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1. Introduction 

 According to the U.S. Department of Energy, from 2008 to 2018, the amount of solar 

energy sources connected to the American Bulk Power System (BPS) increased by a factor of 

twenty, driven by increasing efficiencies of individual photovoltaic cells and reduced material 

costs [1]. However, challenges to solar energy increasing its prevalence in the American 

generation portfolio are still being addressed; primary among these is the need for further 

increased efficiencies to be competitive with fossil fuel generation on a cost-per-kilowatt-hour 

basis. At the time of writing, the U.S. Department of Energy estimates the cost of solar energy at 

the utility scale to be approximately $0.12/kWh, with the goal to be competitive with more 

traditional power generation set at $0.06/kWh [2]. As of 2018, EnergySage reports that the most 

efficient commercially-available solar cells are rated at an efficiency of 22.5%, with most cells 

rated between 14% and 16% [3].  

 Based upon first quarter 2017 statistics published by the National Renewable Energy 

Laboratory, the average cost of a PV module to the consumer is $0.65/W for an industrial 

installation and $0.73/W for domestic installations [21]. The cost breakdown is shown in Figure 

1 below. 
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Figure 1 - NREL Cost Breakdown for a standard PV module [21] 

 

 Based upon these cost estimates and an assumed average nominal solar cell efficiency of 

16.2%, it is possible to establish a cost versus efficiency relationship that illustrates how vital 

cell efficiency is from an economic perspective. Figure 2 depicts the relationship between 

increasing cell efficiency and decreasing cost on a per-Watt basis. As illustrated in Figure 2, 

nominal efficiencies in excess of 20% represent a significant financial improvement over modern 

standard efficiencies. One widely accepted solar cell design architecture that can be used to 

achieve these high cell efficiencies is the tandem cell design. 
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Figure 2 - Relationship between cost per watt of a PV module and increasing nominal efficiencies [21] 

 

 The tandem solar cell design scheme has been 

recognized for years as a method of utilizing 

semiconductor materials of varying bandgap energies to 

absorb a larger wavelength spectrum of available solar 

radiation than a single semiconductor material is 

capable of. Figure 3 explains some of the operational 

principles of tandem solar cells, the most fundamental 

being that the top absorber layer consists of a larger 

bandgap semiconductor material that absorbs high 

frequency solar radiation and a smaller bandgap semiconductor material in the bottom layer that 

absorbs low frequency solar radiation. By utilizing the differing materials, a larger portion of the 

Figure 3 - Generic depiction of a Tandem Solar 
Cell, depicting the interactions between 

different solar radiation frequencies and the 
absorber layers [4]. 
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available solar radiation can be absorbed and less waste heat will be produced by unabsorbed 

radiation, resulting in a significantly higher overall conversion efficiency. Tandem solar cells can 

be constructed as 2-terminal devices, as shown in Figure 1, or with each cell electrically 

separated and with its own set of terminals. This paper will present a novel design for a tandem 

solar cell that utilizes a cadmium telluride (CdTe) absorber in the top cell and a more traditional 

silicon cell as the substrate and a four-terminal tandem cell architecture, where each absorber 

layer is mechanically stacked but electrically separated with its own anode and cathode to allow 

for separate optimization that doesn’t require identical current through the cells. This design 

achieves conversion efficiencies exceeding 27% in TCAD simulation. 

2. Background 

 The first multi-junction solar cell 

was developed in 1979, utilizing an AlGaAs 

junction and a GaAs junction, 

interconnected with an epitaxially grown 

tunnel junction [5]. Subsequent designs 

utilizing the same conceptual template were 

developed throughout the 1990’s and the 

2000’s, utilized mostly for space applications because of the incredibly high cost of production 

of the semiconductor materials used in the cells. The research focus on multijunction cells that 

used lower cost materials, primarily silicon, came about in the 1980’s and early 1990’s. The first 

notable example of a silicon heterojunction solar cell, utilizing amorphous (a-Si) and 

polycrystalline silicon (p-Si), was developed by a team at Osaka University in 1981. Their cell 

was developed by increasing the carbon content of amorphous silicon during the plasma-

Figure 4 - Schematic of a Commercially Available 
Multicrystalline Silicon Solar Cell of the early 2010's [7]. 
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deposition process, increasing the bandgap energy of the silicon above that of polycrystalline 

silicon [6]. When stacked to form a p-n junction, the a-Si/p-Si structure demonstrated a 

conversion efficiency of 7.1%, which was a major improvement over previous efforts of the 

1970’s. By 2004, advancements in fabrication techniques had driven the maximum demonstrated 

efficiency of silicon heterojunction solar cells to 20.4% [7]. 

 Much research has also been done in the field of tandem solar cells utilizing different 

semiconductor materials, matched according to their bandgap energies. The earliest tandem solar 

cell designs were published in the mid 1970’s, many of them utilizing AlGaAs absorbers, which 

are expensive to produce [8]. Early tandem solar cells were demonstrated with efficiencies as 

high as 30%, but utilizing materials far too costly to be economical at industrial scale. In the last 

ten years, research has shifted to focus on producing solar cell designs with demonstrably higher 

efficiencies than single junction cells that utilize progressively thinner and less expensive 

absorber layers to improve the economy at commercial scale. There has also been a noted shift to 

utilizing silicon as a substrate material instead of the more costly and less mechanically robust 

germanium and gallium-arsenide (GaAs) substrates of laboratory tandem solar cells to allow 

them to be more cost-competitive with single-junction silicon cells [9]. 

 It is in this context that the proposed design for a Cadmium Telluride (CdTe)/Silicon (Si) 

tandem solar cell is introduced. The first published instance of a CdTe/Si tandem cell was 

reported in the IEEE Journal of Photovoltaics, Volume 7 in November 2017 [10]. In their study, 

the authors identified two conditions necessary for a tandem solar cell to be economically 

competitive with single-junction silicon cells: 
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1) The tandem cell must have an efficiency exceeding 25% to offset the increased material 

costs. 

2) The two sub-cells should be roughly equal in cost, performance and reliability to justify 

the use of the tandem structure over separate cells. 

Their tandem cell design produced a range of efficiencies from 25.8% to 27.7%, depending 

primarily upon the minority carrier lifetime assumed in the CdTe absorber. The cell utilized a 

four-wire architecture, where each sub-cell had an independent anode and cathode. All 

simulations were carried out in Sentaurus Device software package, assuming the illumination of 

a standard AM1.5G spectrum and an ambient temperature of 300K (27
℃

).  

3. Methods and Design 

 The first decision made in the design was choosing the compound semiconductor 

material from the III/V group or 

the II/VI group that would be 

well-matched to the silicon 

bandgap of 1.08 eV for light 

absorption purposes. Silicon was 

specified as the substrate material 

because it is cost-effective and 

can be manufactured with 

incredibly low defect densities, 

reducing carrier recombination 

rate. Silicon is also an indirect bandgap semiconductor, which contributes to longer charge 

Figure 5 - Binary Semiconductor Materials Arranged by Bandgap Energy (eV) and 
Lattice constant (nm) [11] 
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carrier lifetimes and lower recombination rates [12]. Figure 5 shows a variety of III/V binary 

semiconductors and II/VI compound semiconductors and their bandgap energies and lattice 

constants. In heterojunction designs, it is necessary to match lattice constants closely to reduce 

mechanical strain at the interfaces between differing materials and reduce interface 

recombination effects [12]. However, in this design, the silicon sub-cell and the binary 

semiconductor sub-cell are mechanically separated by a transparent conducting oxide (TCO). 

This allows the binary semiconductor to be chosen on the basis of bandgap energy and 

optoelectronic properties. CdTe was selected as the binary material because its bandgap of 1.48 

eV is well suited to absorption of light in the visible spectrum, which is an area of high intensity 

for solar radiation. It also has incredibly low absorption lengths in the visible spectrum [13], 

allowing the layers to be optically thin (on the order of 100 nm thick), reducing production cost 

and time. 

 The second design consideration was the transparent conducting oxide (TCO) that would 

be used as the front contact material, as well as the mechanical separator for the two sub-cells of 

the tandem structure. The requirements that the material had to fulfill were: 

1) It had to allow a majority of light in the 300 nm to 1100 nm range to transmit with little 

absorption to adhere to the bandgap energies of silicon and CdTe. 

2) It had to be capable of being either conductive or insulating, based upon the doping 

profile. 

3) It had to be chemically inert when in contact with both CdTe and silicon to preserve the 

possible lifetime of the solar cell.  
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Zinc Oxide (ZnO) was chosen as the TCO material because its bandgap (3.1 eV) is wide enough 

to transmit light with longer wavelengths than 

approximately 280 nm with approximately 90% 

transmittance. ZnO is a direct bandgap 

semiconductor with a variety of intrinsic defects 

(Zn vacancies, interstitial Zn atoms, and 

interstitial O atoms) that make it inherently a poor 

conductor [14]. However, it readily accepts 

dopant atoms, such as aluminum, which give it 

favorable optical and electronic properties for transparent ohmic contacts with other 

semiconductor materials. Figure 6 shows the transmittance percent of aluminum-doped zinc 

oxide thin films at different annealing temperatures. ZnO has favorable transmission in the 

required spectrum and can be processed at low temperatures, reducing the possibility of “thermal 

donors” aggregating in the silicon substrate during processing. 

 The tandem solar cell was constructed and simulated using the Atlas simulation package 

of the Silvaco TCAD software. Atlas has a well-defined set of physical differential equations that 

it solves to determine parameters such as photogeneration rate, recombination rate (both 

Shockley-Read-Hall and Auger recombination), current density, charge density, and optical 

intensity of light through the cell. Once the material regions of the cell are specified, Atlas can 

simulate the photovoltaic action of charge carriers in each region and at each junction and 

electrode based upon dopant atoms used, dopant concentration, carrier lifetimes and optical 

intensity at each pre-defined mesh point. Silvaco also utilizes “extract” statements which can be 

Figure 6 - Transmittance spectrum of ZnO thin films doped 
with aluminum at different processing temperatures [14] 
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programmed to determine the standard parameters used to evaluate the performance of a solar 

cell: 

1. Short-circuit current (ISC) 

2. Open-circuit voltage (VOC) 

3. Maximum power output (Pmax) 

4. Fill factor (FF) = 
𝐼𝑆𝐶∗ 𝑉𝑂𝐶

𝑃𝑚𝑎𝑥
 – Fill Factor is determined to define the “squareness” of the IV 

curve, which is an indication of the impact of the series resistance on the overall 

conversion efficiency. 

5. Overall conversion efficiency (η) 

In order to determine the efficiency of the tandem cell, a standard illumination profile 

must be selected for the simulation that allows the results to be directly compared to other cell 

nominal values. The Air-Mass-Global 1.5 (AM1.5) spectrum was selected because it is defined 

by the American Society for Testing and Materials (ASTM) as being a reasonable estimate for 

the average solar irradiance of the contiguous United States [15]. The intensity of the AM 1.5 

Spectrum defined in the Atlas simulation package is shown in Figure 7 as a function of the 

wavelengths of solar radiation.  
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Figure 7 - AM1.5 Solar Spectrum as defined in the Atlas simulation package 

  

In order to temper expectations about the performance of the CdTe and Si regions of the 

tandem cell, it is important to calculate the theoretical “maximum” wavelength of light that can 

be absorbed by each material, based upon its bandgap energy. This relationship is approximated 

by the equation [16]: 

𝜆 =  
1.24

𝐸𝑔
 [𝜇𝑚] 

λ is defined as the wavelength of the incident photon and Eg is the bandgap energy of the 

semiconductor material in eV. By solving this relation based upon bandgap energies of 1.49 eV 

and 1.08 eV, respectively, for CdTe and Si, it can be determined that CdTe will effectively 

absorb light with wavelengths shorter than 832 nm and Si will effectively absorb light with 

wavelengths shorter than 1148 nm. The average of the integrated intensities of the wavelengths 

below 832 nm (CdTe range) is 278 mW/cm
2
, whereas the average of the integrated intensities of 
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the wavelengths from 832 nm to 1050 nm (Si range) is 170 mW/cm
2
. Integrating the solar 

intensity curve over the CdTe range yields 65.96% of the total available solar intensity, while 

integrating over the Si range yields 11.71% of the total available solar intensity. This suggests 

that the CdTe layer should absorb approximately 5/6 of the total available energy. 

 Also important to consider is the available photocurrent over the wavelength ranges of 

the CdTe and Si layers. Integrating the photocurrent profile, shown in Figure 8, defined by the 

AM1.5 spectrum in Atlas yields that 48.82% of all available photocurrent lies in the range of 

wavelengths absorbed by the CdTe, while only 13.69% lies in the range absorbed by Si.  

 

Figure 8 - Available photocurrent by wavelength in Atlas' AM1.5 spectrum 

 The discrepancies in optical intensity and available photocurrent in the absorption ranges 

of CdTe and Si suggest that even though the CdTe layer makes up a significantly smaller portion 

of the solar cell, it will account for the majority of the overall cell conversion efficiency. 
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 The final decisions to be made in the design of the absorber layers were the doping 

concentrations of each absorber and the thicknesses of the absorbers. To determine the thickness 

of the CdTe and Si absorber layers, an analysis was performed that weighed the carrier lifetimes 

in each region against the minimum thicknesses required for efficient light absorption and the 

diffusion lengths of the charge carriers in the materials. The chosen thickness of the CdTe layer 

is more arbitrary than the thickness of the Si layer because it can be made optically thin and still 

absorb a significant portion of light in the visible spectrum [10], which greatly reduces the 

effects of bulk resistance and recombination losses. The thickness of the CdTe absorber layers 

was fixed at 100 nm thick in both the p-region and in the n-region, and then the doping 

concentrations were varied to allow the p-n junction depletion region to encompass the entire 

thickness of the CdTe layers. This would maximize VOC and ISC by minimizing recombination 

losses. The width of a p-n junction depletion region is governed by the equation [16]: 

𝑊𝐷 =  √
2𝜀𝑆𝜀0

𝑞
(
𝑁𝐷 + 𝑁𝐴

𝑁𝐷𝑁𝐴
)(𝑉𝑏𝑖 − 𝑉𝑎𝑝𝑝) 

Where εs is the relative dielectric constant of the absorber material, ε0 is the permittivity of free 

space, q is the charge of an electron, ND and NA are the donor and acceptor atom doping 

concentrations, Vbi is the built-in potential of the junction and Vapp is the applied voltage. The 

built-in voltage is determined using the equation [16]: 

𝑉𝑏𝑖 =  
𝑘𝐵𝑇

𝑞
ln (

𝑁𝐴𝑁𝐷

𝑛𝑖
2 ) 

Where kB is the Boltzmann constant, T is the temperature of the junction in Kelvin, and ni is the 

intrinsic carrier concentration of the semiconductor material.  
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By solving these two relations for a desired depletion region width of 200 nm at a temperature of 

300K and factoring in minor changes in VOC calculated in the Atlas simulation, doping 

concentrations of NA = ND = 10
15

 cm
-3

 were determined for the n-type and p-type CdTe 

absorbers. For simulation purposes, it was also necessary to calculate the charge carrier lifetimes 

in the CdTe regions. The carrier lifetimes in CdTe can be determined using the relation [13]: 

𝜏𝑅 =  
1

𝐵𝑝
 

Where B is the radiative recombination coefficient (estimated as 3 x 10
-9

 cm
3
/s) and p is the 

doping concentration, regardless of whether the dopant atoms are donors or acceptors. Utilizing 

this relationship, the carrier lifetimes in both CdTe absorbers were calculated to be 333 ns. 

 The thickness of the Si substrate required more careful consideration. Absorption lengths 

of light through silicon are dependent upon the wavelength of the light, as shown in Table 1. 

Also important to consider when sizing the silicon 

substrate are the diffusion lengths of the charge carriers 

and the carrier lifetimes. The diffusion lengths of charge 

carriers in silicon are given by the equations [16]: 

𝐿𝑝 =  √𝐷𝑝𝜏 

𝐿𝑛 =  √𝐷𝑛𝜏 

𝐷𝑝 =  
𝑘𝐵𝑇

𝑞
𝜇𝑝 

𝐷𝑛 =  
𝑘𝐵𝑇

𝑞
𝜇𝑛 

λ (nm) Absorption length in Si (μm) 

300 0.0015 

400 0.1 

500 1.0 

600 5.0 

700 10.0 

800 10.0 

900 50.0 

1000 100.0 

1100 500.0 

Table 1 – Absorption lengths of light through silicon 

based on wavelength. 
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Where D represents the diffusion coefficient, τ is the minority charge carrier lifetime and μ is the 

mobility of charge carriers. The carrier lifetimes are determined based upon doping 

concentrations in the silicon utilizing the relations [16]: 

𝜏𝑝 =  
1

(3.45 𝑥 10−12)𝑁𝐴 + (9.5 𝑥 10−32)𝑁𝐴
2 

𝜏𝑛 =  
1

(7.8 𝑥 10−13)𝑁𝐷 + (1.8 𝑥 10−31)𝑁𝐷
2 

The diffusion length equations were solved in terms of doping concentrations utilizing the 

definitions of the diffusion coefficients and the carrier lifetimes in each region, based on 

assumptions of a 200 μm thick silicon substrate and a maximum voltage drop across the bulk of 

50 mV. The initial 200 μm thickness was assumed to be sufficient for absorbing most of the 

wavelengths in the Si region (832 nm – 1148 nm) without incurring a bulk resistance that would 

significantly degrade VOC. The resulting analysis yielded a minimum required bulk doping 

concentration in the p-region of NA = 2 x 10
18

 cm
-3

. Under a doping concentration this high, 

Auger recombination effects greatly reduced the current collected at the Si cell electrodes, 

significantly degrading overall conversion efficiency in the cell. To counteract this effect, the 

thickness of the silicon substrate was reduced to 150 μm thick and optimized again for a 

maximum voltage drop of 50 mV. This yielded the final doping concentrations of NA = 10
16

 cm
-3

 

in the p-region and ND = 2 x 10
17

 cm
-3

. 

 The final cell configuration is shown in Figure 9, with a close-up of the CdTe top cell and 

electrodes shown in Figure 10. 
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Figure 9 - Overall device structure as modelled in Atlas and plotted in TonyPlot 

 

Figure 10 - Enlarged view of the CdTe layers, electrodes for the CdTe cell (cathode and comP), insulating ZnO 
layer between the cells and the Si cell cathode (comN), totaling only 550nm in thickness collectively 
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Figure 11 - Schematic View of CdTe/Si Tandem Cell Design (Not to Scale) 
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4. Results 

 The tandem cell, consisting of a CdTe top cell and a Si bottom cell that acts as the 

substrate, was modelled with four electrodes: 

1. Cathode – acts as the cathode for the CdTe cell 

2. ComP – acts as the anode for the CdTe cell and the point of reference for the analysis of 

the top cell’s electrical characteristics 

3. ComN – acts as the cathode for the Si cell 

4. Anode – acts as the anode for the Si cell and the point of reference for the analysis of the 

bottom cell’s electrical characteristics 

The ComP and ComN electrodes are separated by an undoped layer of ZnO, which acts as a 

transparent electrical insulator. It would require a more elaborate inverter to connect a four-

terminal tandem cell to a grid than what would be required for a more traditional three-terminal 

device, but the electrical separation of the subcells allows them to be optimized separately 

without the need to match current outputs, which could limit the overall cell conversion 

efficiency. The dimensions of the cell in the simulation are 10 microns wide and 152.6 microns 

deep, with a default thickness of 1 micron. The ambient temperature assumed is 300K (27
℃

). 

Material 
Bandgap 

(eV) 

Carrier 

Lifetime (ns) 

Intrinsic Carrier 

Concentration (cm
-3

) 

Dopant 

Concentration (cm
-3

) 

Carrier 

Mobility 

(cm
2
/Vs) 

CdTe 1.48 333 1 x 10
6 

1 x 10
15 

Und. in 

material 

models 

n-type 

Silicon 
1.09 12,531 1 x 10

10 
1 x 10

17 
781 

p-type 

Silicon 
1.09 28,977 1 x 10

10 
1 x 10

16 
437 

Table 2 - Material properties of semiconductor materials used in the simulation 
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 Figure 12 shows the I-V characteristics of the CdTe top cell when illuminated under an 

AM1.5 spectrum at a 90° incident angle (perpendicular to the plane of the cell surface), which is 

the point at which the most light is able to be absorbed by the cell. The I-V curve was generated 

by varying the applied voltage at the CdTe cell anode (ComP) while under illumination and 

measuring the resulting current, which encompasses both drift current density (Jdrift) and 

diffusion current density (Jdiff). 

 

Figure 12 - CdTe Top Cell I-V Curve, evaluated using the electrode ComP as the reference 

 The current measured when the applied voltage is 0V is the short-circuit current (ISC). 

The voltage applied that biases the p-n junction to act as a forward-biased diode and prevent any 

current flow to the anode is the open-circuit voltage (VOC) [16]. The shape of the curve, with an 



20 
 

incredibly long and flat current profile over a large span of voltages, is indicative of a cell with a 

favorable fill factor (FF), which bodes well for the overall conversion efficiency. The equation 

for calculating fill factor is located in the “Methods and Design” section. VOC and ISC can be 

approximated using a visual inspection of the I-V curve, but were extracted in a subsequent 

simulation step and will be explored in greater detail later. 

 Figure 13 shows the I-V characteristics of the Si bottom cell when illuminated under an 

AM1.5 spectrum at a 90° incident angle (perpendicular to the plane of the cell surface), which is 

the point at which the most light is able to be absorbed by the cell. It is important to recall that 

the Si cell receives a significantly lower intensity of radiation than the CdTe cell does due to the 

effects of light absorption in the CdTe layers and the reflection of a small percentage of light 

(10%-15%) off the ZnO layers. This leads to an overall lower current density due to a lowered 

photogeneration rate, which will be explored in more detail later. 
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Figure 14 – Si Bottom Cell I-V Curve, evaluated using the electrode Anode as the reference 

The Si cell I-V curve reveals that the Si cell has significantly lower VOC and ISC than the CdTe 

cell, which indicates that it will contribute less to the overall conversion efficiency of the tandem 

cell, which confirms predictions made based upon the optical intensity and photocurrent profiles 

of Figures 7 & 8. However, the rectangular profile of the Si I-V curve indicates that it should 

benefit from having a higher fill factor than the CdTe cell, which will improve the conversion 

efficiency of the Si cell. This can be attributed to the higher doping concentrations in the silicon 

regions, which reduce the series resistance of the semiconductors [17]. 

 A closer look at the physical phenomena in the CdTe top cell reveals why the ISC and VOC 

of the CdTe cell are so high. Figure 15 shows the charge concentration in the CdTe absorbers. 



22 
 

The charges are evenly distributed on either side of the p-n junction at a concentration of 

approximately 150 μC/cm
3
. The charge concentration profile is evidence that the depletion 

region in the CdTe absorbers spans nearly the entirety of the CdTe layers, which allows for high 

charge carrier collection efficiency by the electrodes and a low recombination rate. 

 

Figure 15 - Charge concentration in the CdTe absorber layers 

 Figure 16, showing the electric field profile in the CdTe absorbers and the electrodes 

adjacent to them, further supports the conclusion that the depletion region spans the entirety of 

the CdTe layers. 
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Figure 16 - Electric field profile in the CdTe Top Cell absorber layers and electrodes 

The positive electric field in the depletion region, with a magnitude of approximately 20,000 

V/cm, will act as an electromotive force to help “sweep” the current towards the cathode [16]. 

When the charge carriers recombine at the interface with the ZnO electrodes, it creates a high 

magnitude positive electric field. The separate electron and hole current densities can be seen in 

Figure 17 below. 
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Figure 17 - Electron and hole current densities in the CdTe absorber layers 

 The electron and hole currents are well segregated from one another by the time the 

charge carriers reach the electrodes. This is a direct result of the sweeping effect of the positive 

electric field and the dopant atoms being evenly distributed in the n-region and the p-region. The 

hole current has a slightly higher peak density than the electron current, which can be explained 

by looking at the charge carrier recombination rate profile for the CdTe top cell in Figure 17. 
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Figure 18 - Recombination rate of charge carriers in the CdTe absorbers 

The charge carrier recombination rate, which peaks at an incredibly low value of 

approximately 16 cm
-3

s, is higher in the n-CdTe region than it is in the p-CdTe region. This can 

be attributed to the incredibly high carrier mobility in the n-region at such a low doping 

concentration (ND = 10
15

 cm
-3

) causing electrons and holes to make contact with one another and 

recombine, in spite of the relatively long charge carrier lifetimes and presence of the depletion 

region throughout the n-region. 

In order to understand the effect that the CdTe cell has on the optical intensity of the 

radiation that eventually reaches the Si bottom cell, the photogeneration rate profile (Figure 19) 

and optical intensity profile (Figure 20) of the CdTe cell must be analyzed. 
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Figure 19 - Photogeneration rate in the CdTe Top Cell 

The photogeneration rate through the CdTe absorber layers gradually drops from a peak of 

approximately 4 x 10
22

 cm
-3

s to approximately 2 x 10
22

 cm
-3

s, a decrease of about 50%. This 

profile is in line with the optical intensity trend in Figure 20. 
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Figure 20 - Optical intensity through the CdTe absorber layers 

The optical intensity peaks on the surface of the cell at approximately 0.1 W/cm
2
 (1000 W/m

2
), 

the standard incident intensity for the AM1.5 spectrum, and tapers off to approximately 0.06 

W/cm
2
 (600 W/m

2
) as photons are absorbed in the CdTe layers to create exciton pairs. The 

absorption of light in the CdTe layer greatly reduces the amount of light that reaches the surface 

of the Si cell, but the high photovoltaic action in the CdTe cell yields a promisingly efficient 

energy conversion. 

 When the operating parameters are extracted, the yield is ISC = -4.29864 x 10
-9

 A, VOC = 

0.778623 V, Pmax = -2.53892 x 10
-9

 W, FF = 0.758912 and a conversion efficiency of η = 

25.3892% for the CdTe cell alone. When these results are extrapolated over the size of a standard 

industrial solar cell (39 in. x 77 in.), the CdTe cell contributes 492 W nominal per cell. 
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 The Si cell analysis begins by observing the doping profiles in the Si cell, which are 

modelled after the standard Si cell architecture shown in Figure 4. 

 

Figure 21 - Acceptor and Donor Atom concentrations in the Si absorber layers 

 The first 50 nm of the Si n-region absorber is heavily doped at ND = 10
19

 cm
-3

 in order to 

form a good ohmic contact with the ZnO cathode (ComN) [17]. This forms a sort of 

recombination layer immediately adjacent to the cathode for more effective current injection. 

The next 1 μm of silicon depth is uniformly doped at ND = 10
17

 cm
-3

 to form the n-region 

absorber of the Si cell. From there, the p-region of the cell is doped uniformly at NA = 10
16

 cm
-3

, 

which is low enough to combat the effects of recombination through the bulk of the silicon 

without having a significant adverse impact on the series resistance of the cell. Though not 

visible in Figure 21, there is also a heavily doped, 5 nm thick p-region adjacent to the interface 
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between the silicon and the aluminum back contact to form a Back Surface Field (BSF) for good 

ohmic contact and charge carrier recombination at that interface. 

 The charge concentration profile for the Si cell at the interface between the n+ and n 

regions is shown in Figure 22. Even though both are doped with donor atoms, the 100x 

difference in magnitude creates a shallow p-n junction between the two regions, resulting in a 

positive electric field that “sweeps” holes towards the cathode. 

 

Figure 22 - Charge concentration at the interface between the n and n+ regions of the Si cell 

 The charge profile at the Si p-n junction, shown in Figure 23, shows a far smoother 

gradient in the charge concentration. The peak concentration in both the positive and negative 

regions is approximately 0.002 C/cm
3
, which is higher than the peak concentration in the CdTe 
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absorber layers (0.00015 C/cm
3
). Despite the lower optical intensity of light that reaches this 

junction, the higher doping concentrations in the silicon as compared to the CdTe provide a 

greater density of possible exciton pairs. The width of the non-zero charge concentration regions 

also corresponds to the width of the depletion region [16], which is approximately 700 nm. 

 

Figure 23 - Charge concentration at the Si p-n junction 

The electric field profile at the silicon p-n junction in Figure 24 is similar in nature to that seen in 

the CdTe cell (Figure 15). 
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Figure 24 - Electric field profile of the Si bottom cell 

At both the n+-n junction and the p-n junction, there is a high magnitude positive electric field to 

assist in “separating” electron and hole currents and move them towards the correct electrode. In 

the instance of the p-n junction, the electric field magnitude is approximately 30,000 V/cm, as 

compared to a magnitude of 20,000 V/cm at the CdTe p-n junction. This is due in large part to 

the higher dopant concentrations in the silicon. It is also necessary for the electric field to be 

greater in order to combat the recombination losses through the bulk of the Si cell, which is 

many times thicker than the CdTe layer.  

 The electron and hole current density profiles for the Si cell are shown in Figure 25. 
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Figure 25 - Electron and Hole current densities in the Si bottom cell 

The crossing point of the electron and hole current densities corresponds to the depth where the 

magnitude of the electric field peaks. Due to the thickness of the silicon substrate, which is 

necessary for achieving the minimum absorption lengths of the radiation wavelengths available 

to the silicon absorbers, there is a tapering off of hole current density as it moves through the 

silicon. The peak magnitude of the current densities, at 0.005 A/cm
2
, is significantly lower than 

the current density seen in the CdTe absorber layers at 0.04 A/cm
2
. This is caused by the lower 

optical intensity and higher recombination rates in the silicon. 

The optical intensity profile through the Si cell is shown in Figure 26. 
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Figure 26 - Optical intensity profile through the Si bottom cell 

The optical intensity that reaches the surface of the silicon is approximately 0.04 W/cm
2
 (400 

W/m
2
), which is 40% of the radiation intensity available at the surface of the CdTe. This is the 

primary driver for the lower current densities and the need for higher doping concentrations in 

the silicon than in the CdTe. It is also worth noting that about 0.025 W/cm
2
 (250 W/m

2
) reaches 

the back surface of the cell, meaning that approximately 25% of incident light is not absorbed by 

the cells. This radiation consists of all the wavelengths in the AM1.5 spectrum above the 1148 

nm wavelength that can be absorbed by silicon with a bandgap energy of 1.09 eV. The seeming 

aberrations in the profile near the Si-aluminum interface are caused by the reflection of light off 

the aluminum, which actually contributes to improving photogeneration rate in the cell by 
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increasing the effective path length of the photons through the silicon, allowing more photons to 

be absorbed. 

 Figure 27 overlays the photogeneration rate and the recombination rate for the Si bottom 

cell. It is important to note that the left vertical axis is the scale for the recombination rate and the 

right vertical axis is the scale for the photogeneration rate. 

 

Figure 27 - Photogeneration Rate and Recombination Rate for the Si bottom cell 

The photogeneration rate follows the optical intensity profile, with a peak value of approximately 

10
20

 cm
-3

s and a lower value of approximately 10
18

 cm
-3

s. These are both significantly lower than 

the rates in the CdTe absorbers (2 x 10
23

 to 4 x 10
23

 cm
-3

s), due to the lower optical intensity and 

longer absorption lengths of the available radiation wavelengths in the silicon. The 
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recombination rate is also very high, approximately 3.8 x 10
18

 cm
-3

s, once the charge carriers 

have been swept more than one diffusion length away from the end of the p-n junction depletion 

region. The recombination in the silicon bulk is primarily Shockley-Read-Hall recombination, in 

which an electron falls into a “trap” state, an energy level within the bandgap created by a defect 

[16]. There are also some Auger recombination effects in the heavily doped n+ and p+ regions at 

the Si-electrode interfaces, which is caused when an electron and hole recombine in a band-to-

band transition in a heavily doped semiconductor [13]. 

 When the operating parameters are extracted, the yield is ISC = -4.94757 x 10
-10

 A, VOC = 

0.463052 V, Pmax = -1.80758 x 10
-10

 W, FF = 0.788998 and a conversion efficiency of η = 

1.80758% for the Si cell alone. When these results are extrapolated over the size of a standard 

industrial solar cell (39 in. x 77 in.), the Si cell contributes 35 W nominal per cell. 

 Combining the effects of both the CdTe cell and the Si cell, the simulation yields that the 

tandem cell is capable of producing 527 W nominal at a conversion efficiency of η = 27.19678% 

under AM1.5 radiation. 

 Table 3 summarizes the operating parameters of each sub-cell as the incident angle of the 

radiation is varied from θ = 15° to θ = 90° in increments of 15°, simulating the path of the sun 

from sunrise to its zenith. 
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 CdTe Cell Operating Parameters Si Cell Operating Parameters  

Inc. Angle 

(θ) 
ISC (A) VOC (V) Pmax (W) FF η (%) ISC (A) VOC (V) Pmax (W) FF η (%) ηcombined 

90 8326.5 .778263 4917.9 .758912 25.3892 958.3 .463052 350.1 .788998 1.80758 27.19678 

75 6450.5 .771239 3786.7 .761163 19.5492 819.5 .459318 296.2 .787048 1.52936 21.07856 

60 5208.1 .765192 3047.7 .764752 15.7342 657.7 .453299 234.3 .785973 1.20978 16.94398 

45 3854.2 .757013 2240.4 .767888 11.5665 492.7 .445809 171.9 .782745 .887459 12.45405 

30 2467.8 .744626 1416.1 .770647 7.31088 319.8 .434603 108.3 .779332 .559136 7.870016 

15 1148.4 .723559 643.1 .773884 3.31989 150.4 .415087 48.2 .772939 .249079 3.568969 

Table 3 - Cell operating parameters at different radiation incident angles – note that current and power are normalized to the size of standard industrial 
solar cell, 39 in x 77 in. 
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As the incident angle decreases towards the horizontal (parallel with the plane of the 

tandem cell surface), the mean path length of the photons as they travel through the cells 

decreases, reducing the number of exciton pairs created and the photocurrent generated. This is 

consistent with results seen for virtually any photovoltaic cell and can be combatted in practice 

through the use of a pivoting stand for the solar cells that is directed by a tracking algorithm to 

“follow” the path of the sun and maximize the incident angle. 

5. Economic Analysis 

 The viability of the production and application of a solar cell on an industrial scale is 

driven by its cost per peak Watt generated [1]. The current cost of a polycrystalline solar cell 

module at η = 18.7% and a 160 micron substrate thickness is approximately $0.81 per Watt peak. 

Figure 28 provides an economic analysis of the cost of manufacturing solar cell-quality silicon 

wafers by the Czochralski process [18]. 
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Figure 28 - Cost analysis of the manufacture of solar cell-quality silicon wafers by the Czochralski process [18] 

Since the silicon substrate accounts for nearly 99% of the bulk of the tandem cell, it also 

accounts for a significant portion of the material and production costs of the tandem cell. The bar 

in the center marked “short-term” represents the cost of production for a 160 micron thick PV 

wafer, which corresponds to the substrate needed for producing the tandem cell design. The 

approximated cost for producing and processing is $43 per m
2
. The cost of tellurium, as of 2012, 

is approximately $0.034 per Watt peak when processed for photovoltaic applications [19]. 

 A cost analysis for the price of CdTe/Si cell production was performed by Tamboli, et al 

[10] using the cost assumptions above and is summarized in Figure 29. 
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Figure 29 - Economic analysis of CdTe/Si PV Module manufacture 

Their projected cost of a CdTe/Si solar cell module is $96 per m
2
. With a simulated maximum 

efficiency of 27.19% under an illumination of 1000 W/m
2
, the tandem cell design is capable of 

producing 271.9 W/m
2
. At a cost of $96/m

2
, this corresponds to a projected production cost of 

$0.35/W. For a 527 W nominal cell (standard industrial size of 39 in. x 77 in.), the cost is 

approximately $186 for a single cell material and processing. As of 2016, a standard-efficiency 

crystalline silicon solar cell cost of production is $0.50/W [20]. In order to manufacture a cell 

that can produce 527 W, the cell area would have to be 42.8% larger than the standard 

commercial cell and would cost $263.50, $77.50 more than the production of a tandem CdTe-Si 

solar cell. In other terms, the proposed tandem cell design is only a 42.8% cost increase over a 

standard silicon solar cell. 
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 Figure 30 depicts the cost per Watt breakdown against multiples of the production cost of 

a standard silicon solar cell. 

 

Figure 30 - Multiples of the standard silicon solar cell cost per Watt against increasing nominal cell efficiencies 
[21] 

 The key conclusion to draw from this figure is the bisection of the horizontal module cost 

line and the 2x curve. If the cost of producing a solar cell were to double, due to the increased 

material and processing costs of the tandem cell design, it would need to exceed 24.8% 

efficiency to be cost-justified [21]. The CdTe/Si tandem design presented in this paper 

represented a 42.8% cost increase over a standard silicon cell, well below the doubling threshold, 

and also exceeded the 24.8% efficiency mark by nearly 3%. 

 

6. Conclusion 

 The proposed design for a CdTe-Si tandem solar cell yields a simulated efficiency in 

excess of 27% under an AM1.5 spectrum, well over 10% greater than that of a standard 



41 
 

industrial single-junction silicon cell [3]. The four junction design requires slightly more material 

in the form of a ZnO separator layer and more wire tracing to connect to an inverter, as well as a 

more elaborate inverter, but allows the CdTe absorber layers and Si absorber layers to be 

optimized separately, without the need to sacrifice efficiency in order to match current outputs. 

The features that make this design advantageous are: 

1. The sub-cells are electrically separated to essentially act as two individual band-gap 

matched photovoltaic units, but the mechanical stacking reduces the overall footprint 

required. 

2. By using ZnO as a mechanical separator, the cell can be made without the more 

traditional Indium Tin Oxide (ITO) TCO layer, which is acidic and degrades cell 

performance over time. 

3. The mechanical separation of the CdTe and Si allows the CdTe to be grown by epitaxy 

on the ZnO without concern for the material strain caused by the lattice constant 

mismatch of the CdTe and Si. 

4. The use of CdTe as the large band-gap semiconductor promotes high cell efficiency in 

the visible light portion of the solar radiation spectrum with the application of optically 

thin (100 nm) absorber layers. 

5. The Si cell, which contributes a lower level of current to the overall cell output because 

of the high efficiency of optical absorption in the CdTe cell, still offers a mechanically 

strong and stable substrate for supporting the ZnO and CdTe layers. 

At this considerably high conversion efficiency, it is possible to reduce the cost of production 

on a per-Watt basis from $0.50/W for a standard silicon heterojunction cell to approximately 

$0.35/W for the tandem design. The tandem design also reduces the required land footprint to 
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produce a nominal amount of power by 42.8%. This means that the CdTe-Si tandem design is 

viable for both utility-level application and for rooftop installations on private residences and 

businesses. The application of angular surface geometries to redirect light and increase photon 

mean path length could increase the overall efficiency, particularly in the Si sub-cell, and make 

this tandem design more cost-competitive with other forms of renewable energy.  
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i. Silvaco Code 

#Written by Jacob Vittitow, Fall 2017 

#Silicon defect definitions and IV simulation commands based on solarex12.in 

#CdTe Parameters are as defined in Atlas User's Manual V 5.18.3, Appendix B 

 

go atlas 

 

# Structure Generation 

 

mesh space.mult=1.2 

 

x.m l=0 s=.50 

x.m l=10 s=.50 

 

y.m l=0.0 s=0.01 

y.m l=0.1 s=0.01  

y.m l=0.2 s=0.01  

y.m l=0.3 s=0.01 
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y.m l=0.350 s=0.01 

y.m l=0.500 s=0.01  

y.m l=0.55 s=0.01 

y.m l=0.60 s=0.01  

y.m l=1.60 s=0.2 

y.m l=150.555 s=0.002 

y.m l=150.6 s=0.2 

y.m l=152.6 s=0.2  

 

 

#top cell: CdTe PN Junction Number 1 

 

region num=1 mat=CdTe x.min=0 x.max=10 y.min=0.1 y.max=0.2 name=CdTeN 

region num=2 mat=CdTe x.min=0 x.max=10 y.min=0.2 y.max=0.3 name=CdTeP 

 

#bottom cell: Si PN Junction Number 2 

region num=3 mat=silicon x.min=0 x.max=10 y.min=0.60 y.max=1.6 name=SiN 

region num=4 mat=silicon x.min=0 x.max=10 y.min=1.6 y.max=150.555 name=SiP 
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region num=5 mat=ZnO x.min=0 x.max=10 y.min=0.350 y.max=0.500 name=Buffer 

region num=6 mat=silicon x.min=0 x.max=10 y.min=150.555 y.max=150.6 name=SiAlContact 

region num=7 mat=silicon x.min=0 x.max=10 y.min=0.55 y.max=0.60 name=SiZnOContact 

 

elec num=1 name=cathode x.min=0 x.max=10 y.min=0 y.max=0.1 mat=ZnO 

elec num=2 name=anode x.min=0 x.max=10 y.min=150.6 y.max=152.6 mat=Aluminum 

#p-type ZnO to act as anode of top cell - buffer layer 

elec num=3 name=comP x.min=0 x.max=10 y.min=0.300 y.max=0.350 mat=ZnO 

elec num=4 name=comN x.min=0 x.max=10 y.min=0.500 y.max=0.550 mat=ZnO 

 

doping uniform conc=1e15 phosphorus region=1  

#n-doped CdTe 

doping uniform conc=1e15 boron region=2  

#p-doped CdTe 

 

doping uniform conc=1e17 phosphorus region=3 

#n-doped Si 
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doping uniform conc=1e16 boron region=4 

#p-doped Si 

 

doping uniform conc=2e18 boron region=6 

#heavily doped p region to ensure good ohmic contact between the Al anode and the p-Si 

region 

doping uniform conc=1e19 phosphorus region=7 

#heavily doped n region to ensure good ohmic contact between the ZnO ComN and the N-Si 

region 

 

doping uniform conc=1e20 phosphorus name=cathode 

doping uniform conc=1e20 phosphorus name=comN 

doping uniform conc=6e21 aluminum name=comP 

#doped ZnO cathode for good ohmic contact - doping with Aluminum improves transmission of 

light in the visible range and raises bandgap to reduce parasitic light absorption 

#An aluminum doping conc of 6e21 corresponds to 3 weight percent Al in ZnO, which the 

literature suggests is the proportion with the highest conductivity 

 

#Carrier lifetimes of CdTe and Si based on Literature (see Vittitow Folder) 

material taun0=333e-9 taup0=333e-9 sopra=Cdte.nk region=1 
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material taun0=333e-9 taup0=333e-9 sopra=Cdte.nk region=2 

 

# IV Simulation  

 

#Simulation temp of 300K (27 degC) 

#consrh - Shockley-Read-Hall Recombination Model 

#conmob - carrier mobility in Si varies with doping concentration (only valid for 300K) 

models consrh conmob fermi auger bgn print temp=300  

 

#Set y-origin to negative number to allow beam to spread to cover entire solar cell 

#back.refl accounts for light reflection at the Aluminum anode interface 

beam num=1 x.orig=5.0 y.orig=-5.0 min.window=-5.0 max.window=5.0 angle=90 AM1.5 

wavel.num=150 verbose back.refl reflects=1 

 

method maxtrap=10 

 

output opt.int band.temp 

 

solve init 
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save outf=CdTeTandem_outputnolight.str 

 

output charge opt.intens 

solve b1=1 

save outf=CdTeTandem_outputwithlight.str 

 

tonyplot CdTeTandem_outputnolight.str  

tonyplot CdTeTandem_outputwithlight.str 

 

log outf=CdTeTandemTopCell_output.log 

output charge opt.intens 

solve vanode=0.0 name=comP vstep=0.01 vfinal=0.85 beam=1  

log off 

 

log outf=CdTeTandemBottomCell_output.log 

output charge opt.intens 

solve v4=0 v3=0 vcathode=0 vanode=0.0 name=anode vstep=0.01 vfinal=0.55 beam=1 

log off  



51 
 

 

tonyplot CdTeTandemTopCell_output.log 

tonyplot CdTeTandemBottomCell_output.log 

 

#Command generates a solar cell efficiency vs wavelength curve with the wavelength varying 

from 300 nm to 1.25 um 

SOLAR IW=CdTeTandem_EfficiencyVWavelength min.wave=0.300 max.wave=0.800 

step.wave=0.05 

 

#tonyplot CdTeTandem_EfficiencyVWavelength 

 

extract init infile="CdTeTandemTopCell_output.log" 

extract name="Jsc" y.val from curve(v."comP", i."comP") where x.val=0.0 

extract name="Voc" x.val from curve(v."comP", i."comP") where y.val=0.0  

extract name="Pm" min(curve(v."comP", (v."comP" * i."comP")))  

extract name="Vm" x.val from curve(v."comP", (v."comP"*i."comP") ) \ 

 where y.val=$"Pm" 

extract name="Im" $"Pm"/$"Vm" 

extract name="FF" $"Pm"/($"Jsc"*$"Voc") 
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extract name="Eff%" 1e13*$Pm/1000*-1 

 

extract init infile="CdTeTandemBottomCell_output.log" 

extract name="Jsc" y.val from curve(v."anode", i."anode") where x.val=0.0 

extract name="Voc" x.val from curve(v."anode", i."anode") where y.val=0.0 

extract name="Pm" min(curve(v."anode", (v."anode" * i."anode")))  

extract name="Vm" x.val from curve(v."anode", (v."anode"*i."anode") ) \ 

 where y.val=$"Pm" 

extract name="Im" $"Pm"/$"Vm" 

extract name="FF" $"Pm"/($"Jsc"*$"Voc") 

extract name="Eff%" 1e13*$Pm/1000*-1 
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