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ABSTRACT

BAYESIAN ANALYTICAL APPROACHES FOR METABOLOMICS: A

NOVEL METHOD FOR MOLECULAR STRUCTURE-INFORMED

METABOLITE INTERACTION MODELING, A NOVEL DIAGNOSTIC

MODEL FOR DIFFERENTIATING MYOCARDIAL INFARCTION TYPE,

AND APPROACHES FOR COMPOUND IDENTIFICATION GIVEN

MASS SPECTROMETRY DATA

Patrick J. Trainor

July 19, 2018

Metabolomics, the study of small molecules in biological systems, has enjoyed

great success in enabling researchers to examine disease-associated metabolic

dysregulation and has been utilized for the discovery biomarkers of disease and

phenotypic states. In spite of recent technological advances in the analytical

platforms utilized in metabolomics and the proliferation of tools for the analy-

sis of metabolomics data, significant challenges in metabolomics data analyses

remain. In this dissertation, we present three of these challenges and Bayesian

methodological solutions for each. In the first part we develop a new method-

ology to serve a basis for making higher order inferences in metabolomics,

which we define as the testing of hypotheses that are more complex than sin-

gle metabolite hypothesis tests. This methodology utilizes informative priors

that are generated via the analysis of molecular structure similarity to enable

the estimation of metabolite “interactomes” (or probabilistic models) which

are organism-, sample media-, and condition-specific as well as comprehensive;

and that can serve as reference models for studying perturbations in metabolic
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systems. After discussing the development of our methodology, we present an

evaluation of its performance conducted using simulation studies, and we use

the methodology for estimating a plasma metabolite interactome for stable

heart disease. This interactome may serve as a reference model for evaluating

systems-level changes that occur with acute disease events such as myocar-

dial infarction (MI) or unstable angina. In the second part of this work, we

present the challenge of developing diagnostic classification models which uti-

lize metabolite abundances and that do not “overfit” relatively small sample

sizes, especially given the high dimensionality of metabolite data acquired us-

ing platforms such as liquid chromatography-mass spectrometry. We use a

Bayesian methodology for estimating a multinomial logistic regression classi-

fier for the detection and discrimination of the subtype of acute myocardial

infarction utilizing metabolite abundance data quantified from blood plasma.

As heart disease is the leading cause of global mortality, a blood-based and

non-invasive diagnostic test that could differentiate between MI types at the

time of the event would have great utility. In the final part of this dissertation

we review Bayesian approaches for compound identification in metabolomics

experiments that utilize liquid chromatography-mass spectrometry which re-

mains a challenging problem.
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CHAPTER I

INTRODUCTION

1 Challenges in metabolomic data analyses

Metabolomics, or the study of small molecules in biological systems, has enjoyed

great success in enabling researchers to make inferences regarding disease associ-

ated metabolic dysregulation as well as in furnishing biomarkers of disease and

phenotypic states [Dunn and Hankemeier, 2013, Carlisle et al., 2016, Johnson

et al., 2016, Newgard, 2017]. In spite of recent technological advances in the

analytical platforms utilized in metabolomics [Gowda and Djukovic, 2014, Na-

gana Gowda and Raftery, 2016], advances in strategies for studying disease as-

sociated changes in metabolism [Bruntz et al., 2017, Krycer et al., 2017], and

advances in the democratization (such as by web-based tools) of metabolomics

data analyses [Warth et al., 2017, Guijas et al., 2018, Chong et al., 2018], signifi-

cant challenges in metabolomics data analyses remain. The first challenge that we

confront in the current work is making “higher order inference” in metabolomics

(Chapters V,VI, and VII). Prior to arriving at our discussion of higher order infer-

ence in metabolomics, we introduce metabolism and metabolomics more generally

in Chapter II. We define higher order inference as the testing of hypotheses that are

more complex than single metabolite hypothesis tests. In studying metabolism,

research questions are often over systems of metabolites or metabolic processes.

For example, a biomedical scientist might wish to know how a statin impacts

cholesterol metabolism. Likewise a cancer researcher may wish to know how the

knockdown or knockout of a specific gene alters cellular metabolism. Formulating

such research questions as hypothesis tests is not straightforward. The first step

1



in developing such statistical tests is developing a reference model for the system

of interest. In the example of a biomedical scientist studying a statin, a reference

model of how the metabolites of cholesterol metabolism interact (probabilistically)

is required in order to determine how the system has changed following the treat-

ment of a human (or model organism) with a statin. As we argue in Chapter V, the

current paradigm of pathway-based or a priori knowledge-based enrichment anal-

yses may suffer from extreme bias, especially in the case of analyzing biofluids such

as blood plasma, serum, or urine. Unbiased, or data-dependent approaches such as

the construction of correlation networks also suffer from significant methodological

issues, as we discuss (Chapter V). Consequently, we propose a new approach that

allows for the construction of metabolite “interactomes” or probabilistic models

which are organism and sample media specific that can be used as reference models

for studying perturbations in metabolic systems. Given the high-dimensionality of

metabolite abundance data from untargeted metabolomics experiments, we pro-

pose utilizing informative priors that are generated via the analysis of molecular

structure similarity in the estimation of such models. After discussing the de-

velopment of our methodology, and presenting an evaluation of its performance

through simulation studies, we use the methodology to build a plasma metabolite

interactome for stable heart disease. This interactome may serve as a reference

model for evaluating systems-level changes that occur with acute disease events

such as myocardial infarction (MI) or unstable angina.

In the second part of this work, we confront the challenge of developing diag-

nostic classification models utilizing metabolite abundances that do not “overfit”

relatively small sample sizes. Often poor generalization error results from unre-

stricted optimization of likelihoods in models with a high ratio of model parameters

to sample size of a training dataset [Hastie et al., 2009]. This is often referred to

as the p >> n problem (where, in this context, p is the number of metabolites

and n is the number of samples). Many metabolomics datasets are characterized

by a large p (e.g. > 30, 000 mass features can be observed in high resolution mass

2



spectrometry experiments), while the substantial costs associated with the acqui-

sition of metabolomics data implies that small datasets are a persistent feature

of the field. As more resources are devoted to personalized medicine [Hamburg

and Collins, 2010, Wishart, 2016] and deep phenotyping [Delude, 2015], diagnostic

classifiers that are robust given p >> n and minimize the likelihood of overfitting

are essential.

In Chapter VIII we discuss such a classification methodology, applied to a

critical clinical problem: the detection and discrimination of the subtype of acute

myocardial infarction (colloquially: heart attack) utilizing metabolite abundance

data quantified from blood plasma. Heart disease is the leading cause of global

mortality [Benjamin et al., 2017]. Myocardial Infarction (MI), an acute manifesta-

tion of heart disease, is characterized by heterogeneous etiology [Thygesen et al.,

2012]. Consequently, a blood-based and non-invasive diagnostic test that could be

administered upon presentation to an emergency department and could differenti-

ate between thrombotic MI and non-thrombotic MI would be of great utility. Our

laboratory (the Atherosclerosis / Atherothrombosis Research Laboratory [AARL]

at the University of Louisville) has recruited two clinical cohorts that are designed

for the development and validation of a diagnostic test capable of differentiating

thrombotic MI, non-thrombotic MI, and stable coronary artery disease; the first

cohort has been described previously [DeFilippis et al., 2015, DeFilippis et al.,

2017, Trainor et al., 2017]. As a critical step towards the development of such a

diagnostic, in Chapter VIII we present multinomial logistic regression models uti-

lizing the metabolite abundances for the metabolites that were selected as part of a

separate feature selection work [Trainor et al., 2018]. We compare the performance

of the Bayesian approach we have employed for estimating model coefficients with

maximum likelihood estimation and discuss the merits of the Bayesian approach.

In the final part of this dissertation, we discuss one of the most challenging

aspects of mass spectrometry-based metabolomics [Dunn et al., 2012], that is, com-

pound identification. In this part, we review Bayesian approaches for compound
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identification in metabolomics experiments that utilize liquid chromatography-

mass spectrometry (LC-MS).

2 Bayesian methodology for metabolomics

While this dissertation presents three different analytical problems that practition-

ers in the field of metabolomics currently face, the common aspect of the solutions

that we describe is Bayesian reasoning. Bayesian methodologies for the three types

of data analysis problems discussed in the current work are seldom utilized and

enjoy scant popularity in the field of metabolomics. As we hope to demonstrate in

the current work, Bayesian approaches allow practitioners to incorporate prior sci-

entific knowledge into the data analysis process. In the first part, (the generation

of metabolite interactomes) the prior belief that is postulated is that the enzyme

catalyzed biochemical reactions that convert one intermediate into another gener-

ate both dependence in molecular structure similarity and statistical dependence

in the distribution of metabolite abundances. In the second part (generation of a

statistical classifier for discriminating MI type), the prior belief that is postulated

is that the magnitude of regression coefficients should be small given the relatively

small sample size (and high ratio of p to n). In the final part (Bayesian methods

for LC-MS compound identification), various prior beliefs are incorporated such

as that the presence of one compound in a dataset implies that the probability

closely related (by chemical modifications) compounds is more likely.

3 Layout of the dissertation

The layout of the dissertation is as follows: Chapter II provides preliminary theory

regarding metabolism and metabolomics, Chapter III provides a cursory introduc-

tion to Bayesian statistics, Chapter IV provides an introduction to the class of

model we will utilize for generating metabolite interactomes, Chapter V presents

the current paradigms for making higher order inferences in metabolomics and

sets the stage for Chapter VI in which we present our novel methodology for using

4



molecular structure similarity to generate informative priors for the estimation

of metabolite interactomes. Chapter VII presents such an interactome for stable

heart disease. We then transition to the development of a Bayesian diagnostic

model for the detection and differentiation of MI type in Chapter VIII. In Chap-

ter IX we transition again, and provide a review of Bayesian approaches utilized

to identify compounds in metabolomics experiments using LC-MS. Finally, we

conclude this dissertation in Chapter X by presenting conclusions we have drawn

from the complete work and a discussion of the methodologies herein, as well as

future directions that we are pursuing as a result of this work.
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CHAPTER II

PRELIMINARIES: METABOLOMICS

1 Metabolism

Metabolism is broadly defined as the chemical reactions that enable life [Voet et al.,

2013]. The metabolic reactions that sustain life can be categorized as catabolic

reactions, or the reactions that entail breaking down and oxidizing molecules to

provide energy or substrates for other reactions, and anabolic reactions in which

complex molecules are synthesized. Series of coupled reactions are referred to as

pathways. Anabolic pathways are characterized by endergonic processes as the

synthesis of macromolecules from smaller molecules requires energy. Conversely

catabolic pathways entail the break down of larger molecules into smaller molecules

for use either as inputs in anabolic reactions or for the release of free energy via

oxidation and reduction reactions.

An example catabolic process is the tricarboxylic acid (TCA) cycle which is

illustrated in Fig. 1. In the TCA cycle an input molecule of Acetyl-CoA (from the

catabolism of glucose, fats, or proteins) enters into a sequence of reactions which

produces three molecules of NADH, one molecule of FADH2, and one molecule

of GTP. The molecules of NADH and FADH2 produced during TCA cycle also

serve as substrates for the electron transport chain which generates additional

molecules of ATP. An example anabolic pathway is the cholesterol biosynthesis

pathway shown in Fig. 1. In this pathway, acetyl-CoA molecules as a substrate

are chemically transformed through a sequence of reactions with intermediates in-

cluding HMG-CoA, mevalonate, isopentenyl phosphate, squalene, lanosterol, and
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Figure 1. Diagram of the tricarboxylic acid (TCA) cycle in Homo sapiens.

Wikipathways: WP78 Revision 90661.

finally cholesterol. The cholesterol biosynthesis pathway entails over 20 steps, and

requires ATP as an energetic input and the cofactors NADH and NADPH.

2 Complexity of a single metabolic process

While many of the biochemical processes of metabolism, including glucose catabolism,

glycogen metabolism, gluconeogenesis, lipid metabolism, TCA cycle, electron trans-

port chain, nucleotide metabolism, and protein synthesis take place in the cell,

many of the signaling processes that control metabolism as well as many systems

of transport are extracellular [Voet et al., 2013]. As an example, consider lipid

metabolism. While the catabolic process of breaking down fatty acids to yield en-

ergetic substrates, β-oxidation, takes place in the mitochondrial matrix of a cell,

many of the processes prior to the point of β-oxidation are extracellular or take
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Figure 2. Diagram of the cholesterol biosynthesis pathway in Homo sapiens.

Wikipathways: WP197 Revision 91292

place in distinct cells from the cell in which a specific fatty acid molecule is being

broken down. Within adipocytes (specialized cells for the storage of fatty acids),

fatty acids are stored as triacylglycerols. When activated by hormone sensitive

lipase, triacylglycerols are hydrolyzed yielding free fatty acids which are released

into the bloodstream. These fatty acid molecules may be transported in blood in

complex with the protein albumin, and may be taken up by other cells (especially

by hepatocytes in the liver) for fatty acid oxidation. In addition to the oxidation

of fatty acids to yield citrate and acetyl-CoA, cells (especially hepatocytes) also

synthesize fatty acids for storage to meet future energetic needs. Newly synthe-

sized fatty acid molecules may be transported in the bloodstream in the form of
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triacylglycerols within chylomicrons as well as in VLDL. These molecules can be

utilized to transport fatty acids for storage in adipocytes.

Fatty acid metabolism is largely controlled by hormonal signaling [Voet et al.,

2013]. The activity of the enzyme hormone sensitive lipase is modulated by phos-

phorylation and dephosphorylation by the enzyme PKA. The activation of PKA

is in turn regulated by cAMP concentrations which are influenced by multiple hor-

monal signals including epinephrine, norepinephrine, and glucagon. In addition

to modulating the rate of triacylglycerol lipase in liver and muscle cells, PKA also

is an important regulator of fatty acid synthesis. In this way the control of fatty

acid breakdown and synthesis is controlled in a coupled manner (when the rate of

one process increases, the rate of the other process decreases).

In summary then, a single metabolic process may involve biochemical reactions

that take place in multiple cells (of different types), across multiple tissues, with

metabolic control influenced by paracrine signaling, endocrine signaling, cellular

metabolite concentrations, and extracellular metabolite concentrations.

3 Dysregulation of metabolism and disease

Dysregulation of metabolic processes is a prominent feature of human diseases. As

a disease, cancer provides a salient example of the relationship between metabolism

and disease. While cancer represents a broad class of diseases characterized by ab-

normal cell growth affecting multiple tissue and organ types, the reprogramming

of cellular metabolism is a common feature of all cancers [Pavlova and Thompson,

2016]. For cancer cells to continue to grow and divide, new sources of nutrients

are required and the more efficient use of nutrients in the tumor environment is re-

quired. These requirements lead to metabolic changes associated with cancer that

have been described [Pavlova and Thompson, 2016] as six features: (1) changes in

the glucose and amino acid uptake by cancer cells and tumor tissue, (2) “oppor-

tunistic” manners of nutrient utilization, (3) increased utilization of glycolysis and

the TCA cycle intermediates for synthesizing intermediates as well as for increas-
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ing the production of cofactors, (4) increased requirement of nitrogen, (5) changes

in gene expression that are modulated by metabolite concentrations, and (6) ab-

normal metabolic interactions between cells and the surrounding environment.

In addition to cancer, metabolic syndromes are marked by dysregulation of

metabolism. Changes in the metabolism of branch-chain amino acids have emerged

as hallmarks of metabolic syndromes, the development of type 2 diabetes, and in-

sulin resistance in general [Newgard, 2017]. Increases in the concentrations of

branch chain amino acids (BCAAs) have been observed in human subjects that

progress to type 2 diabetes versus those who do not in the Framingham study

[Wang et al., 2011]. Similarly, 2-Aminoadipic acid has been shown to be associated

with development of type 2 diabetes, as well as with insulin resistance and beta

cell function [Wang et al., 2013]. The model posited for which these findings are

consistent is that increased concentrations of BCAAs interfere with lipid oxidation

in skeletal muscle which may increase insulin resistance [Newgard, 2017]. While

much of the metabolomics studies using human cohorts to study metabolic syn-

dromes have focused on biomarkers of disease risk and progression, other studies

have focused on the mechanistic roles of specific metabolites. For example, while

previous studies had shown the association between 3-carboxy-4-methyl-5-propyl-

2-furanpropanoic acid (CMPF) in type 2 and gestational diabetes development,

CMPF was shown to directly induce β cell dysfunction [Prentice et al., 2014] and

to induce metabolic remodeling [Liu et al., 2016].

Coronary heart disease, a consequence of atherosclerosis, is the leading cause

of death throughout the world [Benjamin et al., 2017]. Atherosclerosis is a dis-

ease process that is defined by the accumulation of lipids and other elements in

the sub-endothelial space of arteries [Tabas et al., 2015, Falk, 2006, Lusis, 2000].

Multiple different cell types play a role in atherosclerosis including leukocytes,

endothelial cells, and smooth muscle cells. Atherosclerosis is also characterized by

inflammatory activation in both endothelial and smooth muscle cells. The stages

of atherosclerotic plaque development have been described previously [Stoll and
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Bendszus, 2006], and include endothelial dysfunction, the accumulation of lipopro-

teins in the vessel intima, recruitment of leukocytes, and the formation of foam

cells. In the later stages of plaque progression, an atherosclerotic plaque evolves

as fibrosis and calcification take place. While the progression of atherosclerotic

plaques can be a complication on their own as the vessel lumen narrows, plaque

rupture or erosion can have a severe consequence–acute coronary events [Arbab-

Zadeh et al., 2012]. Plaque rupture occurs when a defect in the fibrous cap of an

atherosclerotic cap exposes the core of the cap to blood, which can precipitate the

formation of a thrombus (or blood clot) [Bentzon et al., 2014]. Plaque erosion,

in contrast, entails the erosion of the endothelium and subsequent formation of a

thrombus overlaying the plaque.

A thrombus overlaying a disrupted plaque in a coronary artery that disrupts the

flow of blood can lead to acute coronary syndromes such as myocardial infarction

[Arbab-Zadeh et al., 2012]. Myocardial infarction (MI) is defined as myocardial

cell death that occurs due to ischemia, or inadequate blood supply [Thygesen et al.,

2012]. MI that follows the rupture or erosion of an atherosclerotic plaque is known

as Type 1 MI. In addition to this type of myocardial infarction, MI may occur due

to other etiological causes such as coronary artery vasospasm or a fixed supply-

demand imbalance that follows the narrowing of an artery due to atherosclerosis

[Thygesen et al., 2012]. Other classifications of MI include MI associated with

cardiac death and MI associated with revascularization procedures.

Metabolic processes are central to the etiology of both the constitutive disease

processes that define heart disease (e.g. atherosclerosis) and acute disease events

such as myocardial infarction. The role of lipid metabolism in atherosclerosis

has been documented for over sixty years (see, for example, the seminal arti-

cle “Lipid metabolism and atherosclerosis” by Gould, 1951 [Gould, 1951]). For

atherosclerotic plaques to form, excess LDL and triglyceride-rich lipoproteins must

be present in circulation [Nordestgaard, 2016]. Levels of both remnant cholesterol

and triglyceride-rich lipoproteins are both a function of the rate of flux through
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metabolic processes including cholesterol synthesis, reverse cholesterol transport,

and the utilization of cholesterol for anabolic processes [Baynes and Dominiczak,

2014]. A ubiquitous therapeutic intervention that has shown benefits in the treat-

ment of coronary heart disease is statins, a class of drugs whose mechanism of ac-

tion is to inhibit the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A-reductase,

an enzyme involved in the synthesis of cholesterol [Chait and Eckel, 2016]. As

endothelial cell dysfunction is a component of the formation of atherosclerotic le-

sions, metabolic changes in endothelial cells impact the process of lesion formation

[Gimbrone and Garca-Cardea, 2016]. While endothelial cell dysfunction and ac-

tivation leads to a generally maladaptive inflammatory response that contributes

to the development and progression of atherosclerotic lesions, the metabolic state

of macrophages is also a factor [Bories and Leitinger, 2017]. In addition to total

number of macrophages present, the ratio of pro-inflammatory M1 macrophages

versus anti-inflammatory M2 macrophages, which have distinct bioenergetic and

metabolic phenotypes, may play a role in the progression of atherosclerosis [Bories

and Leitinger, 2017].

Myocardial infarction (MI) as an acute disease event, may occur as a func-

tion of the disposition or fate of a disrupted atherosclerotic plaque in a coronary

artery [Arbab-Zadeh and Fuster, 2015]. First, the formation and progression of

atherosclerotic plaques is required, which is largely a product of disordered lipid

metabolism and immunometabolic processes, and second a pathological response

to plaque disruption is required. A pathological response to plaque rupture may be

conceptualized as an imbalance between pro-thrombotic factors and pro-resolving

factors [Arbab-Zadeh and Fuster, 2015]. Thrombosis is the process of blood coag-

ulation in a localized area. Blood coagulation is a metabolic process that involves

multiple serine proteases that circulate as proenzymes. A very brief and general

description of the process of thrombosis is as follows [Baynes and Dominiczak,

2014, Gale, 2010, Hoffman and Monroe, 2007]. First, activated platelets adhere to

and aggregate at the site of vessel injury and form an initial platelet plug [Gale,
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2010]. The “intrinsic pathway” is then activated by platelets (the “extrinsic path-

way” may simultaneously be activated due to tissue damage) which consists of

a sequence of reactions that culminates in the final “common pathway” [Hoff-

man and Monroe, 2007]. The common pathway includes a prothrombin activator

complex that forms to activate prothrombin to thrombin, and the activation of

fibrinogen to fibrin by thrombin. This final step of the common pathway allows for

the formation of a fibrin mesh in which platelets and erythrocytes are also trapped.

Fibrinolysis, which is also a metabolic process defined by serine proteases that cir-

culate as proenzymes, works to resolve blood clots formed by cross-linked fibrin

[Gale, 2010]. Briefly, this process involves the activation of plasminogen into plas-

min by either urokinase-type or tissue-type plasminogen activators. Once plasmin

is generated from plasminogen, it can cleave fibrin allowing for the breakdown of

a clot. While the presentation of thrombosis and fibrinolysis presented herein are

fairly simplified, it can be observed that the formation and resolution of blood clots

which could occlude a coronary artery and could lead to myocardial infarction are

defined by the dysregulation of metabolic processes.

4 From metabolism to metabolomics

While multiple definitions of metabolomics have been proposed, the fundamental

conceptual definition is that metabolomics is the study of small molecules in a bio-

logical sample [Nicholson and Lindon, 2008, Johnson et al., 2016, Newgard, 2017].

The term metabonomics has previously been used almost synonymously with

metabolomics, although the focus of this discipline as posited previously study of

the changes in metabolic processes following experimental manipulation [Nicholson

and Lindon, 2008]. Given theses definitions, it can be noted that metabonomics

requires metabolomics, that is in order to study changes in metabolic processes

that follow an experimental manipulation, one must measure small molecules from

biological samples. In other words, “metabonomics” represents the goal of many

“metabolomics” studies. For the purposes of the current work we use the term
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“metabolomics” to refer to both the analysis of small molecules from a sample, as

well as the study of changes in metabolic processes that follow an experimental

manipulation.

As an -omics discipline, several aspects of metabolomics are unique. The first

such aspect is that the background set of which metabolites could be present in hu-

mans is unknown and remains elusive. Specifically 18,557 unique metabolites have

been detected and quantified in humans (as recorded in the HMDB), while 82,274

“expected” metabolites have been determined [Wishart et al., 2018]. Of these,

5,498 metabolite-disease associations have been noted in the Human Metabolome

Database (HMDB). “Expected” metabolites are metabolites that have not been

detected in human samples, yet the molecular structure is known and it is hypoth-

esized that due to exposure, these metabolites are expected to be present in hu-

mans. This stands in sharp contrast to genomics, in which a reference genome was

produced following the completion of the human genome project in 2003 [Collins,

2003, O’Leary et al., 2016]. While functional annotation of the genome remains

ongoing [O’Leary et al., 2016], there is substantially less uncertainty as to what

the “reference” genome should be than what a “reference” metabolome should

be. Second, the determination of tissue specificity is substantially less advanced

in metabolomics than in transcriptomics and proteomics, as well in evaluating

the effect of gene variants on tissue specific gene expression. For example, the

Tissue-specific Gene Expression and Regulation (TiGER) database began in 2007

with an expressed sequence tag (EST) approach to cataloging tissue-specific gene

expression profiles [Liu et al., 2008]. The study of tissue-specific gene expression

has continued with the utilization of RNA-seq data as has been done with the

Genotype-Tissue Expression (GTEx) project [Lonsdale et al., 2013]. Additional

efforts have used genomic sequencing in conjunction with gene expression pro-

filing to evaluate whether expression quantitative trait loci (eQTLs) are active

in specific tissues [Aguet et al., 2017, Brown et al., 2017]. To generate a map

of tissue-specific protein expression Uhlen, et al. [Uhlen et al., 2015] used both
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RNA-seq data and antibodies corresponding to 16,975 protein-encoding genes to

quantify tissue-specificity, which is included in the Human Protein Atlas [Uhlen

et al., 2010]. In contrast to genomics, transcriptomics, and proteomics, a compre-

hensive mapping of metabolite tissue-specificity does not yet exist. To summarize

the first two nuances we have described, it is often not feasible to have a priori

knowledge of what metabolites could or should be present in a human sample

irrespective of the type of sample (tissue, urine, plasma, serum, cell culture).

The third aspect that distinguishes mass spectrometry-based metabolomics

from other -omics disciplines is that often a substantial proportion of the mass

features that are detected in a sample (using un-targeted mass spectrometry ap-

proaches) are not able to be identified (often greater than 2/3 of the features)

[Newgard, 2017]. At this point it is informative to differentiate the analytical

strategies employed in mass spectrometry-based metabolomics studies into three

different types: targeted, un-targeted / non-targeted, and stable isotope resolved.

Stable isotope resolved metabolomics can be conducted using either a targeted or

non-targeted approaches. Targeted metabolomics corresponds to the measurement

of metabolites specified in advance, for which an analytical techniques such as se-

lected reaction monitoring (SRM) or multiple reaction monitoring (MRM) assays

have been developed [Roberts et al., 2012, Zamboni et al., 2015]. Multiple reaction

monitoring makes use of mass spectrometers in which parent ions are first selected,

fragmented into smaller ions, with these ions being selected and detected [Roberts

et al., 2012]. The use internal standards allows for such methods to be quantita-

tive or semi-quantitative. Targeted metabolomics experiments require substantial

upfront methods development in order to determine the specific transitions for

each metabolite as well as retentions times and other experimental parameters

prior to analysis of samples. In contrast to this approach, un-targeted or non-

targeted metabolomics does not stipulate the prior specification of compounds to

be quantified in the analysis [Zamboni et al., 2015, Putri et al., 2013, Roberts

et al., 2012]. The principal challenge of un-targeted metabolomics is the identi-
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fication and resolution of the chemical identity of the thousands of features that

are detected from any one biological sample [Zamboni et al., 2015]. To summarize

metabolomics is distinct as an -omics discipline as there is a lack of knowledge

about what compounds (of endogenous or exogenous origin) should be found in

a human, a lack of knowledge about where such compounds should be localized

to, and a relatively low identification rate in determining the chemical identity of

ions in mass spectrometry-based metabolomics.

Stable Isotope Resolved Metabolomics, while a subset of metabolomics experi-

ments, represents a distinct approach to studying metabolism using metabolomics.

SIRM entails the treatment of a system with nutrients that are enriched with iso-

topes such as 13C or 15N [Bruntz et al., 2017, Newgard, 2017, Higashi et al.,

2014, Fan et al., 2012]. A specific amount of time is allowed to elapse (specific to

the design of experiments) to allow the system to incorporate the stable isotope

labeled intermediates and for them to propagate across metabolic pathways. Tar-

geted or un-targeted quantification of metabolites by either mass spectrometry or

nuclear magnetic resonance may then be utilized. By examining the fractional

enrichment of isotopologues, inference can be made regarding the flux through

specific metabolic pathways [Higashi et al., 2014, Fan et al., 2012]. Critically, this

approach can be utilized to study metabolic reprogramming, as is associated with

the initiation and progression of cancer [Bruntz et al., 2017].

5 Mass spectrometry-based metabolomics

Mass spectrometry has been a central analytical tool in facilitating the rapid

growth of metabolomics [Dunn and Hankemeier, 2013]. The fundamental principal

of mass spectrometry is the sorting along and determination of the mass-to-charge

ratio of molecules following ionization. The principle advantage of utilizing mass

spectrometry in conjunction with or in lieu of nuclear magnetic resonance (NMR),

is the relatively high sensitivity of mass spectrometry [Lei et al., 2011, Gowda

and Djukovic, 2014, Gross, 2017]. Mass spectrometry allows for the determina-
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tion of accurate mass, isotope distribution, and often the spectra of fragment

ions may be used for compound identification. Multiple experimental designs (in

terms of instruments and parameters) have been utilized in mass spectrometry-

based metabolomics. Critical design facets include: the type of (or absence of)

chromatographic separation prior to injection into the mass spectrometer, the

ionization source (and relevant parameters), and type of mass analyzer. In this

section we briefly discuss some of these design facets. Various techniques are em-

ployed in common practice to ionize molecules in a sample [Lei et al., 2011, Gowda

and Djukovic, 2014, Gross, 2017]. Electron ionization (EI) involves bombarding

molecules to be analyzed with electrons to form ions. EI is considered to be hard

ionization technique as the energy impacted by the electron collisions can cause

the fragmentation of molecules. In contrast, electrospray ionization (ESI) is con-

sidered to be a soft ionization technique as it does not lead to fragmentation.

ESI is most common ionization technique with liquid chromatography as it effi-

ciently ionizes molecules in the liquid phase. Other ionization methods utilized in

metabolomics include matrix assisted laser desorption/ionization (MALDI) and

atmospheric pressure chemical ionization (APCI) [Lei et al., 2011].

Once molecules in a sample have been ionized, resulting in positively or nega-

tively charged molecules, they can be detected by a mass analyzer. High resolution

mass analyzers include Fourier transform ion cyclon resonance (FT-ICR) mass an-

alyzer and Orbitrap mass analyzers [Lei et al., 2011, Gowda and Djukovic, 2014].

These types of mass analyzers make it possible for many molecules to enumerate

molecular formula from accurate mass alone. Time of flight (TOF) mass analyz-

ers, quadrupole mass analyzers and quadrupole ion traps mass analyzers typically

have less resolution than FT-ICR but may posses other advantages. For example,

quadrupole mass analyzers allow for developing targeted assays via studying the

transitions that occur with collision-induced dissociation.

While typically mass spectrometers are coupled with chromatography for sep-

aration, direct injection (DI) MS analyses are also technically feasible [Lei et al.,
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2011], especially given high resolution mass detectors. A complication of DI-MS

analyses is that they are often susceptible to ion suppression. Ion suppression

is a phenomenon in which molecules with low affinity for electrons or protons

are less likely to ionize when they co-elute with molecular ions with higher elec-

tron or proton affinity [Gowda and Djukovic, 2014]. The most common forms of

chromatographic separation are gas chromatography (GC), liquid chromatogra-

phy (LC), and capillary electrophoresis (CE). Gas chromatography may acheive

a high degree of separation between molecules especially when conducted as two-

dimensional GCxGC-MS. A drawback of GC is that it requires compounds to be

volatile (and thermally stable), which is often not the case for many biomolecules

[Lei et al., 2011]. To ensure compounds are in a volatile state, a derivatization

procedure such as alkylation or silation may be applied. LC is a commonly em-

ployed with ESI as the efficiency of ionization is high [Lei et al., 2011]. Often

multiple types of LC are combined to provide greater profiling of the metabolites

in a sample–for example hydrophilic interaction liquid chromatography (HILIC)

coupled with reverse-phase liquid chromatography. This coverage can be increased

further when both positive and negative mode ESI are applied.

The use of NMR in metabolomics has a few advantages including a rela-

tively high degree of reproducibility, it is relatively quantitative, the identity of

metabolites can often be resolved unambiguously, and it is non-destructive [Na-

gana Gowda and Raftery, 2016]. However, as the metabolomics data analyzed

within this work was generated using mass spectrometry we do not discuss NMR-

based metabolomics in the present work.
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CHAPTER III

PRELIMINARIES: BAYESIAN STATISTICS

Bayesian statistics represents both a sub-discipline of statistics as well as a philo-

sophical paradigm. A philosophical discussion of the relative merits of frequen-

tist versus Bayesian statistics is beyond the scope of this text. However, we do

note the following general distinctions between frequentist and Bayesian statis-

tics. First, frequentist approaches assume that a population parameter is fixed,

while samples are drawn (a stochastic or random process) from a population to

estimate this population parameter. Contrastingly, Bayesian approaches assume

that the sample data is fixed, but the population parameter is a random variate

for which a probability distribution can be specified. Given a fixed population

parameter, frequentist approaches are based on the long run behavior of draw-

ing repeated samples from a population. For example, a 95% confidence interval

(CI) for a population parameter means that if 100 samples were randomly drawn

a CI constructed in an identical manner 95 would contain the population value

on average. This implies that the frequentist approaches consider the likelihood

of both observed and unobserved data. In contrast, Bayesian approaches evalu-

ate the probability distribution of a population parameter the observed sample.

This probability distribution can be determined by considering the integrating the

likelihood of the observed sample given each possible parameter values times the

probability of these parameter values, divided by the likelihood of the sample.

Consequently, Bayesian approaches require the prior stipulation of the probability

distribution of the population parameter.
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1 Bayes rule

The central foundation of Bayesian statistics is Bayes rule [Gelman et al., 2004].

Theorem 1.1. If A and B are events with P(B) > 0, then:

P(A|B) =
P(B|A) P(A)

P(B)
(1)

.

Further, Bayes rule can be extended to any arbitrary partitioning of a sample

space [Casella and Berger, 2002].

Theorem 1.2. Let P = {Ai : i = 1, 2, . . . , N} represents an arbitrary partitioning

of a sample space S, then for a specific Ai:

P(Ai|B) =
P(B|Ai)P (Ai)∑

Aj∈P P(B|Aj)P (Aj)
. (2)

2 Bayesian inference regarding a parameter

Let θ (or θ in the multivariate case) represent a parameter of a probability mass

function (pmf) or probability distribution function (pdf) f(x|θ) of a random vari-

able X. Without loss of generality, we discuss the univariate case of one random

variable X and one population parameter θ, although multivariate generalization

is straightforward. The objective of statistical inference regarding θ is to utilize

a random sample X1, X2, . . . Xn from a population with pmf/pdf f(x|θ) to deter-

mine likely values of θ [Casella and Berger, 2002]. Denoting a fixed sample as

x = {x1, x2, . . . , xn}, we note that x is a realization from the sample space X of

all possible samples from the population. In Bayesian inference, the population

parameter θ is regarded as unknown [Hoff, 2009]. It is assumed that the uncer-

tainty regarding the true population value of θ, can be represented by the prior

probability distribution p(θ). Since the true population value is unknown, a set of

possible values for θ, that is the parameter space Θ comprises the support of p(θ).

In Bayesian analysis, a sampling model describing the probability of observing
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realization x of the random variable X conditioned on a fixed value of the param-

eter θ, that is p(x|θ) must also be specified. When considering a fixed sample, this

term is also referred to as the likelihood [Casella and Berger, 2002].

Theorem 2.1. If X1, X2, . . . , Xn are independent and identically distributed (iid)

random variables, then f(x1, x2, . . . , xn|θ) =
∏n

i=1 f(xi|θ).

More specifically, we refer to the joint distribution function of a sample x,

conditional on the value of the parameter θ as the likelihood of theta given the

sample, or L(θ|x). Given a prior distribution for θ ∈ Θ, a random sample from

the population x,and a sampling model or likelihood, the posterior distribution

for θ can then be determined utilizing Bayes rule, as below[Hoff, 2009]:

p(θ|x) =
p(x|θ)p(θ)∫

θ̃∈Θ
p(x|θ̃)p(θ̃)dθ̃

=
p(x|θ)p(θ)
p(x)

. (3)

The denominator term is referred to as the marginal likelihood. As the marginal

likelihood involves only a fixed sample, the denominator is a constant, which

justifies the following relation involving the posterior distribution of θ:

p(θ|x) ∝ p(x|θ)p(θ). (4)

From this relation, it can be noted that the posterior distribution for θ, after

observing a random sample x is proportional to the likelihood times the prior.

3 Example Bayesian inference regarding a parameter

Consider a mass spectrometer with a counting detector that records the counts per

second over a fixed m/z window. The number of counts recorded by the detector

over a fixed time interval may be a Poisson process. Let X be the random variable

representing the number of counts recorded by the detector over a one second time

interval, with an average number of counts per second (population parameter) of

λ. We then say that X ∼ Pois(λ), and note that the probability mass function

for X is:

f(x|λ) =
λxe−λ

x!
, x ∈ N, λ ∈ [0,∞) (5)
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Assume a sample has been observed with the following counts: {107, 103, 110, 99, 108, 108, 105}

and that we wish to determine plausible values of the rate parameter λ. In order

to determine plausible values, we will conduct Bayesian inference over λ. Assume

that we have collected ten prior count observations and that the sum of counts

from these observations was 1,000. We may then choose a prior distribution for

λ of Gamma(α, β) with parameters α = 1000 and β = 10. We note the following

form of the Gamma distribution pdf:

f(λ|α, β) =
βα

Γ(α)
λα−1e−βλ, λ ∈ [0,∞) , α, β > 0. (6)

We note that the likelihood for the Poisson distribution factorizes as in the fol-

lowing:

L(λ|x) = p(x|λ) =
n∏
i=1

λxie−λ

xi!
=

(
n∏
i=1

xi!

)−1

× λ
∑n

i=1 xie−nλ. (7)

From Eq. 7 we can note that the likelihood term that involves λ and are is not

fixed by the sample x is λ
∑n

i=1 xie−nλ. Thus the posterior distribution for λ has

the following form:

p(λ|x) ∝ p(λ)p(x|λ) ∝ p(λ)λ
∑n

i=1 xie−nλ (8)

Considering the prior distribution that we have specified:

p(λ|x) ∝ βα

Γ(α)
λα−1e−βλλ

∑n
i=1 xie−nλ (9)

∝ βα

Γ(α)
λα+

∑n
i=1 xi−1e−(β+n)λ, (10)

we can note that:

p(λ|x) = c(x, α, β)−1λα+
∑n

i=1 xi−1e−(β+n)λ, (11)

where c(x, α, β) is a normalizing constant that depends only on the prior distri-

bution parameters and the observed sample. Thus it is evident that the posterior

distribution for λ is also a Gamma distribution, specifically p(λ|x) ∼ Gamma(α+∑n
i=1 xi, β + n). Fig. 3 shows the pdf of both the prior and posterior probability

distributions for the Poisson rate parameter λ.
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Figure 3. Example Bayesian estimation of a Poisson rate parameter. The plot

shows the probability density function of the prior on posterior distributions for

the Poisson rate parameter λ. Dashed blue vertical line shows the mode of the

posterior distribution. Also shown as a dashed black vertical line is the maximum

likelihood estimator determined from the sample x.

As can be observed, the center (mode or mean) of the posterior probability

distribution for λ lies between the maximum likelihood estimator (MLE) for λ

and the prior distribution. In fact, while the MLE for λ is λ̂MLE = 105.7143, the

mode of the posterior distribution of λ is:

λ̃ =
α +

∑n
i=1 xi − 1

β + n
=

1000 + 105.7143

10 + n
= 102.2941.

In addition to point-wise summaries (such as the mode of the posterior distri-

bution), interval summaries can be provided utilizing the posterior distribution of

a parameter. In this case, a Bayesian credible interval [Gelman et al., 2004] can

be analytically computed using a quantile function as the analytical form of the

posterior distribution is known. Specifically, a two-sided 95% Bayesian credible

interval (CI) can be determined by finding the unique solution to (l, u), such that

F (l|α+
∑n

i=1 xi− 1, β+n) = 0.025 and F (u|α+
∑n

i=1 xi− 1, β+n) = .975 where
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F (x) is the cumulative distribution function for the Gamma distribution. In the

current example, this yields a 95% CI of (97.600, 107.218).

4 Specification of prior distribution

Given that the posterior distribution of parameters depends on both the data

likelihood and the prior distribution, the specification of prior distribution is of

critical interest in Bayesian inference. While a general distinction is made be-

tween “informative” priors and “non-informative” priors [Gelman, 2006], “weekly

informative” priors represent an in-between. Non-informative priors are prior dis-

tributions that are vague, flat, diffuse [Gelman et al., 2004], and do not incorporate

external information into posterior probability distributions. Weekly informative

priors generally incorporate some other goal, such as encouraging regularization

without introducing specific a priori knowledge about the prior likelihood of pa-

rameter values. In contrast, informative priors do incorporate external information

(outside of the empirical data) [Gelman et al., 2004]. Informative priors may be

generated from previous experimentation, often by the use of conjugate distribu-

tions [Hoff, 2009].

Definition 4.1. Conjugate probability distribution Let F be a class of probability

distributions from which x may be sampled with parameter θ, that is f(x|θ) and

let P be a class of prior distributions for θ. P is said to be cojugate to F if

p(θ|x) ∈ P ∀f(·|θ) ∈ F and p(·) ∈ P.

Following these definitions, we return to our discussion of the counting mass de-

tector example. This example utilized an informative conjugate prior distribution

for the Poisson rate parameter. Given the form of the data-augmented posterior

distribution, p(λ|x) ∼ Gamma(α +
∑n

i=1 xi, β + n), the posterior Gamma distri-

bution parameters can be noted as α′ = α +
∑n

i=1 xi and β′ = β + n, where α

and β are the prior parameters. This provides a natural way to encapsulate prior

empirical evidence. Noting that prior expectation for λ is E(λ) = α
β
, while the
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posterior expectation conditional expectation is:

E(λ|x) =
α +

∑n
i=1 xi

β + n
=

α

β + n
+

∑n
i=1 xi
β + n

, (12)

it can be seen that if the sum of counts observed in β previous experiments (where

β is a natural number) was α, then the conditional expectation of λ is a weighted

average of the prior observed counts and the current observed counts (weighted

by the respective number of observations).

5 MCMC methods for inference

Many posterior probability distributions do not have an expression in analytical

form, or it may be challenging to determine such a form. In such cases, Markov

chain Monte Carlo (MCMC) methods may be utilized for simulating the posterior

distribution. The fundamental principal of Monte Carlo methods is that if an

integral I =
∫

Ω
f(x)dx cannot be obtained analytically, then the law of large

numbers justifies generating a random sample {Xi}ni=1 from a distribution p(x)

over Ω and using it for approximation [Gelman et al., 2004], that is:

I ≈ 1

n

n∑
i=1

g(Xi), (13)

where g(x) = f(x)/p(x). Two commonly utilized MCMC approaches are Metropolis-

Hastings type algorithms which rely on formulating a proposal density for accept-

ing or rejecting random moves according to the target distribution and Gibbs

sampling which draws from conditional distributions.

Gibbs Sampling

In addition to not having an analytical form of the joint posterior distribution of

model parameters (which justifies the use of posterior simulation) it may be the

case that it is straightforward to sample from conditional distributions of parame-

ters but not for sampling from the joint distribution. In such cases, Gibbs sampling

may be employed [Gelman et al., 2004, Hoff, 2009]. The idea of Gibbs sampling is
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straightforward. First, parameters estimates are initialized to some initial values.

Next, one parameter is fixed as the target parameter. A sample is then drawn

from the conditional distribution of this target parameter (conditioned on both the

non-target parameter estimates and the observed sample). Gibbs sampling can

be extended to using target sets of parameters without loss of generality. A more

precise definition of a Gibbs sampler is as follows and pseudocode is presented as

Alg. 1. Let θ = {θ1, θ2, . . . , θp} be a vector of parameters and let θj be a vector

defined by a subset of the parameters with the subsets indexed by j = 1, 2, . . . , J .

Let θ̃
(t)

j denote the estimate of the subset of parameters at time t.

Algorithm 1 Gibbs sampler

1: Set θ(0) to some initial values
2: while t ≤ tmax or convergence criteria not met do

3: Set θ̃ ← θ̃
(t−1)

4: for j = 1 to J do

5: Sample θ̃
∗
j ∼ p

(
θj|θ̃−j,x

)
6: Update θ̃j ← θ̃

∗
j

7: end for
8: Set θ̃

(t) ← θ̃ and return θ̃
(t)

9: t← t+ 1
10: end while

Example application of Gibb’s sampling

Continuing with the example of a mass spectrometer with a counting detector,

we illustrate the use of Gibb’s sampling for simulating the posterior distribution

of a set of model parameters. In the previous example, we assumed that there

was only one population rate parameter. In the current example, we consider a

case in which, over a fixed m/z window, counts may be observed for three types

of ions within the same m/z window as opposed to one. To the observer, it is not

clear which ions the counts are originating from. We would expect, however that

the population rate parameters are different for each ion. This can be formulated

using the following model [Diebolt and Robert, 1994, Everitt, 2004]. First we note
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the pmf for individual observations xi:

f(xi|λ,p) =
3∑
j=1

pj
e−λjλxij
xi!

(14)

where j is the indicator for the source ion, each xi is a random variable representing

the counts, λj represents the population rate parameter for each j source ion, and

pj represents the probability that a count observation belongs to the j source ion.

For each observation i we then introduce a vector of latent variable for indicating

which source ion the observation originated from: zi = (zi1, zi2, zi3) where:

zij =

 1 if the counts xi originate from source ion j

0 else
. (15)

The individual zij are then Bernoulli distributed with probability pj and the in-

dividual vectors zi are distributed as zi ∼ Multi(1, p1, p2, p3) with
∑3

j=1 pj = 1.

Given the observations are exchangeable, we then have the indicator vector like-

lihood :

f(z|p) =
n∏
i=1

f(zi|p) =
n∏
i=1

3∏
j=1

p
zij
j . (16)

We then can specify a (conjugate) prior distribution for p, that is f(p) ∼ Dirichlet(α).

We choose the non-informative prior αj = 1 ∀j. We place a Gamma distri-

bution with shape and scale priors r and s over the rate parameters, that is:

λj ∼ Gamma(r, s). and we assume that the rate parameters are independent (of

each other prior parameter). By application of Bayes’ rule and the chain rule, we

can determine the posterior distribution of the parameters:

f(z,p,λ|x) ∝ f(x|z,p,λ)f(z,p,λ)

∝ f(x|z,p,λ)f(z,p)f(λ)

∝ f(x|z,p,λ)f(z|p)f(p)f(λ).

(17)

Denoting the gamma pdf’s for each λj as fλj(λj), and likewise the pdf for the

Dirichlet prior as fp(p), we can then enumerate Eq. 17 as:

f(z,p,λ|x) ∝
n∏
i=1

3∏
j=1

(
e−λjλxij
xi!

)zij

×
n∏
i=1

3∏
j=1

(pj)
zij ×

3∏
j=1

fλj(λj)× fp(p) (18)
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From this, conditional distributions for each parameter are apparent. For the

vector of Bernoulli parameters:

f(p|z,λ,x) ∝
n∏
i=1

3∏
j=1

(pj)
zijfp(p)

∝
n∏
i=1

3∏
j=1

(pj)
zij

∝
3∏
j=1

p
∑n

i=1 zij
j

∝ Dirichlet(α′),

(19)

where α′ = (α′1, α
′
2, . . . , α

′
k) and αj = 1 +

∑n
i=1 zi1.

For the rate parameters conditional on the other parameters (using the first as

an example), we have:

f(λ1|λ(−1),p, z,x) ∝
n∏
i=1

3∏
j=1

(
e−λjλxij
xi!

)zij

fλ1(λ1)

∝
n∏
i=1

(
e−λjλxij
xi!

)zij
sr11

Γ(r1)
λr1−1

1 e−s1λ1

∝
n∏
i=1

(
e−λjλxij

)zij (
λr1−1

1 e−s1λ1
)

= e−λ1(
∑n

i=1 zi1+s1) + λ
∑n

i=1 xizi1+r1−1
1 .

(20)

It can thus be seen that the conditional distribution for λ1 (conditioned on the re-

maining parameters and the data) is conjugate and is proportional to the following

distribution:

f(λ1|λ(−1),p, z,x) ∝ Gamma

(
r1 +

n∑
i=1

xizi1, s1 +
n∑
i=1

zi1

)
. (21)

Finally, for the latent indicator variables:

f(zij = 1|xi,λ,p) =
f(xi|λ,p, zij = 1)f(zij = 1|λ,p, xi)∑3
j=1 f(xi|λ,p, zij = 1)f(zij = 1|λ,p, xi)

=
f(xi|λ, zij = 1)f(zij = 1|λ,p)∑3
j=1 f(xi|λ, zij = 1)f(zij = 1|λ,p)

=
f(xi|λj)pj∑3
j=1 f(xi|λj)pj

=
f(xi|λj)pj
f(xi)

.

(22)
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Thus it can be seen that the conditional distribution for each z
(−i)
i is:

z
(−i)
i |(θ,p, z,x) ∼Multi

(
1,
f(xi|λ1)p1

f(xi)
, . . . ,

f(xi|λ3)p3

f(xi)

)
(23)

From these conditional distributions, a Gibbs sampler can be formulated.
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CHAPTER IV

PRELIMINARIES: GAUSSIAN GRAPHICAL MODELING

1 Introduction

Across multiple domains including finance, economics, molecular biology, and ma-

chine vision, stochastic systems are observed via the realization of multiple random

variables and the determination of the relationship between the random variables is

an essential inferential task. For example, researchers in the field of metabolomics

often sample from the repertoire of small molecules contained in a cell or biofluid

to make inference regarding metabolic responses to the environment or differences

across phenotypes [Johnson et al., 2016]. Central to making inferences regarding

metabolic processes is determining the structure of probabilistic interactions be-

tween sets metabolites. In macroeconomics, to quantify financial risk that could

propagate across borders, international bank settlements may be sampled and in-

terrogation of the dependence structure of these random variables reveals cross

border flows that may result in cross-border contagion during a financial crisis

[Giudici and Spelta, 2016].

2 Gaussian graphical models

An undirected probabilistic graphical model also known as a Markov Random

Fields (MRFs) is a graph G = (V,E) in which random variables Xi ∈ V , i ∈

{1, 2, ...p} are represented by vertices and edges in the edge set E ⊆ V × V repre-

sent probabilistic interactions [Koller and Friedman, 2009]. If the joint distribu-

tion of the random variables is assumed to be a multivariate normal distribution,
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that is X ∼ N (µ,Ω−1) where Ω is the concentration matrix and the inverse of

the covariance matrix, then the MRF is a Gaussian Graphical Model (GGM),

in which each vertex Xi has a marginal normal distribution, and normal condi-

tional distributions Xi|Xj. We immediately note the likelihood given a sample

X = (x1,x1, . . . ,xn)T :

L(Ω|X) = (2π)−np/2|Ω|n/2 exp

(
−1

2

n∑
i=1

(xi − µ)TΩ(xi − µ)

)
(24)

= (2π)−np/2|Ω|n/2 exp

(
−1

2
〈K,Ω〉

)
(25)

where
∑n

i=1

In order to determine a Gaussian Graphical model, the graph topology and

parameters must be estimated separately [Meinshausen and Bhlmann, 2006] or

jointly [Friedman et al., 2007, Yuan and Lin, 2007, Banerjee et al., 2008]. Given a

mean centered data matrix X with dim(X) = n×p, estimation of the concentration

matrix (inverse of the joint distribution covariance) Ω = Σ−1 fully determines the

graph topology as well as the multivariate Gaussian distribution parameters. The

entries of Ω are of particular importance; ωij is the partial correlation between Xi

and Xj. Consequently, ωij = 0 implies Xi and Xj are conditionally independent.

The Graphical Lasso

To find the maximum likelihood estimator of Ω the log likelihood of the concen-

tration matrix is noted:

l(Ω) ∝ log(det Ω)− tr (SΩ) , (26)

where S = 1
n
XTX is the empirical covariance matrix. In the case that p > n

maximization of the log likelihood function is not guaranteed to be convex. To

overcome this problem, several approaches have been proposed for maximizing

the L1 norm penalized log-likelihood [Friedman et al., 2007, Yuan and Lin, 2007,

Banerjee et al., 2008]:

l(Ω) ∝ log(det Ω)− tr (SΩ)− ρ||Ω||1 (27)
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where ρ is the penalty parameter and the optimization is over the space of positive

definite matrices of the same dimension as Ω. The solution proposed by [Friedman

et al., 2007], known as the graphical Lasso employs a block coordinate descent for

maximizing the penalized likelihood. To formulate a block-wise procedure the

[Friedman et al., 2007] first note the following partitioning along the last row and

last column of S and W = Σ̂:

W =

W11 w12

wT
12 w22.

 ,
S11 s12

sT12 s22.

 (28)

Given this partition, the maximization of the log-likelihood (Eq. 27) is equivalent

to the following constraint problem [Banerjee et al., 2008]:

w12 = argminy{yTW−1
11 y : ||y− s12||∞ ≤ ρ}. (29)

[Banerjee et al., 2008] show that by convex duality, if β̂ minimizes:

β̂ = argminβ{
1

2
||W1/2

11 β − b||2 + ρ||β||1} (30)

where b = W
−1/2
11 s12, then w12 = W11β̂.

The SCAD penalty and the Adaptive Graphical Lasso

It has been shown that the linear increase penalization relative to the norm in-

curred with L1 regularization of parameters introduces bias, especially in the case

of parameters that have large magnitude [Fan et al., 2009, Lam and Fan, 2009].

Two alternative penalized likelihoods have been proposed as a solution to this

known problem and have been shown to satisfy the oracle property: the smoothly

clipped absolute deviation (SCAD) penalization and the adaptive lasso. It has

been shown that the oracle property is not universally satisfied by the lasso [Zou,

2006]. The lasso, SCAD penalized estimation, and adaptive lasso share similar

developmental histories, being developed first for variable selection and linear/-

generalized linear model parameter estimation with later extension to GGM pa-

rameter estimation. The smoothly clipped absolute deviation is a non-concave
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penalty function defined as [Fan and Li, 2001]:

fλ,a(θ) =


λ|θ| if |θ| ≤ λ

−
(
|θ|2−2aλ|θ|+λ2

2(a−1)

)
if |θ| ∈ (λ, aλ]

(a+1)λ2

2
if |θ| > aλ

(31)

The behavior of this penalty with respect to coefficient magnitude can be examined

given the continuous derivative derivative of the SCAD penalty function:

f ′λ,a(θ) = λ

[
I(θ ≤ λ) +

(aλ− θ)+

(a− 1)λ
I(θ > λ)

]
(32)

for θ > 0 and α > 2. In general, the advantage of this penalization over L1

norm penalization is that large values of θ are not excessively penalized. The

two parameters of the penalty function can be optimized by cross-validation or

via minimization of Bayes risk as was done in [Fan and Li, 2001]. To generalize

the SCAD penalty for regularized estimation of GGMs, the SCAD penalized log-

likelihood is noted:

l(Ω) ∝ log(det Ω)− tr

(
S

n
Ω

)
−

p∑
i=1

p∑
j=1

fλ,a(|ωij|)

After demonstrating the conditions in which lasso variable selection is not guar-

anteed to be consistent and hence not satisfying the oracle property, [Zou, 2006]

modified the L1 lasso penalty λ||θ||1 to incorporate parameter specific weights

w yielding penalty λ||wθ||1. The penalized likelihood for the adaptive graphical

lasso is then:

log(det Ω)− tr

(
S

n
Ω

)
− λ

∑
1≤i≤p

∑
1≤j≤p

wij|ωij|. (33)

In this likelihood, the weights that contribute to the penalization are wij = |ω̂ij|α

for a fixed α > 0 and a consistent estimate of the concentration matrix with entries

ω̂ij.
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The Bayesian Graphical Lasso

A Bayesian interpretation of the regular graphical lasso [Friedman et al., 2007]

has been shown previously [Wang, 2012]. Given the following hierarchical model:

p(xi|Ω) =N (0,Ω−1) for i = 1, 2, . . . , n (34)

p(Ω|λ) =
1

C

∏
i<j

DE(ωij|λ)

p∏
i=1

EXP(ωii|λ/2) · 1Ω∈M+ , (35)

it has been demonstrated the mode of the posterior distribution of Ω is the graph-

ical lasso estimate given penalty parameter ρ = λ/n. In this model, the prior

distribution of the off-diagonal entries of the concentration matrix follow a double

exponential distribution centered at zero with scale parameter λ, while the prior

distribution of the diagonal entries of the concentration matrix is exponential with

scale parameter λ/2. [Wang, 2012] noted that the hierarchical model in (35) can

be represented as a scale mixture of normal distributions [Andrews and Mallows,

1974, West, 1987] leading to the following prior distribution:

p(ω|τ , λ) =
1

Cτ

∏
i<j

[
1√

2πτij
exp

(
−
ω2
ij

2τij

)] p∏
i=1

[
λ

2
exp

(
−λ

2
ωii

)]
· 1Ω∈M+ (36)

[Wang, 2012] exploited this representation to develop a block Gibbs sampler

for simulating the posterior distribution. This sampler is predicated on identical

partitioning of the concentration matrix Ω, products matrix S, and latent scale

parameters matrix T :Ω11 ω12

ωT12 ω22

 ,
S11 s12

sT12 s22

 ,
T11 τ 12

τ T12 τ22

 . (37)

The Gibbs sampler then samples from the conditional distribution of the last

column, (ω12, ω22)T of Ω:

p(ω12, ω22|Ω11,T ,X, λ) ∝
(
ω22 − ωT12Ω

−1
11 ω12

)n/2
exp

(
−1

2

[
ωT12Dτω12 + 2sT12ω12 + (s22 + λ)ω22

])
(38)

In the same work, [Wang, 2012] proposed a Bayesian approach to the adaptive

graphical lasso developed by [Fan et al., 2009]. The hierarchical model proposed
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by for the adaptive lasso is:

p(xi|Ω) =N (0,Ω−1) for i = 1, 2, . . . , n (39)

p(Ω|{λij}i≤j) =C−1
∏
i<j

DE(ωij|λij)
p∏
i=1

EXP(ωii|λii/2) · 1Ω∈M+ (40)

p({λij}i<j|{λii}pi=1) ∝ C{λij}i≤j

∏
i<j

GA(r, s) (41)

As with the frequentist adaptive graphical lasso, the Bayesian adaptive graphical

lasso proposed by [Wang, 2012] incorporates differential shrinkage of entries ωij

according to an estimate ω̂ij. However, as opposed to a fixed relationship between

the norm of the current estimate ω̂ij and the size of the shrinkage parameter λ

uncertainty about λ is incorporated by assuming a gamma distribution for λij.

Conditional on the concentration matrix, λij are distributed as:

λij|Ω ∼ GA(1 + r, |ωij|+ s) (42)

Given that the Bayesian adaptive graphical lasso allows for differential shrink-

age for each ωij via shrinkage parameter λij drawn from a non-informative dis-

tribution, it is natural to suppose that adaptive penalization would allow for the

incorporation of apriori knowledge about the conditional relationship between Xi

and Xj. [Peterson et al., 2013] propose that rather than fixing a non-informative

prior gamma distribution scale s parameter, this parameter could capture prior

belief regarding the conditional relationship between Xi and Xj. They assume

that if an a priori defined unweighted graph describes the biological relationship

between random variables Xi, then the pairwise distance between vertices Xi and

Xj, that is d(Xi, Xj), could be used as a hyperparameter for sij. In their specific

case they set:

sij =


d−1
ij · 10−6+c if dij <∞

10−6 if dij =∞
, (43)

where dij = d(Xi, Xj) was defined as the minimum path distance determined via

breadth-first search, and c ∈ (0, 6) is a positive constant. This specification of the
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gamma scale parameter has the effect of shifting the mean of the prior distribution

for the penalty parameter λij towards zero when verteces Xi and Xj are close with

respect to the a priori graph.

An important contrast between the frequentist and Bayesian graphical lasso

is that given a continuous prior distribution, the Bayesian lasso does not possess

and innate edge selection ability. Specifically, as the Bayesian graphical lasso

given a continuous prior places positive probability on the posterior entries of the

concentration matrix, ωij, a graph selected from the posterior distribution of Ω

will be fully connected, that is an edge will exist between each pair of vertices of

the graph G. Heuristics are for conducting edge selection are discussed in both

[Wang, 2012] and [Peterson et al., 2013]. The selection operator discussed in

[Wang, 2012] was based on a heuristic appeal to the argument made in [Carvalho

et al., 2010]. [Carvalho et al., 2010] discusses a discrete mixture model:

θi ∼ (1− p)δ0 + pg(θi) (44)

where δ0 is the Dirac distribution and p is the prior mixing probability. Under

this model the posterior mean of θi is then:

E(θi|X) = P(θi 6= 0|X) Eg(θi|X, θi 6= 0). (45)

[Wang, 2012] then claims that using the Wishart conjugate prior for the con-

centration matrix as the distribution g, the same factorization can be used to

substantiate the claim that ω 6= 0 if and only if:

π̃ij =
ρ̃ij

Eg(ρij|X)
> 0.5 (46)

where ρ̃ij is the posterior mean estimator of ρij and π̃ij is the amount of shrinkage

enforced by the graphical lasso prior. In contrast, [Peterson et al., 2013] proposes

that a rejection region approach could be employed using posterior credible inter-

vals. Specifically, they suppose edge selection should include an edge between Xi

and Xj if and only if the 95% posterior credible interval for ωij does not include

0. The authors then use a thresholding approach in the application discussed,

omitting edges between vertices if |ωij| ≤ 0.1.
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3 Bayesian inference given G-Wishart priors

An alternative Bayesian treatment focuses on [Dawid and Lauritzen, 1993, Rover-

ato, 2002, Atay-Kayis and Massam, 2005, Dobra and Lenkoski, 2011, Dobra et al.,

2011, Wang, 2012, Cheng and Lenkoski, 2012] the estimation of GGMs via con-

jugate inference for Ω given that Ω is faithful to a fixed graph G, as opposed to

estimation with shrinkage.

Early work [Dawid and Lauritzen, 1993] focused on the case of decomposable

GGMs. A decomposition of a graph G is a pair subsets (R, S), R ⊆ V , S ⊆ V such

that V = R∪S, the graph defined by R∩S is complete, and R∩S is the separator

of R and S–that is any path between R and S must go through R ∩ S. A graph

G is a decomposable graph if it complete or there exists a proper decomposition

(R, S) of G. Equivalently, a graph is decomposable if each prime component of

the graph is complete [Roverato, 2002]. [Dawid and Lauritzen, 1993] first describe

the Hyper Inverse Wishart distribution for cliques C ∈ C where {C1, C2, . . . , Ck}

is a perfectly ordered set of cliques in the decomposable graph G and S.

fG(ΣV |δ,DV) =

∏k
j=1 fCj

(ΣCjCj
|δ,DCjCj

)∏k
j=2 fSj

(ΣSjSj
|δ,DSjSj

)
(47)

[Roverato, 2002] advanced the theory substantially by proposing methodology

for inference given arbitrary graphs (including non-decomposable graphs). [Rover-

ato, 2002] shows that if G = (V,E) is an arbitrary graph then Σ ∼ HIWG

This G-Wishart distribution has the following form:

p(Ω|G) = IG(b,D)−1|Ω|(b−2)/2 exp

[
−1

2
tr(DΩ)

]
1{Ω∈M+(G)} (48)

where IG(b,D) is a normalization constant that ensures that p(Ω|G) is a proper

distribution:

IG(b,D) =

∫
|Ω|(b−2)/2 exp

[
−1

2
tr(DΩ)

]
1{Ω∈M+(G)}dΩ (49)
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CHAPTER V

HIGHER-ORDER INFERENCE IN METABOLOMICS

Higher-order inference in metabolomics corresponds to the testing of hypotheses

that are more complex than single metabolite hypothesis tests. For example,

an experimenter might want to determine if a specific biological process (e.g.

cholesterol biosynthesis) differs between two or more sample phenotypes. The

central question of higher order inference is how to formally test a hypothesis such

as:

• H0: cholesterol biosynthesis does not differ between two (or more) pheno-

types

• HA: cholesterol biosynthesis does differ between two (or more) phenotypes

Or formulated as an equivalence test:

• H0: cholesterol biosynthesis is the same between two (or more) phenotypes

• HA: cholesterol biosynthesis is not the same between two (or more) pheno-

types

Other forms of higher-order inference are not explicitly hypothesis driven.

Many metabolomics experiments are motivated to address open-ended questions

such as “What are the metabolic consequences of a specific disease or disease

state?” or “What is the impact on cellular metabolism of the up or down-

regulation of a specific gene”. An example of the first type can be found in

Trainor et al. [Trainor et al., 2017], who sought to determine the metabolic conse-

quence of thrombotic MI using blood plasma across a disease state transition. An
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example of the second type can be found in Carlisle et al. [Carlisle et al., 2016].

Previous methods to make such higher order inferences generally fit one of the

following categories: (1) statistical tests for pathway enrichment, (2) metabolite

set enrichment analyses, or (3) correlation based analyses.

1 Statistical tests for pathway enrichment

Pathway enrichment analyses seek to determine if specific pathways are repre-

sented more than expected by chance alone in a list of differentially abundant

metabolites (or other biomolecules such as mRNA transcripts). These analyses

take the results of univariate statistical tests that first identify sets of metabolite

features for which significant evidence of differences between experimental condi-

tions or phenotypes are observed. After identifying interesting metabolite features,

these sets can be tested for enrichment of specific metabolic pathways or biological

processes greater than that expected by chance [Goeman and Buhlmann, 2007, Xia

and Wishart, 2010a].

2 Exact tests of pathway enrichment

Table 1. Example 2× 2 table for two random variables X and Y .

X
Y nx1y1 nx2y1

nx1y2 nx2y2

To discuss the use of Fisher’s exact for determining pathway over-representation

we first introduce the computation of the probabilities of 2×2 contingency tables.

The probability of a specific 2× 2 contingency table (as shown in Table 1)can be

computed using the hypergeometric distribution as follows [Agresti, 2013]:

p =

(
nx1y1+nx2y1

nx1y1

)(
nx1y2+nx2y2

nx1y2

)(
n

nx1y1+nx1y2

) , (50)

where n = nx1y1 + nx2y1 + nx1y2 + nx2y2 . Fisher’s exact test is a test of the in-

dependence of rows and columns. In other words the test evaluates whether the
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random variables X and Y are independent. In order to determine the statistical

significance of the test, the probability of the observed table can be compared

to the probability of tables with the same marginal totals. In the case of eval-

uating whether a specific metabolic pathway is over-represented within a list of

differentially abundant metabolites, we can represent pathway membership as the

first random variable and differential abundances indicator as the second random

variable.

Table 2. Example Fisher’s exact test for determining if a pathway is over-

represented in a list of significant metabolites.

Differentially abundant (DA) Not DA Total
Pathway A 10 20 30
Not in Pathway A 40 350 390
Total 50 370 420

A hypothetical exact test for determining if a pathway is over-represented in a

list of significant metabolites is presented in Table 2. In this example, it is assumed

that a total of 420 metabolites were observed. Of these metabolites, 30 were in

Pathway A, while 390 were not in Pathway A. Of the metabolites in Pathway A,

10 were observed to be differentially abundant, while of the metabolites not in

Pathway A, 40 were observed to be differentially abundant. A two-sided Fisher’s

test given the observed contingency table yields a p-value of 0.001, indicating that

there is evidence of an association between the differential abundance indicator

and the pathway membership indicator.

While metabolic pathway over-representation analyses are commonplace in

metabolomics, there are significant sources of bias that dramatically reduce the

utility of such approaches. A graphical representation of this issue is presented in

Figure 4.
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Figure 4. Graphical representation of the source of bias in discrete pathway en-

richment analyses. A single metabolic pathway is shown as a bordered rectangle.

The blue circle represents cases in which a metabolite that is in a metabolic path-

way is annotated as being a member of that pathway in pathway databases. The

red circle represents cases in which a metabolite that is a member of a metabolic

pathway is quantifiable given the sample medium utilized in the analysis. For ex-

ample, a metabolite localized to the mitochondria may not be detectable in plasma

samples. The orange circle represents cases in which a metabolite is detectable

from a sample given the analytical technology and platform utilized. For example,

a metabolite may be not detectable given the sensitivity of NMR.

3 Metabolite set enrichment analysis

Metabolite set enrichment analysis (MSEA)[Xia and Wishart, 2010b] is a gener-

alization of the concept of Gene Set Enrichment Analysis (GSEA) [Mootha et al.,
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2003, Subramanian et al., 2005] to metabolomics data. The GSEA methodol-

ogy was developed to address the arbitrary nature of using p-value thresholds in

discrete pathway enrichment tests in transcriptomics [Subramanian et al., 2005].

As opposed to focusing on binary “significant”/“non-significant” cutoffs for con-

ducting discrete statistical tests, GSEA takes a ranked list of genes as an input.

This ranking may be based on statistical significance of differential expression,

or correlation with a specific phenotypic attribute of interest. To determine the

degree of enrichment of a specific pathway, a score is computed by descending the

ranked list of genes and incrementing the score up or down based on an indicator

of pathway membership and by a weight that is a monotonic function of the ordi-

nal position in the rank list. Under the null hypothesis that a specific pathway is

not overrepresented early or late in the ranked list, the running score will exhibit

a random walk behavior about zero.

In a similar vein a global score test was developed for evaluating the strength

of the association between groups of genes and a nominal, discrete, or continuous

variable of interest [Goeman et al., 2003]. The statistic that underlies this test is

a multiple of the squared covariance between gene expression and the variable of

interest and is evaluated within pathways. This “set enrichment” test was utilized

by Xia and Wishart [Xia and Wishart, 2010b] in the development of MSEA. In

developing MSEA as a tool, extensions to other pathway / ontological databases

were made, especially to the Small Molecule Pathway Database (SMPDB) [Frolkis

et al., 2010]. However, in spite of these extensions, MSEA suffers from the same

sources of biases that have been described previously, and which are depicted in

Figure 4.

4 Chemical Similarity Enrichment Analysis approach

A promising alternative to pathway analyses discussed in [Barupal and Fiehn,

2017] is to use structural similarity and chemical ontology as a priori knowledge

to generate study-specific metabolite sets for contextualizing empirical results.
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Barupal, et al. frame the need for the method they developed with statistics on the

coverage of detected metabolites in metabolism databases. For example in a study

of metabolic dysregulation in diabetic mice, they observed that only 135 of 385

metabolites that were detected by mass spectrometry and for which the chemical

structure could be elucidated were members of the KEGG database [Kanehisa

et al., 2016]. The extraordinarily low coverage rate suggested to the authors

that they should utilize chemical ontology for conducting enrichment analyses as

opposed to metabolic pathways. Another justification they cite for this is that

chemical annotations are unique, while metabolites may be members of multiple

pathways. Briefly, Chemical Similarity Enrichment Analysis (ChemRICH) uses

Medical Subject Headings (MeSH) chemical ontologies. The first step is to map

the multiple possible metabolite identifiers to MeSH chemical ontologies. If a

metabolite can not be mapped to an ontological class, the Tanimoto coefficient for

structural similarity using PubChem 881 bit substructure fingerprints is utilized to

join metabolites to existing ontological classes (based on similarity) or to make new

ones. Once these classes have been defined (existing MeSH chemical classes or new

ones based in structural similarity clustering), enrichment analysis is conducted

using a similar approach to GSEA.

5 The need for interactomes in metabolomics

Untargeted profiling of the metabolome of an organism provides a view into the

small molecule determinants of phenotype. While the genome of an organism

may be conceptualized as a blueprint for the composition and organization of an

organism that is largely immutable (barring epigenetic modifications, DNA dam-

age, and genetic mutations) [Gao et al., 2015, Keating and El-Osta, 2015, Mar-

tincorena and Campbell, 2015], the metabolome of an organism is dynamic and

variable [Dallmann et al., 2012, Krycer et al., 2017]. Sources of variation within

the metabolome of a single organism include tissue-, cell-, and organelle-specific

localization of metabolic processes [Shlomi et al., 2008, Voet et al., 2013]; envi-
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ronmental exposures [Southam et al., 2014]; and host-microbe interactions and

metabolite exchange [Moriya et al., 2017]. While the generation of reference hu-

man genomes has facilitated the interrogation of gene-phenome associations (in-

cluding human disease associations), the intrinsic variability and dynamic nature

of the metabolome of an organism likely precludes the generation of such a ref-

erence model. While a single reference model of the metabolome of an organism

may not be sensible, significant efforts such as the HUSERMET project [Dunn

et al., 2014] have been undertaken to quantify the repertoire of metabolites in

specific biofluids for examining metabolite-metabolite and metabolite-phenotype

associations. In order to make systems-level comparisons of the differences in the

metabolome across phenotypes, models of the conditional relationships between

metabolites are necessary. By the determination of sample media and analyti-

cal platform-specific probabilistic interaction models, henceforth called “interac-

tomes”, systems-level comparisons of phenotypes that can be made. A specific

use case for such an interactome model is the generation of a plasma interactome

for stable heart disease.

6 A specific biomedical science use case

Heart disease is the most prevalent cause of death globally [Benjamin et al., 2017].

As a disease, heart disease does not represent a uniform condition, but rather a

collection of diseases of varying etiologies [Kasper, 2015]. Of particular interest in

the study of coronary artery disease (CAD) is the elucidation of the precipitants of

acute disease events such as myocardial infarction [Arbab-Zadeh and Fuster, 2015]

or unstable angina, metabolic pathways associated with disease phenotypes [Fan

et al., 2016], and determining the metabolic consequences of acute events [Trainor

et al., 2017]. To date, an interactome describing the conditional relationships

between blood plasma metabolites in humans with heart disease does not exist. If

such a reference model were determined, it would facilitate making systems-level

inferences regarding metabolic perturbations that accompany acute disease events
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such as unstable angina or acute myocardial infarction (MI).

7 The challenge of inferring high-dimensional interactomes

A significant challenge in evaluating the relationships between metabolites in an

untargeted metabolomics experiment is that the dimension of metabolites may

be greater than the number of samples. Even given a relatively high ratio of

samples to metabolites detected, in the evaluation of pairwise conditional rela-

tionships between metabolites, the number of parameters to be estimated can be

prohibitive. For example, if p = 500 metabolites are detected, an evaluation of

all pairwise conditional relationships would require the simultaneous estimation of

124,750 parameters. The use of regularization is a well-established approach for

guaranteeing the existence of Gaussian Graphical Model parameters, amenable to

the case that the sample size n is less than p [Banerjee et al., 2008, Fan et al.,

2009, Friedman et al., 2007, Meinshausen and Bhlmann, 2006, Yuan and Lin,

2007].

Penalized estimation of GGM parameters provides a natural mechanism for in-

tegrating a priori knowledge regarding the molecular structure of metabolites with

experimental metabolomics data. The integration of empirical data and scientific

knowledge regarding metabolism is common in metabolomics studies. The current

work is of a similar paradigm and predicated on the assumption that the individ-

ual biochemical reactions that result in statistical dependence between metabolic

intermediates also generate statistical dependence in structural similarity between

the same intermediates. In our application, structural similarity is determined by

an approach that considers overlap in shared local structure between metabolites.

Rather than considering fixed sets of metabolites such as pathways, sets, or mod-

ules and subsequently quantifying enrichment of these sets in empirical results, we

consider a priori knowledge of the relationships between metabolites as probabilis-

tic statements about the relatedness of compounds. Thus, the a priori scientific

knowledge is used to generate prior probability distributions that influence GGM
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model selection, so that posterior inference probabilistically combines empirical

data and prior scientific knowledge to yield an updated model of the probabilistic

interactions between metabolites. In the present work, we introduce a method-

ology for using molecular structure similarity to generate prior distributions that

control the degree of penalization in parameter estimation for learning a GGM

metabolite interactome from metabolomics data.
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CHAPTER VI

INFERRING METABOLITE INTERACTOMES VIA
BAYESIAN GRAPHICAL MODEL SELECTION UTILIZING

MOLECULAR STRUCTURE INFORMATIVE PRIORS

1 Desired inference and sketch of evaluation

As stated previously, a reference model describing the probabilistic interactions

between metabolites that is organism-specific, sample-media specific, and spe-

cific to the metabolites that have been detected is warranted for making higher

order inference regarding systems of metabolites that change between pheno-

types. We propose constructing such interactomes utilizing a Bayesian ap-

proach for estimating Gaussian Graphical Models (GGMs) that utilizes prior

information about the molecular structure similarity between pairs of metabo-

lites. In the first part of the chapter, we discuss our proposed methodology. We

then evaluate the effectiveness of the methodology and in the following chapter

utilize the methodology to construct a stable heart disease plasma metabolite

interactome. We evaluated the methodology using simulation studies that fol-

low two different schema. Under the first schema, autoregressive processes

were simulated for representing linear biological processes in which the cor-

relation between simulated metabolites decreased in tandem with decreasing

structural similarity. Under the second schema, random covariance matrices

corresponding to structural similarity were simulated using the C-vines method

[Lewandowski et al., 2009]. In this case, a hierarchical model was used, in which

structural similarity was simulated first, followed by abundance distributions

in which the correlation between abundances increased with structural simi-
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larity. Given both schema, we evaluated the ability of the proposed method to

recover the true pairwise conditional correlations structures that were specified

in advance. We then evaluate our methodology for generating graphical models

for representing the relationships between metabolites detected and quantified

from human plasma, and specifically for the development of a reference model

for stable coronary artery disease.

2 Molecular structure priors and the BGL

We propose that to incorporate prior knowledge regarding the relatedness of

compounds, the scale hyperparameter can be linked to structural similarity,

that is by specifying the prior distribution λij ∼ Gamma(r, sij) where sij is a

measure of structural similarity between compound i and compound j. The

conditional expected value of each λij is then: E(λij|Ω) = (1 + r)/(|ωij|+ sij).

To generate informative shrinkage priors for the adaptive Bayesian graph-

ical Lasso, we utilized a local structure similarity metric. This metric was

adapted from the previously described Chemically Aware Substructure Search

(CASS) algorithm [Mitchell et al., 2014]. In this adaptation, the structural

similarity between any two chemical structures (A and B) was estimated using

strings representing local chemical structure (referred to as the atoms color)

centered at every atom in the two structures. The color of every atom was

constructed as follows. First, for every bonded atom, its element type and

the order of the bond connecting it to the center atom are joined to form a

component string that is added to a list of components. For example, if the

center atom has a double bonded oxygen, this would contribute a “O2” com-

ponent to the component list. Every component represents a portion of the

local bonded structure at the center atom. Second, the components strings are

then sorted alphanumerically and concatenated to produce a description of the

bonded structure one bond away from the center atom. Finally, to the front

of this string, the element type of the center atom is then added to yield the
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atoms color. Each color uniquely maps to a single locally bonded structure

(e.g. the “CC1O1O2” coloring represents a carbon of a carboxylate). Since

the component list was first sorted alphanumerically, this color is consistent

for all identical local structures regardless of how they are ordered in their

representation. Each chemical structure can be represented as the list of its

constituent atoms colors and these lists of colors can be compared to determine

structural similarity. To determine structural similarity between compounds

using the color string representations, the Tanimoto coefficient between pairs

of compounds was computed, which is defined as [Chen and Reynolds, 2002]:

s(A,B) =

∑m
i=1 min (ni(A), ni(B))∑m

i=1 ni(A) +
∑m

i=1 ni(B)−
∑m

i=1 min (ni(A), ni(B))
(51)

where ni(A) represents the count of unique atom pairs indexed by i = 1, 2, . . . ,m

for molecule A. The Tanimoto dissimilarity is then d(A,B) = 1− s(A,B).

After determining the Tanimoto dissimilarity between each pair of metabo-

lites, the gamma hyperprior distribution for the shrinkage parameter λ can

be determined by linking the gamma distribution shape to the dissimilarity,

that is by setting sij = f(1−d(i, j)) where i, j index metabolites and f(x) is a

monotonic function. The conditional distribution of the shrinkage parameter is

then λij|Ω ∼ Gamma(1 + r, |ωij|+ sij). A plot of the relationship between the

structural similarity of two hypothetical metabolites and the expected value of

the shrinkage parameter is shown in Fig. 5.

To determine a graphical model (or a set of models of high probability)

given structural priors samples may be drawn from the posterior distribution

of p(Ω|X), using a Gibbs sampler as discussed in an earlier chapter and similar

to that introduced by Wang [Wang, 2012]. Using a scale mixture of normals

representation [West, 1987] and introducing the latent scale parameter matrix
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Figure 5. Theoretical relationship between the structural similarity of two

metabolites and the expected value of the shrinkage parameter λij. On the

vertical axis the expected value of the shrinkage parameter is shown. On the

horizontal axis the magnitude of the current estimate of a concentration matrix

parameter, |ω̃ij|, is shown. Finally, lines are colored by theoretical molecular

structure similarity between two metabolites.

τ , the unnormalized posterior distribution can be written as [Wang, 2012]:

p(Ω, τ |X,Λ) ∝ |Ω|n/2 exp

(
− tr

(
1

2
SΩ

))
∏
i<j

(
τ
−1/2
ij exp

(
−ω2

ij/(2τij)
)

exp

(
−1

2
λ2
ijτij

)) p∏
i=1

exp(−1

2
λijωij)1Ω∈M+

(52)

The block Gibbs sampler cycles through column-wise partitions of Ω, draw-

ing from the conditional distribution of a single column of the matrix Ω, con-

ditioned on the current values of the remaining columns.
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3 R package development

We developed an R package, BayesianGLasso, for implementing this and other

samplers for the Bayesian Graphical Lasso. The underlying sampler was writ-

ten in C++ using Rcpp [Eddelbuettel and François, 2011, Eddelbuettel, 2013]

and RcppArmadillo [Eddelbuettel and Sanderson, 2014] to make use of the Ar-

madillo [Sanderson and Curtin, 2016] linear algebra library. The sampler was

written in C++ as loops often execute faster in C++ than in R. In addition

to providing Gibbs sampling methods the R package developed by our group

includes classes for storing the Markov chains generated by the sampler along

with relevant parameters and hyperparameters, and methods for conducting

statistical inference over the simulated posterior distributions.

Rcpp [Eddelbuettel and François, 2011, Eddelbuettel, 2013] facilitates inte-

gration of C++ through an approachable API that also has many “syntactic

sugar” functions. In order to implement functions utilizing the C++ language,

a method for mapping R data structures to C data structures is required (al-

though the underlying R data structures at the low level ar C data structures).

Rcpp provides functions for mapping R data structures to C++ types and

C++ templates for returning the data structures utilizing in C++ to R [Ed-

delbuettel and François, 2011]. Many of the R to C++ type conversions are

also done implicitly when passing data between R and C++. “Syntactic sugar”

functions are C++ templated functions that can be used within C++ code,

but are similar to R functions [Eddelbuettel, 2013]. These functions include

logical operators (including logical operators for vector objects), many mathe-

matical functions, as well as random number generators. The random number

generation C++ templated functions are particularly useful in the context of

statistical programming and for generating methods for sampling for posterior

distributions.

The purpose of the Armadillo library is to provide linear algebra routines

for usage in C++ [Sanderson and Curtin, 2016]. Syntactically, matrix algebra
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and linear algebra functions and operations using Armadillo are similar to the

Matlab language. The Armadillo library utilizes routines from BLAS (Basic

Linear Algebra Subprograms) and LAPACK (Linear Algebra Package) libraries

as building blocks. Consequently, the efficiency of Armadillo routines depends

on the version of BLAS and LAPACK that are compiled against. Using the

Armadillo library within C++ code written so that the compiled code can be

sourced in R can be done utilizing RcppArmadillo [Eddelbuettel and Sanderson,

2014]. This R package provides bindings for the Armadillo and also provided

the ability to map R data structures to Armadillo types.

In the process of building the R package BayesianGLasso, many of the

functions of the package devtools [Wickham et al., 2018] were utilized. For ex-

ample, functions from this package were used for creating the package skeleton

and directories, for compiling and testing source code, and linking and testing

the installation and loading of the package on Unix and Windows platforms.

The package roxygen2 [Wickham et al., 2017] was utilized to facilitate “online”

package documentation. “Online” package documentation allows the developer

to use tags within R source code to generate R markdown documentation files.

4 Efficacy analysis via simulation studies

To evaluate the efficacy of the proposed method, we employed simulation stud-

ies. We sought to evaluate the relative performance of the adaptive Bayesian

Graphical Lasso (BGL) using informative priors versus (1) the adaptive Bayesian

Graphical Lasso using non-informative priors, and (2) the Bayesian Graphical

Lasso (non-adaptive). For the informative prior case, we further manipulated

the degree to which the priors were accurate relative to the partial correla-

tion structure utilized to generate the data. We evaluated the methods by

simulating both simple partial correlation structures as well as more complex

structures utilizing two simulation schemas. Under the first schema, a sim-

ple autoregressive (AR) process of order 1 was simulated for representing a
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linear biological process with decreasing structural similarity with increasing

process distance. Simulated structural similarity was taken to be determinis-

tically known, that is a structural similarity matrix was defined as: Σ = [σij]

where σij = ρ|i−j| . To simulate metabolite abundances, a random matrix was

sampled from the multivariate normal distribution N(0,Σ). In the accurate

informative prior case, the shrinkage hyperprior sij was defined as sij=ω
−1
ij ,

where ω−1
ij are the elements of Ω = Σ−1. After generating simulated datasets,

the adaptive BGL (with informative and non-informative priors) as well as the

non-adaptive BGL were utilized for estimating the concentration matrix and

corresponding graph topology. Given the simple dependence structure in the

AR(1) case, a measure of ground truth was available as the existence of edges

between simulated metabolites was known a priori. We evaluated the sensitiv-

ity, specificity, and F1 measure of each method for detecting the presence of

edges by utilizing the magnitude of the estimated concentration matrix entries:

|ωij|. In addition, we report the area under the receiver operating characteristic

curve for assessing each technique, which considers the range of possible fixed

cutoff values of |ωij| for estimating the presence or absence of edges. While

each technique draws shrinkage parameters from a Gamma distribution, the

shape and scale of each distribution depends both on empirical data and hy-

perparameters. We conducted shape and scale hyperparameter optimization

separately for each technique via a grid search over simulated datasets prior to

the evaluation of performance.

The simulation studies were conducted using Amazon Elastic Compute

Cloud (EC2) Linux instances. The EC2 instances were comprised of multiple

Intel Xeon 3.0 GHz processors running Ubuntu 16.04 (Xenial) 64 bit server

edition. The Intel Math Kernel library (MKL) was installed on each instance

providing BLAS and LAPACK libraries that were optimized for the processor

architecture. Significant performance improvement was observed when the

C++ files were compiled against the BLAS and LAPACK libraries provided

53



by Intel MKL relative to multi-threaded openBLAS and the standard BLAS

library that was included by default with the Ubuntu distribution.

5 Results of the simulation studies

Results from the simulation studies given an autoregressive covariance struc-

ture are shown in Table 1 and Figures 6-7. In Figure 6 a graphical model repre-

sentation of the underlying covariance structure is shown along with the graph-

ical model representations of the sample covariance matrix and the concentra-

tion matrices estimated by the multiple techniques evaluated in this study.

These figures were generated from a randomly sampled simulation study.
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Figure 6. See next page for caption
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Figure 6. True and estimated concentration matrix graphs for a ran-

domly selected AR(1) simulation study with p = 20 simulated random vari-

ates (metabolites) and a simulated sample size of n = 10. Graphs represent

the: (a) true concentration structure given an AR(1) covariance structure with

ρ = 0.95, (b) sample covariance matrix, (c) concentration matrix estimated

by the non-adaptive BGL, (d) concentration matrix estimated by the adaptive

BGL with non-informative priors, (e) concentration matrix estimated by the

adaptive BGL with chemical structure informative priors.

Results of the simulation studies for the autoregressive case are shown in

Figure 7 with numerical summaries provided in Table 3. GGM estimation

by the Bayesian Graphical Lasso (BGL) and Adaptive BGL exhibited similar

performance characteristics with respect to sensitivity, specificity, AUC, and

F1 measure. The performance of the chemical structure informative adaptive

BGL varied significantly based on the suitability of the informative prior distri-

bution for shrinkage parameters. In the good prior case in which it is assumed

that the structural similarity and data generating process were determinis-

tically linked, the structure adaptive BGL demonstrated significantly higher

sensitivity, specificity, AUC, and F1 measure than the other techniques. Con-

versely, in the poor prior case in which the relationship between the simulated

structural similarity and the data generating process was masked by gaussian

noise, average AUC and F1 measure were significantly lower for the structure

adaptive BGL than the remaining techniques.
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Table 3. Results of the AR(1) simulation studies. For each of the compared techniques, sensitivity, specificity, area under the receiver

operating characteristic curve (AUC), and F1 measure are reported. Reported values represent the sample mean and standard deviation

over the simulation study replicates

Technique Sensitivity Specificity AUC F1 Measure

Bayesian Graphical
Lasso (BGL)

0.6792± 0.073 0.9896± 0.007 0.9740± 0.014 0.7786± 0.054

Adaptive BGL 0.6702± 0.079 0.9936± 0.006 0.9793± 0.014 0.7827± 0.062
Chemical Structure
Adaptive BGL (Good
prior)

0.9894± 0.019 0.9997± 0.001 1.000± 0.000 0.9938± 0.011

Chemical Structure
Adaptive BGL (Poor
prior)

0.8175± 0.068 0.8763± 0.033 0.9148± 0.036 0.6448± 0.066
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Figure 7. Results of the AR(1) simulation studies. The comparative performance of the techniques (as the ability to detect an

edge, given an edge is truly present) is presented. Subfigure (a) shows a histogram of the observed area under the receiver operating

characteristic curve (AUC) values, while (b) shows the F1 measure.
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CHAPTER VII

A PLASMA INTERACTOME FOR STABLE HEART
DISEASE

1 Cohort

In order to determine changes in the plasma metabolome associated with

myocardial infarction (MI) characterized by thrombotic etiology versus non-

thrombotic etiology, DeFilippis and colleagues assembled a human cohort as

previously described [DeFilippis et al., 2015, DeFilippis et al., 2017, Trainor

et al., 2017]. Briefly, 80 human subjects presenting with suspected acute MI

or stable coronary artery disease (CAD) were enrolled. Utilizing a stringent

criteria based on clinical presentation, angiographic evidence, and histological

evidence, MI subjects were adjudicated as thrombotic MI or non-thrombotic

MI. Blood samples were collected at the time of acute presentation (presen-

tation to the coronary artery catheterization lab prior to procedures) and at

a follow-up evaluation approximately three months later. To estimate the

structure of a stable heart disease plasma interactome, we used the follow-up

evaluations from all available MI subjects as well as the evaluations from stable

CAD subjects. The analytical sample thus consisted of 47 whole blood samples

from human subjects with definitive heart disease who were not experiencing

an acute event at the time of sampling.

2 Plasma metabolomics

Details of the metabolite quantification have been described previously [Trainor

et al., 2017], but a brief overview is provided as follows. Plasma samples were
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prepared from whole blood and a recovery standard was added. Vigorous shak-

ing was applied utilizing a GenoGrinder 2000 (Glen Mills, Metuchen, NJ) and

methanol was added and to precipitate proteins. The extract containing small

molecules was divided into five aliquots, four of which were analyzed using dif-

ferent platforms while the remaining aliquot was reserved. Two aliquots were

analyzed by ultra-performance liquid chromatography-tandem mass spectrom-

etry (UPLC-MS/MS) with negative and positive ion mode electrospray ioniza-

tion (ESI). A third aliquot was also analyzed by UPLC-MS/MS with negative

ion mode ESI and a method optimized for polar metabolite detection. The

fourth aliquot was analyzed by gas chromatography-mass spectrometry (GC-

MS). 1,032 chemical features were detected utilizing the multiple platforms in

the analysis of the plasma samples. Of these, 590 compounds were identified

by matching to authentic standards based on retention index, mass to charge

ratio, and MS2 data; 73 were identified based on experimental data matched to

curated databases; and 369 could not be confidently identified. As the original

data dependent acquisition was conducted utilizing both acute event samples

and stable heart disease samples, metabolites not detected in the stable heart

disease samples were removed. Metabolites missing from greater than 70% of

the samples or without compound identification were also removed, resulting in

a final dataset with 522 metabolites across 47 samples. Minimum values were

then imputed for the remaining metabolite relative abundances with missing

data. As many of the metabolites exhibited approximately log-normal relative

abundance distributions, metabolite abundances were log-transformed. Fi-

nally, the data was mean centered so that each metabolites relative abundance

distribution was centered about zero.

3 Generation of chemical structure informed priors

A heatmap representation of the structural similarity between metabolites is

shown in Figure 8. This heatmap was constructed using agglomerative hi-
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erarchical clustering using Wards method and squared distances (with dis-

tance computed as dij = 1− sij, where sij is the structural similarity between

compounds). For illustrative purposes, the cluster containing cholate was re-

trieved from the root dendrogram by extracting the branch with height X,

as the structural-adaptive BGL subnetwork generated by cholate is considered

later. Considering clusters generated by branches with low merge heights (high

structural similarity), cholate was a member of a cluster with other closely re-

lated compounds such as deoxycholate, 3b-hydroxy-5-cholenoic acid, and gly-

cocholate. Considering the more inclusive cluster generated by the branch

at join height x, other members included many intermediates in progestagen,

androgen, glucocorticoid, and mineralocorticoid steroid metabolic pathways.

These steroid hormone metabolites were all members of a cluster with similar

within-cluster distances. Finally, at the same branch height that joined steroid

hormone and cholate metabolites, a branch consisting of tocopherols cluster

and squalene cluster was also joined.
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Figure 8. Heatmap showing the molecular structure similarity between the metabolites that were deteced and quantified from the

analysis of blood plasma from thrombotic MI, non-thrombotic MI, and stable CAD subjects. Subfigure (a) shows all metabolites,

subfigure (b) highlights the dendrogram branch that contains cholate.
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4 Gibbs sampling

To approximate the posterior distribution of p(Ω|X), a Markov Chain was

generated of length 1,000 with a 250 iteration burn-in period. From each

sample from the posterior distribution p(Ω|X), a partial correlation coefficient

matrix was computed, yielding a simulated posterior distribution for the matrix

of partial correlation coefficients.

Figure 9. Time series plots for the MCMC sampler for the shrinkage param-

eter λij and for the concentration matrix entry ωij for the following metabo-

lite pairs: (cholate, tyrosine), (cholate, cortisone), (cholate, glycochenodeoxy-

cholate).

Elements of the MCMC sampling iterations are presented in Figure 9. Con-

tinuing with the working example of the metabolite cholate, Markov chains
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are presented for the estimation of the concentration parameters for the pairs

(cholate, tyrosine), (cholate, cortisone), and (cholate, glychochenodeoxycholate).

These metabolites are highlighted as exemplars of metabolites with relatively

low, medium, and relatively high chemical structure similarity with cholate.

The time series of the MCMC sampling for the shrinkage parameter, λij,

demonstrated differences between the three pairs. Averaged across iterations,

more shrinkage was applied with decreasing chemical similarity between the

metabolite pairs. While the shrinkage parameter sample values for (cholate,

cortisone) tended to be significantly smaller than the sample values for (cholate,

cortisone), substantial overlap was observed in the posterior distribution of the

concentration parameters for the same pairs.

From the simulated posterior distribution of Ω, the posterior mean E(Ω|X)

was estimated after discarding burn in iterations. The posterior mean of the

distribution of partial correlation coefficients was also computed. The result-

ing plasma metabolite interactome inferred by the structure-adaptive Bayesian

Graphical Lasso is presented in Figure 10. This figure presents both the entire

graph representing the posterior mean partial correlations as well as the sub-

graph generated by considering the neighbors of cholate. For ease of viewing,

only edges for which |ρij| > 0.05 are plotted in the presentation of the full

graph.
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Figure 10. Graphical representation of the plasma metabolite interactome
estimated by the chemical structure adaptive Bayesian Graphical Lasso (BGL)
for stable heart disease. A simulated posterior distribution for the matrix of
partial correlation coefficients was determined from the simulated posterior
distribution of the concentration matrix Ω. Mean values of each partial cor-
relation coefficient were then determined and are represented as colored edges
(negative values represented in red, positive values in blue). Subfigure (A)
shows all metabolites in the interactome along with edges for which |ρ| > 0.05.
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Positive partial correlation coefficients were observed between cholic acid

the following other primary bile acids: glycocholic acid, chenodeoxycholic acid,

and glycochenodeoxycholic acid. Negative partial correlation coefficients were

observed between cholate and the following: taurocholic acid, taurodeoxycholic

acid, and taurochenodeoxycholic acid. In addition, the bile acid 7-Hoca and

the bile acid conjugate taurolithocholate 3-sulfate were first neighbors of cholic

acid. Multiple conjugated androsterones were observed to be first neighbors

of cholic acid as was the glucocorticoid cortisone and the steroidal alkaloid

solanidine. Other metabolites that were first neighbors of cholic acid included:

3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF), eugenol sulfate,

erythritol, 2,3-dihydroxyisolvalerate, threonate, quinate, pimelate, and azelate.

5 Discussion

Making inferences regarding how metabolic processes differ between pheno-

types is the ultimate goal of most metabolomics and systems biology studies.

Yet, unlike comparing the concentration or abundance of one metabolite across

two or more phenotypes, for which simple statistical tests such as t-tests,

Wilcoxon Rank-Sum tests, or multi-group analogues are readily available, a

statistical framework for determining if and how metabolic processes differ

between phenotypes remains elusive. Both strictly empirical methods (e.g.

correlation analyses) and a priori knowledge based approaches (e.g. path-

way enrichment analyses) suffer from substantial flaws. In terms of empirical

methods, the analysis of correlations (such as by the Pearson, Spearman or

biweight midcorrelation coefficient) reveals the marginal associations between

metabolites; however, these methods do not uncover the relationship between

a pair of metabolites conditional on the abundances of the remaining metabo-

lites. Gaussian graphical models have been proposed previously in the context

of metabolomics [Krumsiek et al., 2011] as an alternative, as GGMs can be

utilized to determine the partial or conditional relationship between metabo-
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lites. In their work Krumsiek et al. [Krumsiek et al., 2011] show that GGM

edges (or concentration matrix entries) estimated from the analysis of blood

serum samples from a large human cohort correspond to known metabolic

pathway interactions. Consistent with this, our simulation studies illustrate

the advantage of analyzing metabolite-metabolite interactions using the par-

tial correlation coefficients from a GGM as opposed to correlation networks.

In the case of an autoregressive correlation structure as might be observed

given a linear metabolic pathway, correlation networks exhibit extremely high

connectivity, and consequently could not be utilized to elucidate the order of

reactions. In contrast, we observe high sensitivity and specificity in detecting

the true edges using a Bayesian Graphical Lasso estimated GGM. While the

approach utilized by Krumsiek et al. [Krumsiek et al., 2011] was appropriate

for the analysis of their data, it would not be possible to apply this approach

in studies in which the sample size is smaller than the number of metabolites,

as is common in many metabolomics studies. Frequentist regularization meth-

ods represent a class of solutions for ensuring that the concentration matrix,

or equivalent GGM topology is estimable. In an implicit manner, frequentist

regularization methods for estimating GGMs place a higher a priori probabil-

ity on models with concentration matrix entries of smaller magnitude [Wang,

2012]. However, this implicit prior cannot incorporate a priori knowledge as

to whether some metabolites are more likely to be related than others.

In contrast to empirical methods, a priori knowledge based approaches such

as pathway enrichment analyses consider the relationships between metabolites

to be deterministically known which are then used to contextualize empirical

results. Previous work [Barupal et al., 2012, Barupal and Fiehn, 2017] has

highlighted that the coverage of metabolites detected in metabolomics studies

in commonly utilized metabolic pathway and reaction databases may be ex-

tremely low. For example, Barupal et al. [Barupal and Fiehn, 2017] observe

that given 385 metabolites identified from the plasma of non-obese diabetic
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(NOD) mice, only 135 metabolites (or 35.1%) could be mapped to KEGG

pathways [Kanehisa and Goto, 2000, Kanehisa et al., 2016]. To address this

problem, Barupal et al. [Barupal and Fiehn, 2017] propose an alternative

approach that utilizes both existing chemical ontological terms and chemical

similarity between metabolites to develop coherent categories of metabolites

for enrichment analyses. In the current work, we have sought a framework

for balancing the benefits of empiricism with the benefits of a priori knowledge

based approaches, while seeking to minimize the risks associated with both ap-

proaches. As opposed to considering metabolites as deterministically assigned

to fixed pathways, our approach assumes that metabolites that are linked by

biochemical reactions will exhibit overlap in local substructures. From this,

our approach generates prior distributions for shrinkage parameters for the es-

timation of Gaussian graphical models. The posterior distribution of GGM

parameters is thus proportional to the likelihood of the concentration ma-

trix parameters (or the partial correlations between metabolites) times the

prior probability of the concentration matrix parameters (which are linked to

the structural similarity between metabolites). Similar to the non-informative

BGL approach, this approach ensures that the concentration matrix is es-

timable via the Bayesian analog of regularization, however the regularization

is applied given the prior belief that stronger associations are a priori more

likely given structurally related compounds than unrelated compounds. While

we find better justification for using structural similarity to generate prior

probability distributions for shrinkage parameters in estimating a GGM, this

approach would generalize to the use of priors from metabolic pathway maps.

A previous work sought to estimate a GGM using 17 compounds quantified

by NMR from 24 microglia cell culture samples using priors determined from

KEGG [Peterson et al., 2013].

In addition to evaluation via simulation studies, we have applied the chemi-

cal structure adaptive BGL to generate a media-specific (blood plasma) metabo-
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lite interactome for stable heart disease. This model may serve as a reference

model for comparing how the probabilistic interactions between metabolites in

circulation change during acute disease events such as myocardial infarction or

unstable angina. From this model, we have observed probabilistic interactions

that are consistent with previous research in metabolism, as can be observed

by focusing on the metabolite cholate. Bile acids are the major catabolic in-

termediate of cholesterol [Russell, 2003]. Within mammals, the bile acid pool

consists of primary bile acids such as cholic acid and chenodeoxycholic acid

which are synthesized from cholesterol by enzymes expressed in hepatocytes,

as well as secondary bile acids that are synthesized from primary bile acids by

bacteria in the gut [Garca-Caaveras et al., 2012, Hofmann et al., 2010, Russell,

2003]. In addition to bile acids aiding in the digestion of nutrients in the gut,

bile acids also act as signaling molecules that have been shown to regulate glu-

cose and lipid metabolism [Ferrebee and Dawson, 2015, Khurana et al., 2011].

Given the substantial proportion of cholesterol that is converted to bile acids

leading to elimination, bile acid metabolism is linked to atherosclerosis [Meiss-

ner et al., 2013]. In addition bile acids as signaling molecules affect cardiac

[Desai et al., 2017, Rainer et al., 2013] and circulatory physiology [Khurana

et al., 2011] via direct effects such as taurodeoxycholic acid mediated vasodi-

lation [Khurana et al., 2005]. With respect to the current work, we observed

relatively strong partial correlation between cholic acid and other primary bile

acids. Additionally, partial correlations were observed between cholic acid

and steroid hormones that share cholesterol as a common precursor. Given

the importance of bile acids in cholesterol metabolism, atherosclerosis, cardiac

physiology and circulatory physiology, a reference model of the probabilistic

interactions of bile acids in circulation can help elucidate how acute disease

events impact bile acid metabolism.

As with any Bayesian approach, the choice of prior probability distribu-

tion has a direct influence on the posterior distribution of model parameters
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[Gelman et al., 2004]. In the current work, we have utilized informative priors

that are linked to chemical structure similarity. This represents a potential

limitation of the current work. Over the course of the simulation studies, we

observed, unsurprisingly, that by introducing random noise into the simulated

structural similarity the performance of the chemical structure adaptive BGL

deteriorated. Further, the performance of the technique given poor prior in-

formation was, on average, worse than the performance of techniques such as

the non-adaptive BGL that rely on non-informative priors. One element of

the chemical structure adaptive BGL is worth noting in this context. In our

proposed formulation, other monotonic functions for relating structural sim-

ilarity to the Gamma scale parameter may be employed, as well as different

shape and scale hyperparameters can be utilized. In this manner, the exper-

imenter can diminish or strengthen the degree to which structural similarity

impacts shrinkage. A second limitation of the current work is the choice of

a multivariate Gaussian distribution for representing the joint distribution of

metabolite abundances. While transformations in the stable heart disease data

were applied over each metabolite to reduce the degree of departure from nor-

mality, the underlying intensity data is not normally distributed. Further,

there are many cases in which approximate normality is not an achievable

aim. A metabolite that is only present in some samples (e.g. acetaminophen

metabolites that are present in some human subjects who have taken this med-

ication, but not others) is one such case. Following a missing value imputation

procedure, such a metabolite would exhibit a bimodal distribution that would

not be well described by a Gaussian model.

70



CHAPTER VIII

A BAYESIAN DIAGNOSTIC MODEL FOR
DIFFERENTIATING MI TYPE

1 Acute Myocardial Infarction

Acute Myocardial Infarction (AMI), which is an acute manifestation of coronary

heart disease, is defined by myocardial ischemia (exposure of cardiac myocytes

to oxygen deprivation) and necrosis (a form of cell death) [Trainor et al., 2018].

AMI may occur following atherosclerotic plaque disruption or other conditions

which cause demand ischemia [Thygesen et al., 2012, Arbab-Zadeh et al., 2012].

Irrespective of underlying cause, ischemia and necrosis are the common patho-

logical characteristics of all AMI. Thrombotic MI (MI results from spontaneous

atherosclerotic plaque disruption with the formation of an occluding coronary

thrombus) versus non-thrombotic MI represents an important etiological distinc-

tion [DeFilippis et al., 2017], as both types necessitate different treatment ap-

proaches [Thygesen et al., 2012]. A diagnosis of AMI can be substantiated by

blood-based diagnostic tests that measure isoforms of the protein troponin which

is released into the circulation following necrosis [Newby et al., 2012]. To date

a blood-based diagnostic test capable of discriminating between thrombotic and

non-thrombotic MI has not been developed, although it has been previously shown

that a metabolic signature may differentiate between the types [DeFilippis et al.,

2017, Trainor et al., 2018]. In the present work, we set out to develop a Bayesian

model for differentiating thrombotic MI from both non-thrombotic MI and sta-

ble coronary artery disease (CAD) using metabolites detected in blood plasma.

We regard plasma as a promising media for developing a non-invasive test as
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plasma contains hormones, enzymes, lipoproteins, and other metabolic intermedi-

ates found in circulation. As metabolite concentrations are a product of genetic

factors, environmental exposures, and the interaction between the two, sampling

metabolites may provide a more robust characterization of the state of an organism

than other approaches such as genomics.

2 Clinical cohort and samples

Towards the effort of developing a Bayesian diagnostic model, we utilized previ-

ously collected samples from a patient cohort that was recruited specifically for

contrasting thrombotic MI from multiple control phenotypes [DeFilippis et al.,

2015, DeFilippis et al., 2017]. This cohort was comprised of three phenotypic

groups of human subjects: thrombotic MI, non-thrombotic MI, and stable CAD.

In reference to the thrombotic MI group, both control groups (non-thrombotic

MI and stable CAD) served as procedural controls as all groups underwent a car-

diac catheterization procedure. The stable CAD group provides a stable disease

control as both thrombotic MI subjects and stable CAD subjects have underlying

coronary artery disease. Non-thrombotic MI subjects presented with myocardial

necrosis and thus the non-thrombotic MI group serves as an acute disease event

control.

Whole blood was collected shortly before cardiac catheterization from all study

subjects. Details of the sample handling, sample processing, separation by liquid

or gas chromatography, and mass spectrometry analysis for quantifying metabo-

lites are provided in Chapter VII Section 2.

3 Feature selection

A significant analytical challenge in developing a blood-based diagnostic test for

differentiating MI types is to determine a small set of metabolites that should be

included in the statistical model from a limited number of training samples. Specif-

ically, 1,032 chemical features (identified compounds or unknown compounds) were
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detected from 11 thrombotic MI, 12 non-thrombotic MI, and 15 stable CAD sub-

jects. To ensure that the statistical model is estimable from a small sample size,

and as building a targeted MRM assay or multiplexed ELISA assay can only

accommodate a small number of compounds, feature selection is a critical task.

While other dimension reduction techniques such as latent variable approaches

(e.g. Partial Least Squares models) that create new variables which are linear

combinations of metabolites would be amenable for reducing the number of co-

efficients to be estimated in a classification model, these approaches would not

reduce the number of metabolites needing to be quantified by future targeted as-

says. Consequently, we prioritized reducing the number of metabolites considered.

To determine a statistical classifier with five metabolites, 9.7× 1012 combinations

are possible. In order to search the space of possible models we employed a feature

selection technique that utilizes an evolutionary algorithm and seeks a consensus

solution over bootstrapped datasets as described in Trainor et al. [Trainor et al.,

2018]. In this work, small sets of metabolites were included in a multinomial

logit classifier. Each model represented an individual in a population. Genetic

fitness was determined as the likelihood of each individual model. These popula-

tions of models were allowed to evolve given evolutionarily inspired processes such

as birth, recombination, and death. Populations were grown over bootstrapped

datasets to increase diversity and reduce the correlation between models in the

populations. Finally, the frequency that an individual metabolite was included

in models within the final population after epochs of evolution was determined

yielding a variable importance score for each metabolite. A correlation plot illus-

trating the metabolites with greatest variable importance score using the described

technique is shown in Figure 11.

73



Figure 11. Metabolites with the highest variable importance score given the

feature selection method we employed in a previous work [Trainor et al., 2018].

The Pearson correlation coefficients between metabolite transformed and scaled

abundances are shown.
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4 Multinomial logistic regression model

A multinomial logistic regression model was assumed for determining the prob-

ability a sample from a clinical subject was member of the thrombotic MI, non-

thrombotic MI, or a stable CAD study group. The multinomial logistic regression

model is a generalized linear model and has the following link function and model

form:

ηij = log
πij
πiJ

= αj + xTi βj, (53)

where i indexes individual samples, j is the index of study groups, βj is a vector

of regression coefficients (with separate coefficients for each group), αj is a group

specific intercept term, and J represents the reference group. Given a specific value

for the link function, the probability a sample belongs to specific study group can

be computed as:

π̂ij =
exp η̂ij∑J
k=1 exp η̂ik

. (54)

The model can be stated as a Bayesian model with the following priors and

deterministic component:

αj ∼ N(0, 4)

βj ∼ N(0, 1)

log
πij
πiJ

= αj + xTi βj

Y ∼Multinom(π)

(55)

5 MCMC sampling of the posterior distribution

A MCMC sampler known as the “No-U-Turn” sampler was utilized to simulate the

posterior distribution of model parameters [Hoffman and Gelman, 2014]. This al-

gorithm is an extension of the Hamiltonian Monte Carlo algorithm. The Hamilto-

nian Monte Carlo algorithm is designed to model a target probability distribution

as a Hamiltonian system [Betancourt, 2017]. In such a system, a parameter vector
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θ is viewed as a particle in a D-dimensional space [Neal, 2011] by defining a vector

field that is aligned with the typical set (the region of a parameter space with both

significant volume and desnity) [Betancourt, 2017]. Defining such a vector field is

a complex task. While a vector field could be defined using the gradient of the

target probability distribution, this vector field would pull a particle towards the

mode of the distribution. By adding a momentum term, the vector field can be

defined so as to restrict a particle to maintaining the Hamiltonian at a fixed value.

The Hamiltonian Monte Carlo algorithm utilizes Metropolis-Hastings proposals

for updating both the momentum and position variables [Neal, 2011, Betancourt,

2017]. A critical aspect of Hamiltonian Monte Carlo sampling is determining the

optimal integration time for a particle to travel along a Hamiltonian path. One

approach to dynamically determining this parameter is the “No-U-Turn” termi-

nation criteria [Hoffman and Gelman, 2014, Betancourt, 2017]. Conceptually,

this criteria ensures that expansion of a trajectory continues to visit previously

unexplored neighborhoods while terminating the trajectory when it returns to

previously explored neighborhoods.

The “No-U-Turn” Hamiltonian MCMC sampler was implemented by others

in Stan, a probabilistic programming language [Carpenter et al., 2017]. Stan is

written in C++ and provides the “No-U-Turn” sampler, a Hamiltonian Monte

Carlo Sampler, a variational inference algorithm, and multiple optimizers. Stan

provides grammar and syntax for succinctly specifying Bayesian models; can de-

sign a sampler for the posterior distribution of model parameters; and using a

C++ compiler, Stan compiles the sampler to byte code. Additionally, Stan pro-

vides data structures for storing MCMC chains and model output. An R to Stan

interface, rstan [Stan Development Team, 2018], has been developed allowing an

end user to pass datasets between Stan and to return MCMC chains and model

results.
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6 Results

In order to simulate the posterior distribution of model parameters, four MCMC

chains were generated utilizing the No-U-Turn algorithm. An example MCMC

chain is illustrated in Figure 13(a). In this figure 2,000 of the 10,000 iterations of

the regression coefficient parameter for 3-hydroxypyridine sulfate from one of the

MCMC chains (chain #1) is shown. Additionally, this figure shows how the pos-

terior distribution is generated from the MCMC chain. In Figure 13(b), by-group

parameter histograms are shown for the multinomial logit model parameters cor-

responding to 3-hydroxypyridine sulfate. For this metabolite, the probability mass

of posterior coefficient estimates is centered slightly below zero for non-thrombotic

MI, while the center of the posterior distribution is above zero for thrombotic MI.

From the MCMC simulated posterior distribution, Bayesian credible intervals were

determined for each model parameter as shown in Figure 13.

As the objective of the present analysis was to develop a model capable of dis-

criminating between the three phenotypes utilizing only the information available

at the presentation of patients and in a non-invasive manner, we also considered

introducing clinical troponin values. Bayesian credible intervals are presented from

the posterior distribution given the introduction of troponin in Figure 14. Sub-

stantial qualitative changes in the credible intervals were not observed following

the introduction of troponin. To compare the models, the “Widely applicable in-

formation criterion” was utilized (see Table 4). A χ2 test on one degree of freedom

reveals that troponin did not lead to a significant improvement overall (p = 0.36).

Table 4. Evaluation of goodness of model fit with or without clinical troponin val-

ues. Inclusion of troponin did not result in a statistically meaningful improvement

in goodness of fit. WAIC: Widely applicable information criteria. SE: Standard

error.

Model WAIC SE
Without troponin 15.43 4.05
With troponin 14.60 3.72
Difference 0.83 0.87
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Figure 12. (a) MCMC chains for the by-group multinomial logit model parameters corresponding to 3-hydroxypyridine sulfate. (b)
Histogram showing the simulated posterior probability distribution for the same parameters.

78



Figure 13. 50% Bayesian credible intervals for the by-group multinomial logistic regression coefficients. The multinomial models did

not include clinical troponin assay values.
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Figure 14. 50% Bayesian credible intervals for the by-group multinomial logistic regression coefficients. The multinomial models did

include clinical troponin assay values.
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Given that the MCMC chains provide the joint posterior distribution of model

parameters, the correlation between parameter estimates can be evaluated. Two

parameter estimates were significantly correlated, both of which were for monoa-

cylglycerols [1-linoleoylglycerol (18:2)] and [2-linoleoylglycerol (18:2)]. This re-

lationship was further explored. Figure 15 shows a 3-dimensional scatterplot of

samples from the simulated posterior distribution. In the first plane, the parameter

estimates for both monoacylglycerols are shown, while the remaining axis shows

the log-posterior probability of the model with these parameterizations. Similarly,

Figure 16 shows the same slice of the posterior distribution with the log-posterior

probability axis removed and represented as a color instead. The relatively strong

negative correlation between the parameter estimates, without a systemic change

in the log-posterior probability suggests that these two monoacylglycerols modu-

late the probability of the phenotypes in a similar way.
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Figure 15. 3-dimensional scatterplot of MCMC samples for both linoleoylglyc-

erols (18:2) with the acyl side chain in different positions (in the same plane), as

well as the log-posterior probability of each sampled model.
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Figure 16. Scatterplot of MCMC samples for both linoleoylglycerols (18:2)

with the acyl side chain in different positions colored by log-posterior probability.

MCMC sampled models with the greatest log-posterior probability are shown in

red, while models with lesser log-posterior probability are shown in blue.

From the simulated posterior distribution of models, a predictive phenotype

probability distribution can be generated for each human subject. The MCMC

chain for the phenotype probabilities of a selected clinical subject (#14) is pre-

sented in Figure 17. The maximum a posteriori) group label from both models

evaluated properly classified this subject as a stable CAD subject, however in the

leave-one-out cross-validation estimation, this subject misclassified as a Throm-

botic MI subject. In the models (not-LOOCV estimates), a substantial probability

mass was also placed on the posterior probability that this subject was a Non-

Thrombotic MI.
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Figure 17. A segment of the first MCMC chain for simulating the posterior dis-

tribution of group membership probability estimates for a specific human subject.

Figure 18. Histograms showing the simulated posterior distribution of group

membership probability estimates for a specific human subject.

The LOOCV-estimated confusion matrix is shown in Table 5 for the model fit

by maximum likelihood estimation (MLE), Table 6 for the Bayesian model with-

out clinical troponin values, and Table 7 for the Bayesian model with clinical
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troponin values. For the Bayesian models, group membership was determined by

maximum a posteriori estimates. Finally, the raw probability estimates for each

human subject from the Bayesian models are shown in Table 8. The LOOCV-

estimated sensitivity for detecting and discriminating thrombotic MI was 90.9%

for the Bayesian models with and without clinical troponin values. The sensitiv-

ity for the model fit by MLE was 81.8%. Without clinical troponin values, the

estimated specificity for the Bayesian model was 96.3%, while with clinical tro-

ponin values included the estimated specificity improved to 100.0%. The model

fit by MLE without clinical troponin values had a specificity of 92.6%. In terms

of the detection and discrimination of non-thrombotic MI, the LOOCV-estimated

sensitivity was 83.3% for both Bayesian models, and the estimated specificity was

88.5% for both. In terms of the misclassification rate the model estimated by

MLE had a rate of 21.1%, while both Bayesian models had a rate of 13.2%. Two

stable CAD subjects were classified by both Bayesian models as non-thrombotic

MI subjects. Both of these subjects had relatively small estimated probabilities

for thrombotic MI. Two non-thrombotic MI subjects were misclassified by both

models. The first (subject #26) was classified as stable CAD by both models.

The second subject (#27) was first classified as thrombotic MI (model without

clinical troponin values), and then classified as stable CAD (model with clinical

troponin values). This subject appeared to have nearly equal (≈ 30%) probability

mass placed over all three study groups. Finally, one thrombotic MI subject was

classified as non-thrombotic MI by both models, however the difference between

probability mass for thrombotic MI and non-thrombotic MI was slight (46.3% vs

39.0% in the model without clinical troponin values; 44.8% vs 36.0% for the model

with clinical troponin values).
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Table 5. Leave-one-out Cross-validation (LOOCV) estimated confusion matrix

for the multinomial logistic regression model without clinical troponin values fit

by Maximum Likelihood Estimation (MLE). The leftmost column shows the true

group membership of the human subjects, while the remaining columns show the

predicted probabilities (maximum a posteriori).

Predicted
Group sCAD Thrombotic MI Non-Thrombotic MI
sCAD 13 0 2
Thrombotic MI 1 9 1
Non-Thrombotic MI 2 2 8

Table 6. Leave-one-out Cross-validation (LOOCV) estimated confusion ma-

trix for Bayesian multinomial logistic regression model without clinical troponin

values. The leftmost column shows the true group membership of the human sub-

jects, while the remaining columns show the predicted probabilities (maximum a

posteriori).

Predicted
Group sCAD Thrombotic MI Non-Thrombotic MI
sCAD 13 0 2
Thrombotic MI 0 10 1
Non-Thrombotic MI 1 1 10

Table 7. Leave-one-out Cross-validation (LOOCV) estimated confusion matrix

for Bayesian multinomial logistic regression model with clinical troponin values.

The leftmost column shows the true group membership of the human subjects,

while the remaining columns show the predicted probabilities (maximum a poste-

riori).

Predicted
Group sCAD Thrombotic MI Non-Thrombotic MI
sCAD 13 0 2
Thrombotic MI 0 10 1
Non-Thrombotic MI 2 0 10
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Table 8. Leave-one-out cross-validation (LOOCV) estimated group probabilities

from the Bayesian multinomial logistic regression models for each of human subject

in the cohort. M1: Model without clinical troponin values. M2: Model with

clinical troponin values. Blue-to-red continuous scale ranks estimated probabilities

from low-to-high.

7 Discussion

The most notable conclusion from the construction of a Bayesian multinomial

logistic regression model is that there is strong evidence that thrombotic MI, non-

thrombotic MI, and stable CAD can be discriminated by a non-invasive method

using a small set of circulating metabolites. High estimated sensitivity and speci-
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ficity was observed for detecting and discriminating thrombotic MI from both

non-thrombotic MI and stable CAD. The estimated sensitivity and specificity for

detecting and discriminating non-thrombotic MI was lower for non-thrombotic

MI. Given the heterogeneity of this etiology of acute MI, this observation is not

surprising.

There are many advantages from utilizing a Bayesian model estimation as in

this context. First, given a relatively small sample size, maximum likelihood esti-

mation for the multinomial logistic model may not allow for convex optimization.

The specification of prior distributions with significant probability mass near zero

for regression coefficients allows for the encouragement of sparsity. In addition,

complete or quasi-complete separation of classes can occur utilizing maximum

likelihood estimation, leading to unstable estimates for regression coefficients. As

before, by specifying prior distributions for regression parameters that place sig-

nificant probability mass near zero, the problem of complete or quasi-separation

can be avoided. In general, a Bayesian model with appropriate priors will ensure

that the resulting model has not overfit the training data with poor generalizabil-

ity. A benefit of the Bayesian regression paradigm is the treatment of regression

coefficients as random variables. In the Bayesian paradigm, variables that may

contribute to the separation of groups, but for which there is much uncertainty can

be retained in the model without adversely impacting model performance. Vari-

ables with correlated parameter estimates can be determined via the interrogation

of samples from the posterior distribution of model coefficients. In our case, the

regression coefficients for 1-linoleoylglycerol (18:2) and 2-linoleoylglycerol (18:2)

were observed to be highly correlated in MCMC samples. This is not surprising

given that these metabolites have the same glycerol moiety, and the same acyl side

chain (although it is in different positions). Not surprisingly, the high degree of

structural similarity is accompanied by a high degree of correlation in the abun-

dance of each metabolite, and in the estimates of multinomial logistic regression

parameters for each.
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The frequentist model estimated by MLE exhibited inferior performance than

either Bayesian model with respect to misclassification rate / accuracy, sensitivity,

and specificity.
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CHAPTER IX

BAYESIAN APPROACHES FOR COMPOUND
IDENTIFICATION GIVEN LC-MS DATA

1 The challenge of identifying compounds from mass spectrometry

data

The identification of compounds from chromatography-coupled mass spectrome-

try experiments remains a great challenge of untargeted metabolomics [Domingo-

Almenara et al., 2017, Uppal et al., 2017, Uppal et al., 2016, Dunn et al., 2012].

Many pieces of information may be available to assist in determining the chemical

identity of features detected in such experiments including [Dunn et al., 2012]: the

mass-to-charge ratio (m/z) of the ions that have been observed, the fragmentation

pattern of either parent or fragment ions, isotopic distribution (e.g. the relative

abundance of isotopes can be evaluated by comparing the ratio of 13C to 12C),

the observed elution times from separation such as liquid or gas chromatography,

and peak shape. Which of these classes of information should be used to identify

compounds is largely analytical platform dependent. A further complication of

assigning compound identity to the features observed in an experiment is that

each compound that elutes from a column and is ionized (such as by electrospray

ionization) generates multiple types of ions and adduct ions. In GC-MS analy-

ses the derivatization process is not a uniform process [Halket and Zaikin, 2003].

When electrospray ionization (ESI) is utilized to ionize injected molecules, mul-

tiple types of adducted ions may be formed (e.g. sodium adducts) in pronated,

non-pronated, or de-pronated form dependent on ESI mode [Dunn et al., 2012].

Additionally, other isotopologue ions may be present [Kuhl et al., 2011].
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A system for representing the level of confidence in a compound annotation has

been proposed previously as part of the Metabolomics Standards Initiative (MSI)

[Sumner et al., 2007]. The first level (Level 1) represents the most confident type

of identification and requires matching two “orthogonal” properties of an observed

feature with the properties observed from the analysis of an authentic standard

under identical analytical conditions. An example of two orthogonal properties

for an LC-MS analysis would be observed m/z and retention time or retention

index. In an LC-MS/MS experiment observed m/z and MS/MS fragmentation

pattern compared to an authentic standard analyzed under identical analytical

condition would constitute a Level 1 identification. A Level 2 identification also

requires matching on “orthogonal” properties, but in comparison to previously

archived data (e.g. databases such as the NIST libraries) as opposed to authentic

standards analyzed under identical conditions). A Level 3 identification is more

general and requires association of the properties of an observed feature to those of

classes of biochemicals as opposed to specific compounds. This framework asserts

in a general way that metabolite annotation is a probabilistic process, in which

the likelihood of a match from mass feature to compound label depends on both

a priori knowledge and empirical data. Consequently, a Bayesian approach to

compound identification is sensible. In this chapter we describe previous Bayesian

approaches for compound identification utilizing LC-MS data. Currently, the an-

notation of mass features in LC-MS(n) data is predominantly conducted using

either matching experimental features to authentic standards analyzed under sim-

ilar conditions, or by using retention time, m/z, and MS2 (or MS[n]) spectra [Daly

et al., 2014]. However, there is great utility in a probabilistic method that does not

rely on authentic standards (as it is costly to acquire a comprehensive library of

standards) and spectral libraries are somewhat incomplete–although there is rapid

progress in their growth with such databases as Metlin [Smith et al., 2005, Taut-

enhahn et al., 2012, Guijas et al., 2018]. In this section, we do not detail Bayesian

approaches for compound ID for MS(n) data, as we are unaware of such efforts to
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date. Given LC-MS data we describe the assignment of compound labels to m/z

features as peak annotation.

2 Utilizing feasible metabolic reactions to generate conditional distri-

butions

Rogers, et al. [Rogers et al., 2009] introduce the use of prior information for peak

annotation in terms of conditional probabilities (although they do not explicitly

label it as such). They note that an intense monoisotopic peak for a specific

compound should be accompanied by isotopic peaks at specific m/z shifts and with

specific intensity ratios. For example the natural abundance ratios of 12C and 13C

may be known in advance. Consequently, the annotation of a compound label to

a m/z peak is more likely if the isotopic peaks are also present and at predictable

abundance ratios, than a compound label assignment to a m/z peak that would

be “missing” relevant isotopic peaks. In addition, Rogers et al. invoke previous

work [Breitling et al., 2006] that argues that there is only a small set of possible

chemical reactions with a specific compound as an intermediate; consequently the

presence of a specific intermediate in a sample should alter the prior (conditional)

belief of the likelihood of a limited number of products that could be generated

with that intermediate as a substrate being present in the sample.

Rogers et al. introduce an mass measurement likelihood using the following

formulation:

p(xm|zcm = 1, yc, γ) = N

(
xm
yc
|1, γ−1

)
. (56)

In this model, the authors use xm to represent the observed mass of the mth m/z

peak, zcm is a random variable for the assignment of the cth molecular formula

to the mth peak, yc to represent a theoretical mass of the cth molecular formula,

and γ for the precision of the mass spectrometer. We streamline the notation by
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introducing the following notation:

mi := a mass feature (peak) indexed by integer i, i ∈ {1, 2, . . . , n}

xmi
:= measured m/z for mass feature mi

tmi
:= retention time for mass feature mi

rmi
:= vector of isotope ratios associated with a mass feature mi

`j := a possible compound label for a mass feature j ∈ {1, 2, . . . , J}

x`j := monoisotopic mass of a compound with label `j

Ak := a possible adduct k ∈ {1, 2, . . . , K}

I := Indicator matrix with mass features as rows and labels as columns

The mass error model described by Rogers et al. is then:

xmi

x`j

∣∣∣∣ {I(mi = `j) = 1} ∼ N
(
1, γ−1

)
. (57)

Rogers et al. argue that the conditional probabilities of formula assignments

should be predicated on current assignments, and how pairs of molecules can be

related by chemical reactions. They present the following form for the conditional

probability (rewritten using our notation):

p(I(mi = `j) = 1|I, δ) =
βji + δ

Nδ +
∑

j′i βj′i
(58)

where:

βji = Wj·I1−Wj·I·i, (59)

with W as an indicator matrix that represents possible biochemical reactions,

with dim(W) = N × N , and δ is a hyperparameter. Given this formulation βji

represents a count of the number of biochemical transformations from compound

labels currently assigned to result in a new annotation. Rogers et al. then state

the discrete conditional distribution of possible compound labels for a mass feature

as:

p

(
xmi

x`j

)
∝ N(1, γ−1)

βji + δ

Nδ +
∑

j′i βj′i
. (60)
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Rogers et al. in their supplemental material specify a Dirichlet-categorical prior

for each set of compounds that could be generated by chemical reactions:

p(β|δ) =
Γ(
∑

j δj)
∏

j Γ(βji + δj)

Γ(
∑

j βji + δj)
∏

j Γ(δj)
. (61)

Although not explicitly stated, the posterior probability distribution of assignment

in the form Posterior ∝ Likelihood× Prior described in Rogers et al. is:

p(I|X) ∝ p(X|I)p(I)

p(I|X) ∝ p(X|I)p(β|δ)

(62)

From this a Gibbs sampler was formulated for simulating the posterior distribution

of compound labels for each mass feature.

3 Utilizing isotope patterns in conditional distributions

Rogers et al. [Rogers et al., 2009] additionally discuss a method for incorporat-

ing prior information regarding monoisotopic-isotopic peak presence and intensity

information. The additional likelihood term described is presented here (in our

notation), although this formulation does not provide sufficient detail for under-

standing the process of incorporating this likelihood term:

p(I(mi = `j) = 1|ωji, δ) =
ωj′i + δ

Nδ +
∑

j′ ωj′i
. (63)

In this equation, ωj′i is said to represent the number of possible mass features (al-

ready assigned a compound label) that generate an isotopic peak mi, or possible

isotopic peaks that could be associated with a monoisotopic peak. Roger’s et al.

describe using heuristic rules such as a relative tolerance for matching a hypothet-

ical isotope-to-monoisotope intensity ratio versus theoretical expectation.

4 “ProbMetab”: Formalization and integration of pathway databases

Silva et al. [Silva et al., 2014] built on the ideas elaborated in [Rogers et al., 2009].

First, Silva et al. restate the conditional probability of compound label to mass

feature assignment in a more general form. Before we introduce this conditional
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probability, we present the full posterior distribution (which is not stated in their

work) in our notation (with Y representing the vector of all empirically observed

attributes such as m/z, retention time, and isotope ratios):

p(I|Y) ∝ p(Y|I)p(I)

p(I|Y) ∝ pN(Y|I) · prt(Y|I) · piso(Y|I) · p(I),

(64)

where pN(·) is an error model for the measurement of m/z, prt(·) is a retention time

/ index error model, piso(·) is an isotopic distribution error model, and p(I) is the

prior probability of compound label to mass feature assignments. The probability

distribution of compound labels for a specific mass feature, conditioned on other

assignments, is then:

p(I(mi = `j)|I(−mi)) ∝ pN(xmi
|I(mi = `j)) · prt(tmi

|I(−mi)) · piso(rmi
|I(−mi)) · p(I(−mi)).

(65)

While Rogers et al. [Rogers et al., 2009] had principally focused on the likeli-

hood contribution from m/z measurement error, Silva et al. [Silva et al., 2014]

demonstrate how other experimental attributes can be incorporated. While these

likelihood terms are mentioned, it is not clear from the authors’ description how

these models should be formulated. The authors do describe a reformulation of

the m/z measurement error model. Specifically they state the following (in our

notation):

pN(xmi
|I(mi = `j), w) ∝ I(x`j ∈ Nw(xmi

))

(
1− Φ

( |xmi
/x`j − 1| − µw

σw

))
,

(66)

where Nε(x) is a neighborhood about the point x with radius ε. The inclusion of

the indicator function with radius parameter w was designed to incorporate the

belief that beyond a fixed m/z error tolerance, a compound label to mass feature

assignment should not have positive probability. As with the Rogers et al. [Rogers

et al., 2009] work, Silva et al. [Silva et al., 2014] use the conditional probability

distribution to develop a Gibbs sampler. The author’s implement their sampler in

the R package ProbMetab, which is available from the authors but not via CRAN.
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5 Infinite Gaussian mixture models

Before introducing an advancement in Bayesian approaches for LC-MS feature

annotation we discuss the Infinite Gaussian Mixture model. We begin with a

description of the Dirichlet process mixture model [Ferguson, 1973]:

p(y|µ1, µ2, . . . , µk, s1, s2, . . . , sk, π1, π2, . . . , πk) =
k∑
j=1

πjN(µj, s
−1
j ). (67)

In this model, mixture components are indexed by j = {1, 2, . . . , k}, with com-

ponent means, µj and precisions sj. Finally the mixing proportions are πj.

The priors for the component means can be specified as p(µj|λ) ∼ N(λ, r−1,

where in the classically described Dirichlet process mixture model, the priors for

the component means are relatively diffuse, with p(λ) ∼ N(µy, σ
2
y) and p(r) ∼

Gamma(1, σ−2
y ). As for the precision parameters, Gamma priors are also specified,

that is: p(sj|β, w) ∼ Gamma(β, w−1), with hyperpriors p(β−1) ∼ Gamma(1, 1)

and p(w) ∼ Gamma(1, σ2
y). While the previous parameters are involved in mod-

eling cluster attibutes (means, precisions), priors are also required for the mixing

proportions and “ocupation numbers” (number of observations in each cluster).

The mixing proportions are assumed to follow a Dirichlet distribution, that is

p(π1, π2, . . . , πk|α) ∼ Dirichlet(α/k, α/k, . . . , α/k) where α/k represents a con-

centration parameter. Through integration and algebraeic manipulation, [Ras-

mussen, 1999] showed that the prior probability of cluster indicators, conditioned

on the concentration parameters is:

p(c1, c2, . . . , ck|α) =
Γ(α)

Γ(n+ α)

k∏
j=1

Γ(nj + α/k)

Γ(α/k)
. (68)

From this, a conditional probability for a fixed cluster indicator is:

p(ci = j|c(−i), α) =
n(−i),j + α/k

n− 1 + α
. (69)

By taking the limit as the number of classes goes to infinity, that is k → ∞,

[Rasmussen, 1999] derived the posterior probabilities for indicators, conditioned

on the remaining indicators:

p(ci = j|c(−i), α)p(yi|µj, sj, c(−i)) ∝
n(−i),j

n− 1 + α

√
sj exp(−sj(yi − µj)2/2). (70)
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6 Bayesian clustering of mass features

The work of Daly [Daly et al., 2014], et al. from the same group as [Rogers et al.,

2009], represents a significant paradigm shift in Bayesian approaches for LC-MS

mass feature annotation. The novel idea described in that work is to consider

both monoisotopic peaks, isotopic peaks, and adduct peaks as being members of a

cluster. Daly et al. [Daly et al., 2014], use the notation dn = (xn, wn, rn) to refer

to the experimental attributes of a single mass feature, where xn corresponds to

the m/z value, wn corresponds to the intensity of the peak at that m/z value, and

rn refers to the retention time of the feature. They then index the clusters by k

and define an indicator variable, vnkai for cluster membership. The subscripts of

this indicator variable represent the index of the mass feature, n; the cluster, k;

the adduct, a; and the isotope i. The number of peaks that are in a cluster is then

ck where:

cnk =
A∑
a=1

I∑
i=1

vnkai (71)

although in the Daly article [Daly et al., 2014], it appears this quantity is labeled

differently. In terms of the data likelihood terms, a mass term, an intensity term,

and a retention time term are stated.

The MetAssign algorithm proceeds by first initializing random clustering. This

clustering assumes an infinite Gaussian mixture model, as discussed above. For

each cluster, mass features are assigned labels and posterior probabilities for cur-

rent cluster membership and data likelihoods are computed. At this point the

probability of new proposals is then computed. If a proposal is accepted then

metabolite, adduct, and isotope data likelihoods are re-evaluated. This procedure

can proceed until labels of mass feature to cluster membership and compound

labels stabilize. The likelihoods utilized are described bellow.

The mass term supposes the following likelihood:

p(xn|vnkai = 1) = N(log(xn)|log(yφkai), ζ
−1). (72)
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This assumes that on a log-scale the difference between the observed m/z and

the expected given the compound, adduct, and isotope assignment to the peak

is normally distributed with an instrument-specific precision parameter ζ. The

intensity likelihood is much more involved and is stated as:

p(wn|vnkai = 1) = N(βφkaiλ∗, κ
−1 + β2

φkai
κ−1
∗ ). (73)

According to the authors [Daly et al., 2014], this arises from considering indi-

vidual peak intensities given assignments as wk ∼ N(βφkaiλka, κ
−1), where βφkai

represents the expected proportion of the total intensity considering isotope dis-

tributions and κ is a precision parameter. They then place a prior distribution for

the total intensity, that is: λka ∼ N(λ0, κ
−1
0 ). For the retention time likelihood it

is assumed that:

p(rn|vnkai = 1) = N(rn|µ∗, δ−1
∗ + γ−1). (74)

where µ∗ is drawn from a normal distribution with mean set to the mean of the

retention times observed and γ−1 is a hyper parameter specified by the authors.

The authors [Daly et al., 2014] evaluate their method using data from a mixture

of chemical standards. By utilizing a database of decoy compounds, the authors

evaluate the precision (positive predictive value) and recall (sensitivity) of their

method especially in comparison to mzMatch and CAMERA [Kuhl et al., 2011],

and observe substantial improvement over these methods.
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CHAPTER X

CONCLUSION, DISCUSSION, AND FUTURE DIRECTIONS

1 Summary

Collectively the current work covers three subtopics in the field of Metabolomics:

(1) making higher order inferences in metabolomics using untargeted mass spec-

trometry data, (2) developing diagnostic models for discriminating disease pheno-

types, and (3) determining the identity of compounds in LC-MS data. For the first

two subtopics we have introduced novel methodology, while we have only provided

a review of a class of methods in the third. What unites these three disparate aims

into a cohesive work is the use of Bayesian statistical methodology for integrating

extra-experimental scientific knowledge for solving high-dimensional challenges in

metabolomics.

To introduce our novel methodology for making higher order inferences in

metabolomics (Chapter VI) and to apply this methodology to characterizing the

probabilistic interaction of metabolites given stable heart disease (Chapter VII)

we provided some preliminary background. In Chapter II we provided a cursory

overview of metabolism, the link between metabolism and multiple diseases, and

the use of the techniques of metabolomics for studying metabolism and human

diseases. In Chapter III we provided an introduction to Bayesian reasoning and in

Chapter IV we introduced Gaussian Graphical Models (GGMs) and both frequen-

tist and Bayesian approaches for the estimation of such models. These prelimi-

naries were necessary foundations for developing our novel methodology for using

molecular structure to generate informative priors for estimating GGMs for mak-

ing higher order inferences in metabolomics. This section culminated in a plasma
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metabolite interactome for stable heart disease (Chapter VII). In this section we

highlighted how higher order inferences can be made by focusing on the primary

bile acid cholate. We focused on cholate as dysregulated bile acid metabolism is

a component of atherosclerosis, and thus heart disease. Interestingly, we observed

that our methodology balanced both the molecular structure prior information as

well as the empirical data. Relatively low penalization of edges between cholate

and steroids hormones, and cholate and secondary bile acids was observed, how-

ever the posterior distribution showed higher posterior probability of strong edges

between cholate and secondary bile acids.

In the second part of the current work, we focused on developing a statisti-

cal classifier capable of discriminating between three phenotypes: stable coronary

artery disease (CAD), non-thrombotic myocardial infarction (MI), and thrombotic

MI (Chapter VIII). We constructed two models, the first based on metabolite

abundances only, and the second with the inclusion of clinical troponin values

as these values would be available at presentation as well. We observed that a

Bayesian multinomial logistic regression model demonstrated positive performance

characteristics in discriminating between the phenotypes. Both Bayesian models

performed better than the frequentist model with the same variables fit by maxi-

mum likelihood estimation. We hypothesize that the superior performance of the

Bayesian models is due to a reduced likelihood of overfitting.

In the final section (Chapter IX) we discuss Bayesian approaches for compound

identification given LC-MS data. The first two methods that we discussed utilized

a Dirichlet-categorical prior over possible compound label to mass feature assign-

ments. The third method relied instead on Gaussian mixture modeling over mass

features. While only three Bayesian approaches for compound identification have

been developed to date (to our knowledge), these methods have increased in so-

phistication over time. The first method described primarily included a likelihood

term based in the measurement error of mass-to-charge ratio (although retention

time error and isotope profile error were discussed). The prior probability dis-
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tribution utilized possible transformations that could account for the dependence

between compounds observed. The next method was largely similar, with a more

complex measurement error model and the ability to use metabolite databases (e.g.

KEGG) for generating priors. Finally, the third method recast the identification

problem as a clustering followed by identification problem, which is sensible given

that the mass features occur in clusters comprised of one compound in multiple

adduct / ionic forms.

2 Future directions: Bayesian interactome models

Through the development and utilization of our novel methodology for estimat-

ing metabolite interactomes future directions have been suggested which will be

pursued. First, the prior distributions of the concentration matrix parameters are

continuous with all real numbers as the support. As a result, the posterior proba-

bility density for each concentration matrix parameter has the same support and

the probability of a concentration matrix parameter being equal to zero is zero.

Consequently, edge selection, or the process of setting some concentration matrix

parameters equal to zero must happen after model selection. This suggests that

a hierarchical model or a model that allows probability mass at zero would be

beneficial. In the first case, a hierarchical model could include a Bernoulli compo-

nent that models whether an edge between metabolites is present or absent, with

a continuous prior distribution given that an edge is present. In the second case, a

“slab and spike” prior could be utilized, which has a point mass at zero and more

conventional continuous tails.

3 Future directions: Diagnostic modeling

The classification model described in the current work is not yet applicable for

use in clinical practice. Ignoring, for the sake of discussion, the regulatory ap-

proval process, multiple steps remain in furthering this methodology. Firstly, the

metabolite abundances described in the current work are relative abundances from
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a data dependent acquisition. Consequently, the measurement scale from the cur-

rent relative abundances would not be preserved in future measurements of these

same metabolites. Further, the relationship between relative abundances and con-

centrations are non-linear and depend greatly on the analytical platform. As a

result, we applied for, and received a grant to develop, in collaboration with Dr.

Tong Shen and Dr. Oliver Fiehn of the University of California at Davis a tar-

geted analysis of the metabolites that were utilized in this analysis (as well other

metabolites observed to be important. The development of this multiple reaction

monitoring assay with stable isotope dilution for targeted absolute quantification

has been completed and currently the same set of human samples as discussed

in the current work are being analyzed. Additionally, a data-dependent LC-MS

proteomics analysis has been conducted by Dr. Qin Fu and Dr. Jennifer Van Eyk

at Cedars-Sinai and Dr. Scott Peterman at Thermo Fisher Scientific; we are cur-

rently analyzing the results of this data acquisition. The acquisition of proteomics

data from the same sample will allow for the development of a classifier model

utilizing both proteomic and metabolite abundances.

In terms of statistical methodology, the set of metabolites that were included

in the multinomial logistic regression models were drawn from previous work.

An important future direction that we are currently pursuing is conducting the

feature selection and model fitting process in conjunction (or at least using the

same general methodological approach). Specifically, we are evaluating utilizing

different prior probability distributions such as the Horseshoe prior and the slab

and spike prior for conducting feature selection.

An important next step in furthering a classifier capable of detecting and dis-

criminating myocardial infarction types will be the validation of this classifier in

independent cohorts. To date, 168 human subjects presenting with acute coronary

syndrome and 27 subjects with stable coronary artery disease have been enrolled

in a new cohort by the Atherosclerosis / Atherothrombosis Research Laboratory

(AARL) at the University of Louisville towards this and other aims. An evaluation
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of the performance characteristics of the classifier developed utilizing the cohort

described in the current work will take place in this new cohort. Finally, while this

validation is an important step, the classifier should also be evaluated in a cohort

of “all comers” presenting to the emergency department to evaluate the sensitivity

and specificity for detecting and discriminating MI type in a more general setting.

For example, while the cohort described in the current work has subjects with

stable coronary artery disease and MI, an “all comers” cohort would also have pa-

tients presenting with symptoms such as chest pain that may be consistent with

MI, but who are not experiencing an MI. Finally, once a diagnostic model (or

models) have been fully developed and validated in independent cohorts, the de-

velopment of a single test capable of being conducted within a clinical laboratory

can occur.
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APPENDIX A: ACRONYMS UTILIZED

AARL: Atherosclerosis / Atherothrombosis Research Laboratory
APCI: Atmospheric Pressure Chemical Ionization
ATP: Adenosine triphosphate
AUC: Area Under the receiving operating characteristic Curve
BCAA: Branch chain amino acid
BGL: Bayesian Graphical Lasso
BLAS: Basic Linear Algebra Subprograms
CAD: Coronary Artery Disease
cAMP: Cyclic adenosine monophosphate
CASS: Chemically Aware Substructure Search algorithm
CE: Capillary Electrophoresis
ChemRICH: Chemical Similarity Enrichment Analysis
CI: Confidence Interval / Credible Interval
CoA: Coenzyme A
DA: Differentially Abundant
DI: Direct Injection
EC2: Elastic Compute Cloud
EI: Electron Ionization
ELISA: Enzyme-Linked Immunosorbent Assay
eQTL: Expression Quantitative Trait Loci
ESI: Electrospray Ionization
EST: Expressed Sequence Tag
FADH: Flavin adenine dinucleotide
FT-ICR: Fourier Transform Ion Cyclon Resonance
GC: Gas Chromatography
GGM: Gaussian Graphical Model
GSEA: Gene Set Enrichment Analysis
GTP: Guanosine triphosphate
HILIC: Hydrophilic Interaction Liquid Chromatography
HMDB: Human Metabolome Database
HMG-CoA: 3-hydroxy-3-methylglutaryl-CoA
KEGG: Kyoto Encyclopedia of Genes and Genomes
LAPACK: Linear Algebra PACKage
LASSO: Least Absolute Shrinkage and Selection Operator
LC: Liquid Chromatography
LOOCV: Leave One Out - Cross Validation
MALDI: Matrix Assisted Laser Desorption / Ionization
MCMC: Markov Chain Monte Carlo
MeSH: Medical Subject Headings
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MI: Myocardial Infarction
MLE: Maximum Likelihood Estimation MRM: Multiple Reaction Monitoring
mRNA: Messenger ribonucleic acid
MS: Mass Spectrometry
MSEA: Metabolite Set Enrichment Analysis
NAD: Nicotinamide adenine dinucleotide
NMR: Nuclear Magnetic Resonance
PKA: Protein kinase A
RNA: Ribonucleic acid
RP: Reversed Phase
SCAD: Smoothly Clipped Absolute Deviation
SMPDB: Small Molecule Pathway Database
SRM: Selected Reaction Monitoring
TCA: Tricarboxylic acid
TiGER: Tissue-specific Gene Expression and Regulation database
TOF: Time of Flight
UPLC: Ultra Performance Liquid Chromatography
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APPENDIX B: SOFTWARE DEVELOPED FOR THE
BAYESIAN GRAPHICAL LASSO

High-level R code

Main high-level Function for generating a BGL object

#’ Block Gibbs sampler f o r Bayesian Graphica l Lasso
#’
#’ Blockwise sampling from the c o n d i t i o n a l d i s t r i b u t i o n o f a

permuted column/row
#’ f o r s i m u l a t i n g the p o s t e r i o r d i s t r i b u t i o n f o r the

c o n c e n t r a t i o n matrix s p e c i f y i n g
#’ a Gaussian Graphica l Model
#’ @param X Data matrix
#’ @param i t e r a t i o n s Length o f Markov chain a f t e r burn−in
#’ @param burnIn Number o f burn−in i t e r a t i o n s
#’ @param a d a p t i v e L o g i c a l ; Adaptive g r a p h i c a l l a s s o (TRUE)

or r e g u l a r (FALSE) . D e f a u l t i s FALSE.
#’ @param lambdaPriora Shrinkage parameter ( lambda ) gamma

d i s t r i b u t i o n shape hyperparameter
#’ ( Ignored i f a d a p t i v e=TRUE)
#’ @param lambdaPriorb Shrinkage parameter ( lambda ) gamma

d i s t r i b u t i o n s c a l e hyperparameter
#’ ( Ignored i f a d a p t i v e=TRUE)
#’ @param adapt iveType Choose o f a d a p t i v e type . Options are

”norm” f o r norm of c o n c e n t r a t i o n
#’ matrix based a d a p t i v i t y and ” priorHyper ” f o r i n f o r m a t i v e

a d a p t i v i t y
#’ @param priorHyper Matrix o f gamma s c a l e hyper parameters

( Ignord i f adapt iveType=”norm”)
#’ @param gammaPriors labmda i j gamma d i s t r i b u t i o n shape

p r i o r ( Ignored i f a d a p t i v e=FALSE)
#’ @param gammaPriort lambda i j gamma d i s t r i b u t i o n r a t e

p r i o r ( Ignored i f a d a p t i v e=FALSE)
#’ @param lambda i i lambda i i hyperparameter ( Ignored i f

a d a p t i v e=FALSE)
#’ @param keepLambdas L o g i c a l : Should lambda MCMC chain

( v e c t o r / matrix ) be kep t ?
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#’ @param i l l S t a r t Method f o r g e n e r a t i n g a p o s i t i v e d e f i n i t e
e s t i m a t e o f the sample covar iance matrix i f sample
covar iance matrix i s not semi−p o s i t i v e d e f i n i t e

#’ @param rho R e g u l a r i z a t i o n parameter f o r the g r a p h i c a l
l a s s o e s t i m a t e o f the sample covar iance matrix ( i f
i l l S t a r t =”g l a s s o ”)

#’ @param verbose l o g i c a l ; i f TRUE return MCMC p r o g r e s s
#’ @ d e t a i l s Implements the b l o c k Gibbs sampler f o r the

p o s t e r i o r d i s t r i b u t i o n o f
#’ a GGM c o n c e n t r a t i o n matrix es t imated v i a the Bayesian

Graphica l Lasso
#’ in t roduced by Wang (2012) or the Bayesian Adaptive

Graphica l Lasso . For the a d a p t i v e case ,
#’ the element−wise s h r i n k a g e parameter i s drawn from a

gamma d i s t r i b u t i o n where the s c a l e
#’ parameter i s a d a p t i v e l y modulated d i r e c t l y from the

es t imated c o n c e n t r a t i o n matrix
#’ or a user can supp ly t h e i r own i n f o r m a t i v e p r i o r .
#’
#’ @return
#’ \ i tem{Omega}{ L i s t o f c o n c e n t r a t i o n matr ices from the

Markov chains }
#’ \ i tem{Lambda}{Vector o f s imu la ted lambda parameters}
#’ @author P a t r i c k Trainor ( U n i v e r s i t y o f L o u i s v i l l e )
#’ @author Hao Wang
#’ @references Wang, H. (2012) . Bayesian g r a p h i c a l l a s s o

models and e f f i c i e n t
#’ p o s t e r i o r computation . \emph{Bayesian Analys is , 7}(4) .
<doi :10 .1214/12−BA729> .

#’ @examples
#’ \ d o n t t e s t {

#’ # Generate t r u e covar iance matrix :
#’ s<−. 9∗∗ t o e p l i t z ( 0 : 9 )
#’ # Generate m u l t i v a r i a t e normal d i s t r i b u t i o n :
#’ s e t . seed (5)
#’ x<−MASS: : mvrnorm(n=100,mu=rep (0 ,10) , Sigma=s )
#’ blockGLasso (X=x )
#’ }

#’ # Same example wi th s h o r t MCMC chain :
#’ s<−. 9∗∗ t o e p l i t z ( 0 : 9 )
#’ s e t . seed (6)
#’ x<−MASS: : mvrnorm(n=100,mu=rep (0 ,10) , Sigma=s )
#’ blockGLasso (X=x , i t e r a t i o n s =100, burnIn =100)
#’ @export
blockGLasso<−function (X, i t e r a t i o n s =2000 , burnIn =1000 , adapt ive=FALSE,
lambdaPriora =1, lambdaPriorb=1/10 ,
adaptiveType=c ( ”norm” , ” pr iorHyper ” ) , pr iorHyper=NULL,
gammaPriors=1,gammaPriort=1,
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lambdai i =1,keepLambdas=TRUE, i l l S t a r t=c ( ” i d e n t i t y ” , ” g l a s s o ” ) , rho =.1 ,
verbose=TRUE, . . . )
{

i f ( adapt ive )
{

UseMethod( ”blockAdGLasso” )
} else {
UseMethod( ” blockGLasso ” )

}
}

Function for calling the non-adaptive block Gibbs sampler

#’ @export
blockGLasso . default<−function (X, i t e r a t i o n s =2000 , burnIn =1000 ,

lambdaPriora =1, lambdaPriorb=1/10 ,
i l l S t a r t=c ( ” i d e n t i t y ” , ” g l a s s o ” ) , keepLambdas=TRUE, rho =.1 ,
verbose=TRUE, . . . ) {

# Total i t e r a t i o n s :
t o t I t e r<−i t e r a t i o n s+burnIn

# I l l c o n d i t i o n e d s t a r t :
i l l S t a r t<−match . arg ( i l l S t a r t )

# Sum of product matrix , covar iance matrix , n
S<−t (X)%∗%X
n=nrow(X)
Sigma=S/n
p<−dim( Sigma ) [ 1 ]

# Concentrat ion matrix and i t ’ s dimension :
i f ( rcond ( Sigma )<.Machine$double . eps ){

i f ( i l l S t a r t==” i d e n t i t y ” ){
Omega<−diag (nrow( Sigma ) )+1/ (p∗∗2)

}
else {

Omega<−g l a s s o : : g l a s s o (cov (X) , rho=rho )$wi
+ 1/ (p∗∗2)

}
}
else {

Omega<−MASS : : g inv ( Sigma )
}
rownames(Omega)<−rownames( Sigma )
colnames (Omega)<−colnames ( Sigma )

# Gamma d i s t i r b u t i o n p o s t e r i o r parameter a :
lambdaPosta<−( lambdaPriora+(p∗(p+1)/2) )
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# Keep lambdas ?
keepLambdas<−i f e l s e ( keepLambdas , 1L , 0L)

# C a l l sampler :
bglObj<−bgl (n=n , i t e r s=t o t I t e r , lambdaPriorb=lambdaPriorb ,

lambdaPosta=lambdaPosta ,
S=S , Sigma=Sigma , Omega=Omega , keepLambdas=keepLambdas )

bglObj<−c ( bglObj , burnIn=burnIn )
class ( bglObj )<−”BayesianGLasso”
return ( bglObj )

}

Function for calling the non-adaptive block Gibbs sampler

#’ @export
blockAdGLasso . default<−function (X, i t e r a t i o n s =2000 , burnIn =1000 ,

adaptiveType=c ( ”norm” , ” pr iorHyper ” ) ,
pr iorHyper=NULL, gammaPriors=1,gammaPriort=1,
lambdai i =1,keepLambdas=TRUE, i l l S t a r t=c ( ” i d e n t i t y ” , ” g l a s s o ” ) ,
rho =.1 , verbose=TRUE, . . . ) {

# Total i t e r a t i o n s :
t o t I t e r<−i t e r a t i o n s+burnIn

# I l l c o n d i t i o n e d s t a r t :
i l l S t a r t<−match . arg ( i l l S t a r t )

# Sum of product matrix , covar iance matrix , n
S<−t (X)%∗%X
n=nrow(X)
Sigma=S/n
p<−dim( Sigma ) [ 1 ]

# Adaptive type :
adaptiveType<−match . arg ( adaptiveType )
i f ( adaptiveType==” priorHyper ” ){

i f ( i s . null ( pr iorHyper ) ) stop ( ”Must s p e c i f y
matrix o f p r i o r hyperparameters ” )

i f ( class ( pr iorHyper ) !=” matrix ” ) stop ( ” Pr io r
hyperparameters must be provided as a
matrix ” )

i f ( ! a l l (dim( Sigma )==dim( pr iorHyper ) ) )
stop ( ”Dimesion o f hyperparameters does not
equal dimension

o f the concent ra t i on matrix ” )
p r i o r L o g i c a l<−TRUE

} else {
p r i o r L o g i c a l<−FALSE
priorHyper<−matrix (1 ,nrow=p , ncol=p)
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}

# Concentrat ion matrix and i t ’ s dimension :
i f ( rcond ( Sigma )<.Machine$double . eps ){

i f ( i l l S t a r t==” i d e n t i t y ” ){
Omega<−diag (nrow( Sigma ) )+1/ (p∗∗2)

}
else {

Omega<−g l a s s o : : g l a s s o (cov (X) , rho=rho )$wi+1/ (p∗∗2)
}

} else {
Omega<−MASS : : g inv ( Sigma )
}
rownames(Omega)<−rownames( Sigma )
colnames (Omega)<−colnames ( Sigma )

# Keep lambdas ?
keepLambdas<−i f e l s e ( keepLambdas , 1L , 0L)

# C a l l sampler :
bglObj<−bAdgl (n=n , i t e r s=t o t I t e r , gammaPriors=gammaPriors ,
gammaPriort=gammaPriort , lambdai i=lambdaii , S=S , Sigma=Sigma ,
Omega=Omega , p r i o r L o g i c a l=p r i o r L o g i c a l ,

pr iorHyper=priorHyper ,
keepLambdas=keepLambdas )

bglObj<−c ( bglObj , burnIn=burnIn )
class ( bglObj )<−”BayesianGLasso”
return ( bglObj )
}

Posterior inference method for BGL object

#’ P o s t e r i o r i n f e r e n c e
#’
#’ I n f e r e n t i a l s t a t i s t i c s f o r the s imu la ted p o s t e r i o r

d i s t r i b u t i o n s o f the covar iance
#’ and c o n c e n t r a t i o n parameter matr ices f o r Gaussian

Graphica l Models e s t imated
#’ v i a the a d a p t i v e or non−a d a p t i v e Bayesian Graphica l Lasso
#’
#’ @param x Bayesian Graphica l Lasso o b j e c t as re turned by

the f u n c t i o n blockGLasso
#’ @param parameter Options are ”Omega” f o r the p o s t e r i o r

d i s t r i b u t i o n o f the
#’ c o n c e n t r a t i o n matrix or ”Sigma” f o r the covar iance matrix
#’ @return
#’ \ i tem{posteriorMean }{Matrix o f mean v a l u e s o f the

s imu la ted p o s t e r i o r d i s t r i b u t i o n }
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#’ \ i tem{ p o s t e r i o r S d }{Matrix o f s tandard d e v i a t i o n v a l u e s o f
the s imu la ted p o s t e r i o r d i s t r i b u t i o n }

#’ \ i tem{ poster iorMedian }{Matrix o f median v a l u e s o f the
s imu la ted p o s t e r i o r d i s t r i b u t i o n }

#’ \ i tem{ lowerCI }{Lower l i m i t o f the Bayesian c r e d i b l e
i n t e r v a l f o r each matrix parameter}

#’ \ i tem{upperCI}{Upper l i m i t o f the Bayesian c r e d i b l e
i n t e r v a l f o r each matrix parameter}

#’ @export
p o s t e r i o r I n f e r e n c e<−function ( bglObj , parameter=”Omega” ,
alpha = . 0 5 , . . . ) {

UseMethod( ” p o s t e r i o r I n f e r e n c e ” )
}

#’ @export
p o s t e r i o r I n f e r e n c e . BayesianGLasso<−function ( bglObj , parameter=”Omega” ,
alpha =.05){

# Check parameters
i f ( ! parameter %in% c ( ”Omega” , ”Sigma” ) ){
stop ( ”Parameter argument must be Omega

( concent ra t i on matrix ) or
Sigma ( covar iance matrix ) ” )

}

s t a t s<−c ( ”mean” , ” sd” , ” l ength ” , ”median” )

# Discard burn in :
x2<−bglObj
x2$Sigmas<−x2$Sigmas [ ( x2$burnIn+1) : length ( x2$Sigmas ) ]
x2$Omegas<−x2$Omegas [ ( x2$burnIn+1) : length ( x2$Omegas) ]
i f ( ! i s . null ( x2$ lambdas ) )

x2$ lambdas<−x2$ lambdas [ ( x2$burnIn+1) : length ( x2$ lambdas ) ]

for ( stat in s t a t s ){
s tatMatr ix<−matrix (NA,nrow=nrow( x2$Omegas [ [ 1 ] ] ) ,

ncol=ncol ( x2$Omegas [ [ 1 ] ] ) )
for ( i in 1 :nrow( s tatMatr ix ) ){

for ( j in 1 : ncol ( s tatMatr ix ) ){
s tatMatr ix [ i , j ]<−eval ( ca l l ( stat ,

sapply ( x2$Omegas ,FUN=function ( y )
y [ i , j ] ) ) )

}
}
a s s i g n ( paste0 ( ” s t a t ” , stat ) , s tatMatr ix )

}

l q<−function ( z ) quantile ( z , probs=alpha/2)
uq<−function ( z ) quantile ( z , probs=1−(alpha/2) )
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lqMatr ix<−uqMatrix<−matrix (NA,nrow=nrow( x2$Omegas [ [ 1 ] ] ) ,
ncol=ncol ( x2$Omegas [ [ 1 ] ] ) )

for ( i in 1 :nrow( lqMatr ix ) ){
for ( j in 1 : ncol ( lqMatr ix ) ){

lqMatr ix [ i , j ]<−eval ( ca l l ( ” lq ” , sapply ( x2$Omegas ,
FUN=function ( y ) y [ i , j ] ) ) )

uqMatrix [ i , j ]<−eval ( ca l l ( ”uq” , sapply ( x2$Omegas ,
FUN=function ( y ) y [ i , j ] ) ) )

}
}

l i s t ( parameter=parameter , alpha=alpha , poster iorMean=statmean , po s t e r i o rSd=statsd ,
poster iorMedian=statmedian , lowerCI=lqMatrix , upperCI=uqMatrix )
}
Preamble and internal C++ functions

#include <RcppArmadillo . h>
// #inc lude <g p e r f t o o l s / p r o f i l e r . h>

// [ [ Rcpp : : depends ( RcppArmadillo ) ] ]

using namespace Rcpp ;
// using namespace arma ;

double rInvG (double mu, double lambda ){
double va l = 0 ;
double z , y , x , u ;
z = rnorm (1) [ 0 ] ;
y = z∗z ;
x = mu + 0.5∗mu∗mu∗y/lambda − 0 .5∗(mu/lambda ) ∗

s q r t (4∗mu∗lambda∗y + mu∗mu∗y∗y ) ;
u = r u n i f (1 ) [ 0 ] ;
i f (u <= mu/ (mu+x ) ){

va l = x ;
} else {
va l = mu∗mu/x ;

}
return ( va l ) ;
}

arma : : vec upperTri ( arma : : mat a ){
arma : : mat b = trimatu ( a ) ;
arma : : mat b2 = t r i m a t l ( a ) ;
arma : : uvec c = f i n d (b) ;
arma : : uvec c2 = f i n d ( b2 ) ;
NumericVector d = wrap ( c ) ;
NumericVector d2 = wrap ( c2 ) ;
NumericVector e = s e t d i f f (d , d2 ) ;
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e=e . s o r t ( ) ;
arma : : uvec f = as<arma : : uvec>(e ) ;
arma : : vec g = a . elem ( f ) ;
return g ;

}

IntegerMatr ix permFun( int p){
In tege rVecto r permInt = seq l en (p) − 1 ;
IntegerMatr ix perms (p−1,p) ;
In tege rVecto r permInt2 (p) ;
for ( int i = 0 ; i < p ; i++)
{

permInt2 = permInt [ permInt != i ] ;
perms ( , i ) = permInt2 ;

}
return perms ;

}
Regular Bayesian Graphical Lasso C++ code

// [ [ Rcpp : : export ] ]
L i s t bg l ( int n , int i t e r s , double lambdaPriorb , double

lambdaPosta ,
arma : : mat S , arma : : mat Sigma , arma : : mat Omega , int

keepLambdas ){
// P r o f i l e r S t a r t ( ”myprof . l og ” ) ;

int p = Omega . n c o l s ;
IntegerMatr ix idk = permFun(p) ;
L i s t OmegaList ( i t e r s ) ;

NumericVector lambdaList ;
i f ( keepLambdas==1){

lambdaList = NumericVector ( i t e r s ) ;
}
else {

lambdaList = NumericVector (1 ) ;
}

for ( int i t e r =0; i t e r < i t e r s ; ++i t e r ){

// Sample lambda :
arma : : vec Omega2 = v e c t o r i s e (Omega) ;
double lambdaPostb = lambdaPriorb +

sum( abs (Omega2) ) / 2 . 0 ;
double lambda = R : : rgamma( lambdaPosta , 1 . 0 /

lambdaPostb ) ;

i f ( keepLambdas==1){
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lambdaList ( i t e r ) = lambda ;
}

// Mu prime :
arma : : vec OmegaTemp = abs ( upperTri (Omega) ) ;
// arma : : vec OmegaTemp =

abs (Omega . elem ( f i n d ( tr imatu (Omega , 1 ) ) ) ) ;
arma : : vec mup = lambda/OmegaTemp ;
/∗ double mupThresh = pow ( 1 0 . 0 , 1 2 . 0 ) ;
arma : : uvec mupReplace = f i n d (mup >

mupThresh ) ;
mup. elem ( mupReplace ) . f i l l ( mupThresh ) ; ∗/

// Sample tau :
arma : : vec rIG (p∗(p−1)/2) ;
for (unsigned int i = 0 ; i < mup. n elem ; i++){

rIG ( i ) = rInvG (mup[ i ] , lambda∗lambda ) ;
}
arma : : vec tauVec = 1 .0 / rIG ;
arma : : mat

tau (Omega . n rows , Omega . n co l s , arma : : f i l l : : z e r o s ) ;
int k = 0 ;
for (unsigned int j = 0 ; j < tau . n c o l s ; j++){

for (unsigned int i = 0 ; i < j ; i++){
tau ( i , j ) = tauVec ( k ) ;
tau ( j , i ) = tauVec ( k ) ;
k++;

}
}

In tege rVecto r tauIPerms (p) ;
arma : : uvec tauIPerms2 (p) , t au I I (1 ) ;
arma : : vec Sigma12 (p−1) , rnorm1 (p−1) ,

beta (p−1) ;
arma : : mat tauI (p−1 ,1) , Sigma11 (p−1,p−1) ,

Omega11inv (p−1,p−1) , Ci (p−1,p−1) ,
CiChol (p−1,p−1) , mui (p−1 ,1) ;

arma : : mat OmegaInvTemp(p−1 ,1) ;
double gamm;
arma : : mat gamm2;
for ( int i = 0 ; i < p ; i++){

tauIPerms = idk ( , i ) ;
tauIPerms2 =

as<arma : : uvec>(tauIPerms ) ;
t au I I (0 ) = i ;
tauI = tau . submat ( tauIPerms2 , t au I I ) ;
Sigma11 = Sigma . submat ( tauIPerms2 ,

tauIPerms2 ) ;
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Sigma12 = Sigma . submat ( tauIPerms2 ,
t au I I ) ;

Omega11inv = Sigma11 − ( ( Sigma12 ∗
Sigma12 . t ( ) ) / Sigma ( i , i ) ) ;

Ci = (S( i , i ) + lambda ) ∗ Omega11inv
+ diagmat (1 / tauI ) ;

CiChol = arma : : cho l ( Ci ) ;
mui = arma : : s o l v e (−Ci ,

S . submat ( tauIPerms2 , t au I I ) ) ;
rnorm1 = rnorm (p−1) ;
beta = mui + arma : : s o l v e ( CiChol ,

rnorm1 ) ;
Omega . submat ( tauIPerms2 , t au I I ) =

beta ;
Omega . submat ( tauII , tauIPerms2 ) =

beta . t ( ) ;
gamm = rgamma(1 , n/2+1 ,2/ (S( i , i ) +

lambda ) ) [ 0 ] ;
gamm2 = gamm + beta . t ( ) ∗ Omega11inv
∗ beta ;

Omega( i , i ) = gamm2(0 , 0 ) ;
OmegaInvTemp = Omega11inv ∗ beta ;
Sigma . submat ( tauIPerms2 , tauIPerms2 )

= Omega11inv + (OmegaInvTemp ∗
OmegaInvTemp . t ( ) )/gamm;

Sigma . submat ( tauIPerms2 , t au I I ) =
−OmegaInvTemp/gamm;

Sigma . submat ( tauI I , tauIPerms2 ) =
−OmegaInvTemp . t ( ) /gamm;

Sigma ( i , i ) = 1/gamm;
}
OmegaList ( i t e r ) = Omega ;
Rcpp : : Rcout << ” i t e r = ” << i t e r + 1 <<

std : : endl ;

}
// P r o f i l e r S t o p ( ) ;

return L i s t : : c r e a t e (Named( ” lambdas” ) = lambdaList ,
Named( ”Omegas” ) = OmegaList ) ;

}
Adaptive Bayesian Graphical Lasso C++ code

// [ [ Rcpp : : export ] ]
L i s t bAdgl ( int n , int i t e r s , double gammaPriors , double

gammaPriort ,
double lambdai i , arma : : mat S , arma : : mat Sigma ,
arma : : mat Omega , bool p r i o r L o g i c a l , arma : : mat priorHyper ,
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int keepLambdas ){
// P r o f i l e r S t a r t ( ”myprof . l og ” ) ;

int p = Omega . n c o l s ;
IntegerMatr ix idk = permFun(p) ;

L i s t OmegaList ( i t e r s ) ;

L i s t LambdaList ;
i f ( keepLambdas==1){

LambdaList = L i s t ( i t e r s ) ;
}
else {

LambdaList = L i s t (1 ) ;
}

for ( int i t e r =0; i t e r < i t e r s ; ++i t e r ){
// Sample lambdas :
arma : : vec Omega2 = v e c t o r i s e (Omega) ;
arma : : vec OmegaTemp = abs ( upperTri (Omega) ) ;
// arma : : vec OmegaTemp =

abs (Omega . elem ( f i n d ( tr imatu (Omega , 1 ) ) ) ) ;

// Gamma d i s t i r b u t i o n c o n d i t i o n a l parameters :
arma : : vec t t = OmegaTemp + gammaPriort ;

// I f i n f o rmat ive p r i o r :
i f ( p r i o r L o g i c a l ){

arma : : vec priorHyperVec =
v e c t o r i s e ( pr iorHyper ) ;

priorHyperVec = upperTri ( pr iorHyper ) ;
// priorHyperVec =

priorHyperVec . elem ( f i n d ( tr imatu ( priorHyper , 1 ) ) ) ;
t t = t t + priorHyperVec ;

}

arma : : vec s ( t t . n elem ) ;
s . f i l l ( gammaPriors + 1) ;

// Sample lambda :
arma : : vec lambda ( t t . n elem ) ;
for (unsigned int i i = 0 ; i i <t t . n elem ; ++i i ){

lambda ( i i ) = R : : rgamma( s ( i i ) ,
1 . 0/ t t ( i i ) ) ; // Change to Rcpp
sugar ve r s i on

}

// Mu prime :
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arma : : vec mup = lambda/OmegaTemp ;
double mupThresh = pow ( 1 0 . 0 , 1 2 . 0 ) ;
arma : : uvec mupReplace = f i n d (mup >

mupThresh ) ;
mup. elem ( mupReplace ) . f i l l ( mupThresh ) ;

// Sample tau :
arma : : vec rIG (p∗(p−1)/2) ;
for (unsigned int i = 0 ; i < mup. n elem ; i++){

rIG ( i ) =
rInvG (mup( i ) ,pow( lambda ( i ) , 2 ) ) ;

}
arma : : vec tauVec = 1 .0 / rIG ;
arma : : mat

tau (Omega . n rows , Omega . n co l s , arma : : f i l l : : z e r o s ) ;
int k = 0 ;
for (unsigned int j = 0 ; j < tau . n c o l s ; j++){

for (unsigned int i = 0 ; i < j ; i++){
tau ( i , j ) = tauVec ( k ) ;
tau ( j , i ) = tauVec ( k ) ;
k++;

}
}

In tege rVecto r tauIPerms (p) ;
arma : : uvec tauIPerms2 (p) , t au I I (1 ) ;
arma : : vec Sigma12 (p−1) , rnorm1 (p−1) ,

beta (p−1) ;
arma : : mat tauI (p−1 ,1) , Sigma11 (p−1,p−1) ,

Omega11inv (p−1,p−1) , Ci (p−1,p−1) ,
CiChol (p−1,p−1) , mui (p−1 ,1) ;

arma : : mat OmegaInvTemp(p−1 ,1) ;
double gamm;
arma : : mat gamm2;
for ( int i = 0 ; i < p ; i++){

tauIPerms = idk ( , i ) ;
tauIPerms2 =

as<arma : : uvec>(tauIPerms ) ;
t au I I (0 ) = i ;
tauI = tau . submat ( tauIPerms2 , t au I I ) ;
Sigma11 = Sigma . submat ( tauIPerms2 ,

tauIPerms2 ) ;
Sigma12 = Sigma . submat ( tauIPerms2 ,

t au I I ) ;
Omega11inv = Sigma11 − ( ( Sigma12 ∗

Sigma12 . t ( ) ) / Sigma ( i , i ) ) ;
Ci = (S( i , i ) + lambdai i ) ∗

Omega11inv + diagmat (1 / tauI ) ;
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CiChol = arma : : cho l ( Ci ) ;
mui = arma : : s o l v e (−Ci ,

S . submat ( tauIPerms2 , t au I I ) ) ;
rnorm1 = rnorm (p−1) ;
beta = mui + arma : : s o l v e ( CiChol ,

rnorm1 ) ;
Omega . submat ( tauIPerms2 , t au I I ) =

beta ;
Omega . submat ( tauII , tauIPerms2 ) =

beta . t ( ) ;
gamm = rgamma(1 , n/2+1 ,2/ (S( i , i ) +

lambdai i ) ) [ 0 ] ;
gamm2 = gamm + beta . t ( ) ∗ Omega11inv
∗ beta ;

Omega( i , i ) = gamm2(0 , 0 ) ;
OmegaInvTemp = Omega11inv ∗ beta ;
Sigma . submat ( tauIPerms2 , tauIPerms2 )

= Omega11inv + (OmegaInvTemp ∗
OmegaInvTemp . t ( ) )/gamm;

Sigma . submat ( tauIPerms2 , t au I I ) =
−OmegaInvTemp/gamm;

Sigma . submat ( tauI I , tauIPerms2 ) =
−OmegaInvTemp . t ( ) /gamm;

Sigma ( i , i ) = 1/gamm;
}
OmegaList ( i t e r ) = Omega ;

arma : : mat
lambdaMat (Omega . n rows , Omega . n co l s , arma : : f i l l : : z e r o s ) ;

int kk = 0 ;
for (unsigned int j = 0 ; j <

lambdaMat . n c o l s ; j++){
for (unsigned int i = 0 ; i < j ; i++){

lambdaMat ( i , j ) = lambda ( kk ) ;
kk++;

}
}
i f ( keepLambdas==1){

LambdaList ( i t e r ) = lambdaMat ;
}

double detOmega = arma : : det (Omega) ;
Rcpp : : Rcout << ” i t e r = ” << i t e r + 1 << ”

det (Omega) = ” << detOmega << std : : endl ;
}

return L i s t : : c r e a t e (Named( ” lambdas” ) = LambdaList ,
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Named( ”Omegas” ) = OmegaList ) ;
}
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