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ABSTRACT 

 

DEVELOPMENT OF A CAPACITIVE PHOTOCURRENT SCANNING 

MICROSCOPE WITH CARRIER DEPLETION SUPER-RESOLUTION 

Austin Levi Carver 

December 14, 2017 

 This dissertation discusses the development and refinement of a new two-

dimensional imaging technique, funded in part through a NSF MRI equipment 

development grant. Capacitive-Photocurrent (CPC) spectroscopy allows for the probing 

of samples without the requirement of free-carrier collection. The CPC technique allows 

for the studying of various states within a material. With this electronic measurement 

technique, we developed a scanning technique, scanning-CPC, that provides two-

dimensional material property images without requiring environments that must be high-

vacuum, humidity-controlled, or temperature-controlled. This new technique also 

provides two-dimensional, electronic mapping without damaging samples. With this 

successful result, we then modified an existing resolution improving technique, 

Stimulated Emission Depletion (STED), to create a similar technique to improve the 

scanning-CPC resolution. The result was a new scanning technique, CPC-STED. With 

the CPC-STED technique we could achieve super-resolution of electronic response based 

images while maintaining the environmental flexibility of scanning-CPC. 
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 This dissertation is divided into six chapters, covering motivations and 

background, early work using the CPC technique, the development of the scanning-CPC 

system, testing and showcase of the scanning-CPC technique, testing and showcase of the 

CPC-STED technique, and finally, discussion of the results and proposals for future 

work. Chapter One discusses the motivations for this dissertation as well as the 

background of multiple one-dimensional and two-dimensional techniques. Chapter Two 

reviews the systems used for CPC spectroscopy, the previous work done in with the CPC 

technique, and the CPC work completed with my direct involvement. Chapter Three 

details the specifics of the scanning-CPC and CPC-STED system’s optical layout, sample 

holder design, and the custom LabView design for the scanning system. Chapter Four 

details the results of the scanning-CPC system, focusing on the physical mechanisms 

leading to successful scanning-CPC images. Chapter Five details the results of the CPC-

STED system. Chapter Five also discusses the specific outcomes of how the depletion 

technique functions in the context of electronic imaging, rather than fluorescence 

imaging. Finally, Chapter Six concludes the results and provides recommendations for 

future work.
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CHAPTER 1 INTRODUCTION 

1.1 Motivations 

Traditional microscopy seeks to improve resolution, but has been traditionally 

limited by the diffraction qualities of the optics used. In 2014, the Nobel Prize in 

Chemistry was awarded to Stefan Hell for the development of a super resolution 

microscope via the Stimulated Emission Depletion (STED) technique. This award was 

for Dr. Hell’s work in improving resolution beyond the limits of an optic’s diffraction 

capabilities by using a novel system design. Since that point much work worldwide has 

been devoted to achieving similar imaging results at the super resolution level because 

super resolution can help in probing smaller and smaller structures, >5 nm, providing 

information on a variety of systems. This dissertation investigated a new way of 

employing the STED technique to create images based on the electronic response of a 

sample.  

The Alphenaar group at the University of Louisville has been developing and using 

the Capacitive Photocurrent (CPC) technique for probing electronic behavior. This 

technique has been used for material property analysis, but this dissertation will discuss 

how the CPC technique was developed into a two-dimensional scanning technique. Once 

the scanning-CPC technique was implemented, we sought to employ the physics 

underlining the STED technique, allowing for us to accomplish super resolution in 

electronic process imaging, creating the CPC-STED technique. 



2 

 

The remainder of Chapter 1 discusses various one-dimensional and two-

dimensional techniques. Chapter 1 also discusses other super resolution techniques and 

how they apply to our new CPC-STED technique, finally discussing a brief overview of 

the CPC-STED technique. Chapter 2 is a review of the various CPC systems as well as 

discussion on the body of work done using the CPC technique, both done by others and 

myself. Chapter 3 discusses the design of the optical layout, hardware components, and 

software relating to the scanning-CPC and CPC-STED development. Chapter 4 discusses 

the results of the scanning-CPC technique. Chapter 5 discusses the results of the CPC-

STED technique. Finally, Chapter 6 discusses the conclusions of this work as well as 

possible avenues for future work. 

1.2 Spectroscopy 

This section will discuss various techniques of fixed-point spectroscopy. A fixed-

point analysis measures the response of a sample at a single point and generates a one-

dimensional data set. The following spectroscopy techniques discussed measure the 

optical or electrical response of a sample when exposed to electromagnetic radiation, 

typically a monochromatic light source. When incident light excites electrons from lower 

energy states to higher energy states, this electron relaxation creates additional current, 

light, or heat. This result means that a range of wavelengths can be used to provide 

information on the electron structure of a sample. The technique we developed, CPC-

STED, combines various elements of a variety of different spectroscopy techniques. The 

techniques described here are fluorescence spectroscopy, photocurrent spectroscopy, and 

finally the technique our group has developed, Capacitive Photocurrent Spectroscopy 

(CPC). 
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1.2.1 Absorbance spectroscopy 

 Fluorescence spectroscopy probes the electronic structure of a sample by exciting 

electrons from a lower to higher state and analyzing the photons emitted as the electron 

returns to its lower state. In Figure 1.1 we have incident light exciting an electron to a 

higher state, this electron then (a) returns directly to the lower state, emitting a photon, 

(b) decays non-radiatively and then returns to the lower state and emits a photon, and (c) 

undergoes multiple nonradiative processes before returning to its lower state and emitting 

a photon. This process occurs rapidly with a typical fluorescence lifetime of ~10 ns [25]. 

With excitation induced as follows, where S0 is the ground state, hν is the light’s energy, 

S1 is excited state: 

𝑆0 + ℎ𝜈𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 → 𝑆1                    (1. 1) 

and fluorescent emission: 

𝑆1 → 𝑆0 + ℎ𝜈𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛(ℎ𝑒𝑎𝑡)                   (1. 2) 

This identity provides information on the electronic states available as well as transitions 

that are typical of a specific molecule or material. An emitted photon has a specific 

wavelength that depends on both the material excited and the excitation wavelengths 

Figure 1.1: Various methods of photoluminescence (a) direct relaxation 

with photon emission (b) relaxation with one non-radiative step (c) 

relaxation with two non-radiative steps. [18] 
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used. With an excitation wavelength providing a specific energy, E, and wavelength, λ, 

𝐸 = ℎ𝑣 =  ℎ𝑐
𝜆⁄                     (1. 3) 

then with a material of a given ground state energy, Eg, will emit a particular wavelength 

that depends on the energy of the excited state, Ee, with 

𝐸𝑒−𝐸𝑔 = ℎ𝑣                    (1. 4) 

we have an emitted wavelength, λe given by, 

𝜆𝑒 = ℎ𝑐
(𝐸𝑒 − 𝐸𝑔)⁄                     (1. 5) 

 Figure 1.2 is a schematic for a excitation spectrofluorometer. This system uses a 

white light source that is focused to maximize power. A monochromator selects certain 

wavelengths from the chopped white light. The chopped light is split so that a reference 

can be collected. The light is then focused onto the sample in the front facing flow cell as 

shown the diagram. The light the sample emits is focused by a concave mirror, filtered, 

and then collected by another monochromator and photomultiplier tube (PMT). While 

Figure 1.2: High-performance custom front-face excitation 

spectrofluorometer [12] 
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there are other styles of fluorescence spectroscopy systems available, they all follow the 

same basic principle.  

1.2.2 Photocurrent spectroscopy 

 Photocurrent spectroscopy probes the electronic structure of materials by 

measuring the current generated after the material is exposed to electromagnetic 

radiation. Free carriers generated by the light move in response to local fields, generating 

current [26]. As seen in Figure 1.3, the requirements for a photocurrent measurement 

system are relatively simple, a white light source, a monochromator, a beam modulator, 

and focusing components. The chopped monochromatic light is focused onto the sample 

where a lock-in improves signal integrity and a DC power supply helps in biasing the 

sample to improve signal strength. The photocurrent measurement system shown in 

Figure 1.3 was used to evaluate blue LEDs [9]. 

 Scanning samples across an array of energies can determine material properties. 

This technique is frequently used in research involving solar cells because it helps predict 

solar cell function and efficiency. The photocurrent can be generalized as follows, 

𝐼𝑝ℎ = 𝜂𝑃𝑜𝑝𝑡

𝑞

ℎ𝜈
                    (1. 6) 

Figure 1.3: Simple diagram of a photocurrent measurement setup. [9] 
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where Iph is the photocurrent, Popt is the optical power of the incident beam, and η is the 

internal quantum efficiency (ratio of number electron-hole pairs contributing to the 

photocurrent to the number of photons absorbed by the sample) [9]. Where the quantum 

efficiency is a material property leaving only the photon flux, the number of photons per 

second per meter-squared, as the adjustable parameter, meaning either the light source’s 

intensity can be increased. 

 This technique does require free carriers, and the carriers must be able to be 

collected by the contacts. This requirement means it is not suitable for some types of 

samples. The next sections will discuss how the CPC technique overcomes the free 

carrier requirements. 

1.2.3 Capacitive Photocurrent (CPC) spectroscopy 

Capacitive-photocurrent (CPC) spectroscopy is the measurement of the AC signal 

of the current generated from the electron-hole separation generated in a sample. This 

signal generation is done by setting up the sample in a similar way to a metal-insulator-

semiconductor (MIS) photo detector, where the semiconductor is replaced with the 

Figure 1.4: Diagram of CPC measurement 
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sample as shown in Figure 1.4. With a modulated light source, a displacement current is 

generated across the capacitor formed with the sample and a ground plate. The CPC 

technique is a measurement of the samples absorption as well as the electron-hole 

separation generated in the sample. CPC also allows for non-destructive spectroscopy and 

simple sample preparation. Often, it only requires a simple silver paste contact on the 

sample surface and mounting to the dielectric/insulator. In Figure 1.5, we have the layout 

used for testing graphene oxide. Since this is an AC measurement, it allows for using a 

lock-in to increase signal fidelity, reducing the signal to noise ratio 

1.3 2D imaging 

Two-dimensional images can be created by using the fixed-point framework and 

moving either the sample or the interrogation beam and then collecting the intensity of 

the sample’s response to generate an image of the sample with respect to its response. 

This 2D survey will also cover a topological focused technique, atomic force microscopy 

(AFM), as well as scanning electron microscopy (SEM), and electron beam-induced 

current (EBIC) imaging. Further discussion of fluorescence based two-dimensional 

Figure 1.5: CPC alternative setup [14] 
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imaging will be discussed in Section 1.4 with a survey of sub-diffraction techniques, 

including STED. 

1.3.1 Atomic Force Microscopy (AFM) 

 Atomic force microscopy is an imaging technique that provides topological 

profiles of a sample’s surface. The AFM uses a pointed cantilever that is moved across 

that samples surface with electrical, magnetic, or physical interactions. The surface 

topology causes the cantilever to deflect, moving a laser that is reflected off the back side 

of the cantilever. This lever has a tip, t, in Figure 1.6 that is drawn across the sample, S. 

With a laser, L, targeting the reflective back of a cantilever where we measure the 

deflection of the cantilever by correlating the reflected beam signal in the photodetectors, 

PD1 and PD2, this collected signal generates an image corresponding to the surface 

profile of the sample. AFM has trouble when the surface profile of a sample with sharp 

angles since they can impede the motion of the tip of the cantilever due to the tip’s angle. 

 AFM measurements were used in our work creating a two-dimensional profile of 

the surface topology of materials later characterized using the scanning-CPC system. 

Figure 1.6: Simple layout of an Atomic Force Microscope 

[13] 
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With accurate representations of a sample’s physical topography, we can correlate these 

physical topographical profiles to the electrical images generated by the CPC signal. 

1.3.2 Scanning Electron Microscope (SEM) 

 Scanning electron microscopy measure the interactions between a high-energy 

electron beam and a sample. Figure 1.7 shows a basic SEM design, with an electron gun 

having its beam focused onto a sample and the resulting reflected beams being collected. 

The SEM collects either the reflected electrons or the generated secondary electrons, this 

signal provides information about the sample’s morphology, composition, and structure. 

The collected data is displayed as a 2D image where the z-axis is the intensity of the 

signal. This technique allows for images to have down to 1-2 nm resolution. This 

technique allows for collection of multiple resulting signals: secondary electrons, 

backscattered electrons, diffracted backscattered electrons, and photons. The system also 

requires a HV or UHV environment.  

Figure 1.7: Basic SEM layout. [7] 



10 

 

 With the advantages this technique offers, we used it to examine the topological 

profiles of our semiconductor samples. This comparison allows for us to better correlate 

the images provided by the SEM with the images provided by the scanning-CPC and the 

CPC-STED. Some of the details provided by the SEM technique are used in Chapters 4 

and 5. 

1.3.3 Electron Beam-Induced Current (EBIC) 

 Electron beam induced-current applies an electron beam to a sample and the 

current created is measured. The sample or beam can be moved to generate a two-

dimensional image that can be used to describe the material’s properties. EBIC is done in 

a modified scanning electron microscope (SEM). This technique is for characterizations, 

such as locating p-n junctions, detecting defects, or measuring minority carriers. EBIC 

relies on the internal electric field of a sample. The beam of electrons generates electron-

hole pair separation resulting in a measurable current.  

 This technique is valuable for understanding certain semiconductor systems as 

well as doing failure analysis and exploring solid-state physics. EBIC requires the 

Figure 1.8: Sample of possible EBIC design [11] 
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modification of either a SEM or Scanning Transmission Electron Microscope (STEM) 

and a high vacuum (HV) or ultra-high vacuum (UHV) environment. 

 In Figure 1.9, we see a SEM image (a) inset on a scanning EBIC image (b). This 

scan shows how a InSb-InAs nanowire device has an unusual profile near the 

heterointerface because the signal switching from positive to negative. The EBIC 

technique is useful here since this is a measure of carriers collected, unlike CPC 

measurements that do not require carrier collection. This figure also shows how EBIC has 

an advantage by collecting the secondary electrons of a scan to build a topological image 

(a) as well as an electronic response image (b).  

1.4 Sub-diffraction limited techniques 

Traditional imaging techniques are limited by the minimum diameter of the light on 

the sample’s surface. In traditional fluorescence microscopy, the maximum resolution is 

Figure 1.9: SEM image of the InSb-InAs NW device (a) and its EBIC 

image at 100 K (b). The scale bar in both pictures is equal to 1 μm. [24] 
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~200-300 nm [27]. This limit (d) is controlled by an objective’s numerical aperture (NA) 

and the wavelength of the light (λ) given by the Abbe diffraction limit, 

𝑑 =
𝜆

2𝑁𝐴
                    (1. 7) 

This limitation means that we cannot resolve any separations or features below the 

diffraction limit (d). We can see in Figure 1.10 how this limit (Abbe limit) cannot 

differentiate between two separate features (a) as seen in the resulting image in (b) when 

using a 2.54eV (488 nm) beam through a 0.80NA objective. We must look to the 

Rayleigh criterion and Abbe’s limit to determine that. The Abbe’s limit is commonly 

referred to as the diffraction limit, the minimum spot size we can achieve, this minimum 

spot size is 305mm with our objective and a 2.54eV excitation beam. The Rayleigh 

criterion is a systems minimum resolvable detail, given by 

𝑑 =
0.61 ∗ 𝜆

𝑁𝐴
=

0.61 ∗ 488𝑛𝑚

0.80
= 372𝑛𝑚                    (1. 8) 

Figure 1.10: Comparison of resulting image for Rayleigh versus 

Abbe limited systems. Adapted from: [6] 
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therefore we can use this to examine features below these values to determine if super 

resolution is achieved, where the Rayleigh criterion is a more stringent definition of 

minimum resolvability. 

This section briefly discusses various fluorescence optical techniques that break 

the diffraction limit. This resolution improvement can be accomplished via either 

deterministic or stochastic methods. Deterministic techniques, like STED, are precisely 

controlled with precise, expected responses. Stochastic techniques, like PALM/STORM, 

utilize the random nature of fluorescence in fluorophores. These techniques will be 

discussed in detail as well as why they can or cannot be applied to the CPC technique. 

1.4.1 PALM/STORM 

 Photo-activated localization microscopy (PALM) and stochastic optical 

reconstruction microscopy (STORM) construct images by combining multiple frames 

where different fluorophores have emitted photon. Since a small portion of fluorophores 

Figure 1.11: PALM based technique where: two frequencies are 

illuminating the sample for readout (a) and activation (b) and then 

fluoresce (c) are localized (d), bleached (e) and repeated (f) until a 

sufficient number of molecules have been detected to build a sufficient 

image. [19] 
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have emitted in each frame by combining the frames, super-resolution images can be 

created. STORM utilizes the random nature of fluorescence of photo-switchable dyes by 

using a lower intensity beam and repeatedly exciting, identifying, recording, resetting a 

system to build a more complete picture. PALM also depends on the random nature of 

fluorescence, but uses photo-switchable protein fluorophores. In Figure 1.11, we see how 

the process works as well as the setup. Both techniques are widefield techniques rather 

than point scanning microscopy, avoiding the need of specific objectives. This sample 

analysis requires binding a dye or protein to the material of interest which increases the 

complexity of sample preparation. 

 For example, if you had two features that are too close to resolve, then by binding 

fluorophores to these structures you can expose a large area of a sample with excitation 

light. Then, with a fluorophore of known size, the points of single illumination can be 

recorded. Since the fluorophores do not fluoresce at the same time, these random 

emissions can be collected in successive pictures. A complete image can be built that 

achieves super resolution by repeating this procedure multiple times. 

 This technique is not suitable for applying the CPC technique. The CPC technique 

is much more deterministic by directly exciting the material that provides a signal. 

Therefore, other techniques can be compared to the CPC technique for suitability for 

development of an augmented scanning-CPC system 

1.4.2 STED 

Stimulated Emission Depletion (STED) microscopy uses stimulated depletion of 

fluorophores by a secondary, higher powered, lower energy beam to create images with 



15 

 

super-resolution. Figure 1.12 (a) shows the beam profiles used to accomplish this 

resolution improvement. With a toroidal beam stimulating depletion of fluorophores, the 

effective spot size is within the center of the toroidal depletion beam. This technique is 

deterministic since the effect of the depletion beam is tuned specifically and precisely 

applied, independent of random fluorescence response. This depletion is done by using a 

second lower energy (red shifted) beam with an energy between the excited and ground 

state that quickly returns the excited fluorophores to the ground state, keeping them 

‘dark.’ This process means that the fluorescence signal can be strategically eliminated, a 

crucial component of STED microscopy. This result also means that the process of state 

depletions could be implemented in other techniques as will be discussed in Chapter 3. 

A typical system consists of using a laser as the light source for a confocal 

microscope. A depletion laser inhibits fluorescence emission by forcing excited 

fluorophores into their dark ground state, while an excitation laser excites fluorophores to 

Figure 1.12: (a) Combination of depletion and excitation beams to enhance 

spatial resolution, (b) bright and dark states in normal microscopy and STED 

microscopy. 
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induce spontaneous fluorescence. Overlapping a depletion and excitation beam then 

effectively reduces the spot size well below the diffraction limit. An effective spot sizes 

of 20 nm has been reported for living cells and <5 nm for solid materials using the STED 

technique [27]. We have a toroidal depletion beam, creating a circular, effective 

excitation spot below the diffraction limit. 

 Figure 1.13 shows the layout we used for our STED system. A 2.54 eV (488 nm) 

laser is the excitation beam and a 2.09 eV (592 nm) is the depletion beam. Both beams 

are injected into respective single-mode fibers (SMF). The output goes through 

collimating lenses (AD). Next, the depletion beam passes through a phase plate to create 

a toroidal pattern. We then overlap both beams so that they are collinear and steer them 

into the microscope and onto the sample. We collect the resulting fluorescence in a multi-

mode fiber feeding into a photomultiplier (PMT) where the electric signal is amplified 

and sent to the computer, then processed into an image. 

 This technique is suitable for applying the CPC technique because it is 

deterministic, requiring the precise, controlled responses of a sample rather than 

Figure 1.13: STED microscope layout. 
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depending on the random process of the sample. It is also conducive of the CPC 

techniques since most STED systems utilize open air scanning, rather than requiring 

vacuum or temperature controls. Since the CPC technique requires an alternating or 

pulsed light source for its AC measurements the depletion beam of the STED system 

could be maintained as a CW light source and the excitation beam could be mechanically 

chopped. Thereby, theoretically providing a technique for probing the electronic structure 

of a sample, without requiring carrier collection, and achieving super-resolution. The 

details of how this was implemented and the theoretical base for it will be discussed 

further in Chapters 3, 4, and 5.  
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1.5 Combining CPC with STED 

 The CPC technique is an AC measurement which means we can take advantage 

of some of the physics that STED microscopy offers. By using a CW beam as the 

toroidal, depletion beam we can keep material in this area in a raised state, such that the 

material in the depletion beam will not generate a significant signal. This means that we 

can use a Gaussian excitation beam centered on the toroidal depletion beam for an 

effective spot size of ~20 nm, well below the diffraction limit. We can then mechanically 

chop the excitation beam to generate the AC signal within the ~20 nm area. In Figure 

1.14, we see how the chopped beam creates a detectable capacitance from the induced 

charge separations within the material. In (a) we see that the material has an initial, base 

voltage (VP) that is determined by the work function of the sample and electrode (φms) 

Figure 1.14: The scanning capacitive photocurrent technique used for STED 

electrical imaging. The voltage on a floating probe with (a) no illumination and (b) 

with illumination exciting charge from optically absorbing defect states. (c) 

Measurement set-up including sample holder for STED electrical imaging (d) Photo 

showing objective and sample holder. 
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and a built-in potential due to any trapped charge in the sample (φs), such that VP = 

φms+φs. With the incident light, seen in (b), we have an induced potential difference, 

ΔVP=Qd/ε, where Q is the total charge generated per area and d is the distance the 

charges separated. With the pulsed light source, the rapid changes in potential is 

measured as an AC current. In Figure 1.14 (c), we have the layout of the scanning-CPC, 

and in (d) we have a photo of the scanning-CPC technique in action. This signal goes 

through a lock-in and amplifier and finally processed into an image, as is typical in 

optical/fluorescence based microscopy. 
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CHAPTER 2 FIXED-POINT CAPACITIVE PHOTOCURRENT TECHNIQUES AND 

MEASUREMENT  

2.1 Systems and designs 

 The core of early fixed-point CPC measurements is the Optical Parametric 

Amplifier (OPA), was used for much the early CPC work, and for preliminary work for 

the materials used in the CPC-STED system. The OPA is a tunable pulse laser that 

provides wavelengths with 120 fs pulses, a 1kHz repetition rate, and a range from 400 nm 

to 3μm. This broad wavelength range paired with a high repetition rate allows for high 

signal to noise ratio and broad spectrums of a sample’s CPC response. In the following 

subsections, we will discuss the OPA and the CPC technique in greater detail. 

2.1.1 OPA 

 The base of the OPA is its light source, a Spectra-Physics Hurricane laser. Since 

the CPC measurement is an AC measurement, the narrow pulse and rapid repetition rate 

match the requirements of this measurement. 

Figure 2.1: Hurricane system external and internal layout. [5] 
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 This beam profile results from the seed beam passing through a Ti:sapphire 

amplifier rod that is excited by the Evolution pump beam. The stretcher/compressor 

allows for this resulting beam to amplify with multiple passes, without exceeding the 

optical limits of the internal components. Figure 2.2 shows how stretching and 

compressing results in a final, high-powered pulse. 

2.1.1.1 OPA Theory 

 Optical parametric generation (OPA) describes the process where an input beam 

of light with frequency ωp passes through a nonlinear medium. This nonlinear medium 

provides output a signal frequency of ωs and an idler frequency of ωi, where ω𝑝 =  ω𝑠 +

ω𝑖. In our system, the nonlinear component is a Beta Barium Borate (BBO). This 

Figure 2.2: Stretching and compressing to prevent damage to optics with high 

power final output. [5] 

Figure 2.3: OPA function diagram. [4] 
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configuration allows for second harmonic generation, sum-frequency, and difference-

frequency mixings, as well as parametric generation, with a higher intensity pump beam 

and a lower intensity seed beam (signal or idler) to boost the signal and idler beams, as 

seen in Figure 2.3. 

2.1.1.2 OPA description and layout 

 To get the seed and pump beams separated at BS1 we have a 96/4 split of the 

beam there the 96% pumps the OPA and the remaining <4% produces a white light 

continuum as the seed pulse of the OPA. A half waveplate and thin film control the 

Figure 2.4: OPA configuration. [5] 
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beams power, allowing the beam to pass through the white light plate, generating the 

continuum. It is then re-collimated and passes through the variable delay stage Delay 1 

and then sent through the BBO crystal. The amplified beam (96% beam) splits into two 

parts, ~15% of the beam follows the seed beam’s first past through the BBO crystal as a 

pre-amplification beam. On the seed beams second pass through, the amplified idler 

beam passes through the BBO crystal with the remainder of the (power) amplified beam 

to achieve a final output. A BBO crystal controls the final output wavelength(s) by 

selecting its phase-matching angle, adjusting the Delay steps provides optimization of the 

final output beam’s profile and power. We use further BBO crystals to further extend the 

wavelength regions, as seen in Figure 2.5 and Figure 2.6. 

Figure 2.5: Configuration of OPA for wavelength extension. [4] 
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2.1.2 Continuum and AOTF 

 The Fianium supercontinuum paired with AOTF (Acousto-Optic Tunable Filters) 

provided light from 400 nm to 650 nm in an easily controlled system. The AOTF allows 

for much quicker spectrum analysis when compared to the OPA system due to the ease of 

configurability. This system also allows for fiber mounted configuration, allowing for 

Figure 2.6: Configuration for FHG of the signal. [4] 

Figure 2.7: Fianium Supercontinuum with AOTF 
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great control over beam deliver. In our later setups, this change allowed for use to change 

laser systems and light sources quickly when doing data collections. 

2.1.2.1 Continuum/AOTF Theory 

 The backbone of this system is the supercontinuum. The Fianium 

Supercontinuum has three main components: a master source, a high-power amplifier, 

and a high nonlinearity supercontinuum generator. The master source is a passively mode 

locked fiber laser with a core-pumped Yb-doped fiber. This system has a fixed repetition 

rate and high pulse-to-pulse stability. A high power, multi-emitter laser diode pumps a 

double-clad Yb-doped fiber make the amplifying component of the system. The amplifier 

is the component that determines the final output power. The knob on the front is a ten-

turn potentiometer which adjusts the amplifier’s power. Finally, the supercontinuum 

generator in this system is a highly-nonlinear optical fiber. With the source and amplifier 

generating high pulse peak power, the supercontinuum generator produces a spectrum 

from 450 nm to 1750 nm. The output of the supercontinuum goes into the AOTF which 

has a visible range of 450 nm to 650 nm. The AOTF functions by generating an acoustic 

wave through a crystal oscillated at frequencies that produce the desired wavelength from 

Figure 2.8: Functional diagram of a supercontinuum fiber light source [3] 



26 

 

the broadband generated by the supercontinuum. This is all controlled automatically by 

the proprietary software. 

2.1.2.2 Continuum description 

 The design of the Continuum system allows for easy deployment into our system. 

The output of the AOFT is collimated and focused into an optical fiber. The output of the 

fiber is placed in the preexisting fiber mount of the microscope setup. This ease of light 

source replacement means that we can focus the beam onto samples easily and 

accurately. With the fiber coupled at the output of the AOTF adjusting the wavelength is 

nearly trivial as shown in Figure 2.9. The software also provides the option for 

programing scanning parameters, setting wavelength, power, and dwell time. 

Figure 2.9: AOTF user control front panel. [15, 16] 
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2.2 Previous CPC investigations 

 This section will discuss the development and uses of the CPC technique. First, 

the section will discuss the prior work done using this technique and the contributions 

provided. Next, we will discuss the work that I have been involved with personally and 

what contributions that work has provided. 

2.2.1 Carbon nanotubes 

 Our group first used CPC to study carbon nanotubes. In 2005, our group 

published a pair of papers studying single and double walled nanotubes. The CPC is well 

suited to these materials because it provides a high signal to noise ratio as well as 

detecting both semiconductor and metallic transitions [21]. Figure 2.10 we have the 

schematic for signal detection (a) as well as a diagram showing the standard method for 

photocurrent measurements (b) and the CPC method (c). The CPC method lacks a dark 

current, allowing for detection of the metallic transitions in the nanotubes. Validating this 

Figure 2.10: Single wall nanotube CPC investigation. [21] 
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method involves comparing the CPC results (displacement current) with the nanotube’s 

absorbance, as seen in Figure 2.11. 

 Using this technique with double wall carbon nanotubes (DWNT) also provides 

unique information. Using the CPC technique with Raman spectroscopy provides 

information on the how the curvature of the inner tube in a DWNT effects the distribution 

of the nanotubes electron states [28]. The Raman spectroscopy provides the diameter of 

the inner and outer shell and correlates to the observed features of the electron energy 

spectrum. 

 The CPC technique then offered the opportunity to learn more about the states 

within SWNT. Applying a DC bias across the SWNT sample allows for distinguishing 

between free-carrier and bound-excitonic transitions. This led to a paper showing the first 

Figure 2.11: Comparison of SWNT CPC to absorbance. [21] 
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evidence for excitonic states in metallic nanotubes [29]. Furthermore, the CPC technique 

is also useful in determining the effect of a perpendicular electric field on SWNT’s 

excitonic and free carrier transitions. CPC provides evidence of field-induced mixing of 

excitonic and free carrier states in carbon nanotubes [30]. 

 CPC also provides information on the effects of strain on SWNT. CPC shows that 

strain causes a shift in the energy of the ground state free electron transition as well as 

that of higher order excitonic transitions. CPC showed how it could be possible to use 

SWNT as high gauge factor optical strain sensors [31]. 

Figure 2.12: CPC spectra of three graphene-oxide samples with 

peaks at 0.7 eV, 1.6 eV, and 3.2 eV. [14] 
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2.2.2 Graphene oxide 

 CPC provides information on the electronics states of graphene-oxide and reduced 

graphene-oxide. With CPC, we can directly probe the density of states of the graphene-

oxide. With this technique, we see three additional peaks in the density of states for the 

graphene-oxide, as seen in Figure 2.12. These additional peaks seen in the CPC are near 

the π/ π* peaks, near the Fermi energy. This result is then corroborated by comparing the 

CPC peaks with an x-ray photoelectron spectra which showing the various oxygen groups 

when the spectra is shown with its de-convoluted components, as seen in Figure 2.13. 

Figure 2.13: XPS of graphene-oxide (GO) and reduced 

graphene-oxide (RGO) [14] 
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2.2.3  BHJ solar cells 

 With rising interest in both organic and bulk heterojunction solar cells, the CPC 

technique provides insights into the electronic function of P3HT and MDMO-PPV as 

BHJ components. As the layers of both BHJ material thicken in the active layer, the CPC 

signal shifts red, as seen in Figure 2.14. We see that for thin active layers the maximum 

CPC signal correlated well with the absorbance maximum for the range. Yet, with thicker 

active layers the maximum CPC shifts to longer wavelengths, suggesting that absorbance 

is no longer the limiting factor, but the limiting factor becomes the recombination process 

or electron diffusion. By correlating the absorption coefficient with the CPC peak at each 

active layer thickness, we have details of carrier collection lengths as well as values for 

the percentage of  carriers lost to surface combinations [20]. 

Figure 2.14: Absorbance and luminescence for P3HT (a) and 

MDMO0PPV (b) and the CPC for each respectively (c, d). [20] 
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2.3 Contemporary CPC investigations  

 This section will cover the analysis done using the CPC technique that I have 

done personally. They include the details of PCBM’s possible polaronic states as shown 

with CPC. By understanding the fixed-point results of these samples, the two-

dimensional images are easier to interpret. 

2.3.1 PCBM 

 This section contains work utilizing the CPC technique with my direct 

involvement. This work led to two papers. One paper was an SPIE proceeding and the 

second was published in the Journal of Physical Chemistry C. PCBM, a fullerene 

derivative, is an electron acceptor in organic solar cells due to its high electron affinity 

and relatively strong absorbance in the visible region.  

Figure 2.15: PC60BM [8] 
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 The electron transfer distorts the fullerene lattice in the PCBM forming a 

polaronic state. With standard optical absorbance measurements, these polaronic states 

are not detectable. Identifying and understanding these states is essential to developing 

PCBM in solar cells since these characteristics determine the photo charge transport and 

collection. With CPC, we detect these polaronic state. 

 Figure 2.16 shows the diagram of CPC collection (a) as well as positive biasing 

(b) with respect to the copper block and ITO, enhancing the electron flow into the PCBM 

where a negative bias would block this flow. The PCBM is drop cast onto an ITO coated 

glass slide. We mount the sample onto a copper block, place inside a cryostat, and 

evacuate to HV/UHV conditions. Using the OPA system as the light source, we keep the 

laser power at a constant 5mW for each wavelength used. With a photon pulse generating 

mobile charge of Q1, separated across a distance d1, we have a potential raised across the 

ITO electrode given by, 

Figure 2.16: Collecting CPC signal of PCBM (a), with the effect of 

biasing (b) [2] 
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𝑉 =
𝑄1

𝐶1
 ∝ 𝑄1𝑑1                    (2. 1) 

Where C1 is the capacitance between PCBM and the ITO. To maintain equilibrium with 

the copper block, a small amount of charge is drawn through the current amplifier, where 

d2 is the distance between the ITO and the copper block. 

𝛥𝑄 ≈ 𝑄
𝑑1

𝑑2
= 𝛼𝑞𝑛𝑝ℎ

𝑑1

𝑑2
                    (2. 2) 

Where d2 is a standard microscope slide thickness of 𝑑2 = 10−3𝑚. With a 5 mW laser, 

we have 𝑛𝑝ℎ~1016 𝑝ℎ𝑜𝑡𝑜𝑛𝑠/𝑠, and estimating a reasonable charge seperation distance 

of 𝑑1 = 10−9𝑚, and knowing that our CPC measurements are the in pico-amp regieme, 

these values mean that we have a photon to charge efficiency of, 𝛼 = 0.1%, as estimated. 

 The CPC of PC60BM show features at 1.5 eV and 0.7 eV as well as an absorbance 

edge at 1.74 eV which correstons to its S1 transitions. Similarly, the PC70BM has peaks at 

1.3 eV and 0.73 eV. 

 By depositing layers of LiF on the ITO prior to drop casting the PCBM, we create 

a tunnel barrier. In Figure 2.18, with increasing thicknesses of the LiF layer, we have a 

decrease in both the CPC values at the 1.5 eV (b) and 0.7 eV (c) as well as an overall 

Figure 2.17: CPC vs Absorbance of PC60BM (a) and PC70BM (b) [8] 
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decrease in the spectra (a). With the current decreasing exponentially, with respect to LiF 

thickness, we see the expected results of Fowler-Nordheim tunneling through this 

insulating layer. This result demonstrates that observing a CPC signal requires charge 

transfer. 

 The next step requires determining the polarity of the charge transfer across the 

ITO/PCBM interface. Biasing the sample shows a dampening of the signal as the 

Figure 2.18: Effect of including insulating LiF layer. (a) Spectrum, (b) effect of 

increasing LiF thickness on CPC signal at 0.7 eV (c) same at 1.5 eV [2] 

Figure 2.19: Biasing of PCBM at 0.7 eV 
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negative bias increases in magnitude. With the DC biasing, most of the voltage is lost to 

the insulator between the copper block and the ITO layer, but there is still a fringe 

electric field present at the ITO/PCBM interface. In Figure 2.19, we see the CPC of 

PC60BM at 0.7 eV increasing negative biasing. Since increasing negative bias causes the 

signal to drop this indicates that the CPC signal is due to a negative charge transfer from 

the ITO into the PC60BM. Inset in Figure 2.19 shows the CPC signal as a function of bias. 

 We see the same bias dependencies at the other below bandgap peak (1.5 eV) or 

PC60BM where we have fit the Fowler-Nordheim tunneling prediction. This figure shows 

Figure 2.20: Subgap bias dependence with Fowler-Nordheim fit 

Figure 2.21: Above gap bias dependence 
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that there is a threshold bias at about 0V where the signal turns on and eventually 

saturates with positive bias. This asymmetry of the bias dependency shows that to see the 

subgap peaks there must be negative charge injection in the PCBM. The positive bias 

saturations indicate that the number of photons limits the signal. For the above gap 

regime, we see a symmetrical bias dependence, as seen in Figure 2.21. This feature 

indicates that charge transfer is possible for both positive and negative because there are 

multiple neutral states above the band gap in PCBM, which do not require additional 

charges. 

  We then evaluate the effects of the beam power with respect to the biasing, as 

seen in Figure 2.23. This figure also shows that there is a linear relationship between bias 

threshold voltage and laser power, as Figure 2.22 shows. This feature suggests that when 

either biasing or a laser power threshold is met, the process becomes linear implying a 

single-photon process resulting in a proposed model of the band diagram for the charge-

transfer process, as seen in Figure 2.24. This model gives a potential barrier, qφ, between 

the ITO and PCBM which is the energy difference between the ITO’s Fermi energy and 

the lowest excited charged state in the PCBM. This value is equivalent to the energy 

required for negatively charging the PCBM. We have a potential drop across the PCBM 

Figure 2.23: Laser power and biasing 

thresholds 

Figure 2.22: Bias vs laser power 
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bands with an electric field, F, at the ITO/PCBM interface. This model gives a tunneling 

current of, 

𝐼 = 𝛼𝑒
−𝑞Φ

𝐹⁄                     (2. 3) 

where, α is a proportionality constant; this relation provides the fit in Figure 2.20. With 

this good fit, it suggests that excitation at the polaronic transitions energies promotes both 

the charge transfer that causes the polaron to form and the optical excitation of the charge 

polaronic state [2]. There is also a need for thermalization as the threshold power 

dependence suggests. This model all matches well with the theoretical calculations of 

fullerene spectra using first-principle DFT for neutral, one added electron, and two added 

electron systems.  

Figure 2.24: Band diagram for 

ITO/PCBM charge-transfer process. 
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Figure 2.25: Calculated absorbance spectra for polymeric fullerene chains. The solid 

red line shows the ky polarized absorption and the dashed black line shows the kx 

polarized absorption. (A) Neutral C60 chain. (B) C60 chain with one added electron. 

(C) C60 chain with two added electrons. (D) Neutral C70 chain. (E) C70 chain with 

one added electron. (F) C70 chain with two added electrons. 
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CHAPTER 3 DEVELOPMENT OF THE SCANNING-CPC TECHNIQUE 

 Since the CPC technique provides unique information and is usable in a wide 

variety of environments, it is well suited for a scanning system. Where fixed point CPC 

provides information about material properties, scanning-CPC can provide information 

about a material’s properties in two dimensions. CPC provides information on defects, 

unique photo-excitation properties, as well as electrical nature. In Figure 3.1, we have the 

basic schematic for the scanning-CPC system. 

3.1 Optical table layout 

 With a final goal of scanning-CPC-STED, the system’s layout accommodates the 

STED functionality as well as a single wavelength scanning functionality. The layout was 

designed and implemented by Dr. Sergio Mendes, Jafar Ghithan, and Dr. Rodrigo 

Wiederkehr. A removable phase plate enables this functionality, by moving the chopper 

to either the 2.54 eV or 2.09 eV beam path, we can scan either wavelength generating a 

Figure 3.1: Basic design of scanning-CPC. 
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CPC image. For full CPC-STED functionality, as seen in Figure 3.2, we have a 2.54 eV 

beam generating an AC signal and a 2.09 eV beam generating the depletion region. 

 The excitation beam for our system is 2.54 eV generated by a Coherent Obis laser 

head with an output power range of <5 mW to ~60 mW. A periscope (PS) positions the 

beam, coupling it to a single mode fiber (SMF) [P1-488PM-FC-5, Thorlabs], using a 40x 

objective with a numerical aperture of 0.65 [Newport] in the fiber launch (FM) 

[MAX350D, Thorlabs]. The output of the fiber is the collimated with a lens of focal 

length 18.4mm (CL) [FC/APC, Thorlabs] and mechanically chopped [MC2000B, 

Thorlabs]. This chopping provides the AC current and the refence signal needed for the 

lock-in. A dichroic mirror (DM3) [ZT488rdc-UF2, Chroma] steers the chopped 2.54 eV 

beam to pass through another dichroic mirror (DM4) [Z590sp-rdc, Chroma] into the 

microscope. The high-power depletion beam follows a similar path. An MPB 

Communications, Inc. laser head generates this beam with a power range of 150mW to 

1650mW. A fiber mount (FM2) couples the 2.09 eV beam to a single mode fiber (SMF) 

where the output of the fiber is collimated (CL2). This collimated beam passes through a 

50/50 split dichroic mirror (DM1) [WW11050-AR-A-SP, Thorlabs] where the reflected 

component is blocked, and then a vortex phase plate VPP-1 [RPC Photonic Inc., NY] 

generates the toroidal beam of the unblocked component. This toroidal beam is the core 

functionality of STED and CPC-STED microscopy. This toroidal 2.09 eV beam then 

passes through another 50/50 split dichroic mirror (DM2). These mirrors mean that the 

final total power of the toroidal beam is ~25% of the original power from the collimated 

fiber output. This 2.09 eV beam is the steered by another dichroic mirror (DM4) into the 

microscope. When properly steered, at DM4 both beams will align such that they are 
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collinear, this ensures that both beams will focus correctly through the objective 

[100x/0.80 LMPlanIR, Olympus] in the microscope [BX51M, Olympus] with their 

highest power and best profile, uniformly toroidal for the 2.09 eV beam and Gaussian for 

the 2.54 eV beam. 

Figure 3.2: CPC-STED basic layout. 
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 Figure 3.3 shows an alternative layout for an alternative CPC-STED laser 

configuration. Since fluorescence and fluorescence depletion is not the goal of scanning-

CPC of CPC-STED but state depletion a dual 2.09 eV setup is permissible. This design 

provides a higher power excitation beam as well as a simpler alignment. The first 

dichroic mirror (DM1) steers the reflected beam to a pair of high quality mirrors (M1, 

M2) and a chopper, providing the AC signal form the sample. A third configuration 

involves replacing the fiber at CL1 in Figure 3.2 with the output fiber from the 

Supercontinuum-AOTF system, providing a wider range of excitation wavelengths at the 

cost of beam power. 

Figure 3.3: CPC-STED with dual 2.09eV beams 
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3.2 Holder design  

 When evaluating the requirements of the CPC technique, as well as the 

requirements of the stage, we developed a list of qualities the holder must have: 

UHV/HV capabilities, good electrical shielding, reproducible, rapid assembly, 

inexpensive, easy sample access, standard fittings, thin sample window (<1mm). This 

lead to the first holder iteration, as seen in Figure 3.4. This holder used a gasket and a 

standard glass slide to form the low pressure/low humidity environment for the sample. 

The glass slide can be slid into the side, covering the sample and creating a minor 

vacuum environment when negative pressure is applied. There is also a slot for the BNC 

to screw into a nut, providing a standard fitting for the electrical signal out. This holder 

was made from plastic, with metal plating on the sample mount area. This design did not 

allow for larger sample, the plastic base did not provide enough shielding, causing highly 

noise data. It also was prohibitively expensive for one-at-a-time manufacturing as well as 

an excessive lead time. 

Figure 3.4: First holder design 
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 The second holder was designed to use only off the shelf solutions, bypassing 

manufacturing expenses and lead times. This design, as seen in Figure 3.5, uses standard 

UHV components: UHV reducer, UHV chamber, UHV window, and UHV BNC out. 

This design allowed for a true UHV environment for the sample. The total weight of this 

design did not allow the stage to function at its higher resolutions, undermining the final 

goal of doing sub-diffraction CPC-STED images. With a thick window and a deeper 

chamber, the system would only function with the system configured with long working 

distance objectives, once again hindering the final goal of sub-diffraction imaging. 

Figure 3.5 Off-the-self holder design 
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 The third design was a balance of off the shelf and custom components. As seen 

in Figure 3.6, standard UHV components are used for applying the vacuum and providing 

BNC out. A custom sample compartment was milled by the University of Louisville 

School of Ophthalmology machine shop. This holder had about a two-week lead time for 

the custom holder with a negligible cost. We also found an λ/4 flat, thin window. This 

window allowed the use of better objectives, although the center of the window as 

polished flat the edges were curved slightly, causing difficulty scanning larger samples. 

With the long ‘tails’ of the holder hanging off the edges of the stage, some mechanical 

oscillations caused by the stage direction changes were transferred to the scans disrupting 

the scan quality. 

Figure 3.6: Third holder design 
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 The final design used a completely custom design. This design was milled by 

Joshua Rimmer at the University of Louisville Physics Department Machine Shop. The 

new holder is milled from an aluminum block. It provided a connection for BNC out. 

While also providing room to seal a standard 1mm glass slide over the sample. The glass 

slide can be sealed over then sample within a glove box or other similar environment. 

While it is not UHV, we did find it provided a low enough humidity environment for 

signal detection and collection. This design also mounts precisely to the stage, 

eliminating drift and oscillation issues. Its low profile also enables the use of the best, 

non-oil immersion objective we had. We eventually found that for most samples a UHV 

environment was not needed, thereby eliminating the need for sealing a glass slide over 

the sample. This development further simplified the sample preparation as we all further 

improved theoretical image quality by removing the air-glass-air interface. The design 

seen in Figure 3.7 has been iterated and adjusted for different sample requirements and 

minor modifications. Its onsite creation and low cost allow for this to be done easily and 

rapidly. 

Figure 3.7: Final holder design 
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3.3 LabView design 

Originally, we used a piezoelectric stage with angstrom resolution [Nano-PDQ350, 

MadCityLabs, Inc.]. This stage had only a 45x45 um scan area. This stage also suffered 

from some mechanical drift issues as well as a difficulty in controlling subsequent scan 

areas. The MadCityLabs’ stage had software and data collection software written by Dr. 

Thomas J. Roussel. 

Currently, we are using a mechanical stage with ~40 nm resolution [H101A/B, 

Prior Scientific]. The new stage required the development of new, custom LabView to 

accommodate the different communication standards used by the Prior stage. While it has 

a lower resolution, we do not need it since the lowest image resolution we can get with 

the objective and wavelength combination we are using is ~70 nm. Also, pairing the Prior 

Scientific stage and its proprietary software with the camera we have the scan area 

selection is much more accurate and intentional. With respect to the CPC-STED scans the 

efficiency we have improved by approximately 90% in the time needed to collect the 

desired data. 

We created a complete, custom LabView program to hand control of the scanning 

stage, data collection, and image generation. This section will discuss the detail, logic, 

and rational for the design choices found within the program. This development is done 

in LabView 2009, with a Prior H101A/B stage and controller, and a National Instruments 

BNC 2110 breakout box the front panel contains everything that is user-controllable. The 

fields with red lettering above them are user editable. The scan speed in microns per 

second is changeable as needed, a faster scan speed is accessible for samples with faster 

response times, a lock-in with a smaller time constant, or other factors. Number of steps 



49 

 

and scan size, in microns, set the step size. The minimum step size of the Prior H101A/B 

stage is 40 nm, which is the limiting factor of the system’s resolution. The loop timer, in 

milliseconds, sets the frequency with which the program asses the state of the system and 

the appropriate action to take at that time. 

Figure 3.8: LabView front panel 
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 In Figure 3.9, we have a high-level view of the LabView program. In Figure 3.9 

(a) we have the user-input variable and setting. Figure 3.9 (b) is everything within the 

green box and everything without executes at the rate set by the user in Loop timer. 

Finally, Figure 3.9 (c) is a state machine. It allows for the data collection, stage control, 

and image building taking place appropriate intervals. What follows is a detailed 

explanation of the various states and the rationale behind their design. 

Figure 3.9: Backbone of LabView 
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 The purpose of this state is to ensure the system is in a usable state. This state also 

imports the user settings and verifies that the setting are not values outside of the stages 

capabilities. Allowing invalid parameters will damage the system, this safety 

net/emergency shutoff system was the first to put into place to prevent system failure. 

This state also calls upon the call-able functions provided my Prior for this stage: 

IScanOpen.vi, IStageOpen.vi, IStageMaxSpeed.vi, and IScanMoveXYZAbs.vi. Where 

IScanOpen.vi sets the communication port and ensures the stage is ready to receive 

signals. Then, IStageOpen.vi prepares the stage to send position information. 

IStageMaxSpeed.vi sets the speed at which the stage moves during scans. Finally, 

IScanMoveEYZAbs.vi encodes the users scan parameters so that the stage moves in an 

appropriate, predictable manner. The state progresses to the “waiting for begin” state. 

Figure 3.10: First State—“inti”, Default 
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 The next state allows for the user to evaluate the system, ensuring that all 

parameters are appropriate. This state progress to the next state when the user presses the 

Begin button on the front panel. 

 The “begin_x” state tells the stage to begin motion in the positive x direction. It 

also sets the next state to be “start_data.” 

Figure 3.11: Second State—"waiting for begin" 

Figure 3.12: Third state—“begin_x” 
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 Figure 3.13 is the core of the data collection. This data collection is a timed 

collection, this is because a “step-measure-step-measure” technique is poor for this stage, 

the mechanical drift is too noisy for that method. Yet, the stage has a good movement 

profile when moving at a constant velocity. Therefore, we collect data points at a rate set 

by 

𝑅𝑎𝑡𝑒(
𝑝𝑜𝑖𝑛𝑡𝑠

𝑠
) =  

𝑆𝑐𝑎𝑛 𝑠𝑝𝑒𝑒𝑑 (
𝜇𝑚

𝑠 ) ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠 (𝑝𝑜𝑖𝑛𝑡𝑠)

𝑆𝑐𝑎𝑛 𝑠𝑖𝑧𝑒 (𝜇𝑚)
 

Until we have reached the number of data points set by Number of Steps, this limiter 

means that the stream of data is set by the beginning the stage’s motion and its initial 

parameters, ensuring that following scanned lines will be identical except for its y 

positions, as is desired. The data stream is the appended to a text file in .cvs format as 

well as sent to LabView’s internal image builder so that a user will see the image data 

live. Then, the system waits for 250ms so that any mechanical drift of the stage will 

settle. Finally, system is set to wait as it returns to the x=0 position and the next iteration 

of the y iteration, 

Figure 3.13: Fourth state—“start_data” 
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𝑦𝑛(𝜇𝑚) = 𝑛 (𝑝𝑜𝑖𝑛𝑡𝑠) ∗
𝑆𝑐𝑎𝑛 𝑠𝑖𝑧𝑒 (𝜇𝑚)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑒𝑝𝑠 (𝑝𝑜𝑖𝑛𝑡𝑠)
 

where n is the next line number. 

 The fifth state ensures that the state is not moving. This state also checks the 

Emergency Stop button as well as the Bypass “wait_x” button on the front panel. This 

state also ties to the “wait_y” state that waits for motion in the y direction to cease. 

 

 The sixth moves the stage to x=0 and yn. The system then waits again for the 

stage to finish moving to this new position. 

Figure 3.14: Fifth state—“wait_x”/”wait_y” 

Figure 3.15: Sixth state—“reset_y” 
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 This state activates after the system scans its last line. It calls the appropriate, 

proprietary VIs to safely stop the stage from listening for new commands. It also closes 

the .cvs file with all the appended lines of data to prevent corruption or saving errors. 

Finally, it emits a tone from the computer’s speakers informing users of the system’s 

state without constant, visual monitoring. 

Figure 3.16: Seventh state—“end” 
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CHAPTER 4 RESULTS OF THE SCANNING-CPC SYSTEM 

Capacitive-photocurrent (CPC) measures the AC electric field of a sample when a 

pulsed or chopped light source is focused on the sample, generating electron-hole pairs 

which can then separate to create a measurable dipole field. The CPC technique detects a 

combination of the sample’s absorbed light and the amount of charge separation within 

the sample, with a reasonable range in the picoamp regime seen in the calculations done 

in Chapter 2.3. The higher a sample’s absorbance, the more electron-hole pairs are 

available to separate. This understanding means that a scanning-CPC technique could be 

developed which could provide information on a sample’s defect density since an 

increase in defects should inhibit absorbance, how its geometries affect electron-hole pair 

generation and separation, a basic measure of material quality, or two-dimensional 

information on what and how the electric fields are made and rectified. 

Figure 4.1: Scanning-CPC layout and design. 
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4.1 Preliminary measurements 

Since most of our previous studies were done using the OPA system with a 1 kHz 

repetition rate, we needed to know how the frequency of the probing beam effects the 

signal we measure since we will be replacing a pulsed light source to a mechanically 

chopped CW light source. Using the standard scanning-CPC setup seen in Figure 4.1, we 

applied the 2.54 eV beam, adjusting the chopper frequency. We see from Figure 4.2 that 

there is a significant dependence of the CPC signal on the probe beam’s chopped 

frequency. We also adjusted the beam’s power, maintaining a constant chopper frequency 

at 1 kHz. In Figure 4.3, we see that the CPC signal has a linear dependence on the power 

of the excitation beam. This is as expected, leading us to maximize image quality by 

Figure 4.2: CPC signal as a function of chopper frequency. 

Figure 4.3:CPC dependence on 2.54eV excitation beam power. 
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using higher frequencies on the chopper and high powers for the excitation beam since 

the higher frequencies increase the signal fidelity through the lock-in. 

Some of the most crucial components of a scanning system are the light source and 

the power output of the light source. Figure 4.3 shows the power of the beam, as 

measured by a Newport 1916-R power meter. These are the powers measured after the 

microscope’s objective, the power that is incident on the sample’s surface, rather than the 

output power reported by the laser’s software. The real power is expected to be 

significantly less than the nominal, or software reported power, since there are many 

vectors for power low throughout the system. In Figure 4.4, we have the plots comparing 

the nominal power and the power measured at the sample’s surface for both the 2.54 eV 

and 2.09 eV beams. They both show a linear dependence, which is good, because as long 

as we are referring to the ratio of the powers, they are interchangeable in our discussion. 

We have a fit equation for both scenarios: 𝑃𝑀(2.54𝑒𝑉)(𝑚𝑊) = 6 ∗ 10−6 + 3.13 ∗ 10−4 ∗

Figure 4.4: Comparisons of nominal (software 

reported) laser power versus the sample surface 

measured power for the 2.54eV beam and 2.09eV beam 

(inset). 
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𝑃𝑁(2.54𝑒𝑉) and  𝑃𝑀(2.09𝑒𝑉)(𝑚𝑊) = 1.32 ∗ 10−3 + 2 ∗ 10−5 ∗ 𝑃𝑁(2.09𝑒𝑉), where PN is the 

nominal power for each laser and PM is the measured power. With these results, we were 

able to begin scanning with realistic expectations for the needed power, the power 

available, and the frequency needed to successfully scan images. 

4.2 Preliminary scans 

 Upon creating a satisfactory holder (the third iteration, Figure 3.6) and with 

software in place, we were ready to begin testing this technique. The original software 

was written by Dr. Thomas Roussel to collect fluorescence data from standard STED 

microscopy. This software was modified to accept the CPC signal in place of the STED’s 

photomultiplier signal. This change allowed for the creation of CPC image. The first 

material we tested was PCBM, which was spin coated onto an ITO coated glass slide. 

The PCBM was spin coat at a low RPM, ~100 RPM, to ensure a thick layer and maintain 

Figure 4.5: CPC image of a PCBM clump with a 2.54 eV 

light source. 
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some of the larger particle clumps. This procedure was implemented because we 

anticipated the first scans to have lower resolutions. By using this method, a larger, 

planned anomaly would be easier to find and resolve into a CPC 2D image. In Figure 4.5, 

we have the first CPC image that showed any information that was resolved above the 

noise. The CPC image shows a distinct high signal region in the center of the image. This 

scan revealed that PCBM can be resolved into a 2D image since it is a sample well 

known to respond to 2.09 eV (592 nm) and 2.54 eV (488 nm), as seen from our previous 

published work discussed in Chapter 2.3. This situation is where a thicker, poorly-

dispersed PCBM sample helped with early testing, providing signals in the picoamp 

regime.  

 With this promising result, we decided to test GaAs particles. We did this by 

suspending large (>15um) diameter GaAs pieces in a solution and spin coating onto ITO 

coated glass slides at low RPM. Figure 4.7 shows an SEM taken of one of these GaAs 

crystals. Although the sample has good absorption in both 2.09 eV and 2.54 eV as shown 

in Figure 4.6, no distinguishable images could be generated. This result could be due to a 

few factors. The incident light would excite the top surface of the GaAs crystals which is 

Figure 4.6: Absorption coefficient for GaAs [10] 
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>5um from the ITO interface, unlike the PCBM which was significantly thinner. Also, 

the GaAs does not rest uniformly on the ITO surface since the GaAs has a rough surface, 

further limiting the ability to measure the electric field through the contact on the ITO 

surface. 

 Seeing that the PCBM provided initially promising results and the GaAs did not 

provide any usable images, we narrowed our focus on thin materials that could be readily 

dispersed on a ITO coated slide or semiconductors. The dispersed samples allow for 

direct material analysis, where testing with semiconductors allows for a care tuning of 

parameters that we are testing. 

4.3 Perovskites 

Perovskites are a class of materials derived from calcium titanium oxide. We had a 

group member, Kasun Fernando, study the effects of perovskite structure on efficiencies 

and electro-optic responses of solar cells. This availability meant that we had well-

controlled samples and sample preparation techniques. With their fantastic optical and 

electrical properties, the perovskite material system is promising for applications such as 

solar cells, detectors, and light emitting diodes. We used a perovskite of the form 

CH3NH3PbI3. 

Figure 4.7: GaAs SEM image 
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4.3.1 Preliminary work 

To create a perovskite layer for study, we used solution-processed organic-

inorganic hybrid perovskite cells applied through the doctor blading method [32]. The 

solution is formed by dissolving lead iodide (PbI2) and methyl ammonium chloride 

(MACl) in dimethylformamide (DMF) at a 1:1 molar ratio. This solution is stirred at 

70˚C for at least 2 days then doctor bladed onto ITO coated glass slides. The size of the 

perovskites is controlled by the temperature of the substrate during the doctor blading, 

shown in Figure 4.8. This method provides a sample as seen in a photograph in Figure 

4.9, where we have both small (left) and large (right) formations. 

Figure 4.9: Optical image of perovskite deposited films. [17] 

Figure 4.8: Perovskite fabrication diagram[17] 
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Much of the breakthrough work on perovskites was done by using the perovskite as 

a visible sensitizer in a dye-sensitized solar cell. Perovskites as a thin film have provided 

solar cell efficiencies greater than 20% [17]. With their low cost and new discovered 

uses, we decided to investigate this material system with the scanning-CPC technique. 

We see in Figure 4.10 that this perovskite system has high EQE at both 2.54 eV (488 nm) 

and 2.09 eV (592 nm), the primary wavelengths in the STED setup. We also see from 

Figure 4.11 that the absorption coefficient, shown on the black trace, indicates that at 

Figure 4.11: PL and absorption coefficient for perovskites [22] 

Figure 4.10: External quantum efficiency and integrated short 

circuit current density of perovskite. [17] 
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both 2.09 eV and 2.54 eV should provide sufficient CPC signal for either of these 

energies. This result lead us to do a CPC spectrum of this perovskite system, shown in 

Figure 4.12, this spectrum was generated using the setup previously described in Ch. 2. 

The red trace shows the CPC response, with strong responses at 2.09 eV and suggests 

there would also be a good CPC signal at 2.54 eV. With these details, we proceeded to 

use the CPC-STED system to generate images of the perovskites. 

Figure 4.12: CPC signal of perovskite system. 
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4.3.2  Perovskite scans 

By using the 2.09 eV beam without the phase plate, the chopped gaussian beam 

produces the 2D CPC image shown in Figure 4.13 (b). We can see how this matches a 

photograph taken through the confocal microscope using a white light source in Figure 

4.13 (a). There are a few things to note: from the photo, the brighter regions in (a) imply 

low absorption, which should indicate a region that would have a low CPC signal. 

Likewise, a dark region in (a) implies higher absorption which should be a high CPC 

signal region. Yet comparing (a) with (b), we see regions that follow and oppose these 

assumptions. This early work shows that CPC has potential for providing novel 

information. Within the scans of the small perovskite formations, we see a fairly uniform 

CPC signal with a sharp drop-off on the domain walls. We then compared the small 

perovskites to large perovskite formations, as seen in Figure 4.15. Comparing the smaller 

perovskites in Figure 4.13 with the larger perovskites in Figure 4.15, we see a 

significantly higher CPC signal in the center region of each of the formations. In the 2D 

CPC image, we see a correlation between the darker regions of the center of Figure 4.15 

Figure 4.13: (a) photograph and (b) CPC image of perovskites 
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(a) with the brightest region of Figure 4.15 (b). Also, the CPC shows low signal regions 

that do not correlate to anything seen in the photo, specifically the horizontal striations 

that radiate out from the center of the perovskite formation in Figure 4.15 (b). 

 These scans were done in open air to reduce any interference from a glass slide. 

This configuration means that sample degradation was a consideration both from being in 

open air and from damage caused by the laser [33]. Figure 4.14 revealed that the CPC 

scans were damaging the samples, which is the same area as Figure 4.15. Figure 4.14 also 

Figure 4.15: (a) Photo versus (b) CPC of large perovskite formation 

Figure 4.14: Burnt large perovskite formation after CPC scan. 
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reveals the horizontal striation that was seen in the CPC image. This burning from the 

scan also reveals the center of the larger perovskite formation center. This result lead us 

to consider samples that are not as sensitive to environmental factors. 

4.4 Gallium Nitride 

Gallium nitride (GaN) is a semiconductor with a Wurtzite crystal structure and a 

direct band gap at 3.4 eV. Since we were seeking stable samples, we settled on GaN 

because it is well-known with a significant body of work describing its properties. The 

collaboration with another member of our group, Sowmya Kolli, who also studies GaN, 

provided me with samples and her with potentially material property data derived from 

the CPC results. 
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4.4.1 Preliminary work 

We can see from Figure 4.16 that GaN has absorption edge starting at ~1 eV. The 

figure suggests that we will not be looking at band to band transitions, but rather 

transitions that could be due to defects in the GaN. Since we are using 2.09 eV and 2.54 

eV, we are not seeing band to band transitions near the bandgap at 3.4 eV. Since CPC 

Figure 4.16: Absorption coefficient of GaN [23] 

Figure 4.17: Comparison of GaN photoluminescence and CPC spectrum. 
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depends on a sample’s absorption and the STED system has both 2.09 eV and 2.54 eV 

beams available, either energy is within GaN’s absorption. Therefore, GaN is a good 

option for scanning-CPC images. We then took a CPC spectrum of GaN by mounting it 

in the standard configuration shown in Figure 2.16, using the OPA system as the light 

source and maintaining the laser power at 5 mW for each energy with a 1 kHz repetition 

rate. The red trace in Figure 4.17 is the CPC signal of GaN, showing that GaN has a 

usable CPC at both 2.09 eV and 2.54 eV. In Figure 4.17, we also have the 

photoluminescence (PL) data (blue trace). We see that the PL and CPC spectrums are 

shifted, implying that the mechanisms for each process are different. The PL data shows 

the traditionally seen ‘yellow luminescence’ at ~2.0-2.5 eV and a shifted near-band edge 

peak at 2.6 eV-2.7 eV. The yellow luminescence is attributed to donor-acceptor pair 

(DAP) recombination due to the crystal surface or crystal interfaces within the substrate 

[34]. Yet, we see that the CPC signal does not line up to the PL data This misalignment 

could be because CPC depends on electron-hole separation rather than emission of 

sample as PL requires. 

 Using a standard semiconductor wafer also provides the opportunity to fabricate 

custom geometries and features for testing the scanning-CPC limits. We designed studies 

on pits etched into the GaN wafers as well as a variety of pillars. For the resolution 

testing GaN pillars, we clean the wafers with HCl, acetone, IPA, and rinsed in DI water. 

A chromium/nickel mask is applied with the pillar pattern. Then, the wafer is etched in a 

Figure 4.18: Masked used for resolution testing pillars. 
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ICP (inductively coupled plasma) system at 400W with the RIE (reactive-ion etch) at 

60W a chlorine flow rate of 14 sccm (standard cubic centimeter per minute), and an 

argon flow rate of 6 sccm. The e-beam lithography was done at the University of 

Minnesota using the mask with the pattern shown in Figure 4.18. This fabrication process 

provided us with 3 um pillars varying in separation from 50 nm to 5 um. Sowmya Kolli, 

in the University of Louisville cleanroom, performed a similar procedure to produce 

equidistant pillars as well as larger diameter pillars for preliminary testing. The pits are 

created with a simple timed phosphoric acid etch by submerging the wafer for up to 600 

seconds. The pits were the initial focus of our scans since the fabrication procedure was 

quicker and simpler than that of the pillars. The pits made up a majority of our early 

scans, followed by the larger diameter pillars, and then finally looking at the resolution 

testing pillar layout. In Figure 4.19, we can see SEM images of the results of fabrications 

3 um pillars and etching ~4um pits in GaN wafers.  

Figure 4.19: SEM of GaN pillars (left) and pits (right). 
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4.4.2 Preliminary GaN scans 

Using the scanning-CPC setup shown in Figure 4.1, we captured the CPC images 

shown in Figure 4.20, where (a) shows SEM images of the pits with the CPC image 

shown in (b), similarly the SEM of the pillars (c) can be compared to the CPC image seen 

in (d). These images lead to further questions, such as, why do we see signal differences 

at all in the GaN fabricated samples? If the samples are from a uniform material, bulk 

GaN in this case, the signal should be uniform across the entire sample, independent of 

topology. Yet, we see strong signals along the circumference of the pillars and along the 

interior of the etched pits. These images also show asymmetries in signal distribution on 

the features, seen most readily in Figure 4.20 (d). Seeing a signal implies that the 

perimeter of the pillars and the slopes of the pits have features that either increased 

Figure 4.20: SEM (a) and CPC (b) image of shallow GaN 

pits and pillars SEM (b), CPC (c). 
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absorption or increase charge separation. Likewise, the asymmetry means that those 

segments have further increase absorption or charge separation. 

If the CPC signal depends on these edges in some way, then we can test this 

dependence directly by changing the fabrication parameters. This change is most easily 

done with the GaN pits, since it only involves etching the wafer longer to create 

substantially distinctive features. Figure 4.21 also shows the difference in short (left) 

versus long (right) etch times for the GaN pits. We see that the longer etch time pits are 

almost twice as wide and feature secondary signals within their perimeter. We can also 

see how the shorter timed pits, like those in the SEM in Figure 4.20, do not bottom out to 

the sapphire substrate beneath, where the longer etch time pits are much deeper and do 

bottom out as shown in the SEM in Figure 4.22 (a). Figure 4.22 also corroborates the idea 

Figure 4.21: Short etch time (shallow) versus long etch time (deep) GaN pits. 

Figure 4.22: SEM (a), 2D CPC (b), and 3D CPC of a deep GaN pit. 
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of a secondary structure in the longer etch time pits, where the SEM shows terraces 

before reaching the sapphire base substrate. 

 Since the CPC signal depends on both the absorption of photons by the sample 

and the degree to which the electron and holes separate to generate an electric field, what 

about these geometries causes the signal? It is possible that the areas of high signal are 

also areas of increased defect density, or that areas of higher defect density are exposed. 

It could also be that the etched areas have less microscopic debris, allowing for more 

direct absorption. It is possible that a piezoelectric effect, generated by strain in the walls 

of the pits or pillars induces an electric field within the sample and enhances the CPC 

signal. These questions led us to testing the hypotheses that absorptions and election-hole 

separation changes caused the areas of high CPC signal, indicating that the high signal 

regions are places where absorption is increased, possibly due to defect states, or that 

these high signal areas have increase electric field activity, possibly caused by a 

piezoelectric feature of the GaN.  

Figure 4.23: Wide area scan of GaN 

cantilever 
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We must then investigate what effect the position of the contact has on the CPC 

signal. Figure 4.23 shows that the signal decreases with respect to the distance from the 

contact. A line scan from the edge of the contact to ~350 um is shown in Figure 4.24. We 

see that the signal is relatively consistent within 100 um of the contact with a sharp 

decrease after that point until the signal reaches the same range as the noise. This result 

means that the location, formation, and design of the contact has a direct effect on the 

CPC signal. The same result is also an indication of why we have some of the 

asymmetries seen in the GaN pillars and pits. The asymmetries could be due to a contact 

placement or design effect. 

4.4.3 Testing electric field effects 

As we described in the CPC discussion, the measurement is a combination of 

photon absorption and electron-hole separation. We must look at the effect of electric 

fields in GaN on the resulting CPC signal. We made use of simulations done by Pranoy 

Deb Shuvra, of the piezoelectric properties of the GaN pillars. This simulation, shown in 

Figure 4.24: Line scan of CPC signal from edge of contact to 350um away from 

contact. 
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Figure 4.25, was done using the finite element model (FEM) in COMSOL simulating the 

GaN pillar. COMSOL applies the properties of the GaN wafer to this pillar element and 

then generates a plot of the expected electric field in the pillar and in the surrounding 

area. 

 Figure 4.25 shows the calculated electric field around 10 um diameter GaN 

pillars that are 0.5, 2, and 4 um tall. This simulation, showing the highest electric field at 

the tops of the pillar, did not match our initial thought that the signal seen on the edges of 

the GaN pillars and pits was due to a piezoelectric effect from the crystal structure within 

the material. This simulation means that if we were seeing a piezoelectric effect then the 

CPC signal should be maximized at the tops of the pillar, not only the edges of the pillars.  

 We also tested the piezoelectric-enhancing hypothesis experimentally in silicon 

samples. We had a member of our group, Pranoy Deb Shuvra, testing silicon cantilever 

designs. In Figure 4.26, we have a cross sections of the cantilever fabrication process: 

base substrate seen in (a), with an Al deposition (b), then etching the Al to form a contact 

Figure 4.25: GaN 10um pillar piezoelectric electric field 
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(c), the top silicon is the removed via a Deep Reactive-Ion Etch (DRIE) (d), the bottom of 

the beam is opened with another DRIE (e), and finally a dry etch removes the layer of 

SiO2 along the bottom of the cantilever(f). This process creates a free-floating cantilever 

with free floating supports to either side. This structure provides us with an easy method 

for testing the change in the CPC signal when an internal electric field is induced by 

Figure 4.26: Fabrication of the Si cantilevers [1]. 

Figure 4.27: Top down photo of Si (a) wide view and (b) close up. [1] 
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straining a piezoelectric material. Figure 4.27 shows a top down view of the Si 

cantilevers when in the scanning-CPC system. We placed a micro-positioning probe on 

the stage to move with the sample. This probe then pushed the cantilever side to side 

(rather than the traditional up or down) to generate strain along the support beams of the 

cantilever. The probe applying the strain was electrically isolated and its holder insulated 

so that is did not generate any changes in the CPC signal. 

We compared the unstrained cantilever, Figure 4.28 (a), with a cantilever that has 

been pushed left by ~25um (b). Then line scans can be done across the supports of the 

Figure 4.28: Effect of stress on CPC signal in a silicon cantilever. 
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cantilever, showing in Figure 4.28 (c) the applied stress (blue trace) does not create a 

significant difference in the CPC response when compared to the no stress line scan (red 

trace). This result is further evidence to show that the CPC signal is not a result of, nor is 

the signal significantly modified by, piezoelectric properties of semiconductor samples.  

We also looked at the effects of an externally applied electric field. We applied a 

DC voltage to the sample by simply adding a power supply in line with the contact as 

shown in Figure 4.29. We then did line scans across 5um diameter pillars. We can see 

from Figure 4.30 the effects of applying a bias across the sample where the black trace is 

a line scan without any biasing, the red trace is a line scan with significant positive 

Figure 4.30: Effects of external bias on CPC signal of GaN pillars 

Figure 4.29: Diagram of bias testing 

GaN samples. 
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biasing (18V), and the blue trace is a line scan with a significant negative bias (-18V). 

We know from the work described earlier, in Chapter 2.3, that biasing should have a 

significant effect on the CPC signal of a sample if the CPC signal is due to similar effects 

like those seen in Chapter 2.3. That means that if the signal seen on the perimeters of the 

pillars is caused or enhanced by an undetermined electric field effect then the bias would 

either increase of decrease the signal strength. Yet, we do not see strong changes in the 

amplitudes of the CPC signal. This result further implies that the CPC signal we see is 

not due to electric field properties of GaN. 

These results indicate that the CPC signal seen in GaN features is not a function of 

the electric field showing that it is not dependent on some internal electric field or easily 

manipulated by an external electric field. This relative independence means that we must 

look to other effects for the source of the CPC signal. In the next section, we will discuss 

how absorption changes affect the CPC signal. 

4.4.4 Testing absorption effects  

Testing the absorption hypothesis was the most straightforward by examining the 

material and setup properties: GaN defect density, crystal structure, surface quality, and 

contact arrangement, since they could all determine both the signal strength and the CPC 

image properties.  

We fabricated pillars in GaN wafers so that we could study why the walls of the 

pillars gave use such a strong CPC signal. It could be that the exposed walls allow for 

subsurface defects to be exposed to light, increasing the CPC signal. We fabricated two 

sets of pillars on two different GaN wafers, with one wafer having a higher defect density 
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that the other wafer. We can verify the difference in defect density by looking at the I/V 

curves taken from the devices fabricated by Sowmya Kolli, shown in Figure 4.31. Sample 

1 (red trace) shows a much lower breakdown voltage than Sample 2 (blue trace), showing 

that Sample 2 does have a lower defect density [35]. 

We tested if scanning-CPC measures defect densities, since a sample with higher 

defect densities would have more CPC signal due to more exposed defects. Figure 4.32 

shows the line scans of the high defect GaN wafer, Sample 1 (red trace), and the lower 

defect density sample, Sample 2 (blue trace), note that the scale for Sample 1 (red trace) 

Figure 4.32: CPC of pillar edge between different defect densities 

Figure 4.31: IV curves of diodes made from Sample 1 and Sample 2. 
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is a tenth of that of Sample 2. We see that the high defect sample has a significantly 

lower signal, ~10x lower. This result implies that increase in CPC signal is not due to an 

increase in defects, nor does the signal depend on defects on the edges of the pillars in the 

manner we predicted. The relationship between defect density and CPC signal seems 

inversely related. With decreasing defect density, we see an increase in the CPC signal. 

Since the CPC signal depends in part on absorbance of the sample, this implies that 

Sample 2 has better absorbance qualities.  

 A second consideration is how the fabricated designs affect the signal. In Figure 

4.33, we have a pair of pillars with different etch times. The left pillar has a 600 second 

etch and the right side is a 300 second etch time. The line scans show an expected result, 

a longer etch time creates a taller pillar, providing a larger surface for photon absorption 

to take place, therefore the 600 second etch time pillar has a higher CPC signal. This 

result also shows that the asymmetry ratio increases in the 600 second etch time, 

implying that the asymmetry is more than just a factor of direct, surface only absorption. 

Figure 4.33: Etched time comparisons, tall versus short pillars. 
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If it did rely only on surface absorption, then we should see uniform increases in the 

signal all around, rather than an overall increase in signal, and also an increase in the ratio 

of high side to low side. 

 The next possible parameter that determines a samples CPC response is its surface 

quality. In the GaN samples, this can be controlled in a variety of ways. The etching 

process does not leave a pristine surface. By not cleaning the surface after etching, we 

have a ‘dirty’ sample we can compare with a ‘clean’ sample, where the cleaning process 

is treating the sample with HCl:H2O, Acetone, IPA, then DI water. A second method of 

modifying the surface of the GaN samples is through sulfur passivation. By soaking the 

etched GaN wafers in sulfuric acid, the surface of the sample has less surface charge 

available due to the passivation process reducing the charge density on the surface 

through an oxidization process [36]. 

 In Figure 4.34, we have a comparison between a dirty and a clean sample. This 

figure shows a significant signal difference. The samples are identical except for the 

Figure 4.34: Dirty (a) versus clean (b) GaN pillar 
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cleaning procedure being applied. This increase in signal to noise ratio also results in an 

increase in the resolution of the image. This result shows that the surface quality is a 

significant factor in both signal generation and resolution in the CPC system. This result 

is shown in Figure 4.35 and the lines scans through the pillars shown in the Figure 4.34. 

With the line scans on the same y-axis scale, this direct comparison shows the strength of 

the change in the CPC signal. The system dirty pillar signal can look good on its own, but 

when compared to the clean sample’s signal, we see that the effect is a dramatic 

improvement. 

 In Figure 4.36, we see the effects of passivation on a clean GaN pillar sample. 

Passivation improves the image quality and the signal to noise ratio. This comparison 

shows a significant improvement in resolution of the sample as well as signal strength. 

By looking again to line scans across these features, we get a better idea of the effects of 

passivation, as shown in Figure 4.37 where the red trace shows the CPC signal for a 

passivated pillar and the blue trace shows the CPC signal for an unpassivated pillar. Both 

pillars were cleaned prior to scanning and passivation. This comparison shows that by 

improving the surface of the sample, the resulting image is improved. Therefore, a higher 

quality surface where there are less opportunities for excited electron-hole pairs to 

Figure 4.35: Line scans from the 

features seen in Figure 4.34. 
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recombine will result in a higher CPC signal. This result matches with the ideal CPC 

parameters: electron-hole pairs that separate some distance, generating an electric field. 

Without the sulfur passivation, the electron-hole pairs either do not separate, equalize too 

rapidly to detect, or the light is not able to propagate further within the sample. 

 We see that changes in the possible absorption parameters in the GaN dictate both 

signal strength and resolution. If a sample has a better surface quality, it produces a 

higher, clearer signal. The surface quality can be both a measure of topological 

Figure 4.36: Unpassivated (a) versus passivated (b) GaN pillars 

Figure 4.37: Line scans of the features seen in Figure 4.36. 
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obstructions (cleanliness) or electronics structure (passivation). This set of results means 

that we can tune samples to give us the best images possible with respect to enhancing 

absorption. We have also shown that the defects are not the primary source of the CPC 

signal by testing a sample with high defect density versus a low defect density sample. 

We have also shown that exposing a larger area of pillar wall does increase signal, but 

not as precise as we had expected. These results mean that there is a mechanism involved 

that we have not tested yet, leading to the hypothesis that the changes in the CPC signal 

and the asymmetry are due to a waveguiding effect within the GaN substrate. The next 

section will discuss the results of testing that hypothesis. 

4.5 Waveguiding effect 

A straightforward way to test if we are seeing a waveguiding effect is to look at the 

position of the contact with respect to the CPC signal and image profiles that result. We 

can test the effect of contact position by returning to the Si cantilevers since they have 

strongly delimited contact pad that we can precisely attach to and then changing the 

position of the contact used for data collection. Both contact pads are identical in the 

silicon cantilevers but the arms are different, one is thicker than the other. In Figure 4.38, 

(a) the top pad is used and in (b) the bottom contact pad is used for CPC signal collection. 

The most intriguing detail is that the highest signal regions on the cantilever is the side 

opposite the contact, which is counter intuitive since we would expect highest signal 

regions to be nearest to the contact. This result shows that the nearness to the contact 

does not exclusively influence the CPC signal leading to testing other contact 

configurations as well as the scanning parameters themselves. 
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We can test this on sided effect on the GaN pillars by ‘painting’ a circular contact 

around a scan area. In Figure 4.39, we have the area scanned (a) within the circular 

contact, (b) outside the circular contact, and (c) the wire connecting the sample to the 

BNC cable. The area outside the circular contact, (b), will behave in the same way as 

previous contacts. 

Figure 4.38: Top (a) and bottom (b) contact location on Silicon Cantilevers 

Figure 4.39: Photo of circular contact where images were taken (a) inside (b) 

outside, and the signal was collected via the contact (c). 
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We can see this contact configuration dependence seen in the silicon cantilevers 

in the GaN pillars too. Figure 4.40 shows two CPC scans and the conditions for those 

scans. Both scans maintained the same settings, both electrical and software, with only 

the location of the scan with respect to the contact changed. In Figure 4.40 (a), the scan 

was taken within a circular, silver paste contact where the blue trace represents the silver 

paste. In Figure 4.40 (b), the scan was taken below the contact showing that the contact 

directly effects the CPC signal, while in (b) we see the high signal region is opposite of 

the nearest contact edge, and (a) shows a more uniform signal response. 

 The best explanation of seeing a signal at all as well as seeing asymmetries in the 

GaN fabrications is that we are seeing a waveguiding effect. The waveguiding effect 

explains how the areas of highest signal are around the perimeter of the pillars of the 

slopes of the pits. These areas could have a longer beam path, increasing the signal due to 

Figure 4.40: Pillar asymmetry seen in GaN pillars depends on 

position with respect to the contact. 
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increased opportunities for absorption therefore increased CPC signal. We can see the 

possible effect of total internal reflection within the GaN samples. In Figure 4.41, we see 

the beam path reflecting within GaN, with the pit angle at 𝜃 = ~70˚ as determined from 

the AFM measurements.  

Figure 4.41 shows how a perpendicular beam would interact with the GaN 

surface. In our system, we use an Olympus UIS MPlanIR 100x /0.80 objective with a 

180mm focal length [37]. Knowing these parameters and the indices of refraction of GaN 

(n=2.399) and sapphire (n=1.7682) back along with that of STP air (n=1.00029), we can 

simulate the effects of the oblique component of the beam. In Figure 4.42, we used 

RayOptics see the how along the walls of the pillars and pits the path length of the beam 

becomes much longer [16]. We see that in both the bulk of the pit and pillar areas, (a) and 

(c), the light propagates through the sample without increasing the beam paths. Yet, along 

the walls of the pits or pillars, (b) and (d), we have a significant increase in the length of 

the beam paths. We can even see that in the case of the pillar the light propagates 

significantly to the right. If the contact was there, more signal would be generated near 

the contact further increasing the CPC signal. With the increased path length of the light, 

more of the material can be excited thereby generating more electron-hole pairs and 

Figure 4.41: Possible total internal reflection in GaN 
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increasing the CPC signal. This signal due to a waveguiding effect, means that the 2D 

CPC image in GaN is not a local measurement, and it depends on where and how the 

light interacts with the surface. 

 This waveguiding hypothesis can also explain the earlier tests. With a decreased 

defect density, light will have a longer beam path within the sample. Higher defect 

densities will increase absorbance where the light hits the sample, but also will increase 

scattering so that less of the light propagates through the sample. The waveguiding 

Figure 4.42: Simulation of GaN pits. 
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hypothesis shows this result:  The lower defect density samples have better signal-to-

noise ratios and better resolution (as shown in Figure 4.32). Similarly, a dirty sample 

surface could scatter light that is refracting within the sample. Clean samples yield higher 

and better CPC signals.  

 We can also return to look at the taller (i.e. longer etch time) pillars in Figure 

4.33. With the taller pillars, there is a greater surface area for the light to be incident 

upon, increasing the opportunities for the light to have extended beam paths. The 

waveguiding hypothesis also matches well with this result. We see higher signals with 

taller pillars.  

 The waveguiding hypothesis can also explain why the piezoelectric effects did not 

affect the CPC signal, see Figure 4.28. We also see that the induced electric field does not 

increase the signal either, see Figure 4.30. Therefore, only modifying the parameter of the 

beam paths would improve the CPC signal, and not the material’s electric-field 

properties. 

 This result is important for the development of the CPC-STED system. The STED 

system depends on the absorption of photons, not a secondary effect like we see in the 

scanning-CPC results of the GaN samples. If we apply the STED technique to the 

scanning-CPC technique, we cannot expect the same resolution improvements, because 

with the depletion and excitation beam having two different energies they will refract 

slightly differently in the GaN. The path of the depletion beam will diverge from the path 

of the excitation beam, therefore we cannot expect a 100% efficiency of the CPC-STED 

process, as we will explore in the next chapter. 
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CHAPTER 5 CPC-STED SCANNING RESULTS 

With the success of the scanning-CPC results, we sought to apply the principles 

found in Stimulated Emission Depletion (STED) fluorescence microscopy to develop 

Capacitive Photocurrent Stimulated Emission Depletion (CPC-STED) microscopy. This 

chapter will discuss the theoretical framework for CPC-STED and then discuss the results 

of using this technique. Then various experimental setups and material systems will be 

discussed as well as the issues that arose and how they were resolved. 

5.1 Theoretical framework 

 Since fixed point CPC and scanning-CPC both detect the AC signal generated 

from a sample by either a pulsed or chopped light source, this process could allow for the 

utilization of the techniques developed in fluorescence STED microscopy. In Figure 5.1, 

we see how STED achieves increased resolution improvements: (a) shows the excitation 

only beam, (b) shows the toroidal depletion beam, (c) shows the excitation beam overlaid 

with a Gaussian depletion beam, and (c) shows the toroidal depletion overlaid with the 

Figure 5.1: STED microscopy beam layout. (a) excitation beam only, (b) toroidal 

depletion beam, (c) overlapping of gaussian depletion and gaussian excitation beam, 

and (d) collinear toroidal depletion beam and gaussian excitation beam. 
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excitation beam, the configuration used for CPC-STED. The resolution improvement is 

done by reducing the effective spot size below an objective’s diffraction limit through the 

depletion of a samples signal in the portions of the excitation beam that is overlapped by 

the sufficiently intense portions of the toroidal depletion beam, as we will discuss. 

In our case, the diffraction limit of the 2.54 eV beam when using an objective 

with numerical aperture of 0.8 is given by: 

𝑑 =
𝜆

2 ∗ 𝑁𝐴
=

488 𝑛𝑚

2 ∗ 0.8
= 305 𝑛𝑚                    (5. 1) 

with the toroid having an effective center hole as small as ~170 nm when using the 0.80 

numerical aperture (NA), 3.5 mm working distance, 100x objective. This spot size can be 

reduced to ~20 nm when using a higher NA objective with a narrower working distance, 

like the oil-emersion lens used for STED fluorescence microscopy. Since we are 

interested in studying surface properties, we can only use the 100x/0.80 objective.  

We also need to look at how effective the toroid is and what effective spot size we 

can get from the system. Based on the work in fluorescent STED microscopy, we have a 

method for determining the theoretical limits to the effective spot size. 

𝑑 ≈
𝜆

2𝑁𝐴 (1 + 𝐼
𝐼𝑠

⁄ )
1

2⁄
                    (5. 2) 

where d is the effective spot diameter, λ is the wavelength of the depletion beam, NA is 

the numerical aperture of the objective being used, I is the intensity of the depletion 

beam, and Is is the threshold intensity needed to deplete the sample; this value is a 

material dependent property [38].  
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 In Figure 5.2, we see how the material dependent feature, Is, affects the effective 

spot size. As the depletion beam’s intensity increases, the red (1x), blue (2x), and green 

(4x) traces, the effective spot size moves in toward the center of the gaussian excitation 

beam. That means with a sufficiently low Is or a high depletion intensity the ratio of the 

two, R, can be increased to create a nearly infinitely small theoretical effective spot size. 

If we assume that a sample has a similar minimum response intensity value, Is, such 

that it is the lowest intensity required to prevent a material system from generating an AC 

signal from the modulated excitation beam, then we can define a value, 

𝑅 = 𝐼
𝐼𝑠

⁄                     (5. 3) 

to determine the appropriate parameters needed to overcome the diffraction limit of a 

2.54 eV based system, at 305 nm. From Figure 5.3, we can see that we need a value of 

Figure 5.2: Diagram showing the importance of Is and depletion intensity. 
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𝑅 ≥ 0.47 to have an effective spot size smaller than 305 nm. Since the 2.09 eV laser has 

a nominal range of 150 mW to 1650 mW, the maximum value we have available is 

𝑅 = 𝐼
𝐼𝑠

⁄ = 1650
150⁄ = 11                    (5. 4) 

giving a theoretical minimum effective spot size of 𝑑 ≈ 107 𝑛𝑚, since the depletion 

beam can vary form 150 mW to 1650 mW we can look at the model to determine the best 

case scenario there the material has a Is at the minimum power of the depletion beam. 

5.2 Preliminary work 

Since we now know how the minimum depletion intensity threshold controls the 

effective spot size, we sought to estimate this value. To determine the value, we 

Figure 5.3: Theoretical limits of CPC-STED effective spot size, using a NA=0.80 

objective. 

Figure 5.4: Fit of depletion intensity with CPC signal. 



95 

 

performed scans of GaN, maintaining a constant excitation beam power, and varying the 

depletion beam power from 150 mW to 1650 mW, the limits of the 2.09 eV laser. The 

result is the plot seen in Figure 5.4, where the CPC signal decreases as the depletion 

beam power increases, because as the depletion beam power increases, the effective spot 

size shrinks. There is also a fit of Equation (5.2) with Is = 450 mW. With this Is value and 

using the laser’s maximum power of 1650 mW, we have a value of R = 3.67 meaning 

that the minimum theoretical spot size we can expect is d ≈ 171 nm, which is much 

smaller than the diffraction limit of our 2.54 eV beam at d=305 nm. Therefore, if we can 

resolve details in the scans that are smaller than 305 nm, then subdiffraction imaging is 

achieved. 

 The depletion beam is employed to stop the signal in its region, so we can test the 

effectiveness of this beam by overlapping a Gaussian depletion beam and a Gaussian 

excitation beam, as seen in Figure 5.1 (c). We refer to this as a bleaching test since the 

higher power, CW 2.09 eV beam should ‘bleach out’ the signal generated by the chopped 

Figure 5.5: SEM of GaN pit. 
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2.54 eV beam. In Figure 5.6, we have the results of this bleaching test done on a GaN pit 

like the pit seen in Figure 5.5, showing a few features of importance, including that the 

bleached image (b) has a significantly decreased signal both in the pit area and in the bulk 

of the unetched GaN. The resolution is also reduced in the bleached (b) image when 

compared to the image generated from using only the 2.54 eV excitation beam (a). This 

result is as expected, since the bleached image should have the lowest signal at every 

point since every point of the excitation beam is bleached. 

We need to see how the contact configuration modifies the CPC signal we get and 

how this in turn determines the effectiveness of the CPC-STED. As discussed earlier, we 

used a contact to go around the scan area, providing a more symmetrical image. In Figure 

Figure 5.6: Bleach test of GaN pits. (a) bleached image, (b) excitation 

beam only image, (c) CPC-STED image, and (d) line scans form each 

image. 
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5.7, we see a set of comparisons of excitation only vs CPC-STED in both inside a circular 

contact and outside of a circular contact, as well as line scans from these layouts. We see 

that in the shallow GaN pits there is limited asymmetry initially and that being inside the 

contact does remedy the asymmetry slightly. We also see that the signal strength is 

independent of contact style. There is slight resolution improvement or narrowing of the 

signal given from the pits when using the CPC-STED configuration.  

With the theoretical framework and results of the bleaching test, we were ready to 

capture images using the CPC-STED system. We know that to prove super resolution, we 

must resolve features smaller than 305 nm. We should be able to resolve features as small 

Figure 5.7: Comparing contact location with CPC-STED functionality. 

Outside the contact with (a) excitation only and (b) CPC-STED, inside the 

contact with (c) excitation only and (d) CPC-STED, and (e) line scan 

comparisons. 
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as 171 nm. We also know that the principles of the system are valid, as seen in the 

bleaching results. 

5.3 Early results 

Returning to the familiar system of GaN pits, we could capture the images seen in 

Figure 5.8 and Figure 5.9. In both, we see the results of collecting an image using only 

the 2.54 eV excitation beam (a), and the results of using the CPC-STED system (b), as 

Figure 5.10: (a) Minimum depletion power (b) Maximum depletion power 

image of pillars in GaN 

Figure 5.8: GaN pits with excitation only 

(a) and CPC-STED (b) with a line scan (c) 

across both. 

Figure 5.9: More GaN pits with excitation 

only (a) and CPC-STED (b) with a line 

scan (c) across both. 
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well as the line scans across these features. The next step is to optimize the system 

utilizing the values we determined for Is. 

We can look at the familiar GaN pillars, as seen in the 3-dimentional plotting in 

Figure 5.10. In the figure (a) is using a R=1 value (depletion power at 450 mw) and (b) is 

using a R=3.67 value (depletion power at 1650 mW). Since we are scanning a robust 

semiconductor we do not need to be overly concerned with power considerations, 

allowing for utilizing the full power range of the light sources. Applying line scans across 

the features in Figure 5.10 show an improved peak to valley ratio, as shown in the lines 

scans in Figure 5.11 where the blue trace is using a lower depletion power than red trace, 

which uses the highest available depletion power. With a higher-powered depletion 

beam, the outer parameter of the excitation beam has an improved resolution since the 

signal is further ensured to come only from a smaller effective spot size. Combining the 

improvements seen with higher power depletion beams and different energies for the 

depletion and excitation beam, we approach the best resolution improvements possible in 

the current system. This improvement also requires employing a round contact to 

minimize the asymmetry of the waveguiding effect, ensuring that all electron-hole 

separations are relatively equidistant to a contact, rather than one sided. 

Figure 5.11: Lines Scans of the GaN pillar features in Figure 5.10 
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A final variable we can control is the power of the excitation beam. In Figure 

5.12, we can return to the previously used GaN pits to see how strong of an improvement 

we can have using higher excitation beam powers. We see that the excitation power is not 

as important as the increase in the depletion power. We can apply these constraints when 

evaluating excitation only line scans and CPC-STED line scans. 

Figure 5.12: A comparison of (a) excitation only, (b) low excitation power CPC-

STED, (c) high power excitation CPC-STED, and (d) line scans of each image. 
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Now, we can design the experiment such that the best R value is used, R=3.67, 

the highest excitation beam power is used, and a round contact is employed. Looking at 

Figure 5.13 (a), we see pillars in GaN that are drawing nearer and doing a line scan of the 

close pillars (b) we see familiar results. The CPC-STED signal is below that of the 

excitation only, but the excitation beam only signal has a signal to noise ratio of 2.60 and 

the CPC-STED has a signal to noise ratio of 5.73. Also, we can see that the CPC-STED 

curve (blue) resolves at the pillar separation point where the excitation only line scan 

does not. In Figure 5.13 (b), based on the measurements of the separation of the peaks the 

excitation only line scan cannot resolve below ~400 nm at approximately point 175, 

Figure 5.13: (a) Photo of pillars fabricated in a GaN wafer, with a dotted line along 

the line scan path and (b) line scans for excitation only in red and CPC-STED in 

blue. 
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where we can see the CPC-STED resolves down to ~240 nm. When using an R=3 ratio, 

which we get from optimizing the fit in Figure 5.4 and Equation (5.2) we find an 

effective spot size of ~171nm, significantly below the diffraction limit of the 2.54 eV 

beam, 305nm. Therefore, we see that we are resolving below the diffraction limit, yet 

there is still room for improvement. We see that the system has some inherent 

inefficiencies, where the ratio of effective spot size to resolved spot size are very similar. 

For excitation only we see a theoretical spot size (ST) and an experimental spot size (SE), 

𝑆𝑇

𝑆𝐸
=

305 𝑛𝑚

400 𝑛𝑚
= 0.7625; likewise, for CPC-STED we have, 

𝑆𝑇

𝑆𝐸
=

171 𝑛𝑚

240 𝑛𝑚
= 0.7125.  

With the STED-CPC signal showing a waveguiding effect, as discussed in Section 

4.4, this waveguiding effect directly influences the resolution improvement due to GaN 

having a wavelength dependent index of refraction meaning that in the regions of 

overlapping excitation and depletion beams will not follow the same paths. Looking at 

Figure 5.14, we see that the beam path of the 2.54 eV excitation beam (a) is not 

completely overlapped by the 2.09 eV depletion beam (b). While there will be 

Figure 5.14: RayOptics simulation of the (a) 2.54 eV excitation and (b) 

2.09 eV depletion beam path through the wall of a GaN pit.  
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overlapping for a majority of the area, the interior of the toroid has reduced effectiveness, 

while increasing the theoretical minimum spot size. This change is negligible in CPC-

STED because the depletion beam is utilized for its CW properties rather than its energy 

dependent effects on a sample, as it is used in fluorescence STED.  

5.4 Adjusting design parameters 

This section will discuss the various parameters we adjusted to further improve the 

system. First, we considered investigating the excitation and depletion overlapping by 

employing identical energy excitation and depletion beams. Next, we look at a non-

semiconductor system. Finally, we look some of the details of the experimental design.  

5.4.1 Dual 2.09eV setup 

 With the concerns of the wavelength dependent index of refraction, we modified 

the system to have 2.09 eV as both the excitation and depletion beam since our system is 

Figure 5.15: Bleach test of dual 2.09eV beams with (a) 2.09eV 

excitation only (b) dual bleaching 2.09eV, and (c) line scans 

through the center of the images 
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possibly not as energy dependent as standard STED fluorophores. We adjusted the 

location of the chopper and the steering of the beam as described in Section Optical table 

layout and Figure 3.3. The first step is to do a bleach test. We can see in Figure 5.15 (a) 

that using the 2.09 eV beam as the chopped excitation beam provides a suitable signal, 

but the resolution is not impeded as much as in a 2.54 eV/2.09 eV setup. 

The 2.09 eV beam was also used for this because it has a significantly larger 

power range for the excitation beam, maxing out at ~400 mW compared to the maximum 

power of the 2.54 eV at 60 mW. Although, since we are splitting the beam the maximum 

depletion power is ~400 mW meaning that the best value we can get is R≈1 for the 

theoretical minimum spot size, which limits the effectiveness of this setup, meaning that 

our theoretical minimum spot size is d ≈ 262 nm, and is significantly higher than the 

theoretical minimum spot size for the primary setup at d ≈ 171 nm. We can see the effects 

Figure 5.16: (a) 2.09 eV excitation only, (b) dual 2.09 eV 

CPC-STED, and (c) line scans across the GaN pillars 
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of this in Figure 5.16, where using different excitation and depletion energies shows 

improvements in peak to valley ratios, using identical energies for depletion and 

excitation show a decrease in the peak to valley ratio. There also is no resolution 

improvement as seen from the lack of narrowing in the peaks or increase in separation 

between parts of the peaks. This lack of improvement is likely due to not having an 

insufficient depletion beam power, nominally at ~400mW. Therefore, the dual 2.09 eV 

setup is not adequate for our test. With this setup being unsuccessful we tried a previous 

material system. 

5.4.2 Perovskite 

 Since the dual 2.09 eV beams did not result in an improved imaged, we studied an 

alternative material system. Since the perovskite responded to lower power, we returned 

to that system anticipating that using a very lower power would not burn the sample, and 

the addition of a depletion beam would increase the effectiveness of the excitation beam 

by improving the signal to noise ratio. In Figure 5.17, we see the image results of the 

perovskite system. With a lower power in the excitation only image (a), we have a less 

Figure 5.17: (a) 2.54 eV excitation only and (b) CPC-STED of perovskites. 
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defined image than we have seen. The addition of the toroidal depletion beam does seem 

to improve the image quality (b). We can see from the line scans in Figure 5.18 of both 

images that the overall decrease in signal when using full CPC-STED functionality 

carries through to the perovskite system, as seen in the GaN system. We also see some 

improvements in the signal to noise ratio as seen at point 95, but this improvement does 

not lead to a detectable increase in resolution. The problem with the perovskite system is 

the overall signal is still very low making it difficult to show improvements. The 

perovskites were also deteriorating quickly in the typical open-air configuration of the 

system and holder means it was not suitable to extensive study.  

5.5 Obstacles and resolutions 

We ran into a significant problem through the course of this work. Around mid-

2016, the MadCityLabs stage with angstrom resolution, had a critical failure in its 

piezoelectric actuators, which was likely due to its age. This issue forced us to use the 

less optimal Prior Scientific stage, with its 40nm minimum step size. This new stage 

required a complete rewriting of the LabView software that controls the stage, collects 

Figure 5.18 :Line scan across the images in Figure 5.17 



107 

 

the data, and stores the data. This software development is detailed in Chapter 3.3. 

Overall, the new stage and new software sacrifices some resolution for greater control 

over the scan area and the minute details of the stages motion, such as speed, 

acceleration, scan area size. Previously, we were limited to maximum scan areas of ~45 

um x 45 um now we have a limit of ~10 cm x 10 cm. Since we have a minimum 

theoretical spot size for CPC-STED of ~170 nm, the 40 nm step size is not an issue, yet it 

would be for fluoresce STED with its spot sizes of <5 nm. 

While solving the issues involved with installing a new stage, we encountered 

additional issues that facilitated implementing permanent improvements. An initial issue 

was getting a high-quality alignment of the toroidal depletion beam and the Gaussian 

excitation beam. Another issue was the mechanical z-axis drift of the stage due to the 

microscope’s stage, but not the scanning stage. To solve both of these issues, we added a 

camera [MU1000-CK 10MP, AmScope] to the system via the top mount on the 

microscope. This camera came with proprietary software that allows for live viewing of 

the sample surface and can assist directly in completing the CPC-STED alignment. In 

Figure 5.19, we have photographs taken with this camera that shows just the 2.54 eV 

Figure 5.19: Photographs from the camera on the microscope showing proper 

alignment. 
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excitation beam (a), the 2.09 eV toroidal beam (b), and the proper overlapping of the two 

beams (c). This capability means the fine adjustments can be made to the system while 

monitoring the alignment and focus through the camera’s proprietary software, rather 

than constantly moving from table top optical component to checking adjustment effects 

in the microscope eyepiece. This utilization greatly reduces the alignment time and 

improves the alignment accuracy since the alignment can be verified with the camera’s 

software, rather than merely visually verified via the eyepiece. Since the software has a 

live feed, it also solves the problem of the z-axis drift. By monitoring the live feed, the 

drift can instantly be recognized and compensated for by adjusting the focus knob. 

5.6 Restoring and improving resolution 

With the addition of a new stage, the system needed to be tested and recalibrated to 

provide useful images again. Since this project was funded through a NSF-MRI grant the 

result needs to be a functional system that is usable by others. In this section, I will cover 

Figure 5.20: Bleached, excitation only, and 

CPC-STED image of GaN pits with new stage 

and software. 
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the images we were able to bet from the system after installing the new stage. These 

results were aided by the improved software as well as the camera used for alignment. 

Once we had the new software with the new stage, we returned to a familiar material 

system, the GaN pits. In Figure 5.20, we have the results of repeating the basic set of tests 

for the CPC-STED system. We see that we can still bleach an image and that the pits are 

still resolvable. It also shows that, at least preliminarily, CPC-STED shows an 

improvement in the image. With this promising result, we returned to the resolution 

testing pillar material system, to verify functionality once again as well as capabilities. 

Figure 5.21: Scanning-CPC (a) and CPC-STED (b) image of resolution 

testing GaN pillars. 
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 This allowed for us to take advantage of a feature of the new stage, the larger scan 

area, as seen in Figure 5.21. We did a standard scanning-CPC (a) and a CPC-STED (b) of 

larger areas, ~200 um, and then used only the portions that provided the best tests for the 

CPC-STED resolution. We can see that there is some, abet not obvious, improvement in 

the image from (a) to (b). This improvement can be measured directly by looking at the 

line scans between two pillars, separated by ~200 nm, seen in Figure 5.22. We see an 

obvious separation between the adjacent pillar walls when using the CPC-STED that is 

not apparent when using the scanning-CPC system. 

Figure 5.22: GaN pillars taken via (a) scanning-CPC and (b) CPC-

STED, with line scans (c) of the separations. 
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Returning to the shallow GaN pits with these improvements revealed an additional 

interesting feature. When looking at a shallow GaN pit, we observed asymmetries, but 

now we are able to resolve features in the asymmetries that were previously obscured. In 

Figure 5.23, we have the scanning-CPC images (a) compared to a CPC-STED image (b). 

In Figure 5.23 (c), we have the line scans from the images taken along their respective 

dotted lines. The line scans also show that the blue trace using the excitation beam only is 

Figure 5.23: (a) scanning-CPC image, (b) CPC-

STED image, and (c) line scans across both with 

the excitation only line trace in blue and the 

CPC-STED line trace in red. 
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wider and relatively featureless along the right side, unlike the CPC-STED line trace, 

shown in red. The red trace also shows a secondary feature at position ~190 that is not 

seen in the blue trace. This feature is likely a sloped wall of the pit showing that we could 

differentiate the two slopes that were previously undistinguishable as a feature that is 

~200 nm wide and below the diffraction limit of the current system. This feature is 

further proof of resolution improvement and possible super resolution. 

This result also provides us with the opportunity to test how varying values for R 

change the resulting resolution of a scan. In Figure 5.24, we have a series of line scans 

across the same GaN pit used in Figure 5.23. We have a line scan collected using only the 

2.54 eV excitation beam (red trace), CPC-STED with an R=1.44 value (blue trace), 

R=2.56 (green trace), and finally R=3.67 (black trace). These traces are offset along the 

Figure 5.24: Line scans of the GaN pit seen in Figure 5.23 

with varying values for R. 
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y-axis to provide room to see the secondary feature, also seen in Figure 5.23 (c) at 

position ~190. This finding shows that as the R value increases, the asymmetry of the pit 

also increases until a maximum value is reached, R=3.67, and the second slope of the 

GaN pit resolves itself from the primary feature. Resulting data showed resolution 

improvement and experimental evidence that the mechanism described by Dr. Stefan Hell 

can be applied to scanning-CPC to create a new, improved-resolution scanning technique: 

CPC-STED. 

This chapter has shown that the principles discovered in fluorescent STED 

microscopy can be applied to a scanning-CPC system. This application of principles 

provides the framework for a new scanning system with possible super resolution. This 

chapter also demonstrates that the CPC-STED system, even using the new stage with its 

poorer resolution, remains capable of producing better images when utilizing the CPC-

STED methodology rather than the scanning-CPC method. 
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CHAPTER 6 CONCLUSION AND FURTHER WORK 

This dissertation has shown that within the body of work describing the advantages 

and unique information provided by capacitive photocurrent (CPC) spectroscopy there is 

a place for a scanning-CPC system. This system is easy to add to an existing Stimulated 

Emission Depletion (STED) without hindering the functionality of a STED system. This 

work also provides the software backbone for efficient scanning and the schematics for 

the optical layout for materials that have absorbance or electrical responses at 2.09 eV 

and 2.54 eV.  

Also, we have shown that this CPC-STED technique provides a deterministic 

microcopy method for achieving subdiffraction images. We have also shown some of the 

limitations of this technique: waveguiding effect, sample cleanliness or preparation 

method, and experiment design. With these developments, there is also a wide range of 

work that can be done in the future.  

6.1 Future work 

Here we will discuss potential future avenues of scientific inquiry. Many of these 

were not accomplished in this dissertation due to funding limitations. 

6.1.1 Hardware/Software improvements 

6.1.1.1 Objective 

A major limitation of the CPC-STED system is the objective used. Since it has 

such a low numerical aperture (NA=0.8), the minimum spot size is significantly larger 
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than if we used an objective with a larger numerical aperture. We can see in Figure 6.1 

that with a better objective the resolution can be increased dramatically, from 171 nm to 

~100 nm. This course was not pursued because the high NA objectives can be upward of 

~$5,000. 

6.1.1.2 Stage and software 

With the failure of the MadCityLabs stage with its angstrom resolution, the Prior 

stage with its 40 nm minimum step size is significantly worse for a scanning system. The 

manufacturer can improve the step size of the Prior Scientific stage to ~20 nm for ~$3000 

or the MadCityLabs stage could be returned and go through the RMA repair process for 

~$10000. Both option were beyond the funding available to this project. If a new stage is 

purchased, then it can be one with three-axis of motion, rather than only two. This 

improvement means that data could be collected on various levels of a sample probing 

various levels and their different electronic responses. 

Since the CPC-STED system is built around and does not impede the STED 

system, it would be advantageous to use both simultaneously. With a few hardware 

upgrades, a CPC image can be built simultaneously with a florescence image or a simple 

Figure 6.1: Effect of numerical aperture on theoretical 

minimum spot size with a 2.09 eV/2.54 eV system, using a 

R=3.67 value. 
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back reflection image. This addition will help to better correlation topography with CPC-

STED images, ensuring that features are accurately quantified and qualified, rather than 

relying only on photographs taken before or after a scan. 

6.1.2 Light source 

Another component of the system that can be adjusted is the light source. Unlike 

STED microscopy where specific fluorophores can be added to a sample and probed, in 

CPC-STED the sample is directly probed, which means that the light source needs to be 

tuned to probe different states of a sample. Some options would be to have the excitation 

beam use the Continuum or OPA system as its light source. With these improvements in 

place, a spectrum of scans could be compiled to possibly reveal more information on a 

samples electronic structure. The problem with this is both the system uses a single-mode 

fiber (SMF) to help with the collimation and a SMF is not suitable to have such a broad 

spectrum of beams. 

6.1.3 Material systems 

A final avenue for investigation is considering more material systems. We 

investigated Si, GaN, PCBM, GaAs, and perovskites material systems. With the 

development of this technique, we looked at systems we have studies previous or systems 

that other member of our group were studying such that the information CPC-STED 

provided would be helpful. There are multiple systems that can be studied and should be 

investigated using this new scanning technique.
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APPENDIX A 

 

Capacitive Photocurrent – Stimulated Emission Depletion (CPC-STED) Standard 

Operating procedure  

I. Assumed Parameters 

II. Aligning 488nm 

III. Aligning 529nm 

IV. Finalizations 

V. Common Issues and Solutions 

 

I. Assuming the following parameters: 

• 488nm is will aligned through PS, FM2, and FM4 

• 488nm is well collimated after C2 

• Using 592nm splitters after FM3  

II. Aligning 488nm 

• At FM4 without C2 ensure the coupling ins good, ie. The output is 

Gaussian  

1) Gaussian Beam Example 

i. Using two (2) irises with heights centered at the cross of 

the microscope’s back cover, check the height and 

centering from FM4 (still without C2). 
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a. Proper height is the focus of this step. 

b. Add C2 

c. Adjust C2 to match the height of FM4 

d. Ensure maximum power is in the center of the 

collimated beam (true Gaussian), not shifter away 

from center. This can be a visual check. 

e. Check beam centering on both irises 

ii. TIP: With good beam uniformity / shape adjust C2 pan/tilt 

not XYZ. 

iii. Permanently affix irises to help with next steps and future 

alignments and adjustments. 

iv. Double check collimation after C2 (looking for parallel 

lines, using the small plate). 

2) Well collimated example 

i. Align with DM3 to and through the microscope 

a. Checking the height at the microscope 

b. Looking at height with the microscope front off 

c. Looking through oculars 

d. At DM3 adjust X, PAN, and TILT in opposite 

motions to correct aberrations 

e. The back reflected 488 should be along the same, 

incoming beam path. 



124 

 

ii. 488nm back reflection should be on the 592nm depletion 

beam path 

3) Aligning 592nm 

i. Same steps as 488nm, checking for collimation and height. 

ii. Using DM4 to align beams together. 

III. Finalizations 

• With the front of the microscope off a rough alignment can be check by 

looking at the overlay of 488nm and 592 nm on the far wall. 

1) Focus adjustments on DM4 

2) Now the phase plate can be added (592nm is the center of the 

2nd row) 

i. Check pan/tilt to insure back reflection is still good 

For the fine alignment two (2) mirrors and irises (with height set to match other irises) 

one right in front of microscope back and across table. This checks height, collinearity, 

centering, and overlap of 488nm and 592nm. 
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