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ABSTRACT  

 

 

Molecular dynamics have been used to predict thermodynamic and transport properties of 

eight room-temperature ionic liquids. Simulation parameters including box size and van 

der Waals cutoffs were varied. The density, heat capacity, and self-diffusion coefficients 

of the ionic liquids were computed and compared to experimental data and to previously 

published simulations. Predicted properties were generally close to their experimentally 

observed values. It was determined that the prediction of ionic liquid properties via 

molecular dynamics simulations could be accelerated several-fold by using less stringent 

integration parameters and smaller simulation sizes. The properties of density and heat 

capacity did not change significantly even with the least computationally expensive 

parameters tested, whereas diffusion coefficients were impacted by smaller box sizes. 

These results indicate that several important properties of ionic liquids can be predicted 

much more quickly than previously thought, thus improving large-scale computational 

screening of ionic liquids and other novel solvents. 
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I. INTRODUCTION AND BACKGROUND 

Ionic liquid (ILs) solvents consisting of organic salts in which the ions within are 

poorly coordinated result in a low melting point. Therefore, ILs are defined to be any salt 

that is a liquid below 100oC. Alternatively, a smaller class of ILs remain liquid at room 

temperature (room temperature ionic liquids, RTIL’s).  At minimum one ion within the salt  

has a delocalized charge, usually an organic moiety, preventing stable crystal lattice 
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formation1. ILs contain free ions which make them electrically conducting, meaning they 

dissolve specific substances with readily available solvents, and they tend to be chemically 

stable with a low vapor pressure resulting in an increased delocalized efficiency rate 2. 

Each of these properties make ILs attractive for various industrially relevant processes. 

The first synthesized Protic ionic liquid (PIL), as shown in figure 1, was ethanol 

ammonium nitrate with a melting point of around 50oC, created by S. Gabriel and J.Weiner 

in the 1880s3. Thirty years later Paul Walden, also well known for Walden inversion within 

organic chemistry4, substituted the hydroxyl group with a methyl group, within ethanol 

ammonium nitrate, resulting in a decreasing overall attraction leading to lowering the 

melting point4. In the 1970s and 1980s, pyridinium cations with halogen anions were 

synthesized and used as electrolytes in batteries; however they were found to decompose 

in an aqueous acidic or alkaline environment. Thus, these ILs were not suitable for long-

term use. In the 1990s more stable ionic liquids were synthesized by Wilkes and Zawarotko 

including the phosphorus hexafluoride anion and the boron tetrafluoride anion5. While 

these ions were highly stable, they were found to be toxic. 

 Ionic liquids can be used as solvents in non-aqueous reactions. For example, in the 

Friedel-Crafts reaction they are used as a catalyst to synthesize branched alkanes by 

dimerization of shorter alkenes6. The first large scale application was in the BASIL process 

developed by BASF in which the ionic liquid was used to remove acidic residue allowing 

acid free recovery of the product7. Ionic liquids can be used in dissolving cellulose and 

lipids with a goal of producing biofuels. There has also been considerable interest in the 

use of ILs for the capture and processing of carbon dioxide.  
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There are thousands of possible binary IL combinations and millions of tertiary or 

quaternary combinations. The properties of ILs tend not to follow easy mixing rules, thus 

they are difficult to accurately predict with simple quantitative structure activity 

relationships (QSAR) methods. Such a large library of solvents cannot be synthesized and 

tested in a lab setting without great cost in time, effort, and money. An alternative to 

laboratory testing is computational screening, which can be scaled very easily to hundreds 

or thousands of computers. Macroscopic properties of a single IL solvent can be predicted 

from its molecular descriptions in a matter of several hours on a single desktop computer. 

By comparison, it could take a synthetic chemist days to synthesize and test a single IL.  

Molecular dynamics (MD) is a method used to simulate the dynamics of molecular 

systems over time through the integration of Newton’s equations of motion. Over the last 

several decades, MD has progressed from a method used to demonstrate statistical 

mechanical theory to a widely applied chemical research tool8. Computer simulations 

bridge microscopic length and time scales with macroscopic laboratory experiments. 

Properties of solvents (e.g. density, heat capacity, and viscosity) predicted with MD can be 

tested against experimental values that appear in publications or literature. Accurate MD 

simulations require a good description of molecular interactions, which are compiled for 

groups of related molecules in a set known as a force field. For ILs, the General Amber 

Force Field (GAFF) has been shown to accurately reproduce the properties of many ILs — 

within a few percent of error for some properties. Recently, MD simulations have been 

used more frequently to eliminate difficult or nearly impossible laboratory experiments. 

For example, extreme temperatures and pressures are not suitable for most laboratory 
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experiments due to insufficient safety protocols; however, the simulations do not 

experience the same degree of limitation through the computationally-generated process.   

Molecular dynamics can be implemented in a multitude of software packages. The 

GROningen Machine for Chemical simulations (GROMACS) is one of the most 

commonly used MD engines  in academia, because it is among the fastest and most reliable 

packages, typically running 3-10 times faster than many competitors. GROMACS is free 

to download, use, edit, and distribute, making it attractive for academic researchers. 

GROMACS allows the simulation of Newtonian equations of motion for systems with 

hundreds to millions of dynamic particles with many modern algorithms and techniques 

supported. The package was designed to probe biochemical molecules including proteins, 

lipids, and nucleic acids. Through practice and implementation, GROMACS has been 

found to be extremely proficient in the calculation of nonbonded interactions (electrostatics 

and van der Waals), rapidly leading to its adoption for applications in non-biological 

systems (e.g. ionic liquids).   

GROMACS is accessed through a command-line interface, within the software, 

used for file input and output. Providing calculation progress and estimated time of 

completion feedback is one of the key reasons GROMACS is being used for the present IL 

study. In addition to the MD engine that integrates equations of motion, GROMACS also 

contains an extensive library for trajectory analysis, which allows for fast and accurate 

calculation of solvent properties. GROMACS has hundreds of consistency checks 

programmed into its packages, disallowing settings that would produce inaccurate or 

unviable data. After creating the input files (IL solvents) the simulation runs over several 

hours to produce a trajectory file. The trajectory file contains snapshots of the molecular 
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coordinates of the system, thus detailing the movements of the atoms over time. In addition 

to the molecular positions, the simulation reports statistics about properties such as 

pressure, temperature, enthalpy, and density, which are important for later analysis. Output 

data files can be examined through GROMACS’ built-in packages or through visualization 

with a program such as VMD.   

A variety of cation and anion force fields have been designed to model properties 

of specific ILs. To increase efficiency in prediction of thermophysical properties of 

different ILs, molecular simulations--in particular MD simulations--can be utilized. The 

reliability of these predictions is dependent on the validity of the force field used to describe 

the intra- and intermolecular (bonded and non-bonded) interactions of the solvent 

molecules [6]. Bonded and non-bonded potentials will be described in detail later in this 

section. To reproduce experimental data for both biological and synthetic organic 

molecules, certain force fields have been optimized based on investigations from research 

and publications. Among these force fields are OPLS, CHARMM, UFF, AMBER and its 

companion the general AMBER force field2 (GAFF). ILs usually consist of chemical 

elements and bond types similar to those used to parameterize these force fields. The work 

presented here uses GAFF in whole for bonded and van der Waals potentials with 

electrostatic potentials derived from in-house calculations. A comprehensive evaluation of 

GAFF was previously performed to determine how well this standard force fields behaves 

for a new class of solvents with no parameter optimization beyond that of the electrostatic 

parameterization. This previous study indicated that GAFF is an appropriate model for ILs. 

The current study is aimed at increasing the efficiency of similar calculations without 

affecting the accuracy of IL property prediction. Increases in efficiency were achieved 



13 
 

through using less stringent integration parameters and by reducing the size of the 

simulated system, as presented in full detail herein. 

 

 

 

 

 

 

 

 

 

 

 

 

II. METHODS AND THEORY 

Under ideal conditions (298.15 K and 1 bar), molecular dynamics simulations were 

conducted applying a combination of eight unique  of ionic liquids including, anions of 

acetate [Ac], formate [HCO2], and bis[(trifluoromethyl)sulfonyl] imide [Tf2N] along with 

cations of   alkylammonium [RAM], 1-alkyl-3-methylimidazolium [RMIM] and 

pyridinium [Pyr]. Calculations of IL density, heat capacity, and self-diffusivity have been 
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computed for the ILs and compared to experimental data and previously published 

simulations. The IL cations and anions are represented within Figure 1.  

 

Figure 1: Ions used in this study. 

R= ethyl (Et or E), butyl (B), pentyl (P), hexyl (H), and octyl (O). 

 

 

 

 

I. Force Field Functional Form 

 

The potential energy of the molecules in the system can be described by a force 

field which inputs the intramolecular bond lengths, bond angles, torsional angles, and 

intermolecular distances for non-bonded van der Waals and electrostatic interactions. The 

force field is a collection of equations and associated constants designed to reproduce 

molecular geometry and selected properties of tested structures9-10. The molecular 

interactions can be broken up into two sets, bonded and nonbonded. Bonded parameters 
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consist of bonds, angles, and dihedrals2. Bond angles and improper terms have similar 

quadratic forms, but with softer spring constants, allowing for easier stretching process . 

The force constants can be obtained from vibrational analysis of the molecule 

(experimentally or theoretically)9-10. The Lennard-Jones form is used to calculate the 12-6 

(i.e. van der Waals) interactions and a columbic point-charge potential is used for 

electrostatic interactions11. Combining the bonded and non-bonded energies results in the 

overall potential energy of the system. For the ILs tested here, all necessary parameters for 

calculation of the bonded and Lennard- Jones terms are within GAFF, leaving electrostatic 

point charges to be identified. Strong electrostatic interactions, due to the presence of ionic 

species, lead to many of the important thermophysical properties of ILs. Therefore, to 

calculate IL properties accurately, electrostatic interactions must be accurately represented 

by the force field models. 

GAFF is the force field utilized within the simulations for the 8 ILs studied here. 

The force field is detailed in equation 1. GAFF is based on AMBER, which is a set of 

molecular mechanical force fields used for simulations of biomolecules such as proteins 

and nucleic acids. Though very popular, AMBER initially lacked the parameters necessary 

to preform studies on many organic molecules. GAFF was developed to improve AMBER 

by expanding its applicability. GAFF was designed to describe organic molecules such as 

those within ILs, along with others such as drug molecules and protein ligands.  

𝑣𝑡0𝑡 = ∑ 𝑘𝑟(𝑟 − 𝑟𝑒𝑞)
2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃(𝜃 − 𝜃𝑒𝑞)
2

+

𝑎𝑛𝑔𝑙𝑒𝑠

 

∑
𝑣𝑢

2
[1 + cos(𝑛𝜙 − 𝜆)] +

𝑑𝑖h𝑒𝑑𝑟𝑎𝑙𝑠
∑ [

𝐴𝑖𝑗

𝑅𝑖𝑗12 −
𝐵𝑖𝑗

𝑅𝑖𝑗6 +
𝑞𝑖𝑞𝑗

𝜀𝑅𝑖𝑗
]

𝑖<𝑗

[1] 
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Bond stretching and angle bending within GAFF are evaluated using a simple 

harmonic functional form while the dihedral term is evaluated using a cosine function in 

agreement with the AMBER functional form. For atoms in separate molecules or for atoms 

in the same molecule separated by a minimum of three bonds, electrostatic and van der 

Waals nonbonded interactions are calculated using Coulombic and 12-6 Lennard-Jones 

terms, considering all pairs of atoms (i and j) in the system.  A scalar factor of 5/6 is used 

to reduce non-bonded interactions of atoms separated by exactly three bonds.  Parameters 

included in the force field are (a) spring-like constants such as kr, kɵ, and Vn, (b) the 

equilibrium structural parameters such as  req and ɵeq, (c) the particle atomic charges qi and 

qj derived from electronic structure calculations, (d) the Lennard-Jones well depth, ε, and 

radii, Aij and Bij, and (e) and torsional parameters for phase and multiplicity, n and λ.  

 

II. Difficulties with Electronic Structure 

 

The molecular transport properties of ILs are not described well with force fields when full 

+e/-e charges are given to the cations and anions12. To determine the electronic point charge 

calculations are derived from quantum calculations within a vacuum as described below. 

The description of a cation or anion within a vacuum with a full charge does not accurately 

represent the electrostatic landscape of the liquid system. Within a liquid, the charge 

density of a molecule can be drastically affected by nearby molecules of the opposite 

charge due to molecular polarizability causing nearby molecules to screen charge. As a 

result, it was suggested that classical force fields should assume that there is a fraction of 

+e/-e charges of the cation and anion13.  Scaling of the ionic charge to some fraction of +e/-

e is required to accurately calculate shear viscosity or self-diffusivity of an IL using the 
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MD. Crystal structures of solidified ILs can be used in ab initio MD to calculate the 

electronic structure at great cost. These more expensive calculations tend to be more 

accurate for liquid structures, because the liquid is more comparable to the solid than to the 

gas (in vacuo). Previous ab initio studies of solid crystals indicate that multiplying the 

charges by a factor of 0.7-0.914 can create force fields with appropriate electrostatic 

interactions that reproduce dynamic properties of ILs well. By using MD rather than ab 

initio methods, IL properties can be predicted on a large-scale through molecular 

simulation. However, some accuracy is sacrificed through a coarser description of 

interactions. For the simulations presented herein, a scaling factor of 0.8 was used in 

accordance with previous studies that tested GAFF with ILs. 

III. Quantum Mechanical Calculations 

 

The electronic structure of each ion was calculated with quantum mechanical methods. An 

electronic structure program, Gaussian, was used to perform geometry optimization and 

energy calculations through Hartee-Fock (HF) level of theory implementing 6-31G(d)//6-

31G(d) basis set. The GAFF force field was utilized to determine all force constants and 

equilibrium, along with Lennard-Jones parameters2. Electrostatic point charges were 

assigned using antechamber15 by the RESP method and input files were created for each 

ion following. A scaling factor of 0.8 was multiplied by the atomic charges. The scaling 

method is universal in implication as Maginn and co-workers16 along with Sprenger and 

Jaeger2 utilized this within MD simulations.  
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IV. Preparation of MD Simulations 

 

To build structures and force fields in a GROMACS-compatible format, an in-

house script that combines the functionality of several other programs was used. First, 

GaussView, which contains a graphical user interface, was used to draw molecular 

structures. These structures were piped to a program called Gaussian which calculates the 

electronic structure of the individual molecules at the HF/6-31G(d) level of theory in a 

vacuum. This level of theory has been shown to accurately represent polarization of organic 

molecules, and it is the preferred level of theory for AMBER parameterization. The output 

of Gaussian can be interpreted by a program called antechamber which projects the 

electronic structure onto the atoms as point charges with the RESP method. Additionally, 

antechamber analyzes the molecular structure and assigns force field parameters from 

GAFF. Finally, a program called Acpype is used to generate MD input files in a 

GROMACS-compatible format, and charges were scaled by a factor of 0.8. Simulation 

boxes containing hundreds of pairs of anions and cations were packed using the Packmol 

program. Table 1 details the order of steps taken to prepare and run the simulations. A full 

5 nm box of water and the ionic liquids are demonstrated in figure 2.  
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Table 1: Procedure for performing and analyzing a molecular simulation of an IL using 

GROMACS in this study.  

Prepare the system Create molecular structure (GaussView) 

Calculate electronic structure (Gaussian) 

Calculate point charges (Antechamber) 

Generate force fields (Acpype) 

Scale charges (awk) 

Pack a box of molecules (Packmol) 

Simulation Energy minimization (GROMACS - mdrun) 

High temperature MD (GROMACS - mdrun) 

Production STP MD (GROMACS - mdrun) 

Outputs Molecular trajectory (.trr and.xtc files) 

Energy (energy.xvg) 

Log file (md.log) 

Analysis Density (GROMACS – energy) 

Heat capacity (GROMACS – energy) 

Diffusion coefficient (GROMACS – msd) 

Speed of calculation (md.log file) 
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IL force fields can thus be constructed rapidly and with ease. With this method, 

screening for the optimal ILs for certain applications can be accomplished with greater 

efficiency. These simulations can also lead to the discovery of new ILs by testing 

hypothetical IL combinations that are difficult to synthesize in the lab. Moreover, properly 

parameterized simulations can explore complex interactions between solutes and ILs. 

Despite a potential, modest loss of accuracy, the MD approach is the optimal choice 

moving forward due to its low difficulty of implementation using widely available and free 

programs.  

Figure 2: GROMACS MD run of an ion in a 5 nm box of water. 
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V. MD Simulations 

 

Starting structures were constructed in cubic boxes containing 200-1000 ion pairs. 

The size of the box was varied across the simulations. Side lengths on the cubic boxes were 

varied in this study. Side lengths of 3, 5, and 10 nm was used. Using GROMACS 5.0.3 IL 

boxes were simulated with periodic boundary conditions. Long-range electrostatic 

interactions were calculated through the implication of particle-mesh Ewald (PME) 

summation. Short-range electrostatics were calculated explicitly. Van der Waals 

interactions were shifted to zero at a given cutoff distance. This distance was varied across 

the simulations. Cutoff lengths of 0.8, 1.0, 1.2, and 1.4 were used. The distances bonds 

between hydrogen and heavy atoms were constrained at their equilibrium values.  

Energy minimization was carried out for 1000 steps using the steepest descent 

method. Each of the eight ILs was simulated in the NVT ensemble (nonstant number of 

atoms, volume, and temperature) for 10ns at 500K to achieve thorough mixing of the ions. 

This eliminated any artifacts in the initial configurations, creating coordinates independent 

of the Packmol input. Following the NVT simulations, snapshots were taken at 6, 8, and 

10 ns to become inputs for further production simulations. Structures then underwent 10 

ns of production simulation in the NPT (constant number of molecules, pressure, and 

temperature) ensemble. The first 6 ns of these simulations was ignored to allow for pressure 

equilibration before analysis was undertaken. NPT simulation were at room conditions 

(298.15 K and 1 bar), using the Berendsen barostat2.  

After the simulations completed, the GROMACS energy file was analyzed for box sizes 

(3, 5, and 10 nm) and cutoffs of (0.8, 1.0, 1.2, and 1.4 nm). Density, enthalpy fluctuations, 

and the number of molecules have recorded. A total of 21 simulations were completed for 
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this study.  The reported density and heat capacity values represent the values averaged 

across three different simulations replicas.  

Density 

 

The density of each IL was computed using the mass of the box divided by the equilibrium 

volume of the simulation cell and are presented in Table 2 and 3, graphically shown in 

figure 3. Multiple simulations were run, to increase confidence in the results, from which 

an average of the data points was taken. 

Heat Capacity 

 

Constant pressure heat capacities for the ILs, were calculated using the classical 

definition represented in the equation below, using the RMSD of enthalpy as the numerator. 

𝐶𝑝 = (
⟨(𝜕𝐻)2⟩

𝑛𝑘𝛽𝑇2 )
𝑃

= (
<𝐻2>−<𝐻>2

𝑛𝑘𝛽𝑇2 )
𝑃

   [2] 

H is enthalpy, temperature is T, kB is Boltzmann’s constant, and n is the total number of 

molecules. All values were extracted from GROMACS simulations. An average was taken 

across the replicas for each IL. Calculated values and corresponding experimental values 

for five of the eight ILs are reported in Tables 4 and 5 and graphically represented in 

Figure 4. Standard deviation of the three values is presented as the error. 

 

Self-Diffusivity 

 

Force fields lag in determining transport properties with accuracy, unlike predicting 

thermodynamic properties, where simulations mimic experiments quite well. Thus, in 

evaluating the accuracy of a force field, it is essential to calculate some dynamic property, 
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such as self-diffusivity to complement calculations of static and equilibrium properties. 

The self-diffusivity of the cations and anions is calculated via the mean square 

displacement, or MSD, of the ion centers. The Einstein relation, shown in the equation 

below, describes diffusivity, D, as a function of MSD. The angle-bracketed term is the 

MSD with respect to the molecular coordinates (r) over time (t), and the factor of 1/6 arises 

for a three-dimensional system. 

𝐷 =
1

6
lim
𝑡→∞

𝑑

𝑑𝑡
< ∑ [𝑟(𝑡) − 𝑟(𝑜)𝑁

𝑖=1 ]2 >    [4] 
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III. RESULTS AND DISSCUSION 

Density: A comparison of results for IL density and heat capacity of boHt box size and 

cutoff parameters is shown through parity plots in Figure 3. Error with respect to 

experimental values tends to be low, with most simulated densities falling within a few 

percent of their experimental values no matter which tested parameters are used. 
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 Figure 3: Experimental vs. simulated IL properties: (A) density with box size (g/cm 3); 

(B) density with cutoff.   
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Table 2: Simulation IL density (g/cm3) compared to experimental values from literature. 

An average density is determined for each box size parameter. Percent error determined 

through individual comparison17-29. 

Box Size (nm) 
 

3 
 

5 
 

10 
  

IL Exp Sim E (%) Sim E (%) Sim E (%) 

[BMI][Ac] 1.053 1.030 2.158 1.010 4.084 1.029 2.240 

[EAM][HCO2] 1.039 1.100 5.852 1.085 4.427 1.099 5.758 

[PAM][HCO2] 0.950 1.051 10.651 0.962 1.263 1.041 9.588 

[BMI][Tf2N] 1.436 1.457 1.461 1.416 1.393 1.453 1.209 

[EMI][Tf2N] 1.519 1.539 1.311 1.501 1.185 1.537 1.170 

[HMI][Tf2N] 1.367 1.390 1.646 1.351 1.170 1.389 1.611 

[OMI][Tf2N] 1.292 1.340 3.730 1.298 0.464 1.337 3.476 

[PYR][Tf2N] 1.421 1.443 1.538 1.373 3.378 1.440 1.339 

 

Table 3: Simulation IL density (g/cm3) comparison to experimental values from 

publications and literature. An average density is determined for each cutoff parameter. 

Percent error determined through individual comparison17-29.  

Cutoff (nm)    0.8   1   1.2   1.4   

IL Exp Sim  

E 

(%) Sim  

E 

(%) Sim  

E 

(%) Sim 

E 

(%) 

[BMI][Ac] 1.053 1.028 2.37 1.029 2.27 1.030 2.19 1.030 2.19 

[EAM][HCO2] 1.039 1.099 5.74 1.099 5.78 1.100 5.84 1.099 5.80 

[PAM][HCO2] 0.950 1.049 10.4 1.050 10.5 1.050 10.5 1.051 10.5 

[BMI][Tf2N] 1.436 1.453 1.15 1.455 1.29 1.454 1.27 1.454 1.22 

[EMI][Tf2N] 1.519 1.535 1.02 1.536 1.14 1.537 1.20 1.537 1.18 

[HMI][Tf2N] 1.367 1.387 1.49 1.391 1.73 1.390 1.69 1.390 1.65 

[OMI][Tf2N] 1.292 1.336 3.39 1.338 3.52 1.338 3.54 1.338 3.55 

[PYR][Tf2N] 1.421 1.439 1.29 1.441 1.44 1.441 1.39 1.440 1.33 
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Figure 3 above shows a plot of overall trends in the data across the full range of simulated 

parameters of box size and cutoff lengths. Error bars within the plots represent the standard 

deviation of three simulated replicas. Due to the high reproducibility of the simulations, 

among different replicas, error bars in figure 3 are too small to be seen behind the point 

marker. The simulation method estimates the densities of most of the 8 ILs within a few 

percent with respect to the experimental values. The largest deviation from experimental 

values occurs for [PAM][HCO2] (10.5%), followed closely by [EAM][HCO2] (5.7%) 

within both the cutoff and box sizing differences. Dnensity tends to be overestimated by 

these simulations, which is generally the case across simulation methods and force fields 

reported in literature. 

Heat Capacity: Unlike density, the simulations tend to underestimate heat capacities of 

majority of the ILs. The quantity calculated in this work represents only the excess, or 

residual (res), portion of the heat capacity, which accounts for the intermolecular 

interactions in the condensed phase16. Conversely, the other portion of the heat capacity 

is an ideal gas contribution that takes into account intramolecular interactions16. The two 

contributions to the heat capacity are typically calculated as shown in the equation below. 

< 𝐻 > = < 𝐻𝑖𝑔 > +< 𝐻𝑟𝑒𝑠 >= < ɸ𝑖𝑛𝑡 + 𝐾 + 𝑁𝑘𝛽𝑇 >  +< ɸ𝑛𝑏 + 𝑃𝑉 + 𝑁𝑘𝛽𝑇 > [3] 

Typically, ideal gas (ig) portions of heat capacities can be found through experiments, but 

as this type of experimental data is currently not available for ILs, the values are calculated 

in literature from a frequency analysis of optimized cation and anion structures from ab 

initio MD simulations2, 30. Since the simulations presented here appear to give fair 

agreement with experimental heat capacities across a broad range of ILs, the residual heat 

capacity is the dominating term, and no ideal gas component of the heat capacity is 
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considered. The data demonstrate that regardless of the parameter changes within the 

simulation, heat capacity is fairly well estimated as the resulting error was multiplied by 

1000. This was done to show there was a level of error presented with each individual IL.   
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Table 4: Simulation IL heat capacity comparison to experimental values from publications 

and literature. An average heat capacity is determined for each box size parameter27, 30-37. 

Percent error determined through individual comparison. 

Box Size (nm)   3   5   10   

IL Exp Sim  E (%) Sim  E (%) Sim  E (%) 

[BMI][Ac] 383 313 18.3 391 2.0 315 17.8 

[EAM][HCO2] N/A 164 N/A 185 N/A 163 N/A 

[PAM][HCO2] N/A 191 N/A 289 N/A 345 N/A 

[BMI][Tf2N] 566 391 30.9 532 6.0 417 26.2 

[EMI][Tf2N] 509 349 31.4 456 10.4 345 32.1 

[HMI][Tf2N] 628 454 27.6 591 5.8 469 25.2 

[OMI][Tf2N] 672 510 24.0 663 1.3 523 22.2 

[PYR][Tf2N] N/A 385 N/A 561 N/A 393 N/A 

 

Table 5: Simulation IL heat capacity comparison to experimental values from publications 

and literature. An average heat capacity is determined for each box size parameter27, 30-37. 

Percent error determined through individual comparison. 

Cutoff (nm)   0.8   1   1.2   1.4   

IL Exp Sim  E (%) Sim  E (%) Sim  E (%) Sim  E (%) 

[BMI][Ac] 383 228 40.4 321 16.2 312 18.5 324 15.5 

[EAM][HCO2] N/A 166 N/A 166 N/A 166 N/A 165 N/A 

[PAM][HCO2] N/A 192 N/A 195 N/A 128 N/A 196 N/A 

[BMI][Tf2N] 566 407 28.0 397 29.8 400 29.2 394 30.4 

[EMI][Tf2N] 509 353 30.7 351 31.0 346 32.0 347 31.8 

[HMI][Tf2N] 628 451 28.1 463 26.3 481 23.3 479 23.6 

[OMI][Tf2N] 672 508 24.3 505 24.7 511 23.9 519 22.6 

[PYR][Tf2N] N/A 400 N/A 389 N/A 382 N/A 381 N/A 
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The heat capacity estimations in this study are less accurate than previous studies upon 

which the methods were based. Some small differences in the simulations might account 

for this. For example, in previous work, hydrogen bonds were not constrained, allowing 

Figure 4: Experimental vs simulated IL heat capacities (J/mol-K). (A) heat capacity for 

values of box size; (B) heat capacity for values of cutoff. 



31 
 

for their vibrations to contribute to enthalpy fluctuations. Additionally, a different 

integrator was introduced in GROMACS 5, which might affect the reported enthalpy. 

Finally, the Berendsen barostat was used in this work, which differs from the more rigorous 

Parrinello-Rahman barostat used in previous work. The new parameters were selected 

because they make the simulations more stable and robust. Without constraint of bonds, 

and with the Parrinello-Rahman barostat, simulations are much more likely to fail with 

errors. A quick calculation was performed to determine whether these parameters affect 

the calculated heat capacity, and it was determined that the Berendsen barostat and the 

constraint of bonds each reduces the enthalpy fluctuations by several percent. These tests 

were not performed across all ILs and all sets of data, but adherence to older standards 

might yield more accurate results at the expense of some simulation stability. 

Self-Diffusivity: With limited experimental data, the self-diffusivity of only the five 

[RMIM][Tf2N] ILs was analyzed. Computed and experimental self-diffusivities for the 

cation and anion of each of the ILs are reported in Table 6. Fitting for calculation of the 

self-diffusion coefficients was done over the range 6–10 ns. Figures 6A and 6B present the 

data graphically; error bars represent the standard deviation of triplicate simulation data. 

Of all eight ILs only four of had experimental data to be compared with the simulations.  
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Table 6: Simulation IL self-diffusivity (10-11 m2/sec) comparison to experimental values 

from publications and literature. An average self-diffusivity is determined for each box 

size parameter cation and anion. Percent error determined through individual comparison. 

Box Size 

(nm) 
    3 

IL 
cation 

exp 

anion 

exp 

cation 

sim  

Error 

(%) 

anion 

sim  

Error 

(%) 

[BMI][Tf2N] 2.76 2.2 4.63 67.9 3.81 73.1 

[EMI][Tf2N] 4.98 3.1 7.31 46.8 5.12 65.2 

[HMI][Tf2N] 1.69 1.54 3.12 84.5 2.79 81.3 

[OMI][Tf2N] 1.17 1.17 3.72 218.3 2.88 145.8 

[PYR][Tf2N] N/A N/A 6.54 N/A 4.30 N/A 
       

Box Size 

(nm) 
    5 

IL 
cation 

exp 

anion 

exp 

cation 

sim  

Error 

(%) 

anion 

sim  

Error 

(%) 

[BMI][Tf2N] 2.76 2.2 1.13 59.0 0.83 62.2 

[EMI][Tf2N] 4.98 3.1 2.29 54.0 1.11 64.1 

[HMI][Tf2N] 1.69 1.54 0.87 48.5 0.61 60.3 

[OMI][Tf2N] 1.17 1.17 0.41 64.9 0.31 73.5 

[PYR][Tf2N] N/A N/A N/A N/A N/A N/A 
 

Box Size 

(nm) 
    10 

IL 
cation 

exp 

anion 

exp 

cation 

sim  

Error 

(%) 

anion 

sim  

Error 

(%) 

[BMI][Tf2N] 2.76 2.2 5.83 111.2 4.55 106.8 

[EMI][Tf2N] 4.98 3.1 9.12 83.0 6.60 112.7 

[HMI][Tf2N] 1.69 1.54 3.90 130.8 3.38 119.3 

[OMI][Tf2N] 1.17 1.17 3.09 163.6 2.84 142.5 

[PYR][Tf2N] N/A N/A 7.51 N/A 5.53 N/A 
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Table 7:Simulation IL self-diffusivity (10-11 m2/sec) comparison to experimental values 

from publications and literature. An average self-diffusivity is determined for each cutoff 

parameter cation and anion. Percent error determined through individual comparison. 

Cutoff (nm)     0.8 

IL cation exp anion exp cation sim  Error (%) anion sim  Error (%) 

[BMI][Tf2N] 2.76 2.2 5.31 92.283 4.50 104.500 

[EMI][Tf2N] 4.98 3.1 9.41 88.882 9.41 203.430 

[HMI][Tf2N

] 
1.69 1.54 4.12 143.945 4.12 167.706 

[OMI][Tf2N

] 
1.17 1.17 0.38 67.652 3.78 223.476 

       

Cutoff (nm)     1       

IL cation exp anion exp cation sim  Error (%) anion sim  Error (%) 

[BMI][Tf2N] 2.76 2.2 5.10 84.626 4.19 90.424 

[EMI][Tf2N] 4.98 3.1 9.37 88.246 6.56 111.688 

[HMI][Tf2N

] 
1.69 1.54 3.58 111.815 3.08 99.805 

[OMI][Tf2N

] 
1.17 1.17 3.14 168.034 2.69 129.772 

       

       

Cutoff (nm)     1.2       

IL cation exp anion exp cation sim  Error (%) anion sim  Error (%) 

[BMI][Tf2N] 2.76 2.2 5.74 107.935 4.49 104.030 

[EMI][Tf2N] 4.98 3.1 8.16 63.795 5.89 90.108 

[HMI][Tf2N

] 
1.69 1.54 3.44 103.294 3.24 110.325 

[OMI][Tf2N

] 
1.17 1.17 3.42 192.080 2.87 145.356 

       

       

Cutoff (nm)     1.4       

IL cation exp anion exp cation sim  Error (%) anion sim  Error (%) 

[BMI][Tf2N] 2.76 2.2 5.10 84.686 4.25 93.303 

[EMI][Tf2N] 4.98 3.1 8.03 61.158 5.44 75.548 

[HMI][Tf2N

] 
1.69 1.54 4.01 137.535 3.41 121.212 

[OMI][Tf2N

] 
1.17 1.17 2.79 138.689 2.58 120.855 
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The results show that these simulations can accurately determine the trend of decreasing 

cation/anion self-diffusivity as the cation chain is increasing in length. The trend of 

decreasing cation/anion self-diffusivity with increasing cation chain length has been 

observed in other publications. It has been seen that an increased steric hindrance is brought 

Figure 5: Experimental vs simulated IL self-diffusivities (A) box size (B) cutoff.  
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on by longer cation chain lengths. The simulations are also able to capture an interesting 

trend of the anion self-diffusivity16 where self-diffusivity of the [Tf2N] anion is highest 

when paired with the fastest cation, [EMIM], while it is the slowest cation, [OMIM], as 

seen in table 6 and 7. This suggests that cations and anions diffuse through the liquid in 

pairs or clusters, rather than on their own. For the four IL cation chain lengths tested, the 

self-diffusivity of the cation at temperature of standard conditions is always higher than 

that of the anion, though studies show this is not the case for all ILs. Standard deviations 

in cation/anion self-diffusivity from experiment range from 9 to 73%, shown in table 6 and 

7 and graphically in figure 5, meaning that the comparison between simulation and 

experiment is difficult. Still, because of the notorious difficulty of calculating diffusive 

properties in ILs, accuracy within a factor of 2-3 is quite good compared to other methods. 

 In the realm of IL theory, Maginn suggests computing the time-dependent quantity 

beta, or β(t), as a way to measure whether a system is in the diffusive regime2, 16. The 

equation to calculate β(t) is shown below. 

𝛽(𝑡) =  
𝑑𝑙𝑜𝑔(∆𝑟2)

𝑑𝑙𝑜𝑔(𝑡)
      [5] 

The variable t is the simulation time and Δr2 is the MSD of the ion centers of mass, as in 

equation 4. The system can be said to have reached diffusive behavior when β(t) has 

reached a value of 1; values below 1 indicate sub diffusive behavior. The simulations of 

[RMIM][Tf2N] (R = E, B, and H) all reached diffusive behavior after 5 ns. Simulations of 

[OMIM][Tf2N], however, never reached diffusive behavior over the 10 ns; Thus, for ILs 

with long-chained ions, such as [OMIM][Tf2N], the simulation can be extended farther 

then the initial set point to have better results through extended simulation time, or 
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increased simulation temperature, to have more confidence in the calculated ion self-

diffusivities. Of the four [RMIM] cations, the greatest percent error relative to experiment 

is seen for [OMIM].  
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IV. EFFICENCY ANALYSIS 

To determine the speed of the calculations, the md.log file was accessed. The 

simulation speed is measured in ns per day. Simulations in this study were run on the high- 

performance computing environment at the University of Louisville, which contains over 

500 compute nodes. The nodes used in this study contained a pair of Intel E5420 processors 

at 2.50 GHz. Because these chips are several years old, the computational power of this 

pair of chips is equivalent to a modern midrange desktop computer, similar to those used 

by faculty and staff.  

One of the ILs was selected at random for the efficiency analysis. Times of each 

simulation were extracted for box size and cutoff. The results demonstrate that the smaller 

the box is the faster the simulation will run. Similarly, a smaller cutoff corresponds to a 

higher speed. This makes sense, since the smaller box sizes require the integration of the 

equations of motion for fewer molecules, and smaller cutoffs mean fewer intermolecular 

interactions need to be calculated. Simulation throughput is presented in Table 8. The 

module was run and its output compared to the previously collected data. 
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Table 8: Simulation efficiency for [EAM][HCO2]. Parameters used in previous simulations 

are indicated in bold italics. 

[EAM][HCO2] 

Box Size 

(nm) 

Cutoff 

(ns) 

time 

(ns/day) 

  3 1.2 128.1 

 5 1.2 69.1 

  10 1.2 4.1 

    

[EAM][HCO2] 

Box Size 

(nm) 

Cutoff 

(ns) 

time 

(ns/day) 

  5 0.8 118.4 

  5 1 91.8 

  5 1.2 69.1 

  5 1.4 51.5 

 

To determine the increase in simulation efficiency the throughput was first compared for 

box size where there was an increase in efficiency of a factor of 1.9, meaning the 

simulations ran 1.9 faster with a box size of size-length 3 nm compared to 5 nm. Even with 

a smaller box size, the thermophysical properties predicted by these simulations do not 

change significantly. Therefore, it is suggested that a box size of 3 nm is sufficient to 

capture these properties. Changing the cutoff range from 1.2 nm to 0.8 nm yields an 

improvement factor of 1.7. Once again, there is no significant change in the calculated 

properties across the range of cutoff values. Therefore it is also suggested that the box 

cutoff be reduced to 0.8 nm. Taken together, these improvements mean that a simulation 
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can be run 3.2 times faster than previously reported studies without greatly sacrificing 

simulation accuracy.  



40 
 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSIONS 

The properties of density, heat capacity, and self-diffusivity of eight ionic liquids 

have been calculated using molecular dynamics with the general AMBER force field. 

Results have been compared to experimental values. Simulations predicted higher density 

and lower heat capacity than experimental work, with typical deviations of a few to several 

percent for density and 20-30 percent for heat capacity. There was however a greater error 

in the calculated IL transport properties of cation and anion self-diffusivity. Transport 

properties are notoriously difficult to calculate from simulations, and such a deviation is to 

be expected. Qualitative trends of decreasing self-diffusivity with a longer cation chain 

length were observed in agreement with experiment and previously published simulations. 

Taken altogether, with respect to previously published work, in this study thermodynamic 

and transport properties of ILs are predicted quite accurately even with changes to very 

important simulation parameters.  

This work demonstrates that the accuracy of simulated values does not drop with 

moderately less stringent simulation parameters (i.e. smaller box size and shorter non-

bonded cutoffs) than previously published work. Smaller box sizes and shorter cutoff 

lengths, if paired appropriately, can achieve an increase in simulation efficiency by a factor 

of approximately 3.2. This study demonstrates that several important properties of a given 
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IL species can be predicted easily on a standard desktop computer within a matter of hours, 

providing a pathway to speed the discovery of novel solvents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 
 

 

VI. REFERENCES 

1. Holbrey, J. D.; Reichert, W. M.; Rogers, R. D., Crystal structures of imidazolium 

bis(trifluoromethanesulfonyl)imide 'ionic liquid' salts: the first organic salt with a cis-

TFSI anion conformation. Dalton Transactions 2004,  (15), 2267-2271. 

2. Sprenger, K. G.; Jaeger, V. W.; Pfaendtner, J., The General AMBER Force Field 

(GAFF) Can Accurately Predict Thermodynamic and Transport Properties of Many Ionic 

Liquids. The Journal of Physical Chemistry B 2015, 119 (18), 5882-5895. 

3. Mattedi, S.; Carvalho, P. J.; Coutinho, J. A. P.; Alvarez, V. H.; Iglesias, M., High 

pressure CO2 solubility in N-methyl-2-hydroxyethylammonium protic ionic liquids. The 

Journal of Supercritical Fluids 2011, 56 (3), 224-230. 

4. Plechkova, N. V.; Seddon, K. R., Applications of ionic liquids in the chemical 

industry. Chemical Society Reviews 2008, 37 (1), 123-150. 

5. Wilkes, J. S., A short history of ionic liquids-from molten salts to neoteric 

solvents. Green Chemistry 2002, 4 (2), 73-80. 

6. Liu, Z. C.; Meng, X. H.; Zhang, R.; Xu, C. M., Friedel-Crafts Acylation of 

Aromatic Compounds in Ionic Liquids. Petroleum Science and Technology 2009, 27 (2), 

226-237. 

7. Ionic Liquids. In Kirk‐Othmer Encyclopedia of Chemical Technology. 

8. Páll, S.; Abraham, M. J.; Kutzner, C.; Hess, B.; Lindahl, E. In Tackling Exascale 

Software Challenges in Molecular Dynamics Simulations with GROMACS, Solving 

Software Challenges for Exascale, Cham, 2015//; Markidis, S.; Laure, E., Eds. Springer 

International Publishing: Cham, 2015; pp 3-27. 



43 
 

9. Friederich, P.; Konrad, M.; Strunk, T.; Wenzel, W., Machine learning of 

correlated dihedral potentials for atomistic molecular force fields. Scientific Reports 

2018, 8 (1), 2559. 

10. Li, Y.; Li, H.; Pickard, F. C.; Narayanan, B.; Sen, F. G.; Chan, M. K. Y.; 

Sankaranarayanan, S. K. R. S.; Brooks, B. R.; Roux, B., Machine Learning Force Field 

Parameters from Ab Initio Data. Journal of Chemical Theory and Computation 2017, 13 

(9), 4492-4503. 

11. González, M. A., Force fields and molecular dynamics simulations. JDN 2011, 

12, 169-200. 

12. Zhang, Y.; Maginn, E. J., A Simple AIMD Approach to Derive Atomic Charges 

for Condensed Phase Simulation of Ionic Liquids. The Journal of Physical Chemistry B 

2012, 116 (33), 10036-10048. 

13. Youngs, T. G.; Hardacre, C., Application of static charge transfer within an ionic-

liquid force field and its effect on structure and dynamics. Chemphyschem : a European 

journal of chemical physics and physical chemistry 2008, 9 (11), 1548-58. 

14. Yoo Willow, S.; A Salim, M.; Kim, K.; Hirata, S., Ab initio molecular dynamics 

of liquid water using embedded-fragment second-order many-body perturbation theory 

towards its accurate property prediction. 2015; Vol. 5, p 14358. 

15. Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A., Automatic atom type and bond 

type perception in molecular mechanical calculations. Journal of Molecular Graphics 

and Modelling 2006, 25 (2), 247-260. 

16. Maginn, E. J., Atomistic Simulation of the Thermodynamic and Transport 

Properties of Ionic Liquids. Accounts of Chemical Research 2007, 40 (11), 1200-1207. 



44 
 

17. Araújo, J. M. M.; Pereiro, A. B.; Alves, F.; Marrucho, I. M.; Rebelo, L. P. N., 

Nucleic acid bases in 1-alkyl-3-methylimidazolium acetate ionic liquids: A 

thermophysical and ionic conductivity analysis. The Journal of Chemical 

Thermodynamics 2013, 57, 1-8. 

18. Dzida, M.; Chorążewski, M.; Geppert-Rybczyńska, M.; Zorębski, E.; Zorębski, 

M.; Żarska, M.; Czech, B., Speed of Sound and Adiabatic Compressibility of 1-Ethyl-3-

methylimidazolium Bis(trifluoromethylsulfonyl)imide under Pressures up to 100 MPa. 

Journal of Chemical & Engineering Data 2013, 58 (6), 1571-1576. 

19. Fröba, A. P.; Rausch, M. H.; Krzeminski, K.; Assenbaum, D.; Wasserscheid, P.; 

Leipertz, A., Thermal Conductivity of Ionic Liquids: Measurement and Prediction. 

International Journal of Thermophysics 2010, 31 (11), 2059-2077. 

20. Greaves, T. L.; Weerawardena, A.; Fong, C.; Krodkiewska, I.; Drummond, C. J., 

Protic Ionic Liquids:  Solvents with Tunable Phase Behavior and Physicochemical 

Properties. The Journal of Physical Chemistry B 2006, 110 (45), 22479-22487. 

21. Harris, K. R.; Kanakubo, M.; Woolf, L. A., Temperature and Pressure 

Dependence of the Viscosity of the Ionic Liquids 1-Hexyl-3-methylimidazolium 

Hexafluorophosphate and 1-Butyl-3-methylimidazolium 

Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data 2007, 52 

(3), 1080-1085. 

22. Kato, R.; Gmehling, J., Systems with ionic liquids: Measurement of VLE and γ∞ 

data and prediction of their thermodynamic behavior using original UNIFAC, mod. 

UNIFAC(Do) and COSMO-RS(Ol). The Journal of Chemical Thermodynamics 2005, 37 

(6), 603-619. 



45 
 

23. Krummen, M.; Wasserscheid, P.; Gmehling, J., Measurement of Activity 

Coefficients at Infinite Dilution in Ionic Liquids Using the Dilutor Technique. Journal of 

Chemical & Engineering Data 2002, 47 (6), 1411-1417. 

24. Nieto de Castro, C.; Langa, E.; Morais, A.; Lopes, M.; Lourenco, M.; Santos, F.; 

Santos, M.; Canongia Lopes, J. N.; I. M. Veiga, H.; Macatrão, M.; Esperança, J.; 

Marques, C.; Rebelo, L.; A. M. Afonso, C., Studies on the density, heat capacity, surface 

tension and infinite dilution diffusion with the ionic liquids [C(4)mim][NTf(2)], 

[C(4)mim][dca], [C(2)mim][EtOSO(3)] and [Aliquat][dca]. 2010; Vol. 294, p 157-179. 

25. Seki, S.; Tsuzuki, S.; Hayamizu, K.; Umebayashi, Y.; Serizawa, N.; Takei, K.; 

Miyashiro, H., Comprehensive Refractive Index Property for Room-Temperature Ionic 

Liquids. Journal of Chemical & Engineering Data 2012, 57 (8), 2211-2216. 

26. Shiflett, M. B.; Harmer, M. A.; Junk, C. P.; Yokozeki, A., Solubility and 

Diffusivity of Difluoromethane in Room-Temperature Ionic Liquids. Journal of 

Chemical & Engineering Data 2006, 51 (2), 483-495. 

27. Troncoso, J.; Cerdeiriña, C. A.; Sanmamed, Y. A.; Romaní, L.; Rebelo, L. P. N., 

Thermodynamic Properties of Imidazolium-Based Ionic Liquids:  Densities, Heat 

Capacities, and Enthalpies of Fusion of [bmim][PF6] and [bmim][NTf2]. Journal of 

Chemical & Engineering Data 2006, 51 (5), 1856-1859. 

28. Vranes, M.; Dozic, S.; Djeric, V.; Gadzuric, S., Physicochemical Characterization 

of 1-Butyl-3-methylimidazolium and 1-Butyl-1-methylpyrrolidinium 

Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data 2012, 57 

(4), 1072-1077. 



46 
 

29. Widegren, J. A.; Magee, J. W., Density, Viscosity, Speed of Sound, and 

Electrolytic Conductivity for the Ionic Liquid 1-Hexyl-3-methylimidazolium 

Bis(trifluoromethylsulfonyl)imide and Its Mixtures with Water. Journal of Chemical & 

Engineering Data 2007, 52 (6), 2331-2338. 

30. Cadena, C.; Zhao, Q.; Snurr, R. Q.; Maginn, E. J., Molecular Modeling and 

Experimental Studies of the Thermodynamic and Transport Properties of Pyridinium-

Based Ionic Liquids. The Journal of Physical Chemistry B 2006, 110 (6), 2821-2832. 

31. Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.; Brennecke, J. 

F., Phase transition and decomposition temperatures, heat capacities and viscosities of 

pyridinium ionic liquids. The Journal of Chemical Thermodynamics 2005, 37 (6), 559-

568. 

32. García-Miaja, G.; Troncoso, J.; Romaní, L., Excess properties for binary systems 

ionic liquid+ethanol: Experimental results and theoretical description using the ERAS 

model. Fluid Phase Equilibria 2008, 274 (1), 59-67. 

33. Ge, R.; Hardacre, C.; Jacquemin, J.; Nancarrow, P.; Rooney, D. W., Heat 

Capacities of Ionic Liquids as a Function of Temperature at 0.1 MPa. Measurement and 

Prediction. Journal of Chemical & Engineering Data 2008, 53 (9), 2148-2153. 

34. Rocha, M. A. A.; Bastos, M.; Coutinho, J. A. P.; Santos, L. M. N. B. F., Heat 

capacities at 298.15K of the extended [CnC1im][Ntf2] ionic liquid series. The Journal of 

Chemical Thermodynamics 2012, 53, 140-143. 

35. Shimizu, Y.; Ohte, Y.; Yamamura, Y.; Saito, K.; Atake, T., Low-Temperature 

Heat Capacity of Room-Temperature Ionic Liquid, 1-Hexyl-3-methylimidazolium 



47 
 

Bis(trifluoromethylsulfonyl)imide. The Journal of Physical Chemistry B 2006, 110 (28), 

13970-13975. 

36. Strechan, A. A.; Paulechka, Y. U.; Blokhin, A. V.; Kabo, G. J., Low-temperature 

heat capacity of hydrophilic ionic liquids [BMIM][CF3COO] and [BMIM][CH3COO] 

and a correlation scheme for estimation of heat capacity of ionic liquids. The Journal of 

Chemical Thermodynamics 2008, 40 (4), 632-639. 

37. Yoshitaka, S.; Yoko, O.; Yasuhisa, Y.; Kazuya, S., Effects of Thermal History on 

Thermal Anomaly in Solid of Ionic Liquid Compound, [C4mim][Tf2N]. Chemistry 

Letters 2007, 36 (12), 1484-1485. 

APPENDIX 


	Enhancing performance of ionic liquid property prediction with molecular dynamics.
	Recommended Citation

	tmp.1524855275.pdf.JbQpk

