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ABSTRACT

LONGITUDINAL TRACKING OF PHYSIOLOGICAL STATE WITH

ELECTROMYOGRAPHIC SIGNALS

Robert W. Stallard

April 11, 2018

Electrophysiological measurements have been used in recent history to classify in-

stantaneous physiological configurations, e.g., hand gestures. This work investigates

the feasibility of working with changes in physiological configurations over time (i.e.,

longitudinally) using a variety of algorithms from the machine learning domain. We

demonstrate a high degree of classification accuracy for a binary classification problem

derived from electromyography measurements before and after a 35-day bedrest. The

problem difficulty is increased with a more dynamic experiment testing for changes

in astronaut sensorimotor performance by taking electromyography and force plate

measurements before, during, and after a jump from a small platform. A LASSO

regularization is performed to observe changes in relationship between electromyog-

raphy features and force plate outcomes. SVM classifiers are employed to correctly

identify the times at which these experiments are performed, which is important as

these indicate a trajectory of adaptation.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Observing and diagnosing the changing conditions of various physiological states in

humans with algorithmic approaches is an important research field, and one that could

aid in advancements of diagnostic and clinical technologies for non-invasive observa-

tion of the neuromuscular system [1, 2]. For example, NASAs Strategic Knowledge

Gap (SKG) reports from LEAG (Lunar Exploration Analysis Group) [3] and MEPAG

(Mars Exploration Program Analysis Group) [4] indicate broadly that ”how to main-

tain peak human health and performance in dusty, high-radiation, partial gravity

environments” is a matter of concern. In particular, methods for gauging the relative

state or physiological conditioning of individuals in spaceflight is both lacking and

necessary, for example in sensorimotor perception [5]. In addition to the MEPAG

and LEAG reports, Cermack (2006) argues for autonomous, on-site decision-making

capabilities, such as in a medical scenario, where crew can operate independently of

ground control [6]. Concern for human health and well-being naturally arises in many

areas during manned spaceflight. Specifically, the effects of long-term spaceflight on

sensorimotor perception [5], balance [7], visual target acquisition [8], functional mo-

bility [9], and walking strategy [10] have been studied. On Earth, these methodologies

have broad applications with numerous approaches studied, ranging from character-

ization of improvement from spinal cord injury, to characterization of the advance

of degenerative neurological diseases such as Parkinsons disease. It is the principal

1



aim of this work to examine the application of algorithmic approaches to longitudinal

physiological models.

Up until this point, it appears that much work has yet to be done exploring

the idea of employing algorithms to characterize, predict, or discriminate changes in

physical state over time. We suggest that, as it is possible to diagnose a condition, it

should well be possible to observe how such a state changes over time (e.g., generally

becoming worse or better, but described more appropriately depending on the situa-

tion). This has value in the case of recovery from spinal cord injury, just as it does in

the case of quantifying a recovery trajectory in some deficient area after spaceflight.

Therefore, in this work, we explore a synthesis of algorithmic and nonstationary

signal processing methods in an effort to elucidate situational physiological details

from noisy surface electromyographic (sEMG) signals [11]. In particular, we aim to

analyze sEMG data from surface electrodes to characterize some detail or state of hu-

man physiology. The main contribution of this work is the establishment of a method

for characterizing, classifying, or predicting physiological states undergoing longitu-

dinal study. In this specific case, we use electrophysiological data in concert with

other variables such as ground reaction forces and force production as the impetus

for developing this method [12,13].

This work attempts to improve the use of sEMG in, at a minimum, building statis-

tical models for prediction and/or classification of physiological outcomes (e.g., days

since bedrest, state of disuse, sensorimotor performance). One hurdle common to

such physiological studies is the subject-to-subject variation in performance observed

over time. We aim to negotiate this hurdle by investigating the issue algorithmically,

by predicting or classifying these states better than chance, as described in more

detail later in this dissertation. A more challenging goal is the discovery of underly-

ing physiological connections or mechanisms responsible for the change in state and

subsequent change in motor function, such as observed post-spaceflight locomotor

2



failures. The challenge lies in the fact that, in many cases, experiments are limited

in size, complexity, and number.

Ultimately, sEMG measurement alone has limits in what can be explored by its

measurement. Such measurements are merely produced by motor unit activity and

do not directly indicate what is occurring in the entire sensorimotor system of hu-

mans. A broader systemic approach to studying, for example, the effects of spaceflight

on human neurophysiology would require observations of changes in all parts of the

sensorimotor system; including measurements in the central nervous system, sEMG

measurements, the vestibular system and its associated processing areas in the brain,

etc. This work focuses on sEMG, but adjacent studies involving mapping the brain

via fMRI before and after spaceflight are underway [14] to investigate the adaptations

of the central nervous system in long-term immersion in microgravity environments.

These adjacent studies complement this work and support the importance of develop-

ing analytical techniques to assist in maintaining human health and well-being. See

the review by Van Ombergen et al. (2017) on spaceflight-induced neuroplasticity for

an overview [15] and the work by Cassady et al. (2016) for an example of the use of

fMRI techniques in investigating changes in sensory network connections in the brain

in simulated spaceflight environments [16].

Raw sEMG is difficult to employ for direct physiological interpretation. Such data

simply indicates the presence of some motor unit activity in addition to a great deal

of noise. Instead, one would prefer to extract potentially-informative features from

the signal. Features, or statistics of interest, include: the root-mean-square (RMS)

amplitude, zero crossings (ZC), median frequency (Fm), integrated EMG (iEMG),

autoregression coefficients, moving averages, and pulse intervals [17–19]. This work

utilizes many of these features in addition to the less-commonly employed wavelet

coefficient-derived features.

As a brief orientation, in general, as sEMG activity and amplitude increases, so

3



does the force output. The particular relationship between force and motor unit ac-

tivity depends on the muscle and movement in question and is not typically linear,

but the logic is simple: as the number of motor units exhibiting electrical activity

increases, so too does the voltage measured by the electrode and the net force output.

Examples of adverse conditions that may have an effect on the signal include vari-

ous forms of neuropathy (motor neuron decay) and myopathy (muscle fiber decay).

Clinically, a professional may take a qualitative look at signals and make judgements

based on a subjective reading of the data, other symptoms, and professional experi-

ence. A more algorithmic approach is exemplified in the work of Kamali et al. (2014),

whose approach utilizes a variety of classification algorithms and wavelet-derived fea-

tures which will be described in Chapter 2 [2]. It is appropriate here to reiterate

the principle aim of this work to explore the development of methodology for al-

gorithmically marking long-term changes in physiological state. The development of

algorithms and analytical processes for longitudinal study of physiological state has

numerous potential applications including quantifying human health and well-being

under the duress of long-term space exploration and enhancing the long-term efficacy

of human-machine prosthetic or robotic interfaces.

Other limitations exist in the development of useful features to inform algorithms.

For example, a look at the frequency spectra of sEMG data can give information

about the fatigability of the neuromuscular system in the form of shifts in median

frequencies [20]. The power spectra of an sEMG signal may additionally give some

idea as to the fiber type makeup within a muscle, as a higher median frequency

indicates a stronger contribution to the signal by fast twitch fibers. As fast twitch

motor units (MUs) participate less due to easy fatigability, the bulk of the action is

taken up by slow twitch MUs and the power spectrum shifts left to a lower frequency

range. Experimenters, for practical limitations of the Fourier Transform (FT), choose

relatively smooth isometric motions to minimize the nonstationary elements (e.g.,

4



transient bursts) inherent in sEMG signals. When examining non-smooth motions,

analysis with FT is limiting. The wavelet transform is employed in this work to work

around the limitations concerning nonstationarities that FTs have.

1.1 Summary of Contributions

We shall briefly describe the principle contributions of this work.

1.2 Classify Differences of Physiological State from Longitudinal Mea-

surements

A physiological state may vary depending on various factors such as disuse (e.g.,

bedrest), presence in a microgravity environment as in spaceflight, or the progression

or recovery from disease. This work seeks to identify means and methods to discrimi-

nate between observations made at different points in time. One dataset examined in

Chapter 3 involves discriminating between isometric contraction observations taken

for bedrest subjects before and after a 35-day bedrest [11]. The second example

used in this work is more complex in that sensorimotor performance observations of

dynamic, nonisometric motions are made at different intervals before and after space-

flight or bedrest by measuring sEMG (muscle activation) during a jumpdown task

(JDT) consisting of a jump from a platform, adjustment in air in preparation for land-

ing, the landing itself, and reaction to the landing toward achieving balance [12,13].

We demonstrate algorithmic classification of endpoint changes in physiological

state well-above chance (i.e., greater than 50% cross-validated accuracy for a binary

case) for both binary and multi-classification problems. The classification results are

presented in Chapters 3 and 5.
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1.3 Identify Physiologically-relevant Features Derived from the Data

Congruent with the two other aims described here is the notion of identifying physiologically-

relevant features. In addition to prediction and classification capabilities, the discov-

ery of physiologically interpretable features that explain variance in the data may

enhance the capabilities of diagnostic and clinical technologies. Therefore, in addi-

tion to a “bag of features” approach in which field-standard quantities are calculated

from each signal, new composite features will be constructed in an attempt to eluci-

date underlying physiological or kinematic processes. A tracjectory of change is also

identified in addressing this approach.

The results addressing this contribution are presented in Section 5.2.

1.4 Overarching Theme and Area of Exploration

Section 2.2.1 describes the process of discriminating between observations involving

physical conditions. In each case, experimental conditions are planned to generate

the signals and some data wrangling is necessary to prepare the data as inputs for

an algorithm. The particular methods of organizing the data may involve some

domain knowledge, organization natural to the task, or observation at hand. In Nair

et al. (2009), for example, the sEMG signals are normalized with respect to gait

cycle that is, the raw signal is compacted to some fixed-length vector where the

first vector element represents the initiation of gait and the final point represents the

conclusion of the cycle [21]. Further examples are given in detail in the next two

sections. Section 2.2.2 describes classification of signals corresponding to particular

physical configurations such as hand-gestures. These tasks, as with the first set, have

pre-processing steps specifically tailored for the experimental conditions involved and

algorithms employed.

The means by which we inform our classification algorithms are equally important
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as the algorithms themselves. Indeed, much of the effort involved in this work involves

extracting relevant portions of a signal, or organizing signals, then processing the

signals in a way that extracts meaningful features for algorithms. Therefore, in

Section 2 we briefly discuss, by way of exhibition, sEMG features in the time domain,

the frequency domain, and the time-frequency domain.

The examples described in Sections 2.2.1 and 2.2.2 address cases of instantaneous

differences between populations or trials (e.g., gestures). The specific aims of this

work are geared toward addressing the issue of differences in populations over time,

or longitudinal classifications, and Chapters 3, 4, and 5 constitute the purpose of this

dissertation which is to demonstrate these classifications. The approaches outlined

here both inform and illustrate the approach that is taken to analyze the prelimi-

nary work of the next section in which we are utilizing similar sEMG pre-processing

approaches as described in this section. The primary differences are situational (the

JDT data includes force features, for example) and the fact that these features are

being examined over time.
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CHAPTER 2

BACKGROUND AND STATE OF THE ART

For purposes of orientation, this section introduces, in a concise manner, three top-

ics that set the stage for the work that follows. Section 2.1 introduces the otolith

structure and its relationship with the vestibular system overall and the sensorimotor

system in particular. Finally, a showcase of recent work taking a machine learn-

ing approach to physiological conditions and gesture recognition is presented. The

sEMG signal itself is described on a case-by-case basis in relation to its particular

investigation.

Not included in this section is a treatment of the interesting work done involving

electroencephalogram (EEG) and machine learning techniques in a variety of capac-

ities. These will be speculated upon later in this dissertation as an outgrowth of

possible future investigations, but will not be expounded upon otherwise.

2.1 The Vestibular System and Sensorimotor Deficiency

Chapters 4 and 5 relate to the JDT performed by NASA researchers and astronauts

as one means of examining the changes in sensorimotor performance over time. This

section describes elements of the physiology involved in perceiving motion and their

microgravity or bedrest induced changes. Sensation of motion and postural control

rely on an integration of many sensory components in the body. Some of these include
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visual stimuli, somatosensory stimuli (e.g., touch), and vestibular stimuli, discussed

here in more detail.

Figure 1. Illustration of the otolith function under gravity. Adapted from [22].

Much of the research revolves around the otolith function pictured in Figure 1.

This system consists of calcium carbonate crystals (otoconia) resting on hairs sup-

ported by a gelatinous membrane. These crystals constitute an inertial mass element

that resists changes in motion, thus introducing a deflection angle in the hairs sup-

porting them. This introduces a potential which is then processed by the brain,

informing sensations of linear acceleration and tilt.

In a microgravity environment, the tilt component is missing as the gravitational

reference plane is no longer present in a significant sense. With this signal input

missing, but still present in, for example, visual stimuli, adaptations occur that con-

found the signal’s interpretation. A tilt may be perceived as a linear acceleration [23]

and the mismatch with other sensory inputs can induce postural instability, dizziness

and vomitting [24]. This effect may also persist for some time upon return to earth,

and may pose risks regarding vehicle control during missions [5]. This tilt-translation
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illusion is particularly common in the days of readaptation, so the concern for per-

formance impact is primarily around crucial stages of a mission such as landing on a

planetary surface or readjusting to orbital flight [25].

The subject population exhibits considerable subject-to-subject variability in adap-

tation and recovery. First-principle causes of this variability are difficult to study due

to the complexities of investigating human neurophysiology and not well represented

in the literature. However, there are some intriguing investigations in mass differ-

ences of otoconia demonstrating a correlation (and likely at least partially causal) with

abormalities in, e.g., swimming behavior of salmon [26] with varying otoconia mass

differentials, suggesting that in addition to adaptation to a microgravity environment

itself being a source of disorientation, this phenomena may be in part explained by

the organ responsible for tilt perception itself. While subject-to-subject variability is

high, it nonetheless remains true that incidence of discomfort (e.g., headache, vomit-

ting, and clusminess) is high even for shorter duration flights (space shuttle) and the

effect tends to be greater for longer duration missions, such as those on the ISS [27].

Broadly, then, the perception of motion and position begin with the sensing mech-

anisms themselves and are integrated and processed by the central nervous system,

thus informing strategies for, as a rather convenient example, landing a jump from a

short platform. First-principles investigations might be concerned with investigating

disparities in the structure of sensing organs (as in the mass-difference otolith exam-

ple) or with investigating the adaptations themselves by way of, say, fMRI studies of

the brain pre- and post-flight [14]. In Chapters 4 and 5 we take steps to complement

this by building an approach around sEMG measurements.

2.2 State-of-the-Art in Physiological Assessments

Already, much work has been done in classifying instantaneous physiological con-

figurations – be it an arthritic condition or a hand gesture, for example. It is this
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instantaneous classification that is counterposed against the impetus of this work, in

which we are chiefly concerned with physiological changes in a population over time.

Sections 2.2.1 and 2.2.2 outlines two broad categories of work in which machine learn-

ing algorithms have been employed toward instantaneous physiological classification.

2.2.1 Physiological Conditions

Instanenous identification of physiological conditions has been investigated in a num-

ber of studies including the work performed by Nair, French, Laroche, and Thomas

(2010) [28]. Subjects with either rheumatoid arthritis, osteoarthritis, or no condi-

tion (control group) were studied, and their data were labeled as one of these three

conditions. Bipolar surface electrodes were used to measure sEMG from six different

muscles of the leg for the arthritic groups and seven different muscles for the control

group. The same muscles from each group were used for purposes of comparison,

however. These measurements were taken during gait.

Following sEMG collection, input vectors constructed by concatenating sampled

signal measurements from each muscle informed the algorithms employed in the

study. Several algorithmic approaches were employed including Least-Squares Ker-

nel (LSK) (multiple variations), neural networks, and Linear Discriminant Analysis

(LDA). Rheumatoid arthritis was correctly distinguished from the control group with

90.72% accuracy while osteoarthritis was correctly classified against the control group

98.23% of the time. Further, the study investigates how these algorithms might il-

luminate some therapeutic approach or condition monitoring guidelines by removing

certain muscle groups from data prior to inputting the data into the algorithm. It

was found that the muscles contributing most to the classification effort for rheuma-

toid arthritis vs. the control group were the soleus and biceps femoris, whereas for

the osteoarthritis vs. control group case the gluteus medialis muscle was the primary

driver in classification accuracy. This kind of effort exhibits the potential for using
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feature selection methods to highlight areas of inquiry, similar to the second specific

aim described in Section 1.3.

As previously described, needle electrodes can be employed to acquire EMG sig-

nals from single fibers. Kamali et al. (2014) , look at the shape of the MUAPs

themselves in order to distinguish between healthy, neuropathic, and myopathic con-

ditions [2]. After decomposing an EMG signal into a MUAP train (a sequence of

MUAPs), they extract features describing the MUAP in both the time domain (rise

time, duration, peak-to-peak amplitude) and time-frequency domain via discrete

wavelet transform (sub-band coefficients mean absolute value, standard deviation).

These features are then fed into a variety of classification schemes including a variety

of Support Vector Machine (SVM) and k-Nearest Neighbor (k-NN) configurations,

and fusions of these. The fusion methods, in which multiple algorithms are employed

and the final class of the feature set is decided upon by majority voting, were found

to be the most effective with near-perfect classification accuracies. These approaches

warrant caution, however, as these more complex ensemble approaches often sacrifice

interpretability for accuracy.

Subasi et al. (2006) consider the use of artificial neural networks (ANN) and

wavelet neural networks (WNN) fed by autoregression coefficients (as features) to

characterize MUAPs associated with neuromuscular disorders [29]. Their study mea-

sures intramuscular EMG data from 7 healthy subjects, 7 myopathic subjects, and

13 neuropathic subjects. Concentric needle electrodes are inserted into the biceps

brachii (upper front arm) and subjects are instructed to perform an isometric con-

traction (i.e., perform a curl). At 30% of the maximal voluntary contraction (MVC),

the EMG is recorded for each subject.

The signals are treated as an autoregressive model in which the signal is considered

as a linearly-filtered Gaussian random process whose output is essentially the signal

[30]. The autoregressive filter is described by its coefficients which are supposed to be
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unique to the signal. These are then used as inputs into the classification algorithm.

For purposes of novelty, only the WNN is described here. The WNN is a variant of

the ANN in which the node activation function is described by a wavelet function

(rather than, say, a threshold value) described further in [31]. The WNN method

offered a best-case classification accuracy of 92% for myopathy, 86% for neuropathy,

and 94% for healthy subjects.

These studies demonstrate the feasibility of an algorithmic approach to classifying

otherwise noisy signals into their appropriate categories for the cases where the cat-

egories describe some physical condition. In the first case, Nair et al. (2010) employ

surface electrodes in a particular experimental condition while in the last two cases

needle electrodes are employed. In each case the end result is, essentially, feature

extraction and algorithmic classification.

2.2.2 Gesture recognition

Another area of interest involves improvements over prosthetic devices. Advanced re-

placements in the case of loss of hands, for example, are sought so that more complex

grasp and gesture motions may be performed. This would be a vast improvement

over the more traditional hook. Already, firms like Lego(2015) [32] and Touch Bion-

ics(2017) [33] have produced new prosthetic devices that utilize signals from residual

muscle tissue. However, these are still immature technologies that may rely on exter-

nal control mechanisms to allow a wider variety of grips and gestures. Touch Bionics

device, for example, comes with a phone app that allows the user to select from some

a set of grips, or even Grip Chips that are placed on surfaces where the user may

have frequent need of interacting nearby. On the Touch Bionics website an example is

provided whereby a user has placed a Grip Chip on the side of a pencil holder. When

the bionic limb is moved nearby, the phone detects this proximate signal and the

bionic hand moves into a pre-programmed configuration. These extra configurations
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require external devices simply because either the device inputs (sEMG) are insuffi-

ciently varied or their post-processing methods cannot identify the desired grip from

the existing inputs. More sophisticated approaches are needed to improve these pros-

thetic devices in order to reduce dependence on external control mechanisms. Some

approaches include adding accelerometer data to the inputs [34], or even employing

electroencephalogram (EEG) inputs [35].

Any approach dependent on myoelectric input is still subject to changing condi-

tions over time, however. Electrodes may shift [36], the skin-electrode interface may

become more (or less) moist over time [37], and the muscle fibers may experience

fatigue thus altering the signal content [38]. Any of these time-dependent issues may

invalidate any supervised model for mapping a set of signals to a grasp or gesture,

thus effectively limiting the performance of the device. While this work is not focused

on solving these problems specifically, it is focused on and indeed exploits long-term

changes in physiology and an algorithmic approach to recognizing them.

Phinyomark et al. [39–43] have studied algorithmic approaches to gesture-recognition

via sEMG input. For brevity and to avoid repetition as this work is expounded upon

in greater detail in Section 3, we focus here on methods utilized in an earlier pub-

lication by Phinyomark [39]. In this study, sEMG is recorded from the flexor carpi

radialis and extensor carpi radialis longus muscles located, roughly, on the bottom

and top of the widest part of the forearm, respectively. Six different hand-gestures

including wrist flexion and extension, hand closed and opened, and forearm prona-

tion and supination are performed by healthy subjects only. The objective here is to

discriminate between each gesture based on the two input sEMG signals alone.

Signals from selected muscles were band-passed filtered from 10-500 Hz at 1000

Hz. These gesture trials were repeated 10 times per gesture and signals were post-

processed to conform to a 256 ms window. A 4-level DWT decomposition was then

applied to these signals using 7 different mother wavelets coming from the Daubechies,
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Coiflet, Symlet, Biorthogonal Spline, and Reverse Biorthogonal Spline families. The

inverse process was also performed such that each decomposition level was recon-

structed. An illustration of this process will be given in Section 3, as it was employed

in that work. From these signals and their derivatives, the average and standard

deviations of the Mean Absolute Value (MAV) were calculated to examine how well

the features clustered for each trial and gesture. The study demonstrated strong

clustering trends but did not examine classification yields.

Work along these lines continues in [41] where similar experiments were performed

using the same 6 gestures previously described plus two new gestures (wrist radial

and ulnar deviations) for a total of 8 gestures. From the time-domain, ZC, iEMG,

MAV, and RMS and more are calculated. In the frequency-domain, mean, median,

and peak frequencies, and mean and total power are among calculated quantities.

From the time-frequency domain, features such as the DWT coefficients, Wavelet

Packet Transform Energy (WPTE) and Relative Wavelet Packet Transform Energy

(rWPTE) are employed. There are 7 feature sets used to inform the algorithms that

are constructed in advance. A number of classifiers are used to demonstrate 10-fold

cross-validated algorithm performances. For brevity we highlight the simple LDA

case in which two different feature sets yield 91.67% and 92.19% accuracy. This is a

multi-classification approach in which all gestures are considered at once, as opposed

to a series of binary classifiers (against some control perhaps). The first feature

set obtaining 91.67% accuracy is the commonly employed time-domain feature set

described by Hudgins et al. [44]. The second feature set obtaining 92.19% accuracy

consists of the RMS values and first four autoregression coefficients.

The example cases of the above-described work performed by Touch Bionics and

Phinyomark et al. illustrate, respectively, a use for instantaneous classification of

physiological state and approaches of performing that work using sEMG. The next ex-

amples illustrate a commercial approach at integrating sEMG inputs with accelerom-
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eter and gyroscope inputs.

In the commercial domain, Thalmic Labs has engineered an armband called Myo.

The device fits over the forearm and utilizes both spatial data (via accelerometer

and gyroscope) and sEMG data as inputs for gesture detection. The device natively

supports 5 hand gestures. A Software Developers Kit (SDK) [45] is available in

which one could add more detectable gestures, but the classification problem becomes

more difficult as the number of classes increases. The introduction of spatial data

allows more degrees of freedom in human-computer interaction in addition to gesture-

detection from the forearm, users can move their arms around in particular patterns

(forming “shapes”) as device inputs. Currently, the Myo has rather limited use but

its commercial emphasis is as another way of controlling, for example, computers,

gaming systems, and TVs, with gestures.

A similar, custom forearm armband device was employed by Riillo et al. [46] to

examine the use of gesture-recognition on healthy subjects and a transradial amputee.

The particular subject in this case was amputated 11 cm below the elbow. The study

measured sEMG using six sensors spaced equidistant on an armband placed around

the forearm. The armbands were oriented such that the first sensor recorded sEMG

from the flexor carpi-radialis and the last sensor recorded sEMG from the brachio-

radialis. The amputee subject had sufficient residual muscle so that this could be

replicated in their case.

Following a similar bag-of-features scheme, a number of quantities are calculated

from the sEMG signals including, but not limited to: mean sEMG amplitude, RMS,

variance, slope sign change, and simple square integral. Three classifiers are tested

with the feature data including LDA, non-linear Gaussian Radial Basis SVM, and

Artificial Neural Networks (ANN) with a hidden layer of 10 neurons and an output of

5 neurons trained with a back-propagation algorithm. The success of these classifiers

was studied before and after PCA was applied to reduce the dimensionality of any
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selected feature sets.

Features were tested individually and then the input feature vector was added

to based on those outcomes constituting a sort of manual forward feature selection

process. In the end, the healthy subjects group gestures were accurately classified as

high as 87% of the time. Curiously, the lone amputee subject had a higher classi-

fication accuracy of 93%. The 25:1 sample size difference must be noted here with

appropriate caution, of course.

This section emphasizes methods of acquiring sEMG signals, extracting features,

and performing classification tasks rather than the specifics of forearm measurements.

A similar approach will be seen in Chapter 3 as applied to a bedrest study and the

NASA JDT data in Chapters 4 and 5, where these methods are applied to sEMG

obtained from the lower limbs.
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CHAPTER 3

A BINARY CLASSIFICATION OF PRE/POST BEDREST

SUBJECTS

This section describes the first original constituent work of this dissertation extending

the concept of instantaneous classification of physiological state described in Section

2.2.1 to the temporal domain i.e., classifying populations as they are subjected

to some change over time. The first work [11] presented here examines a binary

classification case in which otherwise healthy subjects undergo a bedrest. The task

in this case is to separate the pre- and post-bedrest cases.

3.1 Motivation and Background

The algorithmic approach to previously collected bedrest data here, demonstrates

the use of wavelet-derived features from surface electromyography (sEMG) signals

to classify subjects undergoing a 35-day bed rest using the k -Nearest Neighbors (k-

NN) and Support Vector Machine (SVM) classification schemes. The greater role

that this study serves is toward the development of measurement and classification

techniques that may shorten an otherwise long feedback loop for rehabilitation or

physiological diagnostics. Establishing non-invasive, high resolution, and less time-

consuming methods of categorizing or describing an individual’s physiological state is

also valuable for the development of autonomous diagnostic or rehabilitation systems.

Toward these goals, it is necessary to compare measurements made on the same
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individuals using the same methods but with a larger span of time between the two

to mark physiological changes, rather than characterization of sEMG output to mark

immediate physiological conditions (e.g., gestures or presence of arthritis). In the

present discussion, we investigate sEMG data taken from the lower limb of subjects

performing three different prescribed motions before and after bedrest. Together,

these approaches and this investigation constitute progress toward the development

of tools for the description of physiological processes (i.e., diagnoses, monitoring),

and prediction of outcomes.

Well-controlled trials with careful observations of physiological changes ease the

development of methodology for understanding and quantifying the stages of reha-

bilitation in other areas including exposure to microgravity, recovery from traumatic

injury, and rehabilitation of individuals suffering from spinal cord injury. The in-

tent here is to develop analytical tools and capabilities to further identify clinical

variables marking physiological changes over time. This particular study’s data is

sourced from a simulation of microgravity via bed rest, which is known to induce

a decline in muscle function due to muscle atrophy, reduction of neural drive and

muscle specific force, particularly in the postural muscles of the lower limb [47]. The

ability to observe, predict, and mitigate the loss of muscle mass and function is of

particular interest to agencies interested in human-based space exploration [3,4] and

organizations interested in quantifying the effects of various neurological or physical

disorders, such as muscular dystrophy [48].

In the recent decade, a substantial body of work has been published concerning

a variety of methods for the use of sEMG signals as a means to control prosthetic

devices [49–52] and diagnose physiological disorders [21,53]. Phinyomark et al. (2011-

2012) have made use of features derived from the Discrete Wavelet Transform (DWT)

for the purpose of classifying hand gestures [39,42]. Additionally, statistical compar-

isons were performed for a several wavelets, features, and algorithms [40] and have

19



demonstrated classification accuracy of greater than 98% with six different hand ges-

tures. Karlik (2014) has reviewed studies utilizing both wavelet methods and time-

series modeling to extract features for the purpose of prosthetic-related classification

with upper classification accuracies ranging from 90% to 98% for time-series methods

and 92% to 98% percent with wavelet methods [54]. While their performances are

comparable, the DWT is preferred here due to its unique properties including the

ability to process the signal in both frequency and time domains while providing a

“zoomed-in” view across a range of frequency bins without distortion. These reviewed

studies report on a number of features to be examined when analyzing sEMG signals

with a focus on classification of hand-based gestures by utilizing an array of features

measured from lower limb muscles, across time before and after bed rest, in an ef-

fort to identify changes due to physical deconditioning, rather than instantaneous

movements.

Work has also been done in utilizing features derived from sEMG signals to deter-

mine whether or not an individual has a disorder such as arthritis. Nair et al. (2009),

employ time-based features and test eight algorithms to classify between healthy sub-

jects, subjects with rheumatoid arthritis, and subjects with osteoarthritis [21]. Nair

et al. emphasize that the purpose of these classification schemes is to provide insight

into muscle behavior in order to improve rehabilitation. sEMG recordings of six mus-

cle groups within each leg of the patient are performed while the subject is in gait

(walking). Utilizing both neural nets and kernel methods, they demonstrate up to

97% accuracy for the three-class problem.

One method of evaluating overall neuromuscular changes due to prolonged disuse

includes a statistical evaluation of changes in lower limbs’ power and force output. A

complementary study analyzed the effects of bed rest in comparison to power output

recorded during explosive extensions of the lower limbs [55]. The study supports its

conclusions that muscle atrophy was mitigated by a moderate caloric diet restric-

20



tion that significantly reduced the body fat gained throughout 35 days of bed rest;

however, this positive outcome was not sufficient for reducing the loss of maximal

explosive power of the lower limbs.

By examining the bedrest data, the aim is to demonstrate the use of direct electro-

physiological measurements – the surface electromyogram (sEMG) – to discriminate

between two physiological states, pre- and post-bed rest that might otherwise be done

by comparing morphological characteristics or force output measurements. This ef-

fort aligns with similar efforts at algorithmic classification of instantaneous states

as previously described in Section 2.2.1, by exploring the similar problem of classi-

fication along a time-dimension. Additionally, we demonstrate the improvement in

classification yield obtained when employing wavelet-derived features.

3.2 Experimental Methodology

The data analyzed in this study were collected from 10 healthy male subjects who

underwent 35 days of bed rest under a moderate caloric diet restriction (1.2 times

their resting energy requirement). Physical characteristics of the subjects are reported

by Rejc et al. [55]. Before and after bed rest, the subjects performed non-fatiguing,

isometric, maximal voluntary contractions of knee extensors, knee flexors, and plantar

flexors with the right (dominant) lower limb. Force output and sEMG from the

gastrocnemius medialis (GM), rectus femoris (RF), vastus lateralis (VL), and bicep

femoris (BF) were sampled at 1 kHz using an EMG100C BIOPAC Systems, Inc.

amplifier connected to an MP100 BIOPAC data acquisition system. The experimental

setup is described in detail by Rejc et al. [56]. Briefly, the isometric contractions were

performed by the subjects seated on either a special chair (knee flexion and extension)

or sledge ergometer (plantar flexion). Two maximal voluntary contractions of 4–5 s

under each isometric effort were performed. To prevent fatigue, after each contraction

the subject rested for 2 minutes.
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sEMG signal data was digitally pre-processed by applying a Hilbert transform

to the sEMG signal envelope (obtained via zero-phase, 5th order butterworth filter

with a low-pass corner frequency of 10 Hz) and determining the starting and ending

moments of the signal, ultimately selecting the active portion of the sEMG signal.

This selection was then extracted from the original signal, rectified and high-pass

filtered with corner frequency of 10 Hz to remove any motion artifacts [57]. The active

signal time is obtained by examining the signal from the primary muscle driving the

movement (e.g., VL drives the knee extension). See Figure 2.
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Figure 2. Illustration of active portion signal extraction.

The present study analyzes wavelet-derived features for classifying physiological

changes indicative of prolonged disuse. The DWT is used to extract compact approx-

imations of the original signal by decomposing it into coefficients corresponding to

high and low frequencies (or detailed and approximate coefficients, respectively) [58],

commonly referred to as a wavelet decimation. Chosen features are moving average

(MAV), root-mean-square (RMS), the standard deviation (STD), median frequency

(MF), waveform length (WL), skewness, kurtosis, and zero-crossings (ZC). These

are derived from these wavelet coefficients, reconstructions from said coefficients,

and the original filtered signal, followed by a forward feature selection algorithm

to optimize classification results based on k -NN performance criteria. Additionally,

a fourth-order autoregression model is estimated, using the Burg method, for non-

wavelet transformed signals. Thus, there are two sets of features being compared.
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The nonwavelet-derived features include all of the aforementioned feature types and

the autoregression coefficients. The wavelet-derived features include all of the afore-

mentioned features except the autoregression coefficients – these are calculated only

on the wavelet-transformed signals. The comparison is therefore motivated to assess

performance and utility of the wavelet-derived features as compared against more

traditional sEMG measures in the context of longitudinal classification.

For the nonwavelet-transformed signals there are then 12 primary features per

muscle for a total of 48 features per observation. There are 8 wavelet-derived signals

per muscle for which there are 8 primary features for a total of 256 features per

observation. The total count is then 304 features per observation. The primary

feature types described in this section were chosen based on their commonality of use

for analyzing sEMG signals. While there are no precise “equations of motion” for how

these signals change over time, it is expected that changes in physiological behavior

after bed rest should manifest themselves in some way in these primary features. The

task then, is to determine if an algorithmic approach informed by these features can

distinguish between these cases.

The final collected dataset included 15 pre-bed rest and 18 post-bed rest observa-

tions for the knee extension, 18 pre-bed rest and 16 post-bed rest observations for the

plantar flexion, and 19 pre-bed rest and 18 post-bed rest observations for the knee

flexion. The MAV, RMS, STD, skewness, kurtosis, and WL features are described

as:
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MAV =
1

N

N∑
n=1

|xn| (1)

RMS =

√√√√ 1

N

N∑
n=1

x2n (2)

STD =

√√√√ 1

N

N∑
n=1

(xn − µ)2 (3)

Skewness =
E[(X − µ)3]

(E[X − µ)2])3/2
(4)

Kurtosis =
E[(X − µ)4]

(E[X − µ)2])4/2
(5)

WL =
N−1∑
n=1

|xn+1 − xn| (6)

where N is the total number of points, µ is the mean, and xn represents the nth

data point in the series. X indicates the signal time-series. E is the expectation value

operator.

On the other hand MF is determined by finding the frequency bin, fb, such that

it divides the spectra into two halves with equal power amplitude:

MF∑
fb=1

Pfb =
TF∑

fb=MF

Pfb (7)

where Pfb represents the power distributed within the frequency bin fb and TF in-

dicates the final frequency bin. ZC was obtained via MATLAB’s ZeroCrossingDetector

object located within the Digital Signal Processing toolbox. Similarly, MATLAB’s

implementation of the Burg method for estimating autoregressive coefficients was

used. The selection of the AR(4) model was motivated by work showing these were

robust for sEMG prosthethics applications [59, 60].

The wavelet decomposition was implemented using MATLAB’s wavedec function

for a total of 3 levels using the 7-tap Daubechies wavelet. The feature matrix columns
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were normalized to prevent skewed feature selection due to the large magnitudes of,

for example, ZC and MF as compared to MAV and RMS. Following this, forward

feature selection was used with k -NN (k = 1-5) classification as the criterion for

populating the feature vector. SVM classification with Radial Basis Function (RBF)

and linear kernels was also performed in an otherwise identical fashion.

The forward feature selection is performed by iterating over available features and

attempting the classification. A feature is added to the feature vector based on some

criteria – in this case, minimizing the classification error rate. Table 1 illustrates an

example case in which a feature vector consisting of four features are employed. The

first of these features is the RMS value of the first-level details coefficients from the

wavelet decomposition of the VL muscle with a 10-fold cross validated misclassifi-

cation rate of approximately 20%. The last of these features is the RMS value of

the third-level reconstruction of the details coefficients of the BF muscle. The final

classification rate for this run was about 94%.

Table 1. Example forward feature selection result

Feature RMS CD1 VL RMS CD1 RF RMS CD1 BF RMS D3 BF
Criterion 0.2059 0.1176 0.0882 0.0588

Table 1 shows the results of one iteration of a forward feature selection dimension-

ality reduction scheme. As the reader moves to the right, the feature vector increases

in length and the net error rate decreases. This result is one of many, as perfor-

mance depends on the random assignment of folds in the cross-validation scheme and

any random initialization in the classification algorithm. In this particular result,

all four features selected are RMS features. The first selected feature is the RMS

value of the first level detail coefficients (from the DWT) of the VL muscle. The

second and third are the same, but of the RF and BF muscles, respectively. The last

is the RMS value of the reconstructed signal obtained by inverse DWT of the third

level detail coefficients of the BF muscle. A brief tutorial on this point is given in
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Appendix B. Note that in this labeling scheme, the first label (e.g., RMS) indicates

the feature, the second (e.g., CD1) indicates the signal from which that feature is

derived, and the third indicates the muscle from which that signal is derived. That

is, “FEATURE SIGNAL MUSCLE.”

k -NN and SVM classification models are developed using the nonwavelet-derived

feature set and the wavelet-derived feature set separately for sake of comparison. A

range of nearest-neighbor values, k, numbering from 1 to 5, are chosen to investigate

the range of behavior in classification performance, from granular to more broad clas-

sification neighborhoods. With a total observation number for each experiment type

(knee flexion, knee extension, and plantar flexion) between 34 and 38 observations,

larger nearest-neighbor numbers become unwieldy and overbroad for classification.

In the case of the SVM classifier, the two different kernel functions were chosen to

similarly explore the range in classification behavior.

The classification models all employ a 10-fold cross validation scheme in the feature

selection process. The cross-validation procedure is used to characterize the validity

and generality of the models. This procedure is useful in cases such as these in which

the total number of observations is small. The exact train-to-test ratio depends on

the total number of observations and random assignments of particular observations

into folds, but is approximately 90% training data to 10% test data.

The concomitant goal of these classification attempts is to explore the utility of

the wavelet-derived features, establish feasibility of longitudinal classification, and

point to further research in classification model development for similar purposes.

3.3 Results

The resultant feature-complete matrix consisted of 34, 35, and 38 rows (observations)

for plantar flexion, knee extension, and knee flexion, respectively, with each observa-

tion consisting of 4 muscles for which there were either: 8 signals including 4 wavelet
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Figure 3. Features, including additional autoregressive coefficients, are calculated
on the signals over the time period for which the muscles are active. This signal
is transformed as described using the DWT and features, excluding the autoregres-
sive coefficients, are calculated on these subsequent transformed signals. These two
distinct feature sets are then used to inform cross-validated k -NN and SVM classifi-
cation models as the selection criteria for the final feature vectors. That is, sequential
feature selection is performed for each classifier configuration.

coefficients, and one reconstruction from each wavelet coefficient) obtained with 8

features each, resulting in 256 columns (features), or for the nonwavelet feature set,

12 features calculated on the signals from the 4 muscles. The issue of model instabil-

ity (in which a variety of feature selection outcomes occur) under k -NN and SVM is

additionally studied by examining the distribution of average classification accuracies

for number of features selected for each nearest-neighbor number. These results are

compared against models developed without the use of wavelet-derived features.

As outlined in [55], the subjects’ physical characteristics changed in an expected

manner. In particular, changes in total body composition and lean volume of the

lower limb were limited yet statistically significant. Bed rest resulted in a decrease

in total body fat mass and fat free mass (-4.8% and -2.4%, respectively) as well as in

the lean lower limb volume (-3.6%).

3.3.1 k-NN Classification Results and Model Instability

A k -NN classification scheme was employed with the standard Euclidean distance

metric using the optimal feature vector as deduced by the forward selection algo-
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rithm. A k -fold cross-validation was performed to estimate the model’s classification

accuracy. The experiment’s sample size is small, which yields an unfortunate variance

in outcome based on how the samples are divided into the k -folds. These assignments

into the folds are random, and, given that there are a number of outliers and am-

biguous cluster boundaries, this randomness has an affect the outcome. As such,

each experiment exhibits different classification performance. In assessing classifier

performance, care must be taken to examine this performance variability.

This model instability is investigated by examining the average classification ac-

curacy for 100 runs for k = 1, 2, ..., 5 for varying lengths of feature vectors. In this

manner, we observe how model performance changes based on the number of features

selected by the forward feature selection algorithm and based on nearest neighbor

number.

Classification accuracy occupies a range of results for reasons previously described.

The trend is promising, however, with typical classification averages as high as 91%

and relatively tight-distribution of standard deviation values. Figure 5 demonstrates

the range of results for varying nearest-neighbor number and experiment type.

Figure 4. Average k -NN classification accuracy by experiment and nearest-neighbor
value. Error bars indicate standard deviation of correct classifications. This figure
does not include wavelet-derived features.
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Figure 5. Average k -NN classification accuracy by experiment and nearest-neighbor
value. Error bars indicate standard deviation of correct classifications. These include
wavelet-derived features. A consistent performance improvement is demonstrated
here on average.
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Overall performance changes are indicated in Table 2. Average classification en-

hancement was as high as 12.4% for the two nearest-neighbor knee flexion case.

Table 2. Average performance changes for wavelet vs. non-wavelet derived feature
sets. Positive values indicate improvement over models without wavelet-derived fea-
tures. Largest gains seen in Knee Flexion cases. Values reported in the table are
percents.

k Extension Flexion Plantar Flexion
1 1.2 7.6 2.7
2 0.8 12.4 1.8
3 7.4 4.2 2.4
4 0.5 6.3 3.8
5 4.8 7.1 1.8

Classification accuracy variation is investigated by running a trial for k values 1

through 5, 100 times a piece for each experiment for a total of 1500 trials. Using the

full feature set, optimal classification accuracy is obtained with one-nearest neighbor

at using a 10-fold cross-validation scheme, however, higher nearest-neighbor numbers

still yield reasonable accuracies. The partial feature set (excluding wavelet-derived

features) exhibited less variation for the knee extension experiment and optimal clas-

sification accuracy with 5-nearest neighbors, as illustrated by Figure 6. Figure 7

through Figure 11 illustrate the model performance for varying k value and feature

vector length in the same manner as Figure 6, for each muscle-feature set pairing.

Knee Extension K-NN Model Performance - Nonwavelet Feature Set
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Figure 6. Model performance for knee extension measurements. Blank spaces indi-
cate cases that did not occur. These are results from the nonwavelet feature set.
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Knee Extension K-NN Model Performance - Wavelet Feature Set
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Figure 7. Model performance for knee extension measurements. Blank spaces indi-
cate cases that did not occur.

Knee Flexion K-NN Model Performance - Nonwavelet Feature Set
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Figure 8. Model performance for knee flexion measurements. Blank spaces indicate
cases that did not occur. These are results from the nonwavelet feature set.

Knee Flexion K-NN Model Performance - Wavelet Feature Set
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Figure 9. Model performance for knee flexion measurements. Blank spaces indicate
cases that did not occur.
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Plantar Flexion K-NN Model Performance - Nonwavelet Feature Set
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Figure 10. Model performance for plantar flexion measurements. Blank spaces
indicate cases that did not occur. These are results from the nonwavelet feature set.

Plantar Flexion K-NN Model Performance - Wavelet Feature Set
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Figure 11. Model performance for plantar flexion measurements. Blank spaces
indicate cases that did not occur.

3.3.2 SVM Classification Results and Model Instability

The SVM classifiers offered improved model stability as indicated by standard devia-

tion of classification rate and the heatmaps that follow. Additionally, and particularly

with the RBF case, the SVM models appear in many cases to be more robust – that is,

the models offer reasonable classification rates, but with fewer features, as compared

against the k -NN models.

The variation in classification accuracy was investigated in a manner otherwise

identical to the k -NN model stability investigation. Curiously, the performance ac-

tually decreased for plantar flexion cases as indicated in Table 3. In general, the
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performance gains were not as drastic as the k -NN case. However, the feature vector

lengths only exceeded 4 in one case and the tighter bounds on classification per-

formance deviation suggest that this approach may have greater utility developing

robust models. Figures 12 and 13 show the average classification accuracy by expe-

rient and kernel type. Figure 14 through Figure 19 show the model instability for

varying feature vector length for both kernel types.

Figure 12. Average SVM classification accuracy by experiment and kernel type.
Error bars indicate standard deviation of correct classifications. These results are
from the nonwavelet derived features.

Table 3. Average performance changes for wavelet vs. non-wavelet derived fea-
ture sets. Positive values indicate improvement over models without wavelet-derived
features. Note the substantial improvement for the knee flexion RBF case. Values
indicated in the table are percents.

Kernel Extension Flexion Plantar Flexion
Linear 0 3.1 -5.0
RBF 5.7 24.0 -1.2

3.4 Discussion

This approach to the bedrest study seeks to demonstrate the feasibility of longitudinal

classification in the physiological domain and investigate the utility of wavelet-derived

33



Figure 13. Average SVM classification accuracy by experiment and kernel type.
Error bars indicate standard deviation of correct classifications. These results are
from the wavelet-derived features.

Knee Extension SVM Model Performance - Nonwavelet Feature Set
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Figure 14. Model performance for knee extension measurements. Blank spaces
indicate cases that did not occur. These are results from the nonwavelet feature set.

features to inform the classification algorithms. The observation size and subject-to-

subject variation highlighted supervised classification efforts as an appropriate scope

for this investigation. However, it is desirable that underlying physiological causes

are identified to better connect this work to, for example, clinical research.

Here, k -NN and SVM classification accuracy suggests that sEMG signals can be

used as an indicator of neuromuscular changes due to prolonged disuse in spite of

some intrinsic challenges related to these types of longitudinal studies. Indeed, one
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Knee Extension SVM Model Performance - Wavelet Feature Set
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Figure 15. Model performance for knee extension measurements. Blank spaces
indicate cases that did not occur.

Knee Flexion SVM Model Performance - Nonwavelet Feature Set
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Figure 16. Model performance for knee flexion measurements. Blank spaces indicate
cases that did not occur. These are results from the nonwavelet feature set.

of the issues related to the comparison of sEMG signals recorded weeks or months

apart deals with the change in body composition, which may occur with some variety

depending on the studied condition itself (disuse) as well as on dietary intake charac-

teristics. As an example, subcutaneous fat reduces the amplitudes measured in sEMG

so that the electrodes would be more sensitive if this layer decreased. The second

issue is related to the fact that surface electrodes must be repositioned for post-bed

rest measurements, thus adding more variability in terms of the relative contribution

of the different motor units to the sEMG signal. However, the classification accuracy

demonstrated here suggests that the effect of these two issues was – while perhaps

35



Knee Flexion SVM Model Performance - Wavelet Feature Set
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Figure 17. Model performance for knee flexion measurements. Blank spaces indicate
cases that did not occur.

Plantar Flexion SVM Model Performance - Nonwavelet Feature Set
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Figure 18. Model performance for plantar flexion measurements. Blank spaces
indicate cases that did not occur. These are results from the nonwavelet feature set.

not negligible – still insufficient to overcome the measurement in a deleterious manner

such that classification was impossible.

Generally, there are fewer features employed in the cases where the partial feature

set is used. There are fewer features available overall, of course, and since the fea-

ture selection algorithm adds features based on improving classification accuracy, one

concludes that the non-wavelet based features do not themselves constitute a robust

feature vector, depending on the experiment and nearest-neighbor number in ques-

tion. For example, a feature vector of length 1 with 5 nearest-neighbors still performs

quite well for the knee extension case. However, the addition of wavelet-based fea-
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Plantar Flexion SVM Model Performance - Wavelet Feature Set
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Figure 19. Model performance for plantar flexion measurements. Blank spaces
indicate cases that did not occur.

tures increases accuracy in most cases (see, for example, Figure 13), and sometimes

by a substantial margin (as much as 12% in one case).

While the SVM classifiers offered enhanced model stability evident from tighter

bounds on error bars, and often a smaller feature set, the classification accuracy was

not necessarily improved – it appeared that in some cases, for example plantar flexion

under the linear kernel, classification rates actually dropped slightly. On the other

hand, models with tighter classification rate error bounds and smaller feature vectors

should be considered as more generalizable, so the SVM method holds some promise

for further investigation.

Wavelet-derived features outperformed features extracted from the original con-

ditioned signal and enabled enhanced class-state discriminatory capabilities in both

classifier types. Further exploration in the use of wavelet-derived features on larger

sample sizes may illuminate more precise frequency ranges that explain the variation

in the data. As one traverses the wavelet cascade, the filter ranges become narrower.

The bounds depend on the wavelet, sample size, and sampling rate in question, but

one can broadly think of the frequency range being halved as more filters are applied,

with the details coefficients representing higher frequency regions and the approxi-

mation coefficients representing lower frequency regions. Time-Frequency localization
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then illuminates regions of importance in making the determination between the be-

fore and after states.

Additional efforts are needed to bridge the gap between causal mechanisms and

the classification task. It is hoped that a trend of taking into account these types

of approaches during the design phase of experiments becomes popular. For ex-

ample, changes in MF after bed rest have been observed in other muscles such as

the soleus [61] (decrease, lasting up to 10 days), the lumbo-pelvic musculature [62]

(decrease, lasting up to 1 year), and an 8-week bed rest without countermeasures

was demonstrated to induce a significant decrease in MF and muscle fiber conduc-

tion velocity indicated by sEMG measured from the VL during isometric knee ex-

tensions [63]. The fact that muscle atrophy is unevenly distributed in response to

prolonged disuse (e.g., greater in postural than in non-postural muscles, greater in

the extensors than in the other thigh muscle groups, and greater in the calf muscles

than in the other muscle groups) [64–67] combined with subject-to-subject variations

complicate posthoc interpretation for this study. A larger sample size and more stable

classification results may assist in providing physiological interpretations for observed

discriminatory capabilities of the features under study. The more stable models of-

fered by SVM classification point to a direction in which enhanced SVM algorithms

may be used to improve classification.

3.5 Bedrest Study Conclusions and Significance

This section demonstrates high classification accuracy of observations as before or

after a bed rest period of 35 days and overall improvement on classification yield

by utilizing wavelet-derived features. The versatility of this method can be tested

by performing similar bed rest studies with time variation with a particular interest

on shorter bed rest periods. Such a study would establish a method of tracking

changes in the neuromuscular system, toward a quantitative means of describing
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the stages of physical conditioning or deconditioning. Shortening bed rest periods

and applying a similar method will establish a lower limit to the ”resolution” on

the measurement. Conclusive links between deconditioning evoked neuromuscular

changes and mathematical features employed here are as yet open questions.
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CHAPTER 4

SENSORIMOTOR ADAPTATION STUDY: THE NASA

JUMP-DOWN TEST

We initiated a collaboration with NASA’s Johnson Space Center (JSC) Neuroscience

Laboratory near the end of 2015. The purpose of this collaboration is primarily to

analyze one of their more dynamic datasets, the JDT. Experiments in this department

are typically designed with simplicity of measurement in mind. The experiment may

yield rather simple measurements that a researcher will then interpret in some context

such as reaction times before and after spaceflight, or changes in fMRI scans, and

similar physiological contexts. For a more specific example, the JDT is related to the

Functional Task Test (FTT) protocol in which astronauts complete a variety of tasks

at various intervals before and after spaceflight. These tasks might include drilling

screws into a grid as quickly and efficiently as possible, walking a straight line with

arms folded and eyes closed, running a small obstacle course, moving from a prone

position to a standing position, and so on [8, 9, 68]. The measurement is often in

dimensions of seconds or, in the case of the post-spaceflight field test in which an

astronaut simply attempts to walk, it is some measure of “correct” steps taken. The

design principle is clear: design an experiment such that the output is simple to

understand and employ domain knowledge (neurophysiology and space adaptations)

to characterize and deduce cause and effect.
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These studies often serve to highlight an area for exploration using other tools

such as fMRI [16, 69]. The present case fits into this body of work by investigating

another method of examining a more complex experiment whose variables are not

readily analyzed.

4.1 Motivation and Background

It is well-known that astronauts undergoing exposure to microgravity experience sen-

sorimotor disorder [70], and upon return to a planetary surface this change in physio-

logical state makes balance and coordination difficult. This physiological deterioration

presents a particular risk for any future Mars mission in which astronauts must re-

immerse themselves in a gravitational well after nearly a year of spaceflight in which

the sensorimotor systems lack stimulus. Toward that end, algorithmic prediction of

sensorimotor performance based on sEMG signals offers potential for a non-invasive,

physically-compact (or at least light on equipment) method for assessing performance.

4.2 The Jump-down Test

The experiment is broad and has multiple components revolving around the JDT.

There are bedrest and spaceflight cases. The spaceflight cases involve either the space

shuttle (SS), which consists of short-term missions of varying length, and the Interna-

tional Space Station (ISS) consisting of between 3- and 6-month long missions. The

bedrest cases consist of four subgroups – control, exercise, exercise with testosterone,

and a flywheel exercise. The datasets are all anonymized so that only the time, with

respect to launch and return (see Table 4), and the sEMG signals themselves are

known.

At each point marked in the table, subjects are brought to JSC in Houston, Texas

to perform the JDT. The JDT is performed by instructing a subject to jump, flat-

footed with feet together (i.e., non-sequential) off a 30 cm tall platform equipped with
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Table 4. The relationship between the labels given to flight or bedrest cases and
their actual relationship to the Launch (L) date and Return (R) date.

Day Label Bedrest Description Flight Description
A L - 12 L - 180
B L - 6 L - 90
C L - 3 L - 60
D R + 0 R + 0
E R + 1 R + 1
F R + 6 R + 6
G R + 12 R + 30

a load cell for each foot onto a force plate on the ground (see Figure 20). Electrodes

(Bagnoli-8 EMG amplifier system, Delsys Inc.) are attached to the TA and MG

(refer to Figure 20(b)) of both limbs of the subject. In this work, the abbreviation

GM (Gasctrocnemius Medialis) is often used instead of MG (Medial Gastrocnemius)

due to the different standards of communication in this and the work of Chapter 3.

A sampling rate, Fs, of 4000 Hz is used.

The full output then includes signals from the two force plates, the four electrodes,

and the three axes (X, Y, Z) of the force plate, as shown in Figure 21.

4.3 Experimental Parameters

Of the three portions of the JDT shown in Figure 21, the analytically important

parameters are derived from the sEMG signals and the force plate outputs. The load

cells are used to determine time of take off from the jump platform, marked by the

time at which the last foot leaves the platform. In most cases the time differences

are small as the subject is instructed to attempt the jump with both feet at the same

time.

The sEMG electrodes are recording myogenic activity for the duration of the ex-

periment. The measurements prior to takeoff and after achievement of stable posture

are not used. The remaining measurement has been divided into the in-air portion
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(a) Researcher standing on platform for JDT. (b) Lower limb muscles.

Figure 20. Feet are situated on two independent load cells prior to jumping down
onto a single force plate (a). Figure 20(b) shows the lower limb with muscles ref-
erenced throughout this dissertation labeled with bolded, parenthetical abbrevia-
tions [71].

and the touchdown portion.

Figure 22 demonstrates the nomenclature of the overall signal while Figure 23

illustrates some physiological parameters within the sEMG measurements of the JDT.

Note that these are for the MG muscle in particular. The antagonist muscle, the TA,

will have different behaviors.

The Preparatory Latency (PL) marks the time between leaving the platform (ini-

tiating the jump) and beginning the phase of the jump in which the subject initatiates

anticipatory postural adjustments preparing for the landing. It is assumed that a sub-

ject whose sensation of movement and position is obfuscated by effects of spaceflight
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Figure 21. Overview of signals from JDT experiment. Top: output from right and
left load cells. Middle: sEMG envelope for all four muscles with takeoff (green) and
touchdown (red) marked. Bottom: Force plate output from X, Y, and Z (vertical)
directions.

or bedrest would show a difference in either the latency itself or the quality of the

adjustment or both.

The Monosynaptic Reflex (MSR) is a reflex intrinsic to the transmission of a

signal from sensor neuron to motor neuron via the spinal cord. The knee-jerk re-

sponse elicited by a tap on the patellar tendon is a commonly appreciated example.

Reschke et al. (2009) found that the MSR latency actually increased after bedrest,

demonstrating that head-down bedrest has some functionality as an analog for space-

flight [9].
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Figure 22. Segmented example of sEMG signal with labeled portions, from the JDT
experiment. Green vertical line indicates takeoff (point at which last foot leaves the
platform) while the red vertical line indicates landing (point at which first force is
registered on the force plate).

Figure 23. Illustration of physiological parameters from sample of JDT experiment.

The Functional Stretch Reflex (FSR) follows between 200 and 300 ms after touch-

down and is responsible for final stabilization of posture after landing. The FSR

takes places after tendon-stretch induced MSR, but before there is time for voluntary

contractions to take place. Changes in FSR behavior could signal risk of injury as

mechanisms to protect against injury are altered [72].

Now considering the force plate, the Z-force vector output is used to mark the
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moment of touchdown and to characterize the biomechanics of the landing. Similar to

the reasoning demonstrated by Ortega (2010), we divide the force output curve into

multiple parts, each as a quantitative description of the biomechanical outcomes [73].

Figure 24. Example of force curve output from a JDT. A description of the biome-
chanics can be reasoned from these curves.

The annotations on Figure 24 describe points of interest on the force curve. The

first point, F1, is the point at which the front portion of the foot (toes) begin the

impact. It is from here that touchdown is marked and the in-air portion of the sEMG

signals are concluded. As the landing continues, the subject shifts from toe-contact

to heel-contact. The moment immediately after toe-contact, in which the transfer

from toe to heel begins, is where the apparent force (impulse-momentum transfer)

drops off and begins to rise to a peak. This is the point at which impulse-momentum

transfer takes place most rapidly, registering a force far greater than the weight of

the subject. The forces F1 and F2 together can give a sense of the quality of the

initial landing – a flat-footed landing is one in which the ratio F2
F1

is higher.

Continuing along the force curve, F3 is representative of the adjustment of the

trunk of the body as the subject stands upright following the landing, and the im-
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pact absorption time (IAT) measures the total time to postural stability following

touchdown. For each force measurement there is also a corresponding duration mea-

surement (e.g., W1) which is obtained by estimating the full-width-at-half-maximum

(FWHM) duration of the force peak.

When examining these curves, it is helpful to keep in mind the impulse-momentum

theorem for an object with constant mass.

F∆t = m∆v (8)

Where F indicates force, t indicates time, and v indicates velocity. As momentum

is transferred from the subject to the force plate, the force curve features can be

interpreted in this framework as illustrated in previous paragraphs.

F = m
∆v

∆T
(9)

In this re-arranged form (Equation 9), for example, one can intuit that a sub-

ject landing onto a force plate must negotiate, via biomechanical adjustments before

landing (e.g., APA) and after landing, the reduction of velocity to zero. It is these

biomechanical adjustments that are ultimately responsible for altering the ∆T for

both the overall impact absorption and for the FWHM estimated peak-time dura-

tions. As ∆T decreases, the momentum is transferred more rapidly and the force

plate will register a larger value, as seen most clearly in the toe-to-heel transition

resulting in the peak F2.

4.3.1 Signal Characteristics

The sEMG signals are each sampled at 4000 Hz and contain abrupt transitions making

them unsuitable for analysis by Fourier Transform. In particular, the signals do not
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meet the conditions for (weak-sense) stationarity,

E[x(t)] = mx(t) = mx(t+ τ) for all τ ∈ R (10)

where E is the expectation value of some time-dependent (t) signal x and mx is

the time-dependent mean signal. Put plainly, the mean of the signal is not reliably

constant. Whereas for a signal to be stationary in the weak sense, its mean and

autocovariance must be independent of time. It is in this domain that WT approaches

are well-suited for analysis. The line of inquiry presented in Chapter 3 and the fact

outlined here then suggest the use of the WT.

In particular, the Daubechies 4 (or ‘db4’ in MATLAB) wavelet was ultimately de-

cided upon based on previous work [11] and empirical observation with sEMG signals

in the bedrest and JDT contexts.

4.4 Feature Engineering

While the force curves present obvious features for informing algorithms, the sEMG

signals are more ambigious. Feature extraction (and subsequent feature engineering

or transformation) is part trial-and-error, part domain knowledge, and part signal

processing. In analyzing the JDT, we use a mix of domain-common approaches and

wavelet-based approaches. In any case, we test a newly constructed, domain specific

feature for interpretability purposes.

The thrust of any analysis here is to demonstrate some quantifiable difference in

JDT performance over time to make observations about the effects of spaceflight on

human physiology. In particular, the concern is recovery from the observed issues

with the sensorimotor system – i.e., how quickly does one typically recover, can we

glean any insights from this performance to how spaceflight changes the sensorimotor

region of the nervous system, and, relevant to the proposal at hand, can we establish

any algorithmic approaches to these problems?
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Figure 25 shows green lines obtained from the load cells in the JDT platform

to indicate the point at which the last foot left the platform. This is the initiation

of the jump and the “in-air” portion. The red line is obtained from the point at

which the force plate just begins to register a rapid increase in z-force (that is, when

toes touch the plate). The in-air portion is naturally defined as the time between

these two points. The landing portion includes an arbitrary-but-informed 300 ms

after touchdown as an attempt to capture the entire signal consisting of a sEMG

corresponding to ground reaction forces. The bottom plot is the CWT of the above

signal. We define the following novel features based on the scalogram energies, C.

Airsum =
touchdown∑
t=takeoff

max∑
scale=1

Ct,scale (11)

Landsum =
touchdown+300ms∑

t=touchdown

max∑
scale=1

Ct,scale (12)

Bilateral Ratio =
LAirsum +RAirsum

LLandsum +RLandsum

(13)

Here, the motivation is to compare the sEMG activity before and after landing

under the working assumption that after spaceflight, the ability to anticipate the

landing and therefore adapt a feedforward strategy is altered. The assumption is that

the ratios of signal energy before and after touchdown will be different as compared

to the baseline days (any day before R+0). The benefit of the CWT approach is that,

should relevant sEMG activity be restricted to high or low frequency (low or high

scale, respectively), we can alter the limits of the second summation in the Airsum

and Landsum cases to reflect that.

The wavelet approach may additionally be recast in terms of iEMG. We would

then write the sums as,
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Figure 25. An illustration of the equations describing signal energy before and after
landing. Top: Raw sEMG trace. Bottom: Continuous Wavelet Transform (CWT)
of the top signal. Signal energy contribution is added up before and after landing to
construct new features.

AirsumiEMG =
touchdown∑
t=takeoff

|Xt| (14)

LandsumiEMG =
touchdown+300ms∑

t=touchdown

|Xt| (15)

In the case of Equations 14 and 15, the cumulative, integrated iEMG is calculated

by adding the value of the sEMG signal at each moment in time across whatever

boundary is chosen. When plotted, this more traditional measure gives a sense of

changes by communicating changes in the rate of accumulation in the sEMG signal.

Likewise, the wavelet scalogram can also indicate these changes.

Figure 26 demonstrates the comparable utility of the wavelet by showing its per-

formance alongside more traditional measures. Figure 26 also shows how the biome-
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chanics might be teased out of the sEMG signals. What follows is a brief walk-through

of the data presented in the figure.

First, examine the more easily interpreted cumulative iEMG signals in the right-

most column. The TA and the GM constitute an agonist/antagonist pair. They are

responsible for dorsiflexion and plantarflexion about the ankle respectively. Subjects

stiffen their feet in anticipation of landing and this is seen prior to the red vertical line

by an increasing slope for the RMG and LMG signals. Shortly after landing, the RMG

and LMG signals taper off (black arrows) while the LTA and RTA experience a burst

of activity (orange rectangles and orange circles), indicating a shift from plantarflexion

to dorsiflexion, and thus concluding the process of stabilizing the landing as the LTA

and RTA also taper off shortly after the burst is initated. This is also seen in the

CWT case where the shift from GM activity to TA activity is seen before and after

the red vertical line in the form of bright regions in a wavelet scalogram. Here, the

difference lies in the extra dimension of scale. See Appendix 6.2 for more information

on the wavelets and their scalograms.
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Figure 26. The left-most column contains raw sEMG signals for each of the four
muscles measured during the JDT experiment. The next column over contains CWT
scalograms showing the percentage of energy contribution at various times and scale
values. The right-most column shows iEMG calculated over the take-off and touch-
down boundaries. The green and red vertical lines indicate take-off and touchdown.
All horizontal axes have the same scale.

In personal communications during collaborative visits with colleagues at JSC

and in the work initated by Jones and Watt (1971) [72, 74] it has been suggested

that the FSR tends to lie between 200 and 300 ms in falling (or JDT) subjects, with

little variation outside this window. Early attempts at analyzing this problem had
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the cutoff set at 200 ms prior to relocating it at 300 ms. The bilateral ratio – whether

calculated by wavelet energy sums or iEMG – is resilient to effects of signal noise due

to extension, as the signal energy contributions between landing and activation of the

FSR are essentially nil in comparison. There are however other confounding factors

that when taken into consideration with the idea of anticipatory postural adjustment,

suggest to err on the side of a longer cut off (e.g., 300 ms).

As suggested from the results of the work illustrated in Chapter 3, flexible algorith-

mic approaches may be well-suited toward navigating experiments with a multitude

of confounding factors. In the case of the JDT, pinning down the precise location of

MSR, FSR, and PL can be difficult due to issues arising from the design of the JDT

experiment.

In particular, difficulties arise from the fact that there are two independent load

cells measuring lift-off of each foot whereas touchdown is measured from a single

force-plate that both feed land on. The JDT protocol has researchers instructing the

subject to jump off the platform with both feet together and onto the force plate.

This instruction is not particularly natural and, strictly speaking, happens rarely. In

fact, the subjects typically lead slightly with one foot or the other, and this lead-time

can vary considerably. Consult the top pane of Figure 21 for an example of leading

limbs.

The practical effect of this is that the starting time of the JDT marked by a green

line may be close to the PL read for a particular muscle. Likewise, the red line, the

point of touchdown, may be misleading with respect to a particular muscle and make

estimation of the MSR and FSR locations difficult. For this reason, estimations of

these factors is not included in the model at this time. See Section 6.2 for more

details.
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4.5 Exploratory Characteristics

With novel features defined and two primary aspects of the JDT experiment de-

scribed, we now turn to some exploratory results in order to generate hypotheses,

describe the nature of the experiment, and investigate the quantitative consequences

of these novel features.

4.5.1 Parametric vs. Non-parametric Methods

First, we present a high-level view of the distribution of the bilateral ratios for the

TA and MG muscles calculated by way of wavelet or iEMG statistics.

Each of the bilateral ratios, whose value distributions are presented in Section

4.5.2, can only loosely be approximated by probability distributions with fixed pa-

rameters. That is, we cannot say that modeling these values as gaussian or lognormal

distributions, for example, is reasonable. Take the Cullen and Frey graph of Figure

27. Here, a range of statistical moments are presented and regions that various

statistical distributions occupy are compared against the statistical moments of the

observed data [75,76]. In this case, it is difficult to support any claims of the partic-

ular statistical distribution for our engineered feature. Similar reasoning applies for

other engineered features. Because we cannot assume knowledge of these statistical

distributions, non-parametric methods are a good fit for examining the data.
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Figure 27. The closest statistical distribution for the iEMG-derived MG bilateral
ratio (calculated on JDT data) appears to be log-normal – but it is yet far off the
mark.

Figure 28 illustrates further comparison to the log-normal distribution, demon-

strating the ill-fitting comparison. In each subfigure, the empirical distribution is

plotted against its theoretical comparison, in their various representations.
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Figure 28. Horizontal “Data” axes refer to the ratio value itself. The theoretical
plotted distribution is that of the log-normal.

4.5.2 Bilateral Ratios

Here, the feature behavior of the subject population is investigated. Violin plots

of the novel features defined by Equations 11 through 15 are shown to highlight

the distribution of JDT behavior. The violin plots are produced by performing a

kernal density calculation on the composite feature, the bilateral ratio, to produce a

probability density function. In short, the violin plots communicate a sense of the

distribution of all the data, and their curves are formed by mirroring the probability

density function (or more crudely, the histogram).
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In all violin plots below, the median is indicated by a red diamond and in some

cases extreme outliers are truncated. Note that the scale does change from plot to

plot. Note also, that in rare cases there are methodological outliers in which the

subject actually performs more than three jumps. These cases are not considered in

any analysis. Recall also that, as ISS measurements for day D are not possible, the

transition is immediately from day C to day E.

Figure 29. Distribution of Wavelet-derived MG Bilateral Ratio by Day. The MG
statistic tends to occupy a wider range of values.

The violin plot of Figure 29 shows stronger consistency (tighter grouping) after

Day A. Day A is expected to have a higher variance as it is the first experience of

the JDT that subjects have. Day’s B and C are intended to establish a baseline.

57



Figure 30. Distribution of iEMG-derived Bilateral Ratio by Day. The iEMG-derived
statistic exhibits similar behavior as the wavelet-derived statistic here, but has tighter
grouping.

Figure 30 illustrates a common tendency: while the behavior of the wavelet-

derived statistics and the iEMG-derived statistics is quite similar, the grouping of

the iEMG-derived statistics tend to be tighter.
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Figure 31. Distribution of Wavelet-derived TA Bilateral Ratio by Day.

The TA statistics, as illustrated in Figure 31, in general occupy a smaller range

of values than the MG statistics. The difference in Landsum and Airsum values

is smaller, so their ratios will be too. Additionally, as the TA exhibits its greatest

activity after touchdown (see Figure 26), the ratio will exhibit behavior inverse to

that of the MG. Therefore, the ratio will often be less than 1.
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Figure 32. Distribution of iEMG-derived TA Bilateral Ratio by Day. As in the MG
case, the iEMG-derived bilateral ratio exhibits tighter grouping.

Figure 32 exhibits similar behavior as before with its tighter grouping and ratios

less than unity.
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Figure 33. Distribution of Wavelet-derived MG Bilateral Ratio by Jump. The
center row highlights results before and immediately after spaceflight.

Here, the breakdown by jump and by day is presented. Figure 33 shows the

distribution of the wavelet-derived MG bilateral ratio by jump for each day. The

behavior of loose grouping and larger range of values for wavelet and MG statistics

61



holds in this view as well. The center row of this chart (and other by-jump figures)

highlights the difference between the final trial day of experiments before spaceflight,

and the first day of experiments after spaceflight.

Figure 34. Distribution of Wavelet-derived TA Bilateral Ratio by Jump. The center
row highlights results before and immediately after spaceflight.
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Figure 34 shows particularly interesting, and potentially insightful behavior. The

TA bilateral ratio practically collapses post-spaceflight for the entire subject popu-

lation. Further, post-spaceflight experiment days F and G are tightly grouped, with

these values becoming more loosely distributed as time goes on and more jumps are

performed. This could reflect that the subject population exhibits a range of adap-

tation (or readaptation) to the JDT after reintroduction to the gravitational well.
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Figure 35. Distribution of iEMG-derived MG Bilateral Ratio by Jump. The center
row highlights results before and immediately after spaceflight.

Figure 35 breaks down the distributions shown in Figure 30 by day. In this view,

it is difficult to judge, by eye, any trends that are more apparent in the agglomerated

view of Figure 30. The contrast in these two figures serve to highlight the inter-subject
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variability as well as the intra-subject variability, when looking at the breakdown by

jump.

Figure 36. Distribution of iEMG-derived TA Bilateral Ratio by Jump. The center
row highlights results before and immediately after spaceflight.

Finally, Figure 36 shows a similar trend in that iEMG statistics tend to have
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tighter grouping and the TA tends to be less than unity.

4.5.3 Force Characteristics

In Figure 24, the force features were introduced. On their own, F1, F2, and F3 ex-

hibit variability that can be attributed, in part, to the weight of individual subjects.

However, as reasoned in Section 4.3, it is rather the ratios that are of interest. In par-

ticular, the ratio of F2
F1

, presented in Figure 37, is interesting as it shows a distinctive

post-spaceflight recovery.

Figure 37. Distribution of key force ratio by day.

The zoomed-in view of Figure 38, showing the breakdown of the F2
F1

ratios by

jump, shows that while there is more variance than apparent, the trend still holds:

post-spaceflight F2
F1

ratios exhibit a trajectory of recovery toward the higher values
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established by baseline measurements on days B and C, but with more variance. This

trend is consistent with trends observed in sEMG contexts, particularly in figures

describing the behavior of the bilateral ratios calculated for the TA muscle in Section

4.5.2.

Figure 38. Distribution of key force ratio by jump.
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Continuing the description of biomechanical outcomes, we also examine the FWHM

duration of the third force peak, F3, interpreted as the force exerted on the force plate

as the subject stands straight after landing the jump. Figure 39 shows a steady me-

dian with similar distributions for baseline days, with a sudden post-spaceflight spike.

The median value of W3 eventually settles on a value similar to that of the baseline

days, but still exhibits a larger distribution of values suggesting that different subjects

may take longer to recover, or recover in different ways. That is, it is quite possible

that subjects develop new muscular recruitment strategies to deal with the fall and

landing post-spaceflight.

Figure 39. Distribution of FWHM duration of F3 (W3) by day, illustrating changes
in the time it takes for subjects to stand straight after landing.
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4.6 Pairwise Statistical Significance Testing between JDT experiment

days

In addition to the statistical distributions presented above, we also present some select

tables showing significance testing between JDT experiment days (e.g., day A, day

B, etc.) for various features. A pairwise Wilcoxon test is performed, as this method

is non-parametric and thus suitable for the distributions observed in the previous

section. Statistical distribution differences are reported in the form of p-values. In

general, one should be cautious [77] in drawing conclusions from p-values, but here

they are presented to further develop some intuitive sense of the data.

The following selected tables are captioned with their variable comparisons. First,

we present Table 5 which has what are traditionally considered rather large p-values.

This particular table is shown to warn against overly general interpretations of p-

values. While these values are larger than what is commonly (and arbitrarily [78])

accepted as “statistically significant”, they indicate that there are differences in the

subject populations along the selected variables. Day A and day B, for example, are

likely to be more different than, say, day B and day C, which comports with our

expectation that subjects generally improve as they acclimate to the JDT.

Table 5. Pairwise testing p-value comparison for lta iemg air and normTime by day.

A B C E F
B 0.2473
C 0.6897 0.6897
E 0.7498 0.6897 0.8842
F 0.9795 0.3406 0.7241 0.7498
G 0.6897 0.8842 0.7498 0.7498 0.6897

Table 6 shows stronger differences, suggesting that the iEMG of the LTA measured

after touchdown is a feature with higher explanatory power than that of Table 5. It is

particularly comforting that days B and C are very different from day E. We should

expect, then, that an algorithm should have much less difficulty distinguishing these
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classes when informed by features yielding similar p-value behavior.

Equally important, we should recognize the possibility that different features

might better offer variance for different day comparisons. For example, in Table

6, days E and F test favorably compared to those days as described in Table 7.

Table 6. Pairwise testing p-value comparison for lta iemg lnd and normTime by
day.

A B C E F
B 0.1951
C 0.3851 0.4637
E 0.0104 0.0697 0.0104
F 0.7195 0.0839 0.2043 0.0087
G 0.3162 0.9413 0.7195 0.2043 0.2043

Table 7 demonstrates the quality of the bilateral ratio cast in terms of iEMG as

calculated on the MG muscles. Notably, this feature appears to have better discrim-

inatory power across a broader range of pairwise comparisons than the standalone

features. The comparison may not be favorable for a single pair, though, as demon-

strated by examining the p-value for the day C and E comparison of Table 6 (i.e.,

0.1124 vs 0.0104). At this point we expect that a broader feature base should have

greater classification accuracy – particularly for a multi-classification problem. This

shall be seen in Chapter 5.

Table 7. Pairwise testing p-value comparison for bmg iemg and normTime by day.

A B C E F
B 0.0966
C 0.0286 0.4119
E 0.0151 0.0509 0.1124
F 0.0265 0.0286 0.0772 0.8236
G 0.0561 0.7133 0.8236 0.1112 0.0772

Lastly, we present the pairwise comparisons for the bilateral ratios for the TA as

derived from the wavelet transformed statistics in Table 8. This statistic is interesting

because much of the literature involving the FSR with lower-limb dominant motions
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(e.g., jumping and landing) has focused on quantifying the behaviors of the soleus

and the MG [9, 72]. In this view, all comparisons with day E appear to be very

different. It should be noted that these p-values are not mathematically zero, but

merely truncated as with the previous tables.

Table 8. Pairwise testing p-value comparison for bta wav and normTime by day.

A B C E F
B 0.8360
C 0.4035 0.1713
E 0.0001 0.0000 0.0000
F 0.2041 0.1713 0.0220 0.0156
G 0.8848 0.9012 0.3409 0.0000 0.1903

Table 8 again supports the notion that different features offer different explana-

tory power. This feature dimension offers excellent discriminatory power for day

E comparisons, but does relatively poorly (compared to other feature dimensions)

when comparing day A and day B. The comparison between days B and C on this

feature dimension also suggests, more so than other dimensions, that there is yet some

population differences for the baseline days – possibly due to continued learning, or

adjustment of neural strategies.

The takeaway from this is that each feature dimension offers a different (some

more than others) view into the changing dynamics of the JDT. It is difficult to make

general statements based off of, say, some metric measured from the MG muscles,

when another view of the same experiment might tell a different story. The JDT,

being a gestalt composition of various moving parts in a dynamic setting, is too

complex to be reduced to such analysis. However, we may yet find some insight into

underlying physiology by examining changes in feature dimension behavior over time.
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4.7 Summary of Hypothesis

In contrast to the work of Chapter 3, the JDT involves a more dynamic experiment

with transient events. Researchers typically try to design their experiments for sim-

plistic measures and then interpret the results in their appropriate domain context.

As previously described, the FTT measures coordination capabilities of astronauts by

having them complete obstacles (pylon course or the pegboard drill test, for example)

and measuring time to completion.

In this case, however, there are some domain specific requirements that demand

a more involved experiment. The goal of the JDT is to evoke reflexes in response

to ground reaction forces and the anticipation of landing in order to observe how

sensorimotor strategies might change, or how an astronaut will perform upon return

to a planetary surface.

Similarly to Chapter 3, we propose that a classifier model can be constructed to

differentiate between pre- and post-spaceflight cases on the basis of sEMG alone. This

may prove valuable in future deployment of predictive systems for gauging astronaut

readiness prior to exiting their vehicle. Other, more Earthly possibilities exist in gaug-

ing sensorimotor capabilities in the elderly, and longitudinal physiological tracking in

general.

In addition to, and as part of building the classifier model, it is important to build

an analysis that describes the outcomes in a manner conducive to interpretration

by researchers in the physiological domain. This is particularly important because

the JDT is by its very nature a gestalt composition of moving parts acting (and

reacting) to transient events. Therefore, we also examine regression techniques that

lend themselves to such multi-faceted interpretation.

Hypotheses not addressed in this work are described in Chapter 6.
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CHAPTER 5

LASSO REGRESSIONS AND ALGORITHMIC CLASSIFICATION

5.1 Motivation and Ground Truth

When assessing or improving algorithmic performance it is important to understand

the labels one uses. In the JDT case, the labels of pre- and post-spaceflight or the day

of experiment with respect to launch date are obvious. What is perhaps less obvious

is what these labels represent in the biomechanical realm. Actual JDT performance

differs from subject to subject, though there are broad trends as illustrated in Chapter

4. Therefore, we attempt to make connections between the sEMG measurements and

the force-plate outcomes, where the force-plate outcomes effectively become a ground

truth.

The observed variables, or features, are derived from the time-region prior to

and just after touchdown. The force outcomes are measured immediately following

touchdown, where they are produced. The approach of Section 5.2 then treats these

force outcomes as measures to be correlated with sEMG variables, and thus open

some path toward interpretation of the experiment. In a loose sense, one can think

of this as an attempt at mapping from sEMG measurement (input to anticipatory

strategy and ground reaction forces) to force outcome.

In any case, a classification algorithm successfully discriminating between pre- and

post-spaceflight is necessary to demonstrate some capability of tracking longitudinal
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changes on some minimum of non-invasively retreived data. This work is presented

in Section 5.3.

5.2 The LASSO Regression

The data set contains many sEMG-derived features whose relationship with force

outcomes will be examined for the ultimate purpose of giving a succint yet more

in-depth look at the changes in JDT behavior over time. We focus here on the force

ratio F2

F1
due to its ease of interpretation.

First, we discuss the shrinkage estimator approach to regularizing the data in

order to avoid overfitting. The terms LASSO, ridge, and elastic net regression refer

to fitting a generalized linear model with a penalty term (or two) to obtain regularized

fit coefficients.

β̂lasso = argmin{1

2

N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj|} (16)

β̂ridge = argmin{1

2

N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

β2
j } (17)

Equations 16 and 17 are the LASSO and ridge regressions, respectively. On the

left-hand side of these equations are the fit coefficients for the respective approach.

On the right-hand side, we have the regularization (or shrinkage) parameter, λ, the

response yi, the predictor elements xij, and fit coefficients βj, where β0 is constant.

The calculations are run over p features for N observations. In our case, N > p, so

we are not dealing with a strictly high-dimensional problem. As an aside, for related

reading, Chen et al. (1998) explore this approach, referred to in the signal processing

context as basis pursuit [79], which is sometimes employed in a wavelet context.

The LASSO implements an `1-norm penalty while the ridge approach implements

an `2-norm penalty. These penalties are the second term on the right-hand side of
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their respective equations. Qualitatively, the LASSO results in sparse solutions in

which many of the minor contributors within the predictor set are forced to zero.

While the ridge approach will not yield sparse solutions, it is better able to cope

with correlated variables, shrinking their coefficients toward one another effectively

averaging their contributions.

Zou and Hastie (2005) introduced a compromise penalty term referred to as the

elastic net penalty [80], which is a combination of the two penalty norms used in

equations 16 and 17.

p∑
j=1

(α|βj|+ (1− α)βj
2) (18)

where,

α =
λ1

λ1 + λ2
(19)

By equation 19 and λi ≥ 0 (that is, only non-negative regularization parameters

are sensible), we have α ∈ [0, 1], and casting the statement in this manner introduces

a convenient intuition whereby α ranges between LASSO-penalty behavior (α = 0)

to ridge-penalty behavior (α = 1). The conceptual framework for the glmnet [81]

package in R, employed in the analytical efforts of this section, is as follows. Specifying

a maximum or minimum value of α reduces us to one free parameter λi, while using

the elastic nets approach demands that we choose two parameters. Optimal values

of either parameter can be chosen via cross-validation, further illustrated in Section

5.2.2.

5.2.1 Standardization of Predictor Variables

Predictor variables are standardized such that they are expressed in the same dimen-

sions (for interpretability purposes) and so that their respective coefficients are not
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penalized in an uneven or biased manner. As described by G. James et al. (2013) [82]

in the chapter on regularization, the feature space is standardized by,

x̃ij =
xij√

1
N

∑N
i=1(xij − x̄j)2

(20)

where the symbols follow from equations 16 and 17 and x̄j is the mean of the

observations on feature j.

5.2.2 Regularization of the JDT Feature Space

Recall that the goal is to exploit any relationship between the sEMG features and

force outcomes to examine JDT dynamics. Ideally, then, we want a sparse solution

which is interpretable, but also reliable and not obfuscated by covariate data. This

places the LASSO and ridge approaches in tension, and thus suggests that we examine

correlations between variables and compare some results for a range of α and λ values.

Figure 40 shows a correlogram of standardized predictor variables. Here, it is

clear that most features are not correlated, and thus of no concern with regard to

interpretability on a LASSO regression. However, variables such as bta wav and

bta iemg are clearly, and perhaps obviously, correlated. On the other hand, they

represent the same notion of the bilateral ratio of sEMG activity on the TA, so

for interpretation purposes, the point is moot. In the final analysis, cross-validated

standard errors are used to assess model efficacy. This more qualitative approach can

be used to check if substitutes may be used in the final analysis, or if interpretation

of the analysis is obfuscated in some way. For this particular case, it is encouraging

the strongest correlated and anti-correlated variables are those that constitute parts

of the bilateral ratio calculation, or reflect sEMG activity within the same muscle

and time-period (e.g., the in-air and post-touchdown portions of the signal).

The desired outcome is a sparse matrix of coefficients representing the efficacy of

a predictor (or feature) in describing force outcomes. Incorporation of the `1-norm
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is then most prudent as this penalty forces insignificant model contributions to zero,

but we must also examine the possibility of correlated predictor variables playing a

role. Therefore, we will examine the effect of an elastic net penalty using a grid search

on both α and λ. Note that rather than a single specific value of λ, a sequence of λ’s

are utilized to show the regularization path for the predictor variables.

Figure 41 shows the Mean-Squared Error (MSE) of fit for varying penalty terms

(α) and free regularization parameter (λ). Performance is not greatly improved over

the LASSO (α = 1), but rather the local optimum is merely shifted. As the regu-

larization becomes more ridge-like (α = 0), we observe that the algorithm does not

converge in a satisfactory manner – the regularization term grows much larger before

being competitive with larger α, and may reduce the degrees of freedom to unreal-

istically small values while introducing extreme bias to the model. For purposes of

building generalizable and interpretable models, the LASSO is both sufficient and

optimal.
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Figure 41. Fit performance of approaches with varying penalization ranging from
the ridge penalty to the LASSO penalty.

Optimal values of λ are determined by cross-validation. It is standard practice

to choose a value of λ one standard deviation away from the value giving the lowest

MSE [81, 83], and that standard is followed here with the underlying rationale that

a regularization parameter too restrictive may be overly optimistic and yield a less

generalizable model. Exceptions are made if the regularization is such that the model

is overly restrictive. Figure 42 illustrates such a case for the response variable F2

F1
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under LASSO penalization. The cross-validated sequence of λ’s terminates when the

penalty reaches a point at which all predictor coefficients go to zero. For the purpose

of this work, however, it is the sequence of λ’s that we are interested in.

Figure 42. The k-fold cross-validated MSE is reported for varying regularization
parameter λ. The error bars indicate the MSE standard deviation. Two dotted lines
indicate λ values that minimize the MSE and the value that is one standard deviation
greater. The top axis shows the degrees of freedom of the model – that is, the quantity
of nonzero coefficients.

With a good sequence of λ’s in hand, we now examine Figure 43, showing the

regularization paths for the feature space correlating to the response variable, the

force outcome F2

F1
. The top axis indicates the degrees of freedom (nonzero coefficients)
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present in the model, while the bottom axis indicates the size of the `1-norm error.

Intuitively, then, reading the graph from left to right, the LASSO coefficients are

allowed to grow along with the penalty term, as the regularization parameter, λ,

grows smaller. Put another way, as the penalty is relaxed, more features enter into

the description of the model.

Conveniently, however, the trends largely hold as the penalty is relaxed. The

dominant predictors’ coefficients simply grow while minor contributors hover about

the zero-line. Figure 43 shows that the dominant predictors are rmg iemg lnd (i.e.,

the integrated sEMG calculated from the right MG after touchdown), rta iemg air

(i.e., the integrated sEMG calculated from the right TA during the in-air portion of

the JDT), and rmg iemg air.
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Figure 43. LASSO regularization paths for features describing the F2

F1
outcome.

Top axis indicates the degrees of freedom in the model from the number of nonzero
coefficients, showing the number of variables in play. The bottom axis shows growing
penalty term as we relax the regularization parameter and allow more features in
the model. Finally, the higher a variable’s coeffient, the stronger the positive, direct
relationship with the outcome is. Likewise, the more negative a coefficients indicate
a stronger inverse relationship with the outcome.

5.2.3 JDT and LASSO Interpretability

One might conclude from this portion of the analysis that the ratio F2

F1
, understood as

describing the smoothness of transition from toe (initial force-plate contact) to heel,

is best described by the reaction to the landing (rmg iemg lnd) and actuation (in
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anticipation) prior to landing. It is particularly noteworthy that the rta iemg air

and the rmg iemg air features are anti-correlated with one another, as these two

perform opposite functions as agonist and antagonist co-contracting pairs (see Figure

20).

Note however that Figure 43 shows the overall predictive trends of the experiment

with respect to the F2

F1
ratio, regardless of day. The question of day-to-day (with

respect to landing and launch dates) is also of interest, however. Therefore, we wish

to also examine the regularization paths for the F2

F1
ratio under the JDT experiment

day grouping. Figure 44 illustrates a slice of the process. Basically, since each set

of regularization paths is similar in behavior to that of Figure 43, and we want to

develop a heuristic method of estimating feature behaviors by day, we simply select

the coefficients from some stable region of the graph – the right-hand side.
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Figure 44. LASSO regularization path for F2

F1
response for Day G on ISS JDT

experiment. Red selection indicates a slice from which coefficients may be selected.

This procedure is performed for each day. Within a given day the relative frac-

tional contributions of the coefficients are calculated and reported in the stacked bar

chart form shown in Figure 45.
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Figure 45. Fractional contributions of features to total LASSO coefficient space
for each JDT experiment day expressed as percentages, for response variable F2

F1
.

Negative percentage contributions indicate features that are inversely related to the
response variable. Positive contributions indicate direct relationships. Contributions
less than 5% are discarded for visual clarity, so contributions may not total 100%.

As the subject population moves through the JDT experiment, we expect changes

in neuromuscular activation strategies due to acclimation to the nature of the jump

(establishing a baseline) and re-adaptation after return to planetary surface from

pro-longed exposure to microgravity environment encountered during spaceflight.

When considering the transition from Day A to Day B, note that significant in-

air activation of the TA occurs. This is consistent with the need for a stronger

co-contraction of the agonist/antagonist pair (MG/TA) in stabilizing the foot for a

steady landing. This is in turn consistent with the anecdotal experience of the author

of this dissertation that the JDT experimental parameters are initially uncomfortable
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due to the requirement that the subject “hops” rather than steps off the platform,

which is already 30cm high. This discomfort has the nearly uniform result (judging

by video evidence) that subjects rock slightly forward on their toes backward on their

heels, exhibiting an overcorrection.

In general, across the subject population, Day A exhibits the greatest volatility

when examining the distribution of behaviors by jump (e.g., Figure 33 and baseline

behavior becomes more uniform on Day C. It should be noted that the difference

between Day A and B is greater than the difference between Day B and C, on average,

judging both by assessment video evidence and force feature outcomes (e.g, F2

F1
).

The post-spaceflight trend suggests that on Day E the strategy is completely

different. The bilateral ratio of the TA is present as a strong, directly correlated

predictor only in this case. This fact along with the behavior of that same feature

in Figures 31 and 32 suggest that TA behavior is worth a closer look. Much of

the research – especially that involving stretch reflex investigations – has primarily

focused around the MG or the soleus, both of which serve a similar function [7,9,68,

72,84]

Further along the post-spaceflight (recovery) trajectory we see the fractional fea-

ture contributions evolving toward baseline (i.e., resembling Day C), but in a non-

identical manner. The spirit of this is consistent with suggestions that while JDT

performance eventually, and apparently, recovers to baseline performance, the strate-

gies utilized are not quite the same. Video observations are insufficient to support

any claims beyond “subjects return to reasonably high JDT performance by Day G,”

as the JDT occurs rather quickly for the human eye, and the muscle activation pat-

terns are not visibly apparent. Here we claim that this method may provide greater

insight. Naturally, however, caveats apply and are discussed in the next section.
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5.2.4 Experimental and Analytical Limitations

Good models require that predictors adequately explaining the outcomes (response

variables) are in place. In this work, we have employed a supervised regression method

with `1-norm penalty (i.e., the LASSO) to link the only two sources of data that are

relevant and present – the sEMG features and the features that are registered on the

force plate. The assumption that sEMG features calculated during the in-air portion

have some effect on the outcome is a key assumption, and is certainly a reliable

one considering the agreement between the exploratory figures of Chapter 4 and the

regularization paths presented in this chapter. Some issues remain however, that a

more complete description of the JDT may be able to address.

No direct measurement of a “ground truth” is taken during the in-air portion.

We do not know, for example, if there are trunk adjustments taking place during

this period, or the particular manner in which the foot is plantar or dorsilflexed. We

know that actuation occurs, but have no ground truth for which to compare it. An

accelerometer placed at key points of the body would provide some way of comparing

ankle flexion to lower limb actuation, and thus more directly assess APA, for example.

Additionally, as seen in Figure 43, the overall data seem to indicate a domi-

nance of the right-limb. The particular role of the limbs does change (especially

post-spaceflight, see Figure 44); but the idea that over the entire dataset, that one

limb dominates, is a curiousity, and sparks a desire for knowledge of the subject’s

“handedness” in the data.

At this stage it should be noted that, despite relatively low MSE, no single feature

could be used to completely capture the dynamics of the JDT. Instead this approach

is best used, at this point, to obtain qualitative descriptions of neural strategies so

that one can reason about neural adaptation due to spaceflight and recovery exhibited

by the JDT.
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5.3 Algorithmic Classification

The final part of the overarching narrative of this work is the classification of JDT

labels by sEMG-derived features. Specifically, in this section, “labels” refers to the

normalized days of the JDT experiment, measured with respect to launch and return

dates, as outlined in Table 4. One can imagine a use-case wherein a classifier model is

developed on an ever-growing subject population and, using a JDT analog suitable for

microgravity environments, subject performance on a planetary surface is predicted

based on what labels the JDT measurements are assigned.

While the previous sections address the construction of an analytical tool for

enhancing reasoning about first principles, this portion of the dissertation addresses

an engineering concern outlined in the use-case described in the previous paragraph.

In reality, machine learning schema range from overly simplistic linear separations,

to endlessly complex voter-fusion ensembles consisting of many models stacked or

integrated with one another. We shall err on the side of the simple and generalizable

in this work, and discuss more possibilities in Chapter 6. This approach has merit

on three fronts. First, simpler approaches leave some room for connecting results to

physical processes (interpretability) rather than the model resembling a black box

performing a mathematical mapping. Second, this problem represents a new domain

in which the more fundamental models should be employed to establish some baseline

performance. Third, the actual deployment of complex models into production can

be unrealistic depending on computational resource constraints, e.g., using radiation-

hardened processors places a more severe upper limit on computational resources in

space, were it to come to that. To further illustrate this third point, consider the

Netflix prize in which a goal of increasing recommendation accuracy by 10% was

crowd-sourced, successfully, but not implemented because the solution was too costly

to scale-up [85].

A variety of classification schemes may be employed, but the Support Vector Ma-
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chine (SVM) approach and results are described in detail. The SVM is chosen for

this exposition of the work due to its flexibility [86] with hyperparameters, especially

in the case of the Radial Basis Function (RBF) kernel. Equally important, the met-

rics for gauging classifier performance, including Receiver Operator Characteristics

(ROC) and grid search validation will be addressed.

5.3.1 Support Vector Machine Classification

The SVM algorithm has enjoyed a storied history of development moving from the

nonlinear-capable maximal margin classifier [87] into the more complex soft margin

classifier [88], a scheme employed here in this work. The full theoretical development

of the SVM will not be presented here, but it is strongly recommended for those

curious to investigate its inner workings by way of examining the text by Shawe-

Taylor and Cristianini, Kernel Methods for Pattern Analysis [86]. The intriguing

result popularly referred to as the “kernel trick”, a method by which a linear learning

algorithm may learn nonlinear decision boundaries, and the relatively quick training

time, are what inform the decision to focus primarily on the SVM in this work.

Intuitively, an earlier formulation of the SVM classification problem seeks solutions

that place a hyperplane in such a manner as to maximize the distance between clusters

of data and the drawn hyperplane. Figure 46 illustrates the basic principle of the

SVM classification scheme. In a binary classification case, observations would be

classified opposite to those observations located on the opposing side.
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Figure 46. Illustration of maximal margin placement of hyperplane surrounded by
data clusters. Illustration by Zack Weinberg (2012) [89], by way of the Wikimedia
Commons.

In practice, data may not be so easily separated as in Figure 46, and we may also

be operating in a space that is not easily visualized. This would also be an accurate

description of the work presented here. The work done by Cortes et al. (1995) in

pioneering the soft margin scheme [88] is the extension of the approach described by

Figure 46.

For the JDT, then, we begin with a simple linear kernel SVM classifier with

only two features – the bilateral ratios – by examining the ROC. The ROC is a

representation of classifier performance drawn by comparing the true positive rate

to the false positive rate. A true positive is a classification attempt that accurately

classifies an observation, while a false positive is an attempt that incorrectly attributes

one class to another. Intuitively, the case where the two rates are equal to one another

indicates that the classifier is performing as good as pure guessing. Better classifiers

are indicated by a high area under the curve (AUC), as would be the case when

the ROC curve climbs rapidly, hugging the top and upper-left corners of the graph.

90



While this less formal approach serves this dissertation well, there is an excellent

introductory paper to the nuances of ROC analysis by Tom Fawcett (2006) [90].

Before presenting the ROC, however, we will briefly visualize the decision surface

for this classifier. In general, this is not possible due to the dimensionality of the

predictor sets, and in any case it is not always particularly informative. Figure 47

illustrates such a case for a classification between days C (blue) and E (yellow),

using the two bilateral ratios cast in terms of iEMG as the predictor features. A

glance at the data suggests that post-spaceflight, JDT behavior described by the

bilateral ratios is less varied, and smaller in magnitude in general. This claim would of

course be weaker without the violin plots of Chapter 4 showing the various statistical

distributions for the JDT measures. That is to say, Figure 47 says more about the

kernels employed in the SVM algorithm than the data itself.

91



Figure 47. Left panel shows an example of a linear SVM kernel decision surface
and the right panel shows an example of an RBF kernel decision surface. The RBF
is clearly better suited to nonlinear observations. Yellow points indicate day E clas-
sification while blue points indicate day C classification.

The RBF kernel is the obvious choice for data such as this, though some com-

parisons will still be made throughout the rest of this section. The RBF handles

nonlinear relationships better, and as will be shown, generally performs better when

describing these data. Additionally, for real-valued data, the SVM is known to be a

fast learner with added value as feature-space dimensions increase.

Figure 48 shows the ROC curve for a classification between JDT day C and day E

using the linear kernel SVM. That is, the experiments that take place prior to launch

and the experiment that takes place a day after return to the planetary surface. The

predictor data consists only of the two bilateral ratio features. The classification is

performed using a 5-fold cross-validation procedure with 80% of the samples allocated
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to the training set and 20% of the samples allocated to the test set. All predictor

variables, in all classification efforts shown below, are standardized in the manner

described in Section 5.2.1.

Figure 48. SVM classifier with linear kernel and predictor set populated only by
the bilateral ratios. Performed with 5-fold cross-validation.

The red line of Figure 48 indicates the ROC trajectory at which the classifier

performance would be equivalent to guessing. The thick blue line is the average per-

formance across the folds, while the thinner pastel-colored lines are the performances

for specific folds. The grey area represents the region through which any ROC tra-

jectories are within one standard deviation of the average performance. This graph

tells us that, for this particular configuration of predictor variables and kernel, it is

possible, though improbable, to divide the test and training set up in a way that

produces a much less effective classifier.
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The previous two figures suggest that using the RBF kernel method and larger

feature population may yield a better result. Figure 49 illustrates such an excellent

outcome for classifying observations on day C versus day E.

Figure 49. SVM classifier with RBF kernel and predictor set using all available
features. Performed with 5-fold cross-validation.

The AUC is quite high compared to the linear kernel, two-feature case presented in

Figure 48. The model is trained with 80% of the samples and tested on the remaining

20%, using a 5-fold cross-validation approach. The thinner pastel-colored lines and

the grey one standard deviation region indicate a fairly tight grouping of behavior

across the folds, indicating stable and accurate classification behavior.

At this point it is prudent to address some basic points regarding kernel methods.

First off, a kernel represents a correspondence to an inner product between repre-

sentations of all pairs of data in the feature space. This method avoids operating

94



in the actual data coordinate space, and thus reduces computational cost and eases

the creation of the hyperplane. This implicit mapping is popularly referred to as the

“Kernel Trick”. A more satisfying investigation for the curious is to be had, again, by

consulting with the text Kernel Methods for Pattern Analysis [86]. Recall that the

inner product, for which the Kernel is a method of calculating, effectively computes

the similarity between two vectors.

The key point, and underlying reason for introducing it here, is that there are

additional hyperparameters that must be determined for optimal classification results.

The RBF kernel, also referred to as the Gaussian kernel, is of the form

k(x,y) = exp
(
− γ ‖x− y‖2

)
(21)

Where x and y are vectors in real space and γ > 0 is a free parameter that

influences the effect of the distance between x and y. Low values of γ yield a wide

kernel distribution, meaning the influence of a training example has a far reach, while

a higher value of γ indicates shorter decision influence, yielding a more finely-grained

decision surface.

A “support vector” is a training point that lies on the contours of the decision

boundary. Choosing more samples as support vectors allows for more complex de-

cision boundary contours, while fewer support vectors make for a smoother decision

surface. This regularization parameter will be referred to as C, here, and is given

its proper mathematical consideration by Guyon et. al (1993) [91] and Cortes and

Vapnik (1995) [88].

At this point then, RBF kernel classifiers have two hyperparameters which must be

tuned to yield an optimal classifier. The classifiers and related methods employed in

this section are produced using the excellent Python machine learning library, Scikit-

Learn [92], which also offers a grid search method for tuning the aforementioned

hyperparameters, C, and γ. Figure 50 presents a visualization of such a grid search
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used to optimize the classifier whose ROC metrics are presented in Figure 49.

Figure 50. Grid search on hyperparameters C and γ assessed by 5-fold cross-
validation classifier accuracy. The vertical axis is expressed in powers of 10.

In the case of the RBF kernel SVM classifier assigning labels of day C or day

E to observations with the entire predictor set, a C of 21.54 and γ of 0.1 are opti-

mal. The colorbar is normalized such that accuracy values near the optimal value

are clearly visible, while hyperparameter combinations yielding poor accuracies are

indistinguishable (or nearly so).

Clearly, then we can separate observations out before and after spaceflight with

signficiant accuracy and with the use of only sEMG-derived features. Now we turn

to the multi-classification problem. That is, we attempt to classify observations from

JDT experiments beyond the day after landing and before the day of launch.

The SVM is inherently a binary classifier. To work around this, a one-against-one
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approach is used [93] in the library method employed within Scikit-Learn. In this

scheme, for K classes, K(K−1)
2

different binary SVM classifiers are trained on all pos-

sible class pairs. Test points are then classified by which class has the highest number

of votes. Naturally, one can expect overall performance to drop when ‘diluting’ the

problem space with more classes, and in general, this performance hit can be allevi-

ated by having a large number of samples representing each class. Figure 51 shows

the ROC performance metric for each class.

Note that for the multi-classification cases, we neglect day A as it is intended to

give subjects a chance to acclimate to the nature of the JDT.

Figure 51. ROC performance metric for each class with associated AUC, and overall
average performance (dashed cyan line). The individual lines represent class behav-
iors, rather than fold behaviors. The classification accuracy was checked with 5-fold
cross-validation.

The linear SVM classifier shown in Figure 51 employs the entire feature set as
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predictors, and performs better than chance overall, with days C and E performing

particularly well. Recall, from Chapter 4, that the statistical distributions of days

C and E had the most drastic differences on most sEMG features, suggesting that

classification accuracy should be higher for these cases.

Finally, we examine the same multi-classification problem but with grid search-

optimized RBF kernel. Figure 52 shows the ROC metrics of this classification scheme

with a higher average AUC as compared to the metrics reported in Figure 51. The

previous trend holds, however, as days C and E are classified most accurately. Note

that the classification accuracies for these two days is still less than if we had trained

only on days C and E as in Figure 49.

Figure 52. ROC Performance metric for multi-class JDT classificiation with RBF
kernel with 5-fold cross-validation. Dashed cyan line indicates average classifier per-
formance.
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The SVM RBF kernel is clearly a strong performer, even if performance suffers

for the multi-class problem. The grid search hyperparameter optimization proce-

dure introduces some computational expense depending on how fine the grid is. It is

promising that these results were obtained with hyperparameters that took approxi-

mately seventy-seven seconds to calculate on a late 2016 Macbook pro with a 2.9 GHz

Intel i5 processor. These classification performance metrics may be thought of as the

baseline from which further investigations into either more exotic algorithms, feature

space transformations, or new domain-specific feature engineering (i.e., extensions or

replacements for the bilateral ratio) can be compared.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this brief final chapter we take stock of what has been presented here, describe

some next possible steps, and related explorations.

6.1 Conclusions

Chapter 3 introduces the first significant outcome presented in this work. There,

a dataset consisting of sEMG signals taken during isometric contraction before and

after a 35-day bedrest was analyzed by, put simply, extracting a variety of features

from the signals and running classification algorithms to distinguish between signals

measured on either side of the bedrest period. That work demonstrates feasibility

in the construction of models for handling (classifying, here) longitudinal changes

as indicated strictly by electrophysiological data – sEMG in this case. This is an

interesting result because maximal use is made of the sEMG data, rather than using

such signals as second-order evidence, as is often the case.

The JDT experiment itself is introduced in Chapter 4. The issues surrounding

spaceflight-induced sensorimotor conditions are described to motivate the experiment.

Domain-specific knowledge of the sensorimotor system and the mechanics of landing

a jump is used in the engineering of two new features meant to convey physiological

significance. Violin plots showing the statistical distribution of a number of these
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sEMG-derived features, including the bilateral ratios (Equation 13), are shown to

build some intuition regarding the evolving nature of the JDT statistics.

Chapter 5 presents two significant outcomes. First, Section 5.2 demonstrates

the use of a shrinkage estimator as a new analytical tool for determining significant

contributors to a ground truth variable. In Figure 45, this relationship was observed to

change over time and thus highlight adaptative JDT strategies induced by spaceflight.

In concert with the exploratory figures and statistical distributions of Chapter 4, one

can see that a return to baseline JDT performance is achieved, but with the exciting

possibility that a different JDT strategy has yielded this improvement.

The second outcome, presented in Section 5.3, is an extension of the study shown

in Chapter 3 and applied to the JDT problem. Beginning with a simple two-class case,

where the JDT is performed immediately before and after spaceflight, we demonstrate

high classification accuracy using an RBF kernel SVM. This classification accuracy is

commensurate with expectations developed by the statistical distributions of Chap-

ter 4. The classification problem is expanded to include all but the first set of JDT

experiments, labeled “Day A”, as these jumps are highly variable and intended to

help subjects acclimate to the experiment. While performance does suffer, the clas-

sification scheme performs well-above chance overall.

6.2 Future Work

There are multiple obvious extensions to the work presented in this dissertation. It

is quite plausible that more complex ensemble methods could be used to improve

classification accuracy for the multi-class case. There are likely also different ways

in which we can engage in feature engineering for both intuitive purposes, and for

enhancement of classification accuracy.

This author is particularly interested in the notion of unsupervised learning av-

enues of investigation. This approach may yield as-yet hidden insights into the struc-
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ture of the data, were more subject data available. Variables like height and age,

for example, are not included in the data as a result of the procedures taken to

anonymize the data. Indeed, while ISS missions are known to last between three and

six months, we do not know the specific durations of any of these. One would expect

mission duration to have some relation to, say, recovery times.

In Section 5.2.4, some additional concerns and possiblities for their remedy are

offered. The LASSO method employed in the manner described in Chapter 5 is

intriguing in their use of a particular force outcome for discerning a ground truth

that is otherwise not entirely obvious. Accelerometer data, for example, may be used

to obtain some ground truth during the in-air portion, and aid the description of

biomechanics post-touchdown.

There was some speculation about related investigations. When this work was

proposed, discussion with a research group investigating neuromuscular fatigue [94,95]

in the hand during spacesuit glove operation had recently taken place. While our

research interests certainly aligned, there was a reasonable and just concern that

the data were not quite ready to be released for study by outside groups. Once

the general aims of the experiment are satisfied and data more freely released, some

future investigation of the experiment using methods outlined in this work may yield

insight into either the data or the method.

Lastly, there exist coherence studies for examining the relationships between EEG

and sEMG features during experiments [96–98]. The use of EEG presents its own

technical issues regarding noise sensititivity and motion artifacts, but the combined

use of the EEG and sEMG measurements with, for example, the JDT, may give more

information on underyling physiological changes driving neural strategies. It would

be an amazing opportunity to observe correlated changes in the brain with the lower

limbs measurements.

This work has relied on generalizable regression and classification methods. We
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are confident that similar analyses can be performed with altered, domain-specific

(e.g., hand fatigue experiments) feature engineering approaches.
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Appendix A: Acronyms Used

Acronyms employed throughout this work are defined here for convience.

ANN — Artificial Neural Network

APA — Anticipatory Postural Adjustment

AR — Autoregression (coefficient)

AUC — Area Under Curve

CWT — Continuous Wavelet Transform

DWT — Discrete Wavelet Transform

EEG — Electroencephalogram

EMG — Electromyography

FSR — Functional Stretch Reflex

fMRI — Functional Magnetic Resonance Imaging

FT — Fourier Transform

FTT — Functional Task Test

FWHM — Full-Width-at-Half-Maximum

GM — Gastrocnemius Medialis

IAT — Impact Absorption Time

iEMG — integrated Electromyography

ISS — International Space Station

JDT — Jump-Down Test

JSC — Johnson Space Center

k-NN — k-Nearest Neighbors
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LASSO — Least Absolute Shrinkage and Selection Operator

LDA — Latent Dirichlet Algorithm

MAV — Mean Absolute Value

MF — Median Frequency (also, FM)

MG – Medial Gastrocnemius

MSR — Monosynaptic Stretch Reflex

MUAP — Motor Unit Action Potential

MVC — Maximal Voluntary Contraction

PCA — Principal Component Analysis

PL — Preparatory Latency

RBF — Radial Basis Function

RF — Rectus Femoris

RMS — Root-Mean-Square

ROC — Receiver Operator Characteristics

SDK — Software Developers Kit

sEMG — Surface Electromyography

STD — Standard Deviation

SVM — Support Vector Machine

TA — Tibialis Anterior

VL — Vastus Lateralis

WL — Waveform Length

WNN — Wavelet Neural Network

WPTE — Wavelet Packet Transform Energy

WT — Wavelet Transform

ZC — Zero Crossings
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Appendix B: Wavelet Basics

Many of the signals analyzed in the physiological domain are not necessarily station-

ary. This is especially, and perhaps more obviously, the case for the sEMG signals of

the JDT experiments, as there are abrupt, transient changes in the sEMG signal sur-

rounding the touchdown point. Wavelet analysis offers an advantage over frequency

analysis (as with, e.g., the Fourier Transform) in that it these transient elements can

be investigated.

For the sake of comparison, two equations are presented here.

f̂(ω) =

∫
Rn

f(x)e−iω·x dx (22)

X(a, b) =
1√
a

∫ ∞
−∞

Ψ∗
(
t− b
a

)
x(t) dt (23)

Equation 22 is a definition of the familiar Fourier Transform, with the angular

frequency ω, provided here for sake of comparison. The wavelet transform of Equation

23 shows a similar input/output mapping scheme. However, the wavelet transform

is a convolution of the input signal with a set of functions consisting of dilations and

scales of a mother wavelet. In Equation 23, a and b represent scale (dilation of mother

wavelet) and time (translation across signal length) respectively. The Ψ∗ indicates

the complex conjugate of the wavelet function.

Figure 1 illustrates the immediate advantage of the wavelet transform in analyzing

nonstationary signals (top, red). The signal has an abrupt change that a Fourier
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transform would not capture. The scalogram (bottom) indicates the signal’s energy

coefficients which give measures of correlation between a chosen mother wavelet (a

Gaussian in this case) which is scaled and translated across the signal. The scale

values correspond inversely to the frequency for the associated signal energy. The

particular conversion between scale and frequency is dependent on the chosen wavelet.

Broadly, bright patches indicate a strong correlation between signal and wavelet. One

advantage of the wavelet method is that we can selectively eliminate portions of the

signal by removing its frequency contribution if noise is determined to be present at

some particular scale/frequency region.

(a) Gaussian Mother Wavelet.

(b) Signal and corresponding continuous wavelet
transform.

Figure 1. Left: Mother Wavelet “gaus4”. Right: Signal and corresponding contin-
uous wavelet transform. Adapted from Mathworks [99]

However, in practice, it is often the Discrete Wavelet Transform (DWT) that is

used. In the bedrest work described in Chapter 3 it is the DWT that is employed.

This technique is also relied upon in a number of other publications cited in this

work [31,39,100].

The DWT is wavelet transform in which the wavelet is discretely sampled. The

DWT of some signal, x, is passed through high-pass filters to acquire high-frequency
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(or detail) coefficients and low-pass filters to acquire low-frequency (or approxima-

tion) coefficients. This action is performed in a cascaded manner to acquire a set of

discretely sampled wavelet transformed signals. Figure 2 lays out an example of the

filtering scheme and its corresponding wavelet cascade. Equations 24 and 25 describe

the low-pass and high-pass filter convolutions respectively.

ylow[n] =
∞∑

k=−∞

x[k]g[2n− k] (24)

yhigh[n] =
∞∑

k=−∞

x[k]h[2n− k] (25)

Figure 2. Filter and Coefficient Scheme for the Discrete Wavelet Transform

In the bedrest work of Chapter 3, a 3-level cascade was used. Each of these

wavelet coefficient vectors (e.g., cD1) resulting from the cascade can be inverted such

that the original signal, x, can be reconstructed as

x = D1 +D2 +D3 + A3 (26)

Where, for example, D2 is the inverse wavelet transform of cD2 and the lowercase

“c” indicates that we are discussing the wavelet coefficients, while the “D” without

the lowercase “c” indicates that we are discussing the reconstruction of that signal

element from the coefficients. Put another way, D2 has the same units as the original

signal, whereas the coefficients, cD2 are an abstract representation.

124



More detailed overviews of wavelet analysis and the two transforms described

briefly here can be found in texts written by Ingrid Daubechies [58], for a more his-

torical work, and Strang and Nguyen [101] for a more course-appropriate textbook.
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