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Abstract 
A common issue when measuring velocity utilizing 4D flow magnetic resonance imaging (MRI) 

is aliasing that occurs because of a low velocity encoding parameter (𝑉𝑒𝑛𝑐).  Aliasing can be 

avoided if the velocity encoding parameter is set above the largest velocity quantity.  However, 

when this is done the velocity to noise ratio is lowered less detail is acquired in the image.  

Thusly, it is sometimes desirable to have a 𝑉𝑒𝑛𝑐 below the maximum velocity to acquire higher 

quality data.  

Consequently, an efficient and robust algorithm is needed to unwrap the aliased data.  This paper 

proposes an iterative graph cuts algorithm to perform the phase unwrapping on the 4D flow data.  

This graph cuts algorithm utilizes a global energy minimization framework and is largely based 

on the Phase Unwrapping Max-Flow Algorithm (PUMA) proposed in [1].  However, the 

algorithm presented in this paper is extended to account for the added dimensions of data.  

Previous methods that have been utilized for 4D phase unwrapping include the Laplacian method 

and the Spatial Gradients method presented in [2] and [3] respectively.  Of these, the Laplacian 

method has proven the most successful in phase unwrapping quality and time.  The proposed 

graph cuts method is shown to unwrap aliased 4D data more accurately than these existing 

techniques.  This includes unwrapping synthetic data with 𝑉𝑒𝑛𝑐 values down to 20% of the max 

velocity and SNRs down to 2.   

  



 

Introduction: 
Phase unwrapping is a mathematical problem that has been studied intensely for decades.  Its 

research implications impact various fields including optical interferometry, synthetic aperture 

radar interferometry (InSar), and magnetic resonance imaging (MRI).  In these applications, 

phase is a quantity that is constrained to a specific range.  Typically that range is [−𝜋, 𝜋).  When 

the phase extends outside of this range, the phase will wrap until it is back in the [−𝜋, 𝜋) range.  

Consequently, information is recorded incorrectly and must be reversed.  This is done by finding 

the integer value, n, that will return the wrapped phase (𝜑𝑤) to its true phase 𝜑.   

𝜑(𝑟) =  𝜑𝑤(𝑟) + 2𝜋𝑛(𝑟) (1) 

When the velocity encoding parameter (𝑉𝑒𝑛𝑐) is less than the peak fluid velocity measured phase 

wrapping will occur at all velocities past that velocity encoding parameter.  When this phase 

wrapping occurs, the aliased data does not accurately represent the true velocity of fluid being 

measured.  Ideally, a quick and effective phase unwrapping solution could immediately be 

applied to accurately and precisely unwrap the data. 

 

There is, indeed, a quick and simple solution to the phase unwrapping problem derived by Itoh in 

the [4].  In [4], an algorithm was derived that largely exploited the Itoh condition (see equation 2 

and 3) to unwrap data quickly. While this solution works well for data without noise, it quickly 

loses effectiveness when applied to more complex examples with noisy data and undersampling.  

Thusly, it is not a practical algorithm for the real world.  However, the Itoh condition is still a 

foundation for many of the existing phase unwrapping algorithms.  The Itoh condition states that 

if the phase gradient is less than π (equation 2), then the change in phase for the unwrapped 

image is equal to the change in phase for the wrapped image (equation 3). 

 

|∆𝜑| < 𝜋 (2) 

∆𝜑 = ∆𝜑𝑤 (3) 

 

The phase unwrapping problem has been a challenge for many decades and while the 4D phase 

unwrapping is a relatively new subset of the problem, many of the original techniques used for 



unwrapping of fewer dimensions still hold value. These techniques include: 𝐿𝑃-Norm 

minimization algorithms, path-following algorithms, region-growing algorithms, and Fourier 

transform method algorithms.  

 

The first of these is the 𝐿𝑃-Norm minimization algorithm. This technique is largely based on the 

assumption that unwrapped phase values will satisfy the Itoh condition (equation 2).  

Consequently, the phase gradient of the wrapped and unwrapped images should be equal 

(equation 3).  The 𝐿𝑃-Norm minimization methods essentially adopt a global optimization 

strategy that solves for the unwrapped phase [5].  While this technique works with various norm 

calculations, typically the 𝐿2-Norm is the norm of choice due to the computational efficiency 

(utilizes the Fast Fourier Transform) of the calculation and the accuracy of the result.  The 

primary disadvantage of this method is that occasionally true discontinuities within the phase 

image get smoothed over. For the least squares norm (𝐿2-Norm) the equation can be seen below 

(equation 4) for a 2D image.   

𝐸 = min (√∑ |
𝜕𝜑𝑤(𝑥, 𝑦)

𝜕𝑥
−

𝜕𝜑(𝑥, 𝑦)

𝜕𝑥
|2

𝑥,𝑦

+ ∑ |
𝜕𝜑𝑤(𝑥, 𝑦)

𝜕𝑦
−

𝜕𝜑(𝑥, 𝑦)

𝜕𝑦
|2

𝑥,𝑦

          (4) 

Here, gradients in the x and y direction are estimated using the wrapped phase differences.  We 

then want to minimize the difference error between the gradient of the wrapped and unwrapped 

phase estimates based on the data quality at each point.  Phase unwrapping here minimizes the 

squares of the differences between the gradients of the wrapped input phase and those of the 

unwrapped phase.  An essential concept in phase unwrapping is comparison to near neighbor 

voxels.  If the difference between two neighboring voxels is greater than π, then typically one 

can be suspicious that it might be wrapped based on the Itoh condition.  However, one cannot be 

sure because of noise, discontinuities, etc.  Thus, the 𝐿2-Norm is a way to analyze this voxel and 

see how quickly it changes [6]. 

 

The Path-Following Algorithm is another common technique utilized for phase-unwrapping.  

The Path-Following Algorithm, like the 𝐿𝑃-Norm minimization technique attempts to utilize the 

gradient of the phase map to unwrap the wrapped image.  The primary equation for the path-

following algorithm is 𝜑(𝑟) = ∫ 𝛻𝜑(𝑟) ∗ 𝑑𝑟 + 𝜑(𝑟0)
𝑐

 where C is the path in domain D 



connecting points 𝑟 and  𝑟0.  Path independence is broken when the line integral of the phase 

gradient around a closed loop (4 voxels) is not equal to zero (i.e. ∮ 𝛻∅(𝑟) ∗ 𝑑𝑟 ≠ 0
𝐶

).  The Path-

Following Algorithm (which is occasionally called the Branch Cut Method) relies on the residue 

detection.  For phase maps, there is a basic assumption that unwrapped phase has local phase 

gradients of less than π everywhere.  However, with noise, we occasionally get residues that 

make this unwrapping inconsistent.  Thusly, branches are placed to avoid unwrapping around 

these residues.  Once branches are placed based on residue points, the algorithm will prevent the 

integration path from crossing the branches [6]. 

 

Region-Growing Algorithms are another popular method for phase unwrapping of traditional 2D 

images.  With region-growing algorithms a seed point in the phase image is first chosen.  This 

seed point typically is a point of high-quality signal.  Once the seed point is chosen, phase 

unwrapping commences and nearest neighbors are unwrapped.  Thus, the region of unwrapped 

phase “grows” until the entire image is unwrapped.  Again, the phase gradient is important for 

determining whether the nearest neighbors are unwrapped or not.  A threshold value (α) is 

chosen and if ∆𝜑 > 𝛼 then 2π is added to the nearest neighbor.  This region-growing is done 

until the entire image has been unwrapped [6]. 

 

This paper will primarily focus on the phase unwrapping problem as it pertains to 4-dimensional 

flow MRI i.e. 4D Phase Contrast(PC) MRI.  This is the type of flow imaging seen in [7] and [8].  

In both [7] and [8], higher velocities happen at the stenosis of the phantom (where diameter 

shrinks).  Consequently, these stenosis areas are the most likely area in which aliasing will be 

found.   

The 4-dimensions account for data in the x, y, z dimensions along with the temporal dimension. 

PC-MRI uses bipolar gradient pulses to create a linear relationship between fluid velocity, v, and 

the phase shift, 𝜑, of the MRI.  This linear relationship is dependent on the velocity encoding 

parameter, 𝑉𝑒𝑛𝑐, and can be seen in the following equation. 

𝑣(𝜑) =  
𝜑 ∗ 𝑉𝑒𝑛𝑐

𝜋
(5) 



𝑉𝑒𝑛𝑐 relates to the velocity-to-noise ratio (VNR) via the equation 𝑉𝑁𝑅 =
|𝑣|∗𝜋

𝑉𝑒𝑛𝑐
 where v is the 

fluid velocity.  For 4D flow imaging, velocity is relational to signal strength as the intensity of 

the image should correspond linearly with velocity of the fluid (provided no aliasing occurs).  

Clearly, when analyzing the VNR equation, as the 𝑉𝑒𝑛𝑐 increases the SNR will decrease which is 

not ideal. This suggests that the 𝑉𝑒𝑛𝑐  should be kept just above the highest fluid velocity to be 

measured to maintain a serviceable SNR while also avoiding aliasing.  However, if the aliasing 

of an image can be unwrapped with accurate results, a better SNR can be achieved and as a 

result, better image quality [2]. 

  

To date, few traditional phase unwrapping techniques have been applied to perform 4D flow 

phase unwrapping when velocity aliasing is present. Previously proposed techniques include 

Laplacian methods [2]and spatial gradient [3] techniques.  This paper explores a 4-dimensional 

graph cuts unwrapping technique for unwrapping aliased velocities in 4D flow MRI. 

The spatial gradient technique mentioned above was one of the first attempts at unwrapping 4D 

data. It focused on iteratively calculating the probability of a voxel being wrapped [3].  The 

algorithm calculates the probability of a wrapped voxel based on weighing constants and the 

measured differences between the voxel of interest and its neighboring voxels. A threshold is 

then decided on to unwrap voxels above a certain probability level.    

 

The most recent technique that has demonstrated a capacity to unwrap 4D data is the Laplacian 

method by Loecher, etc. [2].  This technique manipulates the standard offset equation (see 

equation 1) for phase unwrapping and solves for the phase integer offset.  The Laplacian of the 

true phase is then solved for via the euler identity.  The result is seen in equation 6. 

∇2∅(𝑟) = 𝑐𝑜𝑠𝜑(𝑟)∇2𝑠𝑖𝑛𝜑(𝑟) − 𝑠𝑖𝑛𝜑(𝑟)∇2𝑐𝑜𝑠𝜑(𝑟) (6) 

The true phase is finally solved for algorithmically via a series of fast-fourier transforms (FFT) 

and inverse fast-fourier transforms (IFFT).  The goal of this study was to develop an algorithm 

that allowed for more accurate unwrapping of 4D PC-MRI data.   

 



Theory: 
The 4-dimensional graph cuts unwrapping algorithm is largely an extension of the algorithm 

developed in [1] and previously applied to MRI in [9].  This algorithm takes the graph cuts 

algorithm (called PUMA for Phase Unwrapping Max-Flow Algorithm) developed in [1] and 

extends it from 2-dimensions (x and y) to 4-dimensions (x, y, z, and time).  Graph cuts leverage 

the max-flow min-cut theorem and have been applied widely to image segmentation. At its core, 

this algorithm is largely a subset of the 𝐿𝑃-Norm minimization technique as the energy 

minimization is a generalization of the classical 𝐿𝑃-Norm [10]. 

 

Graph cuts are exceptionally popular in the realm of image segmentation, however, in recent 

papers they are gaining notoriety for their ability to unwrap wrapped phase in MR phase images.  

Generally, within graph cut theory, a graph is simply a set of vertices and edges that represent 

the image of interest.  A graph can be represented in the notation 𝐺 = 〈𝑉, 𝐸〉 where V is the set 

of vertices and E is the set of edges [11].  In this case, the graph is representative of the MR 

image being analyzed. Furthermore, within graph cut theory, there is a source node, S, and a sink 

node, T.  For our purposes, a cut separates the voxels into two disjoint subsets, S (set with the 

source node) and T (set with the sink node) [11].  One set represents voxels that will be further 

unwrapped while the other set represents voxels that will not be unwrapped further.  Whenever a 

cut is made, the cost of the that cut is determined by the summation of all the weighted edges that 

the cut slices.  The goal of the graph cuts algorithm is to find the cut that gives the minimum cost 

among all cuts. According to the Max-Flow Min-Cut Theorem, this minimum cut corresponds to 

the route that produces the maximum flow from the source node to the sink node.  Regarding 

edges, one can consider two different types (n-link edges and t-link edges) as defined in [11].  N-

links connect pairs of neighboring voxels while the T-links will connect a voxel to the source or 

sink.  N-link edge costs are typically derived from the discontinuity penalty between voxels 

while the T-link edge costs are derived from the data term in the energy.  See figure 1 for an 

illustration of cut from source to sink. 

 



To leverage the max-flow min-cut theorem for phase unwrapping, edges between all voxels must 

be mathematically given a weight.  Once these edge weights are determined, a minimum cut is 

made that also defines the maximum flow.  Thusly, the algorithm determines the cut that will 

lead to the minimum energy for the entire dataset.  The functions used to determine these 

weights are first-order Markov random fields (MRF). This minimum energy, once reached, 

corresponds to the generalized 𝐿𝑃-Norm [1].  Ideally, once the minimum energy is obtained the 

data will be unwrapped and the true velocity values will be revealed.    

 

The Phase Unwrapping Max-Flow Algorithm (PUMA) unwraps images via a sequence of binary 

optimizations.  Following each iteration, every voxel label is kept at its current value or 

increased by one. 

𝐾𝑖+1 = 𝐾𝑖 + 𝑛𝑖+1 (7) 

where K is the wrap count integer value, n is a binary variable (0 or 1), and i represents the 

iteration count [1].  The wrap count integer determines the final unwrapping product using the 

equation 𝜑(𝑟) =  𝜑𝑤(𝑟) + 2𝜋𝐾 where 𝜑 is the unwrapped phase at voxel, r, and 𝜑𝑤 is the 

wrapped phase at voxel, r.  For the 4D algorithm used in this paper the local energies are 

weighted for neighboring voxels in the spatial (x, y, z) and temporal dimensions.  Each binary 

optimization decreases the total energy of the system until the total energy of the system ceases 

to decrease with the optimization.   

 

This relationship between edge potential and energy function can be further understood by 

analyzing equations 8 and 9 (see below). 

𝐸𝑥𝑦(𝑛𝑥
𝑖+1, 𝑛𝑦

𝑖+1) = ( 𝜑𝑥 − 𝜑𝑦 + 2𝜋(𝐾𝑥
𝑖 − 𝐾𝑦

𝑖 ) + 2𝜋(𝑛𝑥
𝑖+1 − 𝑛𝑦

𝑖+1))
2

(8) 

In equation 8, the edge potential between voxels x and y (𝐸𝑥𝑦) depends on several factors.  

Generally, the edge potential will increase with larger differences between the wrapped phase of 

the neighboring voxels x and y.  The edge potential equation also uses previous iterations to 

further fine-tune its value.  If the neighboring integer offset values (K) have a difference between 



them, this will increase the edge potential while a difference in the binary variable, n, between 

neighboring voxels will also increase the edge potential.  The energy equation (equation 9) is 

merely a summation of all the edge potentials in an image.  More details about the specifics of 

the PUMA algorithm will be revealed in the next section 

𝐸(𝑛) =  ∑ 𝐸𝑥𝑦(

𝑥𝑦

𝑛𝑥
𝑖+1, 𝑛𝑦

𝑖+1)     (9) 

Phase Unwrapping Max-Flow Algorithm (PUMA): 
1. Load wrapped phase image 

2. Initialize iteration count (i), initialize energy list, initialize kappa (K) 

3. While Possible Improvement 

a. i++; 

b. Update energy list; 

c. Calculate Wrapped phase change for images and  change in neighboring kappa 

values 

d. Perform energy calcuations to obtain E(0,0), E(1,0), E(0,1), and E(1,1) 

e. Construct graph by Defining various edges 

f. Perform Max-Flow Min-Cut Calcuation using mex file  

g. Obtain new kappa_aux value 

h. If (new energy < previous energy) 

i. Previous energy = new energy 

ii. Kappa = kappa_aux 

i. Else 

i. Possible_improvement = 0 

ii. Unwph = 2*pi*kappa+psi 

j. End if 

4. End while 

 

The above pseudocode represents the PUMA algorithm utilized to unwrap the wrapped 4D-data.  

The PUMA algorithm was initially developed in [1] for 2D phase unwrapping and was extended 

to 4D for this paper.   

The first few steps simply include loading the phase image into the program and initializing 

important variables and constants such as the iteration counter, the energy list, and the kappa 

integer.  Next, a while loop is started in step 3.  This loop will continue as long as there is a 

possibility for the total system energy to decrease with another iteration of the binary 

optimization.  In step 3a and 3b, the energy list is updated with the newest energy calculation and 

the iteration counter is incremented by one.  Step 3c takes the original phase image and 



calculates the change in wrapped phase for neighboring voxels  and the change in kappa for 

neighboring voxels. This highlights one area in which the algorithm of this paper differs from 

that of the Bioucas-Dias paper [1].  While the original 2D PUMA algorithm was only concerned 

with neighboring voxels in the vertical and horizontal direction (x and y directions), the 4D 

PUMA algorithm will look at neighboring voxels in the x, y, z, and t dimensions.  The general 

equations used for step 3c can be seen below in equation 10 thru 17.  In equations 10-13, the 

change in the wrapped phase image is denoted by the difference of two neighboring phase 

images [1].  In the equations below h, v, d, and t are representative of horizontal, vertical, depth, 

and time respectively.   

∆𝜑𝑥𝑦𝑧𝑡
ℎ = 𝜑𝑥−1,𝑦𝑧𝑡 − 𝜑𝑥𝑦𝑧𝑡 (10) 

∆𝜑𝑥𝑦𝑧𝑡
𝑣 = 𝜑𝑥,𝑦−1,𝑧𝑡 − 𝜑𝑥𝑦𝑧𝑡 (11) 

∆𝜑𝑥𝑦𝑧𝑡
𝑑 = 𝜑𝑥𝑦,𝑧−1,𝑡 − 𝜑𝑥𝑦𝑧𝑡 (12) 

∆𝜑𝑥𝑦𝑧𝑡
𝑡 = 𝜑𝑥𝑦𝑧,𝑡−1 − 𝜑𝑥𝑦𝑧𝑡 (13) 

The above equations denote the change in wrapped phase that is essential for calculating the 

edge potentials of the phase image.  In equations 10-13 x, y, z, and t represent the directions that 

the phase image is shifted to perform the neighboring calculations. The same is true for the 

directions in equations 14-17 except, for that case, the difference in the kappa unwrapping 

integer is being calculated.  [1]. 

∆𝐾𝑥𝑦𝑧𝑡
ℎ = 𝐾𝑥−1,𝑦𝑧𝑡 − 𝐾𝑥𝑦𝑧𝑡 (14) 

∆𝐾𝑥𝑦𝑧𝑡
𝑣 = 𝐾𝑥,𝑦−1,𝑧𝑡 − 𝐾𝑥𝑦𝑧𝑡 (15) 

∆𝐾𝑥𝑦𝑧𝑡
𝑑 = 𝐾𝑥𝑦,𝑧−1,𝑡 − 𝐾𝑥𝑦𝑧𝑡 (16) 

∆𝐾𝑥𝑦𝑧𝑡
𝑡 = 𝐾𝑥𝑦𝑧,𝑡−1 − 𝐾𝑥𝑦𝑧𝑡 (17) 

Once the ∆𝜑 and ∆𝐾 values are determined, some mathematical manipulation can be done to 

map the binary optimizations to the max-flow min-cut algorithm.  To understand this, one must 

first obtain the change of corrected phase equation as seen in equation 18 [1]. 



∆𝜑 = [2𝜋(𝐾𝑖 − 𝐾𝑛𝑏ℎ𝑟
𝑖 ) − ∆𝜑] (18) 

When 𝐾𝑖+1 = 𝐾𝑖 + 𝑛𝑖+1(equation 7) is substituted into equation 18, the result is seen in 

equation 19. 

∆𝜑 = [2𝜋(𝐾𝑖 + 𝑛𝑖+1 − 𝐾𝑛𝑏ℎ𝑟
𝑖 − 𝑛𝑛𝑏ℎ𝑟

𝑖+1 ) − ∆𝜑] (19) 

This further simplifies to equation 20. 

∆𝜑 = [2𝜋(𝑛𝑖+1 − 𝑛𝑛𝑏ℎ𝑟
𝑖+1 ) + 2𝜋(𝐾𝑖 − 𝐾𝑛𝑏ℎ𝑟

𝑖 ) − ∆𝜑] (20) 

For simplicity the kappa and wrapped phase difference terms are combined into one term (𝑎 =

2𝜋(𝐾𝑖 − 𝐾𝑛𝑏ℎ𝑟
𝑖 ) − ∆𝜑 ) as seen in equation 21. 

∆𝜑 = [2𝜋(𝑛𝑖+1 − 𝑛𝑛𝑏ℎ𝑟
𝑖+1 ) + 𝑎] (21) 

Utilizing these equations previously developed in [1] one can use the variable, 𝑎, to calculate the 

energy for all the edges. These equations for the different edge energies can be seen below in 

equation 22-25. One should also note that as the number of dimensions being analyzed increases, 

the number of edges will increase as well.  For example, when PUMA was extended to 4D for 

this paper, it calculates the edges for 4 different directions whereas the original PUMA algorithm 

only calculated edges for the 2 primary directions of x and y.  Energy values can be calculated in 

step 3d of the algorithm using equations 22-25.   

𝐸𝑥𝑦(0,0) = 𝑉(𝑎)𝑑𝑖𝑗 (22) 

𝐸𝑥𝑦(1,1) = 𝑉(𝑎)𝑑𝑖𝑗 (23) 

𝐸𝑥𝑦(0,1) = 𝑉(−2𝜋 + 𝑎)𝑑𝑖𝑗 (24) 

𝐸𝑥𝑦(1,0) = 𝑉(2𝜋 + 𝑎)𝑑𝑖𝑗 (25) 

Once energy values are calculated, the various edges can be defined and thusly utilized to 

construct the graph. Here, the N-link and T-link edges are constructed.  The N-link, or directed 

edge, which exists between neighboring pairs of voxels is calculated to be 𝐸(0,1) + 𝐸(1,0) −

𝐸(0,0) − 𝐸(1,1).  The T-link edges which exists between a voxel and a terminal can be defined 



in a few different ways.  The edge between terminal and voxel can be defined as 𝐸(1,0) −

𝐸(0,0) or 𝐸(0,0) − 𝐸(1,0) depending on which gives a positive result.  𝐸(1,0) − 𝐸(0,0) 

represents an edge between the source and voxel while 𝐸(0,0) − 𝐸(1,0) represents an edge 

between the sink and voxel.   

 

Following the graph construction, step 3f follows though with the Max-Flow Min-Cut 

calculation.  This was completed in Matlab via a MEX file that allows the algorithm to take 

advantage of a C++ function for processing. This MEX file comes from the [1].  The MEX file 

outputs a binary image that determines whether each voxel needs to increase in phase value or 

not.  Thusly, this binary image is added to the kappa image to obtain an auxiliary kappa value 

that more accurately depicts the unwrapped image (step 3g). 

 

Step 3h calculates an updated system energy which is then compared with the system energy 

before the max-flow min-cut algorithm was run.  Because minimum energy is ideal for a system 

that most closely matches the true velocity values, the kappa is only updated if the new system 

energy is less than the old system energy.  If this is the case, the algorithm returns to step 3a 

where at least one more iteration of energy minimization will be performed. Otherwise, as seen 

in step 3i, the flag that indicates possible improvement within the system energy is tripped. If this 

is the case, that is the last iteration for the graph cuts energy minimization function.  The 

unwrapped image is then calculated using equation 1 and the final result can be displayed and 

saved.   

 

Experimental Results:   
Testing was done on synthetic and phantom data.  The 4D synthetic data is representative of 

pulsatile flow through cylindrical tubes – diameters:  10mm, 20mm, 30mm, and 40mm. The peak 

velocity was 100 cm/sec while the 𝑉𝑒𝑛𝑐was between 10 cm/sec and 100 cm/sec in increments of 

10 cm/sec to create varying degree of aliasing.  Complex Gaussian noise was added to the data to 

match the desired SNR level [1].   



Real data was also collected using a rigid phantom of the LV outflow tract including an aortic 

valve on a 1.5 T Phillips Scanner (see figure 2)  [8].  The phantom was then placed in a flow 

circuit through which a blood mimicking fluid (60% water, 40% glycerol) was pumped.  The 

pump generates an ECG signal that is connected to the MRI scanner’s ECG monitor.  The pump 

was then programmed to drive a pulsatile waveform through the flow circuit.  This simulates the 

physiologic flow that can be scanned with 4D imaging.   The phantom was then scanned with a 

flip angle of 8 degrees, TR of 8.5 ms, TE of 4.1 ms, simulated heart rate of 72 beats/min, and 

FOV of 100x100x60 mm.  A SENSE Knee coil was used to collect 4D flow images in the 

phantom. Real pulsatile flow velocity through the phantom was obtained with 𝑉𝑒𝑛𝑐 of 40, 80, 

125, and 250 cm/sec. This was done to create various levels of aliasing when the 𝑉𝑒𝑛𝑐 was lower 

than the maximum velocity in the flow.  20 slices were collected through a phantom with a 1” 

diameter with in-plane resolution 1.5 mm x 1.5 mm and slice thickness = 3 mm.  16 temporal 

phases were collected.  The peak systolic flow rate was set at 200 ml/sec while the peak velocity 

was observed at approximately 155 cm/sec.  The representative excitation waveform and the 

measured waveform can be seen in figure 3 [8].  Wrapping was observed in all the scans in the 

systolic phase with the exception of the 250 cm/sec 𝑉𝑒𝑛𝑐 setting.  The 250 cm/sec 𝑉𝑒𝑛𝑐 data was 

used as the true reference velocity data.  The relative root mean squared error (RRMSE) between 

the reference data and the unwrapped data was used as an error metric.  A personal computer 

with an Intel i7 processor and 8 GB RAM was used to perform all the experiments.   

Results on Synthetic Data: 

Ultimately, the graph cuts unwrapping technique proved completely successful (meaning all 

aliased voxels were accurately unwrapped) for 𝑉𝑒𝑛𝑐′𝑠 down to 20% of the max velocity and 

SNRs down to 2 (see figure 4). In comparison, the 4D Laplacian method was only completely 

effective for 𝑉𝑒𝑛𝑐
′ 𝑠 down to 40% and SNRs down to 3. An example of the wrapped and 

unwrapped synthetic data can be seen in figure 5. 

[INSERT FIGURE 4] 

[INSERT FIGURE 5] 



Results on Real Data: 

Figure 6 shows aliased systolic and diastolic images from an in-vitro flow phantom experiment, 

displaying images at the level of a synthetic aortic valve and corresponding unwrapped data. 

Table 1 summarizes results from the in-vitro phantom study.  

[INSERT TABLE 1] 

[INSERT FIGURE 6] 

Discussion: 
In this paper, an extended version of the PUMA algorithm is applied to 4-dimensional data in 

order to undo the effects of phase wrapping caused by low 𝑉𝑒𝑛𝑐.  The algorithm accomplishes 

phase unwrapping via graph cuts which aim to globally optimize the energy of the system.   

 

The graph cuts algorithm has proven a reliable method for unwrapping smaller datasets of PC-

MRI data.  When compared with the standard 4D PC-MRI Laplacian unwrapping algorithm 

utilizing the RRMSE metric, the graph cuts algorithm proved marginally more accurate. As seen 

in the case of synthetic data, especially in cases with low SNR, the performance was superior. 

The method however is computationally more expensive than the Laplacian method.     

 

In order to limit the degrees of freedom, each binary iteration must have a positive step size. This 

results in an overall image shift of 2kπ in the final phase map. This shift can be undone by 

choosing a seed point that will not be unwrapped, comparing it with the final value of that seed 

point after unwrapping, and then subtracting the differences in the images [9]. 

 

Regarding algorithm complexity, the Laplacian algorithm in [2] proves superior.  Because the 

Laplacian algorithm manipulates the Laplacian equations with FFTs to unwrap the data, the 

complexity of the algorithm is reducible to 4 FFTs [12].  The complexity of the algorithm is 

𝑂(𝑛 log(𝑛)) where n represents the number of voxels in the 4D image.  Utilizing the extended 

PUMA algorithm leads to a complexity of 𝑂(𝐾𝑇) where K is the number of max-flow min-cut 

iterations and T is the complexity of one binary optimization [1].  Because the number of max-

flow min-cut iterations is variable depending on the number of wraps that must be unwrapped, 



the run-time will be variable.  Moreover, because the complexity of one binary optimization is 

heavily dependent on the number of voxels being analyzed (which is significant in 4D images), 

the run-time is even more variable.  As shown in [1], the worst complexity of the PUMA 

algorithm comes out to 𝑂(𝑛2.5) where n is the number of voxels in the 4D image. 

 

Overall, the 4D phase unwrapping problem proves challenging in several areas.  The two 

primary parameters that need to be balanced are algorithm speed and algorithm unwrapping 

accuracy.  For the graph cuts method presented in this paper, the algorithm proves accurate 

relative to all other methods (specifically the Laplacian method) utilized for 4D phase 

unwrapping.  However, improvement is needed in regards to speed for the graph cuts algorithm 

to become a more feasible algorithm for real-time phase unwrapping as data is collected.   

  



Figures: 

 

Figure 1 – Visual showing the source (s), sink (t), and voxels (p and q).   (a) represents an 

example graph.  (b) represents the same example graph with a cut taken through it. Line 

thickness between voxels is representative of the edge costs.   Came from [11].   
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Figure 2 - (a) Schematic of the aortic valve flow circuit used in MRI experiments. (b) 

Calcified aortic valves used with varying degrees of stenosis (95%, 75%, 0%, and 50% 

respectively).  (c) Aortic Arch Phantom Setup.  The arrow points to the valve block. Taken 

from [13]. 



 

 

Figure 3 – Top:  Normalized representative excitation waveform prescribed at the pump 

for pulsatile phantom experiments. The peak flow rate was adjustable and was set to 200 

ml/s.  Bottom:  The measured resultant waveform acquired via 4D MRI scan with 

VENC=250 cm/s while the VMAX was measured at 158 cm/s. [8] 



 

Figure 4 – Graphic of unwrapped voxel percentages for various SNR and VENCs.  SNRs 

range from 1 to 10 while VENCs range from 0 to 100% of the top velocity.  The color of 

each pixel corresponds to the percentage of voxels that have not been unwrapped 

successfully.  When the color is black, it means all the voxels have been successfully 

unwrapped.  The top image represents the success of the Laplacian algorithm while the 

bottom image represents the success of the graph cuts algorithm. 



 

Figure 5 – Synthetic Images with SNR of 8 and VENC of 0.4.  Images are size 44x44x40x24.  

The cross-section looks at slice 7 in both the time dimension and the z dimension.   Top 

Left:  True reference image.  Top right:  Wrapped Image with noise added.  Bottom Left:  

Unwrapped with Laplacian Algorithm.  Bottom Right:  Unwrapped with PUMA Graph 

Cuts Algorithm 

 



 

Figure 6 – 4D flow through aortic valve phantom. Peak flow rate = 200 ml/sec, Venc = 40 

cm/sec.  Top row: diastolic flow, Bottom row: systolic flow. Aliased z-component of the 

velocity data (left) and unwrapped data (right) after application of the Graph Cuts 

Unwrapping Algorithm. 

 

  



Tables: 

𝑉𝑒𝑛𝑐 (cm/sec) 4D GC RRMSE Laplacian RRMSE Wrapped Data RRMSE 

40 79.01 81.32 103.19 

80 72.00 74.03 89.26 

125 61.25 61.88 94.05 

Table 1 – RRMSE Results for Phantom Data at different VENCs when compared with the 

ground truth data collected with VENC 250 cm/s.  Wrapped Data RRMSE is the RRMSE 

for the wrapped data before any unwrapping algorithm is applied.   
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