
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

12-2017 

Numerical investigation of drop impingement on dry and wet Numerical investigation of drop impingement on dry and wet 

surfaces. surfaces. 

Yisen Guo 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

 Part of the Fluid Dynamics Commons 

Recommended Citation Recommended Citation 
Guo, Yisen, "Numerical investigation of drop impingement on dry and wet surfaces." (2017). Electronic 
Theses and Dissertations. Paper 2869. 
https://doi.org/10.18297/etd/2869 

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of 
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/201?utm_source=ir.library.louisville.edu%2Fetd%2F2869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2869
mailto:thinkir@louisville.edu


   

 
 
 
 
 

NUMERICAL INVESTIGATION OF DROP IMPINGEMENT ON DRY AND WET 
SURFACES 

 
 
 
 

By 
 

Yisen Guo 
B.S., Shandong University, 2009 

M.S., Oregon State University, 2011 
 
 
 
 
 
 

A Dissertation 
Submitted to the Faculty of the 

J.B. Speed School of Engineering of the University of Louisville 
in Partial Fulfillment of the Requirements 

for the Degree of 
 
 
 
 

Doctor of Philosophy 
in Mechanical Engineering 

 
 
 
 

Department of Mechanical Engineering 
University of Louisville 

Louisville, Kentucky 
 
 
 
 

December 2017 
  



Copyright 2017 by Yisen Guo 

All rights reserved 

  



 



 ii  

 
 
 
 
 

NUMERICAL INVESTIGATION OF DROP IMPINGEMENT ON DRY AND WET 
SURFACES 

 
 
 
 

By 
 

Yisen Guo 
B.S., Shandong University, 2009 

M.S., Oregon State University, 2011 
 
 
 

 A Dissertation Approved on  
 

 
November 1, 2017 

 
 
 
 

by the following Dissertation Committee: 
 
 
 

____________________________________ 
Yongsheng Lian, Ph.D., Dissertation Director 

 
 

____________________________________ 
Dar-Jen Chang, Ph.D. 

 
 

____________________________________ 
Kevin Murphy, Ph.D. 

 
 

____________________________________ 
Keith Sharp, Ph.D. 

  



 iii  

 
 
 
 
 

ACKNOWLEDGMENTS 
 

I would like to express my gratitude to my advisor, Dr. Yongsheng Lian. Thank you for 

your immense support over the years; your guidance and encouragement were invaluable. 

You introduced me into the world of multiphase flow simulations and taught me to think 

critically about my research. You were always patient explaining complicated concepts in 

a gentle way. You always gave me constructive suggestions and great comments about the 

simulations when I struggled. And your great sense of humor is contagious, I believe I am 

becoming a more optimistic person. I consider myself very lucky to have the opportunity 

to work in your group and I have truly enjoyed working with you! 

Thank you to Dr. Keith Sharp, Dr. Dar-Jen Chang and Dr. Kevin Murphy, for serving as 

my committee members.  

Thank you to the group members and many friends I’ve met in Louisville, for such a 

pleasant graduate school experience.  

Thank you to my wife and my parents, for your love and support; and thank you to my son, 

even though you are only 3-month old and haven’t really done anything to support me. 

 

  



iv 

 
 
 
 
 

ABSTRACT 
 

NUMERICAL INVESTIGATION OF DROP IMPINGEMENT ON DRY AND WET 
SURFACES 

 
Yisen Guo 

November, 1 2017 
 

In-flight icing due to supercooled large droplets (SLDs) imposes great danger on aviation 

safety. Because of the large size, SLDs have different characteristics than typical cloud 

droplets that most icing encounters involve. As a result, SLDs more likely hit the wing 

surface and move into areas not protected by de-icing devices to form ice, which can lead 

to loss of lift, increase in drag, altered controllability, and eventually stall and loss of 

control of the aircraft. The phenomenon of droplet splashing is considered as the most 

important aspect of the SLD icing accretion problem. Although previous studies have 

established splashing threshold and revealed most parameters affecting splashing, the 

splashing mechanism is still not fully understood.  

In this study, the impacts of droplets on both dry and wet surfaces were numerically 

investigated to understand the splashing mechanism. A Navier-Stokes solver was used to 

describe the flow field, the moment-of-fluid (MOF) method was used to capture the droplet 

interface evolution, the adaptive mesh refinement technique was employed to refine the 

mesh near the regions of interest, and the dynamic contact angle model was used to 

represent the wettability of the solid surface.  



 v  

Using the multiphase flow solver, the effect of ambient gas density on splashing was 

intensively studied and it was confirmed that lowering ambient gas density can suppress 

dry surface splashing while has no significant influence on wet surface splashing. Then, 

high-speed drop impact on thin liquid film with a focus on oblique impact was investigated. 

The numerical results showed that the tangential velocity can significantly alter impact 

phenomena: a higher tangential velocity leads to lower lamella height and radius on the 

side behind the advancing drop, the higher tangential velocity also leads to stronger 

vortices at the drop and film interface due to Kelvin-Helmholtz instability. Simulations of 

oblique impacts of two neighboring drops were also conducted for low-speed and high-

speed impacts. Strong interaction occurred when the crowns formed by the two 

neighboring drops interfered with each other. For low-speed impact, droplets deposited on 

to the liquid film with short and thick crowns formed and the interaction region was 

superposition of crowns. For high-speed impact, crowns broken up to form splashing and 

the interaction behavior became complicated.  

Finally, the droplet impacts on a MS(1)-317 airfoil was studied and the water collection 

efficiency and impingement limit were investigated. Unlike most previous studies, the flow 

field and droplet behavior were simultaneously simulated using one multiphase flow 

solver. The results were compared with the ice accretion simulation code LEWICE and 

experimental data. The simulations showed that the calculated water collection efficiency 

of cloud-sized droplets matched the result of LEWICE, however, the calculated water 

collection efficiency of large droplets showed better agreement with the experimental data 

than LEWICE. The better agreement was attributed to the droplet trajectory calculation 

and the capture of droplet splashing.  
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CHAPTER 1. GENERAL INTRODUCTION 
 
 

1.1 Aircraft Icing Due to SLDs 

The growing concern about the danger imposed on aviation safety by the so called 

supercooled large droplets (SLDs) has intrigued research interests in droplet splashing. 

SLDs generally have a diameter larger than 50 µm, but they can be up to 100 times larger 

than typical cloud droplets that most icing encounters involve. SLDs exist in freezing 

drizzle and rain where they maintain liquid form even though the temperature is below 

freezing point. Due to their large size, SLDs have different characteristics than typical 

cloud droplets. First, as shown in Figure 1(a), SLDs are less entrained in the flow around 

wings, and are more likely to impinge further aft and sometimes onto areas not protected 

by de-icing devices to form clear and solid layer of glaze ice. In contrast, typical cloud 

droplets are smaller and usually follow the streamlines and strike the wing leading edge, 

which is protected by de-icing devices (Figure 1(b)). Second, unlike cloud droplets which 

freeze immediately after striking the wing surface, SLDs freeze partially and they can 

continue to spread onto the unprotected surface. Third, SLDs can splash into smaller 

secondary droplets which might re-impinge onto unprotected areas to form ice (Figure 

1(a)). As a result, SLDs are recognized as a significant aviation hazard (Potapczuk et al., 

1993; Bragg, 1996). Several fatal aviation accidents have been caused by SLDs and recent 

research has revealed that icing due to SLDs occurs more frequently than initially realized 



 

2 

(Bragg, 1996; Wright & Potapczuk, 1996; Rutkowski et al., 2003; Wright & Potapczuk, 

2004; Wright, 2005; Wright, 2006).  

 

 

 

Figure 1. Characteristics of supercooled large droplet. (a) SLDs more likely hit the wing 

surface and move into areas not protected by de-icing devices to form ice; (b) typical cloud 

droplets usually follow the streamlines and likely hit the leading edge which is protected 

by de-icing devices (Protected area is shown in red). 

 

Studies of SLD ice accretion process and its effect on aircraft performance have been 

performed by various researchers (Politovich, 1989; Potapczuk et al., 1993; Bragg, 1996; 

Bragg, 1996; Wright & Potapczuk, 1996; Wright & Potapczuk, 1996; Dunn et al., 1999; 

Lee & Bragg, 1999; Isaac et al., 2001; Morency et al., 2001; Bond et al., 2003; Gent & 

Moser, 2003; Gibou et al., 2003; Rutkowski et al., 2003; Wright & Potapczuk, 2004; 

Wright, 2005; Wright, 2006). However, most existing simulation tools either ignore the 

droplet impingement or are based on simplified empirical splashing models. Myers and 

Hammond (Myers & Hammond, 1999) use a 1-D control-volume approach to simulate ice 

growth in SLD conditions without considering actual droplet physics. Other simulation 

tools, instead of solving one set of governing equation, solve different sets of equations for 

(b) (a) 
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airflow, droplet impingement, heat transfer, and phase change. FENSAP-ICE (Morency et 

al., 2001) solves four systems of PDEs in an interactive loop, including the compressible 

Navier-Stokes equations for airflow, an Eulerian method model for droplet impingement, 

a control volume equilibrium model for ice accretion and water runback, and a conjugate 

heat transfer model for phase change. LEWICE (Potapczuk et al., 1993; Wright, 2005; 

Wright, 2006) is based on the successive approach in which air flow, water droplet 

trajectories, heat transfer balance, and ice accretion are simulated by different software and 

these software loosely couple together to simulate the ice formation. The splashing models 

used in FENSAP-ICE and LEWICE are calibrated with low speed normal impact tests. 

These models in general do not give accurate prediction for high speed oblique impact. 

ONERA 2D icing suite (Villedieu et al., 2014) takes into account droplet impingement 

model, which is based on experimental results and simplified assumptions. ONERA 2D 

uses a Lagrangian trajectory solver and calculates the deposition probability of each 

droplet, then determines whether the droplet fully stick to solid surface or partial stick with 

the secondary droplets re-emitted into the air flow. In the SLD icing simulations of Silva 

et al. using CFD++ (Silva et al., 2014), they incorporated the effect of droplet-wall 

interaction into the dispersed phase momentum equation as a body force which is proposed 

by Honsek et al. (Honsek et al., 2008). These analysis tools focus on macro properties or 

model droplet impingement phenomenon empirically, which can lead to inaccuracies in 

predicting ice accretion. 

 



 

4 

1.2 Drop Impingement Dynamics 

Droplet splashing is considered as the most important aspect of the SLD ice accretion 

problem and studies show that ignoring droplet splashing leads to poor agreement with 

experimental results (Rutkowski et al., 2003; Wright, 2006). Extensive studies have been 

conducted to understand droplet impacts and splashing (Xu et al., 2005; Mani et al., 2010; 

Schroll et al., 2010; Latka et al., 2012; Mandre & Brenner, 2012; Thoraval et al., 2012; 

Lian et al., 2014). Various splashing models and thresholds have been proposed (Lesser & 

Field, 1983; Chandra & Avedisian, 1991; Mundo et al., 1995; Yarin & Weiss, 1995; Mundo 

et al., 1997; Pasandideh-Fard et al., 2001; Šikalo et al., 2005; Xu et al., 2005; Xu et al., 

2007; Schroll et al., 2010; Kolinski et al., 2012; Latka et al., 2012; Mandre & Brenner, 

2012; Thoraval et al., 2012; Azimi et al., 2013; Lian et al., 2014). However, most studies 

focus on low speed impact rather than high speed impact that SLDs experience (Jung & 

Myong; Wright & Potapczuk, 2004). Very limited SLD studies have been conducted at in-

flight icing conditions (Bragg, 1996; Wright & Potapczuk, 1996; Wright & Potapczuk, 

2004; Wright, 2006). These work typically focus on ice shapes and statistical properties 

such as impingement limit and water collection efficiency, but the fundamental physics of 

SLD impingement has not been considered (Wright & Potapczuk, 1996; Wright, 2005; 

Wright, 2006).  

Previous studies have established splashing threshold by systematically investigating the 

effects of liquid properties (density, viscosity, and surface tension), kinematic parameters 

(velocity and momentum), and surface conditions (roughness and wettability) (Mundo et 

al., 1995; Yarin & Weiss, 1995; Bussmann et al., 1999; Rieber & Frohn, 1999; Weiss & 

Yarin, 1999; Rioboo et al., 2003; Yarin, 2006; Mongruel et al., 2009). The following group 
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of dimensionless parameters has been identified to govern the outcome of droplet 

impingement on a smooth dry surface: 

2 1/2
0 0

1/2
        =

( )

DV DV We
Re We Oh

D Re

  

  
     (1) 

where ρ, μ, and σ denote the liquid density, liquid viscosity, and gas-liquid surface tension, 

respectively, and D and V0 denote the droplet diameter and impact velocity normal to the 

surface, respectively. Surface roughness plays a critical role on splashing (Xu et al., 2005; 

Latka et al., 2012), but it will not be considered here because the wing surface is usually 

kept smooth to reduce skin friction drag (Lissaman, 1983; White, 2006). 

Mundo et al. (Mundo et al., 1995) experimentally studied the splashing threshold and 

proposed a composite dimensionless parameter K , which is defined as follows: 

 
1/2 1/4K We Re      (2) 

The splashing threshold of K value is determined to be 57.7 from their experiments. For a 

SLD with a diameter of 50 µm the splash threshold is exceeded when the normal impact 

velocity is larger than about 54 m/s, indicating splashing is a significant factor in large 

droplet regime (Wright & Potapczuk, 2004). Other splashing models have also been 

proposed (Marengo & Tropea; Stanton & Rutland, 1998; Samenfink et al., 1999; Schmehl 

et al., 1999; Trujillo et al., 2000) but experimental studies show that these empirical models 

usually give accurate prediction for normal impacts but not for oblique impacts (Wright & 

Potapczuk, 2004). Drop spreading, receding, and rebound usually can be predicted by 

analytical models (Chandra & Avedisian, 1991; Xu et al., 1998; Kim & Chun, 2001; 

Roisman et al., 2002; Mao et al., 2004). However, the splashing phenomenon is beyond 
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the capability of these analytical models. Numerical studies have been performed to study 

droplet impacts. Blake et al. (Blake et al., 2014) simulated SLD impingement on a cooled 

substrate using ANSYS Fluent. However, no splashing was observed in any of their 

simulations even when the K value is much higher than the splashing threshold of Mundo 

et al. Footte (Footte, 1975) studied the droplet impact on a thin film by solving the Navier-

Stokes equations with the Marker-and-Cell-method (Brackbill et al.), and Bussmann et al. 

(Bussmann et al., 1999; Bussmann et al., 2000) studied 3D drop impacts on a thin film 

using the volume of fluid (VOF) method. They relied on specific perturbations to trigger 

splashing, but it is not clear whether these perturbations exist in the experiments.  

There is another layer of complexity in the study of droplet impact and splashing. Ambient 

gas was not considered to affect the droplet impact initially (Bussmann et al., 2000; Yokoi, 

2011). However, Xu et al. (Xu et al., 2005) and Latka et al. (Latka et al., 2012) found that 

the air plays a crucial role in determining the splashing behavior: a low pressure can 

effectively suppress the splashing. Splashing occurs when in atmospheric pressure, but is 

suppressed when the pressure is lowered to 13 kPa even the K value of 507 is much higher 

than the threshold of Mundo et al. (Mundo et al., 1997). Numerical simulation by Schroll 

et al. (Schroll et al., 2010) also demonstrated that the splashing can be suppressed when 

the ambient air effects are negligible. Lian et al. (Lian et al., 2014) numerically investigated 

the effect of air on droplet impact using the moment-of-fluid method. They observed that 

at low pressure the thin liquid sheet does not lift off even after it contacts the solid but at 

high pressure the thin sheet lifts off. Kolinski et al. (Kolinski et al., 2012) experimentally 

showed that during the droplet impact process a thin air film was trapped between the 

droplet and the solid surface. This air film serves to lubricate the droplet and makes the 
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fluid to slide on the film at high velocities. All these studies underscore the importance of 

air in the droplet impact.  

In addition to the ambient gas, the impact angle is also important to the outcome of 

splashing phenomenon (Liu et al., 2010). Mundo et al. (Mundo et al., 1995) experimentally 

showed that oblique impact has the same splash threshold when a normal velocity 

component is used. On the other hand, Bird et al. (Bird et al., 2009) demonstrated that the 

tangential velocity component plays a complicated role: it exacerbates splashing for low-

speed impact cases while it suppresses splashing for high-speed impact cases. 

Droplet impact on thin liquid film is also an important phenomenon in aircraft in SLD 

conditions, as thin liquid films are created by the impacts of previous droplets. 

Experimental studies (Yarin & Weiss, 1995; Cossali et al., 1997; Wang & Chen, 2000; 

Rioboo et al., 2003) revealed the threshold for droplet splashing on thin liquid film. Yarin 

and Weiss proposed the threshold velocity for droplet splashing in a train: 

1
4 31

8 8
0 18SV f






 
  

 
  (3) 

where f is the frequency of incoming droplets. For single droplet splashing, f can be 

replaced with V0/D0. Their study showed that the droplet diameter has no effect on the 

splashing threshold and the liquid film thickness is less important. Cossali et al. proposed 

the threshold K value for droplet splashing on thin liquid film: 

1.44

0 0

2100 5880            for 0.1 1 and 0.007S

h h
K Oh

D D

 
     

 
  (4) 
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where the thickness of the liquid film, h, is considered. However, the equation is only valid 

for h/D0 > 0.1. For h/D0 < 0.1, experimental data from Wang and Chen and Rioboo et al. 

(Wang & Chen, 2000; Rioboo et al., 2003) established the threshold KS ≈ 400. 

 

1.3 Thesis Organization 

Droplet splashing, the most important phenomenon in SLD, is still not fully understood 

(Rutkowski et al., 2003; Wright & Potapczuk, 2004; Wright, 2006). In this study, droplet 

impingement and splashing on dry and wet surfaces are investigated using a multiphase 

flow solver.  

Chapter 2 presents the numerical methods of the multiphase flow solver. The Navier-

Stokes equations were solved using the variable density pressure projection method on a 

dynamic block structured adaptive grid. The moment of fluid method was used to 

reconstruct interfaces separating different phases. A dynamic contact angle model was used 

to define the boundary condition at the moving contact line. 

Chapter 3 presents the numerical study of drop impingement and splashing on both dry and 

wet surfaces at impact velocities greater than 50 m/s with consideration of the effect of 

surrounding air. The numerical method is validated by comparing with available 

experimental data. The low-speed and high-speed impacts on dry surface and thin liquid 

film are studied to highlight the different roles ambient air played in splashing. 

Chapter 4 presents the numerical study of high-speed drop impact on thin liquid film with 

a focus on oblique impact. The numerical method is validated with experiment and 
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theoretical solution. The normal and oblique impacts of water drops on water films of 

different impact angles and film thicknesses are investigated. The normal impacts of 

different film-drop density ratios are studied. 

Chapter 5 presents the numerical study of the impact of multiple drops on a thin liquid 

layer. The numerical method is validated with experiments of normal impacts on liquid 

films. Two neighboring water droplets impacting on a water film at 45° impact angle is 

simulated. 

Chapter 6 presents an integrated Eulerian approach to study the water collection efficiency 

and impinge limit using the multiphase flow solver. Unlike most previous methods, the 

proposed approach considers the interplay between air and droplets. The droplet 

deformation and impingement on the wing surface and its subsequent behaviors are 

captured.  

Chapter 7 concludes the dissertation. 
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CHAPTER 2. NUMERICAL METHODS 
 
 
The multiphase flow solver solves the three-dimensional Navier-Stokes equations using 

the variable density pressure projection algorithm (Kwatra et al., 2009) on a block-

structured adaptive mesh refinement (AMR) grid (Sussman et al., 1999). The solver 

employs state-of-the-art moment-of-fluid (MOF) method to represent the multiphase 

interfaces (Dyadechko & Shashkov, 2005; Jemison et al., 2013; Lian et al., 2014). It 

employs dynamic contact angle models for droplet impact problems (Lian et al., 2014).  

2.1 Governing Equations 

The continuity, momentum, and material indicator equations for incompressible, 

immiscible, multiphase flows are written as follows: 

 0  U     (5) 

 ( ) tensionp F
t

 
 

      
 

U
H U U     (6) 

 ( ) 0
t


   



H
UH     (7) 

where  , ,u v wU   is the velocity vector, t is the time, p is the pressure, and 

1 2( , ) ( , ,..., )Mt H H HH x  is the material indicator vector function. The material indicator 

function is defined as follows: 
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  
1              material m

,
0             otherwise

mH t


 


x
x    (8) 

1
( )

M

m mm
H 


H  is the density, and   is the shear stress tensor, 

  ( ) ( )T    H U U    (9) 

here
1

( )
M

m mm
H 


H  is the viscosity, and the stress at the material interface will have 

the following jump condition due to the surface tension 

  ( )pI     n n    (10) 

where   is the surface tension coefficient,  and n are the curvature and unit normal of 

the interface respectively. For two-phase flow the surface tension term, Ftension, is 

 
1,2 1 1( )tension H   F n    (11) 

and the interface unit normal is  

 1
1

1

H

H





n    (12) 

For multiphase flow ( 3M  ), the exact form of the surface tension terms can be found in 

(Li et al., 2015). 

 

2.2 Moment-of-fluid interface reconstruction 

The MOF method (Dyadechko & Shashkov, 2005; Ahn & Shashkov, 2007; Dyadechko & 

Shashkov, 2008; Ahn & Shashkov, 2009; Jemison et al., 2012) has been developed for 

computing the motion of deforming boundary problems. In the MOF method, we represent 
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the material m distribution using its volume fraction and centroid. In each computational 

cell, the volume fraction is 

1/2 1/2 1/2

1/2 1/2 1/2

, 1
( )

i j k

i j k

x y zi m

m mx y z
i

F H dzdydx
x y z

  

  


 

       x    (13) 

where 
, and i i m  are the volume of cell (i,j,k) and volume of material m in the cell. The 

centroid of the material m in the cell is 

 

1/2 1/2 1/2

1/2 1/2 1/2

1/2 1/2 1/2

1/2 1/2 1/2

( )

( )

i j k

i j k

i j k

i j k

x y z

mx y z

m x y z

mx y z

H dzdydx

H dzdydx

  

  

  

  


  

  

x x
x

x
    (14) 

Without phase change, each material will maintain its own state along the streamline. 

Therefore, we can use Eq. (7) to track the change of the material indicator. 

In each computational cell, each interface between different phases is represented by a 

plane in 3D or a line in 2D, which is called the piecewise linear interface calculation 

(PLIC). For 2D the interface can be represented by a straight line as shown in Figure 2 using 

the following equation: 

  , 0i j b   n x x     (15) 

where n  is the unit normal vector, 
,i jx  is the cell center, and b  the distance from the cell 

center to the line. 



 

13 

 

Figure 2. The interface can be represented by a straight line in 2D case. The square 

represents a computational cell. 

 

The MOF method, which can be considered as a generalization of the volume of fluid 

(VOF) method, uses both the volume fraction function, ( , ),m mF F b n   and the 

corresponding material centroid, ( , ),c c
m m bx x n   to construct the interface. Given a 

reference volume fraction function, 
, ,ref mF   and a reference centroid, , ,c

ref mx   in one 

computational cell, the MOF interface reconstruction requires that the actual volume 

fraction function (
, , ( , )act m act mF F b n ) matches the reference volume fraction function (

,ref mF  ) exactly and the actual centroid ( , , ( , )c c
act m act m bx x n  ) is the best possible 

approximation to the reference centroid ( ,
c
ref mx ) as illustrated in Figure 3. 
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Figure 3. MOF interface reconstruction. The solid curved line represents the true interface 

and the dashed straight line represents the reconstructed interface. 

 

This procedure can be achieved by minimizing the following function 

  
2

, , ,c c
MOF ref m act mE b x x n     (16) 

with the following constraint 

  , , , 0ref m act mF F b n     (17) 

To find the normal vector n and intercept b, we first parameterize n as follows: 

 

sin( ) cos( )

sin( )sin( )

cos( )

  
 

   
  

n     (18) 

then the minimization problem of Eq. (16) becomes solving * *( , )   so that 

 
* *

, 2
( , ) min ( , )c c

MoF ref m act
E      x x    (19) 

Eq. (19) is solved numerically by the Gauss-Newton algorithm and the detailed step-by-

step procedure is described by Jemison et al. (Jemison et al., 2014).  
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As one can see from the previous discussion, unlike the VOF method, the MOF interface 

reconstruction method only uses information from the computational cell under 

consideration. This characteristic makes the MOF method more suitable for multiphase 

problems with sharp corners. Furthermore, it makes the MOF method more suitable for 

block structured adaptive mesh refinement (Jemison et al., 2012). 

 

2.3 Moment-of-fluid interface advection 

Once the interface is constructed, the next step is to advect the interface to the next time 

instant. We use the direction splitting (Strang, 1968; Jemison et al., 2012) technique which 

allows us to integrate the interface position sequentially. Here we will illustrate the 

interface integration process only in the x direction. 

As depicted in Figure 4, for a given computational cell i occupying region i , we first 

trace backward in time to find its previous position 
,i d , which is called the departure 

region (the dashed region) and is defined as  

  1/2 1/2 1/2 1/2
,D

i i i i i
x u t x u t

   
          (20) 

1/2 1/2 and i iu u   are horizontal velocities on the cell interface. The departure region will 

advect to the target region (cell i itself) 

  1/2 1/2
,T

i i i i
x x

 
        (21) 

We define a mapping function Ti so that  

 : D T
i i iT        (22) 
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For Ti in Eq. (21) the following linear mapping function is used 

  
   

1/2 1/2

1/2

1/2 1/2 1/2 1/2

i iT
i

i i i i

x x x u t
x x x

x u t x u t
 

 



   

   
   

    
   (23) 

If ,D T
i i    then the material in the departure region undergoes compression; otherwise, 

the material in the departure region undergoes expansion.  

 

Figure 4. Illustration of backward tracking process. The dashed region in (b) represents the 

departure region of cell i, ;D
i  the dashed square in (a), Ωi, is the target region. The shaded 

region in (b), , 1, 0,
D n n
m i i iV V   , is the material m, in the departure region. The shaded region 

in (a), 1 1
, 1, 0,

T n n
m i i iV V 

   , is the material m, in the target region.  
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Now we illustrate how to advect the interface using backward projection process. For that 

purpose we introduce new notations, 1, 0,,  and n n
i iV V , which are the interactions of material 

m in underlying grids with the departure region, i.e., 1, , 1
n n D

i m i iV    , and 

0, ,
n n D
i m i iV    . Here , 1 , and  n n

m i m i   represent material m in cell i-1 and i respectively at 

time instant nt . At time 1nt   region 1, 0, and n n
i iV V  will be advected into the target region to 

become 1 1
1, 0, and n n

i iV V 
 . As shown in Figure 4, the volume fraction of material m in the 

target region is then  

1 1
1, 0, 1, 0, , 1 ,1

,

( ) ( ) ( ) ( )n n n n n D n D
i i i i i i i m i i i m i in

m i T T T
i i i

V V T V T V T T
F

 
  

      
  

  

 
  (24) 

and the centroid of material m in the target cell i  is 

1 1
1, 0, , 1 ,( ) ( )1

, 1 1
, ,

n n n D n D
i i i m i i i m i iV V T Tn

m i n T n T
m i i m i i

d d d d

F F

 
    

 

 
 

 

   x x x x x x x x
x

 
   (25) 

In general, the volume fraction function and the centroid of material m in the next time step 

are  

 

1

, '1 ' 1
,

( )n D
i m i i in i

m i T
i

T
F

 
 




 
    (26) 

 
, '

1

' 1 ( )1
, 1

n D
i m i i i

i Tn
m i n T

m i

d

F


  






  x x
x


    (27) 

Note that Eq. (26) is the volume fraction only from the contribution of the x direction. The 

above process should be repeated to advect the interface in y  and z  directions in order to 
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update the volume fraction and centroid position. Typically, the “Strang splitting” method 

is used to advect the interface successively in the x, y, and z directions, and then the order 

is reserved to be z, y, and x directions. More details can be found in (Jemison et al., 2012). 

 

2.4 Fluid solver 

For incompressible flow simulation we apply a time splitting approach as discussed in 

Kwatra et al. (Kwatra et al., 2009). The approach essentially consists of two steps. In the 

first step, advection terms are calculated to obtain an intermediate velocity and density 

fields; in the second step, these fields are corrected by the pressure field. The advected 

velocity field is calculated in a similar way as the material volume fraction and centroid, 

 
 

 
, '

, '

1

"' 1 1

1

' 1 1

n D
m i i i

n D
m i i i

M

i i mi m
a
i

M

mi m

u d
u

d









   

   






  

  





    (28) 

Once the advected velocity, au , is found, the velocity at 1nt   is updated as  

 
1

1

1

n
n a

n

p
u u t









       (29) 

Taking the divergence of Eq. (29) and enforcing incompressibility at 1nt   ( 1 0nu   ) 

gives  

 
1

1

1 n
a

n

p
u

t 





 
  

  
    (30) 

For the 1D problem, as an illustration, Eq. (30) is discretized in a control volume style  
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1 1 1 1
1 1

1 1
1/2 1/2 1/2 1/21

n n n n
i i i i

n n a a
i i i i

p p p p

x x u u

x t x

 

   
 

 
   

     
    

       
   
  
 

   (31) 

here the density and velocity are taken at cell faces. To facilitate the calculation of the cell 

face values, we divide cell i into two control volumes, 
, , and i L i R  . The densities 

averaged over these two control volumes are  

  
, ,

, 1
,

1

m i i R

M

i R mm
i R

d 
  

 


  
    (32) 

  
, 1 1,

1, 1
1,

1

m i i L

M

i L mm
i L

d 
 

   


 


  
    (33) 

The density on the cell face 1/2i  is defined as 

 
, , 1, 1,

1/2

1/2

i R i R i L i L

i

i

 


 





  



    (34) 

where 1/2i  is the face control volume defined as follows: 

 
1/ 2 , 1,i i R i L         (35) 

The advective velocity on the cell face is defined as a mass-weighted interpolation of the 

cell centered advective velocity 

 
, , 1 1, 1,

1/2

1/2 1/2

a a
i i R i R i i L i La

i

i i

u u
u

 



  



 

  



    (36) 

and such an interpolation maintains the momentum conservation.  
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Solving Eq. (31) yields the new pressure field 1np  . The pressure field is then used to 

update the velocity using Eq. (29) as follows: 

 
 1 1 1

1/2 1/2
1

n a n n
i i i i

n
i

u u p p

t x

  
 



 
 

 
    (37) 

here 1 1
1/ 2 1/ 2 and  n n

i ip p 
 

 are the pressures at cell faces. Following Kwatra et al. (Kwatra et al., 

2009) we define the momentum equation in control volume, , 1, and  i R i L   

 

1 1 1
, , , 1/2

1
, / 2

n a n n
i R i R i R i i

n
i R

Du u u p p

Dt t x

  



 
  

 
    (38) 

 

1 1 1
1, 1, 1, 1 1/2

1
1, / 2

n a n n
i L i L i L i i

n
i L

Du u u p p

Dt t x

  
    




 
  

 
    (39) 

Since at the cell interface i+1/2 fluid velocity maintains the same, we have the constraint 

that 1/2, 1,i R i LDu Du

Dt Dt

  . Using this constraint and Eq. (38) and (39), we have  

 
1 1 1 1

1/2 1 1/2
1 1

, 1,/ 2 / 2

n n n n
i i i i

n n
i R i L

p p p p

x x 

   
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 



 


 
    (40) 

The pressure at the cell face can be found  

 

1 1 1 1
, 1 1,1

1/2 1 1
, 1,

n n n n
i R i i L in

i n n
i R i L

p p
p

 

 

   
 

  






    (41) 

For viscous flows, we use the following equation to calculate the intermediate velocity 

 
1 *( )

( )
n a

au u
u

t




 
  


    (42) 
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where *u  is intermediate velocity field and   is the stress tensor. We still use Eq. (31) to 

calculate the updated pressure field 1np   but we will replace * with au u  in Eq. (37) to 

correct the velocity field 1nu  . In the discretization of Eq. (42) we define the viscosity at 

cell interface as follows: 

 

 
1/2

1/2

, 1 1,1

1
i

i
M m m

i i R i i Lm
m








 




      
    (43) 

We use the approach of Jemison (Jemison et al., 2014) to treat the surface tension. The 

ghost fluid method is used to discretize the surface tension force and curvature is calculated 

using the height function.  

The Navier-Stokes equations for incompressible two-phase flows are solved using the 

variable density pressure projection algorithm (Kwatra et al., 2009) on the block structured 

adaptive mesh refinement (AMR) grids (Sussman et al., 1999). The grid adaption is based 

on the triple point region and the curvature of the interface. As shown in Figure 5, the grid 

refinement is performed near regions where curvature is higher than predefine value (here 

we use 0.1). The adaptive mesh refinement method ensures fine grid is only used in the 

regions of interests, which maintains the accuracy of the solver at reasonable computational 

cost. Another example of adaptive mesh refinement in a three-dimensional simulation case 

is shown in Figure 6. 
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Figure 5. Three-level adaptive mesh refinement based on triple point and curvature of the 

interface in a two-dimensional simulation. 

 

 

Figure 6. Two-level adaptive mesh refinement in a three-dimensional simulation. 
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2.5 Dynamic contact angle models  

In the simulations of droplet impacts the contact angle is required as a boundary condition 

at the contact line. Previous studies showed that specifying the correct contact angle is 

critical for the accuracy of numerical simulations (Šikalo et al., 2005; Criscione et al., 

2011).  

Three dynamic contact angle models, the model of Jiang et al. (Jiang et al., 1979), the 

model of Kistler (Kistler, 1993), and the model of Yokoi et al. (Yokoi et al., 2009), were 

tested. These models are calibrated based on different experiments, therefore, as shown in 

Figure 7, they show different dependency on the Capillary number. The models of Jiang 

and Kistler are derived from experimental measurement by Hoffman (Hoffman, 1975) who 

studied 5 fluids and measured the advancing contact angle during steady-state displacement 

of liquid-air phase interfaces through a glass capillary tube. The capillary number range is 

between 4×10-5 and 36. Jiang’s model is a least-square fit of Hoffman’s data and Kistler’s 

model is only based on Hoffman’s data points of completely wetting systems with high 

liquid viscosity and is fit at large Ca number. Yokoi et al. [61] developed four models 

based on their experiment of a 2.28 mm water droplet impacting onto a silicon wafer at 1 

m/s. In Figure 7, the equilibrium contact angle, θe, is 87.4°, and the equilibrium contact 

angle is specified by the surface tension between the gas, liquid and solid phases in code 

implementation. σlg, σls, σsg are used to denote the surface tension between liquid and gas, 

liquid and solid, and solid and gas, respectively. Since the models of Jiang et al. and Kistler 

are only valid for advancing contact angles, a constant receding contact angle from 

experimental measurement is implemented in the code for receding motion. Yokoi’s model 
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I is plotted in the figure and the maximum advancing contact angle and minimum receding 

contact angle are defined as 114° and 52° respectively.  

 

Figure 7. Comparison of three dynamic contact angle models vs. the Capillary number. 
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CHAPTER 3. DROP IMPACT ON DRY AND WET SURFACES WITH 
CONSIDERATION OF SURROUNDING AIR1 

 

3.1 Introduction 

Droplet impingement on dry and wet surfaces is a ubiquitous phenomenon and has been of 

research interest for more than a century (Worthington, 1908). It plays an important role in 

areas such as industrial applications (e.g. spry cooling, spry coating, inkjet printing, and 

metal deposition in manufacturing processes), agricultural applications (e.g. pesticide 

spraying), forensic science (e.g. bloodstain pattern analysis) and fire suppression (e.g. 

sprinkler system). Aviation hazards due to ice accretion also involve droplet impingement. 

Ice accretion due to small cloud-sized droplets is well understood and can be prevented. 

However, supercooled large droplets with diameter larger than 50 µm exhibit different 

characteristics during impingement and are recognized as a significant aviation hazard 

(Potapczuk et al., 1993; Bragg, 1996; Wright & Potapczuk, 1996; Rutkowski et al., 2003; 

Wright & Potapczuk, 2004; Wright, 2005; Wright, 2006). Among the physics phenomena 

                                                 
1 This chapter appeared in the following publication: 

Yisen Guo, Yongsheng Lian, and Mark Sussman, “Investigation of drop impact on dry 

and wet surfaces with consideration of surrounding air,” Phys. Fluids 28, 073303 (2016). 

(AIP Publishing permits authors to include their published articles in a thesis or 

dissertation. Formal permission from AIP Publishing is not needed. 

(https://publishing.aip.org/authors/copyright-reuse)) 
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involved, droplet splashing is considered as the most important aspect of the large droplet 

impact and studies have shown that ignoring droplet splashing leads to poor agreement 

with experimental results (Rutkowski et al., 2003; Wright, 2006). Extensive studies have 

been conducted to understand droplet impact and splashing (Xu et al., 2005; Mani et al., 

2010; Schroll et al., 2010; Latka et al., 2012; Mandre & Brenner, 2012; Thoraval et al., 

2012; Lian et al., 2014). Various splashing models and thresholds have been proposed 

(Lesser & Field, 1983; Chandra & Avedisian, 1991; Mundo et al., 1995; Yarin & Weiss, 

1995; Mundo et al., 1997; Pasandideh-Fard et al., 2001; Šikalo et al., 2005; Xu et al., 2005; 

Xu et al., 2007; Schroll et al., 2010; Kolinski et al., 2012; Latka et al., 2012; Mandre & 

Brenner, 2012; Thoraval et al., 2012; Azimi et al., 2013; Lian et al., 2014). Nevertheless, 

most studies focus on low-speed impact rather than high speed impact that most flights 

experience (Jung & Myong; Wright & Potapczuk, 2004). Very limited studies have been 

conducted at in-flight conditions for large droplets (Bragg, 1996; Wright & Potapczuk, 

1996; Wright & Potapczuk, 2004; Wright, 2006). These work typically focus on statistical 

properties such as impingement limit and water collection efficiency, but the fundamental 

physics of splashing has not been sufficiently investigated (Wright & Potapczuk, 1996; 

Wright, 2005; Wright, 2006).  

Mundo et al. (Mundo et al., 1995) experimentally showed that there are two possible 

outcomes from the impingement of droplet on a flat dry surface: less energetic droplets 

deposit on the surface and form a liquid film, while energetic droplets splash to form 

secondary droplets. They characterized the transition from deposition to splashing using a 

dimensionless parameter K (= Oh∙Re1.25): K>57.7 indicating splashing. Here the Reynolds 

number and the Ohnesorge number are defined based on droplet properties  
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where ρ, µ, and σ are the droplet density, viscosity, and surface tension, respectively, and 

D and V0 are the drop diameter and terminal impact velocity, respectively. Rioboo et al. 

(Rioboo et al., 2001) revealed six outcomes of droplet impact on a dry surface, ranging 

from deposition to complete rebound. They also pointed out that surface wettability and 

roughness played important roles in the outcomes.  

For drop spreading, receding, and rebound, analytical models give fairly accurate 

predictions (Chandra & Avedisian, 1991; Kim & Chun, 2001; Roisman et al., 2002; Mao 

et al., 2004). Numerical studies are also able to duplicate the experimental results. Footte 

(Footte, 1975) studied the droplet rebound by solving the Navier-Stokes equations with the 

Marker-and-Cell method. Pasandideh-Fard et al. (Pasandideh-Fard et al., 2001) used the 

volume of fluid method to investigate viscous drop spreading on dry and partially wettable 

surfaces: both constant and variable contact angles were applied as boundary condition at 

the contact line and the variable contact angle gave a better prediction of the drop spreading 

diameter. Bussmann et al. (Bussmann et al., 1999) simulated droplet deformation of 

oblique impacts on dry surfaces and the results showed good agreement with their 

experiments. 

For droplet splashing on dry surfaces, analytical models cannot give accurate predictions. 

Studies have attempted to investigate droplet splashing mechanism at low-speed regions 

(Jayaratne & Mason, 1964; Stow & Hadfield, 1981; Fukai et al., 1995; Zhao et al., 1998; 

Bussmann et al., 1999; Sussman et al., 1999; Weiss & Yarin, 1999; Bussmann et al., 2000; 

Zheng & Zhang, 2000; Šikalo et al., 2005; Tanguy & Berlemont, 2005). The most prevalent 
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splash mechanism invokes the liquid compressibility and the geometric singularity due to 

the parabolic interface shape (Lesser & Field, 1983; Haller et al., 2003). Nevertheless, 

Mani et al. (Mani et al., 2010) argued that the compressible-liquid mechanism cannot 

explain dry surface splashing when the impact velocity is low. Bussmann et al. (Bussmann 

et al., 2000) simulated droplet impact on dry surface, they artificially perturbed the velocity 

of the fluid near the solid surface to produce secondary droplets. Mandre and Brenner 

(Mandre & Brenner, 2012) argued that splashing occurs through a two-stage process: in 

the first stage, the liquid droplet ejects a thin sheet before it contacts the surface; in the 

second stage, the sheet contacts the surface and viscous forces can deflect the sheet 

upwards to cause a splash. Lian et al. (Lian et al., 2014) numerically confirmed that a thin 

sheet lifts off to cause splashing but they did not observe the thin air layer between the 

droplet an the solid surface.  

Surrounding air initially was not considered to affect the droplet impact (Bussmann et al., 

2000). However, Xu et al. (Xu et al., 2005) and Latka et al. (Latka et al., 2012) found that 

air plays a crucial role in determining the splashing behavior: a low pressure (low air 

density equivalently) can effectively suppress the splashing. Riboux and Gordillo (Riboux 

& Gordillo, 2014; Riboux & Gordillo, 2015) proposed a model to predict drop splashing 

with the consideration of ambient air. Numerical simulation by Lian et al. (Lian et al., 

2014) further confirmed that the splashing can be suppressed when the air density is 

lowered. Schroll et al. (Schroll et al., 2010) simulated droplet impact at low air density, but 

their work did not show droplet splashing at higher air density, hence it was not sufficient 

to conclude that droplet spreading was caused by lowering the air density. 
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Droplet impact on thin liquid film has been studied experimentally (Yarin & Weiss, 1995; 

Cossali et al., 1997; Wang & Chen, 2000; Rioboo et al., 2003) and the threshold for thin 

liquid film splashing are revealed. For example, Yarin and Weiss (Yarin & Weiss, 1995) 

proposed the threshold velocity for thin liquid film droplet splashing: 
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where f is the frequency of incoming droplets. For single droplet splashing, f can be 

replaced with V0/D0. Their study showed that the droplet diameter has no effect on the 

splashing threshold and the liquid film thickness is less important. Cossali et al. (Cossali et 

al., 1997) proposed the threshold K value for droplet splashing on thin liquid film: 
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where the thickness of the liquid film, h, is considered. However, the equation is only valid 

for h/D0 > 0.1. For h/D0 < 0.1, experimental data (Wang & Chen, 2000; Rioboo et al., 2003) 

established the threshold KS ≈ 400. 

In this paper, we investigate droplet impact on both dry and wet surfaces and splashing 

phenomena using the moment of fluid (MOF) method. The MOF method (Dyadechko & 

Shashkov, 2005; Ahn & Shashkov, 2007) is an extension of the volume of fluid (VOF) 

method (Schofield et al., 2008) in which the centroid of each material in a computational 

cell is simultaneously integrated along with the volume fraction for each material. The 

MOF reconstruction uses both the volume fraction and centroid for each material in order 

to determine the interface(s) in a cell. It has demonstrated that MOF reconstruction of a 

single interface in a cell is more accurate than the volume of fluid reconstruction (Jemison 
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et al., 2012). The MOF method has also been shown to be more accurate than VOF methods 

for reconstructing multiple interfaces in a given cell. As with the single interface 

reconstruction the added centroid information in a cell results in a more accurate 

reconstruction of multiple interfaces. Because MOF has more degrees of freedom than the 

VOF, the computational cost is higher than VOF. In this paper, we focus on high speed 

impact on both dry and wet surfaces which have not been thoroughly investigated. The 

effect of ambient air on splashing is carefully studied to highlight the different splashing 

mechanisms in dry and wet surface impact. In this work, a dynamic contact model is 

implemented to handle the moving contact line. The following of this paper is structured 

as follows: first we present the numerical method, then we validate our code by comparing 

with available experimental data, next we present the low-speed impact study, and last we 

discuss the results of high speed impact on dry surface and thin liquid film to highlight the 

different roles ambient air played in splashing.  

 

3.2 Results and Discussions 

The numerical methods are first validated. Then simulation results of the ambient air effect 

on low and high-speed drop impacts on dry surfaces are presented. Last, the ambient air 

effect on drop impact on thin liquid film is studied. Table 1 summarizes the parameters for 

all the simulation cases in this section. 
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Table 1. Summary of the parameters in numerical simulations 

 
Drop 
size 

Liquid 
type 

Impact 
velocity 

Surface 
property 

We Re K 
Ambient air 
density 

A. Code 
validation 1: 
drop deposition 
on a hydrophilic 
surface 

3.6 
mm 

water 0.77 m/s 

dry 
(equilibrium 
contact angle = 
87.4°) 

30 2761 39 1.225 kg/m3 

B. Code 
validation 2: 
drop complete 
rebound on a 
hydrophobic 
surface 

2.5 
mm 

water 1.6 m/s 

dry 
(equilibrium 
contact angle ≈ 
160°) 

89 3984 75 1.225 kg/m3 

C. Code 
validation 3: 
drop impact on a 
thin liquid film 

271 
m 

ethanol 12.5 m/s 
30 m ethanol 
film 

1500 2227 266 1.225 kg/m3 

D. Ambient air 
effect on low-
speed drop 
impact on dry 
surfaces 

3.4 
mm 

ethanol 3.74 m/s 

dry 
(equilibrium 
contact angle ≈ 
10°) 

1685 8361 393 1.225 kg/m3 

E. The effect of 
ambient air 
density on high 
speed drop 
impact 

20 μm 

water 50 m/s 

dry 
(equilibrium 
contact angle ≈ 
70°) 

695 996 148 
1.225 kg/m3 
and 0.49 
kg/m3 

200 
μm 

6946 9960 830 

F. Ambient air 
effect on drop 
impact on thin 
liquid film 

50-µm water 78 m/s 
2 μm water 
film 

4226 3884 513 
1.225 kg/m3 
and 0.49 
kg/m3 

 

3.2.1 Code validation 1: drop deposition on a hydrophilic surface 

Our first case is based on the experiment conducted by Kim and Chun (Kim & Chun, 2001). 

In the experimental setup, a water drop of the diameter of 3.6 mm impacted on a smooth, 

dry solid surface at a terminal velocity of 0.77 m/s. The equilibrium contact angle was 

87.4° and the surface tensions between the gas, liquid and solid phases used in the 

simulation were σlg = 0.0728 N/m, σls = 0.0695 N/m, and σsg = 0.0728 N/m. This led to 
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deposition and the drop eventually reached its final static state. All the dynamic contact 

angle models in and the static contact model were used in our simulations for comparison 

purpose. Grid sensitivity analysis was conducted and a converged solution of maximum 

base diameter was obtained at about 60 cells per original drop diameter. 

Figure 8 compares the drop shapes during the spreading and recoiling stages between 

numerical result using the model of Jiang et al. (Jiang et al., 1979) and experimental result. 

The numerical prediction closely matches the experimental result. The time histories of the 

base diameter of the wetted surface are plotted in Figure 9 using all contact angle models 

discussed in the previous section. The abscissa is the normalized time t* and the ordinate 

is the normalized wet surface diameter *
bD , which are defined as 
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where t is the time, ρ is the drop density, D is the original drop diameter, σ is the drop 

surface tension, and Db is the wet surface diameter.  
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Figure 8. Comparison of drop shapes during the impact process. Numerical results are 

shown in green and experimental results (Kim & Chun, 2001) in black. 

 

 

Figure 9. Comparison of wetted surface diameter between the experiment and simulation. 
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During the initial spreading stage, the numerical results based on all the models match the 

experimental results well except that Yokoi’s model over-predicts the maximum base 

diameter by approximately 20%. During the following recoiling stage, good agreement is 

also observed for the static contact angle model, Jiang’s model and Kistler’s model. 

However, the static contact angle model and Kistler’s model both predict smaller minimum 

base diameter which occurs at a later time instant. This test indicates that the dynamic 

contact angle model of Jiang et al. (Jiang et al., 1979) can produce better match with the 

experimental results in terms of the spreading diameter and shapes of the droplet after 

impact. Therefore, in the following simulations, the dynamic contact model will be used as 

default.  

 

3.2.2 Code validation 2: drop complete rebound on a hydrophobic surface 

This selected problem was originally studied by Azimi et al. (Azimi et al., 2013). In the 

experiment, a water drop impinged on a surface of nanograss-covered microposts sputtered 

with ceria and the drop experienced a complete rebound. The diameter of the water drop 

was 2.5 mm and the impact velocity was 1.6 m/s. The equilibrium contact angle was 

160±2° and the surface tensions between the gas, liquid and solid phases used in the 

simulation were σlg = 0.0728 N/m, σls = 0.1412 N/m, and σsg = 0.0728 N/m. The resulting 

We is 89 and Re is 3984. The measured contact angle hysteresis was low (<10°) and it led 

to extremely high mobility. Complete rebounding was observed in the experiment.  

Considering the problem was axisymmetric, the simulation was conducted in the r- 

coordinate system and revolved for 3D visualization. Grid sensitivity analysis was 
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conducted and wetted surface diameter converged when 60 computational cells per the 

original drop diameter was used. Figure 10 compares the numerical simulations with the 

experimental results. The simulation showed good match with the experimental as it 

captured the complete rebound and the drop breakup thereafter. 

 

 

Figure 10. Comparison of the drop shapes in drop complete rebound phenomenon. Top: 

experiment by Azimi et al. (Azimi et al., 2013). Bottom: simulation. 

 

3.2.3 Code validation 3: drop impact on a thin liquid film 

We further validate the code with the simulation of drop impact on thin liquid film. The 

experiment (normal impact of successive ethanol drops on a solid surface) was conducted 

by Yarin and Weiss (Yarin & Weiss, 1995). The drop diameter was 271 m, the terminal 

impact velocity was 12.5 m/s, and the frequency of the impact was 19,973 Hz, leading to 

We of 1500 and Re of 2227. The liquid film thickness formed by successive drops was 

observed to be in the range of 20 - 50 m, but the splashing threshold and crown formation 
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were not sensitive to the film thickness (Cossali et al., 1997; Wang & Chen, 2000; Rioboo 

et al., 2003). In our simulation, the ethanol drop size and impact velocity are the same as 

those in the experiment, which leads to the same We and Re. Film thicknesses of 20, 30, 

40, and 50 m are simulated but no significant difference is noticed, which is in agreement 

with experimental observation. The simulations are conducted using both the 2D 

axisymmetric and 3D Cartesian grids. Note that a quarter computational domain in 3D 

simulation is used to utilize the symmetry. Grid sensitivity study shows that the equivalent 

resolution of about 430 cells per drop diameter yields converged solution of the diameter 

of the crown’s rim. The 2D axisymmetric and 3D simulated results are shown in Figure 11 

and Figure 12, respectively.  

 

 

Figure 11. 2D axisymmetric simulation of ethanol drop impacts on a 30 m ethanol film 

with drop dimeter of 271 m and impact velocity of 12.5 m/s (We = 1500, Re = 2227). 

0.0 µs 

18.8 µs 

2.4 µs 8.2 µs 

35.1 µs 65.6 µs 

rc 
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Figure 12. 3D simulation of ethanol drop impacts on a 30 m ethanol film with drop 

dimeter of 271 m and impact velocity of 12.5 m/s (We = 1500, Re = 2227). 

 

It is clear from Figure 11 and Figure 12 as the drop impacts on the thin film, a crown is 

formed and it is pushed by the drop and moving outward. The crown movement can be 

65.6 µs 

18.8 µs 

8.2 µs 

2.4 µs 
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predicted based on a theoretical quasi-1D model developed by Yarin and Weiss (Yarin & 

Weiss, 1995) : 

 
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where rc is the radius of crown’s rim, D is original drop diameter, V0 is terminal impact 

velocity, ν is kinematic viscosity, f is impact frequency, τ is dimensionless time (τ = 2πft), 

and τ0 is the dimensionless shifting time (τ0 = 2πft0). The numerical, experimental, and 

theoretical results of the crown’s rim are compared in Figure 13. The simulation result is 

plotted from the initiation of the crown. The crown’s rim moves relatively fast at the 

beginning and then it reaches a relatively constant speed moving outward. The simulation 

shows good agreement with the experimental result. 
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Figure 13. Comparison of the radius of crown’s rim in ethanol drop impact on thin liquid 

film. 

 

3.2.4 Ambient air effect on low-speed drop impact on dry surfaces 

Xu et al. (Xu et al., 2005) and Latka et al. (Latka et al., 2012) found that ambient air 

pressure affected the splashing behavior: a low pressure can suppress splashing. In their 

experiments, splashing was observed when the ambient pressure was 100 kPa but was 

suppressed at a low pressure of 13 kPa. In both cases, the K value of 393 is much higher 

than the splashing threshold of Mundo et al. (Mundo et al., 1995).  

Our simulation followed the experimental setup. The initial diameter of the ethanol drop is 

3.4 mm and the terminal velocity is 3.74 m/s. The low air pressure is modeled with low air 

density by assuming air is ideal gas. In the experiments, the ambient temperature is kept 

the same for different air pressures, and the viscosity of the air and the surface tension of 
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the liquid do not vary with the pressure changes. Therefore, it is the ambient air density not 

the pressure that affects the splashing behavior (low pressure can be the result of low 

temperature, but reducing the pressure without changing the density will have less effect 

on the splashing). The resulting dimensionless parameters are: We = 1685, Re = 8361, and 

K = 393. The equilibrium contact angle of the drop is 10° and the surface tensions between 

the gas, liquid and solid phases are σlg = 0.0223 N/m, σls = 0.00034 N/m, and σsg = 0.0223 

N/m. The dynamic contact angle model (Jiang et al., 1979) was used in the simulation.  

Grid sensitivity analysis was conducted and a converged solution of the thickness of the 

ejected thin film was reached when there were approximately 3000 equivalent cells per 

diameter of the original drop. Figure 14 compares the numerical and experimental results 

at two time instants. A thin liquid film is formed soon after the drop hits the surface. The 

thin film is moving outward in the radial direction and then it is lifted from the solid surface, 

resulting in drop splashing. The thin film later breaks up into smaller secondary droplets. 

A close-up look of the drop splashing is shown in Figure 15. It can be seen that air is 

trapped between the drop and the solid surface, and later the entrained air contracts into a 

bubble, which is in agreement with experiment (van der Veen et al., 2012). However, air 

is not pushed toward the drop perimeter as the drop deforms further, indicating that 

splashing is not caused by the trapped air. 
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Figure 14. Droplet splashing on a solid surface. Red: numerical simulation; Black: 

experimental results (Xu et al., 2005). We = 1685, Re = 8361, and K = 393.  

 

 

Figure 15. Close-up look of the trapped air and the lamella. The trapped air is not 

responsible for the splashing. 

 

Simulation shows the splashed lamella has a thickness of approximately 1.5 m and a 

maximum speed of up to 30 m/s. Simulation also shows that the lamella close to the solid 

force against lamella motion 
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surface moves at a lower speed than that away from the wall, possibly due to the high shear 

stress on the layer next to the solid. As show in Figure 15, air is trapped under the lamella. 

When the lamella moves outward, the surrounding air exerts a resistance force against its 

motion and forces it to move upward and cause splashing. Since the aerodynamic forces 

on the lamella will be proportional to ρair u2 (u is the lamella spreading speed), the air exerts 

force against the thin film motion and pushes the thin film upward to cause splashing. 

To further validate our hypothesis, drop impact on solid surface with low ambient air 

pressure is simulated. The computational setting is the same as the previous one except the 

air density is 0.245 kg/m3, which represents the ambient pressure of 0.2 atm (for air at 1 

atm, ρair = 1.225 kg/m3). Since experiment has shown that viscosity and surface tension of 

air are insensitive to pressure change (Xu et al., 2005), the viscosity and surface tension 

are the same as those used in the previous test. Figure 16 compares the numerical results 

between the two ambient air densities. It is clear that drop splashing is completely 

suppressed at the low ambient air density, which is consistent with the experiment of Xu 

et al. (Xu et al., 2005). At the lower ambient pressure, the air density is low, hence, the 

force acting on the thin film, which is proportional to ρair u2 and is smaller. Figure 17 shows 

the vorticity contours near the lamella for both cases. The vorticity magnitude is greater at 

ρair = 1.225 kg/m3 than at ρair = 0.245 kg/m3. Vortices are also observed near the splashed 

secondary droplets. 
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t = 0.05 ms 0.2 ms 0.5 ms 

 

Figure 16. Comparison of droplet impact at ρair = 1.225 kg/m3 and 0.245 kg/m3. Splash 

occurs at high ambient air density but not at low density.  

 

 

 

 

 

 

ρair = 1.225 kg/m3 

ρair = 0.245 kg/m3 
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Figure 17. Vorticity contours near the lamella at ρair = 1.225 kg/m3 and 0.245 kg/m3 

 

A recirculation zone is observed inside the drop after it impacts on the solid surface for 

both cases. The development of the recirculation at ρair = 1.225 kg/m3 is shown in Figure 

18. At the very early stage of droplet contact with the solid surface, the streamlines inside 

the drop are nearly parallel to each other and only bended at the proximity to the solid 

surface. Near the stagnation point a recirculation zone is formed and it grows in size. At t 

= 0.336 ms, secondary recirculation zones are formed near the solid surface. Near the 

stagnation point, air is trapped and squeezed into bubbles, as shown in Figure 19. The liquid 

flows around the air bubble and flow near the wall has extremely low velocity due to 

viscous effect. For drop impact at ρair = 0.245 kg/m3, as shown in Figure 20, recirculation 

is observed but it is formed at a much later stage (at t = 0.551 ms for ρair = 0.245 kg/m3, 

while at t = 0.236 ms for ρair = 1.225 kg/m3). The recirculation zone size is much smaller 

than that at ρair = 1.225 kg/m3. 

0.05 ms 0.2 ms 0.5 ms 

ρair = 1.225 kg/m3 

ρair = 0.245 kg/m3 
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Figure 18. Development of a recirculation region inside the drop at ρair = 1.225 kg/m3. 

 

Figure 19. Air bubble is trapped at the center of the drop at t = 0.12 ms for drop impact at 

ρair = 1.225 kg/m3. The interface between liquid and gas is shown by dashed red lines. 

 

Liquid 

Gas 

10 μm 



 

46 

 

Figure 20. Development of recirculation region for drop impact at ρair = 0.245 kg/m3. 

 

3.2.5 The effect of ambient air density on high speed drop impact 

We further study the effect of ambient air density on high speed drop impact. The water 

droplet has a diameter of 200 μm, which belongs to the supercooled large droplet category. 

The impact speed is 50 m/s. The solid surface is assumed to be aluminum, which is 

commonly used for aircraft construction. The equilibrium contact angle is 70° and the 

surface tensions between the gas, liquid and solid phases used in the simulation were σlg = 

0.0728 N/m, σls = 0.0479 N/m, and σsg = 0.0728 N/m. For comparison purpose, we also 

simulate the impact of a 20-μm diameter cloud-sized droplet, which is encountered in most 

icing conditions. We assume an axisymmetric condition of the impact and the r- 

coordinate system is used. The ambient air densities of 1.225 kg/m3 and 0.49 kg/m3 are 

considered to represent the air pressures of 1 atm and 0.4 atm. The latter pressure 

corresponds to a flight altitude of 7000 meters. For the small droplet of diameter of 20 μm, 
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We = 695, Re = 996, and K = 148; for the large droplet of diameter of 200 μm, We = 6946, 

Re = 9960, and K = 830. For both cases, the K values exceed the splashing threshold of 

Mundo et al. (Mundo et al., 1995). In all simulations for both cases, two-level grid 

refinement is used, resulting in an equivalent resolution of approximately 2000 cells per 

diameter of the original droplet. The simulation results are summarized in Figure 21 and 

Figure 22. The normalized time is defined as * 0

0

V t
t

D
  here. At ρair = 1.225 kg/m3, splashing 

occurs for both droplets but the splashing is more prominent for the larger droplet. Note 

that in these two figures the two droplets are not shown using the same scale. When the 

ambient air density is lowered to 0.49 kg/m3, splashing is attenuated for the larger droplet 

and is completely suppressed for the smaller droplet, suggesting that the surrounding air 

density affects the droplet impact behaviors. 
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Figure 21. Comparison of 200-μm and 20-μm droplet impact at ρair = 1.225 kg/m3. 

 

Figure 22. Comparison of 200-μm and 20-μm droplet impact at ρair = 0.49 kg/m3. 

D = 200 m, ρair = 1.225 kg/m3 

D = 200 m, ρair = 0.49 kg/m3 

D = 20 m, ρair = 1.225 kg/m3 

D = 20 m, ρair = 0.49 kg/m3 

         t* = 0.075                         t* = 0.225                                     t* = 0.375 

            t* = 0.075                        t* = 0.225                                    t* = 0.375 
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Figure 23 shows the simulation result of 200-μm droplet impact at the ambient air density 

of 1.225 kg/m3 in 3D coordinate system. The equivalent grid resolution is 320 cells per 

droplet diameter. The 3D simulation captures the expanding thin film lifts up at the front 

edge and breaks into secondary droplets. 

 

 

Figure 23. 3D simulation of 200-μm droplet impact at ρair = 1.225 kg/m3. 
 

3.2.6 Ambient air effect on drop impact on thin liquid film 

The impact of a 50-µm diameter water droplet onto a uniform thickness water film with 

the impact velocity of 78 m/s is simulated. Zhang and Hu (Zhang & Hu, 2014) 

experimentally studied the wind-driven water film on a NACA 0012 airfoil and measured 

the thickness of the water film. For the tested wind speed between 10 to 30 m/s, the 
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measured film thickness varied from approximately 2 to 40 μm. The film thickness 

decreases with the wind speed. For the impact velocity of 78 m/s (assume wind and droplet 

have the same speed), we assume a uniform film thickness of 2 μm.  

An equivalent grid resolution of 684 cells per original droplet diameter is used here 

according to convergence study (4-level grid refinement with initial 42 cells per drop 

diameter). Figure 24 shows the 2D axisymmetric simulation results at the ambient air 

densities of 1.225 kg/m3 and 0.49 kg/m3. No significant difference is observed from 

lowering the ambient air density: unlike the dry surface cases splashing is not suppressed 

at lower air density. Nevertheless, the tip of the lamella at the lower air density moves 

slightly faster outward compared with the case at the higher air density. As indicated by 

the dashed vertical lines in Figure 24, the tip of the expanding lamella at lower air density 

is ahead of that at higher air density while the bases of the lamella are at the same position. 

The reason is that the lower density air exerts less resistance on the expanding lamella. 

Also, the lower density case shows more secondary droplets as the tip of the lamella. Figure 

25 compares the radius of crown’s rim, cr

D
, with the theoretical model developed by Yarin 

and Weiss (Yarin & Weiss, 1995). For both ρair = 1.225 kg/m3 and ρair = 0.49 kg/m3 cases, 

the crowns occur earlier than the theoretical prediction and move at the same velocity at 

the beginning stage. After t = 0.5 µs, the crown’s rim at lower air density outruns that at 

higher air density. 
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Figure 24. Comparison of droplet impact on thin liquid film at different ambient air 

densities.  

 

 

Figure 25. Comparison of the radius of crown’s rim at different air densities with 

theoretical solution.  

ρair = 0.49 kg/m3 

ρair = 1.225 kg/m3 
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The thin film splashing mechanism is significantly different from dry surface splashing: 

when the droplet impacts on the thin film it expels the film from the surface and pushes it 

move outward. A lamella is formed and moves upward. The lamella consists of liquid from 

both the thin film and the droplet (Figure 24). As the droplet further impacts the surface it 

keeps feeding the lamella and pushing the thin film outward until the lamella breaks up. 

After the lamella breaks up, partial volume of liquid from the droplet sticks to the surface 

and the rest moves away from the surface, and the mass ratio between the splashed liquid 

(ms) and the original droplet (mo) is defined as the mass loss ratio due to splashing, 
s

o

m

m
. 

The calculated mass loss from splashing is 76.5% in this case, which is much higher than 

the upper limit (25%) of dry surface splashing. Figure 26 compares the mass loss from 

splashing on wet surface as a function of K value with existing empirical models. Although 

the models of Samenfink et al. (Samenfink et al., 1999) and Schmehl et al. (Schmehl et al., 

1999) predict that splashing occurs at the same K value, the model of Samenfink et al. 

(Samenfink et al., 1999) predicts higher splashed mass than the model of Schmehl et al. 

(Schmehl et al., 1999). Figure 26 also indicates that our result matches well with the 

prediction of Honsek et al. (Honsek et al., 2008) with the relative error of 4.8%. 
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Figure 26. Comparison of mass loss from splashing with empirical models. 

 

Figure 27 shows the simulation result at the ambient air density of 1.225 kg/m3 in 3D 

coordinate system. The 3D simulation captures the formation and propagation of the 

lamellae, which is consistent with the 2D axisymmetric result. For 3D simulation, at the 

top of the lamella, the free rim becomes unstable and breaks up into multiple secondary 

droplets. 
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Figure 27. 3D simulation of droplet impact on thin liquid film. 

 

3.3 Conclusions 

Numerical simulations were conducted to understand the effect of ambient air on drop 

splashing. The Navier-Stokes equations were solved using the projection method on 

Cartesian grids. The moment of fluid method was used to construct the interface. A 

curvature based adaptive method was used to refine meshes near the interface with high 

curvature. Our simulation showed that MOF was able to accurately capture the interface. 

We also showed that the dynamic contact angle model gave better prediction than the static 

contact angle model. Our simulation showed that the splash was attenuated when the air 

density was lowered. Our simulation revealed that a thin film was formed after the droplet 
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contacted the solid surface. The thin film moved at a low speed at the contact with the solid 

due to viscous effect while the film moved at a high speed away from the solid. The 

splashing is due to the aerodynamic forces on the thin film. For thin film splashing, the 

lamella is initiated from the preexisting liquid film on solid surface and the liquid content 

from the droplet sliding along above it. The thin film splashing is found to be not affected 

by the ambient air prominently but has much larger mass loss compared with dry surface 

splashing. 
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CHAPTER 4. HIGH-SPEED OBLIQUE DROP IMPACT ON THIN LIQUID FILMS2 
 

4.1 Introduction 

The phenomenon of drop impingement on a wall has attracted much attention due to its 

various practical applications such as spray cooling, inkjet printing, and pesticide spraying. 

Although low-speed normal impacts are involved in most of these applications, high-speed 

oblique drop impact is critical for the studies of aircraft icing, fuel injection in internal 

combustion engines, steam turbines, etc. Many experimental and numerical studies (Ching 

et al., 1984; Rein, 1993; Mundo et al., 1995; Yarin & Weiss, 1995; Cossali et al., 1997; 

Samenfink et al., 1999; Weiss & Yarin, 1999; Roisman & Tropea, 2002; Thoroddsen, 

2002; Josserand & Zaleski, 2003; Rioboo et al., 2003; Cossali et al., 2004; Leneweit et al., 

2005; Nikolopoulos et al., 2005; Xu et al., 2005; Yarin, 2006; Mukherjee & Abraham, 

2007; Nikolopoulos et al., 2007; Deegan et al., 2008; Okawa et al., 2008; Motzkus et al., 

2009; Mani et al., 2010; Schroll et al., 2010; Latka et al., 2012; Mandre & Brenner, 2012; 

Thoraval et al., 2012; Zhang et al., 2012; Tran et al., 2013; Shetabivash et al., 2014; Guo 

                                                 
2 This chapter appeared in the following publication: 

Yisen Guo and Yongsheng Lian, “High-Speed Oblique Drop Impact on Thin Liquid 

Films,” Phys. Fluids 29, 082108 (2017). 

(AIP Publishing permits authors to include their published articles in a thesis or 

dissertation. Formal permission from AIP Publishing is not needed. 

(https://publishing.aip.org/authors/copyright-reuse)) 
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et al., 2016; Josserand & Thoroddsen, 2016) have been conducted to understand drop 

impact phenomenon. These studies revealed that the morphologies and underlying 

mechanisms of dry surface impact and wet surface impact are fundamentally different 

(Yarin, 2006; Guo et al., 2016).  

When a drop impacts on a dry surface, the drop can deposit, rebound or splash, depending 

on parameters such as drop size, impact velocity, surface tension, substrate properties, and 

surrounding gas density (Rein, 1993; Yarin, 2006; Josserand & Thoroddsen, 2016). Mundo 

et al. (Mundo et al., 1995) experimentally showed that there are two possible outcomes 

from the impingement of drops on dry solid surfaces: less energetic drops deposit on the 

surface and form a liquid film, while energetic drops splash and form secondary drops. The 

authors characterized the transition from deposition to splashing using the parameter K = 

Re0.25∙We0.5 where the splashing threshold is 57.7. The Reynolds number and the Weber 

number are defined as  

 

2
0 0 0 0,     

DV DV
Re We

 

 
  ,   (50) 

where ρ, µ, and σ are the liquid density, viscosity, and surface tension, respectively, and 

D0 and V0 are the drop diameter and impact velocity, respectively. Experimental studies by 

Xu et al. (Xu et al., 2005) and Latka et al. (Latka et al., 2012) found that air plays a crucial 

role in determining the dry surface splashing behavior as a low pressure can effectively 

suppress the splashing. Guo et al. (Guo et al., 2016) numerically investigated the role of 

ambient air in drop splashing on dry and wet surfaces, confirming that the splashing can 

be suppressed when the ambient air effects are negligible and the thin film splashing is not 

affected by the ambient air prominently. 
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Under most practical circumstances, drop impact on dry surface is less common. Instead, 

surface is often wet from previous drop impingements, and hence drop often impacts on 

surface covered by a liquid layer. When a drop impacts on a liquid layer or wet surface, 

splashing is generally observed and coalescence occurs only when the drop momentum is 

low (Rein, 1993; Yarin, 2006). The liquid layer can be described as a film or pool 

depending on the non-dimensional parameter δ, defined as h0/D0, where h0 is the liquid 

layer thickness and D0 is the drop diameter. When δ is less than 1, it is referred to as liquid 

film (Cossali et al., 1997; Motzkus et al., 2009).  

Experimental studies of thin liquid film impact (Roisman & Tropea, 2002; Josserand & 

Zaleski, 2003; Deegan et al., 2008) classified different regimes of motion after impact, 

depending on the Reynolds number, the Weber number, and the ratio of film thickness to 

drop diameter. For very low impact velocity, the drop deposits onto the thin liquid film 

without crown formation. For high impact velocity, spreading occurs if a radially 

expanding crown is observed but does not break up into smaller secondary drops. When 

the K number is greater than a threshold, splashing occurs through a two-stage process: in 

the first stage a horn-shaped jet is formed from the neck region between the drop and liquid 

layer and the jet develops to form a crown shape; in the second stage the crown tip breaks 

up to secondary drops due to instability.  

Various models based on experiments have been proposed to predict splash threshold for 

drop impact on liquid layer. Table 2 lists several commonly used models (Yarin & Weiss, 

1995; Cossali et al., 1997; Samenfink et al., 1999; Deegan et al., 2008). Figure 28 compares 

these splash threshold models for water drops impact on thin films of δ = 0.1. The model 

of Yarin and Weiss (Yarin & Weiss, 1995) predicts the highest threshold impact velocity 
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for splashing among all and the difference in the predicted threshold velocities is larger for 

smaller drops.  

Table 2. Selected splash threshold models for drop impact on liquid film 

 Splash threshold 

Yarin and Weiss (Yarin & 
Weiss, 1995) 

5 3 3 11
8 8 8 84

0 0   17V D   


  

Cossali et al. (Cossali et al., 
1997) 

0.4 0.8 1.442100 5880 0.1 1  for Re We       

Samenfink et al. (Samenfink et 
al., 1999) 

0.162 0.419   24Re We   

Deegan et al. (Deegan et al., 
2008) 

0.5  26000Re We   

 

 

Figure 28. Selected splash threshold models for water drops impact on liquid films of δ = 

0.1. The abscissa represents drop diameter and the ordinate represents the corresponding 

threshold velocity for splash. 
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Other studies have been conducted to investigate the jet formation and the secondary drop 

formation. Weiss and Yarin (Weiss & Yarin, 1999) simulated drop impact on a liquid film 

to study the formation of jet in the neck region between the drop and liquid film after 

impact. For sufficiently energetic impacts, the authors found that the jet can pinch off a 

torus-shaped liquid volume at its tip or reconnect with the liquid film. Thoroddsen 

(Thoroddsen, 2002) experimentally verified jet formation in the neck region between drop 

and liquid film. The mechanism of secondary drop formation was also investigated (Allen, 

1975; Fullana & Zaleski, 1999; Rieber & Frohn, 1999; Roisman et al., 2006; Nikolopoulos 

et al., 2007; Krechetnikov & Homsy, 2009). Different mechanisms were used to explain 

the crown formation instability in splashing, including the Rayleigh-Taylor instability 

(Allen, 1975), Rayleigh instability (Rieber & Frohn, 1999), Plateau-Rayleigh capillary 

instability (Fullana & Zaleski, 1999; Roisman et al., 2006; Nikolopoulos et al., 2007), and 

Richtmyer-Meshkov instability (Krechetnikov & Homsy, 2009). 

Most previous studies focused on normal impact with relatively low impact velocity (< 30 

m/s) and film thickness, δ, greater than 0.1 (Rein, 1993; Yarin & Weiss, 1995; Cossali et 

al., 1997; Samenfink et al., 1999; Weiss & Yarin, 1999; Thoroddsen, 2002; Rioboo et al., 

2003; Cossali et al., 2004; Nikolopoulos et al., 2005; Yarin, 2006; Mukherjee & Abraham, 

2007; Nikolopoulos et al., 2007; Motzkus et al., 2009; Shetabivash et al., 2014). Study of 

high-speed oblique impact on thin liquid film is rare. Among the few oblique drop impact 

studies, experiments by Ching et al. (Ching et al., 1984), Leneweit et al. (Leneweit et al., 

2005) and Zhbankova and Kolpakov (Zhbankova & Kolpakov, 1999) investigated oblique 

impact on liquid pool (δ > 1) in the non-splash regime. Okawa et al (Okawa et al., 2008) 

experimentally studied the effect of impact angle on the total mass of secondary drops 
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produced during the collision. Liang et al. (Liang et al., 2013) experimentally studied the 

effects of surface tension and viscosity on spreading and splashing behaviors. Cheng and 

Lou (Cheng & Lou, 2015) numerically studied drop oblique impact (30° ≤ θ ≤ 90°) on a 

wet wall using the Lattice-Boltzmann model and observed a transition from crown 

splashing to single-sided splashing, however, their model artificially introduced to a 

cosine-wave perturbation on the surface of drop before impact to form splashing.  

In the present study, we numerically investigate the high-speed drop impacts on thin liquid 

films. The paper is structured as follows. First, we present the numerical method. Second, 

we validate our code with experiment and theoretical solution. Subsequently, we 

investigate normal and oblique impacts of water drops on water films of different impact 

angles and film thicknesses. Finally, we study the normal impacts of different film-drop 

density ratios.  

 

4.2 Results and Discussions 

We first validate the code by comparing with experimental results and theoretical 

predictions using three cases. Then we investigate the effects of impact angle and film 

thickness by simulating the oblique impacts of 41.3-m-diameter water drops on water 

films of different thicknesses at different impact angles. The film thicknesses used in the 

simulations are 1 m, 5 m and 20 m and the impact angles are 60°, 45°, 30° and 15°. 

Finally, we present the simulation results of the impacts of different film-drop density 

ratios. Table 3 summarizes the parameters for all simulation cases. 
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Table 3. Parameters used in numerical simulations 

 
Drop 

diameter 
D0 

Liquid type 

Impact velocity V0 
(m/s) Impact 

angle θ 

Film 
thickness 

h0 

δ= 
h0/D0 

We Re 
Normal 

V0n 
Tangential 

V0t 

A. Code 
validation 

Case 1 
3.82 
mm 

water 
3.94 

0 
90° 

(normal) 
2.57 mm 0.67 

842 15,366 

3.51 667 13,676 

Case 2 2 mm silicone oil 1.83 0 
90° 

(normal) 
0.4 mm 0.2 324 2191 

Case 3 41.3 m water 53 0 
90° 

(normal) 

1 m 0.024 
1590 1680 

5 m 0.12 

B. Effect of impact 
angle 

41.3 m water 53 

30.6 60° 

5 m 0.12 

2121 1940 

91.8 30° 6362 3361 

197.8 15° 23,742 6493 

C. Effect of film 
thickness  

41.3 m water 53 53 45° 

1 m 0.024 

3185 2378 5 m 0.12 

20 m 0.48 

D. Effect of density 
ratio 

41.3 m 

�����

������
= 0.5, 1, 1.5 

53 0 
90° 

(normal) 
5 m 0.12 1590 1680 

 

A schematic of the simulation setup of a liquid drop impacting onto thin liquid film is 

shown in Figure 29. The liquid drop diameter is D0 and the liquid film thickness is h0. The 

drop is surrounded by air above the liquid film. The impact angle is θ and the impact 

velocity is V0, and V0t and V0n are the tangential and normal components of impact velocity 

respectively. The dimensionless time is defined as 
0

0

nV t
T

D


 , and the dimensionless film 

thickness is defined as 
0

0

h

D
  . Due to symmetry of the problem, the computational domain 

of a three-dimensional model only contains one half of the drop for oblique impact and one 

quarter of the drop for normal impact. Although three-dimensional model can capture 

ejected secondary drops and crown breakup, these phenomena are not the main focus of 

this study. Therefore, two-dimensional numerical model is also used to investigate flow 
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behaviors with higher grid resolution. The tangential velocity component points to the right 

in Figure 29 and we define the right side of the drop as upstream side and left side as 

downstream side. 

 
Figure 29. Illustration of the simulation setup of a liquid drop impacting onto thin liquid 

film. 

 

4.2.1 Code validation 

Three code validation study cases are performed and presented in this section. The three 

cases represent low-speed impact on thick liquid film, low-speed impact on thin liquid film, 

and high-speed impact on thin liquid film, respectively. 

4.2.1.1 Validation case 1 

We first validate the code with experiment of normal impact on thick liquid film. The 

experiment was conducted by Cossali et al. (Cossali et al., 2004). The water drop diameter 

was 3.82 mm, the terminal impact velocity was 3.94 m/s, the film thickness was 2.57 mm, 

and the resulting We was 842 and Re was 15,366. Our simulation has the same initial 

conditions as the experiment setup. A grid convergence study is performed using different 
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effective grid resolutions defined by the number of cells per initial diameter of the drop. 

As shown in Figure 30, the effective grid resolutions of 40, 52, 62 and 74 cells per diameter 

(cpd) are used to measure the convergence of crown radius (rC) at T = 1. T is the 

dimensionless time which is defined as 
0

0

nV t
T

D


 . The crown radius only increases by 1.7 

% when the grid resolution is increased from 62 cpd to 74 cpd, but the total CPU time to 

finish simulation to T = 4 almost doubled. To keep computational cost relatively low with 

reasonable simulation accuracy, the grid resolution of 62 cpd is adopted in this case. 

Similar grid convergence study is carried out for all simulation cases in this paper. 

 

Figure 30. Convergence of crown radius at T = 1. The effective grid resolutions are 40, 52, 

62 and 74 cells per diameter. The percentages show the dimensionless crown radius 

increase when increasing grid resolution. 
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Figure 31 compares our simulation result with the experiment. Only a quarter of the domain 

is simulated and the simulation result is mirrored to show the full drop impact. As shown 

in Figure 31, our simulation matches the experimental result to capture the jets ejected from 

the crown and the formation of secondary drops. The experiment shows ripples inside the 

crown, which is possibly caused by the shape oscillation of the drop. Because no such 

perturbation exists in the simulation, the ripple effect is not observed. 

To better illustrate the drop impact phenomenon, we use different materials to represent 

the liquid drop and liquid film even though both have the same properties of water. 

Throughout this paper we use the following color code to represent different materials in 

three-dimensional simulations: white for air, gray for solid substrate, green for liquid film, 

and blue for liquid drop. Simulating drop and liquid film in different materials allows for 

the mass originating in the drop and the liquid film to be tracked through the impact 

process. Our numerical simulation shows that the drop mainly embeds inside the crown 

and most liquid of the crown is from liquid film. Rim of the crown and secondary drops 

have mixed color of green and blue, indicating they are mixtures from the drop and the 

liquid film. 
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Figure 31. Water drop normal impact onto a 2.57 mm thick water film with the drop dimeter 

of 3.82 mm and terminal impact velocity of 3.94 m/s (We = 842 and Re = 15,366). (a): 

experiment (Cossali et al., 2004); (b): simulation.  

 

We validate our code quantitatively against experimental measurement by Cossali et al. 

(Cossali et al., 2004) of a 3.82-mm-diameter water drop impact onto a 2.57-mm-thick water 

film with the impact velocity of 3.51 m/s (We = 667, Re = 13,676, and δ = 0.67). Cossali 

et al. measured the time evolution of the outer diameter of the formed crown. As shown in 

Figure 31(a), the crown diameter is measured from base of the ejected jets. Our simulated 

time evolution of the crown diameter is compared with experimental results in Figure 32. 

The rim of the crown moves relatively fast outward at the beginning at a speed of about 3 

m/s and then it slows down to about 0.5 m/s at the end of the simulation. The simulation 

shows good agreement with the experimental result.  

crown diameter 
(a) 

(b) 

cr
ow

n
 h

ei
gh
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In the code validation with low-speed drop impact on thick liquid film, our simulation tool 

shows good agreement with experiments qualitatively and quantitatively. The crown shape 

is similar to experimental observation and the time evolutions of crown are in agreement.  

  

Figure 32. Time evolutions of crown diameters of the impact of a 3.82-mm-diameter water 

drop onto a 2.57-mm-thick water film with the impact velocity of 3.51 m/s (We = 667, Re 

= 13,676, and δ = 0.67). The simulation result () shows good agreement with the 

experimental measurement () (Cossali et al., 2004). 

 

4.2.1.2 Validation case 2 

In the second validation case, we compare simulation result with experiment of low-speed 

impact on thin liquid film. The experiment conducted by Zhang et al. (Zhang et al., 2012) 

studied a 2-mm-diameter silicon oil impact on the same liquid film with We = 324, Re = 

2191 and δ = 0.2. The simulation of a 2-mm-diameter silicon oil drop impact on a 0.4-mm-

thick same liquid film with the impact velocity of 1.83 m/s is conducted, which leads to 

the same We and Re. The physical properties of the liquid in the simulation is the same as 
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in the experiment. We use two-dimensional axisymmetric coordinates in the simulation 

because secondary drops ejection or crown breakup is not observed in the experiment. The 

effective grid resolution is 780 cpd. Figure 33(a) shows the simulation result with the drop 

and the liquid film distinguished in different colors. The air bubbles trapped under the drop 

is shown is blue color, and similar air entrainment phenomenon is observed in experiments 

(Tran et al., 2013). Figure 33(b) compares the liquid surface profiles between the 

experimental image and numerical simulation at t = 0.335 µs and 0.331 µs, respectively. 

The comparison shows our simulation is in good agreement with experiment. 

 

 

Figure 33. Validation with experiment by Zhang et al. (Zhang et al., 2012). We = 324, Re 

= 2191 and δ = 0.2. The experimental image and our numerical simulation are taken at t = 

0.335 µs and 0.331 µs, respectively. (a): numerical simulation showing drop in red color, 

liquid film interface in black line, and trapped air bubbles in blue color. (b): liquid surface 

profile comparison of experiment and simulation (red line). 

 

Drop 

Liquid film 

 (a)  (b) simulation 
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4.2.1.3 Validation case 3 

The third case validates the code for high-speed normal impact of drop on thin liquid film. 

The water drop has a dimeter of 41.3-µm and two thin film thicknesses, 1 and 5 μm (δ = 

0.024 and 0.12), are used. The normal impact velocity is 53 m/s. Only a quarter of the drop 

is simulated due to symmetry of the problem. A grid convergence study is first carried out 

and the grid resolution of 46 cells per drop diameter shows good convergence of crown 

radius.  

The simulation results are shown in Figure 34. In both cases, the drop completely repels 

the thin film from the substrate after contact. The drop liquid is pushed radially outward, 

which is resisted by adjacent film liquid at rest. Following the direction of the least 

resistant, a thin sheet of liquid is propelled upward to form a crown from the neck region 

connecting the two liquids. When the drop keeps pushing the thin crown outward, the 

crown is radially stretched and eventually breaks up into secondary drops. Based on their 

experiments, Rioboo et al. (Rioboo et al., 2003) observed that when the dimensionless film 

thickness, �, is smaller than 0.03, the drop splashes without crown formation. Nevertheless, 

Figure 34 clearly demonstrates the crown formation for δ = 0.024. One possible reason is 

that the experiments of Rioboo et al. (Rioboo et al., 2003) were conducted at low velocities 

(V0 < 3.14 m/s), their observation may not be valid for high-speed drop impact. We 

hypothesize that the high-speed impingement creates a high speed thinner lamella moving 

outward, leading to higher resistance and upward motion of the lamella. 

A close comparison of the two cases in Figure 34 reveals some distinct features. First, the 

horn-shaped jet formed from the neck region appears earlier for the thinner film case. 

Second, the thinner film case has earlier crown breakup and more secondary drops. Third, 
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the thinner film case has thinner crown which moves faster both outward and upward. The 

crown motions can be quantitatively measured, as shown in Figure 35, the time evolutions 

of crown radius and height are plotted. The crown radius, rc, and crown height, hc, are 

measured from the base of the ejected jets, as illustrated in Figure 31(a). Comparisons are 

also made with the theoretical prediction of crown radius change with time. The theoretical 

prediction is derived by Yarin and Weiss (Yarin & Weiss, 1995) and is given by  

  
1/4 1/ 2

1/ 20
01/4 1/ 4

0

2

3
cr V

t t
D D h

 
  
 

    (51) 

where t0 is the shifting time and t0 = 0.02 μs. The time evolutions of crown radius from our 

simulations qualitatively agree with the theoretical predictions. It is also clear from Figure 

35 that the thinner film case has larger crown radius and higher crown than the thicker film 

case. For the thinner film case, the crown moves faster in both outward and upward 

directions, because thinner crown has less inertia and hence more tendency to be pushed 

by drop.  



 

71 

 

 
Figure 34. Normal impact of a 41.3-µm-diameter water drop on a 1-µm-thickness water 

film (left) and a 5-µm-thickness water film (right). Normal impact velocity is 53 m/s. 
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Figure 35. Time evolutions of crown radius, rc, and crown height, hc. The numerical 

simulations are shown in Figure 34. D0 = 41.3 µm, V0 = 53 m/s, h0 = 1 µm and 5 µm. 

 

4.2.2 Effect of impact angle  

To understand the effect of impact angle on drop impact on liquid film, we maintain the 

same normal impact velocity but vary the tangential velocity to modify the impact angle. 
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Our simulations reveal that smaller impact angle leads to smaller lamella on the 

downstream side and suppression of lamella development on the upstream side. 

In all simulation cases, the water drop dimeter is 41.3 µm, the film thickness is 5 µm, and 

the normal component of impact velocity is 53 m/s. Two impact angles are first studied: 

30° and 60°. Because the problem is plane-symmetric, only one half of the drop is 

simulated for three-dimensional numerical model. Snapshots of impact at different time 

instants are shown in Figure 36. The two cases share similarities. In both cases a vertical 

liquid lamella is formed on the downstream side. The lamella originates near the 

intersection between the drop and the liquid film after the impact. Then the lamella moves 

obliquely upward. The rim of the lamella becomes unstable and breaks up into secondary 

drops, similar to the normal impact cases shown in Figure 34. The green color of the lamella 

indicates the liquid is mainly from the pre-existing liquid film.  

However, the differences in flow patterns and splashing behaviors are also obvious even 

though their normal impact velocities are the same. As shown in the 60° impact angle case 

(Figure 36 left), crown is formed almost immediately after the impact. Then the drop 

continues to push the crown lamella moving outward and breaks the crown into secondary 

drops. During the crown development, the blue color only appears on the inside of the 

crown lamella, indicating the drop liquid slides on top of the lamella. However, in the 30° 

impact angle case (Figure 36 right) completely different behaviors downstream of the drop 

are shown. No crown is formed on the left of the drop at time instants of 0.60 µs or 0.81 

µs. Our simulation shows that the formation of a crown is not encouraged as a result of 

increasing tangential velocity. Instead, the drop rolls over onto the film liquid at time 

instants of 0.81 µs and 1.25 µs, as shown in the zoomed-in view of Figure 37. The rolled-
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up liquid then re-impinges on the quiescent film in front to form splashing. Instead of 

breaking up into small secondary drops, long liquid fingers are formed by the re-

impingement. Both cases also show that the solid surface emerges at the impact site at the 

later impact stage, as seen at 6.79 µs, the solid surface at the impact site is almost dry with 

small amount of drop liquid remains on the solid surface. 

As the tangential velocity increases, a larger portion of the drop moves toward upstream 

side, leaving less liquid drop downstream. Thus, as shown in Figure 38, the crown radius, 

rc, and crown height, hc, on the downstream side are both smaller for the 30° impact angle 

case than for the 60° impact angle case. The crown radius, rc, and crown height, hc, are 

measured from the base of the ejected jets, as illustrated in Figure 31(a). 
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Figure 36. Oblique impact of 41.3-µm-diameter water drop on 5-µm-thick water film. Left: 

impact angle is 60° (V0n = 53 m/s and V0t = 30.6 m/s). Right: impact angle is 30° (V0n = 53 

m/s and V0t = 91.8 m/s). 
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Figure 37. Zoomed-in view of the area bounded by the dashed red rectangle in Figure 36. 

As the drop impacts onto the film it rolls over the film and then re-impinges on the 

surrounding quiescent film. 
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Figure 38. Time evolutions of crown radius, rc, and crown height, hc, on the downstream 

side. 

 

To highlight some prominent flow features with higher grid resolution, we simulate the 

two cases using two-dimensional numerical models. Figure 39 compares the simulation 

results. The 30° impact angle case has a higher tangential velocity and the velocity 

difference across the interface incurs strong Kelvin-Helmholtz instability, which is clearly 

seen at the interface between the drop and film. Due to perturbation and tangential motion 

of upper liquid, the interface evolves into an unstable vortex sheet which rolls up into 
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spirals. Another difference between the 30° and 60° impact angle cases is the liquid volume 

portions in the expanding lamella at the upstream side. The 30° impact angle case shows 

that the liquid from drop suppress the upward movement of liquid film while the 60° impact 

angle case shows the two liquids moves outward together. More liquid volume from film 

is shown in the lamella in the 60° impact angle case than in the 30° impact angle case.  

 

 

 

Figure 39. Two-dimensional simulations of oblique impact of a 41.3-µm-diameter water 

drop on a 5-µm-thick water film. White represents drop and red represents film. Left: 

impact angle is 60°. Right: impact angle is 30°.  
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Splashing can be completely suppressed on the upstream side with the increase of 

tangential impact velocity. As shown in Figure 40, at the 15° impact angle (tangential 

impact velocity of 197.8 m/s), no lamella is developed on the upstream side.  

 

 

Figure 40. Oblique impact of 41.3-µm-diameter water drop on 5-µm-thick water film. 

Impact angle is 15° (V0n = 53 m/s and V0t = 197.8 m/s). 

 

4.2.3 Effect of film thickness 

To study the effect of film thickness on oblique impact, we simulate water films of 1 µm, 

5 µm and 20 µm. In all cases the drop has a diameter of 41.3-µm, impact angle of 45o and 

Upstream 
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normal impact velocity of 53 m/s. As shown in Figure 41, splashes are observed in all 

cases. On the downstream side, the vertical lamella is thin and breaks up almost 

immediately after its formation for the 1 µm case, while the lamella is much thicker and 

lamella breakup is significantly delayed for the 20 µm case. Because the formed lamella 

on the downstream side is mainly from liquid film, thinner film leads to thinner lamella, 

and thinner lamella is less stable and breakup happens sooner. On the upstream side, 

increasing film thickness also causes thicker lamella, and the upward motion of the thicker 

lamella is more prominent. Because thicker film in quiescent has more inertia and hence 

greater tendency to resist a change in motion, the lamella’s upward motion becomes more 

prominent due to less resistance from air. 

 

   
 

Figure 41. Oblique impacts of 41.3-µm water drops on water films of 1 µm, 5 µm and 20 

µm. Impact angle is 45° for all cases (V0n = 53 m/s and V0t = 53 m/s).  
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(b) h0 = 5 µm, δ = 0.12 
 

(c) h0 = 20 µm, δ = 0.48 
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4.2.4 Effect of film-drop density ratio 

We vary the liquid film density while keeping the drop density constant to study the effect 

of density ratio of liquid film and drop. The simulations are performed in two-dimensional 

axisymmetric coordinate systems. Figure 42 shows numerical results of 41.3-µm-diameter 

water drops impact onto 5-µm-thick liquid films of different densities. The impacts are 

normal and the impact velocity is 53 m/s for all cases.  

Figure 42 clearly shows that lowering the film density leads to early splashing: splashing 

occurs first at 0.07 µs for the lowest film density case (ρfilm = 0.5ρwater) while splashing 

occurs last at 0.26 µs for the highest film density case (ρfilm = 1.5ρwater). For the ρfilm = 

0.5ρwater case, the crown formation and breakup are also observed at the early stage of the 

impact similar to the ρfilm = ρwater case. Then, from t ≈ 0.37 µs, the drop starts to spread 

beneath the film and a Kelvin-Helmholtz vortex is developed. Unlike the outward and 

upward motions of the expanding crown in the ρfilm = ρwater case, the crown collapses inward 

and splashing is suppressed at the later stage of the impact when ρfilm = 0.5ρwater. For the 

ρfilm = 1.5ρwater case, splashing is also attenuated with lower crown height and smaller crown 

radius, because higher film density indicates that the crown has more inertia and less 

tendency to be pushed radially. 

Figure 42 shows that at t = 0.07 µs in all cases a horn-shape jet is produced immediately 

after impact in the neck region where the drop contacts the liquid film. Although the jet 

shapes are similar and the crown radius 
��

�
= 0.42 for all cases obvious differences can be 

seen. For the ρfilm = 0.5ρwater case, the jet is from liquid film and already breaks up at 0.07 

µs; for the ρfilm =ρwater case, liquid from drop starts to move outward above the jet from 
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liquid film; for the ρfilm = 1.5ρwater case, liquid from drop moves above and ahead of the jet 

from liquid film. At t = 0.18 µs, the crown tips of the ρfilm = 0.5ρwater case and the ρfilm 

=ρwater case break up into secondary drops while the ρfilm = 1.5ρwater case shows the liquid 

from drop moves over the jet from liquid film and re-impacts the film to create a crater in 

front of the crown. At t = 0.26 µs, the remaining liquid film beneath the drop of the ρfilm = 

0.5ρwater case is much thinner compared to the other cases.  
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Figure 42. Normal impact of 41.3-µm water drop on 5-µm liquid films with 53 m/s impact 

velocity. (a): ρfilm = 0.5ρwater; (b): ρfilm = ρwater; (c): ρfilm = 1.5ρwater.  

 

water 

water 

water 
water 

ρfilm = 0.5ρwater 

0.07 µs 

0.18 µs 

0.26 µs 

0.37 µs 

0.57 µs 

0.72 µs 

1.17 µs 

ρfilm = 1.5ρwater 

(a) (b) (c) 



 

84 

4.3 Conclusions 

We numerically investigated the dynamics of high-speed oblique impact of a liquid drop 

on a thin liquid layer. The Navier-Stokes equations are solved using the projection method 

on Cartesian grids and the moment-of-fluid method is used to construct the interfaces. We 

validated the code first by comparing numerical results with experimental results and 

theoretical predictions and good agreement was achieved qualitatively and quantitatively. 

We studied the effect of impact angle by changing the tangential component of drop impact 

velocity while maintaining a constant normal component of impact velocity. Then we 

studied the effect of film thickness for oblique impacts with fixed impact angle. Finally, 

we studied the effect of film-drop density ratio by changing liquid film density. 

Following important conclusions can be made from present study: (i) The tangential impact 

velocity of the incident drop affects the outcome of oblique drop impact. On the side behind 

the advancing drop, higher tangential velocity leads to lower lamella height and smaller 

lamella radius. On the side in front of the advancing drop, higher tangential velocity 

induced Kelvin-Helmholtz vortices development at the drop and liquid film interface and 

tends to suppress the evolution of lamella. (ii) Liquid film thickness affects the outcome of 

oblique drop impact. Thinner liquid film leads to thinner expanding crown and earlier 

crown breakup. (iii) Film density affects the outcome of oblique drop impact. Lower film 

density can prompt earlier splash but drop tends to move beneath the liquid film at the later 

stage of impact.   

Our study revealed that tangential component of impact velocity is not negligible for 

oblique drop impingement, especially for high-speed impact. The tangential motion 

introduces large shear stress on the side in front of the advancing drop, which may prompt 
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or suppress splash depending on the impact angle. The effect of film-drop density ratio is 

not observed in existing studies and certainly needs further investigation both 

experimentally and numerically. 
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CHAPTER 5. IMPACT OF MULTIPLE DROPS ON THIN LIQUID FILM 
 
 

5.1 Introduction 

Understanding droplet impact on dry and wet surfaces is important for many industrial 

applications such as ink-jet printing and spray cooling. Extensive studies have been 

conducted to understand single droplet impact phenomenon (Worthington, 1908; Ching et 

al., 1984; Rein, 1993; Mundo et al., 1995; Yarin & Weiss, 1995; Cossali et al., 1997; 

Samenfink et al., 1999; Weiss & Yarin, 1999; Roisman & Tropea, 2002; Thoroddsen, 

2002; Josserand & Zaleski, 2003; Rioboo et al., 2003; Cossali et al., 2004; Leneweit et al., 

2005; Nikolopoulos et al., 2005; Xu et al., 2005; Yarin, 2006; Mukherjee & Abraham, 

2007; Nikolopoulos et al., 2007; Deegan et al., 2008; Okawa et al., 2008; Motzkus et al., 

2009; Mani et al., 2010; Schroll et al., 2010; Latka et al., 2012; Mandre & Brenner, 2012; 

Thoraval et al., 2012; Zhang et al., 2012; Tran et al., 2013; Shetabivash et al., 2014; Guo 

et al., 2016; Josserand & Thoroddsen, 2016; Guo & Lian, 2017). The drop impingement 

phenomenon could occur on dry or wet surfaces, however, a surface is commonly covered 

with a liquid layer formed by preceding drops. For drop impact on dry surfaces, Mundo et 

al. (Mundo et al., 1995) characterized the transition from deposition to splashing using a 

composite dimensional parameter K (=Re0.25∙We0.5) and the Reynolds number (Re) and the 

Weber number (We) are defined as  

 
2

0 0,     ,
DV DV

Re We
 

 
       (52) 



 

87 

where ρ, µ, and σ are the liquid density, viscosity, and surface tension, respectively, and D 

and V0 are the drop diameter and impact velocity, respectively. When a drop impacts on a 

liquid thin film, bouncing, coalescence, and splashing may occur (Rein, 1993). Yarin 

suggested using a critical impact velocity as the splashing threshold for impact on wet 

surfaces (Yarin & Weiss, 1995). Previous studies have identified a two-stage process in 

the drop splashing on a liquid thin film: in the first stage, a jet is formed from the neck 

region between the drop and the liquid layer and then this jet develops to form a crown 

shape; in the second stage, the crown tip breaks up to secondary drops due to instability. 

Cossali et al. (Cossali et al., 1997) and Yarin (Yarin, 2006) defined splashing as a 

phenomenon in which secondary droplets separating from the crown. Weiss and Yarin 

(Weiss & Yarin, 1999) simulated drop impact on a liquid film to study the formation of jet 

in the neck region between drop and liquid film after impact and they found that the jet tip 

can detach or reconnect with liquid film. Thoroddsen (Thoroddsen, 2002) experimentally 

verified jet formation in the neck region between drop and liquid film. Randy et al. found 

that surface tension and viscosity act to inhibit splashing. In their experiment Cossali et al. 

(Cossali et al., 1997) noticed that the crown velocity and thickness is nearly independent 

of the Weber number. The crown is usually unstable and its tip can break up to form 

secondary droplets. Different mechanisms have been proposed to explain the tip breakup 

(Allen, 1975; Fullana & Zaleski, 1999; Rieber & Frohn, 1999; Roisman et al., 2006; 

Nikolopoulos et al., 2007; Krechetnikov & Homsy, 2009). 

Numerical investigations have been conducted to study normal impact of droplet on thin 

liquid films. Nikolopoulos et al (Nikolopoulos et al., 2005) used the volume of fluid method 

to study the formation of secondary droplets. Mukherjee and Abraham (Mukherjee & 
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Abraham, 2007) used lattice-Boltzmann model to study the influence of ambient gas 

density and viscosity and liquid film thickness. Shetabivash et al (Shetabivash et al., 2014) 

numerically investigated normal impingement of drop on a liquid layer and found that 

increasing gas density leads to reduction of crown radius and height evolution rate, while 

gas viscosity does not affect the rate of crown radius evolution. 

Most previous work studies normal impact of a single drop. Few attempts have been made 

to investigate impact of multiple drops even though the influence of the drop interactions 

on the target surface can be significant (Tropea & Roisman, 2000). Barnes et al 

demonstrated the interaction of crowns produced by the periodic impact of two drops on a 

spherical target (Barnes et al., 1999). Roisman et al. experimentally and theoretically 

studied the impact of multiple drops on a dry substrate (Roisman et al., 2002). They showed 

that the distance between the impacting drops has a significant effect on the behaviors of 

the liquid film formed on the substrate. These studies are for impact on dry substrate. 

Raman et al. (Raman et al., 2015) and Li et al. (Li et al., 2016) performed two-dimensional 

simulations to study the dynamic behavior of two droplets impinging normally on a liquid 

film using a Lattice Boltzmann method. They investigated the effects of distance between 

two impinging droplets, film thickness, viscosity, impinging velocity and density ratio on 

the crown structure. Xu et al. (Xu et al., 2014) numerically studied the normal impact of 

two droplets on a thin liquid film using the smoothed particles hydrodynamics (SPH) 

method. Most simulations are two-dimensional and are for normal impact. In this paper, 

we study oblique impact of multiple drops on a thin liquid film using a three-dimensional 

approach.  
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5.2 Results and discussion 

5.2.1 Code validation: Normal impact on liquid film 

We first validate the code with experiments of normal impacts on liquid films. The 

experiments were conducted by Vander Wal et al. (Vander Wal et al., 2006). The liquid is 

30% glycerin in water, the drop diameter is 2.0 mm, the terminal impact velocity is 2.71 

m/s, and the film thicknesses are 0.2 mm and 2 mm. The resulting Weber number is 139 

and Reynolds number is 1740. Our simulations have the same initial conditions as the 

experiment setup. The results are shown in Figure 34 and the simulations are in good 

agreement with experiments. For impact on 0.2-mm liquid film, a crown is formed and 

perturbation is observed at the crown rim. For impact on 2-mm liquid film, a short and 

thick crown is produced without perturbed liquid surface. 

 

 

Figure 43. Normal impact of 2-mm-diameter glycerin-water droplet on same liquid film at 

2.17 m/s. Top row: liquid film thickness is 0.2 mm. Bottom row: liquid film thickness is 2 

mm. Experiments were performed by Vander Wal et al. (Vander Wal et al., 2006). 

h0 = 0.2 mm 

h0 = 2 mm 

Experiment Simulation 
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5.2.2 Oblique impact of multiple drops on a thin film 

In most practical applications of droplet impingement, multiple droplets impact on surface 

rather than a single droplet as in spray cooling, inkjet printing, pesticide spraying, aircraft 

icing, etc. When a polydisperse spray impacts onto the surface covered by liquid layer 

created by previous drops, the expanding crowns interfere with each other. Also, normal 

impact is less common in practical applications as most drops impact onto surfaces with 

different impact angles. To investigate the effect of oblique impact on droplet interaction 

behavior, we simulate oblique impact of multiple drops on a thin liquid film. 

A schematic of the simulation setup of two neighboring water droplets impacting onto thin 

liquid film is shown in Figure 44. The liquid drop diameter is D0 and the liquid film 

thickness is h0. The drop is surrounded by air above the liquid film. The impact angle is θ 

and the impact velocity is V0, and V0t and V0n are the tangential and normal components of 

impact velocity respectively. The dimensionless time is defined as 0

0

nV t
T

D


 , and the 

dimensionless film thickness is defined as 0

0

h

D
  . Due to symmetry of the problem, the 

computational domain only contains half of the droplets for oblique impact. The tangential 

velocity component points to right in Figure 44 and we define the right side of the drop as 

upstream side and left side as downstream side. 
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Figure 44. Simulation setup of two neighboring droplets oblique impact on a liquid film.  

 

Simulations of two neighboring water droplets simultaneously impact on a 5-µm-thick 

water film are performed. The diameters of the two drops are both 41.3 µm. The normal 

impact velocities, V0n, are 3.5 m/s and 53 m/s and the impact angles are both 45°. Figure 

45 and Figure 47 show the numerical results of the low-speed impact case and the high-

speed impact case, respectively. When the impact velocity is lower than threshold, no 

splashing is observed, as shown in Figure 45 and Figure 46. Short and thick crowns are 

formed after the impacts, propagating in both the upstream and downstream directions. 

Due to the tangential impact velocity, the crown moves faster and further in the upstream 

direction and the crown is also taller and thicker on the upstream side. At the region 

between the two drops, the crown is even taller, possibility from superposition of crowns 

formed by two drops. After t = 20.9 µs, as shown in Figure 45 and Figure 46, the solid 

surface starts to dry out at the impact sites and the emerged solid areas become larger with 

the propagation of crowns. 
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Figure 45. Oblique impact of two neighboring water droplets impact on a 5-µm water film 

simultaneously. Impact angle is 45° and normal impact velocity component is 3.5 m/s. 

 

Figure 46. Top views of the two neighboring water droplets impact on water film in Figure 

45.  
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Figure 47 and Figure 48 show the impact at much higher impact velocity, which resulting 

crown splashing. A crown is formed after the impact, however, the lamella shapes on the 

upstream and downstream sides are different. On the upstream side, the lamella is in a thin 

horizontal horn shape. On the downstream side, the lamella is in a thick vertical wall shape. 

Also, the lamella moves faster on the upstream side due to the tangential impact velocity. 

Before the lamellae interact, similar crown shapes can be observed for both drops. Then 

the fluid behavior becomes complicated after the lamellae originated from two drops 

interact with each other. Because of the tangential motion of the drops, the interaction 

region between the two drops mainly moves in the upstream direction. At t = 4.24 µs as in 

Figure 47 and Figure 48, the lamella breaks up into liquid fingers and secondary droplets, 

which are higher in the interaction region than the upstream and downstream sides. The 

reason for the lamella breaks up higher in the interaction region is that the lamellae move 

toward each other which excites the motion upward.  
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Figure 47. Oblique impact of two neighboring water droplets impact on a 5-µm water film 

simultaneously. Impact angle is 45° and normal impact velocity component is 53 m/s. 
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Figure 48. Top views of the two neighboring water droplets impact on water film in 

Figure 47.  

 

Two water drops impact on thin film at different time instants is also simulated. The results 

are shown in Figure 49 and Figure 50. The right drop impacts first and the left drop impacts 

on the liquid film after 1 µs. The interaction behavior is similar to the simultaneous impact 

case in Figure 47. At t = 1.686 µs, the lamella formed on the upstream side of the left drop 

strikes the vertical lamella formed on the downstream side of the right drop. After the 
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lamellae interaction, the upstream lamella cuts through the downstream lamella and they 

move upstream jointly as shown in Figure 50. Solid surface dry out is also observed, and 

because no liquid film still exists on the solid surface inside the crater, the lamella formed 

between the two drops moves faster. 

 

Figure 49. Oblique impact of two neighboring water droplets impact on a 5-µm water film 

asynchronously. Impact angle is 45° and normal impact velocity component is 53 m/s. 
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Figure 50. Top views of the two neighboring water droplets impact on water film in Figure 

49.  

 

5.3 Conclusions 

We numerically investigated the dynamics of oblique impact of multiple drops on a liquid 

film. The Navier-Stokes equations are solved using the projection method on Cartesian 

grids and the moment-of-fluid method is used to construct the interfaces. We validated the 

code by comparing our numerical results to experimental results and they showed good 

agreement. Then we simulated two neighboring water droplets impacting on a water film 

at 45° impact angle. In all our simulations, the dimensionless film thickness is 0.024 and 

dry out of the solid surface is observed at the impact site. When the two drops impact on 
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thin film simultaneously, deposition occurs for low-speed impact and splashing occurs for 

high-speed impact. When the drop impact inertia is low, short and thick crowns are formed 

after the impact, and the crown is taller at the interaction region between the two 

neighboring drops. When the drop impact inertia is high, crowns are formed and break up 

into liquid fingers and secondary droplets, and strong interaction between the lamellae 

formed by the two neighboring drops is observed. The simulation of two drops high-speed 

impact asynchronously shows similar phenomenon to high-speed simultaneous impact. 
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CHAPTER 6. CALCULATION OF WATER COLLECTION EFFICIENCY 
 
 

6.1 Introduction 

6.1.1 Water collection efficiency and its importance  

Aircraft icing under extreme weather conditions is one of the major serious hazards to 

affect aviation safety. Ice accretion on the external parts of an aircraft during flight is 

caused by freezing rain/drizzle or supercooled water droplet. And icing on aircraft could 

alter the effective wing geometry and impact the performance and control of the aircraft 

(Bragg et al., 1986; Ranaudo et al., 1991). Therefore, performing aircraft icing analysis is 

crucial for assessing the effect of ice accretion on an aircraft. One important stage in aircraft 

icing analysis is to determine water collection efficiency and impact limit.  

The local water collection efficiency, β, is defined as the volume flux ratio of an 

infinitesimal area with water droplets, dA∞, to the corresponding impingement area on the 

airfoil, dA, by using the droplet trajectory data (Tan, 2004). As shown in Figure 51, the 

local water collection efficiency, β, can be expressed as:  

dA

dA
         (53) 

Because water droplets can splash after impact on the surface, the local water collection 

efficiency is modified with the consideration of droplet splashing phenomenon and is 

expressed as: 
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film

splash

film splash

mdA

dA m m
 

 
    



 
       (54) 

where filmm  denotes the mass depositing onto the surface and splashm  denotes the mass loss 

due to splashing. The impact limit is defined as the upper and lower limits that water 

droplets can impinge on the surface. Deicing devices are required within the impact limit 

to remove ice. Experiments have shown that airspeed, droplet size, airfoil type and body 

size are primary parameters for determining water collection efficiency and impact limit 

(Gelder et al., 1956; Lewis & Ruggeri, 1957; Papadakis et al., 1989). 

 

Figure 51. Definition of water collection efficiency (Tan, 2004). 

 

6.1.2 Existing methods to predict water collection efficiency   

Various approaches have been proposed to obtain the local water collection efficiency. 

Experimental studies started in the early 1950’s and dyed water droplets were sprayed onto 

the surface of the body covered with absorbent blotting paper (Papadakis et al., 1989; 
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Papadakis et al., 1994; Papadakis et al., 2002). Local collection efficiency is obtained using 

a laser reflectance spectroscopy method by analyzing the amount of dye on the blotter 

paper in a given time interval. 

Numerical studies are also conducted to investigate local collection efficiency and ice 

accretion and different models have been proposed and developed. Most of these models 

sequentially solve different sets of equations to obtain airflow, droplet trajectory and 

impingement, heat transfer and phase change to study aircraft ice accretion. Among them, 

FENSAP-ICE, initially proposed by Bourgault et al. (Bourgault et al., 1999; Morency et 

al., 2001), uses an Eulerian approach to account for water droplets impingement. FENSAP-

ICE solves the liquid phase independent of the gas phase and therefore the water droplets 

do not affect the airflow. This method is validated by successfully predicting local 

collection efficiency of small water droplets. LEWICE (Potapczuk et al., 1993; Wright, 

2005; Wright, 2006) (LEWis ICE accretion program) is the main icing code used in the 

U.S. and was developed by NASA Glenn Research Center. LEWICE uses the panel method 

to compute the trajectory of each droplet based on a force balance. The droplet is assumed 

to be a rigid sphere and does not affect the airflow. Drop breakup and splashing are 

considered in LEWICE for calculating local collection efficiency and good agreement is 

achieved with experimental data. ONICE2D (ONERA 2D icing suite) (Villedieu et al., 

2014) uses a Lagrangian approach to calculate the deposition probability of each droplet, 

and then determines whether the droplet fully deposits on the solid surface or collides with 

secondary droplets from previous droplet impacts.  ONICE2D also considers the effect of 

droplet shape on drag force when calculating trajectory. Table 4 lists some existing models 

for calculating water collection efficiency and their approaches. Most of the models 
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consider the effect of air flow on the droplet (the drag and the trajectory), but the effect of 

droplet on the flow field is largely ignored. Droplet splashing has a significant effect on 

the water collection efficiency. However, most studies either ignore droplet splashing or 

are based on simplified empirical splashing models (Bilanin, 1991).  

 

Table 4. Selected existing models for calculating water collection efficiency 

 
Lagrangian 
or Eulerian 

Airflow 

Interaction 
between 
droplets and 
airflow 

Droplet 
deformation 

Drag model 
Droplet 
splashing 

LEWICE 
(Potapczuk et 
al., 1993; 
Wright, 
2005; 
Wright, 
2006) 

Lagrangian 
Panel 
method 

Droplets do not 
affect airflow 

No Drag for spheres Yes 

FENSAP-
ICE 
(Bourgault et 
al., 1999; 
Morency et 
al., 2001) 

Eulerian 

Euler or 
Navier-
Stokes 
solver 

Droplets do not 
affect airflow 

No 
Shiller Naumann 
drag model 

No 

ONICE2D 
(Villedieu et 
al., 2014) 

Lagrangian 
Panel 
method 

Droplets do not 
affect airflow 

Yes 
Shiller Naumann 
drag model 

Yes 

CANICE 
(Morency et 
al., 1999) 

Lagrangian 
Panel 
method 

Droplets do not 
affect airflow 

No - No 

TURBICE 
(Makkonen 
et al., 2001) 

Lagrangian 
Panel 
method 

Droplets do not 
affect airflow 

No - No 

Da Silveria 
et al. (Da 
Silveira et 
al., 2003) 

Eulerian 
Navier-
Stokes 
solver 

Mutual 
interaction 

No 
Drag coefficients for 
spherical and non-
spherical particles 

No 

 



 

103 

6.1.3 Effect of large droplets on water collection efficiency  

Droplet splashing is mainly caused by supercooled large droplet (SLD). SLD usually refers 

to liquid droplet with diameter larger than 50 µm. SLDs remain in liquid form even when 

the temperature is below freezing point because the lack of freezing nuclei. Aircraft icing 

under SLD condition imposes great danger to aviation safety and has been recognized as a 

significant aviation hazard (Potapczuk et al., 1993; Bragg, 1996). Several fatal aviation 

accidents have been caused by SLDs and recent studies indicate icing due to SLDs occurs 

more frequently than initially realized (Bragg, 1996; Petty & Floyd, 2004). Icing due to 

SLD condition has been extensively studied in the recent years and has been included in 

the regulations of Federal Aviation Administration (FAA) (Administration, 2014) and 

European Aviation Safety Agensy (EASA) (Agency, 2015).  

Due to its large size, SLD can splash into secondary droplets when it impacts the surface 

of the body. Consequently, droplet splashing reduces the amount of water depositing onto 

the and accordingly affects the local collection efficiency significantly. Besides, the 

splashed droplets can re-impinge onto unprotected surfaces to form ice (Bragg, 1996). 

Therefore, accurately predicting the splashing physics and mass loss is crucial in 

calculating local collection efficiency. However, the underlying mechanism of large 

droplet splashing is still not fully understood (Rutkowski et al., 2003; Wright & Potapczuk, 

2004; Wright, 2006).  
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6.2 Procedure of calculating water collection efficiency 

The calculation of water collection efficiency is through a two-step process. In the first 

step, the efficiency is calculated based on the droplet trajectory without considering the 

droplet splashing. In the second step, the efficiency is adjusted based on the output of 

splashing. The procedure is shown in Figure 52. In the first step, we calculate the droplet 

trajectories based on the size group and use a 7-bin droplet distribution to represent the 

median volume diameter (MVD). In our simulation, we position the group of droplets of 

same size in front of the sphere and assign them the same velocity as the surrounding air. 

Simulation is then first conducted to obtain the trajectory of each droplet. The water 

collection efficiency based on the area ratio is calculated. For any droplet which eventually 

hits the solid surface, its terminal speed and impact angle right before hitting the airfoil are 

then recorded. A separated simulation with fine mesh is used to calculate the volume of the 

splashed droplets of these droplets based on the recorded terminal speed and impact angle. 

The water collection efficiency is then adjusted based on the splashed volume. These steps 

repeat until all groups are evaluated.  
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Figure 52. Procedure of calculating water collection efficiency  

6.3 Results and Discussion 

We first validate our code by comparing with experimental results. Then we study high-

speed droplet impact on a dry surface and on a wet surface at the conditions pertinent to 

aircraft icing. Last we study water collection efficiency of a sphere and an MS(1)-317 

airfoil. In all simulations, we assume the water is at room temperature and a static contact 

angle of 70°. A dynamic contact angle model of Jiang et al. (Jiang et al., 1978) is used to 

model dynamic change of contact angle with contact line velocity.  

6.3.1 Code validation: droplet impact on dry surface 

Mundo et al. (Mundo et al., 1995) experimentally studied droplet impingement onto a 

rotating disc and performed a statistical analysis of the splashed secondary droplets. The 

normal impact velocity of droplet and tangential velocity of rotating disc lead to oblique 

Determine droplet size using 7-bin droplet distribution 

Simulate droplet trajectories for each droplet size 
First step: 

calculate β  

without splash Calculate βi for each 

droplet size group  

Record droplet terminal 

speed and impact angle 

Second step: 

calculate βsplash  

Calculate splashed 

mass φi for each droplet 

Calculate βsplash,i for each droplet size (βsplash,i = βi·(1-φi)) 

Calculate βsplash combining βsplash,i of all droplet 

sizes using corresponding volume percentages 
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impact. They concluded that the normal velocity component determines the size 

distribution of the secondary droplets. To validate our code, we select one case from their 

study to simulate. The size and velocity distributions of the splashed droplets are then 

analyzed and compared with their experimental results. Since those splashed droplets have 

irregular shapes, we use equivalent droplet diameter which makes a sphere to have the 

same volume as an irregular droplet. The velocity of each splashed secondary droplet is the 

mass averaged velocity. The shooting angle is the angle between the bouncing velocity 

vector and the tangent direction of the solid surface at the location of bouncing. 

The experiment used a solid dry surface. The initial diameter of the droplet, D0, is 100 µm, 

the impingement velocity is 15 m/s, the impingement angle, α, is 37°, leading to a normal 

impact velocity, V0, of 12 m/s. The liquid viscosity is 2.76 mPa∙s, and the surface tension 

is 22 mN/m. The resulting Re is 1182 and We is 868. Note that both Re and We are 

calculated using the normal impact velocity. The resulting K value is 186.6, which is higher 

than the splashing threshold of 57.7 suggested by Mundo et al. (Mundo et al., 1995). Grid 

sensitivity analysis was performed. With 2 levels of mesh refinement, the grid with an 

effective grid resolution of 116 cells per initial droplet diameter leads to a converged 

solution. Figure 53 shows the droplet impact and the subsequent splashing phenomena. 

Right after contact with the solid surface, a thin liquid sheet is formed on the solid surface 

and moves radially outward. The sheet soon breaks up into small secondary droplets. As 

the principle sheet breaks up at its perimeter into relatively larger droplets. Splashing is 

more prominent at the droplet leading edge than at the trailing edge: less number of 

secondary droplets was observed at the trailing edge and their sizes are considerably 

smaller than those at the leading edge. The size distribution of the secondary droplets is 



 

107 

shown in Figure 54. The secondary droplet diameter is normalized using the diameter of 

the primary droplet. Our simulation shows qualitative agreement with the experiment. The 

numerical results are measured 59.1 µs after impact but the time instant of the experiment 

results is not reported by Mundo et al. (Mundo et al., 1995), which may contribute to the 

discrepancy.  

 

 

Figure 53. Simulation of oblique impact on dry solid surface, D0 = 100 µm, V0 = 12 m/s, α 

= 37°, and K = 186.6. Secondary droplets are larger on the upstream side. 

 

V0 
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Figure 54. Comparison of size distribution of the splashed secondary droplets between 

simulation and experiment. The time that experiment data was taken was unknown. 

 

6.3.2 High-speed normal impact on a dry surface  

We simulate a water droplet impact on a dry solid surface at high impact speed. The water 

droplet has a diameter of 100 µm and initial velocity of 100 m/s. The resulting K value is 

approximately 1300, Re is 4000, and We is 28000. The condition is similar to droplet 

impact on an aircraft in operational condition. With the increase of the K value, the splashed 

secondary droplets become smaller, which requires fine mesh. Grid sensitivity analysis 

indicates an effective grid resolution of 2800 cells per principle droplet diameter gives 

convergent results. In the simulation, a 6-level grid refinement is used. As shown in Figure 

55(a), most of the splashed droplets have a diameter of about 0.3% of the primary droplet, 

and the total mass loss from splashing is 13.2% of the mass of the primary droplet. 

Compared with the previous case of K = 186.6, the bandwidth of the size distribution 
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function at K = 1300 is much narrower. Figure 55(b) shows the velocity distribution of the 

splashed secondary droplets. The velocity of most secondary droplets ranges from 

approximately 100 to 250 m/s, which is much higher than initial impact velocity of 100 

m/s. Figure 55(c) shows the shooting angle distribution of the secondary droplets. Most 

shooting angles fall in the range between 0 and 40°. Note that negative shooting angle 

means the secondary droplet from early stage of splashing is moving downward.  

 

       

 

Figure 55. Normalized distributions of secondary droplet diameter, velocity, and shooting 

angle for K ≈ 1300. 

(a) (b) 

(c) 
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6.3.3 Droplet impact on thin liquid film 

During flight, wing surface is often covered with a liquid film from the impingement of 

previous droplets. Therefore, understanding the droplet impact on wet surface is crucial for 

water collection efficiency calculation. Experimental studies (Yarin & Weiss, 1995; 

Cossali et al., 1997; Wang & Chen, 2000; Rioboo et al., 2003) revealed the threshold for 

droplet splashing on thin liquid film. For a stream of droplet hitting the surface, Yarin and 

Weiss proposed the following threshold velocity for splashing: 

1
4 31

8 8
0 18SV f






 
  

 
   (55) 

where f is the frequency of incoming droplets. For single droplet problem, f can be replaced 

with V0/D0. Their study showed that the droplet diameter has no effect on the splashing 

threshold and the liquid film thickness is unimportant. Cossali et al. (Cossali et al., 1997) 

proposed the following threshold for droplet splashing on thin liquid film with 

consideration of film thickness: 

1.44

0 0

2100 5880            for 0.1 1 and 0.007S

h h
K Oh

D D

 
     

 
    (56) 

The threshold is valid for h/D0 > 0.1. For h/D0 < 0.1, Rioboo et al. (Rioboo et al., 2003) and 

Wang and Chen (Wang & Chen, 2000) suggested a threshold of KS ≈ 400. 

Zhang and Hu (Zhang & Hu, 2014) experimentally studied the water film over a NACA 

0012 wing and measured the thickness of the water film. For wind speed ranges from 10 

m/s to 30 m/s, the measured film thickness ranges from approximately 2 μm to 40 μm, with 
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thinner film for higher wing speed. The film thickness increases further downstream. For 

operational flight speed, which is much higher than 30 m/s, the liquid film is supposed to 

be thinner than 2 μm. 

 

 

Figure 56. Droplet impingement on a thin water film. D0 = 100 μm, h = 5 μm, V0 = 78 m/s 

and K = 667. 

 

Figure 56 shows the three-dimensional simulations of normal impact of a single water 

droplet onto a predefined thin water film. The initial diameter of the liquid droplet, D0, is 

100 µm, the normal impact velocity, V0, is 78 m/s, and the film thickness, h, is 5 µm. The 

K value is 667, which is greater than the threshold value KS of 400, and V0 is greater than 

the threshold V0S of 28.8 m/s. The equivalent grid size is 288 cells per initial droplet 

diameter with four-level adaptive mesh refinement. The simulation captures the formation 

and propagation of the lamellae. At the top of the lamella, the free rim becomes unstable 

and breaks up into multiple secondary droplets. The calculated mass loss from splashing 

of this case is 26.56%, which is significantly higher than splashed mass (13.2%) from the 

impact on a dry surface under otherwise same operating conditions. Because wing surface 
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is wet during flight, the mass loss from wet surface splashing should be adopted for 

calculating water collecting efficiency.  

 

6.3.4 Code validation: water collection efficiency calculation for a sphere 

We validate the water collection efficiency calculated using our procedure with 

experimental measurement. The water collection efficiency calculation for a sphere body 

is performed experimentally by Lewis and Ruggeri (Lewis & Ruggeri, 1957). The test body 

is a sphere of 15.04-cm diameter, the MVD of spray generated by nozzles is 18.6 μm, and 

air speed is 80.8 m/s. Our three-dimensional simulation followed the same setup and is 

shown in Figure 57. One quarter of the sphere is simulated due to symmetry of the problem. 

Symmetric boundary conditions are imposed at the surfaces shown in red color, inflow 

boundary condition is imposed at the surface shown in blue color, and outflow boundary 

conditions are imposed at the other three surface. Mesh are only refined for the regions 

containing the droplet and three-level adaptive mesh refinement is used in this case. The 

equivalent grid resolution is 18 cells per droplet diameter.  
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Figure 57. Three-dimensional simulation of droplets impact on a sphere. (a) Simulation 

setup. (b) zoomed-in view of droplets with three-level adaptive mesh refinement. (c) 

Boundary conditions: blue – inflow; red – symmetric; uncolored – outflow. 

 

The water collection efficiency calculation follows the procedure described in Figure 52. 

In the first step, to obtain an MVD of 18.6 μm, a 7-bin droplet distribution is used as shown 

in Table 5. The droplets are positioned at locations where flow velocity is nearly parallel 

to the freestream velocity. When droplets contact the airfoil, the water collection efficiency 

is calculated by considering the impact angle. The impact limit is determined by the 

locations of the very top and bottom droplets impacting onto the airfoil. Figure 58 compares 

the numerical results of water collection efficiency with experimental data. Red triangles 
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are collection efficiency without considering the splashing effect. Blue squares are 

collection efficiency with the consideration of the splashed mass. The numerical result of 

collection efficiency better matches experimental measurement when splashing is 

considered. The comparison results demonstrate that splashing phenomenon is critical in 

calculating collection efficiency. 

 

Table 5. Discretized droplet distributions for MVD of 18.6 μm 

droplet size (μm) 5.77 9.67 13.21 18.6 25.48 32.36 41.29 

volume 
percentage 

5% 10% 20% 30% 20% 10% 5% 

 

 

Figure 58. Water collection efficiency comparison between experiment and simulation. 
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6.3.5 Water collection efficiency calculation for an MS(1)-317 airfoil 

Water collection efficiency for an MS(1)-317 airfoil is investigated. The experiment was 

conducted by Tan (Tan, 2004). The airfoil chord is 0.914 m, air speed is 78 m/s, AOA is 

0°, and MVD is 92 μm. In the experiment, a dye-tracer technique was used to obtain the 

water collection efficiencies and impact limits (Gelder et al., 1956). Dyed water droplets 

were sprayed into the tunnel by nozzles and the surface of the airfoil was covered with 

blotter paper to absorb the dye. Our simulation follows the same setup and is shown in 

Figure 59. One narrow band of the airfoil is simulated and droplets are positioned at 

locations where flow velocity is nearly parallel to the freestream velocity. Mesh are only 

refined for the regions containing the droplet and two-level adaptive mesh refinement is 

used in this case. The equivalent grid resolution is 12 cells per droplet diameter. To obtain 

an MVD of 92 μm, a 7-bin droplet distribution is used as shown in Table 6, and 21 droplets 

of the same size are used for each group as shown in Figure 59. Our analysis shows that 

further increase the number of droplets does not affect the collection efficiency.  
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Figure 59. Three-dimensional simulation setup of droplets impact on an MS(1)-317 airfoil. 

The zoomed-in view shows the two-level adaptive mesh refinement near the regions 

containing droplets. 

 

Table 6. Discretized droplet distributions for MVD of 92 μm 

droplet size (μm) 29.14 48.88 66.74 94.0 128.78 163.56 208.68 
volume 
percentage 

5% 10% 20% 30% 20% 10% 5% 
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Figure 60 is the sliced view and shows the streamlines after droplets impact on the airfoil 

surface. Unlike the existing icing code such as LEWICE, the interaction between droplets 

and air is fully coupled in our simulations. As shown in Figure 60, the streamlines are 

clearly affected by the existence of droplets, and the droplets deform prior to impact due 

to the effect of surrounding air.  

 

 

Figure 60. Altered streamlines and droplet deformation due to interaction between droplets 

and airflow. 

 

The calculated water collection efficiency of each group is compared with LEWICE results 

in Figure 61. For the group of smallest droplets (29.14 μm, cloud-sized droplets), our 

simulation closely matches LEWICE result. For large droplets, LEWICE shows higher 

limits than our simulation. LEWICE is validated for droplets whose sizes are between 5 

μm and 50 μm (Wright, 2008) and it assumes droplets are solid and spherical. The 
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trajectory is calculated as a post-processing in which the flow affects the droplets but not 

the other way around. All these could contribute to the discrepancy between LEWICE 

results and our results when droplet sizes are relatively large.  



 

119 

 

Figure 61. Water collection efficiencies of single-sized droplets. 
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For those droplets that hit the wing, their water collection efficiency is further adjust with 

the consideration of splashing. Figure 62 shows the combined β result with the volume 

percentage of each droplet size counted. The line with circles is the experimental data, the 

red dashed line is our simulation result without splashing effect, the blue line shows our 

simulation with splashing effect considered, and the black dotted line is LEWICE result. 

The comparison clearly shows that LEWICE overestimates the impact limit, while our 

simulations with or without splashing effect fit the experimental impact limit. Because 

droplet splashing is only occurring near the leading edge area, splashing effect is negligible 

for large impact angle. 

 

 

Figure 62. Water collection efficiencies comparison of experiment, simulations, and 

LEWICE. 
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6.4 Conclusions 

A numerical study was conducted to investigate droplet impingement phenomenon on dry 

and wet surfaces and to calculate collection efficiency of water droplets on an MS(1)-317 

wing. The flow field around the airfoil was described by solving Navier-Stokes equations. 

The droplet impact on the surface and the subsequent phenomenon were captured directly 

in our simulations. The adaptive mesh refinement technique was employed to refine mesh 

near regions of interest. The numerical code was first validated against experiment of drop 

impact on a dry surface and good agreement was achieved. Simulations of droplets impact 

on dry and wet surfaces were performed to study mass loss from droplet splashing effect. 

Another validation case was conducted to calculate water collection efficiency of a sphere 

body and our numerical result agreed well with experimental data. Last, we calculated the 

water collection efficiency of an MS(1)-317 wing. Compared with experimental data, our 

simulation shows better agreement than LEWICE. LEWICE predicts well for cloud-sized 

droplet, but overestimates the impact limit for SLDs.  

The following important conclusions can be made from the present study: (i) Droplet 

splashing leads to mass loss after impact, and splashing on thin liquid film is found to have 

significantly more mass loss than on dry surface. Neglecting droplet splashing effect may 

cause poor collection efficiency prediction. (ii) Fully coupling of droplets and airflow gives 

better prediction for droplet trajectories. The streamlines of airflow are altered by droplets, 

and the droplets deform due to the effect of surrounding air. 
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CHAPTER 7. GENERAL CONCLUSIONS 
 
 
In the present study, the drop impingement on dry and wet surfaces were numerically 

investigated. The Navier-Stokes equations were solved using the projection method on 

Cartesian grids and the moment-of-fluid method was used to construct the interfaces. The 

numerical results showed that the moment-of-fluid method could accurately capture the 

interfaces. The numerical method was validated with experimental results and theoretical 

predictions and good agreement was achieved qualitatively and quantitatively. 

The underlying physics of drop impingement phenomenon were elucidated to improve the 

understanding of drop splashing mechanism. The present study revealed that a thin film 

was formed after the droplet contacted the solid surface. The thin film moved at a low 

speed at the contact with the solid due to viscous effect while the film moved at a high 

speed away from the solid. The splashing is due to the aerodynamic forces on the thin film. 

For thin film splashing, the lamella is initiated from the preexisting liquid film on solid 

surface and the liquid content from the droplet sliding along above it. 

The study of ambient air effect showed that the dry surface splashing was attenuated when 

the air density was lowered, however, the thin film splashing was found to be not affected 

by the ambient air prominently but had much larger mass loss compared with dry surface 

splashing. 
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For drop oblique impingement on a liquid layer, the tangential impact velocity, the liquid 

film thickness and the drop-film density ratio all have significant effects on the impact 

outcome. Furthermore, when multiple drops impact on a liquid layer, strong interactions 

between the lamellae formed after impact were observed. 

Drop impingement phenomenon, especially splashing, is directly related to aircraft icing 

under supercooled large droplet (SLD) condition. Using the well-validated numerical 

method, a new approach was proposed to calculate water collection efficiency, one of the 

most important stages in aircraft icing analysis. Compared with experimental data, the 

numerical results showed better agreement than LEWICE, which predicted well for cloud-

sized droplet, but overestimated the impact limit for SLDs. The simulations revealed that 

splashing leads to mass loss after impact and neglecting droplet splashing effect may cause 

poor collection efficiency prediction.  
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