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ABSTRACT 

BINDER JETTING ADDITIVE MANUFACTURING PROCESS FUNDAMENTALS 

AND THE RESULTANT INFLUENCES ON PART QUALITY  

Hadi Miyanaji  

June 20, 2018 

Binder jetting additive manufacturing (BJ-AM) technology is a process by which a 

part is fabricated layer by layer through depositing liquid binder in the designated regions 

of each layer until the feature is complete. Due to the use of binder in geometry generation, 

this process possesses various advantages over the other additive manufacturing 

technologies including the ability to create colored objects via colored binders, lower cost, 

lack of heat-induced defects, and its potential capability to print a variety of materials such 

as metals, sands and ceramics. Although the application of the binder jetting process has 

been recently reported by different researchers in areas such as dentistry, biomedicine, 

aerospace, foundry, and automobile, the adoption of this technology in the manufacturing 

industry has been slower compared to other AM processes. This could be largely attributed 

to the uncertainties involved in the feature fabrication process (e.g. lack of 

qualitative/quantitative relationships between process set up characteristics and the quality 

of printed features) which mainly arises from the lack of adequate insight into the 

fundamentals of this technology. As a consequence, the fabrication of components, 

particularly if printing of new materials is intended, and development of binder jetting is



v
 

currently based upon trial and error approach. Therefore, this research project aims to take 

a closer look at this technology to establish comprehensive understanding of the process 

characteristics by thoroughly investigating the feature fabrication in Binder Jetting process. 

For this purpose, the feature fabrication process in BJ-AM technology is closely monitored, 

and the effect of different parameters on part quality are investigated. New physics-based 

models are developed for describing the process characteristics at different stages. In order 

to predict the optimal binder saturation level, a new model is developed to describe the 

binder-powder bed interaction in the equilibrium state. For modeling the binder-powder 

bed interaction in the dynamic state, the effect of the different parameters (e.g. droplet 

impact velocity, the mean particle size and particle size distribution) on the feature 

formation process are experimentally explored. Finally, a model describing the binder-

powder bed interaction in the dynamic state is developed to predict the profile of the 

powder saturated area by a single binder droplet. 
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                                       CHAPTER I  
 

                   
                                                                                                                                 RESEARCH MOTIVATION AND PROBLEM STATEMENT 

Binder Jetting additive manufacturing process possesses unique advantages 

compared to other additive manufacturing processes as it uses a liquid binder for geometry 

creation that does not involve intensive heat during the fabrication process. Some of such 

advantages include the ability to create colored objects through colorful liquid binders, 

high speed, reasonably low cost, the capability to print variety of materials (e.g. metals, 

polymers, and ceramics), lack of heat-related defects in the printed parts, scalability as well 

as straightforward work principles. Furthermore, in this technology there is no need to 

design support structures for fabricating overhanging features. In comparison, many other 

AM processes require additional structures for part anchoring or heat dissipation purposes. 

Such advantage of binder jetting effectively eliminates the effort of printing and removing 

support structures, which sometimes could be a difficult, time-consuming and expensive 

task to perform. Due to these favorable characteristics, binder jetting process has received 

a lot of attention from various industries such as dentistry, biomedical, automobile, 

foundry, and aerospace in the past few years and several research works have been reported 

on applying this method to fabricate parts for different applications. 
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Despite its great potential, the overall rate of industrial adoption of binder jetting 

additive manufacturing process has been considerably slower compared to many other 

additive manufacturing processes. This is largely due to the lack of adequate understanding 

into the fundamentals of this technology. The process development and the quality of parts 

of the binder jetting technology is significantly limited by various factors including 

insufficient understanding of binder/powder bed interaction, the lack of predictive models 

for the binder/powder bed interaction and part property prediction, the lack of systematic 

guidelines for choosing proper process parameters for each set of new materials, and 

inadequate knowledge about the effect of different process parameters and material 

(powder and binder) characteristics on part quality. 

Therefore, in order to overcome these issues and accelerate the development and 

adoption of the binder jetting technology, clear understanding about the fundamentals of 

this technology is needed, which is the focus of this research. The ultimate goal of the 

research is to enable the fabrication of structures and parts with high integrity and quality 

in terms of both mechanical properties and dimensional accuracy through fundamental 

understanding of the process characteristics.  This goal will be accomplished by breaking 

it down into multiple objectives:  

1. Establish quantitative theories for the interaction between binder and powder bed both 

in the static (i.e. equilibrium) and dynamic states; 

2. Evaluate the effect of process parameters on the process characteristics of binder 

jetting; 

3. Establish a deposited droplet profile in the powder bed based on the developed models; 
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4. Establish quantitative/qualitative correlations between the process designs and the 

mechanical and dimensional properties of the fabricated parts.
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Additive Manufacturing  

Additive Manufacturing (AM) technology refers to as processes in which a digital 

3D model is used to generate a feature by joining the built materials layer upon layer. Based 

on the type of built materials, the deposition technique, and the way the materials are joined 

together, AM processes are classified into seven categories including Photopolymerization, 

Material jetting, Binder jetting additive manufacturing, Material extrusion, Powder Bed 

Fusion, Sheet Lamination, Direct Energy Deposition according to ASTM F2792-12a [1].  

AM is receiving unprecedented attention from various industries. In the recent years, the 

additive manufacturing market, including the all additively manufactured products and 

corresponding services worldwide, has grown impressively [2-4]. Some of the recent 

improvements in these processes contributing to this rapid growth include their increasing 

capability to fabricate end-use products, the enhancements of the speed and performance 

of additive manufacturing machinery, an increasing range of built materials. These 

advancements in turn inspire the further implementation of AM technology in different 

industries around the world [2, 5, 6]. Compared to other AM processes, the overall speed 

of adoption for Binder Jetting additive manufacturing technology has been significantly 

slower largely owing to lack of clear understanding the fundamentals of the technology
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and quantitative relationship between the process setup and the achievable outcomes. 

Therefore, in the current research, Binder Jetting additive manufacturing process will be 

thoroughly investigated and analyzed in order to provide more quantitative insight of the 

process in the attempt to facilitate the industrial adoption of this promising technology.  

2.2 Binder Jetting additive manufacturing  

Binder Jetting additive manufacturing technology, initially developed in the early 

1990s at MIT [7], is an additive manufacturing process which is based on a liquid binder 

deposition in the designated regions acquired from a digital 3D model. As shown in Fig. 

2.1, after spreading a layer of powder material a printhead selectively deposits certain 

amount of binder droplets onto the surface of the powder bed. Thereafter, the powder bed 

surface is exposed to set amount heating via an external radiation heat source (e.g. infrared 

heaters) in order to partially cure the binder within the regions saturated by the binder and 

to establish minimum mechanical strength. The mechanical strength within each layer 

which results from partial evaporation of water content existed in the binder formulation is 

required to ensure the feature structural integrity and desired dimensional accuracy during 

printing. After the drying/curing process, a new layer of powder is applied, and the process 

repeats until the entire part (so called green part) is printed. The fabricated green parts 

usually have relatively low strength and therefore will be subjected to further post-

processes such as infiltration or sintering in order to achieve adequate mechanical strength. 

Binder Jetting is of great potential to be adopted in different industries for diverse 

applications. Various research-based works have been reported on applying this 
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technology in different applications such as biomedicine [8-11], aerospace [12], dentistry 

[13, 14], foundry [15] and automobile [16]. 

 
Fig. 2.1 Binder Jetting geometry creation process 

Due to the use of a liquid binder for geometry generation, Binder Jetting additive 

manufacturing possesses various unique advantages over other AM technologies including 

the ability to create colored objects via colored binders, lower cost, usually higher speed, 

lack of heat-induced defects, and it potential capability to print a variety of materials such 

as metals, sands and ceramics [17]. In addition, the Binder Jetting process is regarded as 

the most scalable among all AM processes in that the build size can be theoretically 

extended as required by expanding the axial distances over which the printhead and build 

platform move [18].  

However, the inadequate mechanical characteristics of the printed green parts 

usually necessitate multiple post-processing steps. The selection of the post-processing 

methods in Binder Jetting differs rely mostly on the printed material and application of the 

fabricated features. Polymer materials printed by Binder Jetting are typically infiltrated 

with a secondary infiltrant material to improve mechanical strength or color. Metals and 
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ceramics green parts require a thermal post-processing step to densify and strengthen the 

printed parts via sintering [19, 20]. Another limitation of this process is the lack of 

theoretical models for predicting the quality of 3D-printed part and also deep understanding 

of the process fundamentals which leads to considerable uncertainties regarding the 

accuracy and strength of fabricated parts [20, 21]. 

2.3 Determining parameters of 3D-printed part quality 

Although Binder Jetting technology is of straightforward work principles compared 

to other AM processes, there exist multiple factors that might significantly contribute to 

the structural integrity and quality of the printed features. These parameters can be divided 

into two main groups, the process related parameters and the material related parameters.     

2.3.1 Process related parameters 

2.3.1.1 Spreading speed 

As shown in Fig. 2.2, spreading of powder layers in Binder jetting process is 

accomplished via a clockwise-rotating roller which traverses back and forth over the build 

platform. Therefore, spreading speed is defined as the rate at which the rotating roller 

moves forward for spreading a layer of powder (i.e. the rate at which a layer of powder is 

spread).  

Inappropriate spreading speed would result in uneven and non-uniform spreading 

with undesired large porosity in the final product which eventually leads to lower 

mechanical strength [13]. Lower spread speed is always desired for uniform powder 

spreading and as a consequence the quality of printed parts. However, it could significantly 
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increase the printing time. Due to the large Van der Wall’s forces, finer particles (<5 um) 

do not tend to spread well and require a relatively slower spread speed, whereas relatively 

higher spread speed could be set for coarse particles [22]. 

The morphology of the particles also affects the spreading of the material. Faceted 

and anisotropic particles will stick to each other, creating more friction compared to 

spherical particles. It has been shown in [14, 23] how irregular particle shape and wide 

range of particle size distribution could greatly lower the powder flowability. The flow 

characteristics directly affects the density of the final part. If a powder does not spread 

well, it does not pack well, resulting in a lower density [7]. 

 
Fig. 2.2 Schematic of binder jetting process for the ExOne M-Lab machine [14] 

2.3.1.2 Binder saturation 

Binder saturation level is defined as the amount of the binder which is deposited 

through printhead. It is determined by calculating the theoretical percentage of void space 

(Vair) in the print material that is filled with binder (Vbinder) following Eq.(1-1)-(1-2), in 

which PR stands for the packing density of the powder bed and Venvelope stands for the 
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volume of a defined envelope. It is worth mentioning that packing density specifies how 

much void space exists in the print material after spreading. 

  Desired saturation level = Vbinder / Vair                                  (1-1)  

  Vair = (1-PR100)* Venvelope                                       (1-2) 

Optimal saturation amount needs to be used in printing process to ensure the good 

mechanical strength and desired dimensional accuracy and structural integrity. Both lower 

saturation and higher saturation levels will introduce inaccuracy and diminished 

mechanical properties in the printed parts. While with low saturation there won’t be 

sufficient binder to join the powders particles together and create a strong bond between 

successive layers (Fig. 2.3), with higher saturation levels the excess binder will permeate 

out of the designated boundaries as shown in Fig. 2.4.  In addition, two other phenomena 

that might be observed if excessive amount of binder is used for printing are related to 

migration of binder within the powder bed, so called bleeding and feathering in the 

literature [13, 24]. Bleeding is the macroscopic flow of binder within the features printed 

with high saturation levels that usually hang off the bottom of a large part. In this case, 

printing successive layers on top of excessive under-cured binder would decrease accuracy 

in the bottom section of the part more than top layers (which are printed later in the process) 

probably due to gradually accumulated weights from the top layers [13]. Feathering is the 

microscopic spread of binder from the point of impact and is observed as a broadening 

printed geometry [24]. An example of feathering phenomenon has been shown in Fig. 2.5.  
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Fig. 2.3 3D printed TiNiHf mesh structure with 50 μm printing layer thickness and 

55% binder saturation level (Low saturation level) [25] 

 
Fig. 2.4 3D printed dental porcelain samples using different saturation levels, (a) 

45%; (b) 50%; (c) 60%; (d) 70% (low to high saturation level) [14] 

(a) (b) 

(c) (d) 
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Fig. 2.5 Printed parts after curing [13] 

The effect of saturation amount, along with other parameters, on part dimensional 

accuracy and strength has been investigated by multiple researchers [11, 13, 25-30].  In the 

preliminary study conducted by the author [13], a systematic experimental based study was 

carried out to establish the relationship between various process parameters of ExOne M-

Lab binder jetting system (including binder amount, drying time, drying power, powder 

spread speed) and the qualities of the green parts and finished parts, which in turn provides 

insights into the fundamental principles of the process. It was demonstrated that how 

changing saturation level and its interaction with other parameters would affect the part 

structural integrity (Fig. 2.6).  In this study, a set of guidelines are provided for adjusting 

the printing parameters for new material development and the better understanding of the 

binder jetting processes. 
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Fig. 2.6 Effect of different factors on part accuracy in z direction and mechanical 

compressive strength [13] 

2.3.1.3 In-process heating elements 

As it was explained previously, in Binder Jetting process the deposited binder for 

each layer needs to be partially cured before the subsequent layer of powder materials is 

spread. For this purpose, after the binder deposition the powder bed surface is subjected to 

set amount of heating applied via an external radiation heat source (e.g. heating lamp). The 

imposed heating reduces the binder solvent amount via evaporation and therefore reduces 

the total saturation level in the printed areas. This in-process heating has two elements, 

power level and drying time, which can usually be altered in the printer in order to reach 

the desired dryness of binder. Power level is defined as the intensity of applied heat using 

infrared heater and is set as a percentage of its maximum power by the operator, and drying 
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time is the amount of time considered for drying (curing) of the deposited binder (i.e. the 

time the build platform stays under the heater).  

In the literature, there exists very limited knowledge about the in-process heating 

effect on the green parts and final products after post-processing. In [14], it has been shown 

that at a constant saturation level of 50%, although increasing power level from 55% to 

65% significantly increases the mechanical strength of the green parts, this change does 

not seem to have apparent effects on the geometrical accuracies as it is shown in Fig. 2.7. 

This might be further explained by the relatively low saturation level and limited range of 

heating power (55%-65%) chosen for printing the samples. Given these conditions, the 

binder could be adequately cured, and therefore no significant difference could be observed 

on the green parts dimensional accuracies. 

 
Fig. 2.7 Effect of power level on the compressive strength of the green parts [14] 

Also, in the preliminary research conducted by the author the influence of in-

process heating on structural integrity of green parts was systematically investigated using 

full factorial experimental design. In Fig. 2.8, the compressive strength of green parts is 
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displayed as a function in-process heating. From this figure, the power level and time for 

drying the binder should be selected in such a way that the sprayed binder is dried at an 

optimal condition. The higher the power level is set, the less the drying time would be 

required. 

 

Fig. 2.8 Surface plot of green part strength vs drying time and power level 

Observations indicated that mechanical strength and dimensional accuracy of green 

parts strongly depend on in-process heating elements which in turn determine the different 

curing conditions of the binder within the layers. As a conclusion, while excessive in-

process heating will prevent a strong bond to be created between successive layers by over-

curing the binder, with insufficient in-process heating the under-cured binder within the 

layers won’t have enough adhesion strength, which bonds the binder to powder particles, 

to retain the structural integrity as oppose to the shear forces involved in spreading new 

layers [13, 14].   
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2.3.1.4 Layer thickness 

Layer thickness which is determined by the machine operator is used by the 

software to calculate the binder saturation amount according to equations (1-1) and (1-2).  

In these relationships, Venvelope is defined as 

  Venvelope = X spacing * Y spacing * layer thickness (Z spacing)               (1-3) 

Where X spacing and Y spacing are the distances between successive droplets in X 

and Y directions respectively (Fig. 2.2). It is clear from the relation that changing the layer 

thickness will directly affect the binder saturation amount and consequently the green part 

mechanical and dimensional characteristics. Moreover, the layer thickness information is 

utilized for processing and slicing the 3D digital model used for feature creation and 

therefore will influence the green part resolution. The greater layer thickness will result in 

lower resolution.  

There exist multiple experimental-based studies in the literature that investigate the 

layer thickness, coupled with other process-related parameters such as binder saturation 

and part orientation, effect on green part mechanical and dimension properties. Lu et al 

[25] studied the fabrication of 3D mesh structures of 300 μm wire width with TiNiHf SMA 

powder using Binder Jetting additive manufacturing process. SMA is referred to as the 

novel resilient materials which has the ability to return to the previously defined shape after 

being subjected to specified thermal or stress-induced procedures [31]. In this work, they 

showed how the dimensional accuracy varies as a function of layer thicknesses and binder 

saturation. Fig. 2.9 displays the printed wire width in terms of printing layer thickness and 

saturation [25]. They considered three scenarios for the interaction of binder saturation and 
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the printing layer thickness as shown in Fig. 2.10. With a thin layer of the powder material, 

there exists more binder to flow laterally than vertically as the vertical diffusion of the 

binder is constrained with the previously saturated layer. This excessive lateral flow of the 

binder leads to larger and uneven wire width. When the printing layer thickness is too large, 

although uneven lateral spreading becomes less, there is more binder jetted into the powder 

bed because of the larger powder volume per layer. Therefore, due to larger volume of the 

binder, thicker wire width still results, with much less wire width variation. At the optimal 

printing layer thickness, binder vertical spreading and lateral spreading proceed and finish 

at approximately the same time. This very desirably leads to smallest wire width and the 

smallest wire width variation [25].  

 

 
Fig. 2.9 Printed wire width measured by optical microscope [25] 

 

Fig. 2.10 Different printing layer thickness and binder spreading cases [25] 
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The effects of the printing orientation and layer thickness on the physical and 

mechanical properties of plaster-based (zp150) scaffolds have been studied in [11]. In this 

research, it was concluded that while the layer thickness and printing direction have a 

significant effect on the scaffolds compressive strength of scaffolds as it is shown in Fig. 

2.11, they have only a minor effect on the structural properties of scaffolds. The scaffolds 

printed in X and Y directions (Fig. 2.12) are sufficiently strong for handling and placement 

into a non-loading bone defects. 

 
Fig. 2.11 Comparison of compressive strength in samples with different layer 

thickness in various orientations [11] 

 
Fig. 2.12 Different printing orientation of samples [11] 
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2.3.2 material related parameters 

2.3.2.1 Powder physical properties 

Particle size & particle size distribution 

Proper flowability is one of essential parameters in Binder Jetting additive 

manufacturing process to ensure the good quality of the green parts. Too low flowability 

reduces the printing resolution whereas too high flowability does not provide a powder bed 

sufficient stability required for 3DP [32].  

It is well known that particle size directly influences flowability of powder material. 

Although fine particles tend to aggregate or/and agglomerate due to inter-particle forces, 

large particles usually flow more freely [33]. It is worth to be noted that agglomerates are 

defined as weakly bonded particles sticking together under van der Waals forces, whereas 

aggregates are considered to be constituted of particles which are bonded together by solid 

bridges [34]. In the literature there exist manifold examples of aggregated or agglomerated 

ceramic powders, depending on very diverse synthesis techniques, with submicron-sized 

primary particles [34-37]. Fig. 2.13 from [32] shows the dependency of flowability (ffc) on 

median particle size. These results reveal a linear correlation between the median particle 

size (d50) and flowability. A similar trend has been reported by Teunou [33] for flowabilty 

of powder materials with different particle sizes.  
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Fig. 2.13 Dependency of flowability (ffc) on median particle size [32] 

In Binder Jetting process, high packing density of spread layers is always favorable 

in that it determines the subsequent mechanical properties, shrinkage, and density of final 

parts after sintering [38-40]. A high packing density depends directly upon the particle size 

distribution. There are many publications in the literature which have focused on the 

importance of the particle size distribution to obtain dense packing [41-46].  

In [47], Streek has studied the effect of particle size on the packing density of 

tungsten powder as shown in Fig. 2.14. In general, the smaller the particle size leads to the 

lower density due to clumping or agglomeration effects. In practice, powders comprise a 

range of sizes, and the extent of the spread will also have a significant effect on the packing 

density.  
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Fig. 2.14 The effect of particle (grain) size on packing density [47] 

Karapakis [48] used bimodal powder blends (with varying combinations of coarse 

and fine particles) to determine how different ratios affected the layer density. Within the 

parameters of this study, it would appear that the best densities are obtained when the 

bimodal size difference is large, and the weight ratio of coarse to fine particles is between 

about 80:20 and 60:40. 

For a two-component mixture of coarse and fine particles, the ideal packing density 

is predicted by Furnas model [41]. According to this model, the theoretical maximum 

packing efficiency PEmax of a mixture of coarse and fine particles is calculated as [41]: 

     PEmax = PEc + (1- PEc) PEf                                 (1-4)   

Or alternatively  

     PEmax = 1-φc φf                                       (1-5) 

Where PEc and PEf are the packing efficiency of the coarse and fine particles 

fractions, respectively, and φ = 1- PE, is the interstitial pore fraction of packed particles of 

a single size (fine or coarse particles only). 
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Powder particle morphology 

The morphology of the powder particles is of also great importance in 

determination of process efficiencies and the quality of the final products. Similar to 

powder particle size, morphologies need to be assessed and optimized as well. It is well 

known that the shape of powder particles influences the powder bed packing density, the 

degree of shrinkage during sintering, and also to some extent, the flowability of powder 

[49-51].  As an instance, the effect of particle shape on shrinkage of stainless steel is shown 

in Fig. 2.15. The stainless-steel material with irregular particle shapes demonstrates the 

highest shrinkage. 

 
Fig. 2.15 The effect of particle shape on shrinkage of stainless steel during 

conventional furnace sintering [50] 

 

2.3.2.2 Binder physical properties 

Binder viscosity and surface tension  
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In Binder Jetting additive manufacturing process, binder droplets are deposited on 

the surface of the powder bed via a multi-jet printhead. After impact, each droplet migrates 

into to powder bed due the capillary pressures (and to a lesser degree, gravitational forces) 

created between the liquid binder and powder bed particles. The migration of liquid binder 

in the powder bed will take place in all directions albeit with different lateral and vertical 

rates. Due to this difference in the migration rates, the liquid phase under equilibrium 

conditions would assume a specific profile depending on the physical properties of liquid 

binder including viscosity and surface tension, and interaction between the binder/powder 

bed [52-54]. The established profile characteristics have multiple implications to Binder 

Jetting process. Firstly, the permeation profile largely determines the minimum feature 

resolution of the fabrication process and consequently influence the geometrical accuracy. 

Secondly, the characteristic dimensions of the profile (i.e. lateral speeding distance and 

vertical permeation depth) impose restrictions to the selection of process parameters 

including layer thickness and in-process heating in order to achieve adequate part integrity. 

Thirdly, the liquid distribution within the powder bed influences the strength of the green 

parts in combination with the other process control parameters. Therefore, the binder 

physical characteristics are of great importance in determining the quality of the parts 

fabricated via Binder Jetting process.  

2. 4 Feature Formation in Binder Jetting Process  

As it was explained earlier, the essence of feature fabrication in Binder Jetting 

process is to use liquid binder to join the powder particles in the designated areas of layered 

powder material. This technology uses DOD (drop-on-demand) printheads to deliver liquid 
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binder droplets consecutively with certain lateral spacing. After complete penetration, each 

droplet assumes a profile (i.e. a mass of particles bonded by a single droplet) inside the 

powder bed. Bonding of these droplet profiles within a layer realizes a 2D slice of a 3D 

geometry. Stitching the 2D slices with sufficient bonding strength between successive 

layers forms the 3D component. Therefore, the droplet profile inside a powder bed as the 

smallest building element of any 3D printed component plays a key role in controlling the 

part quality and integrity.  The characteristics of such profiles determines the lateral 

spacing between consecutive droplets, and as results, influences the dimensional accuracy 

and the strength of the fabricated parts [14, 55]. Although there exists an abundance of the 

literature on modeling the interaction between a liquid droplet and a porous material, in the 

context of Binder Jetting process, very limited researches have been carried out in this 

regard. The following provides a general overview of studies on liquid-porous medium 

interaction modeling existed in the literature with special focus on the attempts most 

pertinent to Binder Jetting technology.  

2.4.1 Modeling of droplet-porous meduim interaction 

The droplet-porous material interaction can be categorized into static and dynamic 

phases. While the static phase refers to the state where the penetration of the liquid droplet 

into the porous medium is complete, during dynamic phase of the interaction the droplet 

migrates into the porous material under the different driving phases. In Binder Jetting 

process, both phases are of crucial importance in controlling the part quality. The droplet-

porous medium interaction in the static phase determines the optimal saturation level 
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required for successful printing whereas the interaction dynamic phase controls the profile 

of the area that is saturated by the droplet.  

2.4.1.1 Droplet-porous miduim interaction at equilibrium (equilibrium saturation) 

In Binder Jetting Technology, once the binder droplets are deposited on the 

selective regions, the liquid binder will migrate into the powder through pores located on 

the surface of the powder bed (so called imbibition) due to driving mechanisms such 

capillary attraction and gravity [13, 52, 56, 57]. After imbibition is complete (i.e. after all 

the liquid binder permeates into porous medium), the drainage in which liquid binder 

migrates from the completely saturated region into the dry powder surrounding it, will 

begin to take place. Therefore, as binder migration progresses, the saturated regions drain 

and the dry regions imbibe until driving forces of both regions become equal. This is the 

state where equilibrium condition in which the driving forces are equal for both imbibition and 

drainage, is reached. Fig. 2.16 displays schematic binder and powder bed interaction 

sequence.  

 
Fig. 2.16 Schematic diagram of binder migration in the powder bed  

 The saturation level (the ratio of amount of liquid binder to the pore volume in the 

print material) in the equilibrium phase is greatly important in BJ-AM process. For printing 

Imbibition Drainage Equilibrium 
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purpose, in practice the equilibrium saturation must be assumed as the saturation level 

which is specified by the machine settings. If the equilibrium saturation is much smaller 

than the saturation imposed by machine control parameters, the excess liquid binder will 

tend to migrate out of the designed boundaries of the part. On the other hand, If the 

equilibrium saturation is much greater than the machine-imposed saturation, the printed 

part won’t have sufficient mechanical strength due to lack of enough amount of binder, 

which will consequently result in weak bound between the particles and also successive 

layers. It has been experimentally shown that binder amount plays a major a role in 

controlling the part accuracy and strength [25, 26, 58]. Therefore, it is quite beneficial to 

be able to predict the equilibrium saturation for a given powder bed and liquid binder using 

physics-based modeling before the printing process.  

One of the few attempts in this regard was reported by J. F. Bredt. In his PhD 

dissertation conducted at MIT, a model to predict the equilibrium fluid content of printed 

features from measurements of the capillary characteristics of the powder and physical 

properties of the fluid binder was developed [24]. It is proposed in this model that a balance 

of capillary pressure exists between a partially saturated region and the dry powder 

surrounding the feature. In this Model it is assumed that the interaction between binder and 

powder in BJ-AM process is dominated by capillary, and to lesser degree, gravitational 

forces. The liquid binder in the powder bed distributes itself in the pores and contacts the 

powder surface with a local contact angle of 𝜃 determined by the surface energies of the 

solid, liquid, and vapor phase boundaries (Fig. 2.17). 
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Fig. 2.17 Local contact angle between liquid binder and a particle in the powder bed 

 Although the meniscus formed in the vapor-liquid interface may assume a complex 

profile, it possesses a mean curvature and capillary pressure, defined uniquely everywhere 

in the binder. On the basis of the Laplace equation, capillary pressure for a local curved 

interface (local curvature) within a pore is presented by [59]:  

∆𝑝 = 𝑝𝑐 = 𝛾(
1

𝑟1
+

1

𝑟2
)                                 (1-6) 

where Δp is the capillary pressure across the fluid interface, γ is the surface tension 

is the r1 and r2 are the principal radii of curvature. For a capillary tube of radius r, the 

equation (1-6) becomes as follows [59]: 

     𝑝𝑐 =
2𝛾𝑐𝑜𝑠𝜃

𝑟
                                     (1-7) 

 

For a real porous material where a liquid binder and powder interact, the outcome 

of the above equation would be a statistical average which is obtained over the void spaces 

in the vicinity of the considered pore [60]. From the equation, capillary pressure depends 

on the geometry of pore, contact angle 𝜃, and the degree of saturation (Sw). On the other 

hand, since the relationship of capillary pressure on saturation level (pc = pc (Sw)) cannot 

https://en.wikipedia.org/wiki/Surface_tension
https://en.wikipedia.org/wiki/Radius_of_curvature_%28mathematics%29
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be analytically described due to the shape irregularity and complexity of pores in an actual 

porous material, laboratory experiments could be implemented to derive the relationship 

for any given porous media. A typical curve of capillary pressure as a function of saturation 

is shown in Fig. 2.18.  

 

Fig. 2.18 Typical capillary pressure-wetting fluid saturation curves [24] 

From the figure, the curve follows two different paths for imbibition and drainage 

illustrating hysteresis. The hysteresis in the capillary pressure are known to be rendered by 

two mechanisms, contact angle (𝜃) and geometry of void space. While the former depends 

on the direction of the displacement, the latter arises from many bottlenecks of pores in the 

powder bed (ink-bottle effect) [60]. Due to the hysteresis in the capillary pressure curve, 

the saturated region and dry region the feature can exist at equilibrium with different fluid 

contents since each of these regions has different pressure characteristics.    
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There are two important features in Fig. 2.18. Irreducible wetting saturation, Swo, 

is a critical wetting fluid saturation at which the fluid displacement in the porous medium 

approaches zero. The capillary pressure at this saturation is called the dry suction pressure 

P0 which is a critical characteristic of a porous medium in determining the liquid binder 

migration during feature formation in BJ-AM process. The second point in Fig. 2.18 

labelled A on the right side of the graph is the minimum pressure (also called bubbling 

pressure, PB) required to initiate the displacement of a wetting fluid (e.g. liquid binder) in 

a fully saturated porous medium.  

In the model developed in [24], capillary pressure has been considered as the only 

driving force for binder migration, and equation (1-7) was used as the governing 

relationship between the capillary pressure and liquid binder saturation. In this model, pore 

curvature (K) is defined in such a way that term r is eliminated from the equation [24]: 

    𝑝𝑐 =
−2𝛾𝐿𝑉𝑐𝑜𝑠𝜃

𝑟
= −𝐾 𝛾𝐿𝑉 𝑐𝑜𝑠𝜃                              (1-8) 

       

Hysteresis in the capillary pressure between imbibition and drainage of a fluid 

results in two pore curvature for a single pore and for an assemblage of pores. The critical 

nonwetting curvature, KNW, is defined by the bubble pressure, PB, and critical wetting 

curvature KW is defined by P0 as follows [24]:   

    𝐾𝑊 =
2

𝑅𝑊
=

−𝑃0

𝛾𝐿𝑉 𝑐𝑜𝑠𝜃𝑎𝑑𝑣
                                   (1-9) 

    

    𝐾𝑁𝑊 =
2

𝑅𝑁𝑊
=

−𝑃𝐵

𝛾𝐿𝑉 𝑐𝑜𝑠𝜃𝑟𝑒𝑐
                                (1-10) 

  
where 𝜃𝑎𝑑𝑣 is advancing contact angle, and 𝜃𝑟𝑒𝑐 is the receding contact angle.  



29 
 

The quantities 𝑅𝑊 and 𝑅𝑁𝑊 describe the pore geometry of the powder bed. There 

two radii are the dimensions of analogous cylindrical capillaries exerting the same capillary 

pressures as the dry powder and the saturated region, respectively. In Fredric’s model, a 

fully saturated feature is modelled as a cavity with two capillaries, one with radius 𝑅𝑊 that 

represents the path of dry pores that lead out into bulk powder bed, and the other one with 

a radius 𝑅𝑁𝑊 that represents the trail of the saturated pores that guide air into the feature 

as it is shown in Fig. 2.19. 

 

 

Fig. 2.19 The model for equilibrium of a liquid binder in a hydraulic feature [24] 

Liquid pressure can be transmitted across this feature. Besides fully saturated 

regions, pores that have been partially drained but still in hydraulic contact are included in 

this model.  

If the pressure within the larger capillary (RNW) is greater than that of the smaller 

capillary (RW) in Fig. 2.19, fluid will spontaneously migrate from left to right. In the current 

model, the excess pressure in the feature is expressed in terms of the differences in the 

pressure between two capillaries [24]: 

  

     ∆𝑃 = −𝑃0 + 𝑃𝐵                                      (1-11)  

  
In terms of the critical radii becomes 

     ∆𝑃 = 2𝛾𝐿𝑉[
𝑐𝑜𝑠𝜃𝑎𝑑𝑣

𝑅𝑊
−

𝑐𝑜𝑠𝜃𝑟𝑒𝑐

𝑅𝑁𝑊
]                                          (1-12) 
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Or alternatively,  

     ∆𝑃 = 𝛾𝐿𝑉[𝐾𝑊 𝑐𝑜𝑠𝜃𝑎𝑑𝑣 − 𝐾𝑁𝑊 𝑐𝑜𝑠𝜃𝑟𝑒𝑐]                                     (1-13) 

 

This excess pressure is driving force for fluid migration in a porous medium. Liquid 

binder which is often employed in printing process is highly wetting to the powder (i.e. 

𝑐𝑜𝑠𝜃𝑎𝑑𝑣 ≈ 𝑐𝑜𝑠𝜃𝑟𝑒𝑐 ≈ 1). Under these circumstances, the difference in critical pore 

curvatures (𝐾𝑊-𝐾𝑁𝑊) defines the driving force for binder permeation out of a fully 

saturated region. As a feature becomes less than fully saturated, the excess capillary 

pressure is proportional to the difference [𝐾𝑊 𝑐𝑜𝑠𝜃𝑎𝑑𝑣 − 𝐾𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒  𝑐𝑜𝑠𝜃𝑟𝑒𝑐] where 

𝐾𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 is dependent on the saturation. Therefore, the condition for hydrostatic 

equilibrium of a feature is  

   𝐾𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒(𝑆∗) = 𝐾𝑊                                    (1-14) 

 
where S* is the equilibrium saturation.  

Therefore, given the powder bed and liquid binder characteristic such as the suction 

pressure, the capillary pressure curves, surface tension, contact angle, etc. it is possible to 

estimate the equilibrium saturation of a printed feature using the relationship by Eq. (1-14). 

However, our preliminary work revealed that there exists a discrepancy between the 

estimate obtained from the model and the equilibrium saturation which was measured from 

printed samples using M-Lab ExOne machine. Fig. 2.20 displays the printed features used 

for determining the saturation in the equilibrium state. It was found out that the discrepancy 

is about 30%.  
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Fig. 2.20 Two examples of printed features for empirical equilibrium saturation 

measurements  

The contributing factors to this discrepancy might be summarized as follows.  

In the current model, capillary pressure/saturation curve in drainage is used to 

determine the final saturation amount using the dry suction pressure which will always lead 

to higher saturation level. In the equilibrium state there exists a trail of partially saturated 

pore with an irreducible wetting saturation level where the liquid binder ceases to migrate. 

The simplest case of this phenomenon is shown in Fig. 2.21 with only two pores.  In this 

picture, pore 1 drains and pore 2 imbibe until the capillary pressures between two pores 

become equal. The capillary pressure corresponding to pore 2 is referred to as irreducible 

wetting saturation. Due to the capillary pressure hysteresis between drainage and 

imbibition, if the capillary pressure characteristic curve in drainage is used for predicting 

the equilibrium saturation (which is the case in the model), this estimate will always be 

higher than actual saturation.  

The other factor which might be contributing to higher estimate of equilibrium 

saturation is neglecting gravity effect particularly in the vertical direction. The effect of 

gravity on the hydrostatic pressure within a feature can cause fluid to flow further 

downward out of the boundaries. Consideration of gravity effect in the model will result in 
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higher driving pressures for binder migration which in turn lead to lower estimate of the 

saturation in the equilibrium condition. 

 

Fig. 2.21 Equilibrium state of two partially saturated pores 

Furthermore, classic theories for the fluid permeation in porous media has been 

extensively investigated in the context of liquid (commonly water)-soil interactions for 

various civil engineering applications. In this area, there exist manifold mechanisms 

including capillary force, viscous friction, gravity and osmosis which are assumed to play 

significant roles in liquid migration in a porous medium. Among these mechanisms, 

viscous friction is considered to be more relevant during the dynamic permeation advance 

process and the determination of the permeation time but in general not critical to the 

permeation equilibrium [61, 62]. Additionally, osmosis phenomenon is more pronounced 

in soils and clays there is chemical composition gradients between the phases [63]. 

Therefore, it is not expected to be a significant contributing parameter for the Binder Jetting 

process.  
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The contribution of gravity to the permeation process could be manifested in two 

forms: the droplet inertia resulted from the initial droplet impact and the downward 

gravitational pulling during the permeation. Although previous works have suggested that 

the gravitational pulling effect could be neglected during the permeation process when the 

droplet size is sufficiently low, more research needs to be conducted to evaluate the effect 

of gravity on binder-powder bed interaction in BJ‐AM systems where powder particles are 

free to displace under even small forces such as inertial forces. 

2.4.2.2 Droplet-porous miduim interaction (dynamic phase) 

The study of the dynamics of capillary penetration was initiated by Lucas [64] and 

Washburn [57]. Their theoretical model assumed a fully developed, quasi-steady-state 

laminar flow of a Newtonian liquid, an infinite reservoir, negligible inertia effects, 

negligible fluid resistance, a constant radius, and a constant contact angle. Based upon 

these assumptions, the following two equations were developed for the rate of penetration 

of a liquid into an empty capillary, in the absence or in the presence of a gravitational field, 

respectively: 

    X2 = 2τ                                         (1-15) 

   − X

G
−  

ln(1−GX)

G2 = τ                                    (1-16) 

The dimensionless penetration distance, X, dimensionless time, τ, and 

dimensionless gravitational coefficient, G, are defined by 

      X= 
l

r
                                           (1-17) 

     τ= 
2𝛾|𝑐𝑜𝑠ө|

8𝜇𝑟
t                                             (1-18) 
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and  

  G = 
𝜌𝑔𝑟2𝑠𝑖𝑛𝛼

2𝛾|𝑐𝑜𝑠ө|
                                            (1-19) 

In these equations, l is the length of the liquid in the capillary; r is the radius of the 

capillary; γ, μ, and ρ are the surface tension, viscosity, and density of the liquid, 

respectively, t is the time, g is the gravitational acceleration, and a is the inclination between 

the capillary and the horizontal as it is shown in Fig. 2.22. 

 
Fig. 2.22 The definition of the system. (b) The general equilibrium situation. (c) 

Final equilibrium situation in the absence of gravity, for ө < 90° and for ө > 90°  [57] 

Following Lucas and Washburn pioneering studies [52, 64], research on the theory 

of the capillary penetration rate has diversified to account for the factors neglected in Eq. 

(1-15) and (1-16). Two main directions of research that have been followed include 

resolving the hydrodynamic complications which are related to the bulk flow of the liquid 

[65-70], and the focusing on problems associated with the contact angle and the motion of 
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the solid-liquid fluid contact line [71-78]. In addition, the theory of capillary penetration 

has been extended to non-uniform capillaries and porous media [79-81] and to pre-wet 

capillaries [82]. 

The basic assumption of the Lacus-Washburn equations, the infinite size of the 

liquid reservoir, has been tackled in [57]. Marmur has regarded the thermodynamics and 

kinetics of a finite small drop which is brought into contact with a capillary [57]. In this 

work he concludes that the effect of the drop size stems from the increased pressure inside 

the drop due to its curvature. 

In Marmur’s study, the basic differential equation stated in Washburn’s work [52, 

64] are then rewritten in terms of the dimensionless quantities as follows.  

    𝑋
𝑑𝑋

𝑑𝜏
= (𝑈 + 𝑌 − 𝐺𝑋)                              (1-20) 

Where  

U= 𝑐𝑜𝑠𝜃

|𝑐𝑜𝑠𝜃|
                                        (1-21) 

Y= 𝑟

𝑅|𝑐𝑜𝑠𝜃|
                                      (1-22) 

Since Eq. (1-20) involves the instantaneous radius of the drop through Y, an 

additional equation is required to elucidate this radius. This equation stems from the 

conservation of the volume of the liquid, and can be written, neglecting the curvature of 

the meniscus, as 

    V = V0 - 3X                                          (1-23) 

where the dimensionless volume, V, is related to the true volume, 𝜗, by 
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V= 3𝜗

𝜋𝑟3                                         (1-24) 

and the dimensionless initial volume of the drop, V0, is defined in the same manner 

as V. The instantaneous radius can then be calculated, using simple geometrical 

considerations, from 

𝜌 =  
𝑉

3𝐻2 +
𝐻

3
                                  (1-25) 

Where 

𝜌 ≡  
𝑅

𝑟
                                           (1-26) 

And  

H≡
ℎ

𝑟
                                              (1-27) 

After taking into account all the above parameters, the following equation is 

concluded for the rate of the penetration of a droplet with a finite size: 

𝐵

𝐴2 𝑙𝑛
𝐵

𝐴𝑋+𝐵
+

𝑋

𝐴
≅ 𝜏                                     (1-28) 

Where  

A≡ 1. 5874𝑉0

−
4

3|(𝑐𝑜𝑠𝜃)−1| − 𝐺                                 (1-29) 

B≡ 𝑈 + 1. 5874𝑉0

−
1

3|(𝑐𝑜𝑠𝜃)−1|                                 (1-30) 

Marmur has further investigated the fluid radial penetration between two flat plates 

in an attempt to model the spread of a liquid in a thin layer of porous medium. Despite its 

simplicity, the radial capillary model mimics some of the essential features of penetration 

into a thin porous medium, and can serve as a limiting model for penetration into thin 
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porous media [83]. This model system is described in Fig. 2.23.  The radial capillary 

consists of two parallel, rigid and nonporous plates, the distance between which is d. A 

small hole exists in one of the plates, through which the liquid may penetrate. The effect 

of gravity is neglected in the analysis. 

 
Fig. 2.23 The radial capillary. (b) Penetration without hysteresis. (c) Penetration 

with a constant basal radius [84] 

For the radial penetration of a fluid between the flat plates, the following equations 

have been suggested in this study [83]. 

𝑦 𝑙𝑛 (
𝑦

𝑦𝑜
) 𝑑𝑦 = (𝑈 −

1

2𝑦|𝑐𝑜𝑠𝜃|
+

1

𝜌|𝑐𝑜𝑠𝜃|
) 𝑑𝜏𝑝                                    (1-31) 

Where  

Y≡
𝑟

𝑑
, 𝑦0 =

𝑟0

𝑑
,                                   (1-32) 

U= 𝑐𝑜𝑠𝜃

|𝑐𝑜𝑠𝜃|
, 𝜌 ≡

𝑅

𝑑
, 𝜏𝑝 ≡

𝛾|𝑐𝑜𝑠𝜃|

6𝜇𝑑
𝑡                                  (1-33) 

During the penetration period, change of the drop radius greatly affects the rate of 

penetration. The real behavior of the drop, which may be complex because of contact angle 

hysteresis, can be bound between two limiting situations: (a) no hysteresis, where the 
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contact angle between the drop and the outside surface of the plate remains constant, and 

(b) constant basal radius with a decreasing contact angle.  

No hysteresis 

The constancy of the volume of the liquid, which yields the value of 𝜌 required in 

Eq. (1-31), is expressed by dimensionless variables as 

𝜌 = [
4 𝜌0

3−3 𝑦2

(1−𝑐𝑜𝑠𝜃)2 (2+𝑐𝑜𝑠𝜃)
]1/3                               (1-34) 

where the dimensionless radius of the drop prior to contacting the plate, 𝜌0, is 

related to the initial radius of the drop (prior to contacting the plate), R0, by      

𝜌0 ≡
𝑅0

𝑑
                                    (1-35) 

Constant basal radius 

 Eq. (1-34) for the constancy of the volume of the liquid remains valid; however, 

the value of 𝜃 now varies. Therefore, Eq. (1-34) has to be solved simultaneously with the 

following equation, which relates 𝜌 with the constant dimensionless radius of the base of 

the drop, yb: 

𝜌 =
𝑦𝑏

𝑆𝑖𝑛 𝜃
                                        (1-36) 

Where   

𝑦𝑏
3 = 4 𝜌0

3 𝑠𝑖𝑛3𝜃0

(1−cos 𝜃0)2 (2+cos 𝜃0)
                                (1-37) 

In the case of infinite reservoir, Eq. (1-31) turns into: 

𝑦 ln (
𝑦

𝑦0
) 𝑑𝑦 = (1 −

1

2 𝑦 𝑐𝑜𝑠 𝜃
) 𝑑𝜏𝑝                                    (1-38) 
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The replacement of U by 1 and the removal of the absolute magnitude brackets 

from cos ө emphasize that penetration is possible in this case only for 𝜃 < 90 °. This is so 

because the pressure in the infinite liquid reservoir equals the ambient pressure and does 

not offer an additional driving force as in the case of a small drop. This system suggested 

by Marmur may be useful in understanding the geometrical effect related to a radially 

expanding liquid front on the process of capillary penetration.  

Denesuk et al. [53] considered the penetration of a finite size, liquid droplet into a 

porous body modelled as cylindrical pores distributed uniformly over the surface. An 

integral equation describing the depletion process for the general case of arbitrary contact 

radius behavior is derived and solved for the limiting cases of constant contact angle and 

of the constant position of the contact line.  This work does not include the impact of the 

gravity or of the pressure internal to the droplet. The neglect of the gravity is assumed to 

be valid for essentially all porous media, and the neglect of the pressure internal to the 

droplet is claimed to be valid for the droplets which are not externally small. For example, 

for a spherical cap droplet with a contact angle of 20 and contact radius of about 0.7mm, 

the excess pressure inside the drop is on the order of only 10-4 of an atmosphere. The impact 

of gravity on the shape of the droplet should act only to diminish the excess pressure [53]. 

In Denesuk’s model, the porous material is initially modeled as a solid with an array 

of parallel, right cylindrical pores as it is schematically shown in Fig. 2.24. The cylindrical 

pores are assumed to be of infinite depth, of some averaged or effective constant radius, R, 

and of some number density/ unit area, 𝜌𝑃. In this study, the following equation is presented 

for calculating the rate of liquid spreading rsc (t).  
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𝑟𝑆𝐶
3  (𝑡) =  

𝑉0

𝜉(𝜃)
−

𝐾

2𝜉(𝜃)
 ∫

𝑟𝑑
2(𝑡′)

√𝑡′
 𝑑𝑡′𝑡

0
                                    (1-39) 

In this formulation, V0 is the total liquid volume, K is the permeability, rd (the 

drawing radius) is the radius associated with the effective drawing area of the droplet (Fig. 

2.25), rsc (the apparent contact radius) is the contact radius associated with the spherical 

cap, and   

𝜉(𝜃) =
𝜋

3

(1−𝑐𝑜𝑠𝜃)(2+𝑐𝑜𝑠𝜃)

𝑠𝑖𝑛𝜃(1+𝑐𝑜𝑠𝜃)
                                             (1-40) 

 
Fig. 2.24 Cross section (upper) and top view (lower) of the geometry for the model of 

the porous surface (schematic) [85] 
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Fig. 2.25 (a) Schematic representation of the decreasing drawing area (b) the 

constant drawing area (the thickness of the remnant film in case b (2) is exaggerated 

for illustrative purpose).  In (a), rsc = rd, both decrease with time; in b (1), rsc = rd 

= constant; and in b (2) rsc decreases with time and rd = constant [85] 

In order to obtain simple expressions for the time dependent rsc, limiting cases, 

Constant Drawing Area (CDA) and Decreasing Drawing Area (DDA), with Fixed Contact 

Angle have been considered as it has been illustrated in Fig. 2.25.  

Constant Drawing Area (CDA) 

If the area of liquid in contact with the porous solid remains constant throughout 

the liquid depletion process the apparent drawing radius rd may be assumed constant, and 

the resulting model will represent the lower limit on the time necessary to deplete a given 

droplet volume.  

This limiting case may represent two different physical situations: a fixed contact 

line position where the contact angle decreases as the droplet volume is depleted (Fig. 2.25 

b-1); the apparent contact line which recedes over a layer of liquid, where the position of 

the actual contact line of the layer remains fixed, and the top layer is thick enough to act as 
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an unimpending path for liquid to flow from the droplet to pores. This thin liquid layer is 

referred to as remnant film (Fig. 2.25 b-2).  

For case (1), the trivial solution for rsc is rsc = rd = constant.  

For case 2, assuming that the droplet maintains the shape of a spherical cap of 

constant apparent contact angle on the remnant film as it retracts, and the liquid volume in 

the film is neglected and taking 𝜃 = 𝜃𝑟 and rd = constant, the following equation can be 

rearranged as [53]: 

𝑟𝑠𝑐(𝑡) = 𝑟𝑑(1 − √
𝑡

𝜏𝐶𝐷𝐴

)

1/3

                                           (1-41) 

Where the time to fully deplete the droplet 𝜏𝐶𝐷𝐴 is given by [85] 

𝜏𝐶𝐷𝐴 =  (
𝑉0

𝑟𝑑
2 𝐾

)2                                                 (1-42) 

The predicted depletion time is independent of retraction angle, 𝜃𝑟, which is 

expected from the fact that the drawing area is constant.  

Decreasing Drawing Area (DDA), Fixed Contact Angle 

If the actual liquid contact line retracts, or if the remnant film is too thin to 

accommodate appreciable liquid flow, then the effective drawing area decreases as the 

droplet is depleted. In this case, the general model of Eq. (1-39) becomes nonlinear, 

inhomogeneous, and Volterra- type integral equation.  If the apparent contact angle of the 

droplet remains constant as the contact line retracts, this equation admits a surprisingly 

simple equation with striking similarity to the CDA solution [53].  
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𝑟𝑑(𝑡) = 𝑟0(1 − √
𝑡

𝜏𝐷𝐷𝐴
)                                              (1-43) 

Where r0 is the initial contact radius. 

𝜏𝐷𝐷𝐴 = 9𝜏𝐶𝐷𝐴                                               (1-44) 

A characteristic prediction of the time-dependent contact radius for this limiting 

case is also given in Fig. 2.26. 

 
Fig. 2.26 Characteristic prediction for constant and decreasing contact area limiting 

cases [53] 

From this work it is expected that the behavior of the apparent contact radius is 

dictated primarily by the droplet depletion process rather than by the droplet spreading 

process. The time dependence of the apparent contact radius will depend upon the drawing 

character (CDA vs DDA which in turn depend on liquid and powder characteristics) and 

on the behavior of the apparent contact angle. 
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Moreover, in [80] instead of an assemblage of parallel cylindrical capillaries, which 

are commonly employed, a swarm of spherical particles have been considered for the 

modeling purpose of such media.  

In this study, a general treatment of the rate of the penetration of a fluid into porous 

media is derived from Darcy’s law which is independent of any particular model as follows 

[80].     

𝑉 = −
𝑘

𝜇

𝑑𝑝

𝑑𝑧
                                              (1-45) 

Where k is the permeability and p the pressure. 

Expanding the Darcy’s law to regard a cross sectional area A of the porous medium 

through which incompressible fluid of density ρ and viscosity μ is advancing in a direction 

normal to the area A with the instantaneous velocity V at a penetration distance z of the 

fluid front and S the specific area of the solid/ fluid interface, i.e. the internal surface area 

per unit volume of porous material gives rise to the following equation.  

𝑉 =  
𝑑𝑧

𝑑𝑡
=

2

3

𝑦 𝑎

3 𝜇 𝛺
                                    (1-46) 

Where 

𝛺 = 𝛺𝐻(𝑦) =
2(3+3𝑦5)

3(2−3𝑦+3𝑦5−2𝑦6)
                                (1-47) 

The Eq. (1-40) has a distinct advantage over other models that take a porous 

material as an assemblage of capillaries with variety of radii in that the velocity of the 

penetration V in Eq. (1-40) is expressed in terms of particle radius. In contrast, when 
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applying Washburn’s equations for example, the relation of the cylinder radius to the 

particle size remains unknown.  

The wetting theory presented in [80] has been highly idealized. In practice there 

may be several complicating effects. Volume changes occurring within the porous medium 

during imbibition, entrapment of air as liquid rises into porous medium, the presence of 

electric double layers at the particle surface are few examples which might contribute to 

inaccuracy of the developed model.  

Abraham Marmur in [56] has compared the penetration of a liquid from an infinite 

reservoir into a porous medium and into an equivalent system of capillaries with respect to 

liquid-vapor and liquid-solid interfaces. While a liquid-vapor interface is continually 

created by reexposing the liquid to vapor inside the porous medium and at its boundaries 

(termed reexposure effect), this feature of penetration is absent in the case of penetration 

into capillaries, where the liquid-vapor interfacial area may fluctuate but not continually 

increase.  The model system considered here is shown in Fig. 2.27. 

In order to identify the equilibrium situations, to which the system is driven by 

interfacial interactions, an expression for the free energy of the system is formulated and 

then minimized. 

To develop the expression for the free energy, the various interfaces between 

different phases are considered with the aid of Fig. 2.27. Four different liquid-vapor 

interfaces  and two solid-liquid interfaces regarded in this model include the interface 

between the liquid and the vapor outside of the porous medium (LV-1 in Fig. 2.27 c), the 
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liquid-vapor interface at the "upper" side of the porous medium (LV-2 in Fig. 2.27 c and 

e), the liquid-vapor interface at the "lower" side of the porous medium (LV 3 in Fig. 2.27 

e), the liquid-vapor interface inside the porous medium, at the periphery of the liquid 

cylinder (LV-4 in Fig. 2.27 e), the solid-liquid interface inside the porous medium (SL-1 

in Fig. 2.27 c), and the solid-liquid interface at the base of the drop (SL-2 in Fig. 2.27 c) 

[56]. 

 
Fig. 2.27 (a) The drop and the thin porous medium prior to contact (b) initial 

spreading over the surface of the porous medium, which may coincide with (c) 

initial penetration into the porous medium (d) basal penetration (e) a “halo” (f) 

complete penetration [56] 

The main idealization of the present thermodynamic model lies in the assumption 

of uniform penetration throughout the thickness of the porous medium. This assumption 

makes the calculations easier; however, it is not indispensable. The mechanism responsible 
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for most of the predictions of the model is the reexposure effect, which stems from the 

thinness of the porous medium and is independent of the assumption of uniform 

penetration. Thus, the qualitative conclusions should also hold for some degree of non-

uniformity in penetration, although the numerical results may change.  

In this study, he found out that the reexposure effect (i.e. the continual increase in 

the liquid-vapor interfacial area inside the porous medium and at its surfaces as penetration 

proceeds) may be sufficiently dominant for thin porous media to prevent complete 

penetration even for 0 = 0% and drops of different sizes of the same liquid may behave 

very differently when penetrating into the same porous medium. 

Interconnectivity of pores in a powder bed 

Porous materials often possess at least some degree of pore interconnectivity. Such 

interconnectivity is expected to increase the rate of depletion since the effective number of 

drawing pores generally increases as liquid is imbibed into the porous material.  

In the model developed by Denesuk et al. [53] where porous material is considered 

as a bundle of capillaries with various diameters, the total number of drawing pores per 

unit drawing area at the surface of the porous material is defined as 𝜌𝑝. In this work, the 

interconnectivity of pores is taken into account by increasing the pore density per unit area.    

Considering the picture below, in the ideal case the total area density of effective 

drawing pores is assumed to oscillate between 𝜌𝑝 and 𝜌5𝑝 in that the contribution of 

branches (c) and (d) to liquid depletion will vanish as the liquid in these regions meet the 

corresponding liquid fronts from the neighboring elements. In this work, these arguments 
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suggest the incorporation of pore interconnectivity into the depletion model by a 

substitution of 3𝜌𝑝 for 𝜌𝑝. According the aforementioned equations, this replacement 

implies a factor of 9 decrease in the corresponding depletion time.  

 
Fig. 2.28 Schematic representative element of an interconnected pore geometry [53] 

In [86], Clarke et al has developed a model for the spreading and penetration of 

liquid droplets on porous surfaces. In this study, the droplet spreading rate is represented 

by the molecular-kinetic theory according to the equation below. 

𝜕𝑟

𝜕𝑡
=

2𝐾𝑆
0 ℎ𝜆

𝜇𝑣
 sinh (

𝛾(cos(𝜃0)−cos(𝜃))

2𝑛𝑘𝐵𝑇
)                                 (1-48) 

Where r is the instantaneous spreading droplet radius (shown in Fig. 2.29), 𝐾𝑆
0 is a 

molecular jump frequency at n sites of solid/liquid interaction per unit area of the substrate, 

h is Planck’s constant, v is the molecular volume, 𝜆(=
1

√𝑛
) is the molecular jump length, 

𝜇 is the viscosity, 𝜆 is the liquid surface tension, 𝜃0 is the equilibrium contact angle, 𝜃 is 

the instantaneous dynamic contact angle, kB is Boltzmann’s constant, and T is the 
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temperature. Axes definition for the spread and absorption of a sessile droplet is illustrated 

in Fig. 2.29  

 
Fig. 2.29 Axes definition for the spread and absorption of a sessile droplet at time t 

[86] 

Eq. (1-48) is shown to model the droplet spreading rate over a non-porous substrate 

[87]. To model the droplet spreading on a porous substrate, the condition of constant 

droplet volume is relaxed using the following equation which relates the droplet radius to 

the contact angle and the volume.   

𝑟 = [
3𝑉

𝜋

𝑠𝑖𝑛3(𝜃)

2−3 cos(𝜃)+𝑐𝑜𝑠3(𝜃)
]1/3                                       (1-49) 

In their modeling, Darcy’s law is used to describe the droplet penetration into the 

porous medium as follows.  

∇𝑝 =
𝜇

𝑘
𝑢                                                          (1-50) 

Where ∇𝑝 is the pressure gradient, k is the permeability, u is the mean liquid 

velocity in the pore. In this modeling, the parameters which need to be experimentally 
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determined include 𝐾𝑆
0, h, v, 𝜆(=

1

√𝑛
). It must be noticed that there is no definitive way of 

predicting the values of these parameters for a given solid/liquid system, and so predicting 

wetting behavior from independently measured quantities [88]. In the modeling developed 

by Clarke et al the initial droplet velocity and its influence on droplet spreading/penetration 

dynamics are overlooked.  

Starov and co-workers proposed an approach that combines the lubrication theory 

and Brinkman’s equation to model the droplet spreading and penetration [89-91]. In their 

modeling, the spreading and penetration were assumed to occur on different time scales 

[92] as shown in Fig. 2.30.  

 
Fig. 2.30 Spreading and penetration behavior studied by Starov et al [89, 90, 93] 

Yip et al [94] developed a one-dimensional model to describe droplet penetration 

process in process media. With assumptions of the constant contact radius (R as shown in 

the figure below) and the fluid incompressibility, they have employed Darcy’s law to 

derive the following equation for the volume of droplet remaining on the surface at any 

given time t.  

𝑉(𝑡) = 𝑉0 − 2𝜋𝑅2∅(
𝑘𝑝𝑐

2𝜇∅
𝑡)0.5                         (1-51) 
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Where V0 is the droplet initial volume, R radius of the wetted area, ∅ porosity of 

the porous medium, k is the permeability, pc is the capillary pressure, and μ is the fluid 

viscosity as schematically shown in Fig. 2.31.  

 
Fig. 2.31 Geometry of droplet penetration by a porous medium [94] 

2.4.3 Binder droplet-powder bed interaction modeling (dynamic phase) 

In the context of BJ-AM process, there exist very limited researches about the 

binder droplet-powder bed interaction modeling. Holman et all studied the simultaneous 

spreading and penetration of an aqueous polymer solution droplets deposited on porous 

ceramic beds [95]. In this work, a model based on basic spreading kinetics and Denesuk’s 

equation [53] for droplet penetration rate was developed in the attempt to predict the 

maximum droplet extension. 

In the modeling developed by Holman et al, the instantaneous radius of a spreading 

droplet and the droplet penetration rate were characterized using the equations (1-51) and 

(1-52), respectively.  
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r(t) = a.(b+t)n                              (1-51) 

𝑉𝑝(𝑡) =
𝐾

2
∫

𝑟2(𝑡)

√𝑡
 𝑑𝑡,

𝑡

0
                                  (1-52) 

Where 

 𝐾 = 𝜋. 𝑎𝑝√
𝛾.𝑐𝑜𝑠𝜃.𝑅𝑝𝑜𝑟𝑒

2𝜂
                           (1-53) 

 

r(t) is the instantaneous radius of the spreading droplet at time t, a, b, and n are 

constants, Rpore is the pore radius (mean pore radius from the BET measurements), ap is the 

volume fraction of the pores, 𝛾 is the surface tension of the liquid, θ is contact angle of the 

binder droplet on the material, and 𝜂 is the droplet liquid viscosity. In this approach, it is 

assumed that the contact angle between the droplet and the powder material will have the 

equilibrium contact angle at which spreading stops. In other words, the contact angle starts 

with an advancing value, and after reaching the equilibrium value progresses to the 

receding contact angle. For this one instant, the liquid droplet will assume the equilibrium 

shape for the volume of the droplet remaining on the surface. The radius of the remaining 

droplet volume on the surface is calculated from Eq. (1-49). Therefore, the maximum 

droplet spreading radius (or diameter) is found by determining the point at which the 

equilibrium radius and the instantaneous radius of the spreading droplet are equal [95]. 

Similar to Clarke’s work [86], the droplet initial velocity is not considered in the modeling 

developed by Holman and co-workers.  
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In his Ph.D. dissertation [96], Tailin Fan developed one-dimensional model for the 

impact penetration of a droplet into a powder bed of a certain type. Under the circumstances 

investigated in his study, it is assumed that the impact of a liquid droplet on a loose powder 

bed creates a ball-shaped particle aggregate sitting on the bottom of a bowl-shaped crater. 

In other words, it is assumed that after impact the particles start to enter the droplet and 

generate a moving mixture of powder particles and the droplet in the powder bed as shown 

in Fig. 2.32. The developed model is to predict the penetration depth of the ball-shaped 

particle aggregate.  

 
Fig. 2.32 Illustrating Al2O3 particles entering a water droplet



54 
 

CHAPTER 3  

RESEARCH OBJECTIVES AND CORRESPONDING PROCEDURES 

3. 1 Introduction  

Currently, fabricating parts using BJ-AM process relies greatly on trial-and-error 

approach due to lack of fundamental understanding of this process which in turn leads to 

inefficient process development and poor part quality control. In order to take the best 

advantage of this process and turn it into an outstanding option which can be used in 

different industries, extensive and systematic investigation of this technology in different 

aspects from the binder behavior within powder bed to post processing is required. The 

present research project aims to improve the fundamental understanding of the feature 

formation in BJ-AM technology in the most basic levels and establish predictive models 

describing different aspects of green part fabrication process.  

3. 2 Feature formation in Binder Jetting Process in the most fundamental level 

From the extensive overview of the literature, it was found out that very limited 

attempts have been made to fundamentally investigate the feature formation phenomenon 

in this technology. The feature formation in Binder jetting additive manufacturing starts 

with delivering individual binder droplets in the designated areas of the powder bed. 

Depending on the droplet spacing in the x and y directions (Fig. 3.1), deposition rate, and 
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also rate of binder diffusion in the powder bed, the deposited droplets might coalesce before 

the droplet penetration completes.  

 
 
 

 
a. Schematics of droplet spacing              b. Droplet pattern across the substrate 

Fig. 3.1 Droplet deposition pattern in Binder Jetting process 

Thereafter, the droplets (Coalesced or singles drops) migrate into the powder bed 

due to the driving forces such as capillary pressures, gravity, etc. until the equilibrium 

condition in which binder migration in the powder bed stops is reached. Fig. 3.2 

schematically displays the equilibrium condition between a binder droplet and powder bed 

in a larger scale. An accurate physics-based model to predict the binder behavior inside the 

powder bed for this stage of feature formation in Binder Jetting process is of significant 

importance in that it will determine the equilibrium saturation which corresponds to the 

optimal saturation level. Once the equilibrium saturation is adopted for printing 

components in practice, it will result in the best fabrication qualities. 
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Fig. 3.2 Equilibrium condition between binder and powder bed 

 Furthermore, the profile of area saturated by a single droplet after reaching to 

equilibrium condition can be realized from the established physics-based model and the 

droplet spreading/penetration kinetics. Such profile (i.e. permeation profile) characteristics 

(W and D dimensions in Fig. 3.3) have multiple implications to Binder Jetting process. 

Firstly, the permeation profile largely determines the minimum feature resolution of the 

fabrication process and consequently influence the geometrical accuracy. Secondly, the 

liquid distribution within the powder bed influences the strength of the green parts in 

combination with the other process control parameters. Lastly, such information is also 

critical in determining the effect of binder on the microstructural and mechanical qualities 

of the densified final parts. Therefore, the quantification of the binder permeation is of 

critical importance to the understanding of Binder Jetting process. 
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Fig. 3.3 Binder droplet permeation in powder bed  

Therefore, based on the descriptions the following research objectives and goals 

will be specifically investigated in the present dissertation: 

3. 3 Developing a physics-based model for the binder/powder bed interaction in the 

equilibrium phase 

In this section, liquid binder behavior within a powder bed including the driving 

forces for binder migration and the mechanism(s) that causes the binder penetration to stop 

as well as different parameters influencing binder distribution inside the powder bed will 

be thoroughly investigated. In this regard, the extensive literature available particularly in 

the areas such as civil engineering, wet granulation, and 2D-ink printing, will be quite 

advantageous in that in all of these processes permeation of a liquid into a porous medium 

is studied. While the basic principles about interaction between a fluid and a porous 
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medium (e.g. driving forces for fluid migration, terminating mechanisms for liquid 

permeation, etc.) in such processes will be utilized, due to the unique process 

characteristics such as the layer‐wise process, the selective application of binder and the 

in‐process binder drying, the entire established knowledge with these processes will not be 

applicable in all aspects of Binder Jetting technology.  Therefore, a new physics-based 

model will be developed to accurately predict the interaction between liquid binder and 

powder bed in BJ process in the equilibrium state. This model will be quite helpful in 

estimating the equilibrium condition in which the liquid binder will no longer migrate and 

also establishing a droplet permeation profile inside the powder bed. Furthermore, the 

accuracy of the developed model will be validated by empirically measuring the 

equilibrium saturation. For this purpose, at least two types of power materials will be 

considered for conducting the experiments. ExOne M-Lab machine will be utilized to 

spread the powders and a 0.5-20 μL micropipette will be employed to deposit individual 

droplets. The dimensions and weights of such samples will be measured using an optical 

microscopy and a (0.001g) digital scale respectively. Additionally, single tracks, multiple 

tracks, and cubic parts will be printed out using M-Lab printer so as to examine the 

equilibrium saturation in practice during feature formation in binder jetting process. The 

schematic of single-track and multiple-tracks experiments has been shown in Fig. 3.4.  



59 
 

Single track Multiple tracks

Z

X

 
Fig. 3.4 Schematic of single track and multiple tracks experiments 

Single-track experiments in which only one nozzle of the printhead is employed for 

printing will provide more accurate information about the equilibrium saturation whereas 

equilibrium saturation obtained from multiple-track printing will include droplet poisoning 

errors of the printer in the Y direction and the effect of deposition delay between 

consecutive tracks as well. Moreover, the measurements from cubic parts will provide 

useful knowledge about the overall equilibrium saturation and process of feature formation 

in Binder Jetting Technology using M-Lab ExOne machine. This overall equilibrium 

saturation will take into consideration any trapped powder between the droplets in 

consecutive layers as shown in Fig. 3.5. 

First layer

Second layer

 
Fig. 3.5 Schematic of feature formation in Binder Jetting Process 
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3. 4 Investigating the effect of different parameters on binder-powder bed interaction in the 

dynamic phase 

After a droplet impact on the powder bed surface, different parameters might affect 

the droplet-powder bed interaction in the dynamic phase before the droplet completely 

penetrates the powder bed. In order to model binder-powder bed interaction in the dynamic 

phase, these parameters and their effect on the interaction need to be analyzed in the context 

of BJ-AM technology. Therefore, different parameters including droplet impact velocity, 

powder particle size, and particle size distribution will be experimentally explored for their 

effect on the binder droplet-powder bed interaction and as a result, on the part quality. To 

investigate the droplet impact velocity, samples with various printing speeds will be 

fabricated and their dimensional accuracy will be evaluated. Quantitative correlations will 

be established between the part dimensional accuracy and the printing speed. Moreover, 

the effect of the powder particle size characteristics on the droplet/powder bed interaction 

will be analyzed by real-time imaging of the interaction, from the moment of impact to 

equilibrium status.  

3.5 Developing a theoretical model to describe the droplet-powder bed interaction in the 

dynamic phase  

With the insight from the systematic experiments on the effective parameters, a 

theoretical model for describing the droplet-powder bed interaction in the dynamic phase 

will be established based on droplet spreading/penetration kinetics, powder bed 

characteristics and binder physical properties.  
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Experimental work will be conducted in order to evaluate the accuracy of the 

theoretical model with variety of powder materials. A micropipette will be used to deposit 

individual droplets and the real-time dynamics of the droplet-powder bed interaction will 

be captured. For this purpose, a real-time imaging system using Fastec Imaging HiSpec 2 

high speed camera will be developed. As shown in Fig. 3.6, the system consists of a 

micropipette (2-10 microliter droplet volume size), the high-speed camera, mechanical 

fixtures for holding the micropipette and the camera, and a light source (150W Fiber Optic 

Dual Gooseneck Microscope Illuminator). Individual droplets of 2 μl volume will be 

deposited using the setup, and real-time flow dynamics of the impacting droplets on 

different powder beds will be recorded. The final diameter and depth of the resulting liquid-

permeated features will be measured by an optical microscope (Olympus MX51 with 

Olympus QColor 5 digital camera) and a digital caliper. The ExOne M-Lab printer will be 

used for forming the powder beds with the roller spreading speed of 2 mm/s. Using the 

developed model, the profile of the powder bed saturated area by a single droplet will be 

estimated for any given material system. After validation with experiments, the theoretical 

model can be incorporated into the printing process so as to improve the quality of the 

printed parts by enhancing the process controllability. 
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Fig. 3.6 The schematic of high-speed imaging setup
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CHAPTER 4  

A NEW PHYSICS-BASED MODEL FOR EQUILIBRIUM SATURATION 

DETERMINATION IN BINDER JETTING ADDITIVE MANUFACTURING 

PROCESS 

4.1 Introduction  

The binder jetting additive manufacturing (BJ-AM) process is one of the additive 

manufacturing (AM) processes that has been broadly adopted for various applications. Due 

to the use of the binders for the geometry creation at room temperatures, the BJ-AM 

possesses various advantages over other AM processes, such as the elimination of 

thermally induced defects (e.g. distortion, unwanted grain growth, etc.) and wide 

compatibility with various materials. Some of the exotic materials such as Inconel 718 [97], 

copper [98], zirconia [99], silicon carbide [12], barium titanite [58], calcium phosphate [8, 

32] and hydroxyapatite [10] have been used by the BJ-AM processes, which can be 

challenging even for some of the other AM processes. In BJ-AM process, droplets of the 

liquid binder are delivered to the designated surface area of the spread powder bed through 

a print-head. After the deposition of the binder, the entire surface of the powder bed is 

exposed to certain amounts of thermal energy commonly by means of heating lamps in 

order to introduce adequate mechanical strength into the printed structures to withstand the 

shearing and gravitational forces involved in the consequent printing processes. These 
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steps are repeated for each layer until the entire samples are completed. The geometrical 

qualities and the structural integrity of the green parts strongly rely upon both the quantity 

of the deposited binders and the characteristics of the binder-powder bed interactions [100].  

In the BJ-AM process, once the liquid droplets are deposited on the desired 

locations, the droplets will start to migrate into the powder pores under the influence of 

both capillary attraction and the surface tension-induced pressure gradient across the binder 

droplet meniscus formed between the binder and air as schematically shown in Fig. 4.1 

[13, 14, 52, 57, 101, 102]. The surface tension-induced pressure gradient decreases as the 

binder penetrates further into powder bed, and eventually disappears when there is no 

binder left on the powder bed surface. Therefore, during the binder permeation process the 

primary driving mechanism for the binder movement inside the powder bed is the capillary 

pressure. The state when the binder stops migration within the powder bed due to the 

balance of the capillary pressure (Pc) across all binder-air interfaces (meniscus) establishes 

the equilibrium state of the process (Fig. 4.2) [57, 101]. 

 

Fig. 4.1 Schematic presentation of a binder droplet on the powder surface 
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Fig. 4.2 Equilibrium state in the pore scale (Pc: capillary pressure) 

Under the equilibrium conditions, the binder saturation level, which is defined as 

the ratio of binder volume to the pore volume in a pre-defined envelope of powder bed, is 

of significant importance in the BJ-AM process. This equilibrium saturation determines 

the optimal saturation level required for the successful creation of green parts [103, 104]. 

If the saturation imposed by the printer control settings is much greater than the equilibrium 

saturation, the excess liquid binder tends to migrate out of the designated boundaries of the 

feature to be printed. On the other hand, in the opposite case, the printed part won’t have 

sufficient mechanical strength due to the lack of sufficient binder phase, which results in 

weak bonding between the particles as well as between successive layers. Several works 

have experimentally demonstrated that the binder level plays a key role in determining the 

part dimensional accuracy and mechanical performance in BJ-AM process [14, 26, 58, 

105]. Therefore, precise estimation about the equilibrium saturation for a given powder 

bed and liquid binder is highly desired for the design of the BJ-AM process and the 

optimization of the qualities of the printed parts. Currently, the selection of the binder 

saturation levels in the BJ-AM process is largely based on trial and error approach, and 

very limited attempts have been reported for the prediction of the equilibrium saturation 

levels. In [104], the equilibrium saturation estimations from the model that was developed 

based on previously proposed imbibition-drainage characterization does not appear to be 
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in good agreement with the experimental results, which was suggested to be attributed to 

several potential factors such as the hysteresis between the drainage and imbibition 

characteristics [103]. In order to understand the interactions between liquid binder and the 

porous powder bed effectively, a fundamental model that describes the behaviors of a fluid 

in a porous medium for the BJ-AM process is needed. 

There exist relevant application areas where displacement of a fluid by another fluid 

in the presence of porous structures is considered, such as oil recovery [106], water 

infiltration into the soil [107] and 2-D inkjet printing [86]. Within these areas, an 

abundance of literature covers various subjects including displacement patterns and 

computer simulations [108], displacement mechanisms in the pore (micro) scale and macro 

scale [109], spreading (lateral displacement) and penetration (vertical diffusion) rates [53, 

102], wettability and its effect on fluid migration [110], simulation of fluid migration inside 

porous medium [111], and saturation dependence on the capillary pressure [104].  While 

many of these works provide useful references to the understanding of the BJ-AM process, 

the equilibrium saturation levels of a finite-volume fluid body in the presence of another 

fluid inside a porous medium has not been dealt with in much details in the context of the 

BJ-AM process.  

In the present work, a physics-based model is established to estimate the average 

capillary pressure in the equilibrium state.  The model can be employed to predict the 

average saturation levels with the calibration of the experimental saturation-capillary 

pressure characterization curve. The accuracy of the model was evaluated through 

experimentation, and the results were discussed in detail.  
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4.2 Modeling of binder saturation 

During the BJ-AM process, the binder droplets are delivered from individual 

nozzles in the printhead and subsequently deposited on the powder bed surfaces. Upon 

impact on to the powder bed surfaces, the droplets experience some turbulences due to 

inertial forces [86]. Depending on the velocity, density, surface tension, and volume of the 

droplet, splashing might occur upon the impact. In [112], it was demonstrated that the 

splashing phenomenon is more likely to occur when the Weber (We) number is >50. For 

BJ-AM process, The We number can be calculated from: 

We = 𝜌𝑟𝑣2/𝛾                                    (4.1) 

where ρ is the density of the binder material, r and 𝑣 are the radius and velocity of 

the droplet, respectively, and 𝛾 the surface tension of the liquid binder. From the printer 

specifications and binder physical characteristics used in the present study, the We number 

is calculated to be less than the threshold amount (We ≈ 50) for splashing. Therefore, 

although initial disturbance and wave-like curvature might be present on the droplet surface 

after impact [86, 113], no splashing is expected to occur. Furthermore, the momentum will 

be dissipated very quickly (10-4s), and capillary force is expected to be the only dominant 

driving force thereafter (after 10-3s) [53, 104].  

In order to establish the equilibrium model that properly represents the physical 

reality of the binder-powder bed interaction, the binder penetration pattern must be 

evaluated first, as it could significantly influence the uniformity of the saturation levels 

within the permeated regions.  From the literature, fluid-fluid displacement in the presence 

of a solid surface can be categorized into two types as either drainage or imbibition based 
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upon the system’s wettability [110, 114]. While drainage is described as the fluid migration 

mechanism in which the penetrating fluid is less wetting to the solid surface than the 

displaced fluid, imbibition refers to the opposite case in which the penetrating fluid is more 

wetting. It is obvious that imbibition is more representative for the description of the binder 

permeation process in BJ-AM, since the displacing fluid (liquid binder) is more wetting 

than the fluid being displaced (air). The most critical factors that determine the 

displacement patterns are the viscosity ratio M and the capillary number Ca, which are two 

dimensionless factors that indicate the relative viscosity and relative viscous force 

respectively [114-116]. The definitions for M and Ca are given in Eq. (2) and Eq. (3), 

respectively. 

𝑀 =  
𝜇𝑝

𝜇𝑑
                                       (4.2) 

𝐶𝑎 =  
𝑉𝑝 𝜇𝑝

𝛾
                                      (4.3) 

where 𝜇𝑝 is viscosity of the penetrating fluid, 𝜇𝑑 is the viscosity of the fluid being 

displaced, 𝑉𝑝 is the mean velocity of the penetrating fluid and 𝛾 is the surface tension.  

Depending on the magnitude of these factors, the fluid migration inside the porous 

medium can take different patterns ranging from compact front to finger-like patterns with 

varying thickness. In the compact displacement pattern which is indicated by the large 

square and circular black shapes in Fig. 4.3, the main fluid migration mechanism is 

cooperative pore filling, in which liquid menisci between neighboring pores overlap and 

merge into a new stable meniscus. On the other hand, in the finger-like displacement 

pattern pores are occupied by the fluid in preferential flow paths [109, 110, 115]. 
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Furthermore, in finger-like displacement pattern, corner flow in which the penetrating fluid 

bypasses the pore spaces and advances preferentially along the particle surfaces might take 

place depending on the affinity of the porous structure to the penetrating fluid [110, 116]. 

It has been demonstrated both theoretically and experimentally that higher values of the 

viscosity ratio M and capillary number Ca generally favor the compact displacement [110, 

114, 116-120]. In addition, the pore size in the powder bed also significantly influences the 

imbibition mechanism in the pore scale and consequently fluid-fluid displacement patterns 

in the larger macroscopic scales, i.e. powder bed scales. In Fig. 4.3, the effect of the pore 

size on displacement patterns is also shown. In these phase diagrams, large aspect ratio 

indicates that the pore size is small compared to the average size of channels (pore throat) 

leading to the pore, and small aspect ratio indicates the opposite scenario where pore size 

is comparatively larger. While for the fluids with sufficiently large capillary number Ca, 

the effect of the pore size can be neglected, for fluids with lower capillary numbers the 

pore size has significant effect on the displacement patterns.  

  
Fig. 4.3 Phase Diagrams for imbibition: a) large aspect ratio; b) small aspect ratio 

[114] 
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In the BJ-AM process, the less viscous air is displaced by a more wetting liquid 

binder. Therefore, the viscosity ratio M is always favorable for the compact displacement 

pattern via cooperative pore filling.  However, the capillary number Ca in the BJ-AM 

process could vary significantly starting from the instant of the droplet impact until the 

process reaches the equilibrium condition. With the impact of the droplet at the default rate 

of 8m/s from the system specification of the ExOne M-Lab used in this study, the capillary 

number Ca starts with the value of about 1.5 and becomes zero once the fluid ceases to 

migrate. As a result, in the BJ-AM process it is expected that the binder imbibition in the 

powder bed exhibits the transition of penetration patterns. As shown in Fig. 4.4 a, under 

equilibrium conditions, in the inner regions of the permeation volumes in the powder bed 

the binder permeation should exhibit the compact pattern regardless of the size of the pores. 

 On the other hand, towards the boundaries of the permeation volumes where the 

capillary number Ca approaches zero, the permeation can exhibit either compact pattern or 

finger-like patterns depending on the pore size as illustrated in Fig. 4.4 b. For both compact 

and finger-like patterns, the main displacement mechanism in the pore scale is expected to 

be cooperative pore filling based on the powder wettability to the liquid binder. For the 

boundary regions that exhibit finger-like permeation patterns, the resulting finger-like 

features could also be effectively neglected for the purpose of green part printing due to 

their lack of structural integrity. Therefore, in the model presented in this study it was 

assumed that the pores in the powder bed involved in the binder-powder bed interactions 

are filled completely by the liquid binder. As a result, it can also be assumed that the liquid 

pressure is transmitted across the droplet volume. Fig. 4.5 clearly exhibits the cooperative 
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pore filling for the ether solvent-based binder standard for the ExOne M-Lab system and 

420 stainless steel (420SS) powder. 

 
Fig. 4.4 Schematic presentation of a binder droplet pattern inside powder bed 

(binder droplet after reaching equilibrium state); a) assuming small pore size, b) 

assuming large pore size  

   
Fig. 4.5 SEM image of binder (deposited by a micropipette) and 420SS interaction in 

the equilibrium state 

After the initial disturbance of the deposited droplet due to the inertial forces is 

dissipated, it was assumed that the droplet profile will take a semi-spherical shape with the 
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instantons radius of R. The spherical geometry of the deposited droplet on the surface can 

be characterized by the dimensionless Bond number, B, as [109, 121].  

𝐵 =
𝜌𝑔𝐿2

𝛾
                                   (4.4) 

where 𝜌 is density of the drop, g the gravitational acceleration, L is the diameter of 

the droplet prior to the impact, and 𝛾 is the surface tension. While a small B value 

corresponds to a surface tension-dominated characteristic manifested by a nearly spherical 

curvature for the droplet, a larger B value implies a weight-dominated characteristic which 

results in a droplet with a flattened shape [109, 121]. For the BJ-AM system used in the 

current study, the resulting Bond number is on the order of 10-4, which indicates that the 

spherical curvature is a reasonable approximation.  

After the impact, the deposited liquid binder begins to migrate into the surface pores 

that are in direct contact with the droplet and is gradually absorbed by the powder bed until 

there is no fluid left on the surface. After complete depletion of the binder droplet from the 

powder bed surface, binder migration within the powder bed might continue until it reaches 

the equilibrium conditions where capillary pressures across the binder-air interfaces are 

balanced out. (Fig. 4.2). The mechanisms considered to drive the binder migration are the 

capillary pressure and the pressure difference across the interfaces of the penetrating liquid. 

As a special case of the generalized Young–Laplace relationship, the curved liquid-air 

interface of the droplet remaining on the surface of the powder bed will cause a pressure 

difference across the miscues such that the pressure inside the droplet is greater than that 

of outside (air), which is termed excess pressure in this study [57, 101].  
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With the progression of the binder migration into the powder bed, the excess 

pressure inside the remaining droplet on the powder bed surface diminishes over time due 

to the increase of droplet radius from flattening, and eventually becomes zero once the 

liquid binder is entirely absorbed by the pores inside the powder bed. As a result, the 

capillary pressure becomes the only significant driving force for migration of the binder 

liquid after droplet is completely absorbed by the powder bed.  

To determine the driving pressure for the binder migration inside the powder bed 

after the droplet is completely absorbed, the thermodynamic principles for a system 

consisted of different phases (solid, liquid, and gas) were employed with the assumption 

of compact advancing of the liquid binder front. Since only the average capillary pressure 

over the saturated region in the powder bed is of interest in the present study, a cylindrical 

portion of the droplet profile inside the powder bed as shown in Fig. 4.6 is considered for 

the estimation of the average driving pressure.  

   

Fig. 4.6 Schematic representation of a droplet penetrating a uniform porous 

medium 
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Within the cylindrical region, the general relationship between force and pressure 

determines the driving pressure as follows:  

𝑃 =
𝐹

𝐴𝜖
                                      (4.5) 

where F is the driving force, A is the cross section of the selected saturated area in 

the direction perpendicular to X as shown in Fig. 4.6, and 𝜖 is the porosity of the spread 

powder bed. To determine the force involved in the capillary migration, the general 

relationship between the force and energy is used according to the equation below.  

𝐹 = −
𝑑𝑈

𝑑𝑥
                                      (4.6) 

Where U is the energy of the system including the porous medium and liquid-air 

interfaces. During the binder permeation in the powder bed, the solid-liquid interfacial area 

Asl, gradually increases, whereas the solid-gas (air) interfacial area Asg, gradually decreases. 

In the current model, due to the cylindrical volume (with constant cross-section A) 

considered for the analysis the liquid-gas interface can be assumed to remain unchanged 

over time. Therefore, the variation in the energy of the system can be expressed by 

𝑑𝑈 =  𝛾𝑠𝑙 𝑑𝐴𝑠𝑙 + 𝛾𝑠𝑔 𝑑𝐴𝑠𝑔                     (4.7) 

Where 𝛾𝑠𝑙 and 𝛾𝑠𝑔 are the solid-liquid interfacial tension and solid-gas interfacial 

tension, respectively. Moreover, from the cylindrical geometry the correlation for 𝑑𝐴𝑠𝑙 and 

𝑑𝐴𝑠𝑔  was obtained as: 

d𝐴𝑠𝑙= -d𝐴𝑠𝑔                               (4.8) 

and  

d𝐴𝑠𝑙= 𝑆(1 − 𝜖)𝐴𝑑𝑥                   (4.9) 
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where S is the average specific surface area (i.e. surface area/volume) of the powder 

bed. By substituting the Equations (4.7), (4.8), and (4.9) in Eq. (4.6), the driving force for 

the binder displacement can be expressed by  

𝐹 = 𝑆(1 − 𝜖)𝐴(𝛾𝑠𝑙 − 𝛾𝑠𝑔)      (4.10) 

As a result, the capillary pressure that drives the binder penetration in the power 

bed can be written as: 

𝑃 =  
𝐹

𝐴𝜖
=  

𝑆(1−𝜖)(𝛾𝑠𝑙−𝛾𝑠𝑔)

𝜖
     (4.11) 

Considering the Young equation for the contact angle  

𝐶𝑜𝑠𝜃 =
𝛾𝑠𝑙−𝛾𝑠𝑔

𝛾
                            (4.12) 

Eq. (4.11) can therefore be rewritten as: 

𝑃 =  
𝑆(1−𝜖)𝛾 𝑐𝑜𝑠𝜃

𝜖
                          (4.13) 

The pressure P in Eq. (4.13) represents the average pressure that drives the liquid 

binder migration inside the powder bed when there is no binder left on the powder bed 

surface. Therefore, under the equilibrium conditions the pressure difference across each 

binder-air interface in the powder bed pores should follow Eq. (4.13) such that the overall 

driving pressure gradient becomes zero.  Therefore, one can employ Eq. (4.13) to predict 

the average capillary pressure at equilibrium status, which can be subsequently used to 

determine the actual equilibrium saturation level with the help of the empirical capillary 

pressure-saturation curve. 
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4.3 Experimental Procedure 

In this study, two types of powder material, 420 SS and Ti-6Al-4V with different 

particle size distributions were studied in order to evaluate the effectiveness of the proposed 

model. The particle size distribution of both powders was characterized by particle size 

analyzer (Microtrac S3000). The powder particle morphology of both powders was also 

observed with scanning electron microscopy (Zeiss Supra 35). Fig. 4.7 shows the particle 

size distribution along with the morphology of both powders. From the results, the 420 SS 

powder is composed of spherical particles with unimodal size distribution of 35μm average 

particle diameter. The Ti-6Al-4V powder exhibits bimodal size distribution of 6μm and 

32μm average particle sizes.  The packing density of the powders spread with the traverse 

rate of 2mm/s using the roller powder spreading mechanism with the ExOne M-lab system 

was measured to be 55% and 66% for 420 SS and Ti-6Al-4V respectively. In addition, the 

specific surface area of the powder was determined via Brunauer-Emmett-Teller theory 

(BET) (TriStar 3000).  
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Fig. 4.7 The morphology of a) 420 Stainless steel  b) Ti-6Al-4V (grade 23) 

Static contact angle is one of the key parameters which can be empirically 

determined for each powder and liquid binder combination. In this study, the sessile drop 

method was employed to determine the static contact angle between the liquid binder and 

different powders [122, 123]. For this purpose, glass microscope slides (30×30×2.5 mm) 

covered with double-sided adhesive tape were shaken briefly in a container of the tested 

powder, and excess particles which were not firmly attached to the surface were removed 

by means of low pressure air cleaning [122, 123]. In order to obtain accurate results, the 

volumes of the binder droplets used for the contact angle measurements must be chosen in 

such a way that the effect of gravity can be neglected. When the liquid droplet size exceeds 

a particular length known as the capillary length as defined in Eq. (4.16), gravitational 

effects become significant [124, 125]: 

b) 

a) 
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𝑙 = √
𝛾

𝜌𝑔
                                      (4.16) 

Therefore, considering the appropriate droplet diameter obtained from Eq. (16) for 

the liquid binder used by the M-Lab, the 2 μl droplets were placed on the glass slides, 

which correspond to ~1.5mm droplet diameter that is smaller than the capillary length of 

the binder (1.7mm). Five replicates for each powder material were used for the contact 

angle measurements, and the average results was used as the contact angle between the 

binder and the powder material.   

To obtain the saturation-capillary characterization curve, a pencil tensiometer was 

used to directly measure the capillary pressure of the powder beds at different saturation 

levels. The tensiometer is inserted into the powder bed at the desired saturation level for a 

certain amount of time, which varies from a few minutes to several hours depending on the 

level of saturation and powder bed characteristics [104, 126]. Once the steady-state 

equilibrium was achieved between the powder material and the measuring system, the 

reading on the pressure gauge was taken as the capillary pressure of powder bed at the 

specified saturation level.  

Lastly, to determine the experimental equilibrium saturation for the parts fabricated 

by the M-Lab printer, three sets of features with various dimensions were printed out for 

each type of the powder materials. The first set of samples (named single-track samples) 

exhibits line features with cross-sectional dimensions of 0.05 mm × 3 mm and thickness of 

0.1 mm (one layer). These samples were fabricated in such a way that only one nozzle of 

the printhead was employed for printing of each track as shown in Fig. 4.8. These printed 
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features provide more accurate information about the equilibrium saturation. In the second 

set of samples (named multiple-track samples), square features of 3 mm × 3 mm × 0.1 mm 

were designed and fabricated, which were expected to provide more insights into feature 

formation in each layer using multiple nozzles. In the third set of samples, cubic features 

of 8 mm × 8 mm × 8 mm were designed, which was expected to provide additional 

knowledge about the overall equilibrium saturation and process of three-dimensional (3D) 

feature formation. After curing the printed features in a drying oven for 1 hour at 200 °C 

following the standard post-printing procedure for the M-Lab green parts, an optical 

microscope was utilized for measuring the actual dimensions of the printed samples. 

Subsequently, from the binder volume used for printing the equilibrium saturation in 

practice was calculated. For all the samples, fabrication parameters of 100% saturation 

level, 80% drying power intensity, 40s drying time, and 2mm/s spreading speed were 

employed. The in-process drying parameters, power intensity and drying time, as well as 

powder spreading speed used in this study were obtained from the preliminary 

experimentations with the powders. As a general role, greater in-process drying values are 

needed for higher saturation levels. On the other hand, excessive drying could cause the 

loss of part integrity by reducing the inter-layer bonding strength. Other parameters used 

for the green part printing are 100 μm layer thickness, 150 mm/sec printing speed, and 70 

picoliter droplet volume, which are the default setting of the M-Lab system.  
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Fig. 4.8 Schematic of single track and multiple tracks experiments 

4.4 Results and discussion 

Fig. 4.9 illustrates the saturation-capillary pressure characterization curves for both 

420 SS and Ti-6Al-4V. As it can be observed from the figure, Ti-6Al-4V powder exhibits 

relatively higher capillary characteristics compared to 420 SS powder largely due to the 

smaller pore sizes attributed to smaller particle size and the bimodal size distribution. On 

the other hand, for the 420 SS powder, the less significant capillary pressure decrease at 

saturation levels between 5% and 80% likely reflects its more uniform pore size 

distribution in comparison with the Ti-6Al-4V powder [127]. 

 

Fig. 4.9 Capillary characteristic curves for Ti-6Al-4V and 420 SS   
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The measured results of contact angles and specific surface area from the sessile 

drop method and BET for both materials are shown in Table 4.1.  

Table 4.1 Sessile Drop Method and BET results 

Material Contact angle (degree) Specific Surface Area from BET (m.1) 

420 SS 25° 2 

Ti-6Al-4V 40° 0.75 

The specific surface area determined by BET corresponds to the total specific 

surface area of the samples including internal surface area of particles. These internal 

surface areas include those from the microcracks, microporosities, and microfissures that 

exist on the powder particle surface, which are accessible by the small gas molecules of N2 

commonly used in BET measurement but not binder liquid.  As shown in Fig. 4.10, in 

contrast with Ti-6Al-4V powder, particles of 420 SS possess considerable amount of 

internal surface areas, which likely contributes to the large specific surface area results 

from the BET experiment. Therefore, in order to determine the external specific surface 

area of 420 SS powder that is of interest to the modeling, particle size distribution data 

from the particle size analyzer (Microtrrac S3500) was used with the assumption of 

spherical particle geometry. Such assumption likely resulted in some underestimation of 

the specific surface area with the powder. However, with the near-spherical particle 

morphology observed from SEM, this simplification was considered to be more reasonable 

approximation than the BET analysis. The external specific surface area obtained from the 

size distribution analysis, 0.2 m-1, which differed significantly from the BET measurement 
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results of 2 m-1, suggesting that there exists considerable amount of internal surface area 

on the 420 SS particles.   

  
Fig. 4.10 SEM micrograph of powder materials used, a) Ti-6Al-4V   b) 420 SS 

Powder wettability to the invading liquid is one of the critical parameters which 

would significantly influence the binder distribution within the powder bed as well as the 

saturation levels in the equilibrium state. From both Young–Laplace relationship and the 

proposed model, greater affinity of the powder material to the binder fluid that is described 

by low contact angle corresponds to the increase of the capillary pressure levels under the 

equilibrium conditions. Therefore, from the contact angle measurement results, both 

materials investigated in this study show similar affinity to the liquid binder used. In 

addition, the binder surface tension and binder density were provided by the manufacturer 

(ExOne).  
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Based on the experimental results, the capillary pressure in the equilibrium 

condition for each type of powder materials can be estimated from the proposed model as 

follows: 

420 SS powder  

𝑃 =  
𝑆(1 − 𝜖)𝛾 𝑐𝑜𝑠𝜃

𝜖
=

 0.2 × 106  ×  0.55 ×  0.03 ×  𝑐𝑜𝑠 25

0.45
= 7 𝐾𝑃𝑎 

 Ti-6Al-4V powder 

𝑃 =  
𝑆(1 − 𝜖)𝛾 𝑐𝑜𝑠𝜃

𝜖
=

 0.75 × 106  ×  0.66 ×  0.03 ×  𝑐𝑜𝑠 40

0.34
= 33 𝐾𝑃𝑎 

From the model, the capillary characteristic of the Ti-6Al-4V powder under 

equilibrium condition is remarkably greater than that of the 420 SS powder. For both 

materials studied in this study, the two most significant factors for the equilibrium capillary 

pressure are the specific surface area and packing density of the powders. From the 

literature, it is well known that in general smaller pore size corresponds to higher packing 

density, which in turn indicates higher capillary pressure of powder material, since an 

equivalent capillary tube with a smaller diameter would exhibit greater capillary pressure 

according to the Young–Laplace relationship [53, 57, 101, 104].  On the other hand, the 

total energy of such systems in which two or more phases are under equilibrium conditions 

is strongly dependent on the surface area of the phases involved in the interaction as 

discussed previously.  

The estimated equilibrium quantities, 7 kPa and 33 kPa, for capillary pressures 

correspond to 92% and 50% saturation levels for 420 Stainless Steel and Ti-6Al-4V powder 

materials respectively according the capillary-saturation characterization curves. 
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The samples for experimental equilibrium saturation evaluation are shown in Fig. 

4.11. The equilibrium saturation level measured from single track features are 53% and 

60% for Ti-6Al-4V and 420 SS materials, respectively. From the multiple-track 

experiments, similar values with slight variations (57% for Ti-6Al-4V powder and 66% for 

420 SS material) were obtained for both materials. However, the measurements with the 

cubic parts for both materials exhibit significantly greater levels of equilibrium saturation 

compared to single and multiple-track features. For the cubic samples printed with Ti-6Al-

4V powder, the equilibrium saturation level was measured to be 82%, and similarly, for 

the 420 SS powder the value was obtained to be 86%. 

 

Fig. 4.11 Equilibrium saturation. The error bars indicate the standard deviation for 

each set of experiments. 

It was observed from single and multiple track experiments that the deviations 

between the experimental equilibrium saturation and the theoretical saturation were to a 

large extent caused by the dimensional inaccuracy of the thickness of printed features, 
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printed features arise largely from feature thickness, which is associated with the depth of 

binder penetration in the thickness direction rather than its lateral spreading in the 

directions perpendicular to the penetration direction. It was found that the penetration rate 

of the liquid binder within the powder bed appears to be greater than the spreading rate. 

Such nonuniformity in the fluid migration rate in the vertical and lateral directions depends 

on many factors including the binder and the powder material properties, powder bed 

characteristics, and powder wettability. For the cubic parts which consist of multiple layers, 

two possible mechanisms of droplet dynamics within the powder bed might contribute to 

the feature formation and the saturation level deviations compared to the single layer 

samples. In the first mechanism, the liquid binder in the previously generated layers 

underneath the layer being printed is sufficiently dried. As a result, the penetration of the 

binder within the layer in the vertical direction is restricted by the layers beneath it, which 

causes enhanced saturation in the printed areas as well as more significant binder spreading 

toward the unsaturated area between the deposited droplets as shown schematically in Fig. 

4.12 a, which consequently results in higher saturation levels. In the second mechanism 

where the in-process heating parameters are not optimally chosen to sufficiently dry the 

binder, the deposited liquid binder in the top layer end up supplying excessive binder to 

underneath layers. In addition, under the second mechanism, the residual binder will be 

driven to penetrate into previous layers under the external pressure due to the weight 

accumulation of the printed structures, which consequently decrease the dimensional 

accuracy of the printed features as illustrated in Fig. 4.12 b. It is clearly shown in Fig. 4.12 

that for the two printed samples with different in-process heating parameters, the 
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dimensional error of the part fabricated under insufficient drying settings is significant due 

to the excessive saturation levels towards the bottom layers. 

 
Fig. 4.12 schematic of parts printed with different in-process binder curing 

parameters a) insufficient drying parameters b) appropriate drying parameters (the 

dashed arrows indicate the potential binder migration paths inside the powder bed) 

 Comparing the experimental results of equilibrium saturation measurements from 

the single and multiple tracks with the theoretical predictions, overall there exists a good 

agreement for Ti-6Al-4V powder material. However, for 420 SS powder the theoretical 

prediction for equilibrium saturation is considerably higher than the experimental results 

from single and multiple tracks parts. This discrepancy for 420 SS powder can be largely 

attributed to the existence of the microscopic surface features on the powder particle 

surfaces which are mostly not accessible by the liquid binder. The results from BET method 

and particle size analyzer provide two extremes for the specific surface area involved in 

the interaction. As the lower bound value from the particle size analyzer was used for the 

equilibrium saturation predictions, the resulting capillary pressure was likely 
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underestimated, which corresponds to the higher amount of saturation in the equilibrium 

state.  

Furthermore, the 50% saturation level predicted from the model for the Ti-6Al-4V 

powder was implemented for printing a set of cubic samples to evaluate the effectiveness 

of the model prediction in term of integrity and quality of the parts. Observations from 

empirical measurements indicated that fabricating parts with optimal saturation level 

results in better dimensional accuracy. As shown in Table 4.2, the comparison of the 

measured dimensions for the cubic Ti-6Al-4V samples with nominal sizes of 8mm x 8mm 

x 8mm clearly show better overall accuracies for the sample fabricated with 50% saturation 

levels, which shows that the model could provide accurate predictions of the optimal 

printing saturation levels that are in good agreement with the experimental-based 

estimations (50% theoretical prediction vs. 49% experimental results). Therefore, the 

model for the equilibrium saturation established in the current study appears to be able to 

provide accurate estimation of the optimal saturation value for printing that results in 

optimized dimensional accuracy. Considering the definition of equilibrium saturation, the 

new model essentially predicts the least amount of liquid binder that is required for feature 

fabrication via BJ-AM process without the loss of integrity. Although higher saturation 

levels might be used for printing purpose with appropriate adjustments of in-process 

heating parameters, the excess amount of binder will often result in decreased dimensional 

accuracy due to the binder permeation from the designated boundaries and the higher 

possibility of binder residual in the microstructure after the sintering. It is noted that the 

1D equilibrium saturation experiments with single tracks yielded effective predictions of 

optimal saturation levels for the 3D structures, which implies that the assumption of 
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compact permeation pattern is likely a reasonable approximation of the permeation 

boundaries. Since this type of binder is expected to have good wettability to metal powder 

in general, such results also suggests that for high quality metal powder with good 

flowability, the characterization approach described in the current study could be applied 

for rapid development of optimal green part printing parameters. 

 Table 4.2 Effect of optimal saturation level on the dimensional accuracy of Ti-6Al-

4V samples 

Saturation X (mm) Y (mm) Z (mm) 

50% 8.04 8.06 8.00 

100% 8.12 8.16 8.20 

4.5 Conclusions 

In the BJ-AM process, the binder saturation is of critical significance in determining 

the printed part quality. Insights into appropriate binder saturation for specific liquid binder 

and powder bed interaction are desired for the rapid development of new materials for high 

part integrity and dimensional accuracies. In the current study, a new physics-based model 

was developed to estimate the optimum saturation amount required during the feature 

fabrication in BJ-AM process. This model establishes the capillary pressure conditions 

under equilibrium saturation, which was consequently calibrated by experimental capillary 

pressure-saturation curves. It was demonstrated that the permeation of the BJ-AM green 

part printing process is largely driven by both the excess pressure and the capillary 

pressure, and the equilibrium conditions of the binder permeation is predominantly 

influenced by the capillary pressure. This model was applied to the optimal saturation 
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predictions of two types of powder materials, Ti-6Al-4V and 420 SS. The saturation 

analysis for single-track, multiple-track, and cubic features with various dimensions were 

carried out, and the results showed that there exists a good agreement for Ti-6Al-4V 

material between the theoretical predictions and the experimental data. However, for the 

420 SS powder, due to the existence of internal microscopic surface areas that do not 

contribute to the wetting of the powder, the binder-powder interactions could not be 

adequately accounted for by the total surface areas of the powder, which would result in 

overestimation of the optimal saturation levels. As the accurate estimations of the optimal 

saturation levels could result in not only better green part printing robustness but also 

improved geometrical accuracy, the proposed model is of importance for the efficient 

development of the BJ-AM processes for optimal green part qualities. 
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CHAPTER 5  

EFFECT OF PRINTING SPEED ON QUALITY OF PRINTED PARTS IN BINDER 

JETTING PROCESS 

5.1 Introduction  

Binder jetting additive manufacturing process (BJ-AM) is an additive 

manufacturing process in which a part geometry is fabricated by applying liquid binder to 

the selective areas of a spread layer of powder material. In this process, small droplets with 

diameters less than 100 μm are successively deposited onto the powder bed surface through 

a drop-on-demand (DOD) printhead in a pattern of raster scanning. After deposition of the 

liquid binder, the entire surface of the powder bed, including saturated and unsaturated 

areas, is exposed to a fixed amount of heat commonly by means of a heat lamp. This in-

process heating is to establish appropriate mechanical strength via partially cured binder 

within the already generated layer to withstand the shear and gravitational compressive 

forces involved in the spreading and printing of subsequent layers. These steps are repeated 

for each layer until the whole feature is completed [100]. The quality and integrity of the 

components printed via BJ-AM process might be significantly affected by the physical 

properties of the liquid binder, powder material, powder bed characteristics and process 

parameters. Some of these process control parameters, including saturation level, heating 
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power intensity, liquid binder curing time, feed-to-powder ratio, and spreading speed, have 

been experimentally investigated for their effect on the dimensional accuracy and 

mechanical strength of the printed features [8, 11, 14, 26, 28, 98, 105]. The saturation level, 

binder amount used for part printing, coupled with binder curing parameters (power 

intensity and curing time) has been shown to play a key role in determining the quality of 

the fabricated parts [26, 29, 103, 128].While the excessive binding agent would result in 

dimensional inaccuracies, insufficient usage of binder would deteriorate the mechanical 

performance of the printed components [25]. In [55], the authors have developed a physics-

based model to predict the optimal saturation amount which ensures the structural integrity 

and dimensional accuracy of the printed features. The quality of the fabricated parts may 

also be influenced by the powder spreading speed and the feed-to-powder ratio (thickness 

of feed layer to layer thickness that is attributed to the change in powder packing 

characteristics and spreading uniformity [14, 129]. The effect of layer thickness has also 

been evaluated by different researchers [11, 25, 98]. The layer thickness which is used for 

binder saturation calculations might remarkably affect the dimensional accuracy and 

mechanical strength of the printed features [25, 26, 29]. With a fixed binder saturation and 

droplet volume, thicker layers would require further deposition of binder in the already 

pre-wetted area which might consequently influence the binder flow dynamics. It is 

suggested that for the desirable spreading of powders in BJ-AM process, the layer thickness 

should be at least thicker than the largest particle and preferably three times of particle size 

[130]. On the other hand, the printing speed, which corresponds to the forward travel rate 

of the printhead (in Y direction as shown in Fig. 5.1), has received little attention in the 

literature. While it is generally perceived that for AM higher printing speed would 
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correspond to reduced geometrical accuracy of the printed parts, the driving mechanisms 

differ among processes. For example, in powder bed fusion the printing speed could be 

conveniently interpreted as the moving speed of the melting pool, which impacts the 

printing quality by imposing different spatiotemporal thermal characteristics [131, 132]. 

Similarly, in vat photopolymerization the printing speed affects the curing characteristics 

of the parts, which in turn affects the dimensional accuracy of the parts [133, 134]. In 

material jetting additive manufacturing process, the printing speed effect on part quality 

would be manifested in surface characteristics of the printed features [135, 136]. However, 

for BJ-AM technology such fundamental understanding of mechanisms and their impacts 

on quality of the fabricated components have not been widely studied.  

Similar to the interaction of a droplet with an impermeable surface, three 

phenomena, spreading, bouncing (i.e. rebounding of impinging droplets on a solid surface) 

or splashing, might take place upon impact of a droplet on a porous surface. Such behaviors 

between an impinging droplet and a permeable surface depend on many factors including 

the physical properties of the droplet and the target surface, compact conditions (impact 

velocity and droplet size), porous structure characteristics, and the wettability of the porous 

material to the droplet [137-139]. One of the key parameters determining the droplet 

interaction with the any surface is the velocity of the impinging droplet [139-141]. It has 

been shown both experimentally and analytically that the velocity of the droplets upon 

impact has a significant influence on droplet flow dynamics in porous media due to effect 

of the inertia forces [113, 138, 139, 142-145]. While spreading dominates the interaction 

of the impinging droplet and the surface at low velocities, bouncing and/or splashing are 

the dominant mechanisms in the interaction at high impact velocities. In BJ-AM process, 
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as the formation of green parts is closely associated with the binder permeation 

characteristics in the porous powder bed, occurrence of each of these phenomena primarily 

due to the factors such as initial droplet shape and velocity vector, powder bed pore 

characteristics and binder liquid characteristics could significantly impact not only the 

equilibrium binder saturation conditions but also the geometry of the binder-wetted area. 

Spreading due to the droplet impact would increase the initial contact area between the 

droplet and powder bed and as a result would influence the subsequent droplet penetration 

and saturated area. On the other hand, if bouncing phenomenon occurs, the impinging 

droplets would rebound from the powder bed surface upon initial contact, which could 

potentially result in offset of permeation zone along the Y direction from the initial location 

and introduce dimensional inaccuracies to the printed structures. Also, splashing in which 

the impinging droplet disintegrates in two or more secondary smaller droplets after impact 

might contribute to loss of integrity and accuracy of parts by decreasing the droplet 

permeation area. Therefore, it is expected that the printing speed as the horizontal 

component of the overall binder droplet velocity (Fig. 5.6) could significantly affect the 

geometrical accuracy and saturation characteristics of the green parts, which was 

experimentally investigated in the present study.  

5.2 Methodology 

To assess the effect of printing speed on components fabricated via BJ-AM process, 

cuboid samples with 8 × 8 × 2 mm dimensions which contain narrow slots with width of 

0.25 mm were fabricated using ExOne M-Lab printer. As shown in Fig. 5.1 The designed 

geometry for printing samples and part configuration in the powder beda set of such 
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samples was fabricated in such a way that slots were aligned with the printing direction (Y 

direction). For fabrication of the second group of these structures, parts were oriented along 

with X direction (perpendicular to printing direction). The narrow slots in the design as 

shown in Fig. 5.1 were designed to capture the effect of the printhead speed on dimensional 

accuracy in Y and X directions. A broad range of printing speeds from 15 mm/sec to 1000 

mm/s were applied for the fabrication of the parts.  

 
Fig. 5.1 The designed geometry for printing samples and part configuration in the 

powder bed 

In order to evaluate the bouncing phenomenon, a series of cubic samples were 

fabricated in such a way that printing speed was adjusted for every 10 layers of printing 

from 100 to 300 mm/s.  
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Lastly, three sets of features with various dimensions were fabricated in an attempt 

to quantify the effect of printing speed on dimensional accuracy and saturation measure of 

printed samples. The first set of samples (single-track samples) were straight line features 

with cross-sectional dimensions of 0.05 mm × 3 mm and thickness of 0.1 mm (one layer). 

The dimensions of these feature were selected in a way that only one nozzle of the printhead 

was employed for printing of each track (line) as shown in Fig. 5.2. These printed features 

are intended to provide more accurate information about the effect of printing speed on 

dimensional accuracy of the printed parts without introducing potential influences of other 

process parameters such as printing pattern and spacing between successive droplet 

deposition. For the second set of samples (named multiple-track samples), square features 

of 3 mm × 3 mm × 0.1 mm were designed and fabricated, which give more insights into 

feature formation and printing speed effect on single-layer structure using multiple nozzles. 

In the third set of samples, cubic features of 3 mm × 3 mm × 3 mm were designed, which 

were expected to provide useful knowledge about the overall printing speed influence on 

quality and integrity of the printed 3D structures. The equilibrium saturation of the printed 

cubic samples was also experimentally determined to examine the influence of the printing 

speed on the equilibrium saturation of printed features in practice. The saturation level was 

considered to be the ratio of the total binder volume used for fabrication by the printer and 

the total volume of the void phase of a cubic part which is determined by knowing the 

packing density and the measured volume of the sample (measured volume of a sample * 

(1-packing density)). The total binder volume can be determined using the binder saturation 

level employed for printing and the nominal volume of the printed features. The average 

binder volume jetted from each nozzle of the printhead is pre-calibrated before fabrication 
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process. Knowing the desired saturation level and the part nominal dimensions, it is 

possible to obtain the total binder volume that is used for fabrication of each part  [55]. 

 

  
Fig. 5.2 Schematic of single track and multiple tracks experiments 

420 Stainless Steel (ExOne LLC) was used for fabrication of samples. The powder 

was characterized via particle size analyzer, and Fig. 5.3 shows the particle size distribution 

along with the morphology of the powder. The results showed that the 420 SS powder is 

composed of spherical particles with unimodal size distribution of 35μm average particle 

diameter. The process parameters used for printing the samples including saturation level 

(100%), curing power intensity (90%), curing time (45 sec), layer thickness (100 µm) and 

spreading speed (2mm/sec) were kept constant for all experiments. After the samples were 

printed, they were placed in an oven and cured at 180 °C for 1 hour for curing. In addition, 

the packing density of the powder material once spread with the traverse rate of 2mm/sec 

using ExOne M-lab printer was measured to be 55%. For measuring the packing density, 
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a cylindrical container with outer diameter of 35 mm, height of 15, and 3 mm wall thickness 

was printed. After curing, the weight of the powder in the container as well as the container 

pocket volume was measured, which were consequently used to calculate the powder bed 

density. The packing density was calculated by dividing the powder bed density by the 

powder material solid density. An optical microscope (Olympus MX51 with Olympus 

QColor 5 digital camera) was utilized for measuring the width of slots and dimensional 

accuracy of all the printed features including single-track and multi-track features.  

 
Fig. 5.3 The morphology of 420 Stainless Steel powder material 

In order to measure the wettability of the powder material to the liquid binder, the 

sessile drop method was employed to determine the static contact angle between the liquid 

binder and 420 SS powder. For this purpose, glass microscope slides (30 × 30 × 2.5 mm) 

covered with double-sided adhesive tape were shaken briefly in a container of the tested 

powder, and excess particles which were not firmly attached to the surface were removed 

by means of low pressure air cleaning. The 2 μl droplets were placed on the glass slides 

and the contact angle was measured by an optical microscope. Five replicates were used 

for the contact angle experiment, and the average results was used as the contact angle 
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between the binder and the powder material [122, 123]. More details about the contact 

angle measurement can be found in [55]. 

5.3 Results and discussion 

Fig. 5.4 exhibits optical microscopy (OM) images of the parts fabricated by various 

printing speeds with close up views of the slots printed with 300 mm/sec. From the figure, 

it is clear that the printing speed affects the dimensional accuracy of both sets of the printed 

slot features. Although increasing the printing speed decreases the accuracy of the intended 

slots in the printed parts for both orientations, it seems that the slots in X-oriented features 

are influenced more significantly by the printing speed than the Y-oriented ones. 

Quantitative dimensional comparison of printed features in terms of slot width is shown in 

Fig. 5.5. For all samples fabricated with different printing speeds, accuracy of Y-oriented 

features is greater that than of X-oriented features. It can be observed from the figure that 

this discrepancy between the accuracy of differently oriented features increases with the 

printing speed. The feature fabricated with the lowest printing speed, 15 mm/sec, has the 

highest accuracy and smallest discrepancy between the orientations. With high printing 

speeds (>400 mm/s), while the X-oriented slot features become unrecognizable from the 

printed samples, in Y-oriented parts the slots are still clearly present albeit with lowest 

accuracy.  
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Fig. 5.4 Printed features with different printing speeds (a) 20 mm/sec  (b) 100 

mm/sec  (c)300 mm/sec   (d)700 mm/sec  (e)  1000 mm/sec 
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Fig. 5.5 Variation of the slot accuracy with printing speed and part orientation 

Such dependency of the part dimensional accuracy on the printing speed can be 

attributed to velocity of the droplets jetted from the printhead. To analyze the behavior of 

an impinging droplet on the powder bed surface, the dimensionless Weber number which 

is commonly used in fluid mechanics for characterizing fluid interaction with a solid is 

implemented. The We number describes the ratio between the deforming inertial forces to 

stabilizing surface tension force and can be written as [113, 146]:  

   We = ρr𝑣2/𝛾                                                                                                                  (1) 

where ρ is the density of the binder material, r and 𝑣 are the radius and velocity of 

the droplet, respectively, and 𝛾 the surface tension of the liquid binder. While at low Weber 

numbers the droplet behavior is dominated by the surface energy, which leads to weak 

deformation of the impinging droplet, a large value of this dimensionless number implies 

an inertia-dominated interaction between the impinging droplet and powder bed surface, 

which in turn affects the domain of spreading. In the literature, it has been frequently 
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demonstrated that the velocity of a vertically impinging droplet on the surface of a porous 

medium is of significant effect on the maximum droplet spreading (wetted area) [113, 145, 

146]. The greater impact velocity, which is represented by higher Weber number, results 

in larger wetted area. Splashing might occur once the vertical velocity of the droplets 

exceeds a certain threshold, which is largely determined by the fluid properties, powder 

bed characteristics, and surface roughness [144]. For oblique impacts, droplet behavior 

becomes more complex due to the asymmetry of interaction and different impact patterns 

such as one-sided spreading or splashing might occur [142]. In BJ-AM process, impinging 

of the liquid binder droplets on the powder bed surface can be regarded as oblique impact 

particularly at high printing speeds. Therefore, overall velocity of a droplet released form 

the printhead can be theoretically resolved into its vertical and horizontal components as 

illustrated in Fig. 5.6. In the present study, the horizontal component of the drop velocity 

(referred to as printing speed) was altered whereas the vertical component (also called 

droplet release speed) was kept constant at nominal droplet release (exit) velocity, which 

is expected to be 8 m/s based on the specifications of the system. Although the vertical 

velocity of droplets might slightly vary over 1.5 mm standoff distance between the 

printhead and the powder bed surface, such change in the droplet velocity is of negligible 

influence on the overall discussion of the current study. Therefore, it is assumed that the 

droplet release velocity remains unchanged before the impact. It is hypothesized that 

increasing printing speed most likely facilitates the droplet spreading along the printing 

direction (Y direction) compared to the X direction due to the enhanced inertial forces in 

Y direction as shown schematically in Fig. 5.7. At very low printing speeds (0.015 - 0.06 

m/s), as the droplet horizontal velocity is negligible compared to its vertical component (8 
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m/s), the printed samples in both orientations are of approximately similar accuracies due 

to symmetrical spreading conditions. The effect of horizontal velocity of droplets within 

the intermediate range (0.06 - 0.25 m/s) is enhanced along the printing direction, which 

leads to increased inaccuracy in X-oriented features (Fig. 5.4 and Fig. 5.5). For the case of 

high printing speed, splashing phenomenon is likely to occur during binder deposition 

through printhead due to the oblique impact of the droplets [142]. Therefore, at high 

printing speeds (0.25 - 1 m/s) where the horizontal element of the velocity becomes more 

pronounced, apart from preferential spreading, splashing might also contribute to the loss 

of accuracy, which resulted in the loss of the slot features in the X-oriented printed parts 

and the reduced accuracy in the Y-oriented features.  

 

Fig. 5.6 Schematic graph of a droplet release from the printhead  
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Fig. 5.7 Sequence of droplet impact phenomenon on the powder bed surface 

There exists an abundance of literature about the effect of the material wettability 

on the fluid dynamics of an impinging droplet over a non-porous surface [147-151]. It has 

been shown that the tendency for droplet rebound off an impermeable surface increases 

when the static contact angle decreases (i.e. lower wettability) [141, 150, 152]. However, 

very limited studies have been devoted to investigating the effect of the material wettability 

on fluid dynamics of an impinging droplet on a porous surface. In [153], Rioboo et al. 

experimentally showed the effect of the wettability on rebounding of water droplets 

impacting on porous super-hydrophobic polymer surface. In BJ-AM, due to the high 

wettability of the used liquid binder with the examined powder material, i.e. low contact 

angle (25°) between the binder and 420 Stainless Steel, bouncing phenomenon in which 

the impinging droplet rebounds after the impact is less expected to contribute to the 

inaccuracy of the printed features. Therefore, droplet shifting from the point of impact 

along the printing direction due to bouncing seems unlikely to take place during the 

fabrication process. In order to investigate the occurrence of such shifting, different 

printing speeds were employed for fabrication of each individual cubic part as explained 
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earlier in the methodology section. Fig. 5.8 illustrates the schematic representation of a 

sample printed with two different printing speeds and side view of the interface generated 

between the two sections. From the figure, it appears that the start location of the printed 

areas for both sections are aligned as indicated in Fig. 5.8, which would have been different 

if bouncing phenomenon was effective in printing process. On the other hand, the printed 

layers with printing speed of 300 mm/sec exhibit a positive dimensional difference of 0.11 

mm along the printing direction compared to the layers fabricated with 200 mm/sec 

printing speed, indicating the influence of printing speed on droplet spreading dynamics 

after impact. This experiment verified the hypothesis that for the process parameters (e.g. 

droplet size, droplet release velocity) and the material system (liquid binder and powder) 

examined in the present research, the contribution of the droplet bouncing is negligible, 

and the primary source of error can be attributed to nonuniform droplet spreading due to 

increased printing speed.  

 

Fig. 5.8 Schematic representation of a sample printed with two different printing 

speeds 
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The results of printing speed effect on dimensional accuracy of single-track, multi-

track, and cubic features are shown in Fig. 5.9, Fig. 5.10, and Fig. 5.11, respectively.  

 
Fig. 5.9 Effect of printing speed on dimensional accuracy of single-track samples 

 

Fig. 5.10 Dimensional accuracy of multiple-track samples fabricated at various 

printing speeds 
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Fig. 5.11 Printing speed effect on accuracy of cubic parts  

All the figures illustrate a general trend of increasing error with printing speed in 

both Y and X directions. Similar to the trend observed for the parts with open slots, these 

results also show that the effect of printing speed on accuracy in Y direction (printing 

direction) is greater than that of X direction (perpendicular to Y direction). From the 

figures, it is also noticeable that for the single-track samples the sensitivity of accuracy in 

X direction at different speeds is smaller compared to both multi-track and cubic samples 

over the range of print speed studied. For example, the maximum variation of accuracy for 

single-track features is 35μm in the X direction, while for multi-track and cubic samples 

this value increases to approximately 200 μm. Such behavior can be attributed to the raster 

scanning based droplet deposition pattern that is employed for part fabrication in the M-

Lab printer. In the raster scanning, each nozzle of the printhead is utilized for successive 

droplet depositions in the Y direction followed by the powder bed movement in the X 
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direction (Fig. 5.2) to cover the entire designated area. Overlapping of droplets deposited 

in the Y direction by each nozzle forms individual lines (referred to track in this study). 

With this binder delivery pattern, fabrication of a 2D feature within each layer is 

accomplished by ensuring the binding strength between such tracks. It is worth mentioning 

that the printhead jets the binder droplets only in Y+ direction (i.e. jetting is not performed 

when the printhead moves in Y- direction). As illustrated in Fig. 5.12, for multi-track and 

cubic samples, if the spacing between successive tracks is such that considerable overlaps 

between tracks occur, the “expansion” of deposited track dimensions could be greatly 

exacerbated by liquid binder supply from the adjacent tracks, which leads to further 

increase of dimensional inaccuracy. It is worth mentioning that during the printing the 

degree of droplet overlapping was determined by the process software and depended on 

other process settings such as saturation level and layer thickness. As all the builds in the 

present study were fabricated using droplets with constant volume, higher saturation level 

and larger layer thickness would result in more excess droplet supply in printed areas, 

which would consequently lead to more significant droplet spreading and decrease of 

absolute dimensional accuracy.  
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Fig. 5.12 Schematic of feature formation inside a layer 

To describe the quantitate correlation between the printing speed and the 

dimensional accuracy of the samples in Y direction, which is significantly influenced by 

printing speed, linear models were fitted to the empirical data as shown in Fig. 5.9, Fig. 

5.10, and Fig. 5.11. The high R-squared values of these linear models indicate the linear 

equations fitted to the data can be reliably used to predict the variation of the dimensional 

accuracy of the features with printing speed for the set of the liquid binder and the powder 

material used in current study. It should be noted that these equations are highly dependent 

on the powder  feedstock characteristics and the liquid binder properties, since they largely 

determine the interaction between liquid binder and powder upon impact and permeation 

[144, 154]. 

The effect of printing speed on the variation of equilibrium saturation was 

determined experimentally from cubic samples with printing speed ranging from 100mm/s 
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to 700mm/s as shown in Fig. 5.13. It appears that a linear correlation could be established 

for the correlation between the saturation level of fabricated parts and the printing speed.  

Such a linear trend might be mainly attributed to the decrease of dimensional accuracy with 

printing speed, which is manifested in increase of dimensions of printed samples. In other 

words, higher printing speed results in the increased volume of the printed samples. As the 

nominal binder amount used for fabrication remains constant, the increased volume leads 

to lower equilibrium saturation. Decreasing the equilibrium saturation levels would 

deteriorate the mechanical strength of the printed green parts [13, 14]. Therefore, applying 

higher printing speeds for part fabrication in BJ-AM process would influence not only the 

dimensional accuracy but also the strength of the printed components. Therefore, during 

the fabrication of complex geometries, it is preferable to use lower printing speeds if high 

resolution is required. 

In addition to the printing speed, other parameters such as powder material physical 

properties (e.g. densities, wettability) and liquid binder characteristics (e.g. viscosity, 

surface tension) could also potentially influence the quality of the fabricated parts in BJ-

AM process. As the binder permeation process in the BJ-AM process is closely associated 

with the binder and powder bed characteristics, additional works are needed to establish 

more comprehensive knowledge about the potential impacts of these factors as well as their 

interactions.  
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Fig. 5.13 Saturation variation with printing speed for cubic samples 

5.4 Conclusion  

In the present paper, the effect of the printing speed on quality and integrity of the 

printed components is experimentally evaluated. It is shown that increasing printing speed 

reduces the accuracy of the fabricated pars regardless of their orientation in the powder bed 

due to the enhanced inertia forces. Also, it is observed that the accuracy of parts printed in 

X-direction differs with that of Y-oriented samples which might be partly contributed by 

the asymmetrical spreading of the droplets favored toward the printing direction, which 

arises mainly from the horizontal velocity of droplets. In addition, experiments demonstrate 

that the droplet shifting from the impact point due to the droplet bouncing does not seem 

to contribute the inaccuracy of the printed features. The experiments suggested linear 

correlation between the printing speed and dimensional accuracy of printed features in Y-

direction (printing direction). It was also observed that the saturation level of printed 
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samples is affected by printing speed due to dimensional change of printed samples. 

Further investigation coupled with high speed video that can capture the moment of droplet 

impact on the powder bed surface could potentially provide more insight into the effect of 

printing speed on the droplet impact and consequently the quality of the fabricated 

components.  
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CHAPTER 6  

EFFECT OF POWDER MATERIAL CHARACTERISTICS ON QUALITY OF PARTS 

FABRICATED VIA BINDER JETTING PROCESS 

6.1 Introduction 

In the binder jetting additive manufacturing (BJ-AM) process, drops of a binding 

liquid agent are deposited on the powder bed to create bonds between particles in the 

selective areas. After the binder deposition, the whole surface area of the printed layer 

including the saturated and unsaturated regions is exposed to external heating with a 

predetermined intensity, usually via a radiation heating source (e.g. infrared lamp). This 

external heating serves to partially cure the binder and ensure adequate mechanical strength 

for consequent printing steps. The process of powder spreading, binder deposition and in-

process curing of the binder are repeated for each layer until the entire geometry is 

fabricated as schematically illustrated in Fig. 6.1. The fabricated green parts in this stage 

are further heated normally at 200 °C for approximately 2 hours to enhance the mechanical 

strength and ensure the structural integrity of the components during handling and excess 

powder removal process. The green parts fabricated by the BJ-AM printing process possess 

only limited strength and often requires additional post-processing such as sintering and 

infiltration in order to achieve desired mechanical performance [12, 155, 156]. The post-
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printing processes generally involve the debinding step aimed to remove the binder 

material followed by a densification step that reduces or eliminates internal voids and 

enhances mechanical properties of the final structures. Therefore, it can be concluded that 

the quality of the final parts produced by BJ-AM technology is determined not only by the 

parameters related to green part fabrication process but also by the post-printing processes 

and affecting factors [14].  

Heating 
lamp

Printhead

Printing 
bed

Powder feed 
bed

Printed part

Powder 
spreader

Provide new powder

Spread powder layer

Binder printing

Binder curing

Current layer finished

 

Fig. 6.1 Schematics of BJ-AM process steps 

There exist multiple factors that could potentially influence the feature resolution 

and quality of the green components fabricated via BJ-AM process such as binder and 

powder physical properties, powder bed characteristics, droplet impact velocity, and 

powder material wettability to the liquid binder [13, 95, 155, 157, 158]. One of the key 

parameters in determining the minimum feature size and final part quality in BJ-AM 

process is the interactions between the liquid binder droplets and the powder materials. 

While the lateral spreading of the impinging droplets might negatively impact the 
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dimensional accuracy of the printed geometries, controlled spreading of the binder drops 

after impact leads to enhanced dimensional accuracy and improved attainable minimum 

feature size, which might be achieved by fast vertical penetration of the binder liquid into 

the powder bed. After binder deposition, the flow dynamics of the impinging droplets on 

the target surface including vertical penetration and lateral spreading would be influenced 

by many factors including powder bed characteristics [95, 158, 159], binder and powder 

material physical properties, droplet impact velocity, and powder wettability to the binder 

[86, 160, 161]. Many of the powder bed physical characteristics such as pore size, packing 

density, flowability and surface area are primarily determined by the powder particle 

morphology including the particle size distribution and the shape of the particles [46, 95, 

162]. It has been shown by different researchers that smaller powder particle size facilitates 

the expansion of the droplets due to smaller pore sizes, which would consequently reduce 

the accuracy of the fabricated structures [86, 95]. On the other hand, powder beds with 

larger particles are expected to facilitate the binder vertical penetration due to the increased 

powder bed permeability with larger pores. Therefore, it is clear that powder material 

characteristics would affect the binder-powder bed interaction and consequently the 

dimensional accuracy of the printed components.  

The effect of particle size distribution on the surface finish of additively 

manufactured parts has been demonstrated by different researchers in the literature [157, 

163]. Generally, smaller particles result in improved surface quality of components due to 

the diminished staircase effect, as well as the use of thinner layers [157, 164]. One the other 

hand, although the influences of particle size distribution on different aspects of the AM 

process characteristics such as powder bed packing density, flowability, part surface 
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texture, and mechanical properties have been explored in various powder bed based 

processes [163-165], there exists very limited study on effect of particle size distribution 

on the quality of green/post-processed structures manufactured by the BJ-AM process. 

Therefore, in the present work the qualitative/quantitative correlations between the powder 

particle characteristics and the quality of parts including surface finish, dimensional 

accuracy as well as mechanical strength were experimentally evaluated.  

6.2 Methodology 

In the current study, three different types of the 316L stainless steel powder (LPW 

Technology) with different mean particle size and particle size distribution were used for 

the experiments. The characteristics of the LPW SS 316L powder types used for the 

experimentations are listed in Table 6.1.  

Table 6.1 316L stainless steel powders used for the experiments  

Powder types D10 D50 D90 

Type I 8 µm 14 µm 20 µm 

Type II 20 µm 31 µm 44 µm 

Type III 54 µm 78 µm 105 µm 

The morphology of the powders including particle shape and size distribution of 

each type of powder is also shown in Fig. 6.2. The particle size distribution analysis was 

conducted using Microtrac S3000 and scanning electron microscope (SEM) micrographs 

of the powders were taken by and Zeiss Supra 35 microscope. From the results, all three 

powder types are comprised of spherical particles with unimodal size distribution of 14 

μm, 31 μm and 78 μm mean particle diameters for powder types I, II and III, respectively. 
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In order to assess the influence of the powder material characteristics on the 

interaction between the binder and powder beds, a real time imaging system using Fastec 

Imaging HiSpec 2 hig hspeed camera was developed. As shown in Fig. 6.3, the system 

consists of a micropipette (0.5-10 microliter droplet volume size), the high speed camera,  

mechanical fixtures for holding the micropipette and the camera, and a light source (150W 

Fiber Optic Dual Gooseneck Microscope Illuminator) . Individual droplets of 2 μl volume 

were deposited using the setup, and real-time flow dynamics of the impacting droplets on 

different powder beds were recorded. The diameter and depth of the resulting liquid-

permeated features were measured by an optical microscope (Olympus MX51 with 

Olympus QColor 5 digital camera). Afterwards, batches of cubic samples with 8*8*8 mm3 

dimensions were printed using the three different powder types so as to investigate the 

qualities of the three-dimensional (3D) structures printed by BJ-AM process using these 

types of material feedstock.   
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Fig. 6.2 SEM images of 316L SS powder with different size distributions a) powder 

type І with 5-25 size distribution  b) powder type ІІ with 15-45 size distribution  c) 

powder type ІІІ with 44-106 size distribution 

 
Fig. 6.3 The schematic of high-speed imaging setup 
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The BJ-AM system used for the binder/powder material interaction experiments 

and sample fabrication was the ExOne M-Lab printer. The binder used for the fabrication 

of all the samples was the ExOne PM‐B‐SR1‐04, which is an ether solvent-based binder 

compatible with the M-Lab system. To evaluate the effect of the particle size distribution 

on the packing density of the powder beds, rectangular cups with the inner dimensions of 

30*50*20 mm were printed and retrieved after binder curing at 200 °C for at least 2 hours 

to determine the mass of the layered powder and volume occupied inside the cup. Given 

the bulk density of the material, powder weight and the inner volume of the cup, the 

packing density of each powder type was calculated. For measuring the dimensional 

characteristics of the samples, digital caliper, micrometer, and/or the optical microscope 

were utilized depending on the size and structural integrity of the parts examined.  

For all the parts fabricated via M-Lab printer, the process parameters were set up 

according to Table 6.2. Additional information about the interpretation of each process 

parameter can be found elsewhere [14, 55, 166]. Also, the powder bed packing density 

values of 51%, 57%, 61% for powder types I, II, and III respectively were used for the 

printing saturation level setup according to the measurement results. For calculation of the 

saturation level, the powder bed pore volume is needed which can be determined from the 

powder bed packing density. It is worth mentioning that the saturation is described as the 

amount of pore volume filled with a liquid binder in a predefined envelope [14].  
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Table 6.2 Printing parameters used for the M-Lab BJ-AM system 

Process parameter Value 

Powder spreading speed (mm/s) 2 

Saturation level (%) 100 

Drying power (%) 80 

Drying time (s) 45 

Printing speed (mm/s) 150 

Layer thickness (mm) 0.15 

The surface roughness of the fabricated samples was analyzed using Veeco Dektak 

8M Profilometer to determine the correlations between the surface roughness of the 

samples before/after post-printing processes and the powder characteristics. The results 

were reported as the average of five replicate measurements per sample. 

To investigate the effect of the particle size on the density of the fabricated 

structures after the sintering, 8 cubic samples from each powder type were fabricated and 

sintered in argon atmosphere. The sintering process included the debinding at 500°C for 

one hour with a heating rate of 20°C min-1, followed by the sintering at 1300 °C for 90 

minutes with 10 °C min-1 heating rate, then furnace cooling to the room temperature. The 

densities of the sintered specimens were measured using Archimedes' method, and the 

microstructure were analyzed using the SEM. For the SEM characterization, the sintered 

samples were cold mounted with epoxy resin, then ground flat using grit papers from 180 
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to 1200 grit, and finally polished with 9, 3, 1-micron diamond paste in sequence of 

increased fineness. The samples prepared for SEM characterization were also used to 

measure the microhardness using a Shimadzu HMV-G microhardness tester. The Vickers 

indentation testing was carried out at random spots on the sample surface, and at least 10 

measurements were taken for each sample. 

6.3 Result and discussion 

6.3.1 Powder packing density 

The packing density of the powder beds is one of the key factors that could 

significantly affect the quality and integrity of the components in BJ-AM technology. The 

powder packing density determines the pore volume inside the powder bed which can be 

occupied with the liquid binder, which in turn influences the green part mechanical 

strength. Inaccurate determination of packing density of a powder material would result in 

either excessive binder deposition or insufficient binder supply that would in turn 

compromise the part quality. Furthermore, both the final density and the sintering 

shrinkage of the fabricated components are also influenced by the powder bed packing 

density [157, 167]. Therefore, insights into the quantitative/qualitative characteristics of 

the packing density are of crucial importance for the understanding of the part quality. It is 

well know that the packing density of a powder bed is dependent upon particle size 

distribution, particle shape, and the powder spreading system [168, 169]. It was shown that 

the effect of the mean particle size on the packing density is less significant  [46, 170], 

whereas broadening particle size distribution appears to favor higher packing densities due 

to the void-filling effect of fine particles [46, 171-174]. For the case of spherical particles 
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used in the present study and the counter-rotating roller mechanism used for powder bed 

formation, similar dependency of packing density to particle size distribution was observed 

as shown in Fig. 6.4. As the size distribution of the particles increases, the powder bed 

packing density increases. Powder type I, which has the narrowest size distribution, results 

in a powder bed packing density of 51%, whereas powder type III with wider particle size 

distribution exhibits higher packing density of 61%.  

 
Fig. 6.4 Packing density of the different powder types with the polydispersity index 

6.3.2 Powder/binder interaction and accuracy 

Fig. 6.5 shows the powder cakes from the interactions between single binder 

droplets and the powders with different types. The structures exhibit semi-spherical 

geometries with varying values of the diameter and height, which correspond to the 

spreading diameter and depth of penetration of the droplet in the powder beds, respectively.  

0

10

20

30

40

50

60

70

Type I (5-25 μm) Type II (15-45 μm) Type III (44-106 μm)

Pa
ck

in
g 

de
ns

ity
 (%

)

Powder type (mean particle size) 



122 
 

 

Fig. 6.5 The formed features resulted from the interaction of a single binder droplet 

with different powder types (a) powder type І (14μm)  (b) powder type ІІ (31μm)  c) 

powder type ІІІ (78μm) 

The quantitative results of the single droplet binder/powder bed interaction are 

shown in Fig. 6.6. From the results, the features formed by the powder type III exhibit the 

highest depth and lowest diameter. While the spreading diameter of the droplets in the 

powder bed decreases with increasing mean particle size, the final depth of the droplet 

penetration exhibits the opposite trend. Such characteristics of binder/powder material 

interaction can be attributed to the change of the macroscopic surface roughness and pore 

morphologies. The surface roughness of the powder beds is primarily determined by the 

powder characteristics such as particle shape and particle size distribution as well as the 

powder spreading quality. For powder with spherical particle morphologies, the larger 

mean particles size would generally result in powder beds with rougher surfaces. The 

surface roughness would in turn influence the fluid dynamics of the droplet impinging on 

the powder bed surface in the droplet impact-driven spreading phase. In this phase, the 

droplet spreading is mainly driven by the droplet kinetic energy from the impact. The 

surfaces with greater roughness would impede the droplet impact-driven spreading over 

the surface [112, 175, 176]. As the drop spreading speed upon the impact decreases for 

powder beds with rougher surfaces, the vertical penetration of the droplet into the powder 
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materials is effectively enhanced by increased liquid supply which would otherwise be 

more rapidly depleted from the surface due to the spreading. Fig. 6.7 shows the real-time 

images of the interaction between a binder droplet and different powder beds at the end of 

impact-driven spreading phase. These images clearly show that the powder bed formed 

with smaller particles (Fig. 6.7 a) would result in larger spreading diameter at the end of 

impact-driven spreading phase as previously explained.  

 
Fig. 6.6 Depth and diameter of single drop features vs mean particle size of 

powdered materials 

  
Fig. 6.7 Interaction of a binder droplet with different powder types at the end of 

impact-driven phase a) powder type I  b) powder type III 

0

0.5

1

1.5

2

2.5

3

3.5

4

Type I (14 μm) Type II (31 μm) Type III (78 μm)

D
ep

th
/D

ia
m

et
er

 (m
m

)

Powder type (mean particle size)

Diameter (mm) Depth (mm)



124 
 

After the impact-driven spreading phase of the droplet ends, the capillary-driven 

spreading phase becomes the dominant mechanism [91, 113, 158]. In this stage, the powder 

beds with larger pore sizes facilitate the binder permeation into the porous structure due 

the improved permeability [95], which can be quantified by the Kozeny equation that 

correlates the permeability with the mean diameter of particles [177, 178]: 

                                     𝑘 = 𝑎 
𝜖3𝐷2

(1−𝜖)2                                   (6.1) 

Where 𝜖 is the porosity of the powder bed, D is the mean diameter of powder 

particles, k is the permeability of the powder bed, and a is a constant. The volume of a 

droplet penetrated a powder bed at any given time, 𝑉𝑝(𝑡), can be estimated from the 

following equation [53]: 

𝑉𝑝(𝑡) =
𝐾

2
∫

𝑟2(𝑡)

√𝑡
 𝑑𝑡

𝑡

0
                                        (6.2) 

Where 

𝐾 = 8𝜋𝑘√
𝛾.𝑐𝑜𝑠𝜃

2𝜂.𝑅𝑝𝑜𝑟𝑒
3                                             (6.3)  

 

Where r(t) is the instantaneous radius of the spreading droplet at time t, Rpore is the 

pore radius (mean pore radius from the BET measurements), 𝛾 is the surface tension of the 

liquid, θ is contact angle of the binder droplet on the material, and 𝜂 is the droplet liquid 

viscosity.  

https://en.wikipedia.org/wiki/Porosity
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From Eq. (6.2), the higher permeability (k) would lead to the rapid droplet 

penetration into the powder bed. Therefore, for the powder beds with large particles, the 

droplet spreading over the surface might be reduced by the rapid depletion of binder droplet 

from the surface due to enhanced penetration. Therefore, for both stages of the droplet-

powder bed interactions, the powder beds with larger particle sizes would facilitate the 

droplet vertical penetration and impede the binder droplet spreading.  

Such droplets-powder bed interaction characteristics were also observed in cubic 

specimens (8×8×8 mm3) as shown in Fig. 6.8. Consistent with the results obtained from 

the single-droplet experiments, the samples fabricated from powder with smaller particle 

sizes exhibit higher inaccuracies in the lateral directions (X and Y directions) compared to 

those printed from powder with larger particle sizes. This contrasts with the previous 

perception that smaller powder particle size would always be beneficial to the accuracy of 

the printed structures. On the other hand, the accuracy of samples in the z direction (binder 

vertical penetration) decreases with the increasing mean particle size. Considering that the 

layer thickness used for this study is 150μm, the large particle size of the Type III powder 

likely contributed to the drastic reduction of the z-accuracy due to insufficient powder 

spreading.  
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Fig. 6.8 The effect of mean particle size on dimensional accuracy of printed parts 

6.3.3 Surface roughness  

Surface roughness of green parts 

To evaluate the influence of the powder particle size characteristics on the surface 

quality of printed structures, the same cubic samples used for dimensional studies were 

investigated. The roughness of top surfaces of the samples in different directions, namely 

Y (printing direction) and X (normal to printing direction) as specified in Fig. 6.9, were 

determined. The results are shown in Fig. 6.10. 
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Fig. 6.9 Schematic representation of fabrication platform and defined directions  

 
Fig. 6.10 Surface roughness of fabricated green specimens in X and Y directions 

From the results, the average surface roughness of fabricated specimens in both 

directions increases with increasing mean particle size. This could be readily attributed to 

the increased peak-to-valley ranges in powder beds formed by large particle sizes [163, 

179]. Also, from the results it appears that Ra values in X direction are slightly higher than 

those in Y direction. Such discrepancies in roughness values might be contributed by both 
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the binder deposition strategy used in the M-Lab printer and the rearrangement of powder 

particles from the binder-powder interactions as well as the roller powder spreading 

mechanism. In the M-Lab printer, droplet delivery to the layered powder bed is carried out 

in a pattern of raster scanning with droplet impact velocity of around 8 m/sec [166]. 

Considering the common droplet jetting frequency (4 kHz), the droplet velocity and the 

prinrhead distance from the powder bed surface (approximately 500 µm), the time interval 

between the successive droplets impacting the powder bed is on the order of a few hundred 

micro-seconds. As the time for binder droplet depletion from the powder bed surface is on 

the order of milliseconds [91, 95], on can expect that the droplets could coalesce and form 

continuous lines before the binder permeation into the powder bed is complete. Therefore, 

the generation of each cross section of an object in the BJ-AM process can be effectively 

treated as the formation of straight lines with various lengths as shown schematically in 

Fig. 6.11.  

 
Fig. 6.11 Schematic of 2D feature formation within a layer 
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The formation of such lines before complete binder penetration and the consequent 

interactions between these lines and the powder bed might result in a more corrugated 

texture in the X direction. Such distinctive texture of the surface is also expected to 

diminish with the increase of mean particle size or when the droplet size (50 µm diameter) 

becomes comparable to the mean particle size. With larger particle sizes or smaller 

droplets, the time for droplet complete penetration into the powder bed decreases which in 

turn would prevent the coalesce of the binder droplets. In order to investigate the “scanning 

line” effect, cubic containers were fabricated with different powder types and analyzed 

using the optical microscopy. Fig. 6.12 displays two cubic containers in the green state 

printed with the powder types I and III. From the images, it is clear that for powder with 

smaller particle size (Type I), tracks and valleys are visibly discernable along the printhead 

raster direction. With larger mean particle size (Type III), the effect of the” scanning line” 

becomes less significant.  
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Fig. 6.12 The effect of the raster scanning strategy for binder delivery on the surface 

roughness of the green parts a) sample fabricated with the powder type I  b) sample 

made from the powder type III 

Surface roughness of sintered parts 

The surface roughness of the sintered specimens fabricated from powders of 

different particle sizes is shown in Fig. 6.13. The surface roughness of the samples 

increases when the mean particle size of the powder material increases, which is consistent 
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with the trend observed from the green parts. The parts fabricated with the powder type I 

exhibited the lowest value of Ra in both X and Y directions. No consistent trend was 

observed for the roughness values between the un-sintered and sintered groups. On the 

other hand, under the sintering parameters used in this study, it appears that the discrepancy 

of the surface roughness between X and Y directions was retained after post processing.  

 
Fig. 6.13 Surface roughness of specimens after sintering in X and Y directions 

6.3.4 Density  

Green part density 

In order to compare the results, the measured density of the parts is normalized by 

the density of the solid 316L stainless steel (7.99 g/cm3). The results of the green part 

density measurements are shown in Fig. 6.14. From the results, larger mean particle sizes 

correspond to higher densities of the green parts, which is consistent to the trend observed 

from the powder bed packing density. It appears that the feature fabrication process does 

not significantly influence the packing density of the powders. In other words, the droplet 

impact and the interactive forces involved in the binder penetration into the powder 
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material do not appear to impose considerable density change during the fabrication 

process.  

 
Fig. 6.14 Effect of particle size on green part density  

Sintered part density 

The effect of the different powder particle sizes on the densities of the sintered parts 

is shown in Fig. 6.15. The parts fabricated from the powder type I with the smallest mean 

particle size exhibit the highest density levels (80%) after sintering. Samples printed from 

powder type II exhibit similar density levels (78%) to those made from powder type I. On 

the other hand, the sintered density of the samples fabricated from powder type III exhibit 

the lowest density levels (72%). Although the density of the powder-based parts after the 

sintering are influenced by their green densities [180], the results from this study suggest 

that the higher green density does not necessarily lead to higher density after sintering. 

Similar results based upon experimental, numerical, and analytical investigations have also 

been reported in the literature [181]. This can be explained by the fact that the powder with 

larger particle sizes requires higher level of sintering kinetic energy to achieve the same 
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level of sintering in comparison to the powder with small particle sizes due to smaller 

surface to volume ratios and larger boundary radius [182, 183]. At constant sintering 

temperature of 1400 °C used in this study, parts fabricated with small particle sizes exhibit 

higher densities and more homogeneous microstructures as shown in Fig. 6.16.  The as-

polished cross sections of the sintered samples are shown in Fig. 6.16. The microstructures 

of the post-processed samples are consistent with the results of the density measurements 

of the sintered samples (Fig. 6.15). SEM micrograph of the sample made from powder type 

I (Fig. 6.16 a) shows more uniform microstructure and less porosity. In addition to the 

smaller particle size, the narrower particle size distribution of this powder type can also 

lead to narrower pore size distribution and consequently contribute to the homogeneity of 

the microstructure [184]. As the mean particle size increases, the percentage and the size 

of the porosities in the microstructure of the sintered samples exhibit an increasing trend.  

 
Fig. 6.15 Effect of particle size distribution on the density of the sintered parts 
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Fig. 6.16 SEM micrographs of sintered specimens a) type I  b) type II  c) type III 

6.3.5 Microhardness of the sintered parts 

The microhardness of the samples fabricated from different type powder materials 

after sintering is shown in Fig. 6.17. The parts made with the smaller mean particle size 

exhibit higher Vickers hardness. Within the range of the powder particle sizes investigated 

in the present study, as the particle size of the powder materials increases, the hardness of 

the sintered specimens declines. The powder type III with the largest mean particle size 

results in the lowest hardness value of 36 HV. Such trend is consistent with the results from 

the density analysis with the sintered samples, which can be readily explained by the 

porosity characteristics previously discussed. It is generally recognized that the mechanical 

strength of sintered powder metallurgy parts such as hardness increases as the 

microstructural porosity reduces [185-187]. Even though powder with larger particle sizes 
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might be favorable for higher geometrical accuracy for the green parts, they are likely to 

result in lower overall qualities with the sintered parts.  

 

Fig. 6.17 Effect of the mean particle size on hardness of the sintered samples 

6.4 Conclusion 

In the present study, the effect of the powder particle size characteristics on the 

quality of both the green and sintered parts fabricated via the binder jetting additive 

manufacturing (BJ-AM) process was experimentally investigated. The 316L stainless steel 
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experimentation. The results are summarized as follows. 
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2. The flow dynamics of the binder droplets including spreading and penetration is 

significantly influenced by the powder particle sizes, which in turn affects the dimensional 

accuracies of the printed green parts.  

3. Larger powder particle size appears to be beneficial to dimensional accuracies 

and green part densities of the BJ-AM parts; 

4. Smaller powder particle size appears to be beneficial to the surface finish of the 

fabricated parts, as well as higher mechanical properties and densities of the sintered parts.
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CHAPTER 7  

BINDER DROPLET PROFILE PREDICTION AFTER COMPLETE PENETRATION 

INTO A POWDER BED 

7.1 Introduction 

In the binder jetting additive manufacturing process (BJ-AM), each layer of the part 

geometry is fabricated by selectively applying droplets of a liquid binder on the surface of 

a layered powder material through a drop-on-demand (DOD) printhead. The deposited 

liquid binder diffuses into the powder bed and binds powder particles in the regions 

specified from a CAD model. The entire surface of the layer including saturated and dry 

areas is then exposed to external heating performed via a radiation heat source in order to 

partially cure the binder and ensure adequate mechanical strength for consequent printing 

processes. After the drying/curing, a new layer of the powder will be added to the already 

printed layer, and the process repeats until the entire green part is printed [100]. The 

droplets employed in BJ-AM for fabrication of each layer are deposited in a pattern of 

raster scanning. Each individual droplet printed into a powder bed will create a profile after 

the interaction of a binder droplet and powder bed is complete. In raster scanning binder 

delivery pattern, the droplets are deposited consecutively with certain lateral spacing to 

ensure that such profiles have sufficient overlapping areas to form into a 2D structure 
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within each layer. By stacking of the 2D structures with appropriate binding strength 

between successive layers 3D geometry of an object is fabricated. Therefore, the droplet 

profile characteristics as the primitive building element of every 3D printed object are of 

significant importance in determining the final part quality in terms of mechanical 

performance and dimensional accuracy.  The goal of this chapter is to provide a predictive 

model for droplet-powder interaction in an effort to estimate the droplet profile 

characteristics inside the powder bed. To accomplish this objective, the interaction of the 

binder droplet and powder bed at every stage of droplet evolution from the moment of 

impact to equilibrium state, where the interaction is complete, needs to be carefully 

analyzed. In this study, it is assumed that the droplet profile after complete penetration into 

a power material is of a spherical cap with the radius and height of r and h, respectively. 

Therefore, the developed model is to predict the diameter (i.e. maximum droplet spreading) 

and the height of such cap (the droplet penetration depth) in order to characterize the 

droplet profile inside any given powder material. 

7.2 Modeling 

The droplets impinging the powder bed surface with a certain velocity might 

spread, splash, or rebound off the target surfaces upon the impact. The behavior of the 

impinging droplets on a surface depends on various parameters including droplet physical 

properties, powder bed physical characteristics, as well as powder bed wettability with the 

impinging droplet [113, 141, 143-145]. In the binder jetting process, the binder and powder 

material system is normally chosen in a way that the splashing or rebound phenomenon is 

less likely to take place due to their respective physical properties and the powder material 
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wettability to the liquid binder [86, 158]. Therefore, the splashing and rebound of an 

impinging droplet and its effect on the binder/powder bed interaction is not within the 

scope of the current study. After the impact, the droplets might undergo different phases 

driven by inertial forces, capillary forces, and gravitational forces [86, 158]. Due to the 

droplet volume range and binder physical properties typically used in the binder jetting 

process, which result in the small Bond number (BO << 1), the effects of gravitational 

forces on the droplet dynamics can be ignored [86, 91, 95, 158]. The dimensionless Bond 

number can be determined from the below equation: 

          𝐵𝑂 =
𝜌𝑔𝐿2

𝛾
                                               (7-1)                                      

where 𝜌 is density of the drop, g the acceleration due to gravity, L is taken to be 

diameter of the drop before impact and 𝛾 is the surface tension. For the BJ-AM system 

examined in the present investigation, the resulting Bond number is on the order of 10-4, 

which indicates that gravity influence on the droplet interaction with powder bed is 

negligible. Therefore, inertial and capillary forces can be considered as the dominant 

driving forces for spreading and penetration of liquid binder droplets into the powder bed 

[91, 158]. From a physiochemical perspective, the interaction between a liquid droplet and 

a porous material is a very complex process [188]. In general, the drop dynamics on impact 

can be divided into impact dominant phase and capillary dominant phase. While in the 

impact dominant phase the droplet initial velocity is important, and the inertial forces 

govern the spreading dynamics of the droplet, in the latter phase the capillarity becomes 

the dominating mechanism for the droplet behavior [113, 158, 189]. It has been shown by 

various researchers that these two phases occur at different timescales and as a result, might 

be analyzed separately [91, 158, 189]. As a droplet impacts with the surface, initial impact 
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spreading in which the contact line between the droplet and the target surface expands 

radially starts that is mainly derived by the initial kinematic energy. The degree of 

spreading over the surface at this stage depends not only on the binder and powder material 

physical properties but also on the compact conditions and surface wettability. During this 

phase and before the capillary driven flow occurs, the droplet might experience some 

momentary disturbances or damped oscillation of the shape [86]. Toward the end of the 

impact dominating phase, the capillary forces overshadow the inertial forces and begin to 

dominate the droplet flow dynamics. At this stage, droplet behavior is largely controlled 

by capillarity and further expansion of the contact line might occur before droplet 

penetration into the powder bed is complete [86, 95, 113, 188, 190]. 

The impact driven spreading has been investigated by many researchers. There 

exist numerous experimental, theoretical, and numerical studies on the maximum 

spreading radius (or diameter) of an impinging droplet mostly on solid surfaces due to its 

technological importance in various industries [91, 113, 144, 154, 189, 191]. In the 

literature, the theoretical models that are derived from energy conservation have been 

widely used for predicting the maximum spreading diameter because of the simplicity and 

accurate predictive capabilities of these models [189]. There exist several analytical models 

based on energy balance approach that can be used for prediction of the maximum 

spreading diameter such as Mao et al. [147], Fukai et al. [192], Collings et al. [193], 

Chandra and Avedisian [194], Pasandideh-Fard et al. [195], Park et al. [196], and Ukiwe 

et al. [197]. Among these works, the model developed by Park et al. [196] has been shown 

to predict the maximum spreading diameter with greater accuracy under the conditions 

which are representative of typical drop-on-demand ink-jet printing [189, 196, 198]. 
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Therefore, in the current study the following expression derived from Park et al. model is 

used to predict the maximum spreading diameter of the binder droplet impinging on the 

powder bed surface in the absence of capillary penetration.  

𝛽∗ = (

𝑊𝑒+12+3[𝑓𝑠−𝑐𝑜𝑠𝜃 (
4𝑠𝑖𝑛3𝜃

(2−3𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠3𝜃)
2
3

)]

3(𝑓𝑠−𝑐𝑜𝑠𝜃)+
4𝑊𝑒

√𝑅𝑒

)1/2                               (7-2) 

where  𝑓𝑠 =
2(1−𝑐𝑜𝑠𝛼)

𝑠𝑖𝑛2𝛼
, α is the contact angle at maximum spreading, 𝛽∗(=

𝐷∗

𝐷0
) is the 

maximum spreading factor which is equivalent to the ratio of the maximum spreading 

diameter (𝐷∗) to initial droplet diameter before impact (𝐷0), We (= 𝜌𝐷0𝑉0
2/𝜎) is 

dimensionless Weber number, Re (= 𝜌𝐷0𝑉0/𝜂) is the dimensionless Reynolds number, 𝜃  

is the equilibrium contact angle between the liquid binder and the surface, 𝜌 is the liquid 

density, 𝑉0 is the impact velocity, 𝜎 is surface tension, and 𝜂 is liquid viscosity. 

At end of the initial impact driven phase and after reaching the maximum diameter, 

as the capillary forces begin to dominate the interaction between the droplet and powder, 

two scenarios might occur depending on the rate of the droplet vertical penetration into the 

powder bed (VP). It is worth mentioning that the penetration rate of a deposited droplet on 

a porous surface is largely determined by the liquid physical properties, powder bed 

characteristics, and powder material wettability to the impinging droplet [53, 86, 95, 199]. 

In the first scenario, the rate of vertical penetration of the droplet into the powder bed is 

sufficiently high that droplet spreading over the surface is inhibited due to the quick 

depletion of the droplet from the powder bed surface. In other words, rapid penetration of 

the droplet into the porous bed impedes the capillary spreading of the droplet over surface. 

Another possible scenario is the further extension of the contact line between the droplet 
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and the powder bed surface due to the simultaneous vertical penetration and lateral 

spreading over the surface. In this case, the penetration rate is comparable to that of 

capillary spreading over the surface and further spreading of the droplet might extend the 

saturated area in the lateral direction. Fig. 7.1 schematically shows these prospective 

scenarios which might take place during the capillary driven phase of the droplet and 

powder bed interaction.  

 
Fig. 7.1 Schematic representation of droplet penetration into the powder bed  a) 

Vertical penetration rate (VP) >> radial spreading rate over the surface (VS)   b) VP 

~ VS 

Fig. 7.2 illustrates the sequence of events that occur after a droplet impacts on a 

substrate as described previously.  

a) b) 
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Fig. 7.2 Schematic illustration of the sequence of events that occurs after a droplet 

impacts on a porous substrate a) Vertical penetration rate (VP) >> radial spreading 

rate over the surface (VS)   b) VP ~ VS 

For both scenarios, the maximum spreading radius (or diameter) could be 

determined from the fact that at one point during the binder/powder material interaction 

the droplet remaining on the powder bed surface reaches an equilibrium state before 

complete migration into the powder bed. The diameter of the droplet at this equilibrium 

state corresponds to the maximum spreading extension of interest and can be found as 

follows. 

The total penetrated volume at time t, Vp(t), can be determined from the model 

presented by Denesuk et al. [53] according to the following equation: 

𝑉𝑝(𝑡) =
𝐾

2
∫

𝑟2(𝑡)

√𝑡
 𝑑𝑡,

𝑡

0
                                  (7-3) 
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Where 

 𝐾 = 𝜋. 𝑎𝑝√
𝛾.𝑐𝑜𝑠𝜃.𝑅𝑝𝑜𝑟𝑒

2𝜂
                           (7-4) 

 

r(t) is the instantaneous radius of the spreading droplet at time t, Rpore is the pore 

radius (mean pore radius from the BET measurements), ap is the volume fraction of the 

pores, 𝛾 is the surface tension of the liquid, θ is contact angle of the binder droplet on the 

material, and 𝜂 is the droplet liquid viscosity. From equation (7-3), in order to obtain Vp (t) 

(i.e. the droplet volume penetrated into a porous material at any given time) r(t) needs to 

be initially determined.  

The radius of a small droplet spreading on a solid is typically described by the 

following equation [95, 200, 201]. 

r(t) = Q.tn                                    (7-5) 

Where r is the spreading droplet radius and Q, n are constants. From this correlation, 

time zero (t=0) clearly results in a radius of zero. However, as in this study the time 0 is 

taken to the be the point at which the capillary spreading begins, r(0) is clearly of a finite 

value due to the initial impact driven spreading. Therefore, the following equation with 

non-zero starting radius was adopted to be used in Eq. (7-3) [95, 202]. 

r(t) = a.(b+t)n                           (7-6) 

Where a and b are constants, and n is the same as in Eq. (7-5). In the literature, a 

broad range of values have been reported for n, from 0.033 to 0.316, for different material 
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systems [95, 200, 201, 203]. It is well known that the value of n depends on temperature, 

humidity, pH, the presence of impurities or electrolytes, polymers, surface charges, etc. 

[202-204]. 

a, b, and n values for each material system can be experimentally determined by 

real-time imaging of a droplet interaction with any porous/non-porous material taken from 

the moment of impact to the equilibrium state. Furthermore, ap, 𝛾, θ, Rpore, η need to be 

experimentally measured in order to calculate the value of K. With all the required inputs 

in Eq. (7-4), the volume of the droplet remaining on the powder bed surface at any given 

time can be calculated from Eq. (7-7), 

Vr(t) = V0 - Vp(t)                                  (7-7) 

Where V0 is the droplet initial volume before the impact and Vr(t) is the volume of 

the droplet remaining on the powder bed surface at any given time. 

After the impact and in the capillary driven phase, the contact angle between the 

droplet and powder bed surface undergoes decreasing changes. In other words, the contact 

angle will pass from the advancing value through the static contact angle at the point at 

which spreading stops, progressing then to the receding contact angle [95]. For this one 

instant that the spreading stops, the remaining liquid on the powder bed surface will have 

the equilibrium form. The diameter of this equilibrium shape which equals to the maximum 

spreading diameter of interest might be determined applying one of the equations below, 

Eq. (7-8) or Eq. (7-9) depending on the droplet impact velocity [86, 95].  

𝑑𝑒(𝑡) = 2. (
3.𝑉𝑟(𝑡).𝑠𝑖𝑛3𝜃

𝜋.(1−𝑐𝑜𝑠𝜃)2.(2+𝑐𝑜𝑠𝜃)
)1/3                   (7-8)    
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𝑑𝑒(𝑡) = 2𝛽∗. (
3.𝑉𝑟(𝑡)

4.𝜋
)1/3                                   (7-9) 

Eq. (7-8) provides the equilibrium radius of a droplet of a given volume carefully 

placed on a surface (i.e. negligible impact velocity) in the absence of infiltration which 

assumes a spherical cap shape at equilibrium. On the other hand, Eq. (7-9) gives the 

maximum equilibrium radius of a droplet impacting a non-porous surface with a 

considerable velocity. Using droplet initial volume V in the equations (7-8) and (7-9), if 

the droplet impact velocity is not negligible, Eq. (7-9) would result in higher value and 

should be used in the modeling. Otherwise, Eq. (7-8) should be used for the calculations 

and would lead to more accurate predictions.  

Therefore, by determining the point at which the equilibrium diameter and the 

diameter of the spreading droplet are equal the maximum spreading diameter of interest 

can be numerically found.   

In addition to the maximum droplet extension (diameter of droplet profile), the 

depth of the droplet penetrated a powder bed should also be determined for fully predicting 

the droplet profile inside the powder bed. For this purpose, the Washburn equation can be 

used according to the equation below.  

ℎ = [
𝑅𝑝𝑜𝑟𝑒 𝑐𝑜𝑠𝜃

2
]

1

2 [
𝛾

𝜂
]1/2 𝑡1/2                             (7-10) 

Where t is the time for complete absorption of the binder droplet. Denesuk in [53] 

has shown that this time can be estimated by the following relation. 

𝑡 =
𝜂 𝑅𝑝𝑜𝑟𝑒

3  

32 𝛾 𝑐𝑜𝑠𝜃 
 (

𝑉0

𝜋 𝑟𝑚𝑎𝑥
2  𝑘

)2                                    (7-11) 
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Where rmax is the maximum radius of the spreading droplet on a powder bed surface 

and k is the powder bed permeability which can be experimentally measured for any 

material system (i.e. liquid binder and powder material). 

7.3 Methodology for the model validation 

In order to assess the accuracy of the proposed model, a real-time imaging system 

using Fastec Imaging HiSpec 2 high speed camera was developed. As shown in Fig. 7.3, 

the system consists of a micropipette (2-10 microliter droplet volume size), the high-speed 

camera, mechanical fixtures for holding the micropipette and the camera, and a light source 

(150W Fiber Optic Dual Gooseneck Microscope Illuminator). Individual droplets of 2 μl 

volume were deposited using the setup, and real-time flow dynamics of the impacting 

droplets on different powder beds were recorded. The final diameter and depth of the 

resulting liquid-permeated features were measured by an optical microscope (Olympus 

MX51 with Olympus QColor 5 digital camera). For all the experiments, the same types of 

the 316 L Stainless Steel powder as in chapter 6 were used. The ExOne M-Lab printer was 

used for forming the powder beds with the roller spreading speed of 2 mm/s. The binder 

used for the interaction study was the ExOne PM‐B‐SR1‐04, which is an ether solvent-

based binder compatible with the M-Lab system.  
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Fig. 7.3 The schematic of high-speed imaging setup 

The Cannon-Fenske Routine Viscometer, size 150, was employed to measure the 

viscosity of the liquid binder according to ASTM D445 and ISO 3104 [205]. For 

determining the surface tension of the binder, stalagmometric method was chosen. In this 

method, the total weight and number of drops of the liquid binder falling from a capillary 

glass tube (Fig. 7.4) were recorded, and the surface tension of the fluid were consequently 

calculated. 

 

 

Fig. 7.4 Volumetric pipet used for measuring the surface tension of the binder 

https://en.wikipedia.org/wiki/Glass_tube
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For measuring the permeability of the powder beds, k, a set up shown in Fig. 7.5 

was used [24].  The tube is secured in the bottom end and filled with a liquid binder on top 

of the sample. In this experiment, if the height is measured over time, an equation of the 

following form can be employed to determine the permeability [24].  

  
                                                           h = h0 e-nkt                                  (7-12) 

 

where k is the permeability, L is the sample thickness, A is the sample cross-section, 

r is the inside radius of the tube, and n is a geometrically determined constant which is 

defined as  

 
                                                           n = A/πr2L                                     (7-13)                
 

where h0 corresponds to the initial height of binder at time 0. The permeability can 

be found by fitting a line to the collected data plotted as ln (h/h0) vs t.  

 

 
Fig. 7.5 Schematic diagram of the set up for permeability measurement  
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To measure the packing density of the powder beds, rectangular cups with the inner 

dimensions of 30*50*20 mm were printed and retrieved after binder curing at 200 °C for 

at least 2 hours to determine the mass of the layered powder and volume occupied inside 

the cup. Given the bulk density of the material, powder weight and the inner volume of the 

cup, the packing density of each powder type was calculated. For measuring the 

dimensional characteristics of the samples, digital caliper, micrometer, and/or the optical 

microscope were utilized depending on the size and structural integrity of the parts 

examined.  

The contact angle is one of the key parameters which can be empirically determined 

for any material system. For the present study, the sessile drop method was employed to 

determine the equilibrium contact angle (θ) and the contact angle at maximum spreading 

(α) between the liquid binder and different powders [122, 123]. For this purpose, glass 

microscope slides (30×30×2.5 mm) covered with double-sided adhesive tape were shaken 

briefly in a container of the tested powder, and excess particles which were not firmly 

attached to the surface were removed by means of low pressure air cleaning [122, 123]. In 

order to obtain accurate results, the volume of the binder droplets used for the contact angle 

measurements must be chosen in such a way that the effect of gravity can be neglected. 

When the liquid droplet size exceeds a particular length known as the capillary length as 

defined in Eq. (7-10), gravitational effects become significant [124, 125]: 

𝑙 = √
𝛾

𝜌𝑔
                                  (7-14) 

Therefore, considering the appropriate droplet diameter obtained from Eq. (7-10) 

for the liquid binder used by the M-Lab, the 2 μl droplets were placed on the glass slides, 
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which correspond to ~1.5mm droplet diameter that is smaller than the capillary length of 

the binder (1.7mm). Five replicates for each powder material were used for the contact 

angle measurements, and the average results was used in the calculations.   

Furthermore, all the math work for solving the equations was carried out using PTC 

Mathcad Prime 4.0 

7.4 Results and discussion 

The values of the parameters required for determining the maximum spreading radius in 

the impact driven phase (or diameter) are given in Table 7.1.  

Table 7.1 Experimental parameters needed for impact driven maximum spreading 

Binder density (g/cm3) 0.99 

Impact velocity (mm/s) 50 

Surface tension (N/m) 0.03 

Binder viscosity (Pa.s) 0.00431 

Weber number 0.13 

Reynolds number 18.3 

The experimentally determined contact angles (θ and α) for different powder beds 

are also given in Table 7.2.  

Table 7.2 Experimentally measured contact angles  

Powder grades Equilibrium contact angle (θ) Contact angle at maximum spreading (α) 

Type I 30 50 

Type II 32 58 

Type III 33 65 
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Having the equilibrium contact angle (θ) and the contact angle at maximum 

spreading (α), 𝑓𝑠 and 𝛽∗ cane be calculated for each material system. According to the 

experimentally measured parameters, dimensionless 𝛽∗ was determined to be 2.9, 2.6, and 

2.4 for the powder beds composed of the 316L SS type I, II, and III, respectively. 

Fig. 7.6 shows the diameter of the spreading droplet on the surface of the powder 

bed of type I as a function of time. In the graph, the time 0 corresponds to the point at 

which the impact driven phase ends and the spreading due to the capillary forces begins to 

occur. As previously described, data (instantaneous spreading diameter versus time) in the 

Fig. 7.6 can be represented by an equation of the type given by Eq. (7-6). Therefore, a 

curve of this sort with parameters of 1.08, 10.48, and 0.155 for a, b, and n, respectively, 

was fitted to the data as shown by the red color in Fig. 7.6.  

 

 
Fig. 7.6 Diameter of a droplet spreading on the surface of different powder beds 

versus time 
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The real time images of characteristic time series of the droplet interaction with 

powder bed of type I 316L stainless steel material are shown in Fig. 7.7. 

 
Fig. 7.7 Real time images of characteristics of the droplet interacting with powder 

material type I from impact (image 1) to complete penetration (image 8) 

R-squared of the fit is 0.95 which indicates that the fitted model accounts for 96 

percent of the variability of the data. The resulting equation for the instantaneous droplet 

radius on the surface of type I powder bed is as follows. 

𝑟(𝑡) = 1.08(10.48 + 𝑡)0.155                            (7-15) 

The same procedure was applied for the other powder types (type II and III), and 

the results given in Table 7.3 were found for the fitting parameters. 

Table 7.3 Fitting parameters for Eq. (7-6) 

Powder grades a b n 
Type I 1.08 10.48 0.155 
Type II 0.88 11.8 0.18 
Type III 1.04 6.3 0.13 

The values of n (0.155, 0.18, and 0.13) for different powder materials agree well 

with the range (0.033 ≤ 𝑛 ≤ 0.316) reported in the literature. The results of the 
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experiments to measure Rpore and ap for each powder bed are also given in Table 7.4. With 

these values, K value could be calculated for each material system.  

Table 7.4 Mean pore radius and pore density for different powder beds 

Powder grades Rpore (μm) ap (%) 

Type I 0.9 49 

Type II 2.8 43 

Type III 4.9 39 

Having an equation for the droplet spreading radius as a function of time along with 

the K value for each powder bed, Eq. (7-3) can be used for determining the binder quantity 

penetrated the powder bed at any given time. As an instance, the equation below is used to 

calculate the binder volume penetrated the powder bed type I at any given time.  

𝑉𝑝(𝑡) =
𝐾

2
∫

(1.25(1.2+𝑡)0.09)2

√𝑡
 𝑑𝑡,

𝑡

0
                           (7-16)    

Therefore, at any given time, the amount of the liquid binder remaining on the 

powder bed surface can be calculated from Eq. (7-7). This amount should be substituted in 

one of the equations (7-8) or (7-9) depending on impact velocity to obtain equilibrium 

diameter for any given volume. As explained previously, with the droplet initial volume of 

2 μl, and the impact velocity of 15 mm/s the equation (7-9) would result in the higher value 

and therefore should be used in calculations for this study. As a result, the maximum 

diameter can be numerically found for any material system by specifying the point at which 

the equilibrium diameter and the diameter of the spreading droplet are equal.  
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The equilibrium droplet radius for the volume of the liquid binder remaining on the 

powder bed surface predicted by Eq. (7-9) along with the spontaneous spreading droplet 

radius is plotted in Fig. 7.8 for different powder beds. 
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Fig. 7.8 Instantaneous spreading droplet radius (red color) and the equilibrium 

droplet radius (blue color) for powder beds a) type I   b) type II   c) type III 
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From the developed droplet spreading model, the maximum spreading diameter 

(i.e. maximum wetted diameter after completer absorption of the droplet) are predicted to 

be 3.6, 3.2, and 2.92 mm for the powder beds of grade I, II, and III, respectively.  

The results of the permeability measurements for different powder beds are 

reported in Table 7.5. Given the permeability values and the predicted maximum spreading 

radius, Eq. (7-11) cab be used to calculate the time it takes for a binder droplet of a certain 

initial volume to completely penetrate a powder bed of give particle size (pore size).  

Table 7.5 The measured permeabilities for different powder materials 

Powder grades K (cm2) 

Type I 0.37×10-9 

Type II 2.9×10-9 

Type III 9.9×10-9 

The time for the binder droplet of 2 μl to fully infiltrate the powder beds of type I, 

II, III were determined to be 130, 60, and 50 ms, respectively. Given these values for the 

droplet penetration time, Eq. (7-10) could be employed to determine the depth of 

penetration for each material system. The penetration depth and maximum spreading 

diameter for each powder material predicted using the developed model and the ones 

obtained experimentally are given in table below.  
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 Table 7.6 Predicted values for maximum spreading and penetration depth 

Powder 
grades 

dmax from 
the model 

(mm) 

dmax from 
experiments 

(mm) 

error for 
dmax (%) 

h from the 
model 
(mm) 

h from 
experiments 

(mm) 

error for 
h (%) 

Type I 3.6 3.9 8.3 0.57 0.51 11.8 

Type II 3.2 3.5 9.4 0.75 0.69 8.7 

Type III 3 3.2 6.7 0.91 0.85 7.1 

dmax: Max spreading diameter 
h: Penetration depth 

Assuming a spherical cap for the area saturated by the droplet at equilibrium as 

schematically shown in Fig. 7.9, the predicted values for the droplet maximum spreading 

and penetration depth for any giving material system (i.e. a liquid binder and a power 

material) provide the necessary knowledge for estimating the droplet profile inside a 

powder material.  

 
Fig. 7.9 schematic of a formed droplet profile inside the powder after complete 

penetration 

From the results, it appears that the experimental results for the maximum spreading 

diameter are slightly higher than the ones predicted by the model. This could be partly 

attributed to the deviation of Park’s model used for the prediction of the maximum 

spreading of a droplet on a solid surface (β*) in the impact driven phase. It has been reported 

in the literature the predications of this model falls in most cases within 10% of the 
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experimental data [196]. Furthermore, the use of the mean pore size for calculating K in 

Eq. (7-6) could overestimate the droplet volume penetrated a powder bed at a given time, 

and as a result, lead to the predictions which underestimate the actual observed values for 

the maximum spreading. K which can be regards as a measure of permeability depends on 

pore size distribution in a way that the wide pore size distribution generally decreases the 

permeability below that calculated from the mean pore size [95, 206]. The opposite trend 

is observed for the penetration depth predictions obtained from the model. In other words, 

the results predicted by the developed model for the penetration depth seem to have lower 

values than those obtained experimentally. This is attributable to the maximum spreading 

radius obtained from the model that is used in Eq. (7-11) for determining the droplet 

penetration time. As the model underestimates the maximum spreading radius, the use of 

this parameter results in longer estimated penetration time and consequently, higher 

penetration depth. 

The results also reveal the significant influence of the particle size on the 

droplet/powder bed interaction and consequently, on the profile formed inside the powder 

bed after droplet complete penetration. The powder bed of type I (14 μm mean particle 

size) results in the largest diameter and the smallest penetration depth. In contrast, the 

powder material type III (with the mean particle size of 78 μm) leads to smallest diameter 

of the formed profile and the largest penetration depth. As shown in Fig. 7.10, while the 

depth of penetration increases with the mean particle size, the maximum diameter of the 

formed profiles shows decreasing trend when the mean particle increases. As explained in 

the previous chapter, such characteristics of binder/powder material interaction can be 
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attributed to the change of the macroscopic surface roughness and pore morphologies with 

powder particle size distributions.  

 

 
Fig. 7.10 Maximum diameter and depth of droplet profile inside the powder bed 

from the developed model and the experiments 
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Fig. 7.11 shows the equilibrium droplet radius and the spontaneous spreading 

droplet radius for the different powder material types. From the figure, it appears that 

droplet spreading rate for all the powder types (I, II, and III) are approximately similar. In 

other words, despite the different initial spreading radius derived by the initial kinetic 

energy the rate of the droplet spreading radius in the capillary driven phase follow the same 

trend only shifted by a certain value. Interestingly, it is observed that at any given time the 

ratio of the instantaneous droplet radius for different powder material types are almost the 

same as the ratio of the β* (maximum spreading factor) for the corresponding powder 

materials. Therefore, given the rate of the droplet spreading radius on a powder material of 

a given particle size, it is possible to predict the spreading radius rate for the different 

particle sizes of the same powder material.  

 

Fig. 7.11 Instantaneous spreading droplet radius and the equilibrium droplet radius 

for powder beds type I, II, and III 
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7.5 Conclusion 

A new model was developed based upon the droplet spreading/penetration 

dynamics for the prediction of a droplet profile inside a powder bed after complete 

penetration. The model was experimentally validated using different material systems. 

Good agreement was observed between the predictions of the developed model and the 

results from the experiments. The assumption of the spherical cap for the droplet profile 

inside a powder bed was also verified with the powder-binder interaction experiments. The 

results showed the significant influence of the powder particle size on the profile 

characteristics formed from the powder-droplet interaction. Powders with the larger mean 

particle size results in the larger profile diameter and the smaller penetration depth. The 

opposite trend is observed for the powder beds with the smaller particles. Despite the 

different initial spreading diameters in the capillary-driven phase, the powder beds with the 

different mean particle sizes show the same spreading rate in this phase. Therefore, the 

capillary spreading rate that is required as an input for the modeling can be experimentally 

obtained for powder bed of a certain particle size and applied for modeling of the different 

particle sizes. 
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CHAPTER 8  

CONCLUSIONS 

In binder jetting additive manufacturing process, the main principle of the part 

fabrication is the application of a binding liquid agent in the selective areas of a powder 

bed through a drop-on-demand (DOD) printhead.  The quality of the fabricated parts 

depends strongly upon the interaction of the liquid binder droplets with the powder 

particles. Under a static state (equilibrium condition), the interaction of the binder and 

powder bed determines the saturation amount required for optimal printing. In a dynamic 

state where the liquid binder wets the powder bed, such interaction determines the accuracy 

and the mechanical performance of the parts fabricated via binder jetting technology. The 

current research recognizes the crucial importance of the liquid binder-powder bed 

interaction and takes a deep look into the fundamentals of such interaction in an attempt to 

identify the key factors affecting the feature formation in binder jetting process. In this 

study, the interaction between the liquid binder and powder bed is systematically 

investigated, the effect of the different parameters is experimentally evaluated, and new 

physics-based models for the different phases of the interaction are developed in order to 

improve the part quality in binder jetting technology.
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For successful part fabrication in binder jetting process, an optimal amount of the 

liquid binder is required to ensure the structural integrity, the mechanical performance as 

well as the dimensional accuracy. Currently, selection of the optimal saturation level for 

any new material systems relies upon trial and error methods which in turn would impede 

the rapid development of new materials for this process. In this study, a new model based 

upon thermodynamics principles was developed to accurately predict the optimal 

saturation level with the aid of the experimental saturation-capillary pressure 

characterization curve. This model established basic insights on the correlation between 

the material characteristics and binder-powder interaction in the equilibrium state. It was 

found that characteristics such as binder surface tension, powder bed packing density, 

particle surface area, and powder material wettability strongly influences the binder 

penetration pattern and consequently the binder-powder material interaction. It was 

concluded that the primary force involved in the binder-powder interaction in the 

equilibrium state is the capillary force. The experimental data showed that the developed 

model results in more accurate predictions for powder particles with no microscopic 

surface areas. The existence of internal microscopic surface areas that do not contribute to 

the wetting of the powder would lead to overestimation of the optimal saturation levels as 

the internal surface areas were not accounted for in the model. The developed model is of 

critical importance in developing new material systems for the binder jetting technology, 

improving the accuracy and mechanical strength of printed parts, selecting optimal in-

process binder curing elements.  
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In this dissertation, extensive experimental work was conducted to characterize the 

effect of different parameters on binder-powder material interaction and consequently on 

part quality. It was shown that printing speed could strongly affect the flow dynamics of 

the binder droplets impacting the powder bed surface. The quantitative correlation between 

the printing speed and part dimensional accuracy revealed the effect of binder droplet 

velocity on the binder-powder bed interaction. It was concluded that bouncing 

phenomenon of impinging droplets is less likely to occur in binder jetting technology due 

to the high wettability of the powder material to the liquid binder. The dependency of the 

dimensional accuracy of the fabricated features on the part orientation was attributed to the 

preferential spreading of the droplets due to the enhanced inertial forces in the printing 

direction. The results revealed that although the binder-powder material interaction in the 

dynamic phase was significantly influenced by the printing speed, in the equilibrium state 

the interaction did not seem to be affected by this parameter. From the results, it appeared 

that the droplet impact velocity significantly influences the powder-binder interaction and 

should be accounted for in the modeling of the interaction in the dynamic phase.  

The real time imaging of the interaction of binder droplets with different powder 

materials using a high-speed camera revealed the strong correlation between the binder 

droplet flow dynamics and the powder material characteristics. It was observed that the 

flow dynamics of the binder droplets including spreading and penetration is significantly 

influenced by the powder particle sizes, which in turn affects the dimensional accuracies 

of the printed green parts. Powder beds consisted of larger particles facilitated the binder 

droplet vertical permeation. On the hand, binder lateral spreading over the surface 

increased for powder beds with smaller particle sizes. While the larger powder particle size 



166 
 

helps with dimensional accuracies and green part densities of the BJ-AM parts, smaller 

powder particle size was beneficial to the surface finish of the fabricated parts, as well as 

higher mechanical properties and densities of the sintered parts. The gained insight about 

the relations between the different parameters and binder-powder interaction could be 

leveraged to select optimal process parameters, screen the materials for better precisions, 

and develop new models for various aspects of binder jetting technology.  

After droplet complete penetration, the saturated area assumes a profile inside the 

powder bed. Such profile inside the powder bed as the smallest building element of any 3D 

printed component plays a key role in controlling the part quality and integrity.  The 

characteristics of such profiles determines the lateral spacing between consecutive droplets 

and the optimum layer thickness for interlayer bonding and as results, influences the 

dimensional accuracy and the strength of the fabricated parts. In the present research, a 

predictive model was developed for droplet-powder interaction in the dynamic state to 

estimate the droplet profile characteristics inside the powder bed. It was assumed that the 

droplet profile after complete penetration into a power material is of a spherical cap. The 

developed model was to predict the diameter (i.e. maximum droplet spreading) and the 

height of such cap (the droplet penetration depth) in order to characterize the droplet profile 

inside any given powder material. The interaction of the binder droplet and powder bed at 

every stage of droplet evolution from the moment of impact to equilibrium state, where the 

interaction is complete, was carefully recorded and then analyzed. The entire interaction of 

the binder droplet and powder bed was divided into the impact-driven phase and capillary-

driven phase. While in the impact-driven phase the main driving force for binder dynamics 

is the droplet impact velocity, in the capillary-driven phase the capillary forces dominate 
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the interaction. Different formulations were considered for the analysis of each phase. The 

developed model was experimentally validated using different material systems. The 

results showed the significant influence of the powder particle size on the profile 

characteristics formed from the powder-droplet interaction. Powders with the larger mean 

particle size resulted in the larger profile diameter and the smaller penetration depth. The 

opposite trend was observed for the powder beds with the smaller particles. Despite the 

different initial spreading diameters in the capillary-driven phase, the powder beds with the 

different mean particle sizes showed the same spreading rate in this phase. Therefore, the 

capillary spreading rate that is required as an input for the modeling can be experimentally 

obtained for powder bed of a certain particle size and applied for modeling of the different 

particle sizes. 

The models developed in this dissertation for the interaction of the liquid binder-

powder material for both static and dynamic states could serve multiple purposes for 

advancing the binder jetting technology. The model for the binder-powder interaction in 

the equilibrium state can be employed to find out about the optimal saturation amount which 

is common printing parameter that is usually determined from experimental design for rapid 

development of new materials.  The predictive model for droplet profile inside powder bed could 

be used to determine the optimal printing parameters such as binder droplet spacing and 

the layer thickness in binder jetting for any material system. Also, the correlations 

established from the modeling and the experimental work could be utilized for powder 

material and/or liquid binder screening for optimum dimensional accuracy and the 

mechanical strength. Furthermore, the developed models could be potentially used toward 



168 
 

modeling the other aspects of binder jetting technology such as binder curing profile and 

binder burn-our profile during post-processing. 
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