
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

8-2018 

Solving school bus routing and student assignment problems Solving school bus routing and student assignment problems 

with heuristic and column generation approach. with heuristic and column generation approach. 

Di Zhang 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

 Part of the Operational Research Commons 

Recommended Citation Recommended Citation 
Zhang, Di, "Solving school bus routing and student assignment problems with heuristic and column 
generation approach." (2018). Electronic Theses and Dissertations. Paper 3051. 
https://doi.org/10.18297/etd/3051 

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of 
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3051&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=ir.library.louisville.edu%2Fetd%2F3051&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3051
mailto:thinkir@louisville.edu


 

 

SOLVING SCHOOL BUS ROUTING AND STUDENT ASSIGNMENT 
PROBLEMS WITH HEURISTIC AND COLUMN GENERATION 

APPROACH 
 

 
By 

 
Di Zhang 

 
 
 

 
A Dissertation 

Submitted to the Faculty of the 
J.B. Speed School of Engineering of  

the University of Louisville 
in Partial Fulfillment of the Requirements  

for the degree of  
 
 
 
 

Doctor of Philosophy in Industrial Engineering 
 
 
 
 

Department of Industrial Engineering 
University of Louisville 

Louisville, Kentucky 
 
 

August 2018 
 



 

Copyright 2018 by Di Zhang 
 
 

All rights reserved 
 

 
 
  



 

 
 
 
 
 
 
 
 
 
 
 
  



ii
 

SOLVING SCHOOL BUS ROUTING AND STUDENT ASSIGNMENT 
PROBLEMS WITH HEURISTIC AND COLUMN GENERATION 

APPROACH 
 

By: 
 

Di Zhang 
 

 
A Dissertation Approved on 

 
 
                                 June 1, 2018                            

 
 

by the following Dissertation Committee: 
 
 

                                                                              
Dissertation Director 
Dr. Ki-Hwan G. Bae 

 
 

                                             
Dr. Suraj M. Alexander 

 
 

                                             
Dr. William E. Biles 

 
 

                                             
Dr. Thomas Riedel 

 
 
 

  



iii 
 

ACKNOWLEDGMENTS 

     I am deeply grateful to the help of my dissertation committee members 

(Dr. Ki-Hwan G. Bae, Dr. Suraj M. Alexander, Dr. William E. Biles and Dr. 

Thomas Riedel), whom gave me huge guidance with patience throughout my 

Ph.D. experience. I especially thank my advisor Dr. Ki-Hwan G. Bae, Dr. 

Sunderesh S. Heragu for their efforts to mentor me. I sincerely thank the 

Department of Industrial Engineering and Logistics and Distribution Institute 

(LoDI) at University of Louisville for supporting me financial assistance during 

my Ph.D. program. I also especially thank my wife, Bo Sun for her continuous 

support.  

  



iv
 

       ABSTRACT 
SOLVING SCHOOL BUS ROUTING AND STUDENT ASSIGNMENT
               PROBLEMS WITH HEURISTIC AND COLUMN 
                              GENERATION APPROCAH 
  

Di Zhang 

August 7, 2018 

     In this dissertation, we solve a school bus routing problem of transporting 

students including special education (handicapped) students and assigning 

them in Oldham county education district. The main contribution of this research 

is that we consider special education students (Type-2) along with other 

students (Type-1) and design a comprehensive school bus schedule to 

transport both kinds of students at the same time. Also, a student assignment 

mathematical model is presented to optimize the number of bus stops in use as 

well as one important measure of service quality, the total student walking 

distance. Comparing to the classic clustering methods, heuristic methods, or 

other methods from previous literatures, a mathematical optimization model is 

developed to solve a student assignment problem and to obtain the global 

optimal solution. The modeling constraints include budget limit, travel time limit, 

equity, school time window, and etc. Especially, the main difference between 

our model and other models is that it takes Type-2 students into consideration 

along with critical constraints accordingly, and solves the resulting more 

complex problem. Moreover, the school bus routing model in this work is one 

of the most general optimization models representing the school bus routing 
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problem. On the other hand, similar to all existing models, the developed model 

considers the total system cost as the objective function value to minimize, 

different bus capacities, and common vehicle routing constraints such as flow 

conservation on routes and subtour elimination. Furthermore, another main 

difference is that the bus scheduling and school time window is also considered 

and solved in the model. With two different types of students, both Type-1 and 

Type-2, the time restrictions are varying, resulting in more complexity and 

additional constraints. The results in this work present the difficulties of meeting 

the requirement of Type-2 student riding time limit and school time window 

simultaneously. Also, the constraints regarding service equity and quality are 

provided and they can be used by decision makers if necessary. Either densely 

populated urban areas or sparsely populated rural areas, the school bus routing 

problem is difficult to solve due to a large number of students or long travel 

distance. The school bus routing problem falls under vehicle routing problem 

(VRP) with additional requirements because each student represents one unit 

of capacity. In this dissertation, we present a modeling framework that solves a 

student assignment problem with bus stop selection, and subsequently a school 

bus routing problem with school time window constraints. We demonstrate the 

efficacy of heuristic methods as well as a column generation technique 

implemented to solve the problems using real data. 
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CHAPTER I - INTRODUCTION 

A. Motivation 

     According to the data published from (School Bus Safety Data, 2009), the 

public school transportation service in the USA is responsible for transporting 

approximately 26 million students twice a day. About 480,000 school buses 

provide service in the entire country, traveling approximately 4.4 billion miles 

each school year. “In 2004-05, the most recent year for which statistics were 

compiled, 55.3 percent of the 45,625,458 children enrolled in public K-12 

schools were bused to schools at the taxpayers’ expense. The government 

spends 17.5 billion dollars per year on school bus transportation at an average 

cost of 692 dollars per student transported” (Pedroso, 2010). 

     However, the budgets have been cut in recent years and the inevitable 

effects on the public school transportation followed. The decreased budget 

forces researchers and industry workers to attempt to optimize the transporting 

system without sacrificing the service quality so that the quality and safety are 

ensured while saving the cost of operation.  

B. Background 

     The school bus routing problem (SBRP) first appeared in the publication 

of Newton and Thomas (Newton, 1969). An SBRP can be defined as the 

problem determining the public school transportation plan for all students living 
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in an educational district area under the policy made by a regional board of 

education. Given (i) the information about the students such as residence 

address, school destination, and general (Type-1) or special-education, 

handicapped (Type-2), (ii) the information about the schools, such as school 

address, school bell time windows, number of students, (iii) the information 

about the school buses such as capacities, number of buses, and depot 

location. Using these input data, an optimal routing plan can be attained for 

students while meeting required constraints, reaching the best objective value.  

C. Problem Statement 

     In this study, we investigate the Oldham County Schools District and solve 

the SBRP with a student assignment problem (SAP). “The Oldham County 

School District is located approximately 20 miles northeast of Louisville. 

Student enrollment has more than doubled in recent years, bringing the current 

number of students to 11,867, as of April 2013, in grades preschool through 

12th. The district consists of one preschool, ten elementary schools, four middle 

schools, three high schools, one alternative school, one career center and one 

center for the arts and community education” (http://www.oldham.k12.ky.us/). 

So there are on average 600 to 700 students for each single school. 

     SBRP consists of five steps: “data preparation, bus stop selection, bus 

route generation, school bell time adjustment, and route scheduling” (Park, 

2010).  

     The data preparation step assesses the required data. First, the 

information about students is needed before solving the problem, which 

includes the residence address of all students who require the service; the 
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number of students that share the same address; which school is the 

destination for each student; and the type of students (Type-1 or Type-2). 

Second, the information about schools is also needed, which includes the 

address of schools; the bell time window and the number of students for each 

school. Third, the information about buses needs to be obtained, which includes 

the number of buses available for each school or for all schools; the capacities 

of buses; the depots of buses; whether the buses can serve Type-2 students 

or Type-1 students only. Fourth, the origin-destination (OD) matrix must be 

constructed due to the residence addresses of students, bus stop locations and 

school addresses. It gives the data about the shortest travel time and distance 

between any pair of nodes (residence, bus stop, school, and bus depot). Fifth, 

the policies from regional board of education need to be clarified which decide 

the objective function(s) and constraint(s) in the model. The policies include the 

limit on student walking distance between home locations, bus stops or schools; 

the upper limit of number of students assigned to one bus stop; on travelling 

time and distance for each bus; on travelling time for students; the allowance 

of mixed loading; and the specific policies for transporting Type-2 students. 

     “The SAP seeks to select a set of bus stops and assign students to these 

stops” (Park, 2010). The condition of bus stop selection is always assumed to 

be given by many papers, and the only work left is to determine the routes so 

that every stop is visited at least once. In recent years, “the method of providing 

a group of potential bus stop locations and assigning students to the bus stops 

which are in use is introduced and it is more reasonable and practical” 

(Schittekat, 2006). In this study, the work of determining the set of bus stops in 

use is combined into the problem formulation. In this way, finding the set of bus 
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stops visited, assigning every student to a bus stop, and generating each bus 

route that visits the selected bus stops can be done step by step.  

     The bus route generation is an application of the classic vehicle routing 

problem (VRP) with some special constraints. For SBRP, the students are 

represented as the units of product. The bus stop selection and bus route 

generation are the important sub-problems in SBRP and we mainly focus on 

the joint problem of these two. 

     The school bell time window and route scheduling are about time issues. 

The school bell time window includes the starting and ending time of schools 

and different schools may have different bell time windows. Most papers 

assume the school bell time window is given as scheduling constraints in the 

model. It is reasonable because in most cases the school bell time window is 

decided by considering the condition of the school and class schedule instead 

of school bus transportation.  

     The route scheduling provides each route the starting and ending time so 

that each bus arrives at the school destination within the school bell time 

window. It also gives the schedule of each bus on each bus stop so that 

students and parents can follow.  

     Generally, SBRP is consists of many sub-problems as discussed above. 

To each specific SBRP study, many problem characteristics are involved and 

they decide the constraint and the model, and consequentially the solution. 

Based on the problem characteristics combined, the models from different 

studies could be very different and not general enough to be used to solve all 

the cases. This makes difficult to compare different studies directly. So it is 

necessary to introduce the problem with all the characteristics and assumptions 
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before developing the model. 

     First, different researches are aimed at varying objectives. It includes 

minimizing the number of buses in operation, minimizing the total travel 

distance of buses, minimizing the total travel time of buses, balancing a load of 

different mix, minimizing various types of cost to operate the school bus 

transportation system and others. Note that the number of buses, the total travel 

distance, and the total travel time contribute to the cost mainly and most studies 

consider part or all of them in the objective. 

     Second, the constraints represent the characteristics of the problem and 

the policy from the education district department. Some common constraints 

are shared by most of models, such as the upper limit of student walking 

distance; the upper limit of the number of students at one same bus stop; the 

lower limit of number of students to generate a route; the bus capacity 

constraint; the upper limit of the onboard time for one single student; the school 

bell time window and others. Besides, some logical constraints for SAP and 

SBRP are considered, including a bus traveling to a bus stop and at the same 

time, the bus travels to another stop from that bus stop; one bus stop being 

served by a bus or buses only when that bus stop is in use. 

     Third, one important characteristic is the number of schools being 

considered in the bus transportation system. Practically, it is decided by the 

policy from the educational district department. For example, in the Oldham 

County Schools District, different schools or school groups (several schools at 

the same location) have their own school bus service systems and they do not 

share the buses. The model for single-school problem is used for each school 

or school group. However, in the Jefferson County Public Schools District, 



6 
 

which is adjacent to the Oldham County, all schools share one school bus 

system and it becomes a multiple-school problem. “For a single-school problem, 

SBRP is similar to the Open VRP” (Fu, 2005). “One feature of Open VRP is that 

it is unnecessary for the vehicle to return to the depot after visiting the last 

customer on a route” (Li, 2007). For a multiple-school problem, the model can 

be more flexible but more complicated, and mixed loading is an additional 

consideration. Besides, schools may be treated as stops on the routes, and 

buses not only pick up students at stops but also drop off students at schools 

on the routes. In this way, the number of students on one bus may increase 

and decrease travelling along the route. 

     Fourth, as mentioned above, mixed loading means that one bus may 

serve students with different school destinations at the same route and at the 

same time. Therefore, it is usually considered only for a multiple-school 

problems. “It is true that mixed loading is considered only for a multiple-school 

problem and it increases flexibility and cost savings” (Braca, 1997). Also, mixed 

loading is widely used in the rural area because of scattered populated 

distribution. 

     Fifth, SBRP can be modeled in the context of bus routings in an urban or 

rural area. For either densely populated urban areas or sparsely populated rural 

areas, a school bus routing problem is difficult to solve due to a large number 

of students or long travel distance involved, respectively. The main difference 

between them is density of students. “In urban area with high density of 

students, it is common that bus capacity constraint is usually binding before the 

maximum riding time is reached” (Park, 2010). Hence, for SBRP in urban areas, 

maximum riding time constraints are not binding. Another difference is that in 
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urban areas, students have to walk from their homes location to the bus stops 

to wait for the bus, while in rural areas, students take their bus at front door. 

Thus, for SBRP in rural areas, mixed loading is desirable and the student 

assignment problem (SAP) becomes trivial. 

     Sixth, a bus is scheduled to run on routes in the morning and in the 

afternoon. In the morning, buses pick up students from bus stops and transport 

them to their schools. On the contrary, in the afternoon, buses pick up students 

from their schools and separate them to their bus stops. “Intensive school time 

windows and heavier traffic make the morning problem to be more difficult and 

urgent to solve” (Braca, 1997). Furthermore, “it is claimed that the afternoon 

problem can be converted into a morning problem with little modification” (Li, 

2002).  

     Seventh, there may be several types of school buses in one school district 

system. This fact leads to two kinds of bus fleet groups, one is homogeneous 

and the other is heterogeneous. The heterogeneous fleet implies that the 

capacities of buses may not be the same and they have different fixed costs 

and travelling costs. The homogeneous fleet is simple with same capacity and 

cost for buses and it is widely used. Another consideration is the type of bus 

serving Type-2 students and the number of buses to accommodate them in one 

single route. 

     Eighth, most of studies have not considered Type-2 students. As 

mentioned above, they need service from a special type of buses with the 

proper equipment and assistance. “The problem of routing Type-2 students is 

fundamentally different in many respects from the problem of routing general 

students. First, Type-2 students are picked up and dropped off directly at their 
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homes and not at their bus stops. Second, there is a more rigid restriction on 

the maximum riding time for a Type-2 student in a bus than for a Type-1 student. 

Third, each student should be served differently depending on the severity of 

his/her own disability” (Park, 2010). When a Type-2 student’s home location is 

selected as a bus stop, if mixed loading of Type-2 students and Type-1 students 

is allowed, other Type-1 students nearby may walk from their home to this bus 

stop within the upper bound of walking distance limit and take the ride together. 

The corresponding service time for a Type-2 student at the bus stop is longer 

and the upper limit of riding time is shorter. Due to this complexity, there may 

be only one Type-2 student on one route. In addition, based on the type of 

buses, a bus may have at most two Type-2 students on board at the same time. 

This characteristic depends on the policy and other practical situations. For this 

reason, often times modeling less number of Type-2 students per route 

improves solution tractability. 

     Ninth, SBRP is more complicated when taking transfer stations into 

account. In many cases nationwide, some students may be transported to 

arranged locations as transfer stations first, then be transferred to a different 

bus and finally be transported to their school destinations. In some extreme 

cases, multiple times of transfer are needed and more routes are possible 

because of route and schedule interaction. Note that the transfer stations could 

be schools or other places or even a bus stop. The advantage of applying a 

transfer station is that the number of buses in use and the total travel distance 

can be reduced. The disadvantage is that the complexity of the problem is 

increasing sharply and the service time at the transfer station should be 

accounted in the total travel time of students. 
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     The problem characteristics and assumptions in this study are as follows. 

The objective is the total cost of the system which combines the number of 

buses with fixed cost and the total travelling cost. The constraints include the 

bus capacity with heterogeneous fleet, different riding time limits for Type-1 and 

Type-2 students, given a single school bell time window, the upper bound of 

walking distances for Type-1 students, and stops located at Type-2 student’s 

homes. The SBRP in the Oldham County Schools District is a single-school 

problem due to the policy and it is located in a suburban area, so we construct 

the riding time limit constraint and a student assignment problem. The transfer 

stations are not considered. We focus on the morning problem. Transporting 

Type-2 students is considered with some specific constraints such as a bus 

stop being located at home, more critical riding time limits, and mixed loading 

of both types of students. 

D. Dissertation Organization 

     To enhance understanding of SBRP, it is important and necessary to 

review all relevant literature. In chapter 2, a comprehensive literature review 

about SBRP is provided and it introduces scenarios of SBRP investigated, as 

well as methods and algorithms applied on SBRP along with corresponding 

performance and results. 

     Chapter 3 illustrates the models of SAP with different objectives. With the 

data about students, the SAP model searches for the optimal solution of 

assignment that meets all requirements and policies made by the educational 

department. This solution then will be used as the input data for the SBRP 

model. With the results from the SAP models, the SBRP model in Chapter 4 
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solves the routing problem with a time schedule and finds the final solution. It 

includes how many buses are required, the routes for buses, the time schedule 

of each bus. 

     Note that SAP and SBRP are NP-hard problems and it may not be 

feasible to solve them directly with models developed in Chapter 3 and 4, 

especially for large size instances. Hence, it is necessary to apply heuristic 

algorithms on the SAP and SBRP. In Chapter 5, we propose an effective 

heuristic method of using Genetic Algorithm coupled with column generation 

approach applied to solve SBRP. The computational experiment results are 

analyzed and discussed in Chapter 6, and finally we provide summary and 

concluding remarks with future research in Chapter 7. 
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CHAPTER II - LITERATURE REVIEW 

     In this chapter, literatures about SBRP published in the early stages will 

be briefly introduced, and other SBRP papers published in recent 20 years will 

be introduced separately based on the single school problem or the multiple 

school problem. 

A. Early SBRP Literatures 

     The SBRP falls into the Vehicle Routing and Scheduling Problems, and it 

is necessary to investigate the complexity first before we study the SBRP. A 

comprehensive research can be found in (Lenstra, 1981). In this paper, the 

problem class was defined and known NP-hardness results were reviewed. 

     Several papers published in early times will be briefly introduced first. 

(Bodin, 1979) solved a SBRP with the travel time limit for students and standard 

constraints such as the bus capacity limit using a specific heuristic approach. 

(Chapleau, 1985) used clustering technique to do the SAP with “compactness 

measure”. (Desrosiers, 1981) considered the case in urban area and the 

objective is to minimize the total number of routes. (Dulac, 1980) used location-

allocation-routing strategy (LAR) to assign bus stops with students to school.  

     The first paper that considered transporting Type-2 students is proposed 

by (Russell, 1986). This paper pointed out that “in routing special-education 

students in an urban environment, the special-education students must be
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picked up at home and delivered to selected schools which meet their specific 

educational needs such as special sequencing restrictions and route duration 

limitation”. 

     Note that “the combined problem of bus stop selection and bus route 

generation falls into the class of location-routing problems” (Park, 2010). So the 

works about solving location-routing problems will help researchers better 

understand the SBRP. (Laporte, 1988) used “graph representation and then a 

graph extension” to convert the problem into “equivalent constrained 

assignment problems”. 

     Another paper addressing location-routing problems is (Nagy, 2007). This 

paper is a survey of a location-routing problem and it investigated the variants 

of the problem with exact and heuristic algorithms. 

B. Literatures on Single School Problem 

     The first comprehensive paper about SBRP is published by (Bowerman, 

1995). In the paper, it introduced “a multi-objective approach to modeling the 

urban school bus routing problem and an algorithm for solution”. 

     As mentioned before, SBRP can include multiple objectives. (Corberán, 

2002). It investigated the case in a rural area, and explained the conflicts 

between cost and service.  

     Regarding multiple objectives, (Li, 2002) presented a “multi-objective 

combinational optimization problem” and a heuristic algorithm. The objectives 

include the total number of buses in use, the total travel time and equity 

measures.  

     As mentioned before, several steps are needed to solve SBRP, and the 
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most important one should be developing formulation. (Bektaş, 2007) believed 

that “the focus should be on developing better formulations for problems of 

moderate size, rather than devising solution algorithms that are problem-

specific as the computer hardware and software technology is rapidly 

improving”. 

     (Martínez, 2011) presented a case for Lisbon. The problem is solved by 

two steps. The first step is to solve the SAP, and the second step is to generate 

the optimal routes with the results from the first step. 

     (Díaz-Parra, 2012) used genetic algorithm to solve SBRP. The algorithm 

includes “clusterization population pre-selection operator, tournament selection, 

crossover-k operator and an intelligent mutation operator”.   

     (Euchi, 2012) focused on the SBRP in urban areas. It proposed “a hybrid 

evolutionary computation based on an artificial ant colony with variable 

neighborhood local search algorithm”.  

     (Riera-Ledesma, 2012) solved SBRP as “multi-vehicle traveling 

purchaser problem”. A branch-and-cut algorithm is generated to solve randomly 

generated problems. The heuristic algorithms in this paper are “initial heuristic”, 

“constructive primal heuristic”, and “improvement phase”. The initial heuristic is 

a greedy approach assigning students to the nearest bus stop without breaking 

the capacity limit. Note that the initial heuristic may give no feasible solution. In 

this case the feasible solution may exist while the initial heuristic cannot find it. 

In the constructive primal heuristic, a feasible VRP solution can be reached 

from a fractional solution. “It consists two phases, the first phase constructs a 

set of feasible cycles with starting and ending points at the depot, and the 

second phase constructs a feasible assignment of students to the bus stops” 
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(Riera-Ledesma, 2012). Note that these two phases can be skipped if any one 

of them has no feasible solution. In the improvement phase, three procedures, 

cycle reduction procedure, cycle user interchange procedure, and cycle 

merging procedure were applied in order to refine the solution. 

     (Riera-Ledesma, 2013), which is a later work resulting from (Riera-

Ledesma, 2012), presented a branch-and-price algorithm to solve SBRP as the 

Multiple Vehicle Traveling Purchaser Problem.  

     (Pacheco, 2013) addressed that SBRP in rural areas is the important 

practical applications of min-max VRP. A tabu search within the framework of 

Multiobjective Adaptive Programming was applied and compared to Non-

dominated Sorting Genetic Algorithm.  

     (Addor, 2013) proposed an integer programming model and used an Ant 

Colony Based Metaheuristic to solve the problem.  

     (Arias-Rojas, 2013) considered a case in Bogotá, Colombia. It used a 

customized Ant Colony Optimization Algorithm to solve a real problem under 

cluster-first route second strategy.  

     Another complete paper on both SAP and SBRP is (Schittekat, 2013). It 

claims that “existing literature on routing of school buses focus mainly on 

building intricate models that attempt to capture as many real-life constraints 

and objectives as possible”. It presented an efficient parameter-free 

GRASP+VND metaheuristic to solve the SBRP first, and then checked the 

feasibility of SAP with SBRP solution.  

     Some works focus on service quality more than cost. (Song, 2013) 

focused on improving service quality rather than efficiency. (Manumbu, 2014) 

proposed a mathematical formulation and an exact optimal solution for SBRP. 
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Five procedures of mathematical formulation model are also given. 

     (Chalkia, 2014) introduced a Safe Map concept with safety parameters 

integrated to its links and its nodes. Several algorithms were also compared. 

     In (Kinable, 2014), column generation was applied to solve SBRP. 128 

instances were tested and a better computation time results were reported. In 

the column generation approach, the mixed integer programming formulation 

of the SBRP was treated as the master problem. By replacing the integrality 

constraints, a linear programming relaxation was obtained. Then the pricing 

problem was presented with two algorithms, a local search heuristic and a 

labeling algorithm, to solve it. In the local search algorithm, the initial solution 

was randomly generated and it would be improved iteratively by local 

neighborhood searching. Three neighborhoods, insert neighborhood, remove 

neighborhood and swap neighborhood defined the set of feasible neighbor 

solutions. Note that in order to improve efficiency, only the neighborhood moves 

which are significantly different from the previous solutions are accepted. In the 

labeling algorithm, it is unnecessary to search for a column with the best 

objective value. The algorithm could return a negative reduced cost when it 

found one. After the pricing problem, two stabilization procedures, 3-piecewise 

proximal-type stabilization (PTS) and interior point stabilization (IPS) were 

applied and compared because the column generation algorithm would have 

slow convergence when the objective function gets closer to the optimal value. 

The authors claimed that “a major disadvantage of PTS methods is the 

extensive number of parameters that have to be tuned and the main argument 

against IPS is that it requires the restrict mater problem to be solved multiple 

times during each iteration to obtain the interior points” (Kinable, 2014). Then 
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the column pool manager (CPM) was applied to reduce the number of active 

columns in the restricted master problem because the time evaluating the 

master problem was too long when the total number of columns was too large. 

Finally, an exact branch-and-price framework was presented. 

C. Literatures on Multiple Schools Problem  

     If an SBRP involves multiple schools instead of a single school problem, 

the complexity increases and it takes a longer time to solve the problem. The 

main difference is combining the mixed loads and the transfer stations into the 

problem, which in turn strictly limiting riding time for the Type-2 students. Some 

literatures investigate these aspects of modeling constraints.  

     One important model of routing Type-2 students was proposed by (Braca, 

1997). In this paper, the case in five boroughs of New York City was 

investigated and the computerized system with solutions were used to transport 

Type-2 students. 

     When solving the SBRP, the best ideal solution needs to be decided by 

the practitioners after considering many aspects. So a decision-making 

technique can be effective to SBRP. (Spada, 2005) presented “a 

comprehensive methodology designed to support the decision of practitioners”.  

     (Fügenschuh, 2009) applied different methods on solving SBRP. It 

presented an integrated coordination of school time window and claimed that 

few buses are needed if the schools start at different times. 

     Scheduling is also a main part of SBRP. (Kim, 2012) investigated “VRP 

with time windows as a virtual stop” on given routes. The authors presented two 

assignment problem-based exact approaches and a heuristic algorithm. This 
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paper assumes that all buses are homogeneous and start at a fixed time point. 

In this way, “the problem can be modeled as an assignment problem.” Then, 

an assignment problem-based branch-and-bound algorithm was proposed. The 

initial upper bound and lower bound problem were solved using the Hungarian 

method which can solve the assignment problem easily. For the assumption of 

heterogeneous buses, an iterative AP based construction algorithm and an 

improvement algorithm were presented.  

     (Park, 2012) solved SBRP with mixed load assumption. This paper 

presented a mixed algorithm allowing students from different schools board on 

the same bus and there may be more than one school as stops on one bus 

route. 

D. Literatures on Related Problems 

     Based on all works with respect to solving SBRP, heuristic or 

metaheuristic are shown to be the most effective method. Among various 

heuristic techniques, the revised branch and cut methods are widely chosen 

because they proved to be effective in solving hard combinatorial optimization 

problems. (Augerat, 1998) presented “a constructive algorithm, a randomized 

greedy algorithm and a tabu search procedure. It is the first time a metaheuristic 

is used for separation of the capacity constraints for the Capacitated Vehicle 

Routing Problem”.  

     SBRP is a practical problem even though many theories and techniques 

are applied to find the solution. To make the solution practical and useful to the 

real life problem, the real aspects involved when building the mathematical 

models are important to consider. For this purpose, a good survey is done by 
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(Howley, 2001). This paper presented “the nature and experience of riding the 

school bus in rural as compared to suburban locales in five states”. 

     Among the multiple objectives, one of the most important objectives is the 

cost. (Hanley, 2007) explained “the relationship between school district size and 

bus transportation costs”, and estimated “the change in costs if a statewide 

policy of consolidation is pursued”. 

     More generally, SBRP falls into the pickup and delivery problem. In some 

instances, the students are transferred from one bus to another at transfer 

stations. Considering this case, (Cortés, 2010) proposed a general formulation 

allowing students to transfer from one bus to another. The better solutions are 

obtained and corresponding heuristic methods are provided. 

     (Park, 2010) conducted a comprehensive review of the SBRP. It 

introduced all the previous literatures and clearly provided all the important 

basic modeling frameworks such as assumptions, constraints, and solution 

methods.  

     Note that some problems have in common with SBRP and the methods 

applied also can be used to solve SBRP. (Perugia, 2011) presented “a model 

and an algorithm for the design of a home-to-work bus service in a metropolitan 

area”. The authors used a tabu search algorithm to solve a multi-objective 

location-routing model. 

     Solving the similar case in Lisbon, (Eiró, 2011) presented the modeling 

process with four phases, “estimation of the potential demand, definition of 

stops, determination of the service O/D matrix and establishment of the most 

profitable routes”.  

     (Moccia, 2012) described “an incremental neighborhood tabu search 
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heuristic for the generalized vehicle routing problems with time windows”.  

     Two papers, (Crainic, 2012) and (Nguyen, 2013), both described works 

on “Multi-Zone Multi-Trip Vehicle Routing Problem with Time Windows” which 

are also similar to SBRP, and proposed tabu search metaheuristic. 

     (Bock, 2011) presented a polynomial time 4-approximation algorithm and 

a constant factor approximation for the variant to solve SBRP. 

     One more paper that is worth mentioning here is (Yu, 2009). This paper 

presented an improved ant colony optimization with any-weight strategy.  

E. Literatures Summary 

     In all, SBRP falls into the VRP and includes time schedule characteristics 

and assignment characteristics. Hence, literatures on related problems may 

provide insights to develop and methods in solving SBRP. Due to various 

problem characteristics of SBRP, it is necessary to summarize all literatures on 

SBRP.  
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 Table 1 Comparison of Model Scopes of SBRP in Literature 

 

References Bus Stop Selection Scheduling Density of Population 

(Bodin, 1979) × × Urban 

(Dulac, 1980) ×  Urban 

(Desrosiers, 1981) × × Both 

(Chapleau, 1985) ×  Urban 

(Russell, 1986)  × Urban 

(Bowerman, 1995) ×  Urban 

(Braca, 1997)  × Urban 

(Corberán, 2002)   Rural 

(Li, 2002)   Urban 

(Spada, 2005)  × Rural 

(Bektaş, 2007)   Urban 

(Fügenschuh, 2009)  × Rural 

(Martínez, 2011) × × Urban 

(Díaz-Parra, 2012)   Urban 

(Kim, 2012)  × Both 

(Euchi, 2012) ×  Urban 

(Riera-Ledesma, 2012) ×  Both 

(Park, 2012)  × Both 

(Pacheco, 2013)   Rural 

(Addor, 2013)   Both 

(Riera-Ledesma, 2013) ×  Both 

(Arias-Rojas, 2013)   Urban 

(Schittekat, 2013) ×  Urban 

(Song, 2013)  × Urban 

(Manumbu, 2014)   Urban 

(Chalkia, 2014)   Both 

(Kinable, 2014)   Both 
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Table 2 Comparison of Model Objectives of SBRP in Literature 

 

References 

Objectives 

NB TBD TSD SWD LB MRL TL LEB 

(Bodin, 1979) ×        

(Dulac, 1980) × ×       

(Desrosiers, 1981) × ×       

(Chapleau, 1985) ×   ×     

(Russell, 1986)  ×       

(Bowerman, 1995) ×   × ×    

(Braca, 1997) ×        

(Corberán, 2002) ×     ×   

(Li, 2002) × × ×  ×    

(Spada, 2005)       ×  

(Bektaş, 2007) × ×       

(Fügenschuh, 2009) × ×       

(Martínez, 2011) × ×  ×     

(Díaz-Parra, 2012) × ×       

(Kim, 2012) × ×       

(Euchi, 2012) × ×       

(Riera-Ledesma, 2012) × ×      × 

(Park, 2012) ×        

(Pacheco, 2013)  ×    ×   

(Addor, 2013) × ×       

(Riera-Ledesma, 2013) × ×  ×     

(Arias-Rojas, 2013)  × ×      

(Schittekat, 2013)  ×       

(Song, 2013)   ×      

(Manumbu, 2014)   ×      

(Chalkia, 2014)   ×      

(Kinable, 2014)  ×       
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Table 3 Comparison of Model Constraints of SBRP in Literature 

 

References 

Constraints 

VC MRT TW MWT EPT MSN 

(Bodin, 1979) × × ×    

(Dulac, 1980) × ×  ×   

(Desrosiers, 1981) × ×  ×   

(Chapleau, 1985) × ×  ×   

(Russell, 1986) × ×     

(Bowerman, 1995) ×   ×   

(Braca, 1997) × × ×  × × 

(Corberán, 2002) ×      

(Li, 2002) ×      

(Spada, 2005) ×  ×    

(Bektaş, 2007) × ×     

(Fügenschuh, 2009)   ×    

(Martínez, 2011) × × × × ×  

(Díaz-Parra, 2012) × ×     

(Kim, 2012) ×  ×  ×  

(Euchi, 2012) ×   ×   

(Riera-Ledesma, 2012) ×   ×   

(Park, 2012) × × ×    

(Pacheco, 2013) ×      

(Addor, 2013) ×      

(Riera-Ledesma, 2013) × × ×    

(Arias-Rojas, 2013) ×      

(Schittekat, 2013) ×   ×   

(Song, 2013) × × ×    

(Manumbu, 2014) ×      

(Chalkia, 2014) × ×    × 

(Kinable, 2014) ×      
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In the table 2, the abbreviations are as follows: 
 

𝑁𝐵 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑠𝑒𝑠 𝑢𝑠𝑒𝑑 
 

𝑇𝐵𝐷 = 𝑡𝑜𝑡𝑎𝑙 𝑏𝑢𝑠 𝑡𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑟 𝑡𝑖𝑚𝑒 
 
𝑇𝑆𝐷 = 𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑟𝑖𝑑𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑟 𝑡𝑖𝑚𝑒 
 
𝑆𝑊𝐷 = 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
 
𝐿𝐵 = 𝑙𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 
 
𝑀𝑅𝐿 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑜𝑢𝑡𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 
 
𝑇𝐿 = 𝑐ℎ𝑖𝑙𝑑′𝑠 𝑡𝑖𝑚𝑒 𝑙𝑜𝑠𝑠 
 
𝐿𝐸𝐵 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 

 
In the table 3, the abbreviations are as follows: 
 

𝑉𝐶 = 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 
 
𝑀𝑅𝑇 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑖𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 
 

𝑇𝑊 = 𝑠𝑐ℎ𝑜𝑜𝑙 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 
 
𝑀𝑊𝑇 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
 
𝐸𝑃𝑇 = 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 𝑝𝑖𝑐𝑘 𝑢𝑝 𝑡𝑖𝑚𝑒 
 
𝑀𝑆𝑁 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑡𝑜 𝑐𝑟𝑒𝑎𝑡𝑒 𝑎 𝑟𝑜𝑢𝑡𝑒 

 
     In Table 1, the solution of bus stop selection was assumed to be given or 

predetermined in many studies, and the solution quality of routing and 

scheduling is directly subject to the bus stop selections. Not all works have 

taken into account school bus scheduling, and instead have mainly focused on 

minimizing the costs. The SBRP of urban areas has been studied more 

frequently than that of rural areas. The reasons are that the difficulty and 

variability of the urban area, which has a high density of students compared to 

the rural area, which has scatter population and longer traveling distance. 

     Most works in Table 2 focused on the minimization of total cost including 

fixed cost and routing cost. Fixed cost is directly associated with the number of 
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buses operating in system, whereas routing cost is mainly determined in 

proportion to total travel distance. Some literature also proposed methods to 

assess cost measures of time as well as service quality. Different costs 

associated with appropriate weights can be added such that the total routing 

cost is minimized. SWD is a common objective to minimize in a bus stop 

selection problem. NB and TBD can be used as objectives for cost, whereas 

TSD, SWD, LB, MRL, TL, and LEB serve as measures for service quality. 

     Table 3 presents a list of research works that considered various sets of 

constraints associated with SBRP. For example, VC was the most commonly 

used constraint in VRP and its variants were included in most of papers. MRT 

was used as an important restriction by many educational districts. TW was 

used when scheduling was considered. Some papers regarded MWT as 

constraints instead of optimizing it as an objective in a bus stop selection 

problem. EPT was more closely related to service quality just as MSN was to 

cost minimization. 

     Note that most SBRP studies minimize the total cost, which includes the 

fixed cost and the routing cost. The fixed cost is highly related to the number of 

buses in the system and the objective is to minimize it. The routing cost is 

mainly decided by the total travel distance. Some literatures also illustrate 

methods to calculate the measures of the time cost and the measures of the 

service quality. Adding different costs with corresponding weights which is 

determined by decision makers together so that the total routing cost can be 

minimized.  
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CHAPTER III - STUDENT ASSIGNMENT PROBLEM 

     When all the data about students and schools are available, it is possible 

to make school bus stops selection and solve the student assignment problem 

(SAP). The results from this part include that we know how many and which 

potential bus stop locations would be used as real bus stops and how many 

and which students are assigned to each real bus stop. As mentioned before, 

these results are assumed to be given as data in many papers. With all the 

potential bus stop location data and student data, we minimize the total walking 

distance for all students from their home to the bus stops they were assigned 

to, and minimize the number of bus stops in use in two separate models. The 

total walking distance represents the quality performance of our SAP model. 

Minimizing the total walking distance ensures that the students walk less and 

save time. The number of bus stops in use represents the number of demand 

points the buses should visit, and minimizing the number of bus stops reduces 

the total travelling time and distance for all buses which is also an important 

measure of the cost and the quality of service. 

A. SAP Procedure 

     First, we introduce the data needed to start the SAP procedure. It includes 

the home location of each student, the potential bus stop locations and the 

walking distance between each pair of student’s home and bus stop. 

Specifically, the home locations of Type-2 students are designated as potential 
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bus stops and the walking distance is zero between the bus stop and Type-2 

student’s home. Also, these bus stops would be used as constraints in the SAP 

model. 

     Then, we introduce the SAPD (Student Assignment Problem Distance) 

model that minimizes the total walking distance as the objective function as 

follows. 

 

Notations: 

𝑧𝑖𝑗 = {
1 𝑖𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑢𝑗 = {
1 𝑖𝑓 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝 𝑝𝑜𝑖𝑛𝑡 𝑗 𝑖𝑠 𝑖𝑛 𝑢𝑠𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑤𝑖𝑗 =  𝑤𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ℎ𝑜𝑚𝑒 𝑖 𝑡𝑜 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝 𝑗 

𝑀𝐷 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑜𝑟  𝑠𝑡𝑢𝑑𝑒𝑛𝑡 

𝑃 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝 𝑝𝑜𝑖𝑛𝑡𝑠 

𝑄 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 

𝑈𝐵 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝𝑠 𝑖𝑛 𝑢𝑠𝑒 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 

(SAPD) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑤𝑖𝑗𝑧𝑖𝑗
𝑃
𝑗=1

𝑄
𝑖=1                          (1) 

Subject to 

    ∑ 𝑧𝑖𝑗
𝑃
𝑗=1 = 1           𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑄                                 (2) 

𝑤𝑖𝑗𝑧𝑖𝑗 ≤ 𝑀𝐷           𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑄  𝑗 = 1, 2, … , 𝑃                    (3) 

𝑧𝑖𝑗 ≤ 𝑢𝑗                𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑄  𝑗 = 1, 2, … , 𝑃                    (4) 

∑ 𝑢𝑗
𝑃
𝑗=1 ≤ 𝑈𝐵                                                          (5) 

𝑧𝑖𝑗 = 0 𝑜𝑟 1          𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑄  𝑗 = 1, 2, … , 𝑃                    (6) 

𝑢𝑗 = 0 𝑜𝑟 1           𝑗 = 1, 2, … , 𝑃                                     (7) 

𝑢𝑗 = 1               𝑓𝑜𝑟 𝑗 = 𝑇𝑦𝑝𝑒 − 2 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ℎ𝑜𝑚𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝𝑠 (8) 
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In this model, the objective function (1) is to minimize the total walking 

distance for all students between their homes and their bus stops. Constraint 

(2) ensures that every student is assigned to one and only one bus stop. In 

constraint (3), we set an upper limit of walking distance for each student and no 

one walks more than the limit. This limit could be decided due to the policy from 

an educational district. Constraint (4) ensures that every student is only 

assigned to the bus stop in use. In constraint (5), we set an upper bound of 

number of bus stops in use. In this way, we can reach the least number of bus 

stops in use with optimal solution by decreasing the upper bound till no feasible 

solution is found. Also, the number of bus stops in use could be the objective 

function because it may affect the travel time or complexity in latter work which 

is shown next. By decreasing the upper bound, we can get smaller number of 

bus stops in use while the optimal value increases. It is obvious that if some 

potential bus stops could not be used by decreasing the upper bound, the 

students would be assigned to the further distant bus stops which are in use 

within the upper limit of walking distance, which at the same time implies 

increasing the total walking distance. This is a tradeoff between these two 

objectives and it may be combined together in the objective function with 

weights, and the weights are also decided by the policy maker. Constraints (6) 

and (7) ensure the decision variables are binary, which represents the decisions 

about student assignments and bus stops picks, respectively. Constraint (8) 

forces the potential bus stops located at Type-2 students home locations to be 

used and other Type-1 students may walk to these bus stops as their bus stops. 

     Then, the SAPS (Student Assignment Problem Stop) model minimizing 

the number of bus stops in use is as follows. 
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Notations: 

𝑧𝑖𝑗 = {
1 𝑖𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑢𝑗 = {
1 𝑖𝑓 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝 𝑝𝑜𝑖𝑛𝑡 𝑗 𝑖𝑠 𝑖𝑛 𝑢𝑠𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑤𝑖𝑗 =  𝑤𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ℎ𝑜𝑚𝑒 𝑖 𝑡𝑜 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝 𝑗 

𝑀𝐷 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑜𝑟  𝑠𝑡𝑢𝑑𝑒𝑛𝑡 

𝑃 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝 𝑝𝑜𝑖𝑛𝑡𝑠 

𝑄 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 

(SAPS) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑢𝑗
𝑃
𝑗=1                                   (9) 

∑ 𝑧𝑖𝑗
𝑃
𝑗=1 = 1       𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑄                                 (10) 

𝑤𝑖𝑗𝑧𝑖𝑗 ≤ 𝑀𝐷      𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑄  𝑗 = 1, 2, … , 𝑃                    (11) 

𝑧𝑖𝑗 ≤ 𝑢𝑗           𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑄  𝑗 = 1, 2, … , 𝑃                    (12) 

𝑧𝑖𝑗 = 0 𝑜𝑟 1      𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑄  𝑗 = 1, 2, … , 𝑃                    (13) 

𝑢𝑗 = 0 𝑜𝑟 1      𝑓𝑜𝑟 𝑗 = 1, 2, … , 𝑃                                 (14) 

𝑢𝑗 = 1           𝑓𝑜𝑟 𝑗 = 𝑇𝑦𝑝𝑒 − 2 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ℎ𝑜𝑚𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝𝑠 (15) 

      

Note that the differences between the SAPD and SAPS model introduced 

above are that the objective function and the upper bound of bus stops. 

B. NP-hard Problem 

     The size of the problem including the number of students, the number of 

potential bus stops and the number of Type-2 students that could be solved 

exactly and get global optimal solution is very limited, because SAP falls into a 

special case of the incapacitated facility location problem where only one 

customer point is school, and the set of potential facility points are the set of the 
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potential bus stops. Note the incapacitated facility location problem is NP-hard, 

and here is the proof that SAP is NP-hard.  

 

The SAP is NP-hard. 

Proof. The NP-hard proof of the SAP can be deduced from the node 

cover problem. Given a graph 𝐺 and an integer  𝑛, does a subset of 

𝑛 nodes cover all the arcs of graph 𝐺? Note that if node 𝑘 is an 

endpoint of arc 𝑎, then we say that node 𝑘 covers arc 𝑎. The node 

cover problem is NP-complete, and proof can be found in (Karp, 

1972). Consider the set of potential bus stops 𝑆 as the set of node, 

and the set of destination schools 𝐷 as the set of arc. Then the 

SAP is defined by covering all the arcs 𝐷 with minimum number of 

nodes  𝑆. In this way, the optimal solution of the SAP is equivalent 

to the node cover problem. Thus SAP is NP-hard.□ 
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C. SAP Instance 

     Here is the instance shows the different optimal solutions with two SAP 

models and their objectives. 

     When the objective function is to minimize the total walking distance for 

all students, the solution shown in Figure 1 can be obtained. We can see that 

six of seven bus stops are in use and each single student is assigned to the 

nearest reachable bus stop.  

     When the objective function is to minimize the number of bus stops used, 

 
 

Figure 1. Minimize Walking Distance Solution 

 

 
 

Figure 2. Minimize Number of Bus Stops Solution 
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the solution shown in Figure 2 can be obtained. Comparing to Figure 1, the 

number of bus stops is decreased to three with forcing students to the same 

bus stops. This is a more ideal solution for the later routing work because the 

total travel distance is shortened. Hence, the SAP model minimizing the number 

of bus stops in use may bring more benefits as long as the total walking distance, 

as a main measure of service quality, is acceptable. 

D. Discussion 

     From the literatures discussed in Chapter 2, we can find that most works 

assume that the SAP solution is given and only several papers take SAP into 

consideration. The heuristic algorithms instead of mathematical model were 

widely used to construct and optimize solutions. All these heuristic algorithms 

can be classified into two strategies, the location-allocation-routing (LAR) 

strategy and allocation-routing-location (ARL) strategy (Park, 2010). For the 

LAR strategy, the determination of bus stops in use and assignment of students 

to these bus stops are decided before route generation. So the final optimal 

solution of SBRP is somehow decided by the condition SAP already provided. 

This is the drawback of LAR strategy. For the ARL strategy, clustering the 

students into groups within the bus capacity limit is the first step. Then SAP is 

done and SBRP starts for each cluster. The drawback of ARL strategy is how 

to make the policy of clustering. Simply using location gathering to reach the 

bus capacity as one cluster may lead to no feasible solution in SBRP. Especially, 

when the time restrictions such as travel time limit, school time window, are 

involved, there may be the situation that the bus serving the cluster that is 

furthermost from school destination cannot meet the schedule requirements. 
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So a general and effective cluster rule is required for the ARL strategy. 

     Finally in this chapter, we note that how previous work combines the SAP 

and SBRP, and why we divide them into two models and solve them separately. 

A combined model is proposed by the paper (Riera-Ledesma, 2012). The 

authors denote routing cost for buses and assigning cost for students. The 

objective function is to minimize the total routing cost plus the total assigning 

cost. Here the question is how to define the routing cost and, especially, the 

assigning cost. In our model, the student walking distance represents assigning 

cost and obviously it cannot be simply combined with the length of bus routes 

in the objective function without assigning weights to the distance students walk 

and the distance buses travel. It is a tradeoff between the student walking 

distance and the number of bus stops in use which affects the time spent at the 

bus stops by buses. Besides, it is possible to obtain better results for both SAP 

and SBRP if we apply different solving methods separately on SAP and SBRP 

with low complexity of model.  

     The results from SAP model decide whether a bus stop is selected or not 

and the assignment between the pair of each student, including Type-1 and 

Type-2, and the bus stop when the total students walking distance and the 

number of bus stops in use are minimized. These results would be used as the 

input data for the SBRP model we introduce in Chapter 4. 
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CHAPTER IV - SCHOOL BUS ROUTING PROBLEM  

     Using the solution from SAP as data, we can model the bus routing work 

with demand. At this stage of the modeling process of SBRP, the results would 

be the final optimal solution that includes the total cost, the number of buses, 

the routes, travelling distance, the time schedule for every bus, when and which 

bus stop each student should take the bus, and finally, the Type-2 student is 

served by the bus with handicapped facility. The objective in SBRP model is to 

minimize the total cost including three parts: the bus travelling cost, the bus fix 

cost and the additional cost for the bus with handicapped facility. The cost is 

one of the best measures of the SBRP model and it decides whether the 

theoretical optimal solution could be applied to practical use or for further 

decision making process. 

A. SBRP Procedure 

     Before developing the SBRP model, we address data type requirements. 

1. The parameters are generated from the SAP model, which are the number 

of bus stops in use and the number of students for each bus stop. They also 

identify the bus stop with Type-2 students and the bus with handicapped facility 

(denoted as Type-2 bus in the model).  

2. Using the data regarding the bus stops in use and school locations, we 

could get the distance and bus travel time between each pair of locations and 

calculate the travelling cost matrix and the travelling time matrix.  
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3. We need the number of Type-1 buses and Type-2 buses available and 

some of them may not be used in the final optimal solution. Also, the capacities 

of buses are given and they can be a heterogeneous fleet.  

4. We assume the fixed costs of Type-1 buses are proportional to the capacity 

and we predetermine a Type-1 bus fixed cost ratio. Also, we set an additional 

cost for Type-2 bus to calculate the fixed costs of Type-2 buses. 

5. We apply different upper riding time limits for Type-1 and Type-2 students 

instead of the general maximum traveling distance limits. 

6. We assume that the service time required at a bus stop for a Type-1 bus is 

positively correlated to the number of Type-1 students boarding at that stop. 

Similarly, more service time is added to the bus stop when picking Type-2 

student up. 

7. We assume the time window for school is given by the educational district, 

including the earliest and the latest arrival times for students at school to solve 

the morning problem. The time window is also referred to as the school bell 

time window and different schools may have different bell time windows. Most 

papers assume the school bell time window is given as scheduling constraints 

in the model. This is reasonable since in most cases the school bell time window 

is determined based on school policies and class schedules. In addition to the 

arrival schedule at every bus stop, route scheduling provides each route with 

the starting and ending times such that each bus reaches a school destination 

within the school bell time window. 

     Next, we introduce the SBRP model, and its mathematical formulation is 

developed as follows.  
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Notations: 

𝑁 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝𝑠 

𝑃1 = 𝑑𝑒𝑝𝑜𝑡, 𝑎𝑙𝑙 𝑏𝑢𝑠 𝑟𝑜𝑢𝑡𝑒𝑠 𝑠𝑡𝑎𝑟𝑡 ℎ𝑒𝑟𝑒 

𝑃2 … 𝑃𝑛−1 = 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝𝑠 

𝑃𝑛 =  𝑠𝑐ℎ𝑜𝑜𝑙, 𝑎𝑙𝑙 𝑏𝑢𝑠 𝑟𝑜𝑢𝑡𝑒𝑠 𝑒𝑛𝑑 ℎ𝑒𝑟𝑒 

𝑁𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝𝑠 𝑤𝑖𝑡ℎ 𝑇𝑦𝑝𝑒 − 1 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 

𝑆𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝𝑠 𝑤𝑖𝑡ℎ 𝑇𝑦𝑝𝑒 − 2 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 

𝐵 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑠𝑒𝑠 

𝑁𝐵 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑦𝑝𝑒 − 1 𝑏𝑢𝑠𝑒𝑠 

𝑆𝐵 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑦𝑝𝑒 − 2 𝑏𝑢𝑠𝑒𝑠 

𝐶𝑎𝑘 =  𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑏𝑢𝑠 𝑘 

𝑑𝑖𝑗 =  𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑓𝑟𝑜𝑚 𝑠𝑡𝑜𝑝 𝑖 𝑡𝑜 𝑗 

𝑡𝑖𝑗 =  𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 𝑠𝑡𝑜𝑝 𝑖 𝑡𝑜 𝑗 

𝑦𝑗𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 𝑝𝑖𝑐𝑘𝑒𝑑 𝑢𝑝 𝑏𝑦 𝑏𝑢𝑠 𝑘 𝑎𝑡 𝑠𝑡𝑜𝑝 𝑗 

𝑆𝑗 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑠𝑡𝑜𝑝 𝑗 

𝐴 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

𝑇𝐸 = 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑠𝑐ℎ𝑜𝑜𝑙 

𝑇𝐿 = 𝑙𝑎𝑡𝑒𝑠𝑡 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑠𝑐ℎ𝑜𝑜𝑙 

𝑇𝐴𝑗𝑘 = 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑏𝑢𝑠 𝑘 𝑎𝑡 𝑠𝑡𝑜𝑝 𝑗 

𝑇𝐴𝑛𝑘 = 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑏𝑢𝑠 𝑘 𝑎𝑡 𝑠𝑐ℎ𝑜𝑜𝑙 𝑛 

𝑇𝑀 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑖𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑇𝑦𝑝𝑒 − 1 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 

𝑇𝑀𝑆 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑖𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑇𝑦𝑝𝑒 − 2 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 

𝛼 = 𝑇𝑦𝑝𝑒 − 1 𝑏𝑢𝑠 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 𝑟𝑎𝑡𝑖𝑜 

𝛽 = 𝑇𝑦𝑝𝑒 − 1 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 𝑟𝑎𝑡𝑖𝑜 

𝐹 = 𝑇𝑦𝑝𝑒 − 2 𝑏𝑢𝑠 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 

𝐿 = 𝑇𝑦𝑝𝑒 − 2 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 

𝑥𝑖𝑗𝑘 = {
1  𝑖𝑓 𝑏𝑢𝑠 𝑘 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑓𝑟𝑜𝑚 𝑠𝑡𝑜𝑝 𝑖 𝑡𝑜 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝑧𝑗𝑘 = {
1 𝑖𝑓 𝑏𝑢𝑠 𝑘 𝑝𝑖𝑐𝑘𝑠 𝑢𝑝 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 𝑎𝑡 𝑠𝑡𝑜𝑝 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(SBRP) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑘 + 𝛼 ×𝑁
𝑗=1

𝑁
𝑖=1

𝐵
𝑘=1 𝐶𝑎𝑘) + 𝐹 × 𝑆𝐵            (16) 

Subject to 

∑ 𝑦𝑗𝑘
𝑁
𝑗=1 ≤ 𝐶𝑎𝑘                     ∀𝑘                           (17) 

∑ 𝑦𝑗𝑘
𝐵
𝑘=1 = 𝑆𝑗                        ∀𝑗                           (18) 

∑ 𝑥𝑖𝑙𝑘
𝑁−1
𝑖=1 = ∑ 𝑥𝑙𝑗𝑘

𝑁
𝑗=2              𝑙 = 2 … (𝑁 − 1)    ∀𝑘            (19) 

∑ 𝑥𝑖𝑗𝑘
𝑁−1
𝑖=1 ≥ 𝑧𝑗𝑘                 𝑗 = 2 … (𝑁 − 1)     ∀𝑘            (20) 

∑ 𝑥𝑗𝑖𝑘
𝑁
𝑖=2 ≥ 𝑧𝑗𝑘                  𝑗 = 2 … (𝑁 − 1)     ∀𝑘            (21) 

𝑦𝑗𝑘 ≤ 𝑧𝑗𝑘 × 𝑆𝑗                    ∀𝑗   ∀𝑘                        (22) 

∑ 𝑧𝑗𝑘
𝑆𝐵
𝑘=1 = 1                       ∀𝑗 ∈ 𝑆𝑁                       (23) 

𝑧1𝑘 = 1                           ∀𝑘                           (24) 

𝑧𝑁𝑘 = 1                           ∀𝑘                           (25) 

𝑥𝑗𝑗𝑘 = 0                         ∀𝑗   ∀𝑘                        (26) 

∑ 𝑥𝑗𝑁𝑘
𝑁−1
𝑗=1 = 1                      ∀𝑘                           (27) 

∑ 𝑥1𝑗𝑘
𝑁
𝑗=2 = 1                      ∀𝑘                           (28) 

𝐴𝑖 − 𝐴𝑗 + 𝑁 × 𝑥𝑖𝑗𝑘 ≤ 𝑁 − 1       𝑓𝑜𝑟 2 ≤ 𝑖 ≠ 𝑗 ≤ 𝑁      ∀𝑘        (29) 

𝑇𝐴𝑖𝑘 + 𝛽 × 𝑦𝑖𝑘 + 𝑡𝑖𝑗 = 𝑇𝐴𝑗𝑘 + 𝑀(1 − 𝑥𝑖𝑗𝑘)   ∀𝑖 ∈ 𝑁𝑁  ∀𝑗     ∀𝑘𝜖𝑁𝐵        (30) 

𝑇𝐴𝑖𝑘 + 𝛽 × 𝑦𝑖𝑘 + 𝐿 + 𝑡𝑖𝑗 = 𝑇𝐴𝑗𝑘 + 𝑀(1 − 𝑥𝑖𝑗𝑘)    ∀𝑖 ∈ 𝑆𝑁 ∀𝑗  ∀𝑘𝜖𝑆𝐵         (31) 

𝑇𝐴1𝑘 = 0                         ∀𝑘                          (32) 

𝑇𝐴𝑗𝑘 ≤ 𝑀 × 𝑧𝑗𝑘                   𝑗 = 2 … (𝑁 − 1)    ∀𝑘           (33) 

𝑇𝐴𝑛𝑘 − 𝑇𝐴1𝑘 ≤ 𝑇𝑀                ∀𝑘 ∈ 𝑁𝐵                     (34) 

𝑇𝐴𝑛𝑘 − 𝑇𝐴𝑗𝑘 ≤ 𝑇𝑀𝑆             ∀𝑗 ∈ 𝑆𝑁     ∀𝑘 ∈ 𝑆𝐵            (35) 

𝑇𝐸 ≤ 𝑇𝐴𝑛𝑘 ≤ 𝑇𝐿                  ∀𝑘                          (36) 

𝑑1𝑗 = 0                          ∀𝑗                          (37) 

𝑡1𝑗 = 0                         ∀ 𝑗                          (38) 
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𝑥𝑖𝑗𝑘, 𝑧𝑗𝑘 𝑎𝑟𝑒 𝑏𝑖𝑛𝑎𝑟𝑦        ∀𝑖, 𝑗, 𝑘                        (39)                      

𝑦𝑖𝑘 ≥ 0                    ∀𝑗, 𝑘                         (40)                          

      

In this model, the objective function (16) is to minimize the total cost 

including the total travelling cost for buses and the total fixed cost for both Type-

1 buses and Type-2 buses. Note that the fixed cost of Type-1 buses is equal to 

Type-1 fixed cost ratio times the bus capacity. The fixed cost of Type-2 buses 

equals Type-1 fixed cost ratio times the bus capacity plus Type-2 bus additional 

fixed cost. The 𝑑𝑖𝑗 is decided by the bus travelling distance and we use the 

number of miles between two locations as 𝑑𝑖𝑗 directly. Note that the depots for 

all buses may not be the same locations and they could be the school bus 

parking lot or other parking lot. Hence we do not require all the buses to start 

their own route from the same depot or school and we set the distance and 

travelling cost between the depot and the first bus stop to visit as zero, and so 

is the travelling time. Constraint (17) is about the bus capacity limit and it is 

possible for different buses with different capacities. Constraint (18) ensures 

each student is picked up only once. Constraint (19) enforces the bus route 

because for bus stop 𝑙, any bus coming to visit bus stop 𝑙 also leaves from 

bus stop 𝑙. Constraints (20) and (21) ensure that bus stop 𝑗 is on the route of 

bus 𝑘 (come and leave) if bus 𝑘 picks up students at bus stop 𝑗. Constraint 

(22) guarantees two logical requirements. If the stop 𝑗 is not served by bus 𝑘, 

the number of students picked up by bus 𝑘 at stop 𝑗 is zero. If stop 𝑗 is served 

by bus 𝑘, the number of students picked up by bus 𝑘 at stop 𝑗 is less than or 

equal to the total number of students assigned to stop 𝑗. Constraint (23) asserts 

that the bus stop with a Type-2 student is served by the Type-2 bus. Constraints 
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(24) and (25) mean that depots and the school are on the all bus routes. 

Constraint (26) means that no bus travels any self-loop of a stop. Constraint 

(27) ensures that all bus routes end at school. Constraint (28) tells that all bus 

routes start at depots. Constraint (29) eliminates the subtour. Constraint (30) 

means that if bus 𝑘 travels directly from stop 𝑖 to 𝑗, the arrival time for bus 𝑘 

at stop 𝑗 equals the sum of the arrival time for bus 𝑘 at stop 𝑖, service time at 

stop 𝑖, and travelling time from stop 𝑖 to 𝑗. Constraint (31) means that if a 

Type-2 student is served by Type-2 bus 𝑘 from stop 𝑖 to 𝑗, the service time for 

Type-2 bus 𝑘  at stop 𝑖  equals the sum of service time at stop 𝑖  and the 

additional service time for Type-2 student. Constraint (32) makes the arrival 

time for any bus at depot is zero. Note that the travelling time from depot to any 

first bus stop is zero so the arrival time for the first bus stop following the depot 

is also zero. Constraint (33) means that if stop 𝑗 is not visited by bus 𝑘, the 

arrival time is zero. Constraint (34) gives the maximum riding time limit for Type-

1 students. Constraint (35) imposes the maximum riding time limit for Type-2 

students. Constraint (36) promises the arrival time for any bus at school is within 

the school time window. Constraints (37) and (38) mean that the traveling 

distance and traveling time from depot to any first bus stop are zero. Constraint 

(39) is the binary constraint and constraint (40) makes sure that the number of 

students at every bus stop is greater than or equal to zero. Note that no integer 

constraint for 𝑦𝑖𝑘 because the constraint matrix is unimodular, so the optimal 

solution to the linear programming (LP) relaxation will assign all variables 

integer values and would therefore be the optimal solution to the integer 

programming (IP). The proof can be referred to (Shapiro, 1979). 
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B. NP-hard Problem 

     For the SBRP model, the size of the problem that includes the number of 

students, the number of Type-2 students, the number of bus stops, and the 

number of buses, and can be solved exactly and reach global optimal solution 

is much more limited, because SBRP falls to Vehicle Routing Problem (VRP). 

Here is the simple proof that SBRP is NP-hard.  

 

The SBRP problem is NP -hard. 

Since SBRP is a sub problem of VRP, and VRP is NP -hard (Lenstra, 1981), SBRP is also 

NP -hard. □ 

C. SBRP Instance 

The following figures show the solution of the example with 45 students, 

14 bus stops, three buses and two Type-2 students.  

      

S
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3

4

Type 2 Student Bus Stop

 
 

Figure 3. One Type-2 student four bus stops route 
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Figure 4. One Type-2 student three bus stops route 

 

 

     

In this example, bus #1 and bus #2 are equipped with special 

handicapped facility (Type-2 buses), and the policy is that at most 1 Type-2 

student can board on one bus. The arrows in Figure 3 and 4 point out the bus 

stops with Type-2 students. Thus, the bus stop with the first Type-2 student is 

assigned on the route of bus #1 and the bus stop with the second Type-2 
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Figure 5. No Type-2 student five bus stops route 
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student is assigned on the route of bus #2. We assume that no difference exists 

between two Type-2 students, bus #1 and #2. The only difference among all 

bus stops is that two of them are for the Type-2 students and the remaining bus 

stops are for the Type-1 students only. Note that the bus stops with Type-2 

students are not only for the Type-2 students. That is, Type-1 students can walk 

from home locations to take their buses with the Type-2 students. The Figure 5 

illustrates the route of bus #3. Observing the solution, we can easily find out 

two points. One is that bus #3 serves more bus stops than bus #1 and bus #2 

separately. This is due to the time restriction. The service time at bus stop for 

the Type-2 student is much longer than for the Type-1 student, and the total 

travel time of each bus must be within the time window. It is obvious that bus 

#3 should serve more students and stops because the students onboard are all 

Type-1 students. Another important point is that the bus stops with Type-2 

students are the last stops on the routes before school. The reason is still about 

the time restriction on the Type-2 student travel time. The upper travel time limit 

for the Type-2 students is much lower than for the Type-1 students, thus it is 

beneficial to shorten the distance between the bus stop with the Type-2 

students and the school destination. In particular for the Figure 3, the locations 

of bus stop 2, 3 and 4 construct an approximate triangle shape, and bus #1 

travels from bus stop 1 to 2 first, then to 3 second, and finally 4. In fact, the 

location of bus stop 4 is the nearest one to bus stop 1 compared to stop 2 and 

3, and it decreases the travel distance and time if bus 1 travels to bus stop 4 

first, 3 second, and finally 2. However, this route forces bus #1 to pickup Type-

2 student first at bus stop 4, and transports him/her to 3 and 2. It violates the 

restriction on the travel time of Type-2 student, and the solution becomes 
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infeasible. 

     Figure 6 is another example with 30 students, 14 bus stops, 2 buses and 

1 Type-2 student. It shows the effect of travel time limit clearly. In this example, 

one Type-2 student needs to take the bus at bus stop 5, which is on the way of 

bus travelling from stop 2 to 3 and 4. Because of the travel time limit, the bus 

has to turn back from the bus stop 4, pick up the Type-2 student at stop 5, and 

finally travel directly to the school destination. The dash line is the route of the 

other bus. 

Figure 6. The turn back route of Bus  

D. Multi-objective Model 

     From a practical standpoint, the service quality is a significant concern for 

public service, in particular for school bus transportation authorities. Other than 

the safety, equity is also another main performance measure of service quality. 

The equity consideration is about the fairness of all students, and it is usually 

an improvement and modification to the cost consideration. The load balance 
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and length balance are two most commonly used criteria and can be used to 

regard SBRP as a new multi-objective model. The idea of load balance is to 

balance the number of students on each single bus route so that all students 

are nearly evenly assigned to buses. It is a poor load balance situation if some 

buses are almost fully loaded, while other buses pick only few students. The 

idea of length balance is that the difference among all buses travel distance is 

small so that every student spends near equal time on board. It is a poor length 

balance if some buses travel much further with much longer time in comparison 

to other buses.  

     The SBRP model presented at the beginning of this chapter can be further 

enhanced by adding the equity objectives to a multi-objective model. The 

objective functions are as follows, 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (∑ 𝑆𝑗
𝑁
𝑗=1

𝐵
𝑘=1 𝑧𝑗𝑘)2                             (41) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (∑ ∑ 𝑑𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1

𝐵
𝑘=1 𝑥𝑖𝑗𝑘 −

∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑘
𝑁
𝑗=1

𝑁
𝑖=1

𝐵
)2          (42) 

      

     In the objective function (41), the variation in the number of students 

served on every bus route is minimized by adding the square of the number of 

students on each route. In the objective function (42), the variation in the route 

length of each bus is minimized by adding the square of the difference of each 

bus route length and the average bus route length.  

E. Discussion 

     At the end of this chapter, we explain more details about the SBRP model. 

First, it is possible that multiple buses serve one bus stop which implicates that 
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the students at the same bus stop may not take the same ride. Second, in order 

to solve bigger size problem, for the instances tested above, we set the 

allowable maximum riding time for Type-1 student is 60 minutes, for Type-2 

student is 30 minutes, the school time window is within 0 to 60 minutes, and the 

bus stop service time ratio is 0.5. Third, the instances are the morning cases 

about Goshen Elementary School in Oldham County School District. We pick 

bus stops from all the bus stops listed and measure the road distance and travel 

time between each pair of origin and destination. 



45 
 

CHAPTER V - SOLUTION APPROACH 

     From the computing results in Chapter 6, the sizes of the instances 

which can be solved directly with optimization software are very limited. From 

the literature, many works applied metaheuristics as tools to solve SBRP and 

got near optimal solutions within acceptable computing time. The computing 

time of solving SBRP may not be an important concern in practice because 

SBRP only needs to be solved one time for one whole academic year. 

However, if the quality of the solution is important and it is necessary to keep 

improving, solving SBRP in a short time brings benefits. For practical use 

purposes, the solutions from the computer programs should be revised 

manually under the policies from the education district department. The 

constraints may need to change over time until a good solution under the 

policies is obtained. In this way, how quickly SBRP can be solved and 

different solutions can be reached determine the efficiency of the whole 

decision making process. 

     In this study, we develop a Genetic Algorithm (GA) to achieve feasible 

solutions as initial columns, and then apply a Column Generation (CG) 

technique to improve the quality of the solutions. Next, we introduce each of 

them and present a combined strategy to solve a large practical problem 

within a reasonable time limit.     
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A. Genetic Algorithm 

     GA has been widely used as a robust heuristic method to find a feasible 

solution efficiently, and the basic steps are as follows. Basically, GA imitates 

the process of natural evolution, and by evaluating, selecting, breeding and 

filtering within randomly generated candidate solutions to obtain the optimal 

solution. In general, GA has the following basic steps. 

1. Initialization: At the start of an algorithmic procedure, a certain number 

of individual solutions are randomly generated and they comprise the initial 

population. 

2. Evaluation: A fitness score is assigned to rate each individual solution. 

Such a fitness score should reflect: a) if the solution satisfies the constraints 

of the optimization problem under consideration; b) how well the solution 

optimizes the objective function.  

3. Selection: Existing individuals (solutions) are subsequently selected 

as parents to reproduce offspring, i.e., new solutions. Inspired by human 

evolution, one would make those solutions with good fitness scores have 

higher probability to be selected for reproduction. Individuals, or solutions, 

from one generation to the next, are likely to improve in terms of optimizing 

the objective value. Ideally, when enough generations pass over, the best 

solutions of the last generation should converge to the optimal solution. In 

short, GA often assigns those solutions with good fitness scores larger 

probability of being selected for reproduction, and those with poor fitness 

scores smaller probability. Note that in order to promote diversity for reaching 



47 
 

global optima, GA usually does not assign zero probability to individuals with 

poor fitness scores.  

4. Reproduction: Once parents are selected, the next step is to generate 

offspring solutions to form the next generation, and two primary methods of 

creating next generations are crossover and mutation. The crossover process 

typically takes a set of alleles from one of the parents, and then switches them 

with the alleles of the other parent. It allows a new solution to share many 

characteristics of its parents and gathers them into one better solution as the 

offspring. Mutation on the other hand simply changes some alleles of one of 

the parents. The goal of mutation is to increase diversity of the population, 

which can effectively avoid trapping at local optima. The exchange mutation 

proceeds with probability. The times of mutation and the two points to 

exchange are also randomly selected. In many GA practices, it is not 

necessary to eliminate both parents once they reproduce offspring. The 

elitism strategy always keeps a certain percentage of the best solutions within 

current generation to be carried over to the next generation. 

5. Termination: The process of Steps 2-4 repeats until the user-defined 

termination conditions are satisfied. Common terminating conditions are: a) a 

solution that satisfies some minimum criteria is found; b) a fixed number of 

generations is reached; c) a fixed amount of computation time passes; and d) 

successive iterations no longer produce better results.  

B. Genetic Algorithm for SBRP 

     In this section, we introduce our customized GA in C# for the SBRP by 

going through one example with 30 students, 10 bus stops including depot 
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and school and 5 buses. In this example, two Type-2 students are assigned to 

the bus stop #2 and #6 from the SAP solution. Two Type-2 buses, bus #4 and 

#5, are required to serve Type-2 students and at most one Type-2 student 

can be onboard for one Type-2 bus.  

B.1. Encoding 

     The SAP solution is encoded as an array with integer items. Total 30 

students are encoded as [0,1,2,3,4,5,6,5,4,0], which means that one student is 

assigned to stop #1, two students are assigned to stop #2, five students are 

assigned to stop #5, six students are assigned to stop #6, five students are 

assigned to stop #7 and so on. The first item is always depot and the last 

stop, the ninth item in this example, is always school. In these 30 students, 28 

Type-1 students and two Type-2 students are encoded separately as 

[0, 1, 1, 3, 4, 5, 5, 5, 4, 0] and [0, 0, 1, 0, 0, 0, 1, 0, 0, 0]. There are 10 items in the arrays 

indicating that 10 bus stops are in use. Also, the first item and the last item 

should always be zero because no student is assigned to the depot and the 

school. Comparing to the encoded SAP solution, 10 bus stops are numbered 

and encoded as [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. The depot is numbered as 0 and the 

school is numbered as 9. The bus route in the population is encoded as 

[0, 1, 2, 9] for example. This means that the bus route starts travelling from 

depot to bus stop #1, then from bus stop #1 to #2, then from bus stop #2 to 

the school. Note that the first item should be depot, which is encoded as zero, 

and the last item should be school for every feasible route. The virtual bus 

depot is always numbered as stop #0 for all the routes and it is always the first 

item in each route. When numbering all the bus stops in order, the school is 
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numbered as the last one because school is always the last stop for all routes. 

In this way, the largest integer item in the array represents school, which is 

the last item in each array. The depot is set up for the modeling purpose, and 

the real depot locations for all bus routes may not be the same, and buses 

can start the route from anywhere as a virtual depot. Five buses are 

numbered and encoded as [1, 2, 3, 4, 5], in which the Type-1 buses are 

encoded as [1, 1, 1, 0, 0] and the Type-2 buses are encoded as [0, 0, 0, 1, 1]. 

This means that bus #1, #2 and #3 are Type-1 buses and bus #4 and #5 are 

Type-2 buses. The capacity of buses are encoded as [8, 8, 8, 7, 7]. Thereby,  

the capacities of three Type-1 buses, #1, #2 and #3, are eight students. The 

capacities of two Type-2 buses, #4 and #5, are seven students.    

B.2. Initialization 

     When starting the initialization step, the number of available buses, and 

the bus stop numbers including depot and school are given. Also, the student 

assignment solution from SAP is given. and also encoded as an array with 

integer items. The integers provide the number of students assigned to the 

corresponding bus stops in order. Again, the first and the last integer items 

are always zero because no students can be assigned to the virtual depot or 

school. In addition, the SAP solution includes both the Type-1 and the Type-2 

student assignment solutions and they are encoded in arrays separately. In 

short, the integer items in the array recording SAP solution are the number of 

students assigned, while the integer items in the array of route are the bus 

stop numbers. In the initialization step, the Type-2 bus routes serving Type-2 

students are generated first as Figure 7 shows in the flowchart. 
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     The approach starts at reading Type-2 stops from the Type-2 students 

SAP solution array [0, 0, 1, 0, 0, 0, 1, 0, 0, 0]. After this step, bus stop #2 and #6 

are marked as Type-2 stops. Then the travelling time from stop #2 and #6 to 

the school (𝑡29 and 𝑡69) are calculated. If any travelling time is beyond the 

maximum riding time for Type-2 student (𝑇𝑀𝑆), then no feasible solution exists 

because it is impossible to transport the corresponding Type-2 student to the 

school meeting the maximum riding time for Type-2 student constraint. In 

order to find a feasible solution, the maximum riding time for Type-2 student 

(𝑇𝑀𝑆) needs to increase until both 𝑡29 and 𝑡69 are less than the new 𝑇𝑀𝑆. 
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Figure 7. Type-2 student initial route generate procedure 
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     When both 𝑡29 and 𝑡69 are less than the 𝑇𝑀𝑆, all Type-2 buses are read 

from the array [0, 0, 0, 1, 1]. Bus #4 is arbitrarily assigned to serve stop #2, and 

bus #5 is assigned to serve stop #6. Then we pick stop #2 to continue the 

procedure and the same approach will be used on stop #6 also. The sum of 

the service time for Type-2 student (𝛽 × 1 + 𝐿) and the travelling time of 

transporting the Type-2 student to the school (𝑡29) is calculated. Note that if 

there are Type-1 students assigned to Type-2 stop #2 along with the Type-2 

student, bus stop #2 is divided into two separate virtual stops #2’ and #2’’. 

The Type-2 student is assigned to stop #2’’ and the Type-1 students are 

assigned to stop #2’. The travelling time between stop #2’ and #2’’ (𝑡2′2′′) is 

zero. In this way, we can generate the route for bus #4 from back to front and 

the Type-2 student is picked up only before travelling directly to the school. 

This modeling technique is useful since the maximum riding time for a Type-2 

student (𝑇𝑀𝑆) is usually critical and the additional service time for a Type-2 

student (𝐿) is much longer, and in turn consumes a significant part of the 

maximum riding time limit for other Type-1 students on board. It also more 

likely to generate feasible routes in limited computational times. When the last 

two stops of bus #4’s route are decided as [2’’, 9], we can treat stop 2’’ as the 

new school destination for bus #4 with updated time windows (𝑇𝐸2′′ and 𝑇𝐿2′′). 

Here 𝑇𝐸2′′ = 𝑇𝐸 − 𝑡29 − (𝛽 × 1 + 𝐿) and 𝑇𝐿2′′ = 𝑇𝐿 − 𝑡29 − (𝛽 × 1 + 𝐿). The capacity 

of bus #4 should also be updated as 𝐶𝑎4 = 𝐶𝑎4 − 1. As mentioned before, the 

time windows of Type-2 bus stop #6 (𝑇𝐸6′′ and 𝑇𝐿6′′) and the capacity of bus 

#5 (𝐶𝑎5) are also updated. The last two stops of bus #5’s route are also 

decided as [6’’, 9]. 
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     After both Type-2 students are served, it is reasonable to determine if 

bus #4 and #5 can serve other Type-1 students assigned to Type-1 bus stop 

#2’ and #6’. Based on the total number of the Type-1 students assigned to 

stop #2 (𝑆2 − 1) and #6 (𝑆6 − 1) from Type-1 students SAP solution array 

[0, 1, 1, 3, 4, 5, 5, 5, 4, 0], we pick stop #2’ to continue the procedure and the same 

approach will be used on stop #6’ also.  

     If the updated capacity of bus #4 (𝐶𝑎4) is less than the total number of 

Type-1 students assigned to stop #2’ (𝑆2 − 1), bus #4 picks as many students 

as it can (𝐶𝑎4), and then travels directly to school. Bus #4’s route is generated 

as [0, 2, 9]. The total number of students assigned to stop #2’ (𝑆2 − 1) is 

updated as 𝑆2 = 𝑆2 − 1 − 𝐶𝑎4.  

     If the updated capacity of bus #4 (𝐶𝑎4) is not less than the total number 

of Type-1 students assigned to stop #2’ (𝑆2 − 1), we make Type-1 stop #2’ as 

the school destination for bus #4 and calculate the time windows of stop #2’ 

(𝑇𝐸2′ and 𝑇𝐿2′). The capacity of bus #4 (𝐶𝑎4) is updated as 𝐶𝑎4 = 𝐶𝑎4 − (𝑆2 − 1). 

The maximum riding time for a Type-1 student on bus #4 (𝑇𝑀4) is calculated 

as 𝑇𝑀4 = 𝑇𝑀 − [𝛽 × (𝑆2 − 1) + 𝐿 + 𝑡29]. Finally, bus #4 is added into Type-1 

bus group with the updated capacity (𝐶𝑎4) and the updated maximum riding 

time for a Type-1 student (𝑇𝑀4). 

     After routing Type-2 students, we start routing all Type-1 students with 

updated information such as Type-1 students SAP solution, Type-1 bus 

group, school destinations, bus capacities, and maximum riding time for a 

Type-1 student. The flowchart in figure 8 shows the route generation 

procedure. 
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Figure 8. Type-1 student initial route generate procedure 
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stop #1 Updated Type-1 bus 

group

No

If (TM1

- t1n )(Ca1 – y11) 
> 0 

TM1 = TM1 – β;
y11 = y11 + 1;

S1 = S1 - 1 

Yes

No

If TM1

- t1n = 0 
Generate bus #1 
route as [0, 1, 9];

Yes

If TM1

- t1n < 0 

No

y11 = y11 – 1;
S1 = S1 + 1

Yes

No

Assign bus #2 to 
stop #1

Yes

Generate bus #1 
route as [0, 1, 9];

If 
TM1 - t12 > β  

No

Generate bus #1 
route as [0, 1, 2];
Ca1 = Ca1 – y11 ;
TM1 = TM1 – t12

Yes

Assign bus #1 to 
stop #2

Generate bus #1 
route as [0, 1, 9];

Assign bus #2 to 
stop #2

No

End

Repeat the 
procedure

Yes

No

Combine all bus 
routes and save into 

population

Randomly 
regenerate stop 

visited order

If the number of 
routes equals 

population size

No

Yes

If S1 > 0

Yes

No

If all buses are used

Combine all bus 
routes and save into 

population

If the number of 
routes equals 

population size

No

Yes
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     First, we use Type-1 bus stops (𝑖 = 1, 2, …  8) with the travelling time from 

every stop to the school (𝑡𝑖𝑛), and Type-1 buses’ (𝑗 = 1, 2, …  5) maximum riding 

time for a Type-1 student (𝑇𝑀𝑗). If there exists any 𝑡𝑖𝑛 > max (𝑇𝑀𝑗), which 

means that it is impossible for any bus to transport the Type-1 students from 

the corresponding bus stop to the school meeting the maximum riding time for 

a Type-1 student constraint, no feasible solution exists and the max (𝑇𝑀𝑗) 

must be increased. If any 𝑡𝑖𝑛 ≤ max (𝑇𝑀𝑗), we start the procedure by routing 

bus #1 from depot to the first stop in the initial visit order (stop #1). Note that 

the visit order will be regenerated randomly every time the procedure starts 

later.  

     Next, bus #1 starts to pick up the Type-1 students at stop #1. Once a 

student is picked up by bus #1, the maximum riding time (𝑇𝑀1) is updated as 

(𝑇𝑀1 = 𝑇𝑀1 − 𝛽), and the number of students picked up by bus #1 at stop #1 

(𝑦11) is updated as (𝑦11 = 𝑦11 + 1). The pick-up process repeats if the number of 

Type-1 students left on stop #1 𝑆1 > 0 and (𝑇𝑀1 − 𝑡1𝑛)(𝐶𝑎1 − 𝑦11) > 0. If (𝑇𝑀1 −

𝑡1𝑛)(𝐶𝑎1 − 𝑦11) ≤ 0, it means that 𝑇𝑀1 − 𝑡1𝑛 ≤ 0 or 𝐶𝑎1 − 𝑦11 = 0 because both 

𝐶𝑎1 and 𝑦11 are integers and 𝑦11 increments by one during the process. In 

the case of 𝑇𝑀1 − 𝑡1𝑛 = 0, bus #1 is fully loaded and travels from stop #1 to the 

school meeting the maximum riding time (𝑇𝑀1) exactly. Bus #1’s route is 

generated as [0, 1, 9]. In the case of 𝑇𝑀1 − 𝑡1𝑛 < 0, the maximum riding time 

(𝑇𝑀1) limit is reached first and bus #1 has to travel from stop #1 to the school 

with empty seats. The number of students picked up by bus #1 is updated as 

𝑦11 = 𝑦11 − 1 and the number of students left is updated as 𝑆1 = 𝑆1 + 1. Bus 

#1’s route is generated as [0, 1, 9]. 
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     In the case of 𝐶𝑎1 − 𝑦11 = 0, bus #1 is fully loaded and there are more 

Type-1 students left at stop #1. Bus #1’s route is generated as [0, 1, 9] and we 

start the same procedure by routing bus #2 from depot to stop #1.   

     When 𝑆1 = 0, which means that all Type-1 students at stop #1 are 

picked up by bus #1. The sum of the travelling time from stop #1 to #2 and the 

service time for one Type-1 student is calculated. If the updated 𝑇𝑀1 is more 

than the sum, we route bus #1 from stop #1 to #2 and the route is generated 

as [0, 1, 2]. The capacity of bus #1 is updated as 𝐶𝑎1 = 𝐶𝑎1 − 𝑦11. The 

maximum riding time (𝑇𝑀1) limit is updated as 𝑇𝑀1 = 𝑇𝑀1 − 𝑡12. At bus stop #2, 

we start the same procedure again for bus #1 with the updated capacity 𝐶𝑎1 

and the updated maximum riding time (𝑇𝑀1). If the updated 𝑇𝑀1 is not more 

than the sum, we generate bus #1’s route as [0, 1, 9] and route bus #2 from 

depot to stop #2. The same procedure is started on bus stop #2 for bus #2. 

     When the procedure starts again, the number of available buses and the 

number of Type-1 students left are checked. If all buses are used or all 

students are picked up, we combine all bus routes generated in one array and 

save it into the initial population. If there are still available buses and Type-1 

students left, we repeat the procedure until no available bus or no student left. 

     When the routes generated are combined and saved into the initial 

population, the total number of solutions in the initial population is checked. If 

the total number of solutions reaches the population size we set as 1000, the 

initialization step ends. If the total number of solutions is less than the 

population size we set, the stop visiting order is randomly regenerated and the 

data including Type-1 students SAP solution, 𝑇𝑀 for bus #1, #2 and #3, 𝑇𝑀4 

and 𝑇𝑀5, and school destinations for bus #4 and #5, is restored.  
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B.3. Evaluation 

     The pseudo-code for the GA is described in Algorithm 1. After 

generating the initial population with 1000 solutions, we calculate the total 

travelling distance for each solution based on the route generated and the 

travelling distance matrix. In our GA, The total traveling distance is 

represented as 𝑧. A binary variable 𝐹 =  0 if the route is feasible, and 𝐹 =

 1 otherwise. The objective value (𝑇) is calculated as 𝑇 =  𝑧 +  𝐹 ×  𝑃, 

where 𝑃 is a very large number of penalty. The fitness score is represented 

by 𝑓 =  1/𝑇, and the fitness scores of good feasible solutions are high, and 

the fitness scores of infeasible solutions are very low.  

B.4. Selection 

     In our GA, we apply a rule of best keeping with the roulette wheel 

selection in order to choose solutions as parents to mate and produce 

offspring. For each generation, all 𝑁 solutions are ranked from largest to 

smallest based on fitness score. The first solution with a largest fitness score 

is passed on from the parent generation to the offspring generation, and the 

rest 𝑁 − 1 new offspring solutions are generated by reproduction. The 

roulette wheel method probabilistically selects individuals according to their 

fitness scores. The probability of an individual being selected (𝑃𝑠) is given by 

the equation (43): 

𝑃𝑠 = 𝑓𝑖/(∑ 𝑓𝑖
𝑁
𝑖=1  )                             (43) 
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B.5. Crossover 

     The probability of crossover (𝑃𝑐) is set as the parameter of GA. For each 

selected pair of parents, if the random generated number (𝑟) between 0 and 1 

is less than or equal to 𝑃𝑐, we crossover the selected parent 1 and 2, and 

insert the offsprings to the next generation population 𝑃(𝑡 + 1).   

     Two-point crossover is applied with random two points (𝑖 and 𝑗) in GA. 

All alleles between 𝑖 and 𝑗 on the parent strings are swapped each other. 

Note that the range of the randomly generated two points (𝑖 and 𝑗) is [1, 𝑁 −

1], where 𝑁 is the number of bus stops. In this way, we ensure that the first 

allele is always the depot #0 and the last allele is always the school #N for all 

the solutions. Also, the Type-2 bus stop is the last stop before the school in 

each route at the initial generation step. However, this is not the case when 

the point 𝑗 falls on the allele which represents the Type-2 bus stop because 

the next allele, which represents the school, is not swapped to the offspring. 

This design is beneficial and may lead to better solution because it brings the 

possibility that stops may be ordered between the Type-2 bus stops and the 

school. At the same time, this design limits the probability of inserting bus 

stops between the Type-2 bus stops and the school because the maximum 

travelling time limit for Type-2 students ( 𝑇𝑀𝑆) is typically violated. 

B.6. Mutation 

     The probability of mutation (𝑃𝑚) is also set as the parameter of GA. For 

each selected pair of parents, if the randomly generated number (𝑟) between 

0 and 1 is more than the crossover probability (𝑃𝑐), no crossover is applied 

between the selected pair of parents. Then two random number (𝑥 and 𝑦) 
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between 0 and 1 are applied to determine whether the mutation is applied. If 

𝑥 (or 𝑦) is less than or equal to the mutation probability (𝑃𝑚), we mutate 

parent 1 (or 2) by exchanging the alleles on two random generated points (𝑖  

and 𝑗), and insert the new solution to the next generation population 𝑃(𝑡 + 1). 

If 𝑥 (or 𝑦) is more than the mutation probability (𝑃𝑚), we do not mutate and 

copy parent 1 (or 2) directly to the next generation population 𝑃(𝑡 + 1). 

     Note that the crossover and the mutation will not be applied on the one 

pair of parents at the same time. Also, the selected pair of parents may be 

copied directly to the next generation population without any crossover or 

mutation. This facilitates maintaining good quality solutions with higher fitness 

scores in the population. 

B.7. Termination 

     We limit the number of generations as 10,000 in the solving process. In 

the 10,000th generation population, the best solution with the highest fitness 

score is the final optimal solution. 

     After each run of the GA, if a feasible solution is found, it is then used as 

initial columns for the CG procedure as described in the next section. 
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Algorithm 1: GA Algorithm for SBRP 

C. Column Generation 

     The basic idea of Column Generation (CG) is the decomposition with 

the master model (or the master problem) and the submodel (or the pricing 

problem). The pseudo-code of the CG from (Stuber, M. 2010) is shown below. 

 

 

 

 

𝑮𝒆𝒏𝒆𝒕𝒊𝒄 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 
 
𝑫𝒂𝒕𝒂:   𝑒𝑣𝑒𝑟𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑎𝑙𝑒 (𝑀);  𝑓𝑖𝑥𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

(𝑇);  𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑃𝑐);  𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑃𝑚); 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝𝑠 (𝑁); 

𝑹𝒆𝒔𝒖𝒍𝒕:   𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑠𝑐𝑜𝑟𝑒; 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑃(0);  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡 = 0; 
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑃(0); 
𝑾𝒉𝒊𝒍𝒆 𝑡 ≤ 𝑇 𝒅𝒐  

𝐶𝑜𝑝𝑦 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑠𝑐𝑜𝑟𝑒 𝑡𝑜 𝑃(𝑡 + 1); 
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝑠 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛; 
𝒇𝒐𝒓 𝑘 = 0; 𝑘 < 𝑀; 𝑘 = 𝑘 + 2 𝒅𝒐 
    𝑆𝑒𝑙𝑒𝑐𝑡 𝑝𝑎𝑟𝑒𝑛𝑡 1 & 2 𝑓𝑟𝑜𝑚 𝑃(𝑡); 
    𝑟 =  𝑟𝑎𝑛𝑑𝑜𝑚[0,1]; 

𝒊𝒇 𝑟 ≤ 𝑃𝑐  𝒕𝒉𝒆𝒏 
𝑖 =  𝑟𝑎𝑛𝑑𝑜𝑚[1, 𝑁 − 1];  𝑗 = 𝑟𝑎𝑛𝑑𝑜𝑚[1, 𝑁 − 1]; 

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑝𝑎𝑟𝑒𝑛𝑡 1 & 2 𝑎𝑛𝑑 𝑖𝑛𝑠𝑒𝑟𝑡 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠 𝑡𝑜 𝑃 (𝑡 + 1); 
𝒆𝒍𝒔𝒆 

𝑥 =  𝑟𝑎𝑛𝑑𝑜𝑚[0,1]; 
𝒊𝒇 𝑥 ≤ 𝑃𝑚  𝒕𝒉𝒆𝒏 

𝑖 =  𝑟𝑎𝑛𝑑𝑜𝑚[1, 𝑁 − 1];  𝑗 = 𝑟𝑎𝑛𝑑𝑜𝑚[1, 𝑁 − 1]; 
𝑚𝑢𝑡𝑎𝑡𝑒 𝑝𝑎𝑟𝑒𝑛𝑡 1 𝑎𝑛𝑑 𝑖𝑛𝑠𝑒𝑟𝑡 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝑃(𝑡 + 1); 

𝒆𝒍𝒔𝒆 
𝑐𝑜𝑝𝑦 𝑝𝑎𝑟𝑒𝑛𝑡 1 𝑡𝑜 𝑃(𝑡 + 1); 

𝒆𝒏𝒅 
𝑦 =  𝑟𝑎𝑛𝑑𝑜𝑚[0,1]; 
𝒊𝒇 𝑦 ≤ 𝑃𝑚  𝒕𝒉𝒆𝒏 

𝑖 =  𝑟𝑎𝑛𝑑𝑜𝑚[1, 𝑁 − 1];  𝑗 = 𝑟𝑎𝑛𝑑𝑜𝑚[1, 𝑁 − 1]; 
𝑚𝑢𝑡𝑎𝑡𝑒 𝑝𝑎𝑟𝑒𝑛𝑡 2 𝑎𝑛𝑑 𝑖𝑛𝑠𝑒𝑟𝑡 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝑃(𝑡 + 1); 

𝒆𝒍𝒔𝒆 
𝑐𝑜𝑝𝑦 𝑝𝑎𝑟𝑒𝑛𝑡 2 𝑡𝑜 𝑃(𝑡 + 1); 

𝒆𝒏𝒅 
𝒆𝒏𝒅 

𝒆𝒏𝒅 
    𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛; 
𝒆𝒏𝒅 
𝑃𝑟𝑖𝑛𝑡 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑠𝑐𝑜𝑟𝑒 𝑖𝑛 𝑓𝑖𝑛𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛; 
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Algorithm 2: Column generation approach to solve SBRP 

      

In CG, all the available bus routes are treated as the variables and they 

are different from the variables in SBRP model. The main advantages of using 

CG is starting with only a subset of variables to solve the new problem and 

find the solution, and then determining one more part from the rest of the 

original problem to take into consideration. The CG algorithm keeps repeating 

this process in iterations until one (near) optimal solution is reached. 

     In the algorithm shown above, 𝛾′ denotes the set of bus routes to be 

considered, and the maximum regret 𝑟𝑚𝑎𝑥 represents the most acceptable 

difference of the times between transported by school bus and transported by 

parents for students. The CG algorithm starts with all trivial routes with only 

one student each. 

     With 𝛾′, the master problem can be solved and the dual prices 𝑠𝑖 can 

be obtained for all 𝑖 constraints of the master problem. If all 𝑠𝑖 are non-

negative, the CG algorithm stops and the solution from the master problem is 

𝑪𝒐𝒍𝒖𝒎𝒏 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 
 
𝑰𝒏𝒑𝒖𝒕:   𝑆 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠, 𝐶𝑎 𝑏𝑒 𝑡ℎ𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑏𝑢𝑠𝑒𝑠  
𝑎𝑛𝑑 𝑟𝑚𝑎𝑥  𝑏𝑒 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑒𝑔𝑟𝑒𝑡 

 
𝑶𝒖𝒕𝒑𝒖𝒕:   𝛾′ 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒𝑠 

 
 
𝑺𝒕𝒆𝒑 𝟎:   𝑝𝑢𝑡 𝑖𝑛 𝛾′ 𝑎𝑙𝑙 𝑡𝑟𝑖𝑣𝑖𝑎𝑙 𝑟𝑜𝑢𝑡𝑒𝑠 
 
𝑺𝒕𝒆𝒑 𝟏:   𝑠𝑜𝑙𝑣𝑒 𝑚𝑎𝑠𝑡𝑒𝑟 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑎𝑛𝑑 𝑔𝑒𝑡 𝑠𝑖 = 𝑑𝑢𝑎𝑙 𝑝𝑟𝑖𝑐𝑒𝑠 

𝒊𝒇 𝑠𝑖 = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝒕𝒉𝒆𝒏 
    𝒃𝒓𝒆𝒂𝒌 
𝒆𝒍𝒔𝒆 
    𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 2 
𝒆𝒏𝒅 𝒊𝒇 

 
𝑺𝒕𝒆𝒑 𝟐:   𝑠𝑜𝑙𝑣𝑒 𝑝𝑟𝑖𝑐𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑎𝑛𝑑 𝑔𝑒𝑡 𝑅 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑟𝑜𝑢𝑡𝑒 
 
𝑺𝒕𝒆𝒑 𝟑:   𝑎𝑑𝑑 𝑅 𝑡𝑜 𝛾′, 𝑥𝑅  𝑡𝑜 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 
 
𝑺𝒕𝒆𝒑 𝟒:   𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 1 



62 
 

optimal. If any negative dual price exists, the pricing problem is solved and a 

variable with negative dual price is found. This variable 𝑅 representing the 

new route will be added to 𝛾′ and the master problem will be solved again. 

The CG algorithm is repeated with the set of bus routes to be considered 𝛾′, 

the master problem, negative dual price 𝑠𝑖, the pricing problem and new 

updated 𝛾′ until a solution having non-negative dual price. 

D. Column Generation for SBRP 

     We utilize CG to effectively solve a large scale problem in the constraint 

matrix as in SBRP. All initial feasible columns are generated by GA and 

populated in an initial column pool for a CG procedure.      

D.1 Master Problem 

Next, we present a restricted master problem (RMP) and a pricing 

subproblem. Note that the decision variables in master problem are the routes 

not arcs, and also every student is considered instead of stop. 

 

Notations: 

𝑥𝑟 = {
1, 𝑖𝑓 𝑟𝑜𝑢𝑡𝑒 𝑟 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑅: 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑟𝑜𝑢𝑡𝑒𝑠 

𝐵: 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑏𝑢𝑠 𝑇𝑦𝑝𝑒 − 1 𝑎𝑛𝑑 𝑇𝑦𝑝𝑒 − 2 

𝐻: 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑏𝑢𝑠 𝑇𝑦𝑝𝑒 − 2 𝑜𝑛𝑙𝑦 

𝑆: 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑇𝑦𝑝𝑒 − 1 𝑎𝑛𝑑 𝑇𝑦𝑝𝑒 − 2 

𝑇: 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑇𝑦𝑝𝑒 − 2 𝑜𝑛𝑙𝑦 

𝑐𝑟 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒 𝑟 
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𝛿𝑠𝑟 = {
1, 𝑖𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑠 𝑖𝑠 𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑦 𝑟𝑜𝑢𝑡𝑒 𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝜇𝑏𝑟 = {
1, 𝑖𝑓 𝑏𝑢𝑠 𝑡𝑦𝑝𝑒 𝑏 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑟𝑜𝑢𝑡𝑒 𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(RMP) 

      𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑟𝑥𝑟𝑟∈𝑅                            (44) 

Subject to 

∑ 𝛿𝑠𝑟𝑟∈𝑅 𝑥𝑟 =  1                  ∀𝑠 ∈ 𝑆                      (45)                                      

∑ 𝜇𝑏𝑟𝑥𝑟  ≤ 1                  ∀𝑏 ∈ 𝐵𝑟∈𝑅                       (46)                                   

𝛿𝑠𝑟(1 − 𝜇𝑏𝑟) = 0                  ∀𝑠 ∈ 𝑇  ∀𝑏 ∈ 𝐻  ∀𝑟 ∈ 𝑅      (47)                                    

𝑥𝑟 ∈ {0,1}                       ∀𝑣 ∈ 𝑅                      (48)       

                                

The objective function (44) is to minimize the cost of route selection. The 

cost of route,𝑐𝑟, is defined by the fixed cost of using bus and the traveling cost 

in proportion to distance. Constraints (45) assure that all students are served 

and visited exactly once. Constraints (46) restrict that one bus cannot serve 

more than one route. Constraints (47) enforce that a Type-2 student must be 

served by a Type-2 bus. Decision variables are binary in Constraints (48). 

 

Remark 1. There are a couple of advantages of considering every 

student in lieu of bus stops in the decision variable 𝛿𝑠𝑟. First, the model allows 

that the solutions of a bus stop on multiple routes as well as a student riding 

different buses can be evaluated and compared. This rule enables potentially 

reaching a far better solution, in particular, when considering one stop with 

large number of students more than a bus capacity. Second, the quality of 

solution is not affected by any requirement resulting from grouping students. 

This obviates a need to investigate different grouping conditions leading to 
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different final solutions. However, the disadvantage is that it can increase the 

complexity of the problem. In our model, each student is counted as a stop 

and the traveling distance and time between two students, if they are located 

at the same bus stop, are effectively set as zeroes. 

D.2 Sub problem 

In the sub problem (SP), the decision variables are associated with arcs, 

and the constraints includes capacity, scheduling, and other restrictions. 

 

Notations: 

𝑥𝑖𝑗 = {
1  𝑖𝑓 𝑎𝑟𝑐 (𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝑁 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑜𝑢𝑡𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑑𝑖𝑗: 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎𝑟𝑐 (𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝑁 

𝑡𝑖𝑗: 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑟𝑐 (𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝑁 

𝑐𝑏: 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑏𝑢𝑠 𝑡𝑦𝑝𝑒 𝑏, 𝑏 ∈ 𝐵 

𝑓𝑏: 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑏𝑢𝑠 𝑡𝑦𝑝𝑒 𝑏, 𝑏 ∈ 𝐵 

𝐵: 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑏𝑢𝑠 𝑡𝑦𝑝𝑒𝑠 

𝑆: 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 

𝑁: 𝑆 ∪ {𝑛; 𝑠𝑐ℎ𝑜𝑜𝑙 𝑛𝑜𝑑𝑒}  

𝑎𝑖: 𝑏𝑢𝑠 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑖, 𝑖 ∈ 𝑆 

𝑎𝑛: 𝑏𝑢𝑠 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑠𝑐ℎ𝑜𝑜𝑙 

𝑒: 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑠𝑐ℎ𝑜𝑜𝑙 

𝑙: 𝑙𝑎𝑡𝑒𝑠𝑡 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑠𝑐ℎ𝑜𝑜𝑙 

𝑚𝑖: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑖𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑙𝑖𝑚𝑖𝑡 𝑓𝑜𝑟 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑖, 𝑖 ∈ 𝑆 

𝑠𝑖: 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑖, 𝑖 ∈ 𝑆 

𝜋𝑖 = 𝑑𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 − 𝑟𝑜𝑢𝑡𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡  

     𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (45), 𝑖 ∈ 𝑆  

𝛾𝑏 = 𝑑𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑏𝑢𝑠 − 𝑟𝑜𝑢𝑡𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡  



65 
 

     𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (46), 𝑏 ∈ 𝐵  

(SP) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑦 = ∑ (𝑓𝑏 − 𝛾𝑏)𝑏∈𝐵 + ∑ (𝑑𝑖𝑗 − 𝜋𝑖)𝑥𝑖𝑗𝑖,𝑗∈𝑁                  (49)  

Subject to                                  

∑ ∑ 𝑥𝑖𝑗𝑗∈𝑆𝑖∈𝑆 ≤ 𝑐𝑏                 ∀𝑏 ∈ 𝐵                     (50) 

∑ 𝑥𝑖𝑙𝑖∈𝑆 − ∑ 𝑥𝑙𝑗𝑗∈𝑁 = 0            ∀𝑙 ∈ 𝑆                      (51) 

∑ 𝑥𝑖𝑛 = 1𝑖∈𝑆                                                 (52) 

𝑎𝑖 + 𝑠𝑖 + 𝑡𝑖𝑗 − 𝑀(1 − 𝑥𝑖𝑗)  ≤ 𝑎𝑗     ∀𝑖, 𝑗 ∈ 𝑁                    (53) 

𝑒 ≤ 𝑎𝑛 ≤ 𝑙                                                 (54) 

𝑎𝑛 − 𝑎𝑖 ≤ 𝑚𝑖                    ∀𝑖 ∈ 𝑆                      (55) 

𝑥𝑖𝑗: 𝑏𝑖𝑛𝑎𝑟𝑦                     ∀𝑖, 𝑗 ∈ 𝑁                    (56) 

 

The objective function (49) includes two terms: the fixed cost of using 

bus minus its dual cost, and the traveling cost associated with arcs minus its 

dual cost. The dual variables 𝛾𝑏 represent the negative cost of using 

additional bus and the dual variables 𝜋𝑖 indicate the increment in the 

objective function by visiting the student 𝑖. 

Constraints (50) limit the number of students on a bus to be less than or 

equal to the capacity of the bus type 𝑏. For any stop 𝑙, the flows entering 𝑙 

are the same as the flows leaving 𝑙 in Constraints (51). Constraints (52) 

assert that the school 𝑛 is on every route. Constraints (53) are related to time 

scheduling with respect to any pair of stops 𝑖 and 𝑗. If the arc (𝑖, 𝑗) is used in 

the route, the arrival time at 𝑗 should be later than the arrival time at 𝑖 (𝑎𝑖) 

plus the service time at 𝑖 (𝑠𝑖) plus the traveling time from 𝑖 to (𝑡𝑖𝑗). 

Constraints (54) specify the time window for each bus arrival time at school. 
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Constraints (55) check the upper time limit for each route, and decision 

variables 𝑥𝑖𝑗 are binary in Constraints (56).       
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CHAPTER VI - COMPUTATIONAL EXPERIMENTS 

     Three sets of computational experiments were performed in this section. 

First, in Section A, we used both LINGO and CPLEX to solve SAPS to 

compare the resulting number of bus stops selected as well as to measure the 

corresponding computational efficiency for each solver. Then, while limiting 

the computational run-time to 24 CPU hours in solving SBRP in Section B, we 

designed 36 test instances based on real data, and split them into small and 

large groups depending on the number of bus stops included in a data set. 

After identifying effective algorithmic strategies contingent upon the size of a 

test instance, we implemented and conducted two different sets of 

experiments accordingly. All runs were made using the commercial software 

IBM ILOG CPLEX Optimization Studio 12.6.3.0 on a ASUS U36JC computer 

having an Intel Core i5 2.67 GHz CPU, with 4.00 GB of RAM, and running 

Windows 7. 
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A. Analyses of SAPS Results 

“There are no known polynomial time algorithms that can find an optimal 

solution for NP-hard problem” (Lenstra, 1981). Table 4 shows the numerical 

results of solving SAPS exactly with Lingo and CPLEX Optimization Studio. 

Both the SAP model and SBRP are modeled as mixed integer linear 

programming. “The mixed integer solver of LINGO contains advanced solution 

techniques such as cut generation, tree reordering to reduce tree growth 

dynamically, and advanced heuristic and presolve strategies” (Cunningham, 

1988). The mixed integer optimizers of CPLEX contains branch and cut, 

dynamic search, and MIP. LINGO and CPLEX apply different algorithms to 

solve the problem and they get different computation time for the same 

instances. 

     To all the instances, the walking distance between student home 

locations and potential bus stops are generated randomly. The input data and 

the optimal solutions are checked manually to make sure there exists feasible 

Test 
Instance 

No. of 
Students 

(Q) 

No. of potential 
bus stop 

locations (P) 

No. of 
selected Bus 

Stops 

LINGO Run 
Time (sec.) 

CPLEX Run 
Time (sec.) 

T1 200 50 45 3 9 
T2 200 70 61 2 10 
T3 250 100 86 4 12 
T4 300 150 126 10 17 
T5 350 180 154 17 22 
T6 400 200 170 23 27 
T7 450 250 216 34 43 
T8 500 280 240 54 60 
T9 550 300 259 55 79 
T10 600 350 301 111 116 
T11 650 400 346 236 170 
T12 700 450 390 441 239 
T13 1000 500 436 604 563 

 

 

Table 4 SAPS Computation Time Results 
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solutions, and the results of LINGO and CPLEX are the global optimal. As 

SAPS determines the number of selected bus stops, a stop is eliminated from 

feasible solutions if the walking distance to that stop from home location is 

more than the maximum walking distance limit. The number of students 

ranges from 200 to 1000 per test instance, with the number of potential bus 

stops from 50 to 500. There is no capacity limit for a single bus stop, and 

students are grouped into designated stops. As such, the number of selected 

bus stops is reduced and consequently facilitates the process of solving 

SBRP. For each student the model assigns one to the nearest bus stop no 

matter how many students are already assigned to the same bus stop. The 

main reason we do not set the capacity constraint for one bus stop is that it is 

possible for one single bus stop to be served by multiple buses. Also, the 

number of bus stops in use is minimized and the students are assigned 

accordingly. In addition, when the randomly generated Type-2 students were 

added, it did not affect the computational times substantially in solving SAPS. 

Based on the results in Table 4, for most of the practical size problems, both 

LINGO and CPLEX solve them directly and achieve the same optimal 

objective value along with the minimum number of potential bus stops 

locations within about 10 minutes of run time. For the largest instance T12, 

1000 students were assigned to 500 potential bus stops and 436 of them 

were selected in the resulting solution. It took 604 seconds and 563 seconds 

for LINGO and CPLEX to solve, respectively. Overall, 84% to 90% of 

available bus stops are selected in the optimal solution. 
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B. Analyses of SBRP Results 

     Table 5 shows the computing results of solving SBRP exactly with Lingo 

and CPELX. We first introduce the (abbreviated) notations used for discussion 

of computational experiment results in Tables 5-8 as follows. 

 

𝑠𝑡𝑜𝑝: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑜𝑝𝑠 

𝑠𝑡𝑢: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 

𝑚𝑡1: 𝑇𝑦𝑝𝑒 − 1 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑖𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 

𝑡2: 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑦𝑝𝑒 − 2 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 

𝑚𝑡2: 𝑇𝑦𝑝𝑒 − 2 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑖𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 

𝑏𝑢𝑠: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑏𝑢𝑠𝑒𝑠 

𝑐𝑎𝑝: 𝑏𝑢𝑠 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

𝐿 − 𝑜𝑏𝑗: 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐿𝐼𝑁𝐺𝑂 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝐿 − 𝑡𝑖𝑚𝑒: 𝐿𝐼𝑁𝐺𝑂 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝐶 − 𝑜𝑏𝑗: 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐶𝑃𝐿𝐸𝑋 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝐶 − 𝑡𝑖𝑚𝑒: 𝐶𝑃𝐿𝐸𝑋 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝐺𝐴: 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐺𝐴 𝑜𝑛𝑙𝑦 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝐺𝐴 − 𝑡𝑖𝑚𝑒: 𝐺𝐴 𝑜𝑛𝑙𝑦 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝐺𝐴𝐶𝐺: 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐺𝐴 + 𝐶𝐺 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝐺𝐴𝐶𝐺 − 𝑡𝑖𝑚𝑒: 𝐺𝐴 + 𝐶𝐺 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

     Table 5 shows small size test instances having 7 to 20 stops, 10 to 98 

students, one to three Type-2 students, two to four buses with capacity 

ranging from 5 to 25. Different maximum riding time limits (in seconds) are 

imposed to find feasible solutions. For the instance N17, 98 students are 
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located at 20 bus stops. The maximum riding time for Type-1 students is 3600 

seconds and for Type-2 students is 1800 seconds. Only one Type-2 student 

needs service and four buses with capacity of 25 seats are available. If the 

number of available buses or the capacity are increased, some buses may not 

be used at all but the buses with handicapped facilities are utilized in 

accordance with the number of Type-2 students. 

     The objective values and computational run times required to directly 

solve SBRP using LINGO and CPLEX are presented in Table 6. Given the 

maximum runtime set as 24 hours, LINGO solved the instance N1 with ten 

students, seven bus stops, two buses, and one Type-2 student within 13 

seconds and obtained the objective function value of 50.6. On the other hand, 

it took CPLEX two seconds to find the optimal objective value of 73.8. When 

increasing both the number of students to 98 and the number of bus stops to 

20, it took LINGO about 4,749 seconds to find the optimal solution. For all 

instances with more Type-2 students, both LINGO and CPLEX cannot find 

feasible solution within 24 hours. For all instances with more than 100 

ID stop stu mt1 t2 mt2 bus cap 
N1 7 10 3600 1 1800 2 5 
N2 7 10 3600 2 1800 2 5 
N3 7 30 3600 1 1800 3 10 
N4 7 30 3600 2 1800 3 10 
N5 10 30 4200 1 1800 2 15 
N6 10 30 4200 2 1800 2 15 
N7 14 30 5400 1 1800 2 15 
N8 14 30 5400 2 1800 2 15 
N9 14 45 5400 1 1800 3 15 

N10 14 45 5400 2 1800 3 15 
N11 15 67 3600 1 1800 3 30 
N12 15 67 3600 2 1800 3 30 
N13 15 67 3600 3 1800 3 30 
N14 18 75 3600 1 1800 3 25 
N15 18 75 3600 2 1800 3 25 
N16 18 75 3600 3 1800 3 25 
N17 20 98 3600 1 1800 4 25 

 

Table 5 Small Size SPRB Test Instances 
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students, no feasible solution is found from both LINGO and CPLEX within 24 

hours. Overall, it takes from 5 seconds to 4749 seconds to achieve the final 

solution for LINGO. For CPLEX, the final solution can be found from 2 

seconds up to 1,732 seconds. The objective value and computing times 

increase as the size of the problem and the number of Type-2 students are 

larger.  

     The run time is affected by not just the problem size but the (route) 

network structure from input data. Taking N13 and N14 for instance, the 

objective values and computing times from both LINGO and CPLEX for N13 

are superior despite the size of N14 is larger. Also, the 15 stops and 67 

students in N13 were randomly chosen and different from the 18 stops and 75 

students in N14. Between the instances of N1 and N2, the only difference is 

that one Type-1 student in N1 is changed as a Type-2 student in N2, and 

similarly, the number of Type-2 students are in N11-N13 (see Table 5). The 

objective value of N11 using LINGO is 213.9, and when the number of Type-2 

student increases from one to two as in N12, the objective value is 231.5 with 

an increase of 8.2%. Furthermore, when the number of Type-2 students 

increases from two to three as in N13, the objective value is 252.5 with an 

increase of 9.1%. Using CPLEX, the objective value of N11 is 224, and it 

increases 4.5% with the objective value of 234 when switching one Type-1 

student to Type-2 in N12. Likewise, the objective value increases 9% resulting 

in the objective value of 255 when switching one more Type-1 student to 

Type-2 in N13. The corresponding objective values from both LINGO and 

CPLEX increase as more restriction to accommodate additional Type-2 

students is imposed on time. As a result, N13 requires all three buses to 
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transport Type-2 students in order to satisfy the maximum riding time limit as 

well as the school time window constraints concurrently. For the number of 

buses in use and the bus capacity, we keep the total capacity close to the 

total number of students since the fixed cost of bus is usually much higher 

than the marginal traveling cost. Improved solutions and less computing times 

can be achieved if the maximum riding time limit is relaxed, especially for 

Type-2 students, and it is a tradeoff between the service quality and the cost. 

Moreover, additional fixed cost for the Type-2 bus is larger than the Type-1 

bus. Hence, more Type-2 students demand additional Type-2 buses, and as a 

result these additional Type-2 buses contribute to the significant increase of 

the objective value. 

     For test instances of larger sizes in Table 7, heuristic methods are 

incorporated to solve the problems. The test instances are generated 

considering 20 to 55 stops, 98 to 700 students, one to five Type-2 student, 4 

to 14 buses with capacity from 25 to 50. For the largest test instance D20, 55 

bus stops are used along with 700 students for a single school problem. The 

maximum riding time for a Type-1 student is 3600 seconds, whereas that for a 

ID L-obj L-time C-obj C-time 
N1 50.6 13 73.8 2 
N2 65.3 15 90.6 3 
N3 87.4 9 90.5 2 
N4 116.5 10 115.3 2 
N5 88.2 14 91.4 2 
N6 100.5 15 102.1 2 
N7 111.7 3400 125.7 2 
N8 136.2 3446 144.8 2 
N9 146.5 1400 148.2 2 

N10 168 1364 171.2 2 
N11 213.9 185 224 2 
N12 231.5 2167 234 161 
N13 252.5 4123 255 1732 
N14 193.2 3161 198.1 5 
N15 227.3 3024 229 182 
N16 249.8 3582 254.3 193 
N17 234.2 4749 256.3 5 

 

Table 6 SBRP Results with LINGO and CPLEX 
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Type-2 student is 1,800 seconds. A total of 14 buses with capacity of 50 seats 

are available and three of them are Type-2 buses.  

     Table 8 presents the results of applying a heuristic method of GA only, 

and GA combined with CG. The instance D1 is the same instance as N17 

(see Table 5 and Table 7), which indicates the limitation of solving the 

problem exactly using LINGO and CPLEX. Comparing the results from N17 in 

Table 6 and D1 in Table 8, both cases (GA only, GA with CG) achieved better 

solutions than LINGO and CPLEX, consuming 3,093 and 2,753 seconds of 

the run times, respectively. For a single school problem, the largest test 

instance includes 700 students, 55 bus stops, and 14 buses with 50 seats on 

each bus. All test instances D1-D20 were solved within a 24-hour run time 

limit using heuristic methods. Overall, the objective value and the computing 

time increase as the size of the problem and the number of Type-2 student 

increases. It took up to 80,415 seconds for GA to find a feasible solution. For 

GA with CG, the final solution was obtained in 2,139 to 79,253 seconds. 

ID stop stu mt1 t2 mt2 bus cap 
D1 20 98 3600 1 1800 4 25 
D2 20 98 3600 2 1800 4 25 
D3 20 98 3600 3 1800 4 25 
D4 20 98 3600 4 1800 4 25 
D5 28 200 3600 1 1800 4 50 
D6 28 200 3600 2 1800 4 50 
D7 28 200 3600 3 1800 4 50 
D8 28 200 3600 4 1800 4 50 
D9 40 400 3600 1 1800 8 50 

D10 40 400 3600 2 1800 8 50 
D11 40 400 3600 3 1800 8 50 
D12 40 400 3600 4 1800 8 50 
D13 45 500 3600 1 1800 10 50 
D14 45 500 3600 2 1800 10 50 
D15 45 500 3600 3 1800 10 50 
D16 45 500 3600 4 1800 10 50 
D17 45 500 3600 5 1800 10 50 
D18 55 700 3600 1 1800 14 50 
D19 55 700 3600 2 1800 14 50 
D20 55 700 3600 3 1800 14 50 

 

Table 7 Large Size SBRP Test Instances 
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     When comparing these two strategies, in compensation for longer run 

times, the solution quality of using CG coupled with GA is better than GA 

alone. This is because CG continues to improve the objective value on the 

initial column pool of solutions provided by GA. For instances D13-D17, the 

objective values increase as the number of Type-2 students increase, 

requiring more resources and associated cost. For example, if one Type-1 

student is changed to become a Type-2 student, the original optimal routes for 

D13 are no longer feasible due to the maximum riding time limit of Type-2 

students. However, the run time does not necessarily increase with more 

Type-2 students in D14 and D15 since the solution space of feasible region is 

reduced. On the other hand, when comparing D17 and D18, the computing 

time increases substantially when the problem size changes from 500 

students with 45 stops to 700 students with 55 stops while decreasing the 

number of Type-2 students is decreased from five to one. Therefore, the size 

of the problem is a more important factor attributed to run times than the 

complexity associated with the number of Type-2 students. 
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     Finally, we define %𝑔𝑎𝑝 as (𝐺𝐴̅̅ ̅̅  − 𝐺𝐴𝐶𝐺̅̅ ̅̅ ̅̅ ̅̅ )/𝐺𝐴𝐶𝐺̅̅ ̅̅ ̅̅ ̅̅  ×  100, where 𝐺𝐴̅̅ ̅̅  

and 𝐺𝐴𝐶𝐺̅̅ ̅̅ ̅̅ ̅̅  denote objective function values obtained by using GA alone, and 

GA and CG combined, respectively. For the last (%𝑔𝑎𝑝) column in Table 8, it 

measures approximately how much CG improves the optimal solution. For 

example, 17% gap from 169.3 to 144.7 reported for Instance D1 indicates the 

improved amount of the objective value resulting from applying GA in 

conjunction with CG, when compared to using GA alone. Among all instances, 

CG works best on Instance D5 in which the total cost decreased as much as 

44.74%, whereas it improved only up to 5.22% from 565.45 to 537.39 in D19. 

  

ID GA GA-time GACG GACG-time %gap 
D1 169.3 2753 144.7 3093 17.00% 
D2 175.9 1677 153.3 3850 14.74% 
D3 180.7 984 158.4 2139 14.08% 
D4 193.8 2070 164.9 3199 17.53% 
D5 126.5 1768 87.4 3957 44.74% 
D6 129.9 889 104.6 8882 24.19% 
D7 139.9 981 106.8 9871 30.99% 
D8 153.6 4955 125.3 11843 22.59% 
D9 339.8 5859 317.31 8704 7.09% 

D10 352.81 5250 333.05 5864 5.93% 
D11 397.78 5934 320.66 8839 24.05% 
D12 426.21 5954 345.34 6462 23.42% 
D13 354.54 26169 322.47 30281 29.66% 
D14 418.13 27117 331.94 31930 6.81% 
D15 462.48 17274 384.28 25863 20.35% 
D16 522.94 17421 389.36 31021 34.31% 
D17 525.73 21902 417.39 28465 25.96% 
D18 556.8 80415 512.93 78394 8.55% 
D19 565.45 78941 537.39 79253 5.22% 
D20 625.36 55884 539 79157 16.02% 

 

Table 8 SBRP results with GA and GACG 
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CHAPTER VII – CONCLUSIONS AND FUTURE RESEARCH 

     In this dissertation, we have proposed models of a student assignment 

problem and a school bus routing problem, and investigated the complexity of 

modeling and solution procedures by simultaneously considering Type-2 

students and Type-1 students together. Using the available student data and 

potential bus stop locations, the bus stop selection and the student 

assignment were made while minimizing the number of stops in use or the 

total walking distance. In SBRP, we utilized solutions from SAP along with 

other information such as available bus capacity, time restrictions, student 

types, and distance and time matrices to minimize the total cost including 

fixed cost and traveling cost. 

     Both problems were formulated as a mixed-integer program and 

enhanced by a heuristic method in concert with Genetic Algorithm, and a 

Column Generation solution approach was designed to facilitate the solution 

process. Computational results were presented using real data obtained from 

a school district to demonstrate the efficacy of the modeling and algorithmic 

strategies. For all test instances of SAP (e.g., 200 students, 50 potential bus 

stops to 1000 students, 500 potential bus stops), the optimal solutions were 

found within 10 minutes of run time for LINGO and CPLEX. When the small 

instances (less than 100 bus stops) of SBRP we tested were solved exactly, 

LINGO performed slightly better than CPLEX while consuming more 

computational times. For any larger instances (e.g., 98 students, 20 stops to 
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700 students, 55 stops), no solutions were reported by both solvers within a 

24-hour limit. However, our algorithmic approach by applying GA and 

subsequently CG was able to not only improve the final solutions by as much 

as 25% but achieve the tractable solutions within 24 hours. Overall, the 

combined strategy of GA and CG is a preferred option for solving relatively 

large-scale problems. 

     The SBRP is a challenging problem to solve considering a multitude of 

constraints and assumptions. Also, the tradeoff between cost optimization and 

service quality needs further investigation with more comprehensive and 

effective algorithmic solution approaches. 
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