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ABSTRACT 

 
THIS IS JUST A PHASE: THE IMPACT OF POPULATION STRUCTURE ON HAPLOTYPE 
PHASING AND LINKAGE DISEQUILIBRIUM MEASURES AT FUNCTIONAL GENETIC 

SITES 
 

Roxanne K. Leiter 
 

December 5, 2017 
 

The block-like structure of the human genome has been the subject of many 

scientific papers and is of practical significance in large-scale genome-wide 

association studies. How stringent haplotype block boundaries are within and 

between populations has been the subject of ongoing debate within human 

population genetics. This thesis will contribute to the description of universal and 

population-specific haplotype blocks at functional sites, namely across the IL-10 

gene family (including IL-10, IL-19, IL-20 and IL-24), which is involved in a number 

of immune system processes, and MAPKAP-K2, an adjacent and functionally 

significant kinase gene. Beyond the description of blocks across these sites in 

different populations, this thesis will also measure the impact of the haplotype 

phasing process on downstream applications of linkage disequilibrium analysis, 

which underlies much of the research on human haplotype blocks.  

The five genes in this analysis span just over 200kb on the q arm of 

chromosome 1. A total of 80 samples from the Coriell Institute of Medical Research 
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are used in this analysis and represent Andean, Basque, Chinese, Iberian, Indo-

Pakistani, Middle Eastern, Russian, South African and North African populations. 

 Some haplotype block boundaries were concordant with gene boundaries 

with most populations showing a consistent boundary between IL-20 and IL-24 and 

at least half of the study populations showing consistent boundaries between 

MAPKAP-K2, IL-10 and IL-20. The only gene boundary lacking a persistent 

haplotype block boundary was between IL-19 and IL-20. The haplotype phasing 

programs PHASE and Beagle shared 13 of 15 haplotype block boundaries in 

common while MDBlocks and Beagle only shared 2 haplotype block boundaries and 

PHASE and MDBlocks only shared 1 block boundary.  

These data indicate that there are indeed population-specific differences in 

the distribution of LD across these five sites. Despite these differences, there is a 

general trend of high LD across each gene with a breakdown of LD at gene 

boundaries across all populations
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Linkage disequilibrium, or LD, is defined as a non-random association 

between two or more genetic loci (Lewontin and Kojima, 1960; Slatkin, 2008). Loci 

are said to be in LD when there is a statistical association between two alleles at 

different loci such that they co-occur together more frequently than would be 

expected if they were independently assorting (Lewontin and Kojima, 1960). In 

contrast, loci that are independently assorted and not affected by natural selection, 

gene flow or mutation are said to be in linkage equilibrium (Flint-Garcia et al., 

2003). The term linkage disequilibrium was originally coined by Lewontin and 

Kojima but did not grow in popularity until its usefulness was realized with 

genotyping and mapping technology that was developed several decades later 

(Lewontin and Kojima, 1960; Slatkin, 2008). With genotyping becoming more cost 

effective, reliable and efficient, polymorphism and disease susceptibility data could 

be more readily understood in concert with each other (Morton, 2005). The ability 

to establish correlations between disease phenotypes and particular 

polymorphisms within the genome gave the concept of linkage disequilibrium the 

practical significance that maintains its popularity in genetics and disease literature.  

 Single gene diseases such as Huntington's disease, cystic fibrosis and 

Alzheimer's disease, were major victories for linkage association studies but a finite 

 number of Mendelian disorders and an overwhelming number of disease 

phenotypes with unexplained genetic correlations led researchers to establish other 



 2 

means of making associations between diseases and underlying genetic causes 

(Flint-Garcia et al., 2003; Morton, 2005). With the consideration of multifactorial 

genetic contributors to disease as well as environmental influences, the feasibility of 

association studies decreased and the cost of performing them consequently 

increased (Ardlie et al., 2002; Morton, 2005). The later discovery of haplotype 

blocks, or fairly large regions of strong LD, in several study organisms and 

eventually humans made association mapping more efficient because a carefully 

chosen marker could represent larger stretches of untyped DNA (Slatkin, 2008). The 

population genetic implications of haplotype blocks will be discussed later in this 

section but their initial utility in drastically reducing the cost and difficulty of 

complex genetic association studies spurred interest in haplotype block research.  

Realizing the practical limitations of LD analysis in association mapping, 

more specifically in identifying causative alleles that contribute to a high percentage 

of disease phenotypes, more recent LD studies have focused on applications to the 

population genetics of past demographic events and natural selection (Slatkin, 

2008). Linkage disequilibrium patterns can reflect past selection events, population 

histories, population structure, gene flow and mutation events but can also be 

influenced by local recombination rates, sex differences and population 

characteristics (Ardlie et al., 2002; Slatkin, 2008).  

 

Influences on LD 
 

Different types of natural selection can determine the overall impact of LD on 

a particular locus. For example, it has been shown in several studies that balancing 
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selection can maintain strong LD leading to the assertion that selection may act 

specifically on blocks of LD rather than individual loci (Slatkin, 2008). Natural 

selection can create what is referred to as locus-specific bottlenecks as selected sites 

increase or decrease in frequency alongside non-selected but neighboring sites 

(Maynard Smith and Haigh, 1974; Charlesworth et al., 1993; Ardlie et al., 2002; 

Flint-Garcia et al., 2003). Also referred to as the hitchhiking effect, haplotypes 

surrounding a selected locus can be carried into high frequency with a selective 

sweep depending on the strength of selection (Maynard Smith and Haigh, 1974; 

Ardlie et al., 2002; Nachman et al., 2004; Handley et al., 2007). Alternatively, 

background selection entails a decrease in frequency of neutral sites immediately 

surrounding negatively selected loci because of their proximity to those deleterious 

sites (Charlesworth et al., 1993). Balancing selection, which favors the maintenance 

of two or more alleles at a certain locus in a population, can create a pattern where 

each selected allele has a corresponding suite of non-functional associated sites 

(Charlesworth, 2006). This tendency for non-selected sites to 'travel' with sites 

under some kind of selection certainly presents a quandary in association studies as 

it can be unclear which sites are of functional significance if strong LD is maintained 

in the region. Huff et al. elaborate on methods for identifying signatures of positive 

selection in LD studies and conclude that some methods are more robust than 

others because of the ability to account for confounding factors that can have an 

impact on LD values, such as variable population histories (Huff et al., 2010). 

Recombination greatly affects LD and serves to decrease established LD over 

time as recombination events, or crossovers, occur in the region (Ardlie et al., 2002; 
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Flint-Garcia et al., 2003). A very simplistic model of the impact of recombination 

rates and distances given by Ardlie et al. illustrates the interplay of LD and the 

properties of recombination: 

𝐷𝑡  = (1 − 𝑟)𝑡𝐷0 

𝐷0   is the extent of LD at the starting point, 𝑟 is the recombination rate and 𝐷𝑡  

is the extent of LD after 𝑡 generations (Ardlie et al., 2002). Ardlie and colleagues 

caution against a dogmatic reliance on the general rules of LD decay across small 

regions as neighboring loci can be very distinctly unlinked. Recombination rates are 

variable across the genome and can also vary on an individual and sex-specific basis 

(Broman et al., 1998). Recombination hotspots, which will be discussed in greater 

detail in the following section of this review, can also influence LD patterns across 

the genome (Ardlie et al., 2002). It has also been reported that recombination 

patterns are comparatively low around the centromeres of the chromosome 

(Nachman et al., 2004). Nachman et al. found this to be the case with two genes, Msn 

and Alas2, on either side of the X chromosome's centromere showing abnormally 

low rates of recombination. Considering the effects of both the local recombination 

and the level and type of selection on a particular locus, Nachman et al. point out 

that selection will have a much stronger impact on the persistence of linked neutral 

loci if the local recombination rate is low in that region.  

Genetic drift can create LD, even where it did not exist previously, by random 

sampling (Slatkin, 2008). The effect of genetic drift on linked loci is more 

straightforward as the population size can impact the extent of observed LD; it 

follows that smaller populations will on average exhibit stronger signals of LD as a 
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function of group size (Ardlie et al., 2002; Slatkin, 2008). In a simulation study by 

Zhang et al. where recombination sites are randomly and uniformly distributed 

across a region, block-like patterns of LD emerge as a result of genetic drift alone 

(Zhang et al., 2003). They found that the observed blocks in the simulation data did 

not extend beyond 100 kb, a result which is seen in other studies using empirical 

data (Reich et al., 2001; Zhang et al., 2003). Zhang et al. also offer the caveat that the 

pattern of LD across the human genome is likely due to the interplay of forces, 

including recombination hotspot distribution, natural selection, genetic drift and 

gene conversion.  

Changes in population size also have an impact on LD such that a decrease or 

increase in population size can determine the amount of LD that accumulates or 

decays over time (Slatkin, 2008). LD tends to decrease in populations experiencing 

swift population growth as such growth counteracts the effects imposed by genetic 

drift (Ardlie et al., 2002). Population bottlenecks, which entail a great reduction in 

population size, generally increase the amount of LD, as haplotypes are usually lost 

in the process (Flint-Garcia et al., 2003; Slatkin, 2008). For human populations 

specifically, it has been proposed that a high degree of LD in some populations 

compared to others is indicative of a past bottleneck event (Slatkin, 2008)  

Varying mutation rates, particularly high mutation rates such as those seen 

in areas high in CpG dinucleotides, can diminish the amount of LD in an area 

because it obscures any LD that would otherwise accumulate (Ardlie et al., 2002). A 

signal of LD can be readily maintained until the extended haplotype is disrupted by 

a novel mutation.   
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Gene flow, or admixture, can manipulate LD patterns, specifically increasing 

LD at the time of the admixture event if the populations are sufficiently divergent, 

though the patterns are not durable if random mating ensues afterward (Pritchard 

and Przeworski, 2001; Slatkin, 2008). Because of this trend, a population that has 

very recently experienced gene flow with another population that is genetically 

dissimilar may show unusually high patterns of LD, which then decays as a function 

of local recombination rates (Pritchard and Przeworski, 2001).  

Beyond selection and demographic forces, the scale at which LD is measured 

has an impact on the extent of LD encountered. In a review of many papers on LD, 

Pritchard and Przeworski note that long-range LD studies tend to discover more 

extensive LD than what is expected while less than expected LD is often shown at 

smaller scales (Pritchard and Przeworski, 2001). Pritchard and Przeworski note 

that current demographic and selection models of LD account for the long-range 

pattern as these forces affect large blocks of the genome. They posit that gene 

conversion, a mechanism similar to crossing over but distinct in that it involves a 

one way transfer of genetic material between homologous chromosomes as 

opposed to an equal exchange, may explain the lower levels of LD at small scales 

though they do admit that not much is known about the extent of gene conversion in 

humans (Pritchard and Przeworski, 2001). 

 

Measures of LD 
 

D is the most commonly cited statistic in linkage disequilibrium studies, 

although its limitations have been expounded upon in several papers (Hedrick, 
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1987; Slatkin, 2008) . The measurement of D is straightforward and relies on the 

observed difference between a two-locus haplotype and what would be expected 

under the conditions of independent assortment between two loci (Ardlie et al., 

2002). The simple equation for D is as follows: 

𝐷 = 𝑃𝐴𝐵 −  𝑃𝐴 𝑥 𝑃𝐵   

In this equation A and B represent two adjacent loci with four possible alleles 

(𝐴, 𝑎, 𝐵, 𝑏). The observed haplotype frequency of any combination is represented by 

𝑃𝐴𝐵. The expected haplotype frequency is represented as the product of the 

frequency of the two alleles in the observed haplotype frequency, 𝑃𝐴 𝑥 𝑃𝐵 (Ardlie et 

al., 2002). 

Nevertheless, several statistics have been developed employing D in various 

mathematical formulas that describe different aspects and measures of LD. D may 

be useful between two adjacent loci but is less reliable across several loci or across 

different populations for comparative LD measures because the statistic is sensitive 

to varying allele frequencies (Hedrick, 1987; Ardlie et al., 2002).  

𝑟2 is another commonly used and often preferred measure of linkage 

disequilibrium because it indicates the predictive power of one locus on a separate 

locus but also doesn't allow for a value of 1 to be reached unless allele frequencies at 

both sites are equal (Flint-Garcia et al., 2003).  

The equation for 𝑟2 is as follows: 

𝑟2 =  
(𝜋𝐴𝐵 −  𝜋𝐴𝜋𝐵)2

𝜋𝐴𝜋𝑎𝜋𝐵𝜋𝑏
 

 where a pair of loci with alleles A and a at locus one, and B and b at 

locus two, with alleles frequencies indicated by 𝜋𝐴, 𝜋𝑎,𝜋𝐵, and 𝜋𝑏 and haplotype 
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frequencies indicated by 𝜋𝐴𝐵, 𝜋𝐴𝑏 , 𝜋𝑎𝐵 , 𝜋𝑎𝑏  (Pritchard and Przeworski, 2001). 𝑟2 is 

preferred over traditional measures of D by most population geneticists because it 

has the ability to control for variable allele frequencies with more precision by 

building them into the equation (Ardlie et al., 2002).  

D' is a statistic based on Lewontin's D that was developed to account for LD 

across multi-allelic markers to measure long-range LD, although complications are 

introduced by variable sample sizes and allele frequencies with low values (Ardlie et 

al., 2002; Flint-Garcia et al., 2003; Zhao et al., 2007). 

The equation for D', with the same variable attributes used in the measure 

for 𝑟2, is as follows: 

  |𝐷′| =  
(𝐷𝑎𝑏)2

min(𝜋𝐴𝜋𝑎,𝜋𝐵𝜋𝑏)
  for 𝐷𝑎𝑏 < 0; 

  |𝐷′| =  
(𝐷𝑎𝑏)2

min(𝜋𝐴𝜋𝑎,𝜋𝐵𝜋𝑏)
 for 𝐷𝑎𝑏 > 0 

 

 Statistically significant correlations of two loci using D' and 𝑟2 are most 

commonly evaluated using Fisher's exact test and a similar measure, a multifactorial 

permutation analysis, is used for multi-allelic sites (Flint-Garcia et al., 2003).  

 Several authors argue that there are benefits in using either D' or 𝑟2 because 

they measure different aspects of LD and both control for variation in allele 

frequencies, at least to some degree (Hedrick, 1987; Flint-Garcia et al., 2003). 𝑟2 is 

more sensitive to recombination and mutational histories of particular loci while D' 

is more precise in estimating divergences in recombination (Flint-Garcia et al., 

2003). Despite this latter strength, Flint-Garcia et al. caution against an overreliance 
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on D' measures due to the introduction of bias when the sample sizes of the study 

populations are low because of its inability to appropriately account for small allele 

frequencies.   

The Four Gamete test was used to evaluate LD in this thesis. This algorithm 

measures the frequency of 4 possible two-marker haplotypes for each pair of loci 

along the region under assessment. Recombination events are established at two 

sites where all possible combinations of markers are observed at least 1% of the 

time in the population (Hudson and Kaplan, 1985; Wang et al., 2002). The Four 

Gamete test assumes no recurrent and/or backward mutation, as that might 

generate the association between a pair of loci that would otherwise be interpreted 

as evidence of a historical recombination event. A haplotype block is determined 

when there is a contiguous set of adjacent SNPs for which there is no evidence of a 

recombination event (Wang et al., 2002). Wang et al. caution that a recombination 

event may be overlooked if the sample size is small and variability at adjacent sites 

is not adequately represented, which may make haplotype blocks appear more 

extensive than they truly are (Wang et al., 2002).   

 

LD in the Human Genome 
 

The extent of LD in humans has been vigorously debated, although it is 

generally agreed upon that it has the potential to span large genomic distances 

ranging from 60-500 kb (Reich et al., 2001; Flint-Garcia et al., 2003). Important sex-

specific differences in LD rates have been observed in human populations, with 

more recombination occurring at telomeres in males and more centromeric 
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recombination in females (Broman et al., 1998; Kong et al., 2002; Lynn et al., 2004). 

Furthermore, there was more individual variation in autosomal recombination 

patterns in females where it was largely absent in males (Broman et al., 1998). 

Support for the Out-of-Africa model of early human expansion comes from several 

studies that have established more extensive LD in populations outside of Africa 

compared to those within Africa, which are assumed to be older and more 

established (Flint-Garcia et al., 2003).  

 Recombination hotspots, or areas where high levels are LD that are 

punctuated by regions of low LD, have been described in humans as well (Jeffreys et 

al., 2001; Flint-Garcia et al., 2003). Specifically, Jeffreys et al. found that areas of LD 

correlated with recombination hotspots in the major histocompatibility complex 

(MHC). The team used sperm-typing to establish where the hotspots were 

distributed due to crossover events and showed a great degree of divergence in 

recombination rates across the 216 kb region (Jeffreys et al., 2001). From the results 

of this study, the authors suggest that not only can the extent of LD be greatly 

influenced by hotspots but that LD patterns may also hold a degree of predictive 

power in determining these crossover hot spots at certain loci, as was the case with 

the MHC. It follows that fine-scale recombination maps may be useful in eliminating 

recombination as a factor in variable degrees of LD in studies seeking to establish 

other causes of such observations.  

 Complicating the impact of recombination on the generation and decay of LD 

patterns are the assertions that recombination patterns are highly variable (Lynn et 

al., 2004; Katzman et al., 2011). Recombination hotspots are known to vary between 
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individuals of the same population, between males and females and between 

different chromosomes in the genome (Kong et al., 2002; Lynn et al., 2004). In 

humans, females tend to have a higher rate of recombination across all 

chromosomes when compared against males (Lynn et al., 2004).  

In the interest of anthropological study, LD analysis can shed light on the 

potential historical processes and events that produced the current distribution of 

genetic variation (Wall and Pritchard, 2003). A point of contention within LD 

research, and a difficulty that will be addressed in this thesis, is how varying degrees 

of LD across and within human genes are interpreted alongside models of ancient 

human dispersion and settlement. Through simulations, Slatkin showed how 

variable population histories involving population growth versus stasis and local 

recombination rates impact measures of LD (Slatkin, 1994). Slatkin concluded in 

suggesting that rapidly expanding populations are more likely to exhibit less LD 

relative to populations with a historically constant size (Slatkin, 1994). He further 

explains that population size determines the extent to which genetic drift alone can 

produce significant linkage disequilibrium, which seems to occur more readily in 

populations with a historically consistent size. It is further noted in the paper that 

extensive LD can arise in founding populations if non-random associations are 

present in successful founders (Slatkin, 1994).   

The distribution of LD patterns in and between human populations has been 

described in several studies (Reich et al., 2001; Gabriel et al., 2002). Reich et al. 

detailed a few general characteristics of LD distribution across human populations, 

namely that the extent of LD is greater in non-African populations when compared 
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against sub-Saharan populations. The research team also found that the extent of LD 

was greatest in their Northern European samples, leading them to suggest that the 

discrepancy is due to historical events such as population bottlenecking or founder 

events (Reich et al., 2001). A paper by Wall and Pritchard also corroborated the 

general pattern described by Reich et al. where long-range and more extensive LD 

patterns were observed more in non-African populations (Wall and Pritchard, 

2003).  Another research team that studied the extent of LD across 3 entire 

chromosomes also found that blocks of LD were shorter in African populations 

relative to non-African populations (De La Vega et al., 2005). Although these 

explanations are in concordance with other anthropological findings, there are 

many factors beyond population history that contribute to the pattern and extent of 

LD observed (Ardlie et al., 2002). As mentioned earlier in this section, the degree of 

genetic drift imposed on a population and the relative size of that population can 

generate LD (Slatkin, 1994). Also mentioned previously, different natural selection 

regimes can entirely remove or amplify regions of neutral sites around selected sites 

in a population (Maynard Smith and Haigh, 1974; Charlesworth et al., 1993). Other 

notable influences on LD patterns are variable recombination and mutation rates, 

population structure and admixture (Ardlie et al., 2002). 
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The origin of modern humans and their subsequent dispersal of the species 

across the globe commands considerable attention in several fields of study, 

including population genetics. Modern human fossil evidence occurring outside of 

Africa as well as archaeological evidence of human activity places a conservative 

estimate of dispersal outside of Africa at 40 KYA (Jobling et al., 2014). The routes of 

this exit are still under debate but it is generally agreed upon that modern humans 

left Africa to colonize the Levant region before spreading further into Asia and 

Europe (Mellars, 2006). 

From the perspective of population genetics, the origin and dispersal of 

modern humans necessarily entails an original source population and the 

movement of gene pools away from the source combined with increased isolation 

and diversification (Slatkin, 2008; Trifonova et al., 2012). Identifying and parsing 

the similarities of the human genome as well as its population specific differences 

underlies much of human population genetics and the evidence presented in favor 

or refutation of demographic models of human evolution.  

 Sewall Wright first described population structure ontologically and 

mathematically as the non-random breeding that occurs within a population or a 

deviation from the assumed state of panmixia (Wright, 1950). Wright suggests 
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several factors including sex and age distribution, population density, and isolation 

by distance that may determine the degree of subdivision with a population.  

 The concept of population structure can certainly be applied to human 

populations, though there is a much greater potential for nuance in the patterns of 

population structure given differing population histories. Africa, boasting long and 

rich population histories, has had the longest time and the greatest opportunity to 

develop fine-scale population structure. This is evident in the higher effective 

population size and greater complexity of genetic variation within Africa (Tishkoff 

et al., 2009). 

Human genetic variation is often described as clinal, meaning that variability 

increases or decreases with corresponding geographic distance from a source 

population (Handley et al., 2007). These clines are observable on two scales: genetic 

differentiation increasing on a local scale from population to population and an 

overall decrease in genetic variation with increasing distance from Africa (Handley 

et al., 2007). This view of human genetic variation is not universally accepted, 

however, and other research has depicted variation as clustered instead of clinal in 

nature.  

(Rosenberg et al., 2005) argue that variation presents itself in clusters. 

Furthermore, the research team reanalyzed their original dataset with the intention 

of elucidating the effects of study design on their conclusions and found that the 

observed cluster pattern was robust (Rosenberg et al., 2005). Through the 

reanalysis, Rosenberg et al. paid special attention to the impact of the number of loci 

studied, the sample size and the number of clusters on the outcome of the study. 
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This retrospective analysis was prompted by criticisms by Serre and Paabo, who 

contended that the study design of the initial publication was influencing the 

observed clustering pattern (Serre and Pääbo, 2004). Although the argument can be 

misconstrued as an "either or" scenario, Rosenberg et al. implore that both clines 

and clusters are description of human genetic variation at different levels of 

inspection (Rosenberg et al., 2005). Perhaps taking the best of both models is yet 

another, that of isolation by distance, which makes similar predictions on the degree 

of genetic similarity between populations as distance increases between them but 

does not necessarily restrict those patterns to clines moving in singular directions 

(Relethford, 2004). Relethford demonstrates the applicability of the isolation by 

distance model on several lines of data, including blood cell polymorphisms, genetic 

data and craniometric features. 

A north-south cline of genetic differentiation in European populations is 

often interpreted as evidence that is in concordance with a Neolithic dispersal from 

the Middle East throughout the rest of Europe (Chikhi et al., 2002; Auton et al., 

2009). The demic diffusion model posits that the initial spread of agriculture was 

accomplished through movement of people, who transmitted the technology as they 

migrated into Europe. This model stands in contrast to another model that assumes 

that the transition was largely cultural and did not necessarily entail large-scale 

population migrations (Chikhi et al., 2002). There is considerable debate over this 

topic but several lines of evidence, including data from nuclear, Y chromosome and 

mitochondrial DNA support the demic diffusion model, though the debate is far from 

closed (Chikhi et al., 2002; Auton et al., 2009; Fu et al., 2012).   
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Phylogeographic approaches to population genetics allow for considerations 

of physical space as a modifying factor in the distribution of genetic variation at the 

population level. Building on existing fields such as demography, geography and 

population history, phylogeography combines these research endeavors into a 

unified discipline that considers both micro- and macro-evolutionary processes in 

shaping geographical distributions (Avise, 1998). The geographic distribution of 

genetic attributes has been a topic of study for many decades and continues to 

reveal more insights into the effects of space on the human genome, both 

individually and collectively. Spatial patterning in the distribution of traits has been 

previous described for ABO blood groups and rhesus factor (Falsetti and Sokal, 

1993). 

Anisotropy reflects the degree to which a variable is directionally dependent 

(Jay et al., 2013). Spatial autocorrelation in particular measures the dependence of 

variables like allele frequencies on the values at physical locations nearby (Falsetti 

and Sokal, 1993). Much like linkage disequilibrium analysis, spatial autocorrelation 

measures the predictive power of one variable on the value of another variable in 

close proximity, capitalizing on the assumption that proximity is a predictive tool. 

Some estimates of spatial autocorrelation can estimate the particular bearing, in 

terms of cardinal directions into account, which summarizes the degree to which 
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directional clines explain spatial patterns of variability in the data (Falsetti and 

Sokal, 1993). What is not provided by these analyses is the reason that any cline or a 

lack of a cline exists; therefore further research is needed to fully explain cline 

presence or absence.  
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In order for linkage disequilibrium to be assessed, haplotype phase must be 

estimated. Haplotype phase refers to the particular inherited combination of alleles 

on a contiguous stretch of chromosome and it must be estimated, either 

computationally or experimentally, because genotyping only reveals pairs of alleles 

(Browning, 2008). Underlying all haplotype phasing programs and built within 

phasing algorithms that estimate phase computationally are unique haplotype 

comparison processes. The link between this methodology and ancient human 

origins is the notion that the relative relatedness of individuals within a population 

has much to do with the geographical location and age of that population. Younger, 

more dispersed populations such as those that are furthest from Africa are expected 

to be more genetically homogeneous and have a larger effective population size 

(Tenesa et al., 2007). In terms of phasing, this should imply that fewer model 

haplotypes are needed to accurately phase a collection of samples from regions of 

the world where less genetic variability is expected. The opposite should be true for 

populations that are nearer to or within Africa. This conclusion is expected given 

that the shorter population histories of more geographically dispersed populations 

provide less opportunities for recombination to disturb extended haplotypes and 

that those geographically dispersed populations underwent recent successive 

bottleneck events as they moved out of Africa.   
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Sample population is one factor that is believed to impact the phasing 

process and may compromise phasing accuracy estimates when population, as well 

as sample size, are not accounted for carefully (Browning and Browning, 2012). 

Allele frequencies and the density of SNPs confound accuracy estimates when 

comparisons across different populations are conducted (Browning and Browning, 

2012). There are expectations that populations that are further from Africa are 

more genetically homogenous and conversely, that populations that are closer to or 

within Africa harbor more variability, exhibit lower levels of LD and have more 

diverse haplotypes (Tenesa et al., 2007; Browning and Browning, 2012). If the 

sample size of a population is so small such that it is not representative of the 

population and may result in imputation inaccuracy, samples from closely related or 

neighboring populations can be added to the sample set to increase accuracy. It was 

also noted that the phasing of historically admixed populations may yield more 

robust estimates if there are samples from each population that contributed to the 

admixed population (Browning and Browning, 2012). 

 

Haplotype Phasing Algorithms 
 

There are three distinct statistical methods used in each of the programs 

used for phasing these data. The latest version of PHASE uses a Bayesian haplotype 

reconstruction method that combines expected haplotypes as a prior with the 

observed genetic data as the likelihood to determine the prior distribution. The 

prior distribution gives the method the predictive power needed to reconstruct 

haplotypes given the observed genotype data (Stephens and Donnelly, 2003). The 
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novel approach in this latest version of the program combined an approximate 

coalescent prior approach and a more efficient computational technique to make the 

estimates conceivably more accurate and faster to obtain. The approximate 

coalescent approach addresses an issue when haplotype reconstruction models 

encounter an unobserved haplotype. In another approach outlined in the paper by 

Stephens and Donnelly, they describe how a Dirichlet prior model breaks up 

unresolved haplotypes in order to compare them to known haplotypes and then 

forces the model to choose a haplotype at random from that point. In the 

approximate coalescent approach, the haplotype comparison process is the same 

but the model has the ability to put more weight on a reconstruction that involves 

haplotype combinations that are similar but not identical to observed haplotypes 

(Stephens and Donnelly, 2003). This model, Stephens and Donnelly argue, allows for 

an appropriate weighting of the more likely scenario, a haplotype that is a slight 

deviation from what is already observed, when haplotypes cannot be broken up into 

smaller, observed haplotype sequences.  

The primary objective of the novel haplotype phasing approach employed in 

the program Beagle was to make imputation more efficient given large influxes of 

data coming from genome wide association studies. Existing methods were not 

scalable for large datasets with many individuals and dense sets of SNPs (Browning 

and Browning, 2007). Beagle uses a localized haplotype-cluster model that 

determines haplotype phase by joining nearby alleles into a small cluster, 

comparing that cluster to real data and assessing model fitness accordingly before 

reclustering the haplotype (Browning and Browning, 2007). Browning and 
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Browning note that this approach allows for more flexibility in where 

recombination blocks might fall and how many clusters are appropriate for a given 

dataset, which more accurately captures the complexity in recombination patterns 

observed in biological populations.  

MDBlocks uses minimum-description-length (MDL) criterion as a novel way 

to model haplotype phase. Where most measures of phasing algorithms summarize 

the decay of LD between haplotype blocks or the amount of diversity within blocks, 

the MDL approach considers both the decay of LD between haplotype blocks as well 

as the diversity of haplotypes within blocks simultaneously (Anderson and 

Novembre, 2003). The MDL principle is an advent from the computer sciences and is 

particularly valuable for summarizing large amounts of data because it takes any 

regularity to a dataset and compresses the data to summarize it most efficiently 

(Grünwald, 2000). In a review paper on the subject of the MDL principle, it is stated 

that the principle is ideal for minimizing regularity but still capturing data because it 

strikes a delicate balance between under-fitting and over-fitting a model to data 

such that it adequately summarizes without cluttering up the model with an excess 

of parameters (Grünwald, 2000). Given this consideration, model selection should 

favor those that are simple yet give a reasonable fit to the data rather than ones that 

summarize genetic data to a precise yet cumbersome degree (Grünwald, 2000). 

The MDL criterion used in MDBlocks may be better suited for the purposes of 

this study because the adaptive model fitting approach may better account for 

population specific differences when phasing the data.  
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Most of the genes used in this study belong to a single gene family that is 

believed to be a result of gene duplication (Brocker et al., 2010). The IL-10 gene 

cluster includes IL-10, IL-19, IL-20 and IL-24, all of which are situated next to each 

other on the q arm of chromosome 1 (Kotenko, 2002; Jones and Flavell, 2005; 

Brocker et al., 2010; Hofmann et al., 2012). The cytokines are classified as part of the 

same gene family and share nucleotide sequence as well as amino acid homology 

but have a diverse range of functions. Some of these classification schemas rely on 

functional and genetic similarities while others are based on structural attributes of 

the cytokines and other characteristics (Brocker et al., 2010). 

Although an entire literature review could be compiled on this subject alone, 

the function of interleukins and more specifically, the products of the IL-10 gene 

cluster will be briefly described first. Interleukins are a particular class of cytokines, 

which participate in immune function by acting as a messenger between immune 

cells (Brocker et al., 2010). Interleukins are primarily involved in immune cell 

development, activation and differentiation and can inhibit or promote 

inflammatory responses. Fifty-five interleukin and IL-related genes have been 

identified and can be found on nearly every chromosome in the human genome 

(Brocker et al., 2010).  
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The IL-10 gene cluster is situated on the q arm of chromosome 1 and spans 

about 200 kilobase pairs (Kotenko, 2002; Brocker et al., 2010). The basic structure 

of the 4 genes within the IL-10 cluster located on chromosome 1 is similar with 

most genes containing 5 exons and conservation of intron/exon junctions between 

the cytokines (Kotenko, 2002). Kotenko points out, however, that there is variation 

in this general pattern such that some genes may contain greater or fewer exons or 

vary in the number of bases in introns.  

 In light of the "crosstalk" between IL-10 gene cluster cytokines and other 

components of the immune system, some researchers have proposed that each 

member contributes to an intricate cytokine cascade that manifests itself as a pro- 

or anti-inflammatory response (Wang and Liang, 2004). Although the members of 

the IL-10 gene cluster share sequence and amino acid homology, there is a wide 

array of functions attributed to the cytokines within this family and they each 

interact with a variety of cells involved in the immune system and immune 

response.  

 

Evolution of the IL-10 Gene Cluster 
 
 Cytokine genes are said to be one of the most rapidly evolving classes of 

genes in the human genome (Brocker et al., 2010). Surprisingly, however, the amino 

acid sequences of several cytokines within the IL-10 gene family are well conserved 

across species. This high degree of conservation is evidenced by studies showing 

that interleukin 24 cytokines from rats could bind with the appropriate human 

receptors (Wang et al., 2004). Prior to the study by Wang et al. it was suggested that 
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although there was a high degree of similarity in sequence and layout of the IL-10 

gene family between humans and rats, that the genes carried out diverse functions 

in those unique biological systems. Wang et al., after showing that the rat's 

equivalent of IL-24, MOB-5, could not only bind to but activate both heterodimeric 

IL-24 receptor complexes, they concluded that MOB-5 was a true homologue to IL-

24 (Wang et al., 2004). 

 The arrangement of the cytokine genes within the IL-10 gene cluster is 

identical to the order of genes seen in murine animals and exon composition and 

length is conserved as well, although there is slight variation in this latter respect 

(Wang and Liang, 2004; Hofmann et al., 2012). It has been suggested that the IL-10 

gene cluster arose through gene duplication and subsequent divergence of the 

duplicated sequences over time (Xu, 2004).  

 

Interleukin-10 
 
 A brief introduction of the IL-10 cluster gene products at the beginning of 

each cytokine section will cover basic properties and functions of the cytokines but 

the function of each gene and cytokine will not be covered extensively until later on 

in this thesis. Instead, this section serves as a primer for a more detailed discussion 

of the IL-10 gene cluster's structural and functional properties. Figure 1 shows how 

the gene family is situated on the chromosome as well as the conserved pattern in 

mice.  
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Figure 1: This image shows the IL-10 family genes as they are situated on chromosome 1. There are 
two non-immune genes, MAPKAPK2 and TOSO, flanking the gene cluster. Also shown is a 
homologous section of the IL-10 homolog in mice, which has a similar exon structure (Im et al., 
2004).  
 

 

IL-10 Products 
 

Interleukin-10 was the first of this family to be discovered and much more is 

known about IL-10 relative to its other homologs. IL-10 is considered to be an anti-

inflammatory cytokine due to its ability to inhibit other cells, namely antigen 

presenting cells and macrophages, involved in inflammatory immune responses 

(Gallagher et al., 2000; Moore et al., 2001; Brocker et al., 2010). It also aids in 

regulating the responses of a number of immune cells including — but not limited to 

— B cells, several T cell subtypes, dendritic cells, etc. (Tone et al., 2000; Moore et al., 

2001). Experiments in murine models with IL-10 knockouts as well as other 

association studies showed that several autoimmune disorders occurred when IL-

10 was not functioning normally, lending more credence to the anti-inflammatory 

categorization of this interleukin (Kuhn et al., 1993; Cantó et al., 2014). The effective 
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use of IL-10 as a treatment option for disorders caused by a general hyper-

inflammatory state of the body furthers this claim (Cao et al., 2005).  

 

IL-10 Structure & Function 
 

The IL-10 gene has been extensively studied but the exact location of its 

promoter has not yet been determined. Despite this limitation, several potential 

regulatory sites have been identified in the IL-10 promoter region (Im et al., 2004; 

Jones and Flavell, 2005; Hofmann et al., 2012). Jones and Flavell reported the 

discovery of Th2-specific DNase hypersensitivity sites within the IL-10 promoter, 

although it should be noted that these experiments were performed in vitro. The 

specificity of interactions between interleukins and other cells in the immune 

system makes it difficult to speculate about its precise regulation.  

 IL-10 stimulation is pleiotropic in nature and thus yields varying functional 

responses from different immune cell types (Cheng and Sharma, 2015). The 

cytokine induces the proliferation and differentiation of B cells, T cells and natural 

killer cells and dampens pro-inflammatory responses by blocking the synthesis of or 

other otherwise inhibiting pro-inflammatory cytokines (Jordan et al., 2005; Cheng 

and Sharma, 2015). IL-10 inhibits the activity of mast cells, macrophages and 

dendritic cells, which are key components of inflammatory responses (Paul et al., 

2012). Through the course of an immunological insult, macrophages are able to 

initially synthesize pro-inflammatory cytokines, including other interleukins, 

followed by the expression of anti-inflammatory cytokines, including IL-10 (Cao et 

al., 2005). This ability corresponds with the necessity for the immune system to 
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produce a response that is robust enough to combat physiological insult without 

reaching a level where the host is harmed. IL-10 may also play an important role in 

modulating inflammatory responses in pregnant women, where a conservative 

immune response is necessary for maintaining the pregnancy. This role is evidenced 

by an association with aberrant IL-10 functioning with poor pregnancy outcomes 

(Cheng and Sharma, 2015).  

 

 

 

Table 1: This table shows the source cells, receptors, known transcription factors, signaling pathways 
and immunological functions of each cytokine (Hofmann et al., 2012).  
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Interleukin-19 

IL-19 Products 
 
 The IL-19 gene and the associated cytokine were first identified based on its 

homology to the IL-10 gene using expressed sequence tags (ESTs) from sequence 

databases (Gallagher et al., 2000). Tests measuring its release from cells using 

traditional immunological stimulation techniques confirmed that this newly 

discovered cytokine responded to signals similar to those that stimulate IL-10 

expression (Kotenko, 2002; Chen et al., 2006). Despite in vitro tests confirming its 

existence and similar stimulatory cues, the function of interleukin-19 is not well 

understood and cannot be concretely related to that of IL-10 although it is expected 

to play some role in the orchestration of inflammatory responses. Much like other 

interleukins discussed in this paper, improper IL-19 functioning has been associated 

with a variety of autoimmune disorders and diseases associated with immune 

dysfunction (Cantó et al., 2014).  

 

IL-19 Structure & Function 
 

The IL-19 gene structure is very similar to that of IL-10 with 5 exons and 4 

introns in both sequences, with variation in the length of introns but not exons. 

Despite this, IL-19 is more closely homologous to IL-20 in terms of amino acid 

sequence (Hofmann et al., 2012). The 3' UTR of IL-19 is truncated compared to IL-10 

and harbors only one mRNA destabilizing region where IL-10 has multiple 

(Gallagher et al., 2000). 
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 The sources of IL-19, at least to the extent that is has been studied, are 

epithelial, myeloid, and B cells and it has been suggested that the cytokine up-

regulates Th2 responses, which are generally anti-inflammatory in nature. 

Interestingly, the cytokine does not up-regulate Th1 type cells as it does Th2 cells 

when stimulated (Jordan et al., 2005). Giving more credence to this association, 

asthma and uremia, two disorders linked to the overexpression of IL-19, are 

characterized by excessive Th2 responses (Cantó et al., 2014). Cantó et al. caution 

against using preliminary explanations for the function of IL-19, which have 

sometimes been generated using murine models, because IL-19 interacts with other 

cytokines differently when compared with humans.  

 IL-19 stimulation causes the up-regulation of IL-10 and the production of IL-

10 mRNAs, although it is not been confirmed that this high level of mRNA translates 

to a high level of expression of the anti-inflammatory cytokine (Jordan et al., 2005).  

 

Interleukin-20 

IL-20 Products 
 
 IL-20 was first discovered through algorithm predictions based on the 

suspected structure of the cytokine (Kotenko, 2002; Xu, 2004). The role of IL-20 in 

immune function has not been fully elucidated yet but experiments in murine 

models and in vitro using human cells has given clues to its function. In both human 

and mice experiments, aberrant skin conditions are observed when IL-20 is not 

functioning properly, suggesting a potential role in epidermal maintenance 

(Blumberg et al., 2001; Wang and Liang, 2004; Xu, 2004). Some authors have 
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suggested that the presence of psoriasis and psoriasis-like symptoms in human and 

mice models respectively indicates that proper IL-20 functioning is essential for 

healthy skin development (Kotenko, 2002; Xu, 2004).  

 

IL-20 Structure & Function 
 

Six potential promoter sites for IL-20 have been identified based on the 

presence of TATA boxes and all exhibited promoter function though at different 

degrees (Chen and Chang, 2009). Chen and Chang suggested that regulatory 

elements at the IL-20 locus could explain the variable results of promoter activity 

for the cytokine but this assertion remains to be fully investigated. 

 The binding of IL-20 to its associated receptor complex activates a Stat1 and 

Stat3 cascade (Hofmann et al., 2012). Although not much is known about how IL-20 

exerts its effects, the association of skin disorders with aberrant regulation or 

polymorphisms of IL-20 suggests that it plays an important role in maintaining skin 

integrity. Other reports of high expression of IL-20 during the course of infection 

also suggest that the cytokine plays a role in pathogen defense mechanisms 

(Hofmann et al., 2012).   

 

Interleukin-24 

IL-24 Products 
 
 IL-24, initially named MDA-7 or melanoma differentiation association gene-7, 

was first discovered due to its abundance in melanoma cells relative to normally 

functioning melanocytes (Kotenko, 2002; Wang and Liang, 2004). It was not initially 
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categorized with IL-10 or even recognized as a cytokine until later discoveries 

confirmed homology with other cytokines and similarity to IL-10 despite it not 

exerting anti-inflammatory effects (Kotenko, 2002). Despite the initial discovery of 

elevated IL-24 in melanoma cells, the cytokine has been the subject of increased 

attention and research funding following publication of results indicating that it 

inhibits the growth of tumors by triggering apoptosis in cancerous cells (Zheng et 

al., 2007). Zheng et al. also contend that the ability to trigger apoptosis is unique to 

IL-24 and is not a feature of other IL-10 cytokines.  

 

IL-24 Structure & Function 
 
 IL-24 shares the most amino acid sequence homology with IL-20 at 45%, 

followed closely by IL-19 (Brocker et al., 2010). The promoter region has been 

identified and transcription factor recognition sites, such as Jak1, Stat3 and Stat6 

sites, have also been found within the promoter (Hofmann et al., 2012). 

 Once IL-24 is bound to a cell surface receptor, it activates the JAK/STAT 

signaling pathway (Wang et al., 2004). Interestingly, IL-24 seems to exhibit different 

cellular responses that are dependent on the presence of a corresponding receptor. 

While binding to surface receptors generally engenders a proliferative response in 

affected cells, the intracellular presence of IL-24 seems to promote apoptosis (Wang 

and Liang, 2004; Wang et al., 2004). Because of this latter observation, the use of IL-

24 as a cancer treatment option has been the subject of much of the latest IL-24 

research.  
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LD Across Members of IL-10 Gene Family 
 
 One study established that IL-19 and IL-20 are in significant LD with each 

other and that the polymorphisms studied in IL-20 are in almost complete LD in an 

Estonian population of unaffected and psoriatic individuals (Kõks et al., 2004). In a 

second study by the same research team, two blocks of LD were established across 

IL-19, 20 and 24 with one block extending across IL-19 and most of IL-20 and the 

second block spanning one SNP from IL-20 and across most of the SNPs included 

under IL-24 (Kõks et al., 2005). The latter paper by Koks et al. also reported a 

recombination site within the IL-20 gene, which seems to correspond with the break 

between blocks of LD between rs2232360 and rs1518108 (Kõks et al., 2005).  

 

MAPKAP-K2 
 
 Mitogen-activated protein kinase-activated protein kinases, which are 

encoded by the MAPKAP family of genes, are intricately involved in the regulation of 

a variety of different cell signaling pathways. Technologies that allowed for the 

perturbation of kinase genes in cells at first and entire model organisms later, led to 

the discovery of novel kinases and the pathways in which they were involved 

(Gaestel, 2006). MAPKAP kinase-2 is part of a phosphorylation cascade and is 

activated when it is phosphorylated by a MAP kinase and is known to further 

activate downstream residues in several distinct pathways (Stokoe et al., 1993; Ben-

Levy et al., 1998). Two other enzymes, MAPKAP-K3, which is found on chromosome 

3 and MAPKAP-K5, along with MAPKAP-K2 make up the MAPKAP-K subfamily 

(Gaestel, 2006). MAPKAP-K2 involvement has been implicated in the up-regulation 
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of inflammatory responses via post-transcriptional control of cytokine mRNA 

stability, the regulation of certain cell cycle checkpoints and other cellular activities 

(Gaestel, 2006).  

 

MAPKAP-K2 Structure and Function 
 
 MAPKAP-K2's catalytic domain, which contains a conserved phosphorylation 

site, and C-terminal regulatory portion are highly conserved across distinct species, 

such as fruit flies, worms and mammals although the sequence features diverge in 

different species beyond those central components (Gaestel, 2006). Other members 

of the MAPKAP-K subfamily, namely MAPKAP-K3 and MAPKAP-K5 are not as well 

conserved across species, which Gaestel suggests may be the result of a gene-

duplication event after the divergence of higher order species. Other important 

sequence features of all Map kinases are in the C-terminal domain where two amino 

acid sequences, nuclear export signal (NES) and nuclear localization signal (NLS), 

allow MKs to be imported into the nucleus and exit from it respectively (Gaestel, 

2006)..  

 MAPKAP-K2, in particular, seems to play a unique role in the regulation of 

the inflammatory response and has been proposed as a more promising treatment 

for chronic inflammatory diseases (Gaestel, 2006). A paper by Moens et al. outlines 

the myriad ways in which MAPKAP-K2 modulates the inflammatory response, such 

as activating the transcription factors of immune-involved genes, mRNA 

stabilization of several immune genes, and inhibiting the synthesis of other immune 

cells and modulators (Moens et al., 2013).  
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In light of the landmark LD studies briefly alluded to in the literature review 

section of this proposal, particularly those concerned with LD in human populations 

as an indicator of past human population histories, this thesis will contribute new 

data to that conversation. Firstly, it will provide new data to the subject of human 

LD study, which tests the robustness of accepted conclusions while incorporating 

novel SNPs to the long list of loci studied under LD models. Secondly, this thesis will 

consider the observed LD patterns and possible influences from multiple alternative 

explanations, such as those outlined in the Ardlie et al. paper (genetic drift, 

population growth, admixture, etc.).  Thirdly, the collection of SNPs used in this 

study are closely spaced and densely packed within the regions of study and offer a 

more fine scale dataset compared to the sparse but widely distributed SNP markers 

that are generally employed in LD research. Evans and Cardon call for more fine-

scaled SNP samplings across populations to determine the extent to which LD 

patterns are conserved in different populations (Evans and Cardon, 2005). Weiss 

and Clark similarly suggest that a dense snapshot of SNPs over a smaller area 

reduces what they call the internal heterogeneity problem, which has come to light 

after novel SNPs were found in re-sequenced haplotypes (Weiss and Clark, 2002). 

Finally, the impact of different phasing algorithms, namely those employed by 

Beagle and PHASE, on the downstream applications of LD analysis will be briefly 
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explored. Also noteworthy in this study, is how functional genes, especially those 

that have been repeatedly implicated as crucial to normal functioning, might also be 

mediated at the population level by demographic processes, which have been 

traditionally studied using neutral markers. 
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The research questions in this thesis are as follows: 

- To what degree are linkage disequilibrium patterns at the loci under 

study shared between the populations? 

- Does LD at these loci increase in a clinal fashion across Eurasia similar to 

other studies that have established this pattern?  

- Are there differences in linkage disequilibrium patterns between 

haplotype phasing programs? 

- Are there differences in haplotype block boundaries between different 

programs? 

- Does quality control trimming improve estimates of linkage 

disequilibrium? 
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Samples 
 
 Samples for this thesis were obtained from the Human Variation Panel of the 

Coriell Institute for Medical Research database. A total of 74 individuals were 

sampled across 57 sites from males in the following populations: Andes (7), Basque 

(7), Chinese (8), Iberia (9), Indo-Pakistan (9), the Middle East (9), Russia (9), North 

Africa (7), and South Africa (9) in the untrimmed dataset. A total of 63 individuals 

were sampled across 40 sites from males in the following populations: Andes (7), 

Basque (7), Chinese (7), Iberia (8), Indo-Pakistan (6), the Middle East (9), Russia (8), 

North Africa (5), and South Africa (6) in the untrimmed dataset.  

 
 

Haplotype Phasing 
 

Haplotype phasing was completed using three haplotype phasing programs 

Beagle, PHASE and MDBlocks (Anderson and Novembre, 2003; Stephens et al., 2004; 

Browning and Browning, 2007). For haplotype phasing, input files were made for 

each population separately, each gene separately, all sites in each population, and all 

populations for each gene in order to assess the impact of population structure on 

phase resolution. The data were also trimmed based on the robusticity of each 

genotype call as recorded in the original data file. The data were trimmed on the 
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basis of how conservative the genotype call was from the electropherogram, as 

specified in the original dataset. Samples with genotype calls that were labeled as 

"non-conservative" were omitted from the trimmed dataset, as were samples that 

had less than 40 genotype calls. The untrimmed datasets have all individuals and all 

sites from the original dataset. The trimmed dataset removed the following 

individuals and sites (sites are specified by the physical location of the marker in the 

GRCh38.p2 Assembly):  

Samples: 16689 (Basque), 17100 (Iberia), 17022, 17026, 17027 (3 from 

IndoPak), 17333 (MidEast), 17378, 17383 (2 from North Africa), 13912 

(Russia), 17342, 17344 and 17349 (3 from South Africa) 

Sites: 204928558, 204932826, 204944397, 204945745, 204951961,       

204956171, 204963245, 204974646, 204976620 (9 sites from MAPKAP-K2), 

205011268 (IL-10), 205051213, 205053168, 205061027, 205069997, 

205072837 (5 sites from IL-19), 205138774, 205139138 (2 sites from IL-24) 

Beagle required input files in Variant Call Format, which were constructed 

from the original data files using the text-editing program, TextWrangler (Bare 

Bones Software, Inc. 2009). Genotypes were encoded according to their reference 

(ancestral) and alternative (derived) alleles, with 0 indicating the reference allele 

and 1 indicating the alternative. Missing data were input as '.'. The input file 

contains three header lines that specify what type of data is used in the file, the 

version used and the date the file was constructed. The sample ID, chromosome 

number, position ID, rs number, reference allele, alternative allele, data format and 

genotypes were all specified in each input file. Beagle version 4.1, the latest version 
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of the program, was used to complete haplotype phasing (Browning and Browning, 

2007).  The following command was used to run the program for each file:  

java –Xmx[memory allotment]m -jar beagle[program version].jar 

gt=[input file name].vcf out=[output file name] 

The command 'gt' specifies the type of input file and the nature of the data 

being imputed. No other parameters were used in Beagle as the small dataset used 

in this study did not require the use of any arguments that would make the program 

run more efficiently. Input files were subsetted in different ways to assess whether 

or not population structure impacted the phasing process and downstream 

applications of LD analysis. Files were subsetted according to the following 

variables: each individual gene for each population, each population for all genes 

together, each gene for all populations together and finally, all populations and all 

genes. Input files according to these rules were constructed for a trimmed and an 

untrimmed dataset in order to assess the impact of sample call quality on the 

phasing process and downstream applications.  

PHASE version 2.1 requires text files with the extension .inp as input files. In 

each file, the number of individuals, the number of sites, the locations of each site, 

individual IDs and genotypes are specified. The same subsetting approach employed 

in Beagle was also used for PHASE. The following command and parameters were 

used to run PHASE: 

./PHASE -MR PHASE_[input file name].inp [output file name].out [number of 

iterations] [thinning interval] [burn-in]  
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 The initial command './PHASE' calls up the program while the –MR function 

specifies use of a model that incorporates assumptions about recombination. This 

function slows the run time of the program compared to the more efficient model 

that does not account for recombination but this inefficiency was not an issue for 

this study because of the smaller sample size. 10 iterations were completed for each 

input file, the thinning interval was left at 1 and the burn-in was set at 1000.  It was 

suggested that a minimum of 5 iterations should be performed in order to obtain 

reliable phasing results so 10 iterations were completed for each file (Stephens et 

al., 2004). Since the input files were not prohibitively large, an increase in the 

number of iterations for the sake of accuracy could be completed without 

compromising computation time.  

 MDBlocks also uses text files constructed in a format similar to PHASE where 

the number of sequences, the number of markers and genotype data are specified. 

The number of sequences corresponds to the total number of haplotypes in the 

input file, which in the case of diploid individuals is the number of samples 

multiplied by two. The genotype data are coded as either 1s or 0s depending on 

which allele is the ancestral or derived. Missing data was indicated with a -1. 

Because Beagle used a similar format for genotype data, the input files for MDBlocks 

were constructed by making the necessary modifications to the existing Beagle 

input files. The following command for MDBlocks was simple and the nature of the 

dataset did not require any modification to the parameters: 

 MDBlocks [file name].txt 
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 There is an option to use a different algorithm, which makes the program run 

more efficiently, but since these commands were not used in the other haplotype 

phasing programs and the dataset is small, it was omitted for MDBlocks. Input files 

were subsetted by population and with all populations together and were not 

subsetted by gene or by trim status.  

   

LD Analysis 
 
  LD analysis, specifically the Four Gamete test, was performed using the 

program Haploview, which allows data input, LD analysis, and triangular heat map 

generation (Wang et al., 2002; Barrett et al., 2005). The triangular heat map allows 

LD across the IL-10 family and MAPKAP-K2 to be visualized within and across 

populations with the degree of LD indicated by shaded boxes between sites and 

haplotype blocks outlined in black triangles.   

 Haploview requires two files to run: a .ped file with sample IDs and genotype 

data and a corresponding text file with the SNPs of the gene included in the .ped file 

and the corresponding physical locations of each site. Once the input files are 

loaded, the program prompts the selection of an algorithm to assess LD and the Four 

Gamete test was chosen for all analyses.  

 

Bearing Analysis 
 
 A bearing analysis was run on these data across MAPKAP-K2 and the IL-10 

family in order to assess the bearing at which most variability is summarized and to 
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detect a potential cline in the physical distribution of allele frequencies (Falsetti and 

Sokal, 1993). Angular correlation was also assessed in order to determine maximum 

correlation of the variability in these data (Simon, 1997). The analyses was 

accomplished with the program PASSaGE and incorporates the methods developed 

by Simon and Falsetti and Sokal (Falsetti and Sokal, 1993; Rosenberg and Anderson, 

2011, Simon 1997). PASSaGE requires two files in order to run the bearing analysis: 

a file with allele frequency data for the sites, referred to as a data distance matrix, 

and a coordinates file, or a geographic distance matrix, which supplies the longitude 

and latitude coordinates of each population in the study. The data distance matrix 

was generated from the original data file using Excel to calculate allele frequencies 

at each site.  
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IL-10 

 

Figure 2: This figure shows the LD plots generated with Haploview for the trimmed IL-10 dataset 
with results from PHASE. 
 

 Figure 2 shows the LD heat maps generated in Haploview for the phased 

trimmed IL-10 data from PHASE. Each heat map shows the sites in high LD in red, 

sites in low LD in purple and pairs of sites with no LD between them in white. 

Haplotype blocks are outlined with bold black lines with block boundaries falling 

between sites. The Basque, Iberian, North African and South African populations 

show only one haplotype block and none of the populations show any extensive LD 

across the gene though there are signals of deeper LD across most populations with 

Andes	 Basque	 China	

Iberia	 IndoPakistan	 Middle	East	

North	Africa	 Russia	 South	Africa	

PHASE	IL-10	Trimmed	
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the exception of IndoPakistan and North Africa. The Andes and Middle East 

populations are similar in that they show a short first haplotype block and an 

extended second haplotype block while Russia shows a longer initial block and 

shorter second block.  

 

Figure 3: This figure shows the LD plots generated with Haploview for the untrimmed IL-10 dataset 
with results from PHASE. 
 

Figure 3 shows the heat maps for each population at the same site as Figure 2 

except that Figure 3 shows the results when the dataset is left untrimmed. Only a 

few more pairs show high LD where they did not in the trimmed dataset but some 

haplotype block boundaries have shifted when trim status is altered. All 

populations, save North Africa, show the pattern of deep LD. Deep LD between 

distant sites is indicated by the red boxes that signify high LD at the bottom of the 

heat map. IndoPakistan samples lost all high LD designations and have a smaller 

haplotype block across the site in the trimmed dataset compared to the untrimmed 

Andes	 Basque	 China	

Iberia	 IndoPakistan	 Middle	East	

North	Africa	 Russia	 South	Africa	

PHASE	IL-10	Untrimmed	
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set. The Middle East has very similar LD designations, save for one pair of SNPs, but 

has different block boundaries. South Africa shows a different LD score pattern and 

also experienced a block shift, with the trimmed dataset having one haplotype block 

across all of IL-10 to two haplotype blocks in the untrimmed set.  

 

Figure 4: This figure shows the LD plots generated with Haploview for the trimmed IL-10 dataset 
with results from Beagle. 
 

 Figure 4 shows the LD heat maps generated from the trimmed IL-10 dataset 

that was run through the phasing program Beagle. The high LD designations were 

almost the same when comparing the results from the trimmed datasets between 

PHASE and Beagle, except for one high LD designation in the Basques, one in 

IndoPakistan, and one in South Africa. Haplotype block designations were also very 

similar between the two programs except that Beagle assigned three blocks to the 

Middle East while PHASE only assigned two even though the LD designations 

Andes	 Basque	 China	

Iberia	 IndoPakistan	 Middle	East	

North	Africa	 Russia	 South	Africa	

Beagle	IL-10	Trimmed	
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between the Middle East in PHASE and Beagle were very similar. In North Africa 

there were no high LD designations nor was there more than one haplotype block.  

 

Figure 5: This figure shows the LD plots generated with Haploview for the untrimmed IL-10 dataset 
with results from Beagle. 
 

 Figure 5 shows the LD heat maps generated using the untrimmed IL-10 

dataset that was run through Beagle for phasing. The Basques showed three new 

high LD designations in the untrimmed dataset compared to the trimmed dataset. 

China showed two new high LD designations given the same comparison. 

IndoPakistan showed the highest increase with eight new pairs of sites having the 

high LD classification and it also showed a haplotype block that covered all sites in 

the untrimmed set. The Middle East and North Africa showed only one new high LD 

designation in the untrimmed dataset. Russia showed six new high LD designations 

in the untrimmed set and finally, South Africa showed one new designation though, 

Andes	 Basque	 China	

Iberia	 IndoPakistan	 Middle	East	

North	Africa	 Russia	 South	Africa	

Beagle	IL-10	Untrimmed	
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the particular pairs in high LD varied as well. The Middle East showed three 

haplotype blocks in comparing the trimmed and untrimmed dataset but the markers 

that were covered by those blocks changed slightly. North Africa and South Africa 

showed two haplotype blocks in the untrimmed set where it only showed one 

haplotype block across the whole gene in the trimmed dataset. When comparing the 

untrimmed dataset from Beagle to that of PHASE, there are only two high LD 

designations in the results from PHASE. In the Middle East samples, there is an 

increase from two haplotype blocks for PHASE to three blocks for Beagle and in 

North Africa, the results from Beagle show two haplotype blocks where PHASE 

results show only one block. 

 

IL-19 

 

Figure 6: This figure shows the LD plots generated with Haploview for the trimmed IL-19 dataset 

Andes	 Basque	 China	

Iberia	 IndoPakistan	 Middle	East	

North	Africa	 Russia	 South	Africa	

PHASE	IL-19	Trimmed	
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with results from PHASE. 
 

 Several populations — Andes, China, Iberia, IndoPakistan, Middle East and 

Russia — show a consistent LD block at the beginning of IL-19. Basque and South 

African populations show high LD designations and have similar haplotype block 

boundaries as the aforementioned populations but the signal of LD is not as strong 

nor as deep across the first four to five markers in IL-19. North Africa lacks any high 

LD designations and only has one haplotype block across the locus.  

 

Figure 7: This figure shows the LD plots generated with Haploview for the untrimmed IL-19 dataset 
with results from PHASE. 
 

 In contrast to the trimmed dataset, Figure 7 shows a persistent pattern of 

extended and deep LD at the first five markers of IL-19. Furthermore, some 

populations — Russia and South Africa — show a strong signal of LD at the end of 

IL-19. All populations, save Iberia, show two haplotype blocks across the site and 

the coverage of those haplotype blocks is similar in all populations except for China 

Andes	 Basque	 China	

Iberia	 IndoPakistan	 Middle	East	

North	Africa	 South	Africa	Russia	

PHASE	IL-19	Untrimmed	
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and North Africa, which show an extended haplotype at the beginning of the gene 

and a shorter haplotype toward the end.  

 

Figure 8: This figure shows the LD plots generated with Haploview for the trimmed IL-19 dataset 
with results from Beagle. 
 

 Much like the trimmed IL-19 dataset from PHASE, Beagle shows the North 

African population without any high LD designations. There are fewer haplotype 

block boundaries when comparing the trimmed results from Beagle to PHASE with 

Beagle showing less. The consistent pattern of strong LD at the beginning of IL-19 is 

maintained in this dataset, though the signal is not as strong as the Basque samples. 

In both PHASE and Beagle in the trimmed dataset, South Africa does not show 

strong LD between each adjacent marker though it does show strong and deep 

signal of LD in haplotype block one.  

Beagle	IL-19	Trimmed	

Andes	 Basque	 China	

Iberia	 IndoPakistan	 Middle	East	

North	Africa	 Russia	 South	Africa	
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Figure 9: This figure shows the LD plots generated with Haploview for the untrimmed IL-19 dataset 
with results from Beagle. 
 

 Similarly to Figure 7, Figure 9 shows strong and deep blocks of LD across the 

first haplotype block in IL-19. Russia and South Africa also show a second strong 

block of LD in the second and last haplotype block for IL-19. The haplotype block 

patterns are very similar between the two programs and trim statuses as well, with 

Iberia showing three haplotype blocks and China and North Africa showing a much 

longer first block and a shorter second block when compared against the remaining 

populations.  

 

IL-20 
 IL-20, because there were only three sites available for analysis in both the 

trimmed and untrimmed datasets, did not yield any heat maps that were of value.  

Andes	 Basque	 China	

Iberia	 IndoPakistan	 Middle	East	

North	Africa	 Russia	 South	Africa	

Beagle	IL-19	Untrimmed	
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IL-24 
 As was the case for IL-20, the trimmed datasets for IL-24 were reduced from 

five sites down to three, making those results difficult to interpret or draw any 

conclusions from. Therefore, in this section for IL-24 results, I will only report 

untrimmed results.  

 

 

Figure 10: This figure shows the LD plots generated with Haploview for the untrimmed IL-24 dataset 
with results from PHASE. 

 

 Figure 10 shows the results from the untrimmed IL-24 dataset where 

haplotype phase was determined with the program PHASE. In all 9 populations, the 

fifth site of IL-24 is not in high LD with the rest of the site, though it is included in 

the same haplotype block in the Andean, Chinese, Iberian and South African 

samples. South Africa is rather distinct from the rest of the populations in that there 

Andes	 Basque	 China	

Iberia	 IndoPakistan	 Middle	East	

North	Africa	 Russia	 South	Africa	

PHASE	IL-24	Untrimmed	
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are only two adjacent sites that are in strong LD with each other, whereas the rest of 

the populations have all four sites in strong LD.  

 

 

Figure 11: This figure shows the LD plots generated with Haploview for the untrimmed IL-24 dataset 
with results from Beagle. 
 

 Figure 11 shows almost the exact same signals as Figure 10 with the same 

trim status except that the haplotype phase was resolved using Beagle. All of the 

heat maps were identical across all of the populations except for a small difference 

in Russia between the two programs; sites 1 and 2 were not in LD in the data 

generated by Beagle while they are in the data from PHASE. 
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MAPKAP-K2 

 

Figure 12: This figure shows the LD plots generated with Haploview for the trimmed MAPKAP-K2 
dataset with results from PHASE. 
 

 Figure 12 shows the heat map results of the trimmed MAPKAP-K2 dataset 

that had haplotype phase determined by PHASE. There are shared sites with high LD 

in the Andean, Chinese, IndoPakistani, Middle East and Russian samples with Andes, 

IndoPakistan and China and Russia and the Middle East having nearly identical or 

identical high LD designations. The Basque, Iberian, North African and South African 

samples all show lower levels of LD across MAPKAP-K2 with North and South Africa 

showing now high LD designations at any of the sites across MAPKAP-K2.  
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Figure 13: This figure shows the LD plots generated with Haploview for the untrimmed MAPKAP-K2 
dataset with results from PHASE. 
 
 

 Much like Figure 12, Figure 13 shows that China and IndoPakistan are nearly 

identical, except for one high LD designation. Unlike Figure 12, however, Russia and 

the Middle East do not share as many LD designations in common. Every population, 

aside from China and the Basques, exhibits more haplotype blocks in the untrimmed 

dataset compared against the trimmed dataset for MAPKAP-K2. The haplotype block 

coverage is not exactly the same for MAPKAP-K2, but it is fairly equivalent given a 

difference in the number of sites between the trimmed and untrimmed data. 
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Figure 14: This figure shows the LD plots generated with Haploview for the trimmed MAPKAP-K2 
dataset with results from Beagle. 
 
 

 In Figure 14, it is apparent that the high LD designations and the boundaries 

of the haplotype blocks are the same between Beagle trimmed data and PHASE 

trimmed data at MAPKAP-K2 across the following populations: Andes, Basque, 

Iberia, Middle East, North Africa and South Africa. Russia has 11 more high LD 

designations in the PHASE heat map when compared to the Beagle heat map. 

IndoPakistan has the same number of high LD designations but they are arranged 

differently across the gene. China shares some high LD designations in common 

between programs but PHASE shows much more LD across the entirety of the gene 

compared to Beagle.  
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Figure 15: This figure shows the LD plots generated with Haploview for the untrimmed MAPKAP-K2 
dataset with results from Beagle. 

 

 Figure 15 shows the untrimmed MAPKAP-K2 heat maps after phasing 

through Beagle. The Basque population has showed a consistent LD profile across 

the two haplotype phasing programs and the trim status differences. North Africa 

and China show much more extensive LD across the entirety of MAPKAP-K2 in the 

untrimmed dataset when compared against the trimmed dataset for Beagle. The 

Andes population is also consistent across the two different phasing programs but is 

less consistent when it comes to trim status of the datasets. South Africa shows six 

high LD designations compared to zero in the trimmed Beagle dataset, and the same 

pattern of six designations is shown in the untrimmed PHASE dataset heat map. In 

the untrimmed datasets of both programs, it is apparent that South African and the 

Basque populations show considerably less extensive LD compared to other 

populations in this study. When the trimmed datasets are incorporated, North Africa 
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North	Africa	 Russia	 South	Africa	
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shows little LD as well.  

 

All Sites 

 

Figure 16: This figure shows triangular heat maps generated in Haploview using trimmed output from PHASE 
across all sites. The pink box indicates the boundaries of MAPKAP-K2, the blue box indicates the boundaries of 
IL-10, the green box indicates IL-19, the purple indicates IL-20 and finally, the orange box indicates IL-24. 

 

 Figure 16 shows trimmed output from PHASE across all sites in this study 

across all nine populations. There is a consistent block of high LD at the very 

beginning of IL-19 that is shared across all populations except for North and South 

Africa. North and South Africa are also the two populations that show less extensive 

LD in general though there are a few signals of long-range LD in South Africa.  

Andes	 Basque	 China	

Iberia	 IndoPakistan	 Middle	East	

North	Africa	 Russia	 South	Africa	
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Figure 17: This figure shows triangular heat maps generated in Haploview using untrimmed output from PHASE 
across all sites. The pink box indicates the boundaries of MAPKAP-K2, the blue box indicates the boundaries of 
IL-10, the green box indicates IL-19, the purple indicates IL-20 and finally, the orange box indicates IL-24. 

 

 Figure 17 shows the untrimmed output from PHASE across all sites in the 

study. Interestingly, we can see here that the SNPs of IL-19 that were in strong LD 

are now shared across all populations including North and South Africa. More 

generally, signals of LD are more prevalent when the untrimmed datasets are used 

when generating heat maps. High LD scores are more extensive and dip below 

toward the bottom of the heat map, indicating that LD is much more extensive 

across distant sites in the untrimmed datasets. South Africa is still the population 

with fewer high LD designations. IL-24 has several SNPs in high LD within that gene 

and much like the individual gene heat maps showed, that pattern is consistent 

across different populations but also missing from South Africa.  
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Figure 18: This figure shows triangular heat maps generated in Haploview using trimmed output from Beagle 
across all sites. The pink box indicates the boundaries of MAPKAP-K2, the blue box indicates the boundaries of 
IL-10, the green box indicates IL-19, the purple indicates IL-20 and finally, the orange box indicates IL-24. 

 

 Figure 18 shows the distribution of LD across all sites from the trimmed 

dataset in Beagle. There is a somewhat consistent pattern of strong LD at the 

beginning of IL-19, though that signal is mostly absent in North and South African 

populations. There is a somewhat strong, albeit diffuse, pattern of LD across 

MAPKAP-K2 that is evident in the Andes, IndoPakistani, Middle Eastern, Russian 

and to some extent, Iberian, populations. Compared with Figure 18, which shows 

the untrimmed counterpart to this dataset from Beagle, high LD designations does 

not go as deep in the trimmed dataset.  
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Figure 19: This figure shows triangular heat maps generated in Haploview using untrimmed output from Beagle 
across all sites. The pink box indicates the boundaries of MAPKAP-K2, the blue box indicates the boundaries of 
IL-10, the green box indicates IL-19, the purple indicates IL-20 and finally, the orange box indicates IL-24. 

 

 Figure 19 generally reflects the untrimmed data from PHASE, although the 

high LD across IL-24 is less apparent in North Africa and Russia. There is also a 

group of SNPs at the beginning of MAPKAP–K2 that are in high LD in the Andes, 

China, Iberia, IndoPakisan, the Middle East, South Africa and Russia but they are 

absent from North Africa and the Basque populations. In this group of heat maps, it 

is not the Basque population that shows the least extensive LD across the region.  

 

Andes	 Basque	 China	

Iberia	 IndoPakistan	 Middle	East	

South	Africa	 Russia	 North	Africa	

Beagle	All	Sites	Untrimmed	

MAPKAP-K2	 IL-10	 IL-19	 MAPKAP-K2	 IL-10	 IL-19	 MAPKAP-K2	 IL-10	 IL-19	
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Figure 20 shows heat maps of all sites across all populations in the untrimmed dataset where 
haplotype phased was resolved using Beagle (top) and PHASE (bottom). The pink box indicates the 
boundaries of MAPKAP-K2, the blue box indicates the boundaries of IL-10, the green box indicates IL-19, the 
purple indicates IL-20 and finally, the orange box indicates IL-24. 
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 Figure 20 shows that phasing outcomes, when it comes to applications to LD 

analysis, are consistent between the programs PHASE and Beagle. The designations 

of high LD are concordant between programs but the haplotype block boundaries 

drawn around those extended haplotypes is variable. PHASE called nine haplotype 

blocks while Beagle only called six in the same region. The most extensive block of 

high LD appears to occur across IL-10 with MAPKAP-K2 and the beginning of IL-19 

showing high LD as well.  
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Table 2: This table shows the average haplotype block length for each population, at each site, across 
all populations. The two tables on top are from PHASE and the two on the bottom are from Beagle. 
Each program also has averages for the untrimmed and trimmed datasets. Cells that are highlighted 

All	Sites IL-10 IL-19 IL-20 IL-24 MAPKAP

All	Populations 5.3 11 4 3 5 5.5

Andes 6.375 4.5 6.2 2 5 5.5

Basque 6.875 11 7 3 4 5.33

China 9.6 6 6.5 3 5 21

Iberia 5.2 11 4.333 3 5 4.2

IndoPak 5.555 10 5.5 3 4 4.2

MidEast 5.667 4 7 3 4 4.4

NorthAF 6 10 6.5 3 4 5.667

Russia 6.25 5.5 6.5 2 4 5

SouthAF 5.625 5 6.5 2 4 5.667

All	Sites IL-10 IL-19 IL-20 IL-24 MAPKAP

All	Populations 4 10 3 3 3 4.333

Andes 5 4 4 2 3 6.5

Basque 5 10 4.5 3 2 3.667

China 6 5 4 3 3 13

Iberia 4.75 10 3 3 3 4.333

IndoPak 6.2 6 4 2 2 6

MidEast 6 4 4.5 3 2 6.5

NorthAF 5.166 8 7 NA 2 6.5

Russia 5 5 4 2 2 4.333

SouthAF 5.8 9 4 2 2 8

All	Sites IL-10 IL-19 IL-20 IL-24 MAPKAP

All	Populations 5.2	(-) 11	(/) 4.33	(+) 3	(/) 5	(/) 5.5	(/)

Andes 6.375	(/) 4.5	(/) 6.5	(+) 2	(/) 5	(/) 5.5	(/)

Basque 6.875	(/) 11	(/) 7	(/) 3	(/) 4	(/) 4.25	(-)

China 9.6	(/) 6	(/) 6.5	(/) 3	(/) 5	(/) 21	(/)

Iberia 5.3	(+) 11	(/) 4.333	(/) 3	(/) 5	(/) 4.2	(/)

IndoPak 4.9	(-) 10	(/) 5.5	(/) 3	(/) 4	(/) 4.2	(/)

MidEast 5.2	(-) 3	(-) 7	(/) 3	(/) 4	(/) 7.333	(+)

NorthAF 5.22	(/) 5	(-) 6.5	(/) 3	(/) 4	(/) 5.667	(/)

Russia 5.555	(-) 5.5	(/) 6.5	(/) 2	(/) 4	(/) 5	(/)

SouthAF 5.625	(/) 5	(/) 6.5	(/) 2	(/) 4	(/) 5.667	(/)

All	Sites IL-10 IL-19 IL-20 IL-24 MAPKAP

All	Populations 3.8	(-) 10	(/) 3	(/) 3	(/) 3	(/) 4.33	(/)

Andes 4.857	(-) 4.5	(+) 4	(/) 2	(/) 3	(/) 6.5	(/)

Basque 5	(/) 10	(/) 4.5	(/) 3	(/) 2	(/) 3.667	(/)

China 6.2	(+) 5	(/) 7	(+) 2	(-) 3	(/) 12	(/)

Iberia 5	(+) 10	(/) 3	(/) 3	(/) 3	(/) 4.333	(/)

IndoPak 4.57	(-) 6	(/) 4	(/) 3	(+) 3	(+) 6.667	(+)

MidEast 4.125	(-) 2.667	(-) 4.5	(/) 3	(/) 2	(/) 5.5	(-)

NorthAF 7.25	(+) 8	(/) 7	(/) NA 2	(/) 6.5	(/)

Russia 6	(+) 5	(/) 3.5	(-) 2	(/) 2	(/) 6.5	(+)

SouthAF 5.8	(/) 9	(/) 4	(/) 2	(/) 2	(/) 8	(/)

PHASE	Sites	(Untrimmed)

PHASE	Sites	(Trimmed)

Beagle	Sites	(Untrimmed)

Beagle	Sites	(Trimmed)
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in purple are those where the Beagle average was lower and cells that are highlighted in green are 
those where the Beagle average was higher than that of PHASE. Given these differences, deviances of 
more than 1 average marker per block are bolded. 

 

There is not a consistent increase in the average haplotype block length by 

population across the data as evidenced by Table 2. There are some populations 

closer to Africa that exhibit shorter average haplotype block lengths compared to 

those outside of Africa but there are few discernible clinal block length patterns. IL-

24 is the only gene that shows a consistent signal of decreasing average block length 

in populations that are close to or within Africa across both programs and trim 

statuses, though the decrease is very slight. Several populations show aberrant 

averages, which is likely due to the small numbers of samples per population used in 

this study. 



65 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

All	Pops

Andes

Basque

China

Iberia

IndoPak

Middle	East

North	Africa

South	Africa

Russia

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

All	Pops

Andes

Basque

China

Iberia

IndoPak

Middle	East

North	Africa

South	Africa

Russia

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Beagle

PHASE

MDBlocks

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

Beagle

PHASE

MDBlocks

Table	4:	This	table	shows	haplotype	block	boundaries	across	all	sites	for	each	haplotype	phasing	program:	PHASE,	Beagle	and	MDBlocks.	Black	bars	indicate	the	block	boundary.	White	boxes	indicate	markers	that	are	listed	

within	haplotype	blocks	and	grey	boxes	are	markers	that	were	not	listed.	The	gene	boundaries	are	indicated	along	the	bottom	of	the	table.

IL-10

IL-10 IL-19 IL-20 IL-24

MAPKAP

Comparison	of	Haplotype	Block	Boundaries	Across	Populations

IL-10 IL-19 IL-20 IL-24

IL-10MAPKAP

Comparison	of	Haplotype	Block	Boundaries	Across	Three	Phasing	Programs

Table	3:	This	table	shows	haplotype	block	boundaries	by	population	given	by	Haploview	with	untrimmed	output	from	PHASE.	Black	bars	indicate	the	block	boundary.	White	boxes	indicate	markers	that	are	listed	within	

haplotype	blocks	and	grey	boxes	are	markers	that	were	not	listed.	The	gene	boundaries	are	indicated	along	the	bottom	of	the	table.
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 Table 3, which shows haplotype block boundaries by population, shows that 

there are some salient block boundaries that are concordant with gene boundaries. 

This general trend of haplotype block boundaries falling at the junction between 

genes is evident in the row that shows block boundaries across all populations. It 

also shows that there are shared block boundaries within genes that are also shared 

across several populations. There is also evidence of recombination sites within 

genes, namely within IL-19, which has block boundaries between markers 41 and 

46 across all populations in this study. Both of these tables were inspired by a figure 

in a paper by Liu et al. that investigated population-specific variation in haplotype 

block structures (Liu et al., 2004). 

 

 Table 4 shows the haplotype block boundaries that were determined by the 

three haplotype phasing programs used in this thesis. No single block boundary was 

shared by all three phasing programs. PHASE and Beagle shared block boundaries 

much more frequently than either shared with MDBlocks. Out of 15 identified 

haplotype block boundaries, PHASE and Beagle shared 13 but MDBlocks and Beagle 

only shared 2 common block boundaries, showing the discordance between PHASE 

and Beagle with MDBlocks. The same general trend of block boundaries around 

genes and some boundaries within genes such as IL-19 is shown across phasing 

programs as it was across different populations in Table 3.  
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MDBlocks 
 

MDBlocks, which uses an adaptive model fitting approach in determining 

haplotype blocks, found 10 blocks across the 57 markers included in this study 

when all populations were included. Haplotype blocks range from 12 markers to 

only 2 markers in length. Generally, the number of unique haplotypes in a given 

block increases with block length, though there are exceptions such as block 8, 

which is only 5 markers in length but has 11 unique haplotypes (see Table 5). Only 

three individual populations were run through MDBlocks. For an unknown reason 

and likely due to the nature of the data, the files for several populations would not 

run through the program.  

 

Table 5: This table shows the output file from MDBlocks when all populations using all sites were run 
through the program. The first column indicates the number of blocks found. The second and third 
columns indicate the boundaries for each block. Ex. Block 1 contains markers 1-8 while block 2 
contains markers 9-20. The fourth column in the table indicates the number of unique haplotypes in 
each block. 
 

In the IndoPakistani population, only 8 haplotype blocks were found and the 

variance of haplotype block length was from 2 to 12 markers in length (see Table 6). 
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Unlike when all populations are considered simultaneously, there is not a tendency 

for shorter haplotype blocks to exhibit higher than anticipated haplotype diversity. 

In this population, there is a trend of increasing haplotype diversity with block 

length except for the longest haplotype block, which had only four unique 

haplotypes representing it.  

 

Table 6: This table shows the output file from MDBlocks when all sites within the IndoPakistan 
population were run through the program. The first column indicates the number of blocks found. 
The second and third columns indicate the boundaries for each block. The fourth column in the table 
indicates the number of unique haplotypes in each block. 
 

In the North African population, 9 haplotype blocks were found and the 

variance of block size was from 1 to 20 markers in length. There was also a trend in 

the North African samples where longer haplotype blocks begat higher haplotype 

diversity with the exception of one block composed of seven markers only 

harboring 3 unique haplotypes (see Table 7). 
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Table 7: This table shows the output file from MDBlocks when all sites within the North African 
population were run through the program The first column indicates the number of blocks found. 
The second and third columns indicate the boundaries for each block. The fourth column in the table 
indicates the number of unique haplotypes in each block. 

 
Russian samples showed 8 haplotype blocks in total and the variance of block 

length was from 2 to 14 markers. Per the usual trend, the longest haplotype blocks 

harbored the most haplotype variability with one exception of a long block that had 

only three unique haplotypes. The longer blocks with unexpectedly low haplotype 

variability occurred across roughly the same markers (35-42) in all of the individual 

populations (see Table 8).  
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Table 8: This table shows the output file from MDBlocks when all sites within the Russian population 
were run through the program. The first column indicates the number of blocks found. The second 
and third columns indicate the boundaries for each block. The fourth column in the table indicates the 
number of unique haplotypes in each block. 

 

Bearing Analysis and Angular Correlation 
 
 Bearing analysis across the IL-10 gene family and MAPKAP-K2, which was 

run with the program PASSaGE largely showed an east-west clinal distribution of 

variation but none of the estimates reached the set significance threshold. One SNP 

in MAPKAP-K2, rs7515374, nearly reached significance but fell just short. A closer 

inspection of the bearing analysis, which is more suitable for populations of smaller 

size, for that particular SNP showed that they were indeed some significant values.  
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Figure 21: This figure shows the angular correlation plot for each locus in MAPKAP-K2 and the IL-10 
gene family. The direction of the colored circles represents the direction that each locus is mostly 
directly correlated with the allele frequencies observed in the data.  

 

Figure 22: This is a bearing analysis plot for the SNP, rs7515374, in MAPKAP-K2. Circles along the 
line indicate significant values while crosses signify non-significant values.  
 

 The bearing analysis in Figure 22 indicates that the greatest positive 

correlation trends in a NNW direction. The cline, which goes in the direction of 

greatest negative correlation and is the opposite of the greatest positive correlation, 

goes in the NNE direction. As far as allele frequencies are concerned, which are the 

data that spatial analysis is being performed on, this means that frequencies vary 

along the SSW-NNE axis.  
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Population-Specific Differences in LD Patterns 
 
 Within the general pattern of extensive LD signals spanning entire genes, 

slight population-specific block boundaries do exist, which is in concordance with 

authors that have described how haplotype block structure varies across 

populations (Liu et al., 2004). The results of this study corroborate that claim, with 

only seven of the 57 sites showing a shared haplotype block boundary. For the 

purposes of this comparison, a shared block boundary is defined by a boundary that 

is common amongst at least five of the nine populations in this study (see Table 3). 

Four of the seven shared block boundaries occur at the junction between genes.  

 South Africa exhibits less extensive LD more generally and especially where 

all other populations in the study possess strong signals of LD at IL-24. This 

observation is expected given the Out of Africa model of human dispersal and the 

expectation that older, more established populations have had sufficient time to 

accumulate mutations and accrue the effects of other demographic forces that serve 

to break up LD patterns over time.   

 Unlike the conclusions drawn by Gabriel et al., the population specific 

differences in the extent of LD across the sites does not seem to reflect the 

demographic histories of the populations aside from the relaxation of LD across IL-
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24 in the South African samples (Gabriel et al., 2002; Sawyer et al., 2005). High LD at 

the beginning of IL-19 across populations and a relaxation of LD at IL-24 in South 

African populations may be a reflection that IL-19 is under stronger selection with 

certain haplotypes being driven to higher frequencies due to positive selection or 

alternative haplotypes being eliminated through stronger negative selection 

whereas IL-24 variability may be primarily determined by stochastic demographic 

forces. Kõks et al. noted LD across IL-19 and IL-20 and suggested that there may be 

protective haplotypes that play a role in psoriasis susceptibility at these loci due to 

associations between IL-19 and IL-20 with psoriatic phenotypes (Kõks et al., 2004). 

It could also be the case that IL-19 and IL-24 exhibit stronger LD signals because 

MAPKAP-K2 and part of IL-10 are in an area of relatively high recombination (1.9 

cM/Mb) where the rest of the sequence under study is in an area of low 

recombination (.5 cM/Mb) (Kent et al., 2002).  

 The occurrence of haplotype block boundaries around rather than within the 

boundaries of genes is in concordance with the conclusion by McVean et al. that 

recombination is less likely to occur within genes, presumptively because 

recombination within exons is deleterious (McVean et al., 2004). Despite this 

assertion, all three programs found haplotype block boundaries within gene 

boundaries, most notably within IL-19, but also within genes with a greater density 

of SNPs.  

 Population-specific differences in the number of haplotype blocks could 

indicate different population histories. Given models of human dispersal and 

demographic expectations of LD, populations outside of Africa are expected to have 
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extended haplotypes, more extensive LD and thus, fewer haplotype blocks with low 

haplotype diversity. Populations within or close to Africa are expected to exhibit less 

extensive LD, shorter haplotypes, shorter blocks of LD and should, therefore, have 

more numerous and shorter haplotype blocks (Tishkoff et al., 1996). A consistent 

increase of average haplotype block length with increasing distance from Africa was 

not observed in these data (see Table 2). IL-24 showed a somewhat consistent 

decrease of average haplotype block length that is in concordance with expectations 

under a population history model, though it was slight. This suggests that 

demographic forces are likely not the only forces constraining or creating patterns 

of LD in this region of chromosome 1.  

 LD heat maps did not show a consistent pattern of LD across IL-19 and IL-20, 

which was reported by Kõks et al. in their study on haplotypes spanning the two 

genes, though there was strong LD across the beginning of IL-19 (Kõks et al., 2004). 

Only the Russian population showed a pattern of strong LD that links IL-19 with IL-

20 and even in that case, the block did not encapsulate the entirety of IL-19 in the 

same block as IL-20 (Figure 23). However, when considering the population specific 

block boundaries across each gene boundary, the junction between IL-19 and IL-20 

has fewer shared block boundaries across all populations compared to any other 

junction in this study.  Notably, the only individual populations that exhibit a block 

boundary between IL-19 and IL-20 are from the North and South African population 

samples.  
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Extent of LD in MAPKAP-K2 and the IL-10 Gene Family 
 
 In the output from MDBlocks, there were haplotype blocks from marker 35-

42 that were comparatively long but had unexpectedly low haplotype diversity 

given that the general trend was increasing haplotype block length led to increased 

haplotype diversity. This pattern was seen across the individual populations that 

were run through MDBlocks (IndoPak, Russia and North Africa) but not all 

populations together. This region is at the beginning of IL-19 and there are several 

other pieces of data outlined in this thesis that capture this low haplotype diversity. 

Table 1 shows almost no haplotype block boundaries in this region of IL-19. Heat 

maps for IL-19 (see Figures 6-9) also show extended and extensive LD across the 

first half of IL-19, which would lower haplotype diversity.  

 

Figure 23: This figure shows the heat map across all sites in the untrimmed Russian dataset. This 
heat map was generated using Haploview with haplotype phasing done with the PHASE program.  

PHASE	Untrimmed	Data	across	All	Sites	in	Russian	Popula on	
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 There were some consistent signals of LD across all or most of the study 

populations, namely in the region of high LD in a portion of IL-19, however, there 

were also many population- specific and program-specific regions of elevated LD as 

well. The Basque population showed a notable relaxation of LD across MAPKAP-K2 

where other populations showed at least sporadic instances of LD between markers. 

 

Reconciling Population-Specific Differences and General Patterns of LD 
 
 One of the goals in this thesis is to evaluate the effect of population structure 

on LD estimates as compared to LD evaluation across all populations. Most of the 

heat maps and haplotype block boundary charts shown in the Results section show 

that there is ample evidence for nuance in LD estimates within populations. Some 

regions within this study showed stronger signals of LD that transcended the 

population level view, such as IL-19, but other strong signals of LD are not apparent 

unless all populations are evaluated together.  

 Figure 19 is an LD heat map of all populations together and given this view, it 

is apparent that there are salient block boundaries around each of the genes, 

particularly MAPKAP-K2 and IL-10, with the exception of the block boundary that 

occurs within IL-19. The significance of a general pattern of LD with population-

specific differences in both the extent of LD at any given locus at the exact location 

of haplotype block boundaries has different implications given the application. 

Pritchard and Przeworski elaborate on how a nuanced understanding of LD at 

different scales can be used to glean unique pieces of information about complex 
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disease causation.  In complex disease association studies, where the goal is to find a 

general region where a disease locus may lie along the human genome, large-scale 

views of LD patterns such as those given in Figure 19 can summarize large amounts 

of genetic data and narrow the field of search (Pritchard and Przeworski, 2001). On 

the other hand, when exact localization of a disease allele is the goal as it often is 

after association studies have found an associated disease region, the smaller scale 

nuances afforded by gene-by-gene and population-specific analysis allow for the 

pinpointing of the causative locus.  

 

The Effect of Trim Status on LD 
 
 Certain individuals and loci were trimmed from the original dataset due to 

quality control concerns. To evaluate the effect of said trimming, input files were 

subsetted on this basis, as well as population-by-population and gene-by-gene. 

Figures 15 through 18 show the effect of trim status on LD across two programs: 

PHASE and Beagle. For the untrimmed PHASE dataset, IndoPakistan, Russia and 

North Africa showed high LD designations deep within the heat map when 

compared against the trimmed dataset, indicating that sites that are farther apart on 

this region of the chromosome are in strong LD even though local LE has been 

generated within those larger blocks of disequilibrium. This pattern of long-range 

LD deep within the heat map is also seen in the untrimmed dataset from Beagle with 

Iberia, South Africa and Russia showing deep levels of LD compared to their 

counterparts in the trimmed dataset.  
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 The consequence of evaluating trim status on LD measures in populations 

with small population sample sizes may have inadvertently revealed the limitations 

of the algorithms that assess LD. In Figures 6 through 9, which show heat maps for 

LD in IL-19 between trimmed and untrimmed datasets inputted into Beagle and 

PHASE for haplotype imputation, the effect of small sample size on LD estimates is 

apparent. Both trimmed heat maps show no LD across all of IL-19 in North African 

samples, even though the signal of LD at the beginning of this region is well 

represented in all other study populations. Because of trimming, this population 

was only represented by four haplotypes. In the untrimmed heat maps, the signal of 

LD in North Africa is almost exactly identical to all other populations that 

maintained that strong signal of LD across the first half of IL-19, which is even 

apparent at the level of all populations in Figure 19. For the purposes of this study 

and given the nature of these data, the untrimmed datasets tended to be more 

revealing of patterns of LD. The trimming of data based on conservative genotyping 

calls seemed to only reduce the number of samples and data points, not necessarily 

any error in the dataset.  

 

Accurate Predictions of Haplotype Phase 
 
 A concern of this study is the accurate prediction of missing genotype data in 

the imputation process, which is resolved by the programs employed, PHASE, 

Beagle and MDBlocks, through different statistical approaches. PHASE relies on a 

coalescent model, which infers missing genotypic data given the assumption that 

imputed haplotypes are likely to be similar to other observed haplotypes in the 
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dataset (Browning and Browning, 2007). Conversely, Beagle uses a Hidden Markov 

Model approach in imputing missing haplotypes given the assumption that the 

observables, in this case background haplotypes and local levels of LD, will 

accurately predict haplotypes with missing data (Pei et al., 2008). In evaluating the 

effectiveness of different inference methods, Pei et al. note that Beagle’s particular 

treatment of the HMM approach suffers in accurate predictive power, at least 

compared to MACH and IMPUTE, by not considering reference haplotypes such as 

those from the HapMap project as hidden states. While the approach used in PHASE 

is computationally intensive, it is reported to be a reliable method for predicting 

missing data during imputation (Browning and Browning, 2007). While the goal of 

this study is to evaluate the imputation accuracy between the programs Beagle and 

PHASE, the small size of the sample set biases the results in favor of PHASE. 

 While no methods were employed to specifically assess the accuracy of 

phasing methods given this dataset, the results given by each program were fairly 

consistent and in concordance with each other. Furthermore, downstream 

applications on LD analysis also showed little variation in results between PHASE 

and Beagle. Other variables, such as assessing LD in each population separately 

versus all populations together or trimming the datasets, seemed to have a greater 

impact on the results of LD analyses than did the program used for haplotype 

phasing.  
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Spatial Autocorrelation Analyses 
 
 The results of the bearing analysis showed an East-West distribution across 

the loci on chromosome 1, which is concordant with the observations of ABO blood 

groups and rhesus factor highlighted in the paper by Falsetti and Sokal (Falsetti and 

Sokal, 1993). Unfortunately, none of the data points were significant so the 

conclusions drawn from the bearing analysis are necessarily limited. Likely, the lack 

of significance across the loci could be that the sampling distribution from an east-

west direction is not as uniform as it is going from south to north.  
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 A caveat to these data is the degree to which admixture is influencing the 

resolution of haplotype phase and downstream estimates of LD. The samples were 

purchased from Coriell and the exact location of sampling is unknown. If, for 

example, Chinese samples come from the countryside, which is likely to be less 

admixed than city centers such as Beijing or Hong Kong, then LD estimates may 

differ accordingly. This uncertainty likely has implications for the influence of other 

stochastic demographic forces, like genetic drift, on the results obtained. Another 

restriction on this study given these data is that in order to assess the impact of 

stochastic demographic forces on the impact of LD and haplotype block boundary 

determination, a single region of the genome cannot be used as a proxy for a 

population history. While conclusions may be cautiously drawn about the impact of 

natural selection, a force that is site- specific in its impact, one must be even more 

conservative when conjecturing about the implications for forces that are genome-

wide (Slatkin, 2008). 

 Another caveat speaks to the limitations of LD as a measure of summarizing 

genetic variability and the necessary caution one must take when extrapolating 

conclusions. LD analysis speaks only to the association of alleles, not to the cause of 

their association. Trifonova et al. elaborate on the limited applicability of LD 

analysis results given the research questions they are proposed to answer 
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(Trifonova et al., 2012). While it would certainly be useful to efficiently summarize 

large swaths of genetic data for the purposes of dealing with the burden of large-

scale genome wide association data and the task of teasing apart the intricate 

genetic influences in complex disorders, there are likely meaningful population-

specific and site-specific differences that make such a silver bullet solution miss the 

mark.   

The study population and the numbers of each site for each locus were small 

in this study, perhaps so much so that some of the signals may be an artifact of small 

sample size. A small sample size can lead to an overestimation of the extent of LD 

because points of recombination are not accurately detected (Want et al., 2002). 

Furthermore, this study was limited to male samples, which may reveal a sex-

specific bias in regard to recombination rate and its impact on LD results. 
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 This thesis sought to examine the methodological implications of different 

haplotype phasing and subsetting approaches to downstream applications of LD 

analysis. Two different and widely employed haplotype phasing programs, PHASE 

and Beagle, were used to phase genotype data from MAPKAP-K2 and the IL-10 gene 

family. A third haplotype phasing program, MDBlocks, was used to compare phase 

results against the aforementioned programs as well. Results from PHASE and 

Beagle were used as input into Haploview for LD analysis. At this point, several 

subsetting approaches were used to partition the data such that the impact of these 

differences on the final results could be assessed. Input files were constructed for 

each population individually as well as all populations together. The original dataset 

was trimmed based on the confidence of genotyping calls and the trimmed and 

untrimmed sets were run to assess the impact of that variable as well.  

 All three haplotype phasing methods performed similarly in determining 

how many haplotype blocks occurred across the region and where haplotype block 

boundaries fell. Subsetting the data by population versus inputting all populations 

together in LD analysis revealed population-specific differences in haplotype block 

length and block boundary positions. The input of all populations into Haploview for 

LD analysis revealed general patterns of block boundaries that flank gene 
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boundaries with the exception of some block boundaries that fall within genes, most 

notably within IL-19.  
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