
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

5-2018 

Optimizing high-speed exercise performance : effect of load. Optimizing high-speed exercise performance : effect of load. 

Ling Bai 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

 Part of the Sports Sciences Commons 

Recommended Citation Recommended Citation 
Bai, Ling, "Optimizing high-speed exercise performance : effect of load." (2018). Electronic Theses and 
Dissertations. Paper 2979. 
https://doi.org/10.18297/etd/2979 

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of 
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/759?utm_source=ir.library.louisville.edu%2Fetd%2F2979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2979
mailto:thinkir@louisville.edu


 

OPTIMIZING HIGH-SPEED EXERCISE PERFORMANCE: EFFECT OF LOAD  

 

 

By 

Ling Bai 
B.M., Sichuan University, 2014 

M.S., University of Louisville, 2018 
 
 
 

A Thesis Submitted to the Faculty of the  
College of Education and Human Development of the University of Louisville 

in Partial Fulfillment of the Requirements 
for the Degree of  

 
 
 

Master of Science 
in Exercise Physiology 

 
 

Department of Health and Sport Sciences 
University of Louisville 

Louisville, Kentucky 
 
 

May 2018 
 

 

 

  



 

Copyright 2018 by Ling Bai 
 
 

All rights reserved. 
  



 

 
 

 



 ii 

OPTIMIZING HIGH-SPEED EXERCISE PERFORMANCE: EFFECT OF LOAD  

By  
 

Ling Bai 
B.M., Sichuan University, 2014 

M.S., University of Louisville, 2018 
  

A Thesis Approved on  
 
 
 

April 18, 2018 
 
 
 

By the following Thesis Committee: 
 
 
 

John Caruso PhD 
 
 

Thorburn Brock Symons PhD 
 
 

 George Pantalos PhD   



 iii 

DEDICATION 

This thesis is dedicated to my parents and husband 

Mr. Xishu Bai 

and 

Mrs. Chengying Liang 

and 

Dr. Ryan Chen 

who have given me invaluable educational opportunities. 

 

 

 

 
 
  



 iv 

ACKNOWLEDGMENT 

I would like to thank my professor, Dr. John Caruso, for his guidance, help, and 

patience. I would also like to thank the other committee members, Dr. George 

Pantalos and Dr. Thorburn Brock Symons, for their comments and assistance over the 

past two years. Many thanks to Dr. Kathy Carter for her help to recruit subjects. I 

would also like to express my thanks to my parents, Xishu Bai and Chengying Liang, 

and my husband, Ryan Chen, for their unconditional support and love. They 

encouraged me to continue to work hard and persevere. Also, many thanks to my 

dearest sister, Wei Bai. Finally, I would like to thank my team members, Ema 

Selimovic, Samantha Beatty, and Rebecca Mueller, for their help during the data 

collection.  

 
  



 v 

ABSTRACT 

OPTIMIZING HIGH-SPEED EXERCISE PERFORMANCE: EFFECT OF LOAD  

Ling Bai 

April 18, 2018 

The purpose of this study was to identify an optimal load for the knee extension 

exercise done with Impulse (Newnan, GA). Forty-one women and twenty-nine men 

made six laboratory visits, including two familiarization sessions to the knee 

extension exercise and four real workout sessions which entailed four 30-second 

exercise sets, separated by 120-second rests, against four different loads (0Kg, 3.41Kg, 

5.68Kg, 7.95Kg). A Latin Squares design was used to counterbalance the sequence of 

the sets. Average force (AF), peak force (PF), total work (TW), Impulse value, and 

the number of knee extension repetitions were each analyzed with a 2 (gender) x 4 

(load) ANOVA, with repeated measures for load. Alpha = 0.05 denoted statistical 

significance. Tukey test or Tukey-Kramer approach served as post-hoc analysis. 

Results showed AF, PF, TW, and Impulse value rose with increasing loads. Load 

7.95Kg was the optimal load which collectively had the highest AF, PF, TW, and 

Impulse value. 
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CHAPTER I 

INTRODUCTION 

Resistance training, also known as strength training, is a kind of physical 

exercise that involves the voluntary activation of specific skeletal muscles against 

some form of external resistance that is provided by body mass, free weights (barbells 

and dumbbells), or a variety of exercise modalities (machines, sprints elastic bands, 

manual resistance, and others) (1). Resistance training has profound effects on the 

musculoskeletal system and can improve the strength, anaerobic endurance, and size 

of skeletal muscles. General functional benefits of resistance training include 

increased bone, muscle, tendon and ligament strength. It also leads to improved joint 

function, increased bone mineral density (BMD) and bone mineral content (BMC), 

increased metabolism, increased fitness, improved cardiac function, improved 

lipoprotein lipid profiles, and reduced potential for injury. 

Compared to traditional slow-speed resistance training, high-speed resistance 

training with low external resistance has demonstrated a positive impact on improved 

musculoskeletal function (2). A recent meta-analysis revealed various forms of high-

speed resistance training were more effective at improving muscle function (i.e., 

muscle power) than traditional slow-speed resistance training (3). Impulse (Impulse 

Technologies; Newnan, GA) is a novel device that allows subjects to perform high-

speed exercise. Compared with other traditional exercise devices that use gravity to 

offer resistance, Impulse is a new exercise machine that produces high-speed 

movements without the effect of gravity and with low resistance. The basic operation 

of Impulse is very simple. It is equipped with a weight sled that traverses a low-
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friction 1.9m track, so repetitions occur at high rates of speed and acceleration. 

According to Newton’s Second Law of Motion, a force applied to an object over a 

time produces an impulse, or change in momentum. Subjects impart forces on this 

device to create momentum to the system and then counter the momentum to 

complete each successive repetition. 

Even though it is not currently used as a common exercise machine, studies to 

evaluate exercise performance have been done using Impulse. The reliability and 

reproducibility of exercise from Impulse workouts were previously established (4-6) 

and it is the groundwork for current and future studies. Other studies also examined 

the metabolic responses (7), the net energy expenditure (8), and the blood lactate 

concentration (9) of gravity-independent high-speed resistive exercise done with 

Impulse. Since Impulse does not require gravity to operate and has small mass and 

power requirements, it is an ideal exercise machine to be used in a low gravity 

environment and may potentially decrease in-flight bone and strength losses incurred 

by astronauts. Research showed long-duration stays on the International Space Station 

(ISS) were accompanied by significant effects on musculoskeletal systems, including 

in-flight total body BMD losses at rates of 1-3% per month (10-11). 

Recently, we examined the musculoskeletal outcomes from chronic high-

speed resistance exercise with the Impulse. The results of BMD, BMC, isokinetic and 

isometric strength, as well as bone resorption all showed positive changes from 

chronic Impulse training (12). However, the ideal resistance (load) to optimize 

exercise performance on this device has not been determined, just like what was once 

the case for the Wingate Anaerobic Testing (WAnT). Higher loads on Impulse should 

heighten force output, but it does so at the expense of sled speed, which may in turn 

impede power production. Since Impulse is designed for high-speed exercise, it is 
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important to assess performance parameters that optimize both speed and power 

production. The purpose of this project is to examine different loads applied to 

Impulse to ascertain the impact on exercise performance through evaluating the 

changes of average force (AF), peak force (PF), total workout (TW), Impulse value, 

and the number of knee extension repetitions against different loads (0Kg, 3.41Kg, 

5.68Kg, and 7.95Kg) added to the sled. AF is the total cumulative forces exerted 

divided by elapsed time. PF is the highest instantaneous force that a subject exerts on 

Impulse. TW is the summation of the average force times distance product of each 

repetition per exercise set. Impulse value in our study is defined as the ratio of the 

force change of PF, from the lowest force to the highest force, to the time change. In 

our research, the optimal load is the one which can generate the highest AF, PF, TW, 

and/or Impulse value collectively.  
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CHAPTER II 

LITERATURE REVIEW 

THE OPERATION OF IMPULSE 

The basic operation of Impulse is quite simple. The Impulse uses inertial 

forces created by means of a gravity-independent, passive weight sled traveling on a 

rail system. The users impart forces that create momentum to the system and then 

counter the momentum to complete each repetition. The weight sled, mounted on four 

wheels, glides on a 1.9m track with minimal fractional resistance. Successive 

repetitions cause a rapid reversal of the weight sled’s direction of movement along the 

track. Acceleration and deceleration of the sled’s mass creates the resistive force used 

for the exercise. According to Newton’s Second Law of Motion, 

f = m*a 

f = force; m = mass; a = acceleration 

The frictional resistance of the sled with four wheels is so small that the resistance is 

negligible. The bigger the force and smaller the mass, the greater the acceleration and 

faster the change in weight sled direction will be. This should lead to faster changes in 

sled motion, larger AF and PF, and presumably higher rates of acceleration. 

IMPULSE IS USED IN REHABILITATION AND ATHLETIC TRAINING  

The Impulse was initially used for injury rehabilitation and speed development 

in athletes. It is an ideal exercise device for high-speed resistance exercise training. It 

can produce high-speed exercise repetitions with high acceleration as the users exert 

maximal performance. The application of linear impulse and momentum as a means 
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for exercise rehabilitation and physical therapy was demonstrated in the use of the 

Impulse Inertial Exercise System (IIES; Newnan, GA). Before Impulse can be used in 

the rehabilitation field, it was very important to evaluate the exercise performance of 

Impulse. Caruso et al. (5) examined the data reproducibility through test-retest 

measures. They recruited college-age subjects to perform repetitive knee- and hip-

extension repetitions at their maximal voluntary effort. Results showed Impulse 

elicited reproducible intra- and inter-workout data despite the unique challenge of 

multi-planar and multi-joint exercise done over a large range of motion. Philips et al. 

(13) quantified the dynamics of the exercise system and evaluated its efficiency as an 

exercise and rehabilitative tool. Their study successfully instrumented the Impulse for 

future relationships to quantify exercise performance using this device. Davison et al. 

(14) examined the benefits of low-friction resistive training done with Impulse in an 

adolescent baseball player; the results showed significant improvements in maximum 

inertial rotation force and pitch velocity. The success of Impulse workouts likely 

resulted from the high rates of acceleration per repetition and a greater over-speed 

adaptation than that seen from other training modalities.  

Physiologic changes to exercise done with Impulse were also demonstrated. 

Improvements in acceleration usually entail workouts done at intensities that elicit 

high blood lactate concentrations ([BLa-]). Caruso et al. (15) assessed the impact of 

acceleration on [BLa-]. The results showed the average acceleration values from one-

minute sets served as a good predictor of change in [BLa-] (15). In subservient 

research, Caruso et al. (16) examined changes of blood lactate from high-speed 

exercise done with Impulse over periods of time. They found [BLa-] in competitive 

athletes rose sharply from zero- to five-minute post-exercise. To examine a 

workload’s impact on gender-based delta [BLa-] differences from supramaximal 
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exercise done with Impulse, Martin et al. (9) recruited subjects (49 women, 31 men) 

to finish two workouts of a standing unilateral rowing motion performed with left 

arms (combined shoulder extension/elbow flexion). Two types of repetitions, known 

as tonic and phasic repetitions, were done during different workout sessions. Their 

analyses of Total Work/Body Mass (TW/BM) and Total Work/Free Fat Mass 

(TW/FFM) data each produced significant differences for gender (women > men) and 

workout (tonic > phasic). Post-hoc analysis showed significant delta [BLa-] 

differences: men-phasic @ women phasic > women-tonic, > men-tonic. Their results 

indicated that delta [BLa-] and total work results each yielded predictable inter-gender 

differences, which supported the idea that the volume of total work performed 

exacerbates inherent metabolic differences among men and women that produces 

gender-based delta [BLa-] differences. 

THE POTENTIAL FOR IMPULSE TO BE USED IN A LOWER GRAVITY 

ENVIRONMENT  

Living on the earth has made humans physiologically and biomechanically 

adapted to the gravity and atmospheric environments. Leaving the earth for long-

duration missions (4-6 months) aboard the International Space Station (ISS) results in 

the degradation of the musculoskeletal system. A study by Hawkey (10) regarding the 

physiological and biomechanical considerations for a human Mars mission showed 

astronauts lost their bone and experienced muscle atrophy at rates of 1-3% and 5% 

per month, respectively. Another study finished by Sibonga et al. (17) studying 45 

individual crew astronauts revealed the averaged losses of bone mineral after long-

duration spaceflight ranged between 2% and 9% across all sites, which include the 

calcaneus (2.9%), the lumbar spine (4.9%), the femoral neck (6.5%), the trochanter 

(7.8%), and the pelvis (7.7%). Thus it is important to find an effective way to help 
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these astronauts maintain BMD in space. Exercise training is such an effective way to 

increase and maintain the BMD in humans. During exercise, as muscles accelerate 

and decelerate body segments to oppose the pull of gravity, bones adapt in accordance 

to the forces exerted. The network of osteocytes within the bone sense strains and 

initiate the conversion of mechanotransduction stimuli into the commensurate bone 

remodeling response (18-19). The Impulse is an ideal exercise machine to physically 

stress astronauts in space. As the study we finished recently (12) showed the chronic 

high-speed and high-Impulse resistance exercise done with Impulse could 

significantly improve the calcaneal bone mineral content by 29% and density by 33%. 

Elevated metabolism is common to spaceflight, while in-flight exercise in 

microgravity may exacerbate energy costs. To minimize energy costs of exercise done 

in space, research regarding the energy expenditure of exercise done with Impulse 

needs to be examined. Davison et al. (7) found that circuit weight training on Impulse 

elicited high energy costs and a relatively higher degree of post-exercise lipolysis in 

women. Caruso et al. (8) also tested the net energy expenditure of gravity-

independent high-speed resistive exercise performed on Impulse. Twenty-eight 

women subdivided into athletic and sedentary groups performed two workouts, either 

tonic or phasic repetitions. Results showed no significant intergroup or workout 

differences, but work volume analysis yielded a significant effect (tonic > phasic). 

To investigate the potential use of Impulse in a low gravity environment, we 

continued to examine the musculoskeletal outcomes in chronic high-speed resistance 

exercise. The results showed that PF, peak acceleration (the ratio of peak force to sled 

weight), and Impulse value significantly increased over time. There were significant 

pre-post increases to left calcaneal BMC (+29%) and BMD (+33%). For the future 

studies to explore the ability of Impulse for use in low-gravity environments, it is very 
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important to ask which load (resistance) would optimize exercise performance by 

producing higher AF, PF, TW, and Impulse value. Our research is going to determine 

the optimal load to maximize exercise performance on Impulse. The hypothesis of our 

study is that the load 0Kg should be the optimal load, which could lead to faster 

changes in sled motion, larger PF and AF, and presumably higher rates of acceleration. 
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CHAPTER III 

METHODS 

INSTRUMENTATION OF IMPULSE 

The operation of Impulse shown in Figure 1 & 2 demonstrates its simple 

design. Subjects exert force on this device to impart momentum to the system and 

then counter the momentum to complete each repetition. With proper timing, 

successive repetitions cause a rapid reversal of the weight sled’s direction of 

movement along the track. A nylon cord connects an exercise attachment handle to 

the sled. Pulleys above and below the sled permit multiple exercises to be performed 

at a variety of angles. Barbell plates may be added to the sled to increase resistance.  

 
Figure 1. Impulse                                  Figure 2. Schematic illustration of Impulse 
 

The right and left halves of Impulse are each equipped with a TLL-2K load cell 

(Transducer Techniques; Temecula, CA) attached to one of the pulleys and an 

infrared position sensor located midway on the underside of each 1.9m track (5). As 

the sled moves along its track, the load cell and position sensor record force output 

and displacement. Through integration of the sensor’s time response, researchers can 
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quantify average acceleration and force output. The load cell and position sensor data 

are sent to DI-158U signal conditioners (DATAQ Instruments; Akron, OH) and 

measured by a four-channel analog data acquisition card (DAQ) at 4000Hz. Force and 

work output are calculated and analyzed with Microsoft Excel. A macro is written to 

perform the numeric integration of force data. Figures 3 & 4 show the load cell and 

infrared position sensor of Impulse.  

       
 Figure 3. TLL-2K Load Cell                                 Figure 4. Infrared Position Sensor 

Figure 5 illustrates the block diagram overview of Impulse instrumentation:               

 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Figure 5. The block diagram overview of Impulse instrumentation 

SUBJECTS 

Before admittance, the Institutional Review Board (IRB) of University of 

Louisville approved all procedures. All subjects filled out a self-administered medical 

questionnaire to address their current health problems. All subjects were required to 

be in good health and capable of performing the current study exercise protocol. They 
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should be free of the following conditions: diabetes, exercise-induced asthma, 

hypertension, tachycardia, ischemic heart disease, hyperthyroidism, musculoskeletal 

ailments and convulsive disorders. In addition, females of child-bearing age who 

wished to participate had to take and pass a home pregnancy test (if necessary) to 

prove their suitability to perform the proposed project’s exercise protocol.  

STUDY PROCEDURES  

Each subject made six visits to our laboratory spaced three to five days apart. 

Once the informed consent and medical questionnaire is obtained from the subjects, 

the first two visits will entail the collection of their anthropometric data, as well as 

familiarization to exercise done on the Impulse. Anthropometry includes the 

measurement of the subject’s body mass and body composition via bioelectrical 

impedance analysis (BIA; RJL Systems, MI). BIA is an easy, non-invasive, relatively 

inexpensive way to determine the fat-free mass (FFM) and total body water (TBW) in 

subjects without significant fluid and electrolyte abnormalities, when using 

appropriate populations, age equations and established procedures (20-21). Before all 

subjects come in for the first lab visit, they will be reminded to stay hydrated to 

decrease the inaccuracy of BIA. Familiarization will entail performing practice knee 

extension repetitions on Impulse. Before subjects start knee extension, a cuff is worn 

around the distal shank to connect the subject to the sled. As the knee extends ~10-15°, 

the sled will travel rapidly with an acceleration to the end of the track (Figures 6 & 7). 

As the sled travels, the knee flexes back to the initial joint angle. Before the sled 

reaches the end of the track the next repetition occurs. During the first two 

familiarization sessions, the subjects will perform the knee extension at a submaximal 

level of effort, which doesn’t require subjects to produce highest speed and knee 

extension repetitions until they become accustomed to the movement and the exercise 
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device. The first two visits are anticipated to last 20-30 minutes; after the second visit, 

subjects should be well versed in the current study exercise. In the unlikely event they 

still cannot perform the exercise correctly, subjects will be asked to perform an 

additional familiarization session.  

  
                    Figure 6 & 7: Demonstration of Knee Extension Exercise 

Each of the final four visits will begin with subjects performing a five-minute 

warm-up on a stationary cycle ergometer (Ergotest; Stockholm, Sweden) against one 

kilopound of resistance as they pedal at a self-selected pace. For their final four visits 

subjects will perform four 30-second knee extension sets separated by 120-second rest 

periods on Impulse against different loads (0Kg, 3.41Kg, 5.68Kg, and 7.95Kg) added 

to its weight sled (1 Kg). They will perform exercise against only one load per set. All 

sessions will last about 15-20 minutes. The sequence of the four loads will be 

counterbalanced over the four workouts to utilize a Latin Squares design, which is 

often used in experiments as a balanced two-way classification scheme (22). Knee 

extension sets will be done exclusively with subjects’ left legs as they stand upright. 

Subjects will hold onto a pair of stationary bicycle handles for support/stabilization as 

they perform each set. They will be instructed to exert maximal effort and also receive 
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vocal encouragement during each set. Analysis of our data will compare exercise 

performance parameter results obtained with the four different loads (0Kg, 3.41Kg, 

5.68Kg, and 7.95Kg) to determine the optimal resistance for exercise done on Impulse. 

MEASUREMENTS  

During their first visit to the lab, we will measure subjects’ anthropometric 

data, which include body weight (Kg), height (cm), body composition (%), free fat 

mass (Kg), total left leg length (cm), upper left leg length (cm), and lower left leg 

length (cm). Body composition (%) and free fat mass (Kg) will be measured via 

bioelectrical impedance analysis (BIA; RJL System, MI). For the third through sixth 

lab visits, we will measure the average force (AF, in Newtons), peak force (PF, in 

Newtons), total work (TW, in Joules), Impulse value (Newtons/seconds), and the 

number of repetitions of knee extension of all four sets of each load (0Kg, 3.41Kg, 

5.68Kg, and 7.95Kg). The values of AF, PF, and TW for each load will be read 

directly by the software (DATAQ Instruments; Akron, OH). The number of 

repetitions of knee extension will be counted manually. To calculate the Impulse 

value, we will apply the following formula: 

Impulse value= ∆F/∆T 

The Impulse value will be calculated from the repetition that yields the highest PF per 

set. ∆F denotes the change in force for that repetition, while ∆T represents the length 

of time required to go from the lowest to highest force values for that repetition. 

DATA ANALYSIS  

We will employ a 2 (gender) x 4 (load) ANOVA to each of the dependent 

variables (AF, PF, TW, Impulse value, and the number of knee extension repetitions) 

pertinent to speed and power production. Prior to that analysis we will examine our 

data set for adherence to ANOVA assumptions (normality, independence, and 
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homogeneity of variance) and assess our data for outliers with Z-scores. We will also 

use the Tukey post-hoc test when significant inter-load differences are said to exist. In 

case our data collections yield different numbers of male and female participants, we 

will use the Tukey-Kramer test as a post-hoc when significant inter-gender 

differences are said to exist.  
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CHAPTER IV 

RESULTS 

Seventy-three subjects (41women and 32 men) signed our project’s IRB-

approved consent form and medical questionnaire to participate. Two male subjects 

dropped out due to injuries obtained during other sports activities and one male 

subject dropped out voluntarily for personal reasons. Seventy subjects (41 women and 

29 men) finished our research project and were included in the data analysis. All 

subjects were college students or athletes in good physical condition. Table 1 shows 

the anthropometric information (mean + sem) for both female and male subjects. 

Subjects were moderately fit (body fat percentages: 29.6 + 1.1 for women and 17.1 + 

1.2 for men; body mass: 69.1 + 2.1Kg for women and 82.7 + 3.0Kg for men). All 

assumptions (normality, independence, and equal variances) for 2 (gender)* 4 (load) 

ANOVAs with repeated measures for load were met and Z-scores identified no 

outliers. 

Table 1. Anthropometric Measurements of Female and Male Subjects 
 Height 

(cm) 
Total LL 

(cm) 
ULL 
(cm) 

LLL 
(cm) 

Weight 
(Kg) 

BF 
(%) 

FFM 
(Kg) 

Female 
(41) 

164.5 + 
1.7 

87.1 + 
0.9 

44.4 + 
0.7 

39.0 + 
0.5 

69.1 + 
2.1 

29.6 + 
1.1 

47.8 + 
1.1 

Male (29) 178.7 + 
1.2 

90.0 + 
0.8 

45.0 + 
0.7 

42.2 + 
0.6 

82.7 + 
3.0 

17.1 + 
1.2 

67.7 + 
1.6 

  

Table 2. Average Force of Female and Male Subjects 
 0Kg (N) 3.41Kg (N) 5.68Kg (N) 7.95Kg (N) 

Female (41) 36.5 + 1.4 66.9 + 2.6 80.3 + 3.3 89.7 + 3.4 
Male (29) 42.3 + 2.0 76.5 + 3.7 91.3 + 4.1 103.7 + 4.8 

N, Newton. 
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We collected and analyzed average force (AF, in Newton’s), peak force (PF, 

in Newton’s), total work (TW, in Joules), Impulse value (in Newton/Second, N/s), 

and the number of knee extension repetitions for both female and male subjects 

(Table 2-6). The mean AF values (Table 2) of female subjects for different loads (0Kg, 

3.41Kg, 5.68Kg, and 7.95Kg) were 36.5N, 66.9N, 80.3N, and 89.7N while the mean 

AF values for male subjects were 42.3N, 76.5N, 91.3N, and 103.7N. The two-way 

interaction of gender and loads showed male subjects had higher average force than 

female subjects for each load (P=0.022). Post-hoc analysis, Tukey-Kramer approach, 

showed inter-gender differences at each load with male subjects’ values for each load 

significantly higher than those for female subjects.  

Table 3. Peak Force of Female and Male Subjects 
 0Kg (N) 3.41Kg (N) 5.68Kg (N) 7.95Kg (N) 

Female (41) 375.2 + 19.0 659.8 + 33.6 763.2 + 38.4 814.8 + 40.2 
Male (29) 481.1 + 28.6 855.9 + 54.2 1006.1 + 58.7 1062.4 + 60.4 

N, Newton. 

Table 3 shows the PF (peak force) data of our female and male subjects. There 

was a two-way interaction for PF (P<0.0001) of gender that higher load had higher PF. 

The post-hoc analysis, Tukey-Kramer approach, showed men had significantly higher 

PF values for each of the four loads examined.  

Table 4. Total Work for 30-second session of Female and Male Subjects 
 0Kg (J) 3.41Kg (J) 5.68Kg (J) 7.95Kg (J) 

Female (41) 34906.1 + 3411.1 62830.5 + 5705.9 74869.2 + 6281.9 83369.5 + 6626.8 
Male (29) 36168.8 + 2879.9 63793.2 + 4031.0 75871.0 + 4710.4 87248.7 + 5506.9 

J, Joule. 

Table 4 shows our TW (total work) data participated by gender and load. Our 

TW ANOVA showed that there wasn’t a significant difference by gender (P=0.807). 

However, there was a significant difference between loads (P<0.0001), as higher 

loads, the higher the TW (7.95Kg > 5.68Kg > 3.41Kg > 0Kg). There was not a two-

way interaction for TW (p=0.753).  
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Table 5. Impulse Value of Female and Male Subjects 
 0Kg (N/s) 3.41Kg (N/s) 5.68Kg (N/s) 7.95Kg (N/s) 

Female (41) 8954.0 + 538.3 13554.7 + 787.2 15022.6 + 
851.1 

15522.4 + 837.3 

Male (29) 10965.8 + 
691.8 

17815.0 + 
1366.7 

19300.4 + 
1200.6 

19803.8 + 
1223.1 

N/s, Newton/second. 

Table 5 shows Impulse values displayed by gender and load. There was a two-

way interaction for this dependent variable (P=0.042). The post-hoc analysis, Tukey-

Kramer approach, showed that the higher the load, the higher the Impulse value, and 

that each load yielded significant inter-gender differences. 

Table 6. Number of Knee Extension Repetitions of Female and Male Subjects 
 0Kg 3.41Kg 5.68Kg 7.95Kg 

Female (41) 66.7 + 2.3 57.6 + 1.9 53.1 + 1.7 49.9 + 1.5 
Male (29) 71.0 + 2.3 60.3 + 1.8 55.9 + 1.6 52.4 + 1.5 

 

Table 6 shows the number of knee extension repetitions for both female and 

male subjects. The two-way ANOVA showed there wasn’t a significant difference 

between gender (P=0.243). However, there was a significant difference between loads 

(P<0.0001) whereby higher loads had fewer repetitions. The post-hoc analysis, Tukey 

test, for loads indicated that load 0Kg had higher number of repetitions than 3.41Kg, 

5.68Kg, and 7.95Kg. There was not an interaction for this dependent variable 

(P=0.389). 
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CHAPTER V 

DISCUSSION 

The purpose of this study was to determine the optimal resistance (load) for 

the knee extension exercise done on Impulse. The results of both male and female 

subjects showed peak force (PF), average force (AF), total work (TW), and Impulse 

value all increased with greater loads. The highest AF, PF, TW, and Impulse value 

were generated with the highest load, which was 7.95Kg. Our post-hoc analyses also 

showed the 7.95Kg load had higher values (AF, PF, TW, and Impulse value) than a 

load of 5.68Kg, which in turn produced higher than a load of 3.41Kg, which in turn 

was greater than 0Kg (7.95Kg>5.68Kg>3.41Kg>0Kg). In our study, 7.95Kg is the 

optimal load to maximize exercise performance, which rejected our hypothesis that 

0Kg was the optimal load that could generate the highest average and peak forces, and 

highest rate of acceleration. Our hypothesis was based partly on the view of Newton’s 

second law of motion that with higher force and lower mass, there will be a higher 

acceleration which would lead to higher AF, PF, TW, and Impulse value. This was 

also the viewpoint of the inventor of the Impulse who is a mechanical engineer. 

However, from an exercise physiology point of view, our body recruits more muscle 

fibers and generates a higher force when a higher load is applied leading to higher AF, 

PF, TW, and Impulse value. There were no plateaus for AF, PF, TW, and Impulse 

values, which means that higher loads than 7.95Kg may produce even higher AF, PF, 

TW, and Impulse values. For future studies, higher loads may be warranted for 

investigation. Loads higher than 7.95Kg may produce higher exercise performance 

with higher values of AF, PF, TW, and Impulse Value. They may also lead to a U-
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shape influence, with decreasing exercise performance secondary to increasing loads. 

Even though 7.95Kg may not be the “optimal load” if there are higher loads that can 

elicit better exercise performance, it is still a sufficient load to improve exercise 

performance. According to the study conducted by Caruso et al. (12), during which 

load 3.41Kg was the only load that used for every subjects for every exercise session, 

3.41Kg had a positive influence on BMD and BMC. The number of knee extension 

repetitions decreased significantly as the loads increased. At the 3.41Kg load, both 

female and male subjects completed about 2 reps per second, which is similar to the 

study that Caruso et al. (12) published. As subjects became accustomed to the 

Impulse, they may increase their repetition rate. What is interesting is there was no 

significant difference for TW between male and female subjects, even though men 

had significantly higher AF, PF, Impulse value, and number of repetition values than 

their female counterparts. Differences between genders may be a function of the 

number of subjects (29 men and 41 women) who participated in our project, as larger 

samples may allow smaller effect sizes to elicit statistical significance. This study is 

an extension of research by Caruso et al. (12) which examined the musculoskeletal 

outcomes from chronic high-speed, high Impulse resistance exercise. During the 

aforementioned research project, subjects (n=13) finished 30 training sessions each 

entailing three 60-second sets of the standing knee extension, standing hip extension, 

and seated calf press exercises with their left legs (12). For the standing knee 

extension exercise, both our research and the aforementioned research project 

examined the same movement, except that subjects in our project did 30-second sets. 

The results of the prior research project showed there were significant improvements 

to the calcaneal bone mineral content (+29%) and density (+33%), as well as a 

suppression of bone resorption (12). To study the influence of different loads and 
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determine the optimal load to maximize exercise performance done with Impulse, we 

conducted the current study. Our results showed higher loads produced generally 

better exercise performance measures. For the future research, the influence of each 

load (0Kg, 3.41Kg, 5.68Kg, and 7.95Kg) and other higher loads for bone mineral 

density (BMD) and bone mineral content (BMC) could be done to determine which 

load optimizes exercise performance that lead to increases in BMD and BMC at the 

same time. 

There are various studies done to determine optimal loads for different 

exercise modalities, including WAnT for bicycle ergometer, modified WAnT for 

rowing ergometer, and free weights. Determinations of an optimal load/resistance to 

elicit the highest possible power output is very important for an exercise device to be 

used to train athletes. For example, a Monark cycle ergometer is used for WAnT, in 

which subjects pedaled against a resistance equal to 0.075 kp. kg-1 body mass (23). 

Later, Evans and Quinney (24) studied male physical education students and varsity 

athletes using a modified Monark ergometer, which showed the optimal resistance to 

yield the highest mean power was 0.098 kp. kg-1 of body mass. Research conducted by 

Dotan and Bar-Or (25) sought to define the optimal loads for eliciting maximal 

power-outputs in the leg and arm modes of the 30s WAnT. They used a Fleisch cycle 

ergometer to test 18 female and 17 male physical education students and found an 

inverted-U relationship between load and mean power, meaning the optimal 

resistance provided the best force-velocity combination as they pedaled. The optimal 

loads to yield highest mean power were 52.3 and 51.4 g. kg-1 on the Fleisch ergometer, 

or 0.0872 and 0.0857 kp. kg-1 on the Monark ergometer for the leg and 28.8 and 36.9 

g. kg-1 on the Fleisch ergometer, or 0.0480 and 0.0615 kp. kg-1 on the Monark 

ergometer for the arm tests done by women and men, respectively (25). However, the 
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peak power increased as the resistance increased and did not appear to plateau, which 

suggested that peak power probably occurred at a higher load. Research done by 

Patton, Murphy, and Frederick (26) using 19 healthy military male subjects who were 

tested with a Monark cycle ergometer, showed the mean resistance settings that 

elicited the highest peak power and mean power outputs were 0.096 and 0.094 kp. kg-1 

of body weight. Research done by Heiser (27) showed similar results as those of 

Dotan and Bar-Or (25). Heiser studied 8endurance athletes, 4 power athletes, and 10 

untrained men on a Monark cycle ergometer, applying resistance settings ranging 

from 0.075 to 0.105 kp. kg-1. For all three groups, both mean and peak power rose 

with greater resistance. However, the rise in mean power from 1.1 to 1.3 Watt. kg-1 

was not significant. The significant rise in peak power with increasing resistance 

suggested the optimal force was greater than 0.105 kp. kg-1 (27). Three studies (25-27) 

showed, the optimal load for peak power was higher than that needed to maximize 

mean power. As Inbar et al. (28) concluded, the load needed to yield the highest mean 

power is 20% to 30% higher than originally suggested and seems to depend on the 

training level of the subjects, being highest among athletes, especially those who 

engaged in exercises that require high power. The general guidelines with the Monark 

ergometer recommend a force of 0.090 kp. kg-1 be used with adult non-athletes and 

0.100 kp. kg-1 with adult athletes (28). Research conducted by Pazin et al. (29) 

examined the influence of the effect of training history on optimum loading for 

maximizing muscle power output. Forty healthy young males with different levels of 

strength and power (strength- and speed-trained athletes, physically active, and 

sedentary non-athletes) were tested during a 6-second maximal cycling sprint test (29). 

Their results showed strength-trained and sedentary participants, respectively, had the 

highest and lowest forces and power outputs (p < 0.001) (29).  
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To determine the optimal loading for rowing ergometers, a modified WAnT 

protocol was used by Koutedakis et al. (30) to measure the performance in junior 

rowers. They applied 8% of subjects’ body mass which was suggested by their pilot 

study as the most appropriate resistance. Eight elite junior oarsmen and sixteen club 

level rowers were tested for upper body strength and for mean, peak and minimum 

power outputs. Results indicated that mean power and power difference expressed in 

absolute values (Watts) could classify junior oarsman into appropriate groups. 

Research done by Mandic et al. (31) also used a modified WAnT to determine the 

optimal resistance to elicit the highest peak 5s and 30s power output (PO) during a 

30s test on a rowing ergometer. During their research, a relative load factor (RLF) 

was used to determine the amount of resistance to be applied based on body mass 

(BM), and their subjects were grouped by light-weight (LW) and heavy-weight (HW). 

Their results showed the highest peak 5s PO were elicited by 0.109 and 0.102 kg . kg-1 

BM for LW and HW male rowers and 0.111 and 0.076 kg . kg-1 BM for LW and HW 

female rowers, respectively. While the RLF settings to optimize the highest mean 30s 

PO were 0.102 and 0.095 kg . kg-1 BM for LW and HW male rowers and 0.103 and 

0.068 kg . kg-1 BM for LW and HW female rowers, respectively. A similar study 

conducted by Forbes et al. (32) determined the optimal load for arm crank anaerobic 

testing in men and women. They also examined the highest peak 5s and mean 30s PO 

by gender and training backgrounds (athletic and recreationally active men; athletic 

and recreationally active women). Their results showed 0.075 and 0.070 kg . kg-1 BM 

were the optimal loads to elicit the highest peak 5s PO in trained and active men and 

0.065 and 0.060 kg . kg-1 BM for trained and active women. Lower RLF of 0.060, 

0.065, and 0.070 kg . kg-1 BM elicited higher mean 30s PO than higher RLF (0.080, 

0.085, and 0.090 kg . kg-1 BM) for trained males. A 0.080 kg . kg-1 BM RLF was 
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lower than other RLF for active men. Mean 30s PO was greatest at RLF of 0.050 kg . 

kg-1 BM for both trained and active females. Their results showed the optimal RLF 

was different for eliciting peak 5s and mean 30s PO during an arm crank WAnT and 

dependant on gender and training status. These rowing ergometer studies showed 

body mass (LW and HW), relative load factor (RLF), and training status had 

significant effects on power output.  

In addition to the studies discussed previously, there has been research done to 

determine the optimal load for resistance training with free weights. Three most 

common resistance training exercises with free weights include the jump squat (JS), 

squat (S), and power clean (PC). To determine the optimal load that maximizes power 

output in each lift, the percentage of subjects’ one repetition maximum (1RM) was 

used. Results showed the load that maximized power output in JS ranged from 0% to 

60% of 1RM (33-34), 50-70% of 1RM for the S (35), and 70-80% of 1RM for the PC 

(36). Cormie et al. (37) studied twelve male athletes who participated in four testing 

sessions of 1RM, JS, S, and PC tests. Their results indicated the optimal load for 

power output for JS, S, and PC occurred at various percentages of 1RM: the optimal 

load for JS was 0% of 1RM and 80% of 1RM for PC; Peak power in the S was 

maximized at 56% of 1RM. Li (38) specified the optimal load for peak power 

production during JS should be lighter (< 30% of 1RM), moderate for S (from 30% to 

70% of 1RM), and heavier for PC (> 70% of 1RM).  

Differences among studies that may help explain discrepancies in optimal 

loads for WAnT, rowing ergometer, the resistance training with free weights (JS, S, 

and PC) and our own study include 1): body mass and relative load factor (RLF) were 

used in WAnT and rowing ergometer, and the percentage of 1RM was used for free 

weights, while we applied the same loads for all subjects, and 2): training status was 
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considered in WAnT and rowing ergometer, whereas our study did not. As Pazin et al. 

(28) pointed out, selecting the optimal load based on total body mass is reasonable for 

practical purposes. However, fat-free mass or muscle mass may be better alternatives. 

For future studies done with Impulse, body mass and RLF should also be studied. On 

the other hand, training status should be considered as well. In our research, we had 

subjects with various training backgrounds. Some subjects who were athletic and 

recreationally active could generate higher AF, PF, TW, and Impulse value than 

relative sedentary subjects. Also, for subjects who were trained as athletes, their 

sports may influence their learning and it took less time to master the current study 

exercise. To determine how training background influences the exercise performance 

done with Impulse, more future studies need to be conducted. 

Impulse is a potential device to be used for recreational training, athletic 

training, and lower gravity environments. 7.95Kg was the optimal load to elicit the 

best exercise performances for our research. Further studies needed to define the 

effect of different loads on bone mineral density (BMD) and bone mineral content 

(BMC) for Impulse to be used in the lower-gravity environment to maintain bone 

health. The relative load factor and training backgrounds should be determined as for 

Impulse to be used by different people.
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