove stability for this implementation. 

6.3.2 EXPERIMENTAL RESULTS 

This scheme was tested experimentally with the same parameters and gains described previously for 

each observer.  Once steady-state was achieved both observers were initialized at 𝑡 = 0.  Fig. 14 and 15 
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show the results of this experiment.  From these figures we can see that comparable results for boundedness 

and convergence are obtained with this scheme as with the previous experiment, validating its use for 

practical application.  A ratio of the rms error between the measured and observed acceleration, taken as a 

percentage of the rms of the actual acceleration, can be calculated as 7.56% once the observers have 

converged, showing that there is some loss in accuracy in comparison with the previous implementation 

due to the compounding of error between the two observers. There are a number of ways in which this error 

could be improved, primarily by improving the accuracy of the velocity observation 𝑥̂̇𝑉.  This could be 

accomplished by improving the fidelity and resolution of the current and voltage measurements or by 

taking into account the time-varying nature of the parameters 𝐿𝑖 and 𝛼. 

 

Figure 14.  Velocity observers 𝑥̂̇𝑉(𝑡) and 𝑥̂̇𝑈(𝑡). 

 

Figure 15.  Comparison of acceleration, measured 𝑥̈(𝑡) and observed 𝑥̂̈𝑈(𝑡). 

 

6.4 GAS FORCE OBSERVER 

The goal of this observer is to use measurements for motor current, piston position, and piston 

velocity to obtain a real-time observation for the force of gas compression.  Due to the multiple mechanical 
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measurements necessary to implement this observer it is not suitable for production purposes.  It is 

primarily intended as a laboratory tool for model characterization and validation. 

6.4.1 OBSERVER DEVELOPMENT 

A nonlinear observer is to be developed to observe the force of gas compression. To facilitate the 

development of this observer, the mechanical dynamics described in (2) and (3) can be combined and 

rewritten as 

 𝑥̈ =
1

𝑀
[𝛼𝐼 − 𝐶𝑥̇ − 𝐾(𝑥 − 𝐿0)] + 𝑓𝐹 (71) 

where 𝑓𝐹(𝑡) ∈ ℝ represents the scaled gas compression force term and is defined as follows: 

 𝑓𝐹 ≜
1

𝑀
𝐹𝑔. (72) 

The proceeding mathematical analysis necessitates a new set of assumptions (previous assumptions 

are ignored).  

Assumption 1: The signals 𝐼(𝑡), 𝑥(𝑡) and 𝑥̇(𝑡) are measurable. 

Assumption 2: The variables 𝐼(𝑡), 𝑥(𝑡), 𝑥̇(𝑡), 𝑥̈(𝑡), 𝑥(𝑡), 𝑓𝐹(𝑡), 𝑓𝐹̇(𝑡), 𝑓𝐹̈(𝑡) are all piecewise 

continuous and bounded, hence there exist positive bounding constants 𝜁1𝐹 , 𝜁2𝐹 ∈ ℝ
+ such that |𝑓𝐹̇(𝑡)| <

𝜁1𝐹 , |𝑓𝐹̈(𝑡)| < 𝜁2𝐹. 

Assumption 3: The machine parameters 𝑀,𝐶, 𝐾 and 𝛼 are known a priori and are constants with 

respect to time. 

The nonlinear observer to be designed for 𝑓𝐹(𝑡) is denoted as 𝑓𝐹(𝑡) ∈ ℝ where the observer is to 

ensure that 𝑓𝐹(𝑡) → 𝑓𝐹(𝑡) as 𝑡 → ∞.  Utilizing 𝑓𝐹(𝑡) with (71), an observed acceleration can be defined as 

  𝑥̂̈𝐹 ≜
1

𝑀
[𝛼𝐼 − 𝐶𝑥̇ − 𝐾(𝑥 − 𝐿0)] + 𝑓𝐹. (73) 

Taking the integral of (73) gives the following observation for velocity: 

 𝑥̂̇𝐹 =
1

𝑀
∫[𝛼𝐼 − 𝐶𝑥̇ − 𝐾(𝑥 − 𝐿0)]

𝑡

𝑡0

𝑑𝜎 + ∫𝑓𝐹(𝜎)𝑑𝜎

𝑡

𝑡0

 (74) 

Utilizing (39), (40) and the observation 𝑓𝐹(𝑡) the following error signals can be defined for the 

observer: 
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 𝑓𝐹 ≜ 𝑓𝐹 − 𝑓𝐹 (75) 

 𝑒𝐹 ≜ 𝑥̇ − 𝑥̂̇𝐹 (76) 

 𝑒̇𝐹 = 𝑥̈ − 𝑥̂̈𝐹 (77) 

Substituting (71) and (73) into (77) and utilizing (75) gives the following relationship between 𝑒̇𝐹(𝑡) and 

𝑓𝐹(𝑡): 

  𝑒̇𝐹 = 𝑓𝐹. (78) 

A filtered error signal 𝑠𝐹(𝑡) is defined as 

 𝑠𝐹 ≜ 𝑒̇𝐹 + 𝑒𝐹 . (79) 

From the subsequent stability analysis the following observer is designed for the uncertainty signal:   

  𝑓̇𝐹 ≜ (𝑘1𝐹 + 1)𝑠𝐹 + 𝑘2𝐹𝑠𝑔𝑛(𝑒𝐹) (80) 

where 𝑘1𝐹 , 𝑘2𝐹 ∈ 𝑅
+ are constant gains.  The dependence of (80) on 𝑠𝐹(𝑡) makes it unrealizable per 

Assumption 7. A realizable from of 𝑓𝐹(𝑡) can be obtained by substituting (79) into (80) and integrating 

both sides of the resulting equation to obtain the following: 

 𝑓𝐹 = (𝑘1𝐹 + 1) [𝑒𝐹(𝑡) − 𝑒𝐹(𝑡0) + ∫ 𝑒𝐹(𝜎)𝑑𝜎
𝑡

𝑡0

] + 𝑘2𝐹∫ 𝑠𝑔𝑛(𝑒𝐹(𝜎))𝑑𝜎
𝑡

𝑡0

+ 𝑓𝐹(𝑡0). (81) 

Remark 6.4.1:  Due to the dependence of this observer on position and velocity measurements, it is 

not useful for production-level applications, but may still be of interest for laboratory characterization of 

the gas force where full state measurements are available. 

Remark 6.4.2:  The stability analysis presented in the appendix proves that the nonlinear observer 

𝑓𝑈(𝑡) defined in (81) converges to the uncertainty signal 𝑓𝑈(𝑡). 

 

 

6.4.2 STABILITY ANALYSIS 

Theorem 6.4.1: The observer defined in (81) ensures that 

 𝑓𝑈(𝑡) → 𝑓𝑈(𝑡)   𝑎𝑠    𝑡 → ∞ (82) 

provided that the observer gain 𝑘2𝑈 is selected to meet the following sufficient condition: 

 𝑘2𝑈 > 𝜁1𝑈 + 𝜁2𝑈 . (83) 
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Proof: See Appendix. 

 

 

6.4.3 EXPERIMENTAL RESULTS 

A sinusoidal voltage excitation was applied to the motor with a peak of 194 [V] and a frequency of 

62.3 [Hz]. The nozzle was adjusted to bring the discharge pressure of the compressor to 120 [psi]. The 

nominal mass, friction coefficient, and spring constant values listed in Table 2 were utilized for the 

algorithm along with the motor constant identified in Section 5.1.2. For the observer gain values of 𝑘1𝐹 =

2×104, 𝑘2𝐹 = 1×105 were selected to meet the requirements stated in (83). With the system operating at 

steady-state the observer algorithm was turned on at 𝑡 = 0. Figures 16 and 17 show the results of the 

experiment. Fig. 16 shows that the observed velocity converges to the measured and that observer error 

𝑒𝐹(𝑡) is driven to zero. Fig. 17 shows that the observed gas force is bounded.  Without some sort of sensor 

to measure gas force we have no reference signal with which to determine accuracy. 

 

Figure 16.  Comparison of actual velocity 𝑥̇(𝑡) and observed velocity 𝑥̂̇𝐹(𝑡). 

 

Figure 17.  Observed gas force 𝐹̂𝑔(𝑡). 
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6.5 POSITION AND PRESSURE OBSERVER 

The goal of this observer is to obtain real-time observations for both the absolute piston position as 

well as the suction and discharge pressures.  Through this development several other signals are also 

incidentally observed such as the gas compression force and the piston acceleration.  Whereas the observers 

developed for these signals in sections 6.2 and 6.4, respectively, assumed bounded time-varying 

uncertainties for the unmodeled terms, this observer development seeks to fully model all terms in the 

mechanical dynamics and reduce all uncertainties to parametric uncertainties.  With an observer form 

which has only parametric uncertainties an adaptive update law can be designed to account for these. 

 

 

6.5.1 RELATIVE POSITION OBSERVER 

Looking at the mechanical dynamic equations (2) and (3) we can see that the acceleration is 

dependent upon the absolute piston position 𝑥(𝑡) via the spring force term.  This feedback gives us an 

opportunity to observe the position via its effects on the mechanical dynamics.  Assuming that we have an 

accurate velocity observation from Section 6.1, it is natural to approximate the absolute position by 

integrating this signal. Unfortunately, this method is not reliable for obtaining an absolute position 

observation in practical implementation.  This is due to the fact that an artificial DC bias is propagated into 

the velocity observation from the input voltage bias of the non-ideal analog to digital converter (ADC) 

which is used to obtain the current measurement 𝐼(𝑡).  Looking at (46), we can see that in order to satisfy 

𝐼̇̂(𝑡) → 𝐼̇(𝑡) the scaled velocity observer 𝑓𝑉(𝑡) must assume a DC offset to cancel out the bias present in the 

𝐼(𝑡) term of the same equation.  This DC offset propagates into the velocity observation per the definition 

in (55). 

Because of this offset in 𝑥̂̇𝑉(𝑡) we can see that the observed position defined in (84) will become 

positively or negatively unbounded depending on the sign of the DC offset.  In reality, even a measured 

velocity will have some finite inaccuracy which over time will cause drift in the integrator.  Though this 

offset may be measured and compensated for it can never be fully cancelled out without some form of high 
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pass filtering.  High pass filtering would have the undesirable effect of removing any real DC component 

from the velocity signal which we know occurs during transient periods where the gas compression force, 

𝐹𝑔(𝑡) is changing the midstroke of the piston. 

Thus to make use of this integrated signal we must find a way to artificially bound it.  A method is 

proposed whereby the integral is reset to a value of zero each time the piston reaches top dead center 𝑥𝑇𝐷𝐶.  

As top dead center represents the minimum point in the piston position we can identify this point in the 

cycle by looking at when the velocity signal experiences a positive-going zero cross.  The time of the most 

recent of these occurrences is denoted as 𝑡̂𝑇𝐷𝐶.  A relative position signal 𝑥̅(𝑡) defined using this periodic 

resetting can thus be defined as 

 𝑥̅(𝑡) ≜ ∫ 𝑥̂̇𝑉(𝜎)𝑑
𝑡

𝑡̂𝑇𝐷𝐶
𝜎. (84) 

We can see that by resetting the integrator to zero at each 𝑡̂𝑇𝐷𝐶 the resulting signal 𝑥̅(𝑡) will have a 

minimum value of zero.  This methodology assumes that the bias accumulated over each cycle from the 

velocity is negligible and does not result in significant discontinuities at the time of resetting.  From this 

assumption we can treat the signal 𝑥̅(𝑡) as a shifted version of the absolute piston position 𝑥(𝑡), where the 

value by which the signal has been shifted is equal to 𝑥𝑇𝐷𝐶. 

 𝑥̅(𝑡) = 𝑥(𝑡) − 𝑥𝑇𝐷𝐶 (85) 

Assuming that 𝑥𝑇𝐷𝐶 is slowly time-varying, which is a valid assumption under steady-state conditions, 

gives us the ability to use adaptive methods to estimate this value. 

 

 

6.5.2 LINEARLY PARAMETERIZED GAS FORCE 

In order to fully model the mechanical dynamics we also require a structured form of the unknown 

time-varying gas force 𝐹𝑔(𝑡).  Fortunately, we have such a form given in Table 1.  Unfortunately, many of 

the parameters within this piecewise equation are unknown.  However, we can rewrite this equation in a 

linearly parameterized form such that the gas force 𝐹𝑔(𝑡) is equal to the inner product of a vector of known 

time-varying regressors 𝑊(𝑡) ∈ ℝ1×2 and a vector of unknown constant parameters 𝜃 ∈ ℝ2×1 as shown: 

 𝐹𝑔 = 𝐴𝑝𝑊𝜃.  (86) 
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From this we can then use adaptive methods to estimate the unknown parameters comprising 𝜃.  In this 

case 𝜃 consists of the unknown constant suction and discharge pressures, i.e. 𝜃 ≜ [𝑃𝑠 𝑃𝑑]
𝑇, and the 

piecewise regressor terms comprising 𝑊(𝑡) ≜ [𝑊1 𝑊2] are defined in Table 3 below. 

Table 3 

Regressor Variable Definitions for Piecewise Gas Force 

Stage Piecewise Condition 𝑊1 𝑊2 

Compression 

[1] − [2] 

𝑥̇ < 0, 

𝑃(𝑡) < 𝑃𝑑 

[(
𝑥𝐵𝐷𝐶
𝑥(𝑡)

)
𝑛

− 1] 
0 

Discharge 

[2] − [3] 

𝑥̇ < 0, 

𝑃(𝑡) ≥ 𝑃𝑑 

−1 1 

Decompression 

[3] − [4] 

𝑥̇ > 0, 

𝑃(𝑡) > 𝑃𝑠 

−1 
(
𝑥𝑇𝐷𝐶
𝑥(𝑡)

)
𝑛

 

Suction 

[4] − [1] 

𝑥̇ > 0, 

𝑃(𝑡) ≤ 𝑃𝑠 

0 0 

 

We can see that by substituting this definition of 𝑊(𝑡) into (86), we obtain the same definition for gas 

force 𝐹𝑔(𝑡) given in Table 1. 

 

6.5.3 OBSERVER DEVELOPMENT 

An observer is to be designed for the mechanical dynamics of the compressor.  To facilitate the 

development of this observer, the mechanical dynamics described in (2) and (3) can be combined and 

substitutions made using (85) and (86) to obtain the following: 

 𝑥̈ =
1

𝑀
[𝛼𝐼 + 𝐴𝑝𝑊𝜃 − 𝐶𝑥̇ − 𝐾(𝑥̅ + 𝑥𝑇𝐷𝐶 − 𝐿0)]  (87) 

The subsequent development necessitates the following set of assumptions for this model: 

Assumption 1: The signals 𝐼(𝑡), and 𝑥̇(𝑡) are known. 

Assumption 2: The variables 𝐼(𝑡), 𝑥(𝑡), 𝑥̇(𝑡), 𝐹𝑔(𝑡) are all piecewise continuous and bounded. 
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Assumption 3: The machine parameters 𝑀,𝐶, 𝐾, 𝐴𝑝, 𝑛 and 𝛼 are known a priori and are constants with 

respect to time. 

Assumption 4: The unknown parameters 𝑃𝑠, 𝑃𝑑 , 𝑥𝑇𝐷𝐶 are bounded and slowly time-varying such that 

𝑃̇𝑠, 𝑃̇𝑑 , 𝑥̇𝑇𝐷𝐶 ≈ 0. 

As mentioned in Assumption 1 a velocity signal 𝑥̇(𝑡) is required.  It is to be understood that this 

signal can be replaced with the observer 𝑥̇̂𝑉(𝑡) from Section 6.1 to make the resulting observer sensorless 

in a similar way as was done in Section 6.3 with the acceleration observer.  

To avoid the need for a position measurement the subsequent development uses the relative position 

𝑥̅(𝑡) defined in (84) instead, accounting for the fact that it is shifted from the absolute position.  From this 

the following error signal can be defined for our observer 𝑥̂(𝑡):  

 𝑥̃ ≜ 𝑥̅ − 𝑥̂  (88) 

Substituting (85) into (88) and taking the time derivative, noting Assumption 4, we obtain the following 

velocity error signal for the observer: 

 𝑥̇̃ = 𝑥̇ − 𝑥̇̂  (89) 

To facilitate the development a filtered error signal 𝑟(𝑡) ∈ ℝ is defined as 

 𝑟 ≜ 𝑥̇̃ + 𝑘1𝑥̃  (90) 

where 𝑘1 ∈ ℝ is a positive filter gain.  Note that because 𝑥̇(𝑡) is known, both 𝑥̇̃(𝑡) and 𝑟(𝑡) are realizable 

signals. Taking the time derivative of (90) and substituting in (87) we obtain the following open loop error 

dynamics: 

 𝑟̇ =
1

𝑀
[𝛼𝐼 + 𝐴𝑝𝑊𝜃 − 𝐶𝑥̇ − 𝐾(𝑥̅ + 𝑥𝑇𝐷𝐶 − 𝐿0)] − 𝑥̈̂ + 𝑘1𝑥̇̃.  (91) 

Motivated by the form of (91) and the subsequent stability analysis the observer 𝑥̈̂(𝑡) is designed as 

 𝑥̈̂ ≜
1

𝑀
[𝛼𝐼 + 𝐴𝑝𝑊𝜃̂ − 𝐶𝑥̇ − 𝐾(𝑥̅ + 𝑥̂𝑇𝐷𝐶 − 𝐿0)] + 𝑘1𝑥̇̃ + 𝑥̃ + 𝑘2𝑟 (92) 

where 𝑘2 ∈ ℝ is a positive control gain, and 𝜃̂(𝑡), 𝑥̂𝑇𝐷𝐶(𝑡) ∈ ℝ are parameter estimates defined by the 

following adaptive update laws: 

 𝜃̇̂ ≜
𝐴𝑝

𝑀
𝛤𝑊𝑇𝑟 (93) 

 
𝑥̇̂𝑇𝐷𝐶 ≜ −

𝑘𝑥𝐾

𝑀
𝑟 

(94) 
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where 𝛤 ∈ ℝ2×2 is a positive diagonal gain matrix defined as 𝛤 ≜ 𝑘𝑃𝐼2 (𝑘𝑃 ∈ ℝ being a positive gain) and 

𝑘𝑥 ∈ ℝ is a positive estimator gain.  Error terms for these estimates are defined as 

 𝜃̃ ≜ 𝜃 − 𝜃̂ (95) 

 𝑥̃𝑇𝐷𝐶 ≜ 𝑥𝑇𝐷𝐶 − 𝑥̂𝑇𝐷𝐶 . (96) 

Substituting (92) into (91) we obtain the following closed loop error dynamics for the proposed observer: 

 𝑟̇ = −𝑘2𝑟 − 𝑥̃ +
1

𝑀
[𝐴𝑝𝑊𝜃̃ − 𝐾𝑥̃𝑇𝐷𝐶].  (97) 

Remark 6.5.1: The proposed implementation requires knowledge of 𝑊(𝑡) per the definitions in 

(92),(93).  However, we can see from Table 3 that 𝑊(𝑡) depends upon the terms 𝑥(𝑡), 𝑥𝑇𝐷𝐶 , 𝑥𝐵𝐷𝐶 , which 

are not available in a sensorless implementation.  As such, for a sensorless implementation we are forced to 

substitute observed values for each of these terms.  Motivated by (85) we substitute 𝑥̅(𝑡) + 𝑥̂𝑇𝐷𝐶  for 𝑥(𝑡), 

𝑥̂𝑇𝐷𝐶 for 𝑥𝑇𝐷𝐶, and 𝑥̅(𝑡̂𝐵𝐷𝐶) + 𝑥̂𝑇𝐷𝐶, where 𝑡̂𝐵𝐷𝐶 is the most recent time at which the piston reached bottom 

dead center as determined by the negative-going zero-crossing of the velocity signal.  Moreover, the 

piecewise conditions listed in Table 3 are also dependent upon the unknown pressures.  In this case as well 

we are forced to use the estimated pressures 𝑃̂𝑠, 𝑃̂𝑑  resulting from 𝜃̂(𝑡) in place of the actual pressures 

𝑃𝑠, 𝑃𝑑 .  From the relationship between 𝑃(𝑡) and 𝐹𝑔(𝑡) given in (1) and Table 1 we can define the following 

observer 𝑃̂(𝑡) to be used in the piecewise conditions for 𝑊(𝑡): 

 𝑃̂(𝑡) ≜ (𝑊1 + 1)𝑃̂𝑠 +𝑊2𝑃̂𝑑 .  (98) 

With these substitutions we introduce a recursive feedback into the observer.  As this feedback is not 

modeled in the development presented in this section the subsequent stability analysis cannot be used to 

prove that the closed loop system is stable under these substitutions.  Thus it is left to experimental 

validation to show whether the proposed sensorless method is stable and convergent. 

 

6.5.4 STABILITY ANALYSIS 

Theorem 6.5.1: The closed loop system defined by the observer in (92) and estimators in (93), (94) 

together ensure that the observer errors 𝑥̃(𝑡), 𝑟(𝑡) → 0 as 𝑡 → ∞. 

Proof: A non-negative Lyapunov function 𝑉(𝑡) is defined for the closed loop system as 
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 𝑉 ≜
1

2
𝑥̃2 +

1

2
𝑟2 +

1

2
𝜃̃𝑇𝛤−1𝜃̃ +

1

2𝑘𝑥
𝑥̃𝑇𝐷𝐶
2 .  (99) 

Taking the time derivative of (99) we obtain the following: 

 𝑉̇ = 𝑥̃𝑥̇̃ + 𝑟𝑟̇ + 𝜃̃𝑇𝛤−1𝜃̇̃ +
1

𝑘𝑥
𝑥̃𝑇𝐷𝐶 𝑥̇̃𝑇𝐷𝐶 .  (100) 

Then solving (90) for 𝑥̇̃(𝑡) and substituting this and the closed loop error dynamics from (97) into (100), 

and also substituting in the time derivatives of (95), (96), taking into account that 𝑃̇𝑠 , 𝑃̇𝑑 , 𝑥̇𝑇𝐷𝐶 ≈ 0, we 

obtain: 

 

𝑉̇ = 𝑥̃(𝑟 − 𝑘1𝑥̃) + 𝑟 (−𝑘2𝑟 − 𝑥̃ +
1

𝑀
[𝐴𝑝𝑊𝜃̃ − 𝐾𝑥̃𝑇𝐷𝐶]) − 𝜃̃

𝑇𝛤−1𝜃̇̂ −

1

𝑘𝑥
𝑥̃𝑇𝐷𝐶 𝑥̇̂𝑇𝐷𝐶 .  

(101) 

Simplifying (101) and substituting into it (93) and (94) we obtain the following:  

 𝑉̇ = −𝑘1𝑥̃
2 − 𝑘2𝑟

2 +
1

𝑀
𝑟(𝐴𝑝𝑊𝜃̃ − 𝐾𝑥̃𝑇𝐷𝐶) −

𝐴𝑝

𝑀
𝑊𝜃̃𝑟 −

𝐾

𝑀
𝑥̃𝑇𝐷𝐶𝑟.  (102) 

Simplifying (102) we obtain the final result 

 𝑉̇ = −𝑘1𝑥̃
2 − 𝑘2𝑟

2.  (103) 

From the form of (99) and (105) it is clear that 𝑥̃(𝑡), 𝑟(𝑡), 𝜃̃(𝑡), 𝑥̃𝑇𝐷𝐶(𝑡) ∈ ℒ∞ and that 𝑥̃(𝑡), 𝑟(𝑡) ∈

ℒ∞⋂ℒ2.  From (90) and the fact that 𝑥̃(𝑡), 𝑟(𝑡) ∈ ℒ∞ we can see that 𝑥̇̃(𝑡) ∈ ℒ∞. 

To prove boundedness of 𝑟̇(𝑡) we must first show that 𝑊(𝑡) ∈ ℒ∞.  This analysis will consider 

only cases where 𝑥(𝑡) ≥ 0.  Cases where 𝑥(𝑡) < 0 require a modification of the algorithm which is 

discussed in Section 6.5.7.  Looking at the individual terms 𝑊1,𝑊2 we can see that by definition both terms 

are constants during all stages of the compression cycle, except for 𝑊1 during compression and 𝑊2 during 

decompression.  Looking at 𝑊1 during compression we can see that as 𝑥(𝑡) → 0, 𝑊1(𝑡) → ∞. However, 

from (98) we can see that as 𝑊1(𝑡) → ∞, 𝑃̂(𝑡) → ∞ as well, meaning that the piecewise condition 𝑃̂(𝑡) ≥

𝑃̂𝑑 will always be met before 𝑥(𝑡) = 0 for bounded 𝑃̂𝑑.   From Assumption 4 and the fact that 𝜃̃(𝑡) ∈ ℒ∞ 

we can see that 𝑃̂𝑠, 𝑃̂𝑑 ∈ ℒ∞. Thus 𝑊1(𝑡) will always transition into the discharge stage before 𝑥(𝑡) = 0, 

giving it an upper bound of 𝑃̂𝑑/𝑃̂𝑠.  For 𝑊2 during decompression we again see that the term is problematic 

as 𝑥(𝑡) → 0.  However if we consider the assumption that 𝑥(𝑡) ≥ 0, then 𝑥(𝑡) can equal zero if and only if 

it is at a local minimum, meaning that 𝑥𝑇𝐷𝐶 = 0.  Substituting this value into the definition of 𝑊2 and 

taking the limit as 𝑥(𝑡) → 0 we see that 𝑊2 = 0.  For any non-zero value of 𝑥(𝑡) we can see that 𝑊2 is 
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bounded so long as 𝑥𝑇𝐷𝐶 is bounded, which was given in Assumption 4.  Thus we have shown that 

𝑊1,𝑊2 ∈ ℒ∞. 

From (97) and the fact that 𝑥̃(𝑡), 𝑟(𝑡), 𝜃̃(𝑡), 𝑥̃𝑇𝐷𝐶(𝑡),𝑊(𝑡) ∈ ℒ∞ we can see that 𝑟̇(𝑡) ∈ ℒ∞.  

Since 𝑥̃(𝑡), 𝑟(𝑡) ∈ ℒ∞⋂ℒ2 and 𝑥̇̃(𝑡), 𝑟̇(𝑡) ∈ ℒ∞ Barbalat’s Lemma [23] can be utilized to prove that 

𝑥̃(𝑡), 𝑟(𝑡) → 0 as 𝑡 → ∞. 

 

 

6.5.5 EXPERIMENTAL RESULTS 

The model parameters listed in Table 2 were utilized for this experiment along with the following 

observer gains and initial values: 𝑘1 = 100, 𝑘2 = 1000, 𝑘𝑃 = 400, 𝑘𝑥 = 0.05, 𝑃̂𝑠(𝑡0) = 20 [𝑝𝑠𝑖], 𝑃̂𝑑(𝑡0) =

50 [𝑝𝑠𝑖], 𝑥̂𝑇𝐷𝐶(𝑡0) = 4 [𝑚𝑚].  The system was driven under current control with a fixed amplitude of 

0.6 [𝐴] and a driving frequency of 45.7 [𝐻𝑧].  The scheme was implemented in a fully sensorless manner, 

meaning that the velocity signal used in (84) and (89) comes from the sensorless velocity observer 

developed in Section 6.1. 

Figures 18-20 show the transient performance of the observer signals 𝑥̂(𝑡), 𝑥̇̂(𝑡) during the initial 

observer convergence.  We can see from Figures 18 and 19 that within two cycles both of these signals 

converge to their respective reference signals 𝑥̅(𝑡), 𝑥̇(𝑡) and thus in Figure 20 that the observer error 

signals 𝑥̃(𝑡), 𝑥̇̃(𝑡), 𝑟(𝑡) are quickly regulated.  We see that there is some residual component of the error 

𝑟(𝑡) owing to the fact that the parameter estimates 𝑥̂𝑇𝐷𝐶 , 𝑃̂𝑠, 𝑃̂𝑑 have not fully converged within this time 

period. 

Figures 21 and 22 show the convergence of these parameter updates, which take place over a much 

longer time scale.  From these figures we can see that not only are these parameters convergent, but that 

they display a high level of accuracy when compared to their measured counterparts.  In Figure 23-25 we 

can see the performance of the observer after the parameters have converged and the observer is operating 

at steady-state.  Figure 23 shows the total position observer consisting of the relative position observer 𝑥̅(𝑡) 

and the top dead center estimate 𝑥̂𝑇𝐷𝐶.  This absolute position observer is shown in comparison with the 

actual measured piston position 𝑥(𝑡).  From this we can see the high level of accuracy achieved by the 
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adaptive observer.  Figures 24 and 25 show the steady-state results of the pressure and gas force estimation.  

In Figure 24 we see the instantaneous chamber pressure observer 𝑃̂(𝑡) derived from (99) along-side the 

pressure estimates 𝑃̂𝑠, 𝑃̂𝑑, showing the movement of the observer through the four compression cycle 

stages.  Figure 25 shows the resulting gas force observer 𝐹̂𝑔(𝑡).  Unfortunately, since measurements of 

internal pressures and forces are difficult to obtain we have no means of judging the accuracy of the two 

observer signals 𝑃̂(𝑡) and 𝐹̂𝑔(𝑡). 

 

Figure 18. Comparison of relative position signal 𝑥̅(𝑡) and observer position signal 𝑥̂(𝑡) during initial 

transient. 

 

 

Figure 19. Comparison of velocity signal 𝑥̇(𝑡) and observer velocity 𝑥̇̂(𝑡) during initial transient. 
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Figure 20.  Convergence of observer error signals 𝑥̃(𝑡), 𝑥̇̃(𝑡), 𝑟(𝑡) during initial transient. 

 

 

 

Figure 21.  Convergence of parameter estimate 𝑥̂𝑇𝐷𝐶 to actual top dead center value 𝑥𝑇𝐷𝐶. 

 

 

Figure 22.  Convergence of parameter estimates 𝑃̂𝑠, 𝑃̂𝑑 to actual pressures 𝑃𝑠, 𝑃𝑑 . 
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Figure 23.  Comparison of position observer including top dead center estimate (𝑥̅(𝑡) + 𝑥̂𝑇𝐷𝐶) with actual 

absolute position 𝑥(𝑡) under observer steady-state. 

 

Figure 24. Instantaneous chamber pressure observer 𝑃̂(𝑡) during observer steady-state, shown with 

estimated suction and discharge pressures 𝑃̂𝑠, 𝑃̂𝑑. 

 

 

Figure 25.  Instantaneous gas force observer 𝐹̂𝑔(𝑡) during observer steady-state as calculated from 

estimated pressures 𝑃̂𝑠, 𝑃̂𝑑. 
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6.5.6 INCOMPLETE CYCLE MODIFICATION 

The gas force model presented in Section 2.1 and utilized in Section 6.5.2 is based upon the 

assumption that the compression cycle passes through all four stages in order: compression, discharge, 

decompression, suction.  It is this assumption that allows us to assume that the chamber pressure 𝑃(𝑡) at 

the beginning of the compression stage is equal to 𝑃𝑠 and thus relate the gas force to 𝑃𝑠 via the 𝑊1 term for 

that stage.  Similarly, we assume that at the beginning of the decompression stage that 𝑃(𝑡) is equal to 𝑃𝑑, 

which allows us to relate the gas force to 𝑃𝑑 via the 𝑊2 term for that stage. 

However, during startup and shutdown conditions it is likely that the piston stroke is not large enough 

to reach the piecewise pressure conditions necessary to enter the discharge and suction stages of the 

compression cycle resulting in an incomplete cycle.  For instance, if 𝑃(𝑡) does not exceed 𝑃𝑑 during the 

compression stage then the system will skip the discharge stage and move directly into the decompression 

stage, but instead of beginning that stage at 𝑃𝑑, it will begin it at whatever pressure the compression stage 

ended.  Similarly, if 𝑃(𝑡) does not decrease to 𝑃𝑠 during the decompression stage then the system will skip 

the suction stage and move directly into the compression stage starting at whatever pressure the 

decompression stage ended instead of  𝑃𝑠. 

For both of these cases the algorithm must be modified to reflect this reality, otherwise the resulting 

𝑃(𝑡) and 𝐹𝑔(𝑡) will be discontinuous at these stage transitions causing instability in the observer.  To 

remedy this, whenever the observer enters either the compression or decompression stage it checks to see 

which stage it just left.  If this reveals that a discharge or suction stage was skipped then the algorithm uses 

the last value of 𝑃(𝑡) in place of 𝑃𝑠 or 𝑃𝑑 (for compression and decompression stages, respectively) in the 𝜃 

vector.  Also, since 𝑃(𝑡) is no longer dependent on 𝑃𝑠 or 𝑃𝑑 during this stage, the associated update 𝜃̇̂ is 

forced to be zero for the duration of the stage.  This is meant to prevent runaway conditions where the 

estimator would attempt to reduce error 𝑟(𝑡) by updating 𝑃̂𝑠 or 𝑃̂𝑑 via (93), (94), but since the respective 

term is no longer affecting the estimated gas force, there is no feedback whereby it can reduce the error, 

causing it to runaway during that time. 

These modifications are relatively easy to implement, but are difficult to express in a closed form, and 

thus cannot be proven to maintain stability via the analysis given in Section 6.5.4. 
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6.5.7 SOFT CRASH MODIFICATION 

Another instance in which the gas force model presented in Section 2.1 is violated is under the soft 

crash condition.  Soft crashing is the result of the compressor piston being overdriven, causing it to come 

into physical contact with the discharge valve as shown in Figure 26.  Here, the piston shown in red, 

extends past the end of the compression cylinder, shown in green, causing it to come into contact with the 

discharge valve shown in grey.   

 

Figure 26. Example of soft crash condition for linear compressor. 

The cylinder head, which corresponds to the far left extremity of the compression cylinder shown in 

Figure 26, is defined as the reference position (𝑥 = 0) of the piston because at this point the compression 

chamber volume is theoretically equal to zero.  Thus when the piston extends past this point the piston 

position becomes negative.  Given the model from Section 2.1 this would imply a negative volume, which 

is of course impossible, we are forced to modify the model and the subsequent observer design to ensure 

accurate modeling of soft crash conditions. 

From Figure 26 we can see that the presence of the discharge valve causes the volume of the 

compression chamber to remain equal to zero until the piston has withdrawn past the head and come out of 

contact with the discharge valve.  We can also see that because the pressure on the back-side of the 

discharge valve is by definition 𝑃𝑑, that during this period the effective chamber pressure 𝑃(𝑡) (as it effects 

the gas force) will still be equal to 𝑃𝑑, even though technically there is no gas in the compression chamber.  

Another important fact to note is that in order for the compression volume to reach zero, as it must before 
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soft crashing, the chamber pressure will by necessity exceed 𝑃𝑑.  We can infer this from the form of 

chamber pressure expression given for the compression stage in Table 1.  Since 𝑥(𝑡) is in the denominator 

of this expression, we can see that as 𝑥(𝑡) → 0, 𝑃(𝑡) → ∞.  Thus any finite discharge pressure 𝑃𝑑 will be 

exceeded before 𝑥(𝑡) = 0, resulting in transition to the discharge stage of the cycle. This means that the 

stage of the cycle at the time of soft crashing will always be the discharge stage. 

Therefore, since the compressor is in discharge stage before soft crashing, and since the effective 

chamber pressure during soft crashing is 𝑃𝑑, which is the same as in the discharge stage, we can accurately 

model the effect of soft crashing on gas force by keeping the compressor in the discharge stage during this 

condition.  This can be easily done by redefining the piecewise condition which determines transition from 

the discharge to the decompression stage.  By forcing the model to wait until 𝑥 > 0 before beginning 

decompression we are able to obtain the desired effect.  One point that remains to be defined is the value of 

𝑥𝑇𝐷𝐶 to be used in the 𝑊2 expression in Table 3 during the decompression stage.  As previously defined, 

𝑥𝑇𝐷𝐶 corresponds to the minimum position of the piston.  However, since during soft crashing this is a 

negative value and would thus imply negative volume, we need to make some modification.  Forcing 𝑥𝑇𝐷𝐶 

to be equal to zero in this case makes sense as this would reflect the reality that the volume is beginning the 

decompression stage at zero, however from the decompression expression for 𝑊2 we see that this would 

cause 𝑊2 to be zero, meaning that 𝑃(𝑡) would immediately transition from 𝑃𝑑 to zero, causing transition 

immediately to the suction stage.  While this is not necessarily incorrect for a theoretical model, to give the 

observer continuity a small positive constant 𝜀 ∈ ℝ is utilized instead, resulting in a very short but still 

continuous decompression stage.  In order to prevent conditions where 𝑊2 > 1 during decompression, we 

also use 𝜀 as the boundary condition (instead of 𝑥 = 0) for entering the decompression stage.  A revised 

version of the regressor definitions given in Table 3 with piecewise conditions which have been modified 

to account for soft crash conditions is shown in Table 4 below.  We can see that these modified definitions 

of 𝑊1,𝑊2 maintain the boundedness required by the stability analysis. 

 

Table 4 

Revised Regressor Variable Definitions for Piecewise Gas Force 
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Stage Piecewise Condition 𝑊1 𝑊2 

Compression 

[1] − [2] 

𝑥̇ < 0 | 𝑥 ≤ 𝜀, 

𝑃(𝑡) < 𝑃𝑑 

[(
𝑥𝐵𝐷𝐶
𝑥(𝑡)

)
𝑛

− 1] 
0 

Discharge 

[2] − [3] 

𝑥̇ < 0 | 𝑥 ≤ 𝜀, 

𝑃(𝑡) ≥ 𝑃𝑑 

−1 1 

Decompression 

[3] − [4] 

𝑥̇ > 0 & 𝑥 > 𝜀 

𝑃(𝑡) > 𝑃𝑠 

−1 
(
𝑥𝑇𝐷𝐶
𝑥(𝑡)

)
𝑛

 

Suction 

[4] − [1] 

𝑥̇ > 0 & 𝑥 > 𝜀, 

𝑃(𝑡) ≤ 𝑃𝑠 

0 0 
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7 PER-CYCLE OBSERVATIONS 

To achieve the system level control objectives of resonance-tracking and stroke control it is necessary 

to derive auxiliary observations of system-level states from the instantaneous observer signals obtained in 

Sections 6.  Specifically, two per-cycle signals are needed for the desired control, the relative phase 

between velocity and current, and the piston top dead center value 𝑥𝑇𝐷𝐶. A method for estimating 𝑥𝑇𝐷𝐶 has 

already been provided in Section 6.5, however for thoroughness an alternate derivation based on earlier 

methodologies is presented in Section 7.4.  This method requires observations for the piston stroke length 

∆𝑥𝑆𝐿 and bottom dead center 𝑥𝐵𝐷𝐶  which are derived in the preceding sections. The accuracies of these 

observations is directly related to the accuracy of the two-stage observer presented in Section 6.4 which has 

already been demonstrated in Section 6.4.3.  Similarly, the phase observation derived in Section 7.1 is 

directly related to the velocity observer developed in Section 6.1.  As such independent experimental 

validations are not provided for these per-cycle observations, however, the results in Section 8.5, which 

utilize these observations can be referenced for this purpose. 

7.1 PHASE OBSERVATION 

Per the definition of resonance given in Section II the relative phase difference between the piston 

velocity and the motor force, which per (3) has the same phase as the motor current, can be used as an 

indicator of whether the system is operating at its resonance frequency [14], [15].  Utilizing the observed 

velocity from (55), an observed phase can be obtained by comparing the zero-crossing of this signal with 

that of the measured current.  At the time of a positive zero-crossing in 𝑥̂̇𝑉(𝑡), the elapsed time since the 

most recent positive zero-crossing in 𝐼(𝑡) is calculated and denoted as ∆𝑡. From ∆𝑡 a phase observation 𝜃̂𝑉𝐼 

in degrees can be defined as 

 𝜃̂𝑉𝐼 ≜ 360 ∙ ∆𝑡 ∙ 𝑓 (104) 
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where 𝑓 ∈ ℝ is the fundamental frequency of the system. Standard phase wrapping can be used to shift the 

domain of 𝜃̂𝑉𝐼 from [0°, 360°) to (−180°, 180°], which is more desirable for control purposes. Per this 

measurement methodology a new phase observation is obtained once per cycle. It should be noted that this 

calculation of relative phase is used for ease of implementation as zero-crossings are easily detectable.  In 

reality, because of the nonlinear gas force, the velocity and current signals will contain multiple harmonics 

each with their own relative phase. 

 

 

7.2 STROKE LENGTH OBSERVATION 

As defined in (4), the stroke length is equal to the distance traveled between top dead center (the 

minimum position of the piston stroke) and bottom dead center (the maximum position of the piston 

stroke).  Given that the relative position signal 𝑥̅(𝑡) defined in (85) is equal to zero at top dead center, we 

can see that at bottom dead center it will be equal to the stroke length of the observed position.  Bottom 

dead center time can be identified by the negative-going zero-crossing of the observed velocity 𝑥̇̂𝑉(𝑡), 

similar to how the timing of top dead center was identified in Section 6.5.1.  The time of the most recent of 

these occurrences is denoted as 𝑡̂𝐵𝐷𝐶.  Thus observed stroke length can be defined as 

 ∆𝑥̂𝑆𝐿 ≜ 𝑥̅(𝑡̂𝐵𝐷𝐶). (105) 

From this we can see that a new value for ∆𝑥̂𝑆𝐿 is obtained only once per cycle. 

 

 

7.3 BOTTOM DEAD CENTER OBSERVATION 

A scheme similar to the one proposed in [6] is used for estimation of the bottom dead center based on 

the developed velocity and acceleration observers. From Fig. 2 we can see that at 𝑡𝐵𝐷𝐶 the chamber 

pressure is equal to the suction pressure, which from (1) shows that 𝐹𝑔(𝑡𝐵𝐷𝐶) = 0.  Likewise, since bottom 

dead center is by definition a local maximum of the position it can be seen that 𝑥̇(𝑡𝐵𝐷𝐶) = 0 as well, and 

assuming convergence of the velocity observer that 𝑥̂̇𝑉(𝑡̂𝐵𝐷𝐶) = 0 as well. Using this information the 

mechanical dynamics of the system (2) and (3) at this instant of time can be simplified as 
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 𝛼𝐼(𝑡𝐵𝐷𝐶) = 𝑀𝑥̈(𝑡𝐵𝐷𝐶) + 𝐾(𝑥𝐵𝐷𝐶 − 𝐿0). (106) 

Rewriting (106) and substituting the observed acceleration from the defined in (21) and the estimated 

bottom dead center timing 𝑡̂𝐵𝐷𝐶 a bottom dead center observation can be defined as 

 𝑥̂𝐵𝐷𝐶 ≜
1

𝐾
(𝛼𝐼(𝑡̂𝐵𝐷𝐶) − 𝑀𝑥̂̈𝑈(𝑡̂𝐵𝐷𝐶)) + 𝐿0. (107) 

Note that a new value of 𝑥̂𝐵𝐷𝐶  can be calculated whenever 𝑡 = 𝑡𝐵𝐷𝐶 , i.e. once per cycle. 

 

 

7.4 TOP DEAD CENTER OBSERVATION 

An observation for top dead center can be obtained by rewriting (4) and substituting the stroke length and 

bottom dead center observations defined in (105) and (107), respectively, to obtain the following 

 𝑥̂𝑇𝐷𝐶 ≜ 𝑥̂𝐵𝐷𝐶 − ∆𝑥̂𝑆𝐿 . (108) 
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8 REGULATION CONTROLLERS 

Three different levels of control are proposed to achieve the system level control objectives of 

resonance-tracking and stroke control.  These controllers use the auxiliary observations derived in Section 7 

to achieve this control sensorlessly.  Collectively, these three controllers determine the form of the control 

input to the system 𝑣𝑎(𝑡).  For the sake of simplicity this voltage command is selected to be a single 

frequency sinusoid with variable amplitude and frequency based on the following definition:  

 𝑣𝑎(𝑡) ≜ 𝑉0(𝑡) sin 𝜃0(𝑡). (109) 

where 𝑉0(𝑡) ∈ ℝ is the amplitude of the waveform and the phase 𝜃0(𝑡) ∈ ℝ of the waveform is defined as 

 𝜃0(𝑡) ≜ ∫ 2𝜋𝑓0(𝑡)
𝑡

𝑡0

. (110) 

where 𝑓0(𝑡) ∈ ℝ is the frequency of the waveform.  The form of 𝜃0(𝑡) used in (110) is chosen to ensure 

that the phase is piecewise continuous for step changes in 𝑓0(𝑡). 

As can be seen from (109) and (110) the indirect control variables which remain to be defined by the 

subsequent controllers are the amplitude 𝑉0(𝑡) and frequency, 𝑓0(𝑡) of the voltage command 𝑣𝑎(𝑡).  A 

diagram of the system level control scheme and its interaction with the observers developed previously is 

shown in Fig. 18. 

 

Figure 27. Block diagram of system level sensorless control scheme. 
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8.1 CURRENT CONTROLLER 

The purpose of this controller is to regulate the magnitude of the force being applied to the piston by 

controlling the motor current per the relationship described in (3).  Rather than attempt to achieve full 

tracking control of the motor current signal, a simpler case is considered in which the peak value of the 

current is controlled to a desired level.  The peak value of the motor current over the previous cycle, 

denoted as 𝐼𝑝(𝑡) ∈ ℝ, is here defined as 

 𝐼𝑝(𝑡) ≜ max{|𝐼(𝜏)| ∶ 𝜏 ∈ (𝑡 − 𝑇, 𝑡]}. (111) 

For a given desired peak current 𝐼𝑝
∗(𝑡) ∈ ℝ a peak current error can be defined as 

 𝑒𝐼(𝑡) ≜ 𝐼𝑝
∗(𝑡) − 𝐼𝑝(𝑡). (112) 

The value of the voltage amplitude 𝑉𝑜(𝑡) can be used as a control input for the current controller.  A 

proportional-integral form is chosen for this controller for simplicity and stability and can be defined as 

 𝑉0(𝑡) = 𝑘𝑃𝑒𝐼(𝑡) + 𝑘𝐼∫ 𝑒𝐼(𝜎)𝑑𝜎
𝑡

𝑡0

. (113) 

 

8.2 RESONANCE CONTROLLER 

The purpose of the resonance controller is to manage the fundamental frequency of the system such 

that resonance is achieved, thereby maximizing system efficiency.  Based on the form of the voltage 

command defined in (109) it can be shown that the resulting fundamental frequency of all system states 

will be equal to 𝑓0. 

The relative phase of the motor current and piston velocity is used as an indicator of resonance.  In 

this case, the observation of this phase as defined in (104) is used in place of the actual phase.  An ideal 

resonant phase is used as a reference for the controller and is denoted as 𝜃𝑉𝐼
∗ ∈ ℝ.  From this a phase error 

can be defined as 

 𝑒𝜃(𝑡) ≜ 𝜃𝑉𝐼
∗ − 𝜃̂𝑉𝐼 . (114) 

In the case of single-frequency sinusoidal current and velocity signals this desired phase would be zero to 

indicate that motor force and velocity were completely in phase.  However, since in reality current and 

velocity will contain multiple harmonics, the phase as defined in (30) will likely be non-zero at resonance. 
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A search algorithm then utilizes this error signal to make adjustments to the excitation frequency.  A 

piecewise function is used to determine the size of the adjustment denoted as ∆𝑓 ∈ ℝ based on the 

magnitude and sign of the error as shown in (below).   

 ∆𝑓(𝑒𝜃) ≜

{
 
 

 
 
∆𝑓1𝑠𝑔𝑛(𝑒𝜃) |𝑒𝜃| > 𝑒𝜃1
∆𝑓2𝑠𝑔𝑛(𝑒𝜃) 𝑒𝜃2 < |𝑒𝜃| ≤ 𝑒𝜃1
∆𝑓3𝑠𝑔𝑛(𝑒𝜃) 𝑒𝜃3 < |𝑒𝜃| ≤ 𝑒𝜃2

0 |𝑒𝜃| ≤ 𝑒𝜃3

. (115) 

where ∆𝑓1, ∆𝑓2, ∆𝑓3 ∈ ℝ
+ are real positive constants such that ∆𝑓1 > ∆𝑓2 > ∆𝑓3, and 𝑒𝜃1 , 𝑒𝜃2 , 𝑒𝜃3 ∈ ℝ

+ are 

real positive error threshold constants such that 𝑒𝜃1 > 𝑒𝜃2 > 𝑒𝜃3. Note that when the error is within the 

smallest threshold the search algorithm no longer makes adjustments to the frequency.  This condition is 

included to prevent unnecessary hunting. 

The rate at which these adjustments are made is determined by two conditions. The first condition is 

that at least 𝑇𝜃  seconds have passed since the most recent adjustment of this controller, where 𝑇𝜃 ∈ ℝ is a 

pre-determined period of time which is sufficiently long to allow the system dynamics to settle out after an 

adjustment has been made.  The second condition is that the controller has been given priority.  The rule set 

determining this priority is described in a subsequent section. 

 

 

8.3 TOP DEAD CENTER CONTROLLER 

The purpose of the top dead center controller is to control the distance between the piston and the 

cylinder head.  Given a desired top dead center value 𝑥𝑇𝐷𝐶
∗ ∈ ℝ a top dead center error signal can be 

defined as  

 𝑒𝑥(𝑡) ≜ 𝑥𝑇𝐷𝐶
∗ − 𝑥̂𝑇𝐷𝐶 . (116) 

where 𝑥̂𝑇𝐷𝐶 could interchangeably be the observation obtained in either Sections 6.5 or 7.4. From this error 

signal a search algorithm of the same structure as the one described in the previous subsection can then be 

utilized to make adjustments to the desired peak current.  This adjustment, denoted as ∆𝐼𝑝
∗ ∈ ℝ, is added to 

the current value of 𝐼𝑝
∗(𝑡) and is defined by the following piecewise function: 
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 ∆𝐼𝑝
∗(𝑒𝑥) ≜

{
 
 

 
 
∆𝐼1𝑠𝑔𝑛(𝑒𝑥) |𝑒𝑥| > 𝑒𝑥1
∆𝐼2𝑠𝑔𝑛(𝑒𝑥) 𝑒𝑥2 < |𝑒𝑥| ≤ 𝑒𝑥1
∆𝐼3𝑠𝑔𝑛(𝑒𝜃) 𝑒𝑥3 < |𝑒𝑥| ≤ 𝑒𝑥2

0 |𝑒𝑥| ≤ 𝑒𝑥3

. (117) 

where ∆𝐼1, ∆𝐼2, ∆𝐼3 ∈ ℝ
+ are real positive constants such that ∆𝐼1 > ∆𝐼2 > ∆𝐼3, and 𝑒𝑥1 , 𝑒𝑥2 , 𝑒𝑥3 ∈ ℝ

+ are 

real positive error threshold constants such that 𝑒𝑥1 > 𝑒𝑥2 > 𝑒𝑥3. 

The rate at which these adjustments are made is determined by two conditions, similar to the 

resonance controller. The first condition is that at least 𝑇𝑥 seconds have passed since the most recent 

adjustment of this controller, where 𝑇𝑥 ∈ ℝ is a pre-determined period of time which is sufficiently long to 

allow the system dynamics to settle out after an adjustment has been made.  The second condition is that 

the controller has been given priority.  The rule set determining this priority is described in the following 

section. 

 

 

8.4 CONTROLLER PRIORITY 

Since all three of these controllers are to operate in parallel and the inputs and outputs of each are tied 

via the system dynamics, special care needs to be taken to ensure stability of the system. In the case of the 

top dead center controller the situation is even more dire, since its output is a reference to the current 

controller, making it obvious that care must be taken to restrict the updating of this controller.  For this 

purpose a rule set has been developed to set the priority of these controllers.  The goal of this prioritization 

is to prevent multiple controllers from making large adjustments to their outputs at the same time, which 

may cause them to fight each other and create instability. 

Since the output adjustment of each of the three controllers presented increases with error, we can use 

their error signals as an indication of how hard the respective controller is working. To facilitate this 

prioritization, error bounds are established for the current and resonant controller errors defined in (112) 

and (114), respectively. These error bounds and corresponding Boolean indicators are defined as 

 𝛽𝐼 ≜ {
𝑇𝑟𝑢𝑒 |𝑒𝐼| < 𝑒𝐼1
𝐹𝑎𝑙𝑠𝑒 |𝑒𝐼| ≥ 𝑒𝐼1

 (118) 
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𝛽𝜃 ≜ {

𝑇𝑟𝑢𝑒 |𝑒𝜃| < 𝑒𝜃3
𝐹𝑎𝑙𝑠𝑒 |𝑒𝜃| ≥ 𝑒𝜃3

 (119) 

where 𝑒𝐼1 ∈ ℝ
+ is a real positive error threshold constant.   

The order of priority established for this system in descending order is current controller, resonant 

controller, and then top dead center controller.  Since the current controller is given highest priority, no 

restrictions are placed upon its updating, i.e. it updates continuously.  As the next highest priority 

controller, the resonant controller is only allowed to make adjustments to its output when the current error 

𝑒𝐼 is within its bound, i.e. when 𝛽𝐼 is ‘True’.  As the lowest priority controller, the top dead center 

controller is only allowed to make adjustments to its output when both the current and resonant controller 

errors are within their bounds, i.e. when 𝛽𝐼 ∙ 𝛽𝜃 is ‘True’. When one of these conditions is false the 

corresponding controller output is held at its current value until a ‘True’ value is detected. 

 

 

8.5 EXPERIMENTAL RESULTS 

The velocity and uncertainty observers defined in (55) and (58) were executed on the FPGA with the 

parameters and gains listed in Table 3. The resulting 𝑥̂̇𝑉(𝑡) and 𝑥̂̈𝑈(𝑡) from these observers were then 

utilized in real-time to obtain the auxiliary observations described in Section 7.  These observations were 

then utilized to achieve the three-level real-time control described in Section 8 using the parameters and 

gains listed in Table 3.  For this experiment the current controller was run with an initial desired peak 

current value of 𝐼𝑝
∗(𝑡) = 0.5 [𝐴] and the resonance controller was run with an initial frequency of 𝑓0(𝑡) =

56 [𝐻𝑧].  Based on experimental testing of the compressor efficiency an ideal phase between the positive 

zero-crossing of the motor current and the piston velocity was identified as 𝜃𝑉𝐼
∗ = 10°. A fixed desired top 

dead center value of 𝑥𝑇𝐷𝐶
∗ = 1 [𝑚𝑚] was selected for this experiment. 
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Table 4  

Observer and Controller Parameters for Sensorless Overall Control Scheme 

Parameter Value Units Parameter Value Units 

𝑅 6.47 Ω ∆𝑓1 1 Hz 

𝐿 0.318 H ∆𝑓2
 0.1 Hz 

𝛼 75.6 N/A ∆𝑓3 0.01 Hz 

𝑀 0.65 kg 𝑒𝜃1 20 ° 

𝐾 72800 N/m 𝑒𝜃2 5 ° 

𝑥0 6.35 mm 𝑒𝜃3 1 ° 

𝑘1𝑉 24,000  ∆𝐼1 0.02 A 

𝑘2𝑉 40,000  ∆𝐼2 0.01 A 

𝑘1𝑈 4,000  ∆𝐼3 0.005 A 

𝑘2𝑈 40,000  𝑒𝑥1 2 mm 

𝑘𝑃 200  𝑒𝑥2 0.5 mm 

𝑘𝐼 500  𝑒𝑥3 0.1 mm 

 

With these settings and the system level controller was turned on with the system at rest and allowed 

to run until all three controllers had reached a steady-state at their respective desired values. The results of 

the sensorless combined observer/controller hardware implementation are shown in Fig. 28-32.  From Fig. 

28 and 29 we can see that the current controller remains stable and convergent as the top dead center 

controller increases the desired peak current.  We can also see that the amplitude of the voltage command 

𝑉0(𝑡) remains within the limits of the DC link voltage to prevent over-modulation.  From the various 

periods of time in Fig. 28 where the desired peak current remains constant we can see the effect of the 

controller priority scheme.  During these flat periods we can see that the top dead center controller is 

waiting for the current and resonance controllers to reconverge before making further adjustments to 𝐼𝑝
∗(𝑡). 

In Fig. 30 and 31 we see that the observed phase 𝜃̂𝑉𝐼(𝑡) accurately observes the measured phase 

𝜃𝑉𝐼(𝑡) and that the frequency of the voltage command 𝑓0(𝑡) is successfully manipulated to achieve the 

desired phase.  We can see that each time the peak motor current is increased the phase is consistently 

reduced giving the effect that phase error 𝑒𝜃(𝑡) is more positive than negative.  However, once steady-state 
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has been achieved from approximately 70 seconds onward, and current adjustments are minor if any, that 

the phase error is zero-meaned about the desired phase. 

In Fig. 32 we see that the observed top dead center 𝑥̂𝑇𝐷𝐶(𝑡) accurately observes the measured top 

dead center 𝑥𝑇𝐷𝐶(𝑡) and that the peak current is successfully manipulated to achieve the desired top dead 

center value. From all of these figures we can see that the rules of priority between the three controllers 

successfully maintain system-wide stability. 

 

Figure 28.  Performance of proportional-integral peak current controller with varying setpoint determined 

by top dead center controller. 

 

 

Figure 29.  Amplitude 𝑉0(𝑡) of the voltage excitation 𝑣𝑎(𝑡) calculated by the current controller. 
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Figure 30.  Measured and observed phase difference between the piston velocity and measured current with 

corresponding desired phase. 

 

 

Figure 31.  Frequency 𝑓0(𝑡) of the voltage excitation set by the resonance controller as it attempts to 

achieve the desired phase shown in Fig. 21. 

 

Figure 32.  Measured and observed top dead center with corresponding desired top dead center value. 
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9 TRACKING CONTROLLERS 

9.1 CURRENT CONTROLLER 

As a more sophisticated alternative to the regulation current controller described in Section 8.1 a 

nonlinear current controller is to be developed for the linear motor to allow for trajectory tracking of the 

motor current rather than controlling to a single point in the waveform as is currently done in Section 8.1.  

Expert design of this current trajectory could allow for further increase in the system efficiency. 

9.1.1 CONTROL DEVELOPMENT 

For a given current trajectory 𝐼𝑑(𝑡) ∈ ℝ, the designed controller should ensure that 𝐼(𝑡) → 𝐼𝑑(𝑡) as 

𝑡 → ∞.The control input for the system is the motor voltage signal 𝑣𝑎(𝑡).  To facilitate the development of 

the current controller the dynamic equation in (3) can be rewritten as 

 𝐼̇ =
1

𝐿𝑖
(𝑣𝑎 − 𝑅𝑖𝐼) − 𝑓𝐼 (120) 

where 𝑓𝐼(𝑡) ∈ ℝ denotes the uncertain scaled back EMF term 
𝛼

𝐿𝑖
𝑥̇. 

The proceeding mathematical analysis necessitates the following set of assumptions (previous 

assumptions are ignored): 

Assumption 1: The signal 𝑣𝑎(𝑡) is assumed to be known and 𝐼(𝑡) is assumed to be measurable. 

Assumption 2: The signals 𝑥(𝑡), 𝑥̇(𝑡), 𝑓̇(𝑡), 𝑓̈(𝑡) are all assumed to be piecewise continuous and 

bounded, hence there exist positive bounding constants 𝜁1, 𝜁2 ∈ ℝ
+ such that |𝑓̇(𝑡)| < 𝜁1, |𝑓̈(𝑡)| < 𝜁2 

Assumption 3: The machine parameters 𝐿𝑖 , 𝑅𝑖 , and 𝛼 are known a priori and are assumed to be 

constants with respect to time. 

Assumption 4: The current trajectory 𝐼𝑑(𝑡) is chosen such that 𝐼𝑑(𝑡) and 𝐼𝑑̇(𝑡) are piecewise 

continuous and bounded.  Through proper design of this trajectory we can ensure tracking of the system 

resonant frequency. 
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The following error signals can be defined for the system: 

          𝑒𝐼 ≜ 𝐼𝑑 − 𝐼 (121) 

 𝑒̇𝐼 = 𝐼𝑑̇ − 𝐼.̇ (122) 

Substituting (120) into (122) gives the following open loop error equation: 

  𝑒̇𝐼 = 𝐼𝑑̇ −
1

𝐿𝑖
(𝑣𝑎 − 𝑅𝑖𝐼) − 𝑓𝐼 . (123) 

The form of (123) and the subsequent stability analysis motivate the following design for the control input: 

  𝑣𝑎 = 𝐿𝑖(𝐼𝑑̇ − 𝑓𝐼) + 𝑅𝑖𝐼 (124) 

where 𝑓(𝑡) ∈ ℝ is a subsequently designed observer of the back EMF term 𝑓(𝑡).  An error signal for this 

observer can be defined as follows: 

  𝑓𝐼 = 𝑓𝐼 − 𝑓𝐼 . (125) 

Substituting (124) into (123) and utilizing (125) gives the following closed loop error equation for the 

system: 

  𝑒̇𝐼 = 𝑓𝐼 . (126) 

To facilitate the development of the back EMF observer a filtered error signal is defined as follows 

         𝑠𝐼 ≜ 𝑒̇𝐼 + 𝑒𝐼 . (127) 

From the subsequent stability analysis the following observer is designed: 

  𝑓̇𝐼 ≜ (𝑘1𝐼 + 1)𝑠𝐼 + 𝑘2𝐼𝑠𝑔𝑛(𝑒𝐼) (128) 

where 𝑘1𝐼 , 𝑘2𝐼 ∈ 𝑅
+ are constant gains.  As stated in Assumption 1 the signal 𝐼(̇𝑡) is not measurable, 

meaning that 𝑒̇𝐼(𝑡) and therefore 𝑠𝐼(𝑡) are likewise unavailable. A realizable form of the observer can be 

found by substituting (127) into (128) and integrating both sides of the resulting equation to obtain the 

following: 

         𝑓𝐼 = (𝑘1𝐼 + 1) [𝑒𝐼(𝑡) − 𝑒𝐼(𝑡0) + ∫𝑒𝐼(𝜎)𝑑𝜎

𝑡

𝑡0

] + 𝑘2𝐼 ∫𝑠𝑔𝑛(𝑒𝐼(𝜎))𝑑𝜎

𝑡

𝑡0

+ 𝑓𝐼(𝑡0). (129) 

Remark 9.1.1:  The stability analysis in the subsequent section proves that the motor current 𝐼(𝑡) 

converges to the current trajectory 𝐼𝑑(𝑡) or in other words that 𝑒(𝑡) converges to zero. This stability 

analysis will also show that 𝑒̇𝐼(𝑡) converges to zero, which per (126) proves that 𝑓𝐼(𝑡) converges to 𝑓𝐼(𝑡).  

From the definition of 𝑓𝐼(𝑡) we can define an observed velocity as 
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 𝑥̂̇𝐼 ≜
𝐿𝑖
𝛼
𝑓𝐼 . (130) 

 

 

9.1.2 STABILITY ANALYSIS 

Theorem 9.1.1: The observer defined in (129) ensures that 

 𝑓𝐼(𝑡) → 𝑓𝐼(𝑡)   𝑎𝑠    𝑡 → ∞ (131) 

provided that the observer gain 𝑘2𝐼 is selected to meet the following sufficient condition: 

 𝑘2𝐼 > 𝜁1𝐼 + 𝜁2𝐼 . (132) 

Proof: See Appendix. 

 

 

9.1.3 SIMULATION RESULTS 

The simulation model detailed in Section 3 was utilized for this simulation with a switching frequency 

of 25 [kHz] used for the inverter model. A single frequency sinusoidal current trajectory was chosen for 

this simulation of the form 𝐼𝑑(𝑡) = 𝐼0 sin 2𝜋𝑓0𝑡 ∙ (1 − 𝑒
−𝛽𝑡3) where 𝑓0 = 63 [𝐻𝑧], 𝛽 = 75,000 and 𝐼0 is 

initially 1.4 [𝐴] then undergoes a step change to 2.0 [𝐴] at time 𝑡 = 0.119 [𝑠𝑒𝑐].  It can be shown that this 

form fulfills the requirements of Assumption 4.  The controller gain 𝑘2𝐼 = 400,000 was selected per the 

requirements stated in (16) and a value of 𝑘1𝐼 = 7,500 was chosen for the integral gain. 

The results of this simulation are shown in Fig. 33-36. Fig. 33 shows the current trajectory 𝐼𝑑(𝑡) along 

with the actual current 𝐼(𝑡).  From this and the error signal 𝑒(𝑡) in Fig. 34 we can see that the controller is 

successful in achieving the current control objective and that 𝐼(𝑡) → 𝐼𝑑(𝑡) as  𝑡 → ∞.  The voltage 

command signal generated by the controller is shown in Fig. 35 along with the corresponding inverter 

output voltage.  Fig. 36 shows an observed velocity signal 𝑥̂̇𝐼(𝑡) derived from the observed back EMF term 

𝑓𝐼(𝑡) as shown in (14) versus the actual velocity 𝑥̇(𝑡).  Since it has been proven through the stability 

analysis that 𝑓𝐼(𝑡) → 𝑓𝐼(𝑡)  𝑎𝑠    𝑡 → ∞, it can be shown that likewise that 𝑥̂̇𝐼(𝑡) converges to 𝑥̇(𝑡).  This 

statement is further validated by the results shown in Fig. 36. 
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Figure 33. Convergence of actual current 𝐼(𝑡) to the current trajectory 𝐼𝑑(𝑡). 

 

Figure 34. Convergence of current error 𝑒𝐼(𝑡) to zero. 
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Figure 35. Controller voltage command 𝑣𝑎(𝑡) and corresponding H-bridge inverter output. 

 

Figure 36. Comparison of observed velocity 𝑥̂̇𝐼(𝑡) with actual velocity 𝑥̇(𝑡). 

  



68 

 

 

 

 

CONCLUSION 

A series of estimators, observers, and control schemes have been developed to allow for a sensorless 

system level control scheme which is capable of achieving efficient stroke control of a linear vapor 

compressor.  The system level control has been implemented using three individual controllers operating in 

parallel with a simple rule set preventing fighting between them. The information needed for the operation 

of these controllers has been derived sensorlessly from a pair of Lyapunov stable nonlinear observers.  The 

first of these is a velocity observer, which is used to do determine the relative phase of the motor current 

and piston velocity, an indicator of system efficiency.  The second is a position and pressure observer 

which uses this velocity signal to observe the absolute position of the piston along with the system 

pressures.  Both of these observers rely on accurate knowledge of the machine parameters which have been 

obtained through a pair of adaptive least-squares estimators.  Analysis and experimental results have been 

provided for validation of each of the proposed algorithms, demonstrating successful and accurate 

operation.  
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APPENDIX 

Remark A.1: We can see that a similar RISE based observer methodology was used to develop velocity, 

acceleration, and gas force observers in Sections VI.A, VI.B, VI.D respectively as well as the observer-

based current controller in Section IX.A.  Given that the closed loop error dynamics and the form of the 

observers defined in (33) and (47) are identical a single stability analysis is given for all three systems for 

the sake of brevity.  The subscript 𝑖 used in the subsequent analysis may be replaced with a 𝑉,𝑈, 𝐹, or 𝐼 to 

refer to terms in the velocity observer, acceleration observer, gas force observer, or current controller 

development, respectively. 

The relevant error definitions, closed loop dynamics, and observer definitions are repeated here for use in 

the subsequent analysis.  Corresponding equations can be found in the respective development sections. 

 𝑓𝑖 ≜ 𝑓𝑖 − 𝑓𝑖 (133) 

  𝑒̇𝑖 = 𝑓𝑖           (134) 

 𝑠𝑖 ≜ 𝑒̇𝑖 + 𝑒𝑖 (135) 

  𝑓̇𝑖 ≜ (𝑘1𝑖 + 1)𝑠𝑖 + 𝑘2𝑖𝑠𝑔𝑛(𝑒𝑖)    (136) 

Corresponding equations can be found in the development sections mentioned. 

Theorem A1: The observer defined in (136) ensures that 

 𝑓𝑖(𝑡) → 𝑓𝑖(𝑡)   𝑎𝑠    𝑡 → ∞ (137) 

provided that the observer gain 𝑘2𝑖 is selected to meet the following sufficient condition: 

 𝑘2𝑖 > 𝜁1𝑖 + 𝜁2𝑖 . (138) 

Proof: To prove that 𝑓𝑖(𝑡) → 𝑓𝑖(𝑡) as 𝑡 → ∞, a nonnegative Lyapunov function 𝑉𝑖(𝑡) ∈ ℝ is defined for 

the observer as 

 𝑉𝑖 ≜
1

2
𝑒𝑖
2 +

1

2
𝑠𝑖
2 (139) 
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where 𝑒𝑖(𝑡) is the error of the respective controller/observer and 𝑠𝑖(𝑡) is the corresponding filtered error 

defined in (135). Further analysis will show that the form of 𝑓̇𝑖(𝑡) presented in (136) ensures that 𝑉̇𝑖(𝑡) is 

negative definite for all 𝑒𝑖(𝑡) and 𝑠𝑖(𝑡).  The time derivative of (139) is taken and can be written as 

 𝑉̇𝑖 = 𝑒𝑖𝑒̇𝑖 + 𝑠𝑖 𝑠̇𝑖 . (140) 

An expression for 𝑠̇𝑖(𝑡) can be written by taking the time derivative of (135), and substituting the time 

derivatives of (133) and (134) to obtain the following: 

 𝑠̇𝑖 = 𝑓𝑖̇ − 𝑓
̇
𝑖 + 𝑒̇𝑖 . (141) 

Solving (135) for 𝑒̇𝑖(𝑡) an expression is obtained which can be substituted along with (141) into (140) with 

the following result: 

 𝑉̇𝑖 = −𝑒𝑖
2 + 𝑠𝑖

2 + 𝑠𝑖(𝑓𝑖̇ − 𝑓𝑖
̇ ). (142) 

Substituting (135) and (136) into (142), after simplifying the result can be written as 

 𝑉̇𝑖(𝑡) = −𝑒𝑖
2 − 𝑘1𝑖𝑠𝑖

2 + 𝑒̇𝑖𝑓𝑖̇ − 𝑘2𝑖𝑒̇𝑖𝑠𝑔𝑛(𝑒𝑖) + 𝑒𝑖(𝑓𝑖̇ − 𝑘2𝑖𝑠𝑔𝑛(𝑒𝑖)). (143) 

The integral of (143) from 𝑡0 to 𝑡 can be expressed as 

 

𝑉𝑖(𝑡) = 𝑉𝑖(𝑡0)–∫ 𝑒𝑖
2(𝜎)𝑑𝜎

𝑡

𝑡0

– 𝑘1𝑖∫ 𝑠𝑖
2(𝜎)𝑑𝜎

𝑡

𝑡0

+∫ 𝑒̇𝑖(𝜎)𝑓𝑖̇(𝜎)𝑑𝜎
𝑡

𝑡0

 

                              −𝑘2𝑖∫ 𝑒̇𝑖(𝜎)𝑠𝑔𝑛(𝑒𝑖(𝜎))𝑑𝜎
𝑡

𝑡0

 + ∫ 𝑒𝑖(𝜎)[𝑓𝑖̇(𝜎)– 𝑘2𝑖𝑠𝑔𝑛(𝑒𝑖(𝜎))]𝑑𝜎
𝑡

𝑡0

. 

(144) 

After integrating the fourth term of the right-hand side of (144) by parts and the fifth term with respect to 

time and rearranging terms the following expression is obtained for 𝑉𝑖(𝑡): 

 𝑉𝑖(𝑡) = 𝑉𝑖(𝑡0) − ∫ 𝑒𝑖
2(𝜎)𝑑𝜎

𝑡

𝑡0

− 𝑘1𝑖∫ 𝑠𝑖
2(𝜎)𝑑𝜎

𝑡

𝑡0

+ 𝑒𝑖(𝑡)𝑓𝑖̇(𝑡) − 𝑒𝑖(𝑡0)𝑓𝑖̇(𝑡0) 

(145) 

                 −𝑘2𝑖|𝑒𝑖(𝑡)| + 𝑘2𝑖|𝑒𝑖(𝑡0)| + ∫ 𝑒𝑖(𝜎)[𝑓𝑖̇(𝜎)– 𝑓𝑖̈(𝜎)– 𝑘2𝑖𝑠𝑔𝑛(𝑒𝑖(𝜎))]𝑑𝜎
𝑡

𝑡0

. 

Provided that 𝑘2𝑖 is selected according to (138), the fourth and sixth terms of the right-hand side of (145) 

can be combined and upper bounded to zero.  Similarly, the eighth term can also be upper bounded to zero.  

After applying these upper bounds to (145), 𝑉𝑖(𝑡) can be upper bounded as follows: 

 𝑉𝑖(𝑡) ≤–∫ |𝑒𝑖(𝜎)|
2𝑑𝜎

𝑡

𝑡𝑜

− 𝑘1𝑖∫ |𝑠𝑖(𝜎)|
2𝑑𝜎

𝑡

𝑡𝑜

+ 𝐶𝑖. (146) 

where 𝐶𝑖 ≜ 𝑉𝑖(𝑡0) − 𝑒𝑖(𝑡0)(𝑓𝑖̇(𝑡0) − 𝑘2𝑖𝑠𝑔𝑛(𝑒𝑖(𝑡0))) is a bounding constant. 
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From the structure of (139) and (146) and the definition of 𝐶𝑖 it is proven that 𝑉𝑖(𝑡) ∈ ℒ∞; hence 

𝑠𝑖(𝑡), 𝑒𝑖(𝑡) ∈ ℒ∞. Since  𝑠𝑖(𝑡),  𝑒𝑖(𝑡) ∈ ℒ∞, from (135) and (136) it is clear that 𝑒̇𝑖(𝑡), 𝑓
̇
𝑖(𝑡) ∈ ℒ∞.  Since 

𝑓𝐼̇(𝑡), 𝑓
̇
𝑖(𝑡), 𝑠𝑖(𝑡), 𝑒𝑖(𝑡) and 𝑒̇𝑖(𝑡) ∈ ℒ∞, it is clear from (141) that 𝑠̇𝑖(𝑡) ∈ ℒ∞.  The inequality defined by 

(146) can be used to prove that 𝑠𝑖(𝑡),  𝑒𝑖(𝑡) ∈ ℒ2.  Since 𝑠𝑖(𝑡),  𝑒𝑖(𝑡), 𝑠̇𝑖(𝑡), 𝑒̇𝑖(𝑡) ∈ ℒ∞ and 𝑠𝑖(𝑡), 𝑒𝑖(𝑡) ∈

ℒ2, then Barbalat’s lemma can be used to prove that 𝑠𝑖(𝑡) and 𝑒𝑖(𝑡) → 0 as 𝑡 → ∞. Since  𝑠𝑖(𝑡) → 0 as 𝑡 →

∞, (135) can be used to show that 𝑒̇𝑖(𝑡) → 0 as 𝑡 → ∞ as well. From this fact and (134) we see that 𝑓𝑖(𝑡) →

𝑓𝑖(𝑡) thus completing the proof of Theorem A1. 
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