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ABSTRACT
 
DECIPHERING THE ROLE OF HUMAN ARYLAMINE N-ACETYLTRANSFERASE 1 (NAT1) IN 

BREAST CANCER CELL METABOLISM USING A SYSTEMS BIOLOGY APPROACH  
 

Samantha Marie Carlisle 
 

July 20, 2018 
 

Background: Human arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic 

metabolizing enzyme found in almost all tissues. NAT1 can additionally hydrolyze acetyl-

coenzyme A (acetyl-CoA) in the absence of an arylamine substrate. NAT1 expression varies 

inter-individually and is elevated in several cancers including estrogen receptor positive (ER+) 

breast cancers. Additionally, multiple studies have shown the knockdown of NAT1, by both small 

molecule inhibition and siRNA methods, in breast cancer cells leads to decreased invasive ability 

and proliferation and decreased anchorage-independent colony formation. However, the exact 

mechanism by which NAT1 expression affects cancer risk and progression remains unclear. 

Additionally, consequences of the hydrolysis of acetyl-CoA by NAT1 on cellular metabolism 

remains uninvestigated. 

 

Hypothesis and Rationale: Samples with decreased levels or knockout of NAT1 will have 

increased free acetyl-CoA since those cell lines have less NAT1 to hydrolyze acetyl-CoA. 

Conversely, samples with increased NAT1 will have decreased free acetyl-CoA since those cell 

lines have more NAT1 to hydrolyze acetyl-CoA. These differences in free acetyl-CoA are 

hypothesized to lead to alterations in cellular pathways/metabolism when compared to cells with 

basal NAT1 that can be measured by global bioenergetics, metabolomics, and transcriptomics 

experiments. 

 

Methods: This dissertation utilized a systems biology approach with four layers. The first layer 

consists of six constructed MDA-MB-231 cell lines whose only genetic difference (theoretically) is 
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in NAT1. The second, third, and fourth layers are bioenergetics (Chapter 3), metabolomics 

(Chapter 4), and transcriptomics (Chapter 5) measurements of the constructed cell lines. 

Resulting data were analyzed individually and also integrated and analyzed (Chapter 6). 

 

Results: The manipulation of NAT1 in MDA-MB-231 breast cancer cells severely altered cellular 

metabolism as measured by mitochondrial bioenergetics, metabolomics, and transcriptomics. 

More differences were observed in the cell lines with decreased levels and knockout NAT1 than 

the cell line with increased NAT1. 

 

Conclusions: This dissertation has generated novel hypotheses about the role of NAT1 in breast 

cancer, and more generally cellular metabolism. Furthermore, biochemicals that are likely 

products of NAT1 N-acetylation, N-acetylasparagine and N-acetylputrescine, have been 

identified. This dissertation presents strong evidence that NAT1, whether directly or through an 

effect of NAT1 on acetyl-CoA levels, has an effect on acyl-CoA carnitine conjugates, lysine 

degradation, and mitochondrial function. While the exact mechanism by which NAT1 affects 

cellular metabolism or breast cancer progression has not been identified, the data presented in 

this dissertation add important pieces to the puzzle, putting researchers one step closer to that 

goal. 
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CHAPTER 1

 

BACKGROUND AND SIGNIFICANCE 

 

Breast Cancer 

According to the American Cancer Society (ACS), breast cancer will account for 

approximately 30% of new cancer cases and 14% of cancer related deaths in American women 

in 20181. Additionally, 1 in 8 women will develop breast cancer in their lifetime1. Breast cancer is 

a heterogeneous disease with many underlying genetic transformations that lead to a diseased 

state. This heterogeneity makes predicting breast cancer risk and developing one-size-fits-all 

treatment strategies difficult. As the cost of genomic profiling has decreased dramatically, the 

feasibility of developing personalized treatment strategies based on the genomic profile of an 

individual’s tumor has become attainable. For example, the National Cancer Institute (NCI) 

presently has a clinical trials program called Molecular Analysis for Therapy Choice (MATCH) in 

which DNA of tumors from patients for whom standard treatment has not been successful are 

sequenced and the results are utilized to provide personalized treatment2; the program currently 

has 14 treatment arms to which patients are assigned based on mutations, including 

amplifications, translocations, and fusions, in 14 different genes: EGFR, MET, ALK, ROS1, 

HER2, mTOR, TSC1, TSC2, GNAQ/GNA11, SMO/PTCH1, cKIT, NTRK, BRCA1, and BRCA22. 

These advances in precision medicine have led to an urgent need to understand and catalogue 

gene targets involved in breast cancer initiation, transformation, and metastasis so that 

preventative and treatment strategies can be personalized and optimized for each patient. 

N-acetyltransferases (NATs) 

 Overview 
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Arylamine N-acetyltransferase 1 and arylamine N-acetyltransferase 2 (NAT1 and NAT2; 

collectively NATs) are polymorphic phase II xenobiotic metabolizing isozymes that catalyze the 

acetylation of a wide range of arylamine and hydrazine substrates using acetyl coenzyme A 

(acetyl-CoA) as the acetyl group donor via a ping-pong bi-bi reaction mechanism3,4. The human 

NAT1 and NAT2 genes are located in close proximity on chromosome 8p225 and share 

approximately 87% protein coding sequence and 81% deduced amino acid sequence homology6. 

The open reading frame (ORF) regions of NAT1 and NAT2 are both 870 base pairs and 

intronless6,7. NAT1 and NAT2 have distinct but overlapping substrate specificities with NAT1 

selectively acetylating p-aminobenzoic acid (PABA) and p-aminosalicylate (PAS) while NAT2 

selectively acetylates isoniazid, sulfamethazine (SMZ), procainamide, and hydralazine8. Both 

isozymes can acetylate a plethora of arylamines including 4-aminobiphenyl (4-ABP) and 2-

aminoflourene (2-AF)8. Many NAT substrates are known carcinogens found in well-done red 

meats, cigarette smoke, and commercial dyes9,10. Additionally, NAT1 and NAT2 have differing 

tissue distributions (reviewed in 11); NAT1 is expressed in nearly every tissue12-22 while NAT2 

tissue distribution is thought to be much more limited with the highest expression found in the 

liver12 and gastrointestinal (GI) tract19. 

Regulation of NATs 

NAT1 and NAT2 expression also vary inter-individually, but independent of one 

another12,23, based on single nucleotide polymorphisms (SNPs)4,23-29. As of the most recent 

update (April 2016), 28 different NAT1 alleles30 and 64 (108 including those predicted) different 

NAT2 alleles31 have been identified and named in human populations, conferring either rapid, 

intermediate, slow, or unknown acetylator phenotypes. NAT1 and NAT2 allelic frequencies vary 

by ethnic population32. The effect of SNPs in NAT2 on N-acetylation activity have been well 

described and characterized (reviewed in 27) however the effect of SNPs (located both in and 

outside the ORF) in NAT1 on N-acetylation activity are not understood as well with conflicting 

reports (reviewed in 33). Large inter-individual variation exists in NAT1 activities within single 

genotypes suggesting additional regulation mechanisms are present34-36. Additionally, there is 

considerable evidence that NAT1 activity is highly regulated by post-transcriptional and post-
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translational mechanisms, and substrate concentrations (reviewed in 37). Although the ORF of 

NAT1 is contained in a single exon (exon 9), there are 8 upstream non-coding exons38 that are 

included, in varying patterns, in alternatively spliced transcripts21. NAT1 is also known to have two 

alternative promoters, NATa and NATb, that differ in promotor strength and tissue specificity39-41 

producing mRNAs with distinct 5’-UTRs. Notably, there are 9 variant NAT1 transcripts known, 

each with identical protein coding sequences38,39,41.  

Through chemical modifications of the NAT1 active site as well as changes in the 

turnover of NAT1 protein, NAT1 activity can be modulated post-translationally. NAT1 substrates, 

including PABA, p-aminosalicylic acid, ethyl-p-aminobenzoate, and p-aminophenol, are capable 

of down-regulating NAT1 activity and protein expression in cultured human peripheral blood 

mononuclear cells42; this phenomenon was also observed in confluent human cell lines incubated 

with PABA42. It is hypothesized this occurs because substrate binding causes the cysteine in the 

NAT1 active site to become de-acetylated leading to polyubiquitination and degradation of the 

protein37. N-hydroxyl metabolites of NAT1 substrates, including PABA and sulfomethoxazole, 

have also been shown to irreversibly inhibit NAT143; however, the molecular mechanism remains 

unknown. NAT1 gene expression can also be regulated indirectly by androgens44,45. Additionally, 

NAT1 is known to be inhibited by many chemically diverse non-substrate compounds including 

tamoxifen46, cisplatin47, thiram (a dithiocarbamate pesticide)48, isothiocyanates49, hydrogen 

peroxide and peroxynitrite50,51, acrolein52, carbon black nanoparticles53, cadmium54, and 

disulfiram55. Additionally, hsa-miRNA-1290, implicated in lung adenocarcinoma56, ovarian 

cancer57, non-small cell lung cancer58,59, glioma60, and colorectal cancer61, has been shown to 

directly target the 3’UTR region of human NAT1 mRNA leading to dose-dependent down-

regulation of NAT1 expression62,63. 

Brief History of NATs 

Arylamine N-acetyltransferase activity was first described in the late 1930’s when 

acetylated para-aminobenezenesulfonamide was detected in the urine of humans and rabbits, but 

not dogs, after administration of para-aminobenezenesulfonamide64, although it would be nearly 

40 years before the specific enzyme(s) responsible for the transformation was/were isolated and 
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identified. NAT activity was described for a second time in the mid 1940’s when it was observed 

that liver homogenates and extracts could acetylate sulfanilamides65 and again in the mid 1950’s 

when it was shown that the enzyme responsible for the acetylation of sulfanilamides was also 

responsible for the acetylation of isoniazid66. NATs were first isolated and described kinetically in 

1967 by Weber and Cohen in partially purified preparations from rabbit liver67. NAT was shown to 

catalyze the acetylation of isoniazid and several sulfonamides via a ping-pong bi-bi reaction 

mechanism using acetyl-CoA as the acetyl donor67. It is also important to note that at the times of 

those early studies, NAT1 and NAT2 were thought to be a single enzyme that could be 

monomorphic or polymorphic depending on the substrate acetylated. It was not realized until 

1990 that there were actually two individual N-acetylating isozymes6,12 with distinct but 

overlapping substrate specificities.  

NATs & Breast Cancer 

While NAT1 has been implicated in many cancers, NAT1’s role in breast cancer has 

been investigated more frequently than any other cancer. The earliest studies on N-

acetyltransferases and breast cancer were epidemiological studies that investigated associations 

between acetylator phenotype and breast cancer risk68-72. Since those initial studies there have 

been many more looking at the association in various ethnic and regional populations and in 

combination with several possible modifying factors with conflicting results leading to multiple 

meta-analyses of these data.  

Briefly, of the 5 meta-analyses published on NAT2 and breast cancer risk, 4 investigated 

the independent effect of NAT2 phenotype (determined by genotype) on breast cancer risk with 

none observing a significant association73-77. However, one of the meta-analyses found evidence 

of decreased breast cancer risk for women with a slow phenotype when separately analyzing 

studies in which NAT2 phenotype was determined by acetylation rate of xenobiotics metabolized 

by NAT2 rather than genotype76. Three of the 5 meta-analyses further analyzed data by including 

cumulative smoking exposure into the risk calculation as a modifying variable with all 3 studies 

observing a significant association between high pack years and increased breast cancer risk in 

the slow acetylator group compared to the rapid acetylator group74,75,77. A single meta-analysis 



 5 

considered menopausal status as a modifying factor of NAT2 genotype in breast cancer risk and 

observed no significant difference in risk74. None of the meta-analyses included intake of well-

done meat as a possible modifying factor of NAT2 genotype in breast cancer risk. There has 

been one meta-analysis of NAT1 genotype and breast cancer risk which found no significant 

association78, however possible modifying factors such as smoking exposure and well-done meat 

intake were not considered in the study.  

Although NAT1 and NAT2 both catalyze N-acetylation and have been associated with 

breast cancer, their roles in etiology may differ. Numerous studies have investigated possible 

roles for NAT1 in breast cancer etiology and progression79-84, given the association between 

increased expression of NAT1 and estrogen receptor (ER)-positive breast cancers85-91. Notably, 

NAT1 expression is not directly regulated by estrogens or dihydrotestosterone92, thus suggesting 

that there may be a common regulatory element between NAT1 and ESR1. Furthermore, 

congenic rats expressing higher NAT2 activity (orthologous to human NAT1) have been reported 

to exhibit greater carcinogen-induced mammary tumor susceptibility independent of carcinogen 

metabolism83. Notably, NAT1 is one of fifty genes whose expression is utilized in the PAM50-

based Prosigna breast cancer gene signature array to determine the intrinsic subtype of breast 

cancer tumors93,94. Conversely, SNPs in NAT2 have been well described and revealed to 

influence acetylation rates of many known carcinogens; an association between NAT2 genotype 

with breast cancer risk among smokers has been reported (reviewed in 95).  

The mRNA expression levels of NAT1 and NAT2 have been detected by reverse 

transcription-polymerase chain reaction (RT-PCR) in human mammary tissue13,96. NAT1 N-

acetylation activity has been widely reported in normal breast tissue and breast tumor 

tissue13,14,38,97-99 whereas NAT2 N-acetylation activity has not been observed as consistently; 

when NAT2 activity is observed the activity is much lower than NAT1 activity13,97,98. In addition, 

since NAT1 and NAT2 have overlapping substrate specificities, activity studies of the two 

isozymes can be complex. For example, Deitz probed human mammary tissue samples for NAT1 

and NAT2 activities with p-aminobenzoic acid (PABA; selective for NAT1) and sulfamethazine 

(SMZ; selective for NAT2), and reported that SMZ was acetylated by NAT1 at very low levels99. 
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By normalizing the SMZ N-acetylation activity to NAT1 activity, Deitz demonstrated that the SMZ 

N-acetylation activity was most likely catalyzed by NAT1 rather than NAT2. NAT1 and NAT2 

activities have also been reported in rat mammary tissues100. 

Wakefield et al profiled NAT1 expression and activity in seven breast cancer cell lines 

(MCF-7, T47D, ZR-75-1, Cal51, MDA-MB-231, MDA-MB-437 and MDA-MB-453) and detected 

NAT1 mRNA expression and activity in all seven cell lines88; however, NAT2 expression and 

activity were not co-investigated. In addition, NAT2 mRNA has been detected in MCF-7 breast 

cancer cells at very low levels96; however, NAT1 was not measured at the same time preventing 

a direct comparison of expression between the two isozymes. Bradshaw et al detected NAT1 and 

NAT2 by western blotting in the ER-positive breast cancer cell line MCF-7; however, the 

expression levels were not compared between the two proteins101. Based on limited data, it has 

been hypothesized that NAT2 expression is very low in breast tissue and negligible in comparison 

to NAT1 expression. However, a more comprehensive evaluation of NAT1 and NAT2 co-

expression in breast tissues and established breast cancer cell lines is needed. 

Minchin and Butcher have recently shown, utilizing the publicly available data repositories 

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The Cancer 

Genome Atlas (TCGA), that NAT1 mRNA expression in primary breast tumors, but not prostate, 

cervical, or colorectal tumors, can be segregated into three distinct patient subpopulations, 

expressing low, intermediate and high levels of NAT1 mRNA102. Gene correlation analysis with 

NAT1 in each subset suggested different regulation mechanisms are in place, given the small 

overlap in genes correlated with NAT1 mRNA expression in each subpopulation102. Additionally, a 

better 10-year survival rate in patients with high NAT1 was observed compared to patients with 

low NAT1102. Notably, patients whose tumors had low NAT1 expression exhibited a distinct poor 

response to chemotherapy102. It will be important for future studies on NAT1 to investigate how 

NAT1 expression in breast tumors influences chemo-sensitivity. 

Possible Endogenous Role of NAT1 

Although NAT1 has traditionally been described as a xenobiotic metabolizing enzyme, 

there is a wealth of evidence suggesting NAT1 may also have unknown endogenous role(s). 
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Phylogenetic analysis of the NATs suggested evolutionarily NAT1 did not tolerate mutations while 

NAT2 was predicted to have mostly evolved under positive selection103. NATs are found in all 

kingdoms of life, excluding plants104. Additionally, NAT1 activity and mRNA have been detected in 

mid-gestational fetal tissues15, placenta105,106, and nearly every adult tissue. NAT1 has been 

shown to have redundancy with methylthioribose-1-phosphate isomerase (MRI1) in the 

methionine salvage pathway, but this role was not observed in MDA-MB-231 cells since they do 

not have a functional methionine salvage pathway due to a lack of methylthioadenosine 

phosphorylase (MTAP) activity107. To date, NAT1 is known to acetylate only one endogenous 

compound, p-aminobenzoylglutamate (pABG)-- a folate catabolite108,109, with unknown 

consequence. However, NAT1 has been linked to folate metabolism110,111. Additionally, it has also 

been shown that in the absence of an arylamine substrate NAT1 can catalyze the hydrolysis of 

acetyl-CoA using folate as a co-factor112,113. Furthermore, NAT1 expression and activity are highly 

regulated by many diverse mechanisms whereas NAT2 expression and activity appear to be less 

regulated. Taken together, these facts lead to the hypothesis that NAT1 is not just a xenobiotic 

metabolizing enzyme. It remains to be determined whether that role is through a NAT1 catalyzed 

reaction or a result of NAT1’s ability to catalyze the hydrolysis of acetyl-CoA, a central molecule 

in metabolism and cellular energetics. 

Construction of MDA-MB-231 Breast Cancer Cell Lines Expressing Varying NAT1  

To better investigate NAT1’s role in breast cancer a single established breast cancer cell 

line was genetically modified to vary only in NAT1. The MDA-MB-231 triple negative breast 

cancer cell line was selected for modification because it expresses an approximate mid-level of 

NAT1 RNA compared to other breast cancer cell lines; NAT1 RNA expression has been shown to 

be a suitable predictor of NAT1 activity114. Additionally, two different construction methods were 

utilized, siRNA and CRISPR/Cas9, to ensure observed results were due to manipulation of NAT1 

rather than the specific construction method utilized. 

Construction of siRNA Generated Cell Lines 

The construction and characterization of the siRNA generated cell lines has been 

described extensively elsewhere82,84,115,116. Briefly, three cell lines were constructed, Scrambled, 
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Up, and Down, expressing parental, increased, and decreased NAT1 N-acetylation activity, 

respectively (Figure 1.1). Each cell line was constructed from the parent MDA-MB-231 cell line, 

purchased from American Type Culture Collection (ATCC), that had a flippase recognition target 

(FRT) site inserted, thus ensuring all plasmids were transfected into the same genomic location. 

Genetically modified cell lines were characterized for NAT1 PABA N-acetylation, NAT1 mRNA 

expression, endogenous acetyl-CoA levels, cell doubling rates, anchorage-independent growth, 

anchorage-dependent growth, and relative invasive ability. The Scrambled cell line was included 

as a transfection control and expressed approximately the same NAT1 N-acetylation activity and 

NAT1 mRNA as the parent MDA-MB-231 cell line. NAT1 PABA N-acetylation activity and NAT1 

mRNA in the Up cell line were increased 7-fold and 4-fold, respectively, compared to the 

Scrambled cell line. Conversely, NAT1 PABA N-acetylation activity and NAT1 mRNA in the Down 

cell line were decreased approximately 35% and 53%, respectively, compared to the Scrambled 

cell line. Doubling times, relative invasive ability, and anchorage-dependent growth of the three 

constructed cell lines did not significantly vary while anchorage-independent growth was 

decreased 7-fold in the Down cell line compared to the Scrambled cell line82. 

Construction of CRISPR/Cas9 Generated Cell Lines 

 The CRISPR/Cas9 constructed cell lines were constructed from the MDA-MB-231 cell 

line that had an FRT site inserted to allow direct comparison to a single cell line regardless of the 

method used to construct the cell line (Figure 1.2). All cell lines were cultured in high-glucose 

Dulbecco's Modified Eagle Medium (DMEM), with 10% fetal bovine serum, 5% glutamine, and 

5% penicillin/streptomycin added and grown in a humidified incubator set at 37 °C with 5% CO2. 

Horizon Discovery Group (Waterbeach, United Kingdom) designed 5 different guide RNAs 

(gRNAs) specific for NAT1 and DNA2.0 Inc. (Newark, CA) cloned the gRNAs into a Cas9 

expressing vector that also expressed a dasher-green fluorescent probe (GFP) tag. Separately, 

each of the 5 gRNA/Cas9 vectors (gRNA sequences listed in Table 1.1) were transiently 

transfected in the Scrambled MDA-MB-231 cell line using the Amaxa Nucleofector II (Lonza, 

Allendale, NJ). Forty-eight hours after transfection cells were harvested and DNA isolated.
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Figure 1.1 

 

 
 

Figure 1.1: Construction of MDA-MB-231 Cell Lines via siRNA. 

The Flp-In™ System (Life Technologies, Grand Island, NY) was used to insert a single flippase 

recognition site (FRT) site into the parent MDA-MB-231 cell line. The MDA-MB-231 cell line 

containing the FRT site was then stably transfected with either a plasmid containing a nonspecific 

shRNA plasmid into the FRT site (Scrambled), a plasmid containing NAT1 specific shRNA into 

the FRT site (Down), or a plasmid containing the NATb/NAT1*4 vector into the FRT site (Up). 

Each plasmid contained a hygromycin resistant cassette. Therefore stably transfected cells were 

selected for using hygromycin. The resulting MDA-MB-231 cell lines, Scrambled, Down, and Up, 

express wild-type, decreased, and increased NAT1 mRNA and PABA N-acetylation activity, 

respectively. 
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Figure 1.2 
 

 
Figure 1.2: Construction of MDA-MB-231 NAT1 Knockout Cell Lines via CRISPR/Cas9. 

The CRISPR/Cas9 system was used to decrease and knockout NAT1 in the parent MDA-MB-231 

cell line with a previously inserted flippase recognition target (FRT) site utilizing two different 

guide RNAs, 2 and 5. The resulting MDA-MB-231 cell lines, CRISPR 2-12, CRISPR 2-19, and 

CRISPR 5-50, express decreased, knockout, and knockout levels of PABA NAT1 N-acetylation 

activity, respectively. The CRISPR 2-12 and CRISPR 2-19 cell lines were constructed with guide 

RNA 2 while the CRISPR 5-50 cell line was constructed using guide RNA 5. 
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Table 1.1 
 
CRISPR/Cas9 Guide RNA Sequences 

GUIDE RNA SEQUENCE 
1 GAACCTTAACATCCATTGTG 
2 CAAAGGGAACAGCTCGGATC 
3 GTTGTGAGAAGAAATCGGGG 
4 GGCCTCTAAGCCTAAGTCCA 
5 GAATTGGCTATAAGAAGTCT 

 

Guide RNAs 2 and 5 were utilized to construct two homozygous NAT1 knockout MDA-MB-231 

cell lines and a heterozygous NAT1 knockout MDA-MB-231 cell line. 
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The Transgenomic Inc. (Omaha, NE) SURVEYOR Mutation Detection Kit was used to determine 

the effectiveness of each gRNA’s ability to cut the genomic DNA and induce DNA strand breaks 

effectively. gRNAs #2 and #5 were the most effective at inducing DNA strand breaks, and were 

chosen to separately knockout the function of NAT1 in the following studies.  

The Scrambled MDA-MB-231 cell line was transfected with either #2 or #5 gRNA/Cas9 

vectors as described above. Forty-eight hours after transfection cells were sorted for GFP 

fluorescence. The fluorescent positive cells were collected and plated at very dilute cell 

concentrations so that individual clones could be isolated. Once individual cells had grown into 

large enough colonies (several weeks), cloning cylinders were utilized to isolate those colonies 

using trypsin to release them from the plate and transferred to a 96-well culture plate. Clones 

were passaged until there were enough cells to plate in a 10 cm dish. Cells were then tested for 

NAT1 activity as previously described117. Activity assays showed NAT1 activity was not 

detectable (knocked out) in a low number of clones and these clones were selected for further 

characterization. Clones with no detectable NAT1 activity were further screened by sequencing 

the NAT1 open reading frame (ORF). We were specifically interested in clones that had 

deleted/inserted nucleotides in the NAT1 ORF that resulted in frame-shift mutations and thus 

premature protein termination signals resulting in predicted nonfunctional NAT1. Individual 

knockout cell lines representing the knockout of NAT1 activity for gRNA #2 or #5 were chosen 

based on NAT1 enzymatic activity and genomic sequence.  

Sequencing of the NAT1 Gene in the CRISPR/Cas9 Constructed Cell Lines 

Genomic DNA was isolated from the MDA-MB-231 CRISPR/Cas9 constructed cell lines. 

The NAT1 open reading frame was TOPO cloned using pcDNA™ 3.1/V5-His TOPO® TA 

Expression Kit (Invitrogen, California, USA) following manufacturer's recommendations. The 

TOPO Cloning reaction for each cell line was transformed into One Shot TOP10 Chemically 

Competent E. coli. Five transformed E. coli colonies for each cell line were selected and grown 

overnight. Cultures of bacteria were then harvested for plasmid purification. Purified plasmids and 

primers were sent for DNA sequencing (Eurofins, Louisville, KY, USA). Sequence data was 

analyzed and aligned with SeqMan Pro™ (Version 12.0, DNASTAR, Madison, WI.) 
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Characterization of CRISPR/Cas9 constructed cell lines are described in detail 

elsewhere115. Briefly, the CRISPR 2-19 and CRISPR 5-50 cell lines had no detectable NAT1 

activity while NAT1 N-acetylation activity in the CRISPR 2-12 cell line was decreased 

approximately 50% compared to the parent MDA-MB-231 and Scrambled cell lines. Endogenous 

acetyl-CoA was increased approximately 2-fold in both NAT1 knockout cell lines compared to the 

parent MDA-MB-231 cell line. Doubling times, relative invasive ability, and anchorage-dependent 

colony formation did not significantly vary between two NAT1 knockout cell lines and the parent 

MDA-MB-231 cell line. Notably, NAT1 knockout cell lines formed less anchorage-independent 

colonies compared to the parent MDA-MB-231 cell line115. 

Summary and Importance 

Colleagues, Mark Doll and Dr. Marcus Stepp, have constructed six MDA-MB-231 cell 

lines via two different methodologies that express parental, increased, decreased, and no 

detectable (limit of detection = 0.05 nmoles acetylated PABA/min/mg) NAT1 N-acetylation activity 

(Figure 1.3). All cell lines have been confirmed by STR-profiling to be MDA-MB-231 breast cancer 

cells. NAT1 mRNA has also been quantitated in each cell line (Figure 1.4). The genetic 

modification of a single established breast cancer cell line that varies only NAT1 provides an 

excellent model for studying the possible role of NAT1 in breast cancer metabolism. While breast 

cancer cell lines that endogenously express varying levels of NAT1 could have been selected, 

that would also complicate the analysis of results due to the multiple unique mutations each cell 

line would have. The approach utilized in this dissertation ensures each cell line has the same 

genetic background and only varies in NAT1 allowing a more straightforward comparison 

between cell lines. 

Cancer Metabolism 

Cancer as a disease can be concisely described as a dysregulation of normal cellular 

functions leading to increased and uncontrolled growth. Hanahan and Weinberg suggested in 

2000 that cancer could be summarized by six basic acquired capabilities or hallmarks: 1. evading 

apoptosis, 2. self-sufficiency in growth signals, 3. insensitivity to anti-growth signals, 4. tissue 
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Figure 1.3 
 

 
Figure 1.3: NAT1 N-Acetylation Activity of the Parent and Genetically Modified MDA-MB-

231 Cell Lines. 

NAT1 N-acetylation activity was measured in the 6 cell lines included in this study. The Parent 

and Scrambled cell lines express approximately the same level of NAT1 N-acetylation activity 

while NAT1 N-acetylation activity in the Down and CRISPR 2-12 cell lines is decreased by 

approximately 50%. NAT1 N-acetylation activity in the Up cell line is increased by approximately 

700%. The CRISPR 2-19 and CRISPR 5-50 had no detectable NAT1 N-acetylation activity.  
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Figure 1.4 
 

 
Figure 1.4: NAT1 mRNA of the Parent and Genetically Modified MDA-MB-231 Cell Lines 

Relative to Parent. 

NAT1 mRNA was quantitated in the 6 cell lines included in this study. The Parent and Scrambled 

cell lines express approximately the same level of NAT1 mRNA while NAT1 mRNA in the Down 

CRISPR 2-12, and CRISPR 2-19 cell lines is decreased by approximately 50%. NAT1 mRNA in 

the Up cell line is increased by approximately 400%. The CRISPR 5-50 cell line had very low 

levels of NAT1 mRNA. 

0

1

2

3

4

5

Parent
(Parental)

Scrambled
(Parental)

Down
(Decreased)

Up
(Increased)

CRISPR 2-12
(Decreased)

CRISPR 2-19
(Knockout)

CRISPR 5-50
(Knockout)

N
A

T1
 m

R
N

A
 R

el
at

iv
e 

to
 P

ar
en

t C
el

l L
in

e



 16 

invasion and metastasis, 5. limitless replicative potential, and 6. sustained angiogenesis118. A 

decade later Hanahan and Weinberg updated the hallmarks of cancer to add two new emerging 

hallmarks: 1. deregulating cellular energetics and 2. avoiding immune destruction119. Based on 

these hallmarks of cancer, the dysregulation of metabolism and energetics plays a crucial role in 

cancer risk and progression by enabling uncontrolled cell growth. A better understanding of the 

role NAT1 has in metabolism and cellular energetics could help lead to a better understanding of 

the connection between NAT1 and breast cancer. Given that NAT1 can catalyze the hydrolysis of 

acetyl-CoA, a central biochemical in metabolism and cellular energetics120-122, different levels of 

NAT1 are hypothesized to lead to observable differences in mitochondrial function, metabolites, 

and transcripts. Acetyl-CoA has a central role in fatty acid synthesis and degradation, ketone 

body and isoprenoid synthesis, and feeds into the citric acid cycle. 

Systems Biology Approach 

There are three concepts, 1. emergence, 2. robustness, and 3. modularity, that are 

necessary for understanding complex biological systems123. The first concept, emergence, states 

that complex systems display properties as a whole that cannot otherwise be predicted by 

studying individual parts. The second concept, robustness, states there are many diverse 

mechanisms in place for biological systems to maintain phenotypic stability when presented with 

perturbations whether through the environment, stochastic events or genetic variation. The final 

concept, modularity, states complex systems are divided into specialized modules allowing 

damage to be confined as well as robustness. In many studies of cancer and/or metabolism a 

reductionist approach, rather than a systems biology approach, is taken because studies of 

cancer biology and cellular metabolism are complex and can be difficult to interpret especially in 

multidimensional biological systems; however, a systems biology approach provides many 

advantages. Publications of systems biology studies has grown exponentially over the last 15 

years (by count of PubMed keyword “systems biology” search by year) as technologies and 

methods have developed and grown to allow complex global measurements (Figure 1.5). The 

first advantage of a systems biology approach is that there is less of a reliance on what is 

currently known than with a reductionist approach, facilitating the identification of previously 
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Figure 1.5 
 

 
Figure 1.5: Systems Biology Publications by Year.  

Systems biology publications have grown exponentially over the last 15 years. The first 

publication on “systems biology” was in 1988. Publication count by year with keyword “systems 

biology” was downloaded from PubMed on 07/03/2018. Years 1988-2017 are plotted.
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unknown cellular reactions or metabolic functions. A second advantage of a systems biology 

approach is that when combined with omics technologies, valuable data on the flow of information 

in biological systems can be discerned by studying the interactions between different components 

of the system124. A systems biology approach was therefore utilized in an attempt to decipher the 

role of NAT1 in breast cancer cell metabolism. The systems biology approach utilized in this 

dissertation was three pronged, integrating bioenergetics, metabolomics, and transcriptomics with 

an added genomics dimension (by using the newly constructed MDA-MB-231 cell lines that vary 

only in NAT1) to gain a global view of the role of NAT1 in metabolism and cellular energetics 

(Figure 1.6).  

Combining Datasets 

A comprehensive understanding of a specific biological system cannot be accurately 

predicted by that system’s individual parts, even with full understanding of the parts alone124. 

Combining information from bioenergetics, metabolomics, and transcriptomics experiments 

allows a holistic systems biology view of metabolism in samples that vary only in NAT1. 

Integrating all three datasets allows maximization of observations of the system at different points 

of regulation and varying complexities. Utilizing a systems biology approach has many 

advantages: 1. confidence in conclusions in increased because of the overlap in data at multiple 

levels of regulation and 2. combining multiple omics techniques can help overcome the limitations 

of a specific omics technique. One potential limitation of these studies is the complexity of 

metabolism; metabolism is very highly regulated but many of the regulation mechanisms are 

either poorly understood or undefined.  

Dissertation Aims 

 Given human NAT1 both hydrolyzes acetyl-CoA and utilizes acetyl-CoA as a cofactor in 

metabolic reactions, increased and decreased levels of NAT1 are hypothesized to contribute to 

reprogramming of cellular metabolism by altering the levels of free acetyl-CoA. Increased NAT1 

activity would lead to increased hydrolysis of acetyl-CoA and/or increased use of acetyl-CoA for 

acetylation, therefore less free acetyl-CoA would be available. Conversely, decreased NAT1 

activity would lead to decreased hydrolysis of acetyl-CoA and/or decreased use of acetyl-CoA for 
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Figure 1.6 

 

 
Figure 1.6: Systems Biology Approach. 

The work presented in this dissertation utilizes a systems biology approach with four layers. The 

first layer consists of the six genetically modified MDA-MB-231 cell lines whose only genetic 

difference (theoretically) is in NAT1. The second, third, and fourth layers are bioenergetics, 

metabolomics, and transcriptomics measurements of the constructed cell lines and represent 

Specific Aim 1, Specific Aim 2. and Specific Aim 3, respectively. Progressing from the genome to 

the transcriptome to the proteome to the metabolome, regulatory mechanisms as well as 

complexity increase.
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acetylation, therefore more free acetyl-CoA would be available (Figure 1.7). As discussed above, 

acetyl-CoA is involved in many cellular pathways, such as fatty acid synthesis and the citric acid 

cycle (TCA), which produce important membrane lipids and substrates for cellular energy 

metabolism125. Cancer cells characteristically exhibit rapid, uncontrolled growth therefore 

requiring increased levels of energy and cellular components when compared to normal cells. 

Although, the exact mechanism by which cellular metabolism is reprogrammed remains unclear, 

it is likely specific to each cancer and is also influenced by a combination of factors. Varying 

levels of NAT1 N-acetylation activity in the MDA-MB-231 breast cancer cell line are predicted to 

lead to measurable changes in bioenergetics, metabolite abundances, and transcripts. The 

overall goal of this dissertation is to evaluate the effect of varying levels of NAT1 on breast cancer 

cell metabolism via a systems biology approach. The Specific Aims of this project are: 

Aim 1: To identify bioenergetic changes induced by altering the levels of human NAT1 

through mitochondrial stress test profiling using the Seahorse XF24 Bioanalyzer. 

Varying levels of NAT1 are expected to lead to differences in mitochondrial energetics 

since acetyl-CoA is central to energy metabolism.  

Aim 2: To identify metabolic changes induced by altering the levels of human NAT1 

through a comprehensive untargeted metabolomics approach. 

Differing levels of acetyl-CoA are predicted to lead to differences in the abundances of 

metabolites found in the fatty acid synthesis and amino acid degradation pathways. We 

additionally predict the abundance of total fatty acids and energy metabolism intermediate 

subclasses of metabolites will be altered when compared to samples of cells with ‘parental’ levels 

of NAT1 activity. 

Aim 3: To identify differential changes in gene expression induced by altering the levels 

of human NAT1 through a RNA-seq analysis of the transcriptome. 

The expression profile of genes involved in acetyl-CoA containing pathways are expected 

to be differentially expressed. Given metabolism is highly regulated we expect altered acetyl-CoA 

levels will have an effect on the genes that encode proteins/enzymes that utilize acetyl-CoA. The 



 21 

Figure 1.7 
 

 
Figure 1.7: Dissertation Hypothesis. 

The overall hypothesis and rationale for this dissertation is that cell lines with decreased levels or 

knockout NAT1 will have increased free acetyl-CoA since those cell lines have less NAT1 to 

hydrolyze acetyl-CoA; Conversely, the cell line with increased NAT1 will have decreased free 

acetyl-CoA since that cell line has more NAT1 to hydrolyze acetyl-CoA. These differences in free 

acetyl-CoA are hypothesized to lead to alterations in cellular pathways/metabolism when 

compared to the cell line with basal NAT1 that can be measured by global bioenergetics, 

metabolomics, and transcriptomics experiments.
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data collected in this aim will build upon the data generated in Specific Aim 2 by collecting 

complementary transcriptomics data from the same biological samples. Differences in the 

expression of genes involved in fatty acid and membrane lipid synthesis are expected because 

cancer cells have an increased demand for these cellular building blocks.  

Significance 

This study is the first to investigate the effect of varying human NAT1 activity on the 

bioenergetics profile, metabolome, and transcriptome of a breast cancer cell line. Methods for the 

evaluation of the bioenergetic profile of living cells in real-time have recently been developed to 

identify fluxes in energy pathways and have yet to be utilized when studying the effect varying 

levels of NAT1 have on breast cancer cells. The omics disciplines have developed into an 

extremely beneficial and information-rich area of research but have been under-utilized in 

research on human NAT1. Analysis of metabolomics and transcriptomics data can help reveal 

what pathways are altered as a result of varying levels of NAT1 activity thus providing insights 

about NAT1’s effect on cellular metabolism and into the role of NAT1 in breast cancer disease 

and progression. A greater understanding of the role of NAT1 in breast cancer could lead to 

better detection and treatment methods and impact the development of drugs that target NAT1. 
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CHAPTER 2

 

NAT EXPRESSION IN ESTABLISHED BREAST CANCER CELL LINES & BREAST TISSUES 

 

Background 

Based on limited data, it has been hypothesized that NAT2 expression is very low in 

breast tissue and negligible in comparison to NAT1 expression. However, a more comprehensive 

evaluation of NAT1 and NAT2 co-expression in breast tissues and established breast cancer cell 

lines is needed. Additionally, while many studies have reported an association between NAT1 

and ESR1 expression85-91, NAT2 and ESR1 association has not been evaluated even though 

NAT1 and NAT2 are isozymes that have overlapping substrate specificities and very similar 

protein structure. There are many publicly available data repositories of cancer samples that offer 

a wealth of gene expression data. These data repositories have been under-utilized in NAT 

research.  

Materials and Methods 

Acquisition of publicly available data from the Cancer Cell Line Encyclopedia (CCLE) and 

TCGA data repositories 

RNA expression (RNA-Seq) data for ESR1, NAT1 and NAT2 in established breast cancer 

cell lines were accessed on 8/11/17 (n=57) from the CCLE126; RNA expression values were 

reported in Reads Per Kilobase of transcript per Million mapped reads (RPKM). A total of 15 

breast cancer cell lines had no detectable NAT2 gene expression. Data from TCGA127 for the 

breast invasive carcinoma (BRCA) cohort were accessed on 2/4/18 (primary breast tumor tissue, 

n=1,043; normal breast tissue, n=99) via FirebrowseR128, an R client to the Broad Institute’s 

RESTful Firehose Pipeline; RNA expression values were reported in RNA-Seq by Expectation-



 

 24 

Maximization (RSEM). A total of 59 of the breast tumor samples and seven of the normal tissue 

samples did not have gene expression data for NAT2. 

Established breast cancer cell lines analyzed 

The following breast cancer cell lines were analyzed in this study: AU565, BT-20, BT-

474, BT-483, BT-549, CAL-120, CAL-148, CAL-51, CAL-85-1, CAMA-1, DU4475, EFM-19, EFM-

192A, HCC1143, HCC1187, HCC1395, HCC1419, HCC1428, HCC1500, HCC1569, HCC1599, 

HCC1806, HCC1937, HCC1954, HCC202, HCC2157, HCC2218, HCC38, HCC70, HDQ-P1, 

HMC-1-8, HMEL, Hs 274.T, Hs 281.T, Hs 343.T, Hs 578.T, Hs 606.T, Hs 739.T, Hs 742.T, JIMT-

1, KPL-1, MCF-7, MDA-MB-134-VI, MDA-MB-157, MDA-MB-175-VII, MDA-MB-231, MDA-MB-

361, MDA-MB-415, MDA-MB-436, MDA-MB-453, MDA-MB-468, SK-BR-3, T-47D, UACC-812, 

UACC-893, ZR-75-1 and ZR-75-30. 

Statistical analyses 

Shapiro-Wilk tests were conducted to determine if the expression of the genes under 

study were approximately normally distributed. Significant evidence of departures from 

approximate normality was observed; therefore, non-parametric statistical techniques were 

employed for subsequent analyses. Spearman’s correlation was used to evaluate the RNA 

expression levels between gene pairs (i.e. ESR1 and NAT1, ESR1 and NAT2, NAT1 and NAT2). 

Differences in the mRNA expression levels of NAT1 and NAT2 in each dataset, and differences in 

RNA expression between primary breast tumor samples and normal breast tissue samples, were 

evaluated using the Wilcoxon Rank-Sum test; median values were compared to determine fold-

differences.  

RNA expression data for each gene were stratified by ER status (+ or -) as defined in the 

literature129-131 for the CCLE data, or as determined by immunohistochemistry during sample 

collection and cataloging for TCGA data. Differences in gene expression following stratification 

were evaluated using Wilcoxon Rank-Sum tests for each gene; median values were compared to 

determine fold-differences. A total of 10 of the breast cancer cell lines had either conflicting or 

unknown ER status in the literature.  
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Wakefield et al published the NAT1 PABA N-acetylation activities of seven (ZR-75-1, 

T47D, MCF-7, MDA-MB-453, MDA-MB-436, MDA-MB-231 and CAL-51) of the 57 breast cancer 

cell lines included in the present study88. The association between previously reported NAT1 

activity and NAT1 RNA expression data for the same cell lines in the CCLE repository was 

evaluated. All statistical analyses were performed in R: A Language and Environment for 

Statistical Computing, version 3.4.2132. 

Results 

Association between NAT1 & ESR1, NAT2 & ESR1, and NAT1 & NAT2 

NAT1 RNA and ESR1 RNA were significantly correlated (P<0.0001 for all) at moderately 

high magnitudes in breast cancer cell lines (Spearman rho r=0.59; Figure 2.1A and B), human 

primary breast tumors (r=0.59; Figure 2.1C and D) and normal breast tissue (r=0.57; Figure 2.1E 

and F). A significant (p<0.005 for all) association between ESR1 and NAT2 expression was 

observed, although the magnitude of the association was low and varied across datasets. The 

primary breast tumor dataset exhibited the weakest association (r=0.16; Figure 2.1C and D), 

whereas the normal breast tissue (r=0.38; Figure 2.1E and F) and breast cancer cell line (r=0.39; 

Figure 2.1A and B) datasets exhibited similar, albeit low, association. Strong evidence of an 

association (p<0.0001 for all) between NAT1 RNA and NAT2 RNA levels was observed in all 

three datasets, with moderately high magnitude in the breast cancer cell lines (r=0.64; Figure 

2.1A and B). The primary breast tumor and normal breast tissue datasets exhibited 

interdependence similar to each other (r=0.43 and 0.46, respectively; Figures 2.1C-F); however, 

the association was lower than that observed in the breast cancer cell lines.  

Comparison of NAT1 & NAT2 expression 

NAT1 RNA expression in breast cancer cell lines, primary breast tumors, and normal 

breast tissue was significantly higher compared with NAT2 expression by 33-, 222- and 52-fold, 

respectively (p<0.0001 for all; Figure 2.2A-C). NAT1 expression was higher than NAT2 

expression in all 57 breast cancer cell lines tested, with the exception of the UACC-893 cell line, 

which expressed the highest NAT2 RNA of any of the breast cancer cell lines analyzed. A total of 

15 of the 57 breast cancer cell lines (MDA-MB-134-IV, CAL-120, DU4475, MCF-7, JIMT-1, Hs  
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Figure 2.1 
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Figure 2.1: Scatterplot and correlation matrices for NAT1, NAT2, and ESR1.  

Associations between NAT1, NAT2, and ESR1 RNA expression were analyzed in breast cancer cell lines, primary breast tumor tissue, and normal 

breast tissue using the Spearman method. In the scatterplot matrices, each open circle represents a single sample and is color-coded according to 

ER status; pink circles, ER− samples; blue circles, ER+ samples; black circles, samples with unknown ER status. In the association matrices, 

boxes are labeled with the Spearman correlation coefficient (ρ) for each comparison and color reflects strength of association; dark blue 

represents high association, light blue represents low association, and white represents no association. (A) Scatterplot matrix of the association 

between NAT1, NAT2 and ESR1 RNA expression in breast cancer cell lines (n=57). (B) Correlation matrix between NAT1, NAT2 and ESR1 RNA 

expression in breast cancer cell lines (n=57). (C) Scatterplot matrix of the association between NAT1, NAT2 and ESR1 RNA expression in primary 

breast tumor samples (n=1,043 for NAT1 vs. ESR1, n=984 for NAT1 vs. NAT2 and NAT2 vs. ESR1). (D) Correlation matrix between NAT1, NAT2, 

and ESR1 RNA expression in primary breast tumor samples (n=1,043 for NAT1 vs. ESR1, n=984 for NAT1 vs. NAT2 and NAT2 vs. ESR1). (E) 

Scatterplot matrix of the association between NAT1, NAT2 and ESR1 RNA expression in normal breast tissue samples (n=99 for NAT1 vs. ESR1, 

n=92 for NAT1 vs. NAT2 and NAT2 vs. ESR1). (F) Correlation matrix between NAT1, NAT2 and ESR1 RNA expression in normal breast tissue 

samples (n=99 for NAT1 vs. ESR1, n=92 for NAT1 vs. NAT2 and NAT2 vs. ESR1). ER, estrogen receptor; ESR1, estrogen receptor 1; NAT1, 

arylamine N-acetyltransferase 1; NAT2, arylamine N-acetyltransferase 2. 
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Figure 2.2 
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Figure 2.2: NAT1 and NAT2 RNA expression in breast cancer cell lines, primary breast tumor samples, and normal breast tissue 

samples.  

Differences in gene expression between NAT1 and NAT2 in breast cancer cell lines, primary breast tumor tissue and normal breast tissue were 

statistically evaluated by Wilcoxon rank-sum test; ***p<0.001. Each dot represents a single sample and is color-coded according to ER status; pink 

dots, ER− samples; blue dots, ER+ samples; black dots, samples with unknown ER status. In the boxplots, the solid black line represents the 

median, the upper hinge represents the 75th quartile and the lower hinge represents the 25th quartile. The upper whisker represents the largest 

observation less than or equal to the upper hinge + 1.5 x IQR, the lower whisker represents the smallest observation greater than or equal to the 

lower hinge - 1.5 x IQR. (A) NAT1 RNA expression was significantly higher than NAT2 RNA expression in the breast cancer cell lines. (B) NAT1 

RNA expression was significantly higher than NAT2 RNA expression in the primary breast tumor samples. (C) NAT1 RNA expression was 

significantly higher than NAT2 RNA expression in the normal breast tissue samples. ER, estrogen receptor; IQR, interquartile range; NAT1, 

arylamine N-acetyltransferase 1; NAT2, arylamine N-acetyltransferase 2; RPKM, reads per kilobase of transcript per million mapped reads; 

RSEM, RNA-Seq by Expectation-Maximization. 
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281.T, KPL-1, Hs 606.T, HCC70, EFM-19, CAL-148, HCC1569, HMC-1-8, HCC1599 and 

HCC1395) had no reported NAT2 RNA expression, whereas all 57 reported NAT1 RNA 

expression. The KPL-1 breast cancer cell line has been reported to be contaminated/misidentified 

and to be an MCF-7 derivative133. 

In TCGA dataset, normal breast tissue samples were collected from patients in which 

primary breast tumor samples were also collected (but only for 99 individuals), allowing 

comparison of gene expression between normal breast tissue and primary tumor breast tissue 

within single individuals. In the primary breast tumor samples, only nine of the 984 samples had 

higher NAT2 RNA expression than NAT1; of those nine samples, two were ER+ and seven were 

ER–, and only one sample had a corresponding normal breast tissue sample. Notably, in that 

individual’s normal breast tissue sample, NAT2 RNA expression was not higher than NAT1 RNA 

expression. In the normal breast tissue samples, only one of the 92 samples had higher NAT2 

RNA expression than NAT1; the corresponding primary breast tumor sample from the same 

patient had lower NAT2 than NAT1.  

Comparison of gene expression between ER+ and ER- samples 

ESR1 and NAT1 gene expression were significantly increased, 86- and 2.6-fold, 

respectively, in ER+ breast cancer cell lines (p<0.0001 for both; Figure 2.3A), whereas NAT2 

gene expression did not significantly vary between ER+ and ER- breast cancer cell lines (p>0.05; 

Figure 2.3A). Of the breast cancer cell lines with ER status defined in the literature129-131, a 

connection between ESR1 RNA expression and the reported ER status was observed. In the 

dataset, it was observed that samples with ESR1 RNA expression <1.7 RPKM were defined as 

ER- in the literature, whereas samples with ESR1 expression >2.3 RPKM were defined as ER+ in 

the literature. The expression levels of all three genes were significantly higher in ER+ primary 

breast tumor samples (p<0.0001 for all; Figure 2.3B); however. the fold-change between NAT2 

expression in ER+ and ER- samples was smaller (1.8-fold difference) than for NAT1 and ESR1. 

In comparison, ESR1 and NAT1 were ~108- and 27-fold higher, respectively. The expression 

levels of genes were not significantly different between ER+ and ER- normal breast tissue  
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Figure 2.3 
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Figure 2.3: ESR1, NAT1 and NAT2 RNA expression in breast cancer cell lines, primary 

breast tumor samples, and normal breast tissue stratified by ER status.  

Differences in the expression levels of ESR1, NAT1 and NAT2 genes in breast cancer cell lines, 

primary breast tumor tissue, and normal breast tissue stratified by ER status were evaluated by 

Wilcoxon rank-sum test; ***p<0.001; NS, not significant. Boxplots are color-coded according to ER 

status; pink boxplots, ER− samples; blue boxplots, ER+ samples. In the boxplots, the solid black 

line represents the median, the upper hinge represents the 75th quartile and the lower hinge 

represents the 25th quartile. The upper whisker represents the largest observation less than or 

equal to the upper hinge + 1.5 x IQR, the lower whisker represents the smallest observation 

greater than or equal to the lower hinge - 1.5 x IQR. (A) ESR1 and NAT1 RNA expression were 

significantly higher in ER+ breast cancer cell lines compared with ER− breast cancer cell lines. 

NAT2 RNA expression was not significantly different in ER+ breast cancer cell lines compared 

with ER− breast cancer cell lines. A total of 10 cell lines had either conflicting reports or no 

available data for ER status in the literature and were excluded from the analysis. (B) ESR1, 

NAT1 and NAT2 RNA expression were significantly higher in ER+ samples compared with ER− 

samples in the primary breast tumor dataset. (C) ESR1, NAT1 and NAT2 RNA expression levels 

were not significantly different in ER+ samples compared with ER− samples in the normal breast 

tissue dataset. ER, estrogen receptor; IQR, interquartile range; ESR1, estrogen receptor 1; 

NAT1, arylamine N-acetyltransferase 1; NAT2, arylamine N-acetyltransferase 2; RPKM, reads 

per kilobase of transcript per million mapped reads; RSEM, RNA-Seq by Expectation-

Maximization. 
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samples (p>0.05 for all; Figure 2.3C). Most of the breast cancer cell lines were ER-, whereas 

most of the primary breast tumor and normal breast tissue samples were ER+.  

Comparison of NAT1, NAT2, and ESR1 gene expression between normal breast tissue 

and primary breast tumors 

Differences in gene expression between normal breast tissue and primary breast tumor tissue 

were evaluated for each gene, ESR1, NAT1, and NAT2. More spread was observed in the 

primary breast tumor samples compared with the normal breast tissue samples for each gene. 

ESR1 and NAT1 gene expression were significantly elevated 2.5- and 5.9-fold, respectively, in 

primary breast tumor samples compared with normal breast tissue samples (p<0.0001 for both; 

Figure 2.4). NAT2 expression was also significantly higher in primary breast tumor samples 

compared with normal breast tissue samples, but at a lower significance and fold-change (1.4-

fold) than ESR1 and NAT1 (p<0.05; Figure 2.4) 

Relationship between previously reported NAT1 N-acetylation activity and NAT1 RNA expression.  

NAT1 N-acetylation activity previously reported in the literature and NAT1 RNA 

expression in seven of the 57 breast cancer cell lines were significantly associated (p<0.05) with 

a high magnitude (r=0.89; Figure 2.5).  

Co-expression of NAT1 and NAT2 RNA expression in established breast cancer cell lines 

Co-expression profiles of NAT1 and NAT2 RNA for each established breast cancer cell 

line included in this study are presented in Figure 2.6. Of all the cell lines included in the present 

study, the UACC-893 cell line expressed the highest level of NAT2 RNA, whereas the HCC1500 

cell line expressed the highest level of NAT1 RNA. The ZR-75-1 cell line expressed high levels of 

both NAT1 and NAT2 RNA, whereas the HCC1395 cell line expressed low levels of both. 

Discussion 

The present study analyzed established breast cancer cell lines and samples from 

patients with breast cancer to evaluate the extent to which breast cancer cell lines serve as 

appropriate models for NAT1, NAT2 and ESR1 expression in breast tumors. Overall, the present 

findings demonstrated a strong association between NAT1 and ESR1 expression, which is in 

agreement with previous reports that NAT1 and ESR1 are positively associated85-91, and this 
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Figure 2.4 

 
Figure 2.4: Comparison of ESR1, NAT1 and NAT2 RNA expression in normal breast tissue 

and primary breast tumor samples.  

Differences in gene expression of ESR1, NAT1 and NAT2 in normal breast tissue and primary 

breast tumor tissue were evaluated by Wilcoxon rank-sum test; ***p<0.001; *p<0.05. Boxplots are 

color-coded according to tissue type; green boxplots, normal breast tissue samples; blue 

boxplots, primary breast tumor samples. In the boxplots, the solid black line represents the 

median, the upper hinge represents the 75th quartile and the lower hinge represents the 25th 

quartile. The upper whisker represents the largest observation less than or equal to the upper 

hinge + 1.5 x IQR, the lower whisker represents the smallest observation greater than or equal to 

the lower hinge - 1.5 * IQR. For all genes, more spread was observed in data from the primary 

breast tumor samples compared with the normal breast tissue samples. ESR1 and NAT1 gene 

expression were significantly elevated in primary tumor tissue compared with normal breast 

tissue. NAT2 expression was also significantly higher in primary tumor tissue compared with 

normal breast tissue, but at a lower significance than ESR1 and NAT1. IQR, interquartile range; 

ESR1, estrogen receptor 1; NAT1, arylamine N-acetyltransferase 1; NAT2, arylamine N-

acetyltransferase 2; RSEM, RNA-Seq by Expectation-Maximization.
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Figure 2.5 

 
Figure 2.5 Association between NAT1 RNA expression and previously reported NAT1 N-

acetylation activity in seven established breast cancer cell lines.  

NAT1 RNA expression from Cancer Cell Line Encyclopedia and previously reported NAT1 N-

acetylation activity88 in seven breast cancer cell lines were significantly associated (p<0.05; 

ρ=0.89). Dots represent a single cell line and are color-coded according to ER status: Pink dots, 

ER− samples; blue dots, ER+ samples. ER, estrogen receptor; NAT1, arylamine N-

acetyltransferase 1; NAT2, arylamine N-acetyltransferase 2; PABA, p-aminobenzoic acid; RPKM, 

reads per kilobase of transcript per million mapped reads. 
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Figure 2.6 
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Figure 2.6: NAT1 and NAT2 association in breast cancer cell lines.  

Association between NAT1 and NAT2 RNA expression was analyzed in breast cancer cell lines (each labeled in this figure). Each dot represents a 

single breast cancer cell line and is color-coded according to ER status; pink dots, ER− samples; blue dots, ER+ samples; black dots, samples 

with unknown or conflicting ER status in the literature. NAT1 and NAT2 RNA expression was significantly associated in breast cancer cell lines 

(p<0.0001, ρ= 0.64).
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association was observed in all three sample types at approximately the same magnitude. These 

findings suggested that breast cancer cell lines may accurately reflect this relationship and 

provide a useful model for further research into the relationship. It is well known that ESR1 

expression is frequently altered in breast cancer; therefore, the decrease in association between 

NAT2 and ESR1 in primary breast tumors compared with in normal breast tissue samples and 

established breast cancer cell lines may be due to more dysregulation of ESR1 than NAT2 in 

primary breast tumors. The results of an analysis between NAT2 and ESR1 expression 

suggested that, while NAT2 and ESR1 are associated, the magnitude is low.  

Interdependence between NAT1 and NAT2 expression was moderately high in the breast 

cancer cell line dataset, but substantially lower in the primary breast tumor and normal breast 

tissue datasets. Additionally, the strength of the association between NAT1 and NAT2 in the 

breast cancer cell line dataset was similar to the strength of the association observed between 

NAT1 and ESR1 in that dataset; however, in the primary breast tumor and normal breast tissue 

datasets, the association between NAT1 and NAT2 was lower. These findings suggested that 

breast cancer cell lines may over-represent the interdependence between NAT1 and NAT2, and 

not fully replicate the relationship observed in primary breast tumors or normal breast tissue.  

In the breast cancer cell line data there appears to be a cut-off (between 1.7 and 2.3 RPKM) 

linking ESR1 RNA expression and the reported ER status of the breast cancer cell lines. This 

may provide a method to predict the ER status of breast cancer cell lines that currently have 

conflicting or unknown ER status in the literature. Using that method, it may be predicted that the 

HCC1500 and HCC1419 cell lines are ER+, whereas the HMC-1-8, Hs 742.T, Hs 343.T, Hs 

739.T, HMEL, Hs 274.T, Hs 281.T and Hs 606.T cell lines are ER-. Notably, although 67-82% of 

breast cancers are ER+134 and most of the primary breast tumor samples were ER+, the majority 

of established breast cancer cell lines are ER-.  

NAT1 and NAT2 RNA expression were reported in almost all samples included in the 

present study, which concurs with published results that have detected NAT1 and NAT2 mRNA 

by RT-PCR in human mammary tissue in smaller cohorts13,14,96. NAT1 RNA expression was 

significantly higher than NAT2 RNA expression in the breast cancer cell lines, primary breast 
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tumor samples and normal breast tissue. In addition, with only a few exceptions, NAT1 RNA 

expression was always higher than NAT2 RNA expression in matched samples from the breast 

cancer cell line, primary breast tumor sample and normal breast tissue sample datasets, thus 

supporting previous findings that indicated NAT1 transcripts were 2- to 3-fold higher than NAT2 

transcripts in human mammary tissues135. The UACC-893 cell line, the only breast cancer cell 

line observed in this study to express higher NAT2 RNA than NAT1 RNA, is an ER- and 

progesterone receptor-negative cell line that has a ~20-fold amplification of the human epidermal 

growth factor receptor 2/neu oncogene sequence. Further study of this cell line may aid in the 

identification of additional regulatory mechanisms of NAT1 and/or NAT2, since it expresses a 

unique profile of NAT1 and NAT2 compared with the other breast cancer cell lines. 

While NAT1 expression was reported in all 57 breast cancer cell lines in the present 

study, 15 of those breast cancer cell lines had no reported NAT2 RNA expression (Figure 2.6). 

The cell lines with no detected NAT2 RNA are plotted at ~-6.6 log2 RPKM NAT2. One of those 15 

cell lines, MCF-7, has been reported to express NAT2 RNA96,136 albeit at very low levels. One 

reason for the difference in observation between this study and the previous studies may be that 

the detection threshold for NAT2 was higher when measured by RNA-Seq for the CCLE dataset 

than in the previous studies. Additionally, in the previous studies that detected NAT2 RNA in the 

MCF-7 breast cancer cell line, NAT1 RNA was not measured at the same time; therefore, direct 

comparisons of the NAT isozymes was not possible. To the best of our knowledge, NAT2 RNA 

expression has not been investigated in any of the other 56 breast cancer cell lines until this 

study. The results of this study indicated that NAT2 may be expressed in breast tissues and 

expression should be considered when studying NAT1, due to their overlapping substrate 

specificities and the high degree of structural similarity. 

In normal breast tissue samples no significant difference in gene expression for ESR1, 

NAT1 and NAT2 was observed when data were stratified by ER status. However, in the primary 

breast tumor samples and in the breast cancer cell lines, ESR1 and NAT1 exhibited increased 

expression in the ER+ samples compared with in the ER- samples. NAT2 RNA expression did 

not significantly vary in breast cancer cell lines when comparing ER+ and ER- samples, but was 
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significantly increased in ER+ primary breast tumor samples compared with ER- primary breast 

tumor samples, although the difference was small. This finding suggested that the dysregulation 

of NAT1 and ESR1 during tumorigenesis may share similar mechanisms; however, NAT2 does 

not. 

 ESR1, NAT1 and NAT2 RNA expression were each increased in primary breast tumor 

samples compared with normal breast tissue samples although the significance and fold-change 

of NAT2 were smaller than that of ESR1 and NAT1. Additionally, for all genes, more widely 

spread expression was observed in the primary breast tumor samples compared with normal 

breast tissue. These data suggested that expression of all three genes may become modified 

during breast cancer tumorigenesis; however, the expression of NAT1 and ESR1 appear to be 

dysregulated to a greater extent. As recently reviewed95, the role of NAT2 in breast cancer 

etiology is considered to be due to its effects on carcinogen metabolism. The present study 

suggested that the role of NAT2 in breast cancer is less likely a product of cell transformation, as 

the expression levels of NAT2 between normal and tumor tissues exhibited smaller variance than 

the expression levels of NAT1 and ESR1.  

NAT1 N-acetylation activity has been reported in normal breast tissue and breast tumor 

tissue13,14,96-99, whereas NAT2 N-acetylation activity has not been observed as consistently; when 

NAT2 activity is observed, the activity is much lower than that of NAT1 activity13,97,98. Wakefield et 

al profiled NAT1 expression and activity in seven breast cancer cell lines (MCF-7, T47D, ZR-75-1, 

Cal51, MDA-MB-231, MDA-MB-437 and MDA-MB-453); NAT1 mRNA and activity was observed 

in all seven cell lines88; however, NAT2 mRNA and activity were not co-investigated. The high 

degree of association between the previously reported NAT1 N-acetylation activity and the NAT1 

RNA expression of the same seven breast cancer cell lines suggested that NAT1 RNA 

expression is highly reflective of NAT1 N-acetylation activity. mRNA expression is not always 

predictive of enzyme activity, due to the numerous regulatory mechanisms that can occur 

between RNA expression and protein function; however, these results suggested that RNA 

expression of NAT1 may serve as an appropriate predictor of NAT1 N-acetylation activity. Further 

studies with an increased number of breast cancer cell lines in which NAT1 N-acetylation activity 
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has been measured are required to confirm this hypothesis. Additionally, further studies are 

required to determine the association between NAT2 RNA expression and NAT2 N-acetylation 

activity. 

Summary and Conclusions 

 The CCLE and TCGA repositories offer a wealth of publicly available data. The present 

study utilized this data to analyze and annotate the previously undefined relationships between 

NAT1, NAT2 and ESR1 in breast cancer cell lines, primary breast tumors and normal breast 

tissue. The results demonstrated that NAT1 and NAT2 RNA were expressed in normal breast 

tissue and primary breast tumor tissue; however, NAT1 RNA expression was much higher than 

NAT2. The expression of NAT1 and NAT2 were found to be associated; however, the magnitude 

was lower than that observed between NAT1 and ESR1 in the primary breast tumors and normal 

breast tissue. Additionally, although the association between NAT1 and NAT2 was slightly 

exaggerated in the breast cancer cell line dataset, the cell lines generally reflected the NAT1 and 

NAT2 expression profiles of the primary breast tumors investigated. The present study 

demonstrated that while NAT1 and ESR1 expression were moderately associated in all datasets 

included in this study, NAT2 and ESR1 expression were associated at a lower magnitude, 

particularly in the primary breast tumor samples. 

 NAT1 and ESR1 expression were increased in primary breast tumor samples compared 

with normal breast tissue samples and were increased in ER+ primary breast tumors compared 

with ER- primary breast tumors. NAT2 expression was slightly increased in primary breast tumor 

samples compared with normal breast tissue samples and in ER+ primary breast tumors 

compared with ER- primary breast tumors. Although NAT1 and NAT2 are both implicated in 

breast cancer, the majority of previous breast cancer studies have investigated each isozyme 

individually. The present study suggested that both isozymes should be considered in each study, 

since both are expressed in breast tissues. Defining the association between NAT1, NAT2 and 

ESR1 is of great importance, as modification of NAT1 is currently being studied for breast cancer 

prevention81,82,137,138.  
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CHAPTER 3

 

BIOENERGETICS 

 

Background 

Defects in mitochondrial metabolism have been linked to cancer (reviewed in 139) and are 

increasingly recognized as contributors, not only to the deregulation of cellular energetics, but 

also as contributors to tumorigenesis. Bioenergetics evaluation provides a method to investigate 

mitochondrial function in living cells140. By utilizing real-time profiling of the oxygen consumption 

rate (OCR) and extracellular acidification rate (ECAR) as well as sequential injection of 

compounds that inhibit specific portions of the electron transport chain, mitochondrial evaluation 

can be conducted141. Oxygen consumption rate is a proxy measurement for cellular respiration 

while extracellular acidification rate is a proxy measurement for glycolysis allowing us to probe 

mitochondrial energetics. One can measure and quantify multiple mitochondrial parameters such 

as basal OCR, ATP-linked OCR, proton leak, maximum mitochondrial capacity, and reserve 

capacity142. Although it is known that NAT1 can catalyze the hydrolysis of acetyl-CoA using folate 

as a cofactor, the implications of this NAT1-catalyzed reaction in cellular energetics remains to be 

investigated. Measuring bioenergetics in the MDA-MB-231 cell lines we have constructed to vary 

only in NAT1 activity allows evaluation of how varying levels of NAT1 impact mitochondrial 

function.  

Materials and methods 

The Seahorse XF24 Analyzer (Agilent Technologies, Santa Clara, CA) was utilized to 

interrogate differences in mitochondrial cellular metabolism via oxygen consumption rate (OCR) 

and extracellular acidification rate (ECAR) measurements of live cells. All cell lines were cultured 
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in high-glucose Dulbecco's Modified Eagle Medium (DMEM), with 10% fetal bovine serum, 5% 

glutamine, and 5% penicillin/streptomycin added.  

 Twenty-four hours prior to each bioenergetics experiment, 100 μL of cell suspension from 

each cell line was plated in quadruplicate in a 24-well Seahorse XF24 cell culture microplate at a 

density of 40,000 cells per well, thus giving four biological replicates for each cell line. 

Additionally, four wells contained medium only for background correction purposes. To minimize 

the edge effects of plating and to ensure a monolayer of cells was formed on the bottom of the 

well, microplates were left in the cell culture hood at room temperature for one hour before being 

placed in a 37°C, 5% CO2 incubator. After cells had adhered to the plate (three hours after 

placing in the incubator), 150 μL of medium was added to each well and cells were allowed to 

grow overnight. One hour prior to the experiment, medium was aspirated from each well and 

replaced with 675 μL Seahorse running medium. Seahorse running medium consisted of 8.3 

grams/liter of Dulbecco’s Modified Eagle’s Medium (DMEM) base without glucose, L-glutamine, 

phenol red, sodium pyruvate and sodium bicarbonate (Sigma, St. Louis, MO), and 1.85 g NaCl 

per liter, glucose added to a final concentration of 25 mM, sodium pyruvate added to a final 

concentration of 1 mM, and 10 mL/liter of 100 x Glutamax-1 added, all at pH 7.4. Microplates 

were then incubated for one hour in a non-CO2 37 °C incubator. The XF24 sensor cartridge was 

hydrated overnight in XF calibrant solution in a non- CO2 37 °C incubator.  

 Before each experiment, solutions of compounds to be loaded in the ports of the sensor 

cartridge were freshly made from stock solutions. Selected compounds inhibit specific portions of 

the mitochondrial electron transport chain to allow the elucidation of several different 

measurements of mitochondrial function141. Seventy-five microliters of 15 μM Oligomycin (ATP 

synthase inhibitor) was loaded into port A of the sensor cartridge, eighty-three microliters of 5 μM 

carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP; mitochondrial inner membrane 

uncoupler) was loaded into port B of the sensor cartridge, and ninety-two microliters of 10 μM 

Antimycin A (complex III inhibitor) and 2 μM Rotenone (complex I inhibitor) was loaded into port C 

of the sensor cartridge. For background correction wells seahorse running media was loaded into 

each port in place of the compound solutions. The sensor cartridge was then loaded into the 
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Seahorse XF24 analyzer and calibrated. Once calibration of the sensor cartridge was complete, 

the microplate was loaded into the machine and the experiment was started. Timed sequential 

injections of Oligomycin, FCCP, and Antimycin A/Rotenone occurred at 35, 50, and 64 minutes, 

respectively. 

 Six independent experiments were conducted (Figure 3.1). Each experiment consisted of 

four biological replicates for each of the cell lines. Baseline OCR, Baseline ECAR, Baseline 

OCR/ECAR, ATP-Linked OCR, Reserve Capacity, Coupling Efficiency, Proton Leak, Glycolytic 

Reserve, Maximum Mitochondrial Capacity, and Non-Mitochondrial Respiration were calculated 

as described in Table 3.1 following each experiment141,143. Results from each independent 

experiment were summarized as mean ± SEM from four biological replicates on the microplate. 

Results from all six independent experiments were then compiled with final results represented as 

mean ± SEM. One-way ANOVA was conducted for each measurement to test for overall 

differences, followed by multiplicity adjusted post hoc tests on only those measurements that 

were found to be significant.  

MTT Cell Growth Assays 

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assays were 

conducted in triplicate to determine if there were differences in cell viability between the cell lines 

given that the cells were allowed to grow in the plate for 24 hours prior to bioenergetics 

measurements. Cells were plated in the Seahorse XF24 plates following the same procedure that 

was used when plating cells for bioenergetics experiments. Instead of measuring the 

bioenergetics of the cells 24 hours after plating, media was removed from each well and cells 

were incubated with 250 μL of 5 mg/mL MTT dissolved in growth medium in a 37°C, 5% CO2 

incubator. After one hour, the media was aspirated and 250 μL of dimethyl sulfoxide (DMSO) was 

added to each well to solubilize the MTT. The microplate was gently rocked for 10 minutes and 

then the resulting solution in each well was transferred to a 96-well plate. Absorbance was 

measured at 570 nm using the Gen5 microplate reader (BioTek Instruments Inc., Winooski, VT). 

All absorbance values were within the linear range of MTT. Absorbance measurements were 

median-scaled by plate to minimize between-day variance. Scaled absorbance values were  
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Figure 3.1 
 

 
 
Figure 3.1: Bioenergetics Experimental Approach. 

Mitochondrial bioenergetics of five genetically modified MDA-MB-231 cell lines stably transformed 

to differ only in human arylamine N-acetyltransferase 1 (NAT1) were measured. The Parent and 

Scrambled cell lines express parental NAT1 activity, the Up cell line expresses increased NAT1 

activity, and the CRISPR 2-19 and CRISPR 5-50 cell lines express no detectable NAT1 activity 

(knockout). Bioenergetics were measured in six independent experiments with four biological 

replicates of each cell line in each experiment. 
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NAT1 activity
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Table 3.1 
 
Definition of Measurement Calculations and ANOVA p-value Summary Statistics 

Measurement Calculation ANOVA p-value 

Baseline OCR* 
OCR after equilibration but before 

the injection of any compounds 
(mean of two measurements) 

0.055 

ATP-Linked OCR (Minimum OCR after Oligomycin 
injection) – (Baseline OCR) 0.052 

Reserve Capacity (Maximum Mitochondria Capacity) 
– (Baseline OCR). <0.0001 

Proton Leak 
(Minimum OCR after Oligomycin 
injection) – (Non-Mitochondrial 

Respiration) 
0.021 

Non-Mitochondrial Respiration Minimum OCR after 
Rotenone/Antimycin A injection 0.229 

Maximum Mitochondrial Capacity 
(Maximum OCR measurement 
after FCCP† injection) – (Non-

Mitochondrial Respiration) 
<0.0001 

Coupling Efficiency ATP-linked OCR/baseline OCR 0.368 

Baseline ECAR‡ 
ECAR after equilibration but 
before the injection of any 
compounds (mean of two 

measurements) 

<0.0001 

Glycolytic Reserve Capacity (Minimum ECAR after Oligomycin 
injection) – (Baseline ECAR) <0.0001 

Baseline OCR/ECAR (Baseline OCR)/(Baseline ECAR) 0.011 

*OCR = oxygen consumption rate 

†FCCP = carbonyl cyanide-p-trifluoromethoxyphenylhydrazone 

‡ECAR= extracellular acidification rate 
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tested for equivalence between cell lines. Equivalence was assessed using a two-one sided t-test 

(TOST) procedure that evaluated equivalence given a 20% margin.  

Results 

Although NAT1 is overexpressed in breast tumors91,144-147 and catalyzes the hydrolysis of 

acetyl-CoA, the impact of NAT1 inactivation or overexpression on cellular  bioenergetics has yet 

to be reported. We examined glucose oxidation and mitochondrial bioenergetics in MDA-MB-231 

triple negative breast cancer (TNBC) cells constructed to knockout or overexpress NAT1 and 

compared OCR and ECAR in these cells to the parental MDA-MB-231 cells by extracellular flux 

analysis. A summary of ANOVA p-values for each measurement are presented in Table 3.1. We 

did not observe an effect of modulation of NAT1 activity in MDA-MB-231 cells on basal OCR, 

ATP-linked OCR, or non-mitochondrial respiration (p>0.05 for all; Table 3.1).  

Knockout of NAT1 activity increased reserve capacity and maximum mitochondrial 

capacity when compared to the cell lines with parental (Parent, Scrambled) and increased (Up) 

NAT1 activity (p<0.05 for all; Figure 3.2). In the Parent, Scrambled, and Up cell lines the maximal 

respiration was lower than the basal OCR measurements resulting in a negative value for the 

reserve capacity calculation; since reserve capacity cannot be negative biologically, we termed 

the reserve capacity measurements in these groups as 0. Reserve capacity was increased 91- 

and 50-fold in the CRISPR 2-19 and CRISPR 5-50 cell lines, respectively. The 1.8-fold increase 

in reserve capacity of the CRISPR 2-19 cell line compared to the CRISPR 5-50 cell line was also 

statistically significant. Maximum mitochondrial capacity of the CRISPR 2-19 cell line was 

significantly increased 3.2-fold, 6.0-fold, and 5.4-fold, with respect to the Parent, Scrambled and 

Up cell lines. Maximum mitochondrial capacity of the CRISPR 5-50 cell line was also significantly 

increased 2.5-fold, 4.7-fold, and 4.2-fold, with respect to the Parent, Scrambled and Up cell lines. 

Proton leak was increased 1.8-fold in one of the NAT1 knockout (CRISPR 2-19) cell lines 

but only when compared to the cell line with increased (Up) NAT1 activity (Figure 3.2). We cannot 

conclude that this effect is due to NAT1 knockout since we did not observe the same result in the 

other NAT1 knockout cell line (CRISPR 5-50). 
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Figure 3.2 
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Figure 3.2: OCR measurements in each cell line. 

Evidence of a difference in baseline oxygen consumption rate (OCR), ATP-linked OCR, and non-mitochondrial respiration across cell lines was 

not observed. Reserve capacity was significantly increased in the CRISPR 2-19 and CRISPR 5-50 cell lines when compared to the Parent, 

Scrambled, and Up cell lines. Reported reserve capacity measurements for Parent, Scrambled, and Up cell lines were truncated at 0 since reserve 

capacity cannot be negative. Proton leak was significantly increased in the CRISPR 2-19 cell line but not the CRISPR 5-50 cell line when 

compared to the Up cell line. Maximum mitochondrial capacity was significantly increased in the CRISPR 2-19 and CRISPR 5-50 cell lines when 

compared to the Parent, Scrambled, and Up cell lines. Order of bars are preserved throughout figure (Parent, Scrambled, Up, CRISPR 2-19, 

CRISPR 5-50) and represent mean ± SEM. N=6. *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001. The Parent and Scrambled cell lines express 

parental NAT1 activity, the Up cell line expresses increased NAT1 activity, and the CRISPR 2-19 and CRISPR 5-50 cell lines express no NAT1 

activity (knockout).  
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Baseline ECAR was increased in the two NAT1 knockout cell lines compared to the cell 

line with parental (Parent) NAT1 activity (Figure 3.3). Baseline ECAR in the CRISPR 2-19 cell line 

was increased 2.1-fold, 1.8-fold, 1.6-fold, and 1.4-fold with respect to the Parent, Scrambled, Up, 

and CRISPR 5-50 cell lines. Baseline ECAR in the CRISPR 5-50 cell line was also increased 1.5-

fold compared to the Parent cell line (p<0.05 for all).  

In the NAT1 knockout cell lines glycolytic reserve was increased compared to the cell 

lines with parental (Parent, Scrambled) and increased (Up) NAT1 activity (Figure 3.3). Glycolytic 

reserve of the CRISPR 2-19 cell line was increased 3.8-fold, 9.0-fold, and 45-fold with respect to 

the Parent, Scrambled and Up cell lines. Similarly, glycolytic reserve of the CRISPR 5-50 cell line 

was increased 3.8-fold, 9.2-fold, and 46-fold with respect to the Parent, Scrambled and Up cell 

lines (p<0.05 for all). 

 Transfection of the Parent cell line with the scrambled control showed no effect on 

baseline OCR/ECAR results. However, the cell line with increased NAT1 activity as well as one of 

the NAT1 knockout cell lines had decreased baseline OCR/ECAR relative to the Parent cell line 

(Figure 3.3). Both the Up and CRISPR 2-19 cell lines were decreased 1.7-fold with respect to the 

Parent cell line (p<0.05). We did not observe an effect of modulation of NAT1 activity on coupling 

efficiency, also called coupling ratio, which is defined as (oligomycin-sensitive OCR)/(basal OCR) 

(Figure 3.4). This result agrees with the data in Figure 3.3 showing that altering NAT1 activity had 

no effect on basal OCR or ATP-linked OCR in these cell lines.  

 Overall, it is important to note that the two cell lines with parental NAT1 activity (Parent, 

Scrambled) showed comparable results. The knockout of NAT1 in MDA-MB-231 cells led to 

differences in multiple bioenergetics measurements while the overexpression of NAT1 led to no 

significant (p>0.05) differences when compared to the cell lines expressing parental (Parent, 

Scrambled) NAT1 activity. 

To rule out differences in cell growth rate between cell lines over the course of our 

experiments, an MTT assay was conducted and the equivalence of MTT absorbance values were 

evaluated. With the exception of the Parent to Scrambled comparison, there was sufficient 

evidence to assert equivalence (p<0.05) in each of the pairwise equivalence tests. The Parent to 
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Figure 3.3 

 
Figure 3.3: ECAR measurements in each cell line. 

Baseline extracellular acidification rate (ECAR) was significantly increased in the CRISPR 2-19 

cell line when compared to the Parent, Scrambled, Up, and CRISPR 5-50 cell lines. The CRISPR 

5-50 cell line was also significantly increased compared to the Parent cell line. Glycolytic reserve 

capacity was significantly increased in the CRISPR 2-19 and CRISPR 5-50 cell lines compared to 

the Parent, Scrambled, and Up cell lines. Baseline OCR/ECAR was significantly decreased in the 

Up and CRISPR 2-19 cell lines when compared to the Scrambled cell line. Order of bars are 

preserved throughout figure (Parent, Scrambled, Up, CRISPR 2-19, CRISPR 5-50) and represent 

mean ± SEM. N=6. *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001. The Parent and Scrambled 

cell lines express parental NAT1 activity, the Up cell line expresses increased NAT1 activity, and 

the CRISPR 2-19 and CRISPR 5-50 cell lines express no NAT1 activity (knockout).  
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Figure 3.4 

 
Figure 3.4: Coupling Efficiency measurements in each cell line. 

Coupling efficiency did not significantly differ between cell lines. Bars represent mean ± SEM. 

N=6. The Parent and Scrambled cell lines express parental NAT1 activity, the Up cell line 

expresses increased NAT1 activity, and the CRISPR 2-19 and CRISPR 5-50 cell lines express no 

NAT1 activity (knockout).  
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Scrambled equivalence test was marginally significant (p = 0.065; Figure 3.5). This data suggests 

that modulation of NAT1 activity does not affect MDA-MB-231 cell viability over the course of 

these experiments.  

Discussion  

It has been previously reported that TNBC cell lines, including MDA-MB-231 cells, have 

profound metabolic changes characterized by decreased mitochondrial respiration and increased 

glycolysis when compared to breast cancer cell lines that are ER positive, PR positive, and/or 

HER2 positive148. Since the purpose of this study was to evaluate how increased and knockout 

levels of human NAT1 affected the cellular bioenergetics of MDA-MB-231 breast cancer cells, the 

Parent MDA-MB-231 (no genetic alterations or transfections) was used as a baseline 

comparison. The Scrambled cell line (the Parent MDA-MB-231 cell line with a FRT site added into 

the genome and a scrambled shRNA transfected into that FRT site) was included as a 

transfection control84. We did not observe a significant effect of the scrambled shRNA on cellular 

bioenergetics in MDA-MB-231 cells. The Up cell line (the Parent MDA-MB-231 cell line with a 

FRT site added into the genome and a plasmid overexpressing human NAT1 stably transfected 

into that FRT site) yields overexpression of NAT184. Finally, two complete NAT1 knockout cell 

lines (CRISPR 2-19 and CRISPR 5-50) constructed using CRISPR/Cas9 technology (as 

described in the Methods section), were evaluated to verify that observed effects were due to 

differences in NAT1 as opposed to off-target effects caused by a specific guide-RNA. Therefore, 

we have concluded a result was due to the knockout of NAT1 only when the same trend was 

observed in both CRISPR/Cas9 constructed cell lines.  

 Knockout of NAT1 in MDA-MB-231 cells significantly altered the bioenergetics profile of 

the cells while increased NAT1 expression did not significantly alter the bioenergetics profile 

when compared to the Parent MDA-MB-231 cell line. Significant increases in reserve capacity, 

maximum mitochondrial capacity, and glycolytic reserve were observed in both NAT1 knockout 

cell lines compared to cell lines expressing parental and increased NAT1 activity. While basal 

OCR was unaffected by altered NAT1 activity, baseline ECAR was significantly increased in 

NAT1 knockout cells, suggesting an increase in glycolysis.  
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Figure 3.5 
 

 
Figure 3.5: MTT Equivalence Test Results. 

Equivalence between MTT absorbance values in each cell line was tested to access if there were 

differences in growth of the cell lines during bioenergetics experiments. There was sufficient 

evidence to assert equivalence in each of the pairwise equivalent tests. 
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 Baseline OCR is an indicator of baseline mitochondrial respiration. ATP-linked OCR is 

the difference between OCR before and after ATP synthase is inhibited with oligomycin. This 

allows estimation of the OCR that is used to drive mitochondrial ATP synthesis and is largely set 

by the ATP demand of the cells149. Modulation of NAT1 expression did not alter baseline or ATP-

linked OCR in MDA-MB-231 cells. This result suggests NAT1 does not play a role in the ATP 

demand responses in the cells. Coupling efficiency is calculated as the fraction of baseline OCR 

used for ATP synthesis (ATP-linked OCR/baseline OCR)140. Coupling efficiency was also 

unaffected by modulation of NAT1 in MDA-MB-231 cells providing further evidence to support the 

conclusion that that NAT1 does not play a role in ATP demand responses in these cells. 

Reserve capacity is the difference between the basal and maximal respiration of the 

mitochondria and is broadly an evaluation of a cell’s ability to respond to increased energy 

demands such as those found in rapidly dividing cancer cells149. Increases in reserve capacity, as 

observed in the NAT1 knockout cell lines, could reflect enhanced oxidative capacity, 

mitochondrial biogenesis, or increased substrate provision149. Reserve capacity does not 

explicitly implicate or identify molecular mechanisms of action since it is dependent upon multiple 

parameters. The significant increase in reserve capacity measured in the two NAT1 knockout cell 

lines appears to be driven by the increase in maximal respiration in those cell lines. Maximal 

respiration rate is primarily determined by substrate supply and oxidation149. This includes 

substrate transport across the mitochondrial membrane as well as rate controlling metabolic 

enzymes. Taken together, these results indicate NAT1 may have a role, either directly or through 

its influence on acetyl-CoA levels, in regulation of mitochondrial substrate transport or 

metabolism. One could speculate that knockdown of NAT1 increases acetyl-CoA thereby 

increasing substrate(s) for the TCA cycle which could increase mitochondrial reserve capacity. 

This hypothesis should be investigated in future studies.  

 Glycolytic reserve is the difference between oligomycin-induced ECAR and baseline 

ECAR and is a measure of the maximum rate of conversion of glucose to pyruvate or lactate that 

can be achieved acutely by a cell150. This measurement is an important parameter to evaluate in 

cancer cells because there is such an increased demand for energy precursors. Increases in 
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glycolytic reserve, as we observed in the two NAT1 knockout cell lines, also indicate that these 

cells can respond better to these increased energy demands. Here we report that NAT1 

knockout, using two guide RNAs, increased the glycolytic reserve in MDA-MB-231 cells. There 

have been many studies49,81,137,151 investigating the inhibition of NAT1 with small molecule 

inhibitors as a possible way to decrease the cancerous and metastatic properties of malignant 

cells; however, this data suggest knockout of NAT1 may allow cells to increase glycolysis and 

use mitochondrial reserve.  

 Mitochondria facilitate cellular stress responses, including the response to hypoxia and 

the activation of programmed cell death via the release of pro-apoptotic molecules152. Differences 

in mitochondrial function between cells that express varying levels of NAT1 may play a role in 

cancer initiation or tumorigenesis by modulating these responses. It appears knockout of NAT1 

allows cells to express more plasticity in terms of response to energy demand. Our data suggest 

that NAT1 may play a role in an unknown response mechanism that keeps cancer cells from 

hijacking the mitochondrial machinery to produce increased amounts of ATP that would be 

needed by cancer cells.  

Summary and conclusions 

In conclusion, differences in NAT1 activity, particularly the knockout of NAT1, significantly 

altered the bioenergetics profile of MDA-MB-231 triple negative breast cancer cells. Reserve 

capacity, maximal respiration, and glycolytic reserve capacity were increased in the NAT1 

knockout cell lines. Increases in these measurements suggest that NAT1 knockout cells may be 

better able to respond to stress. These findings provide evidence that NAT1 modifies cellular 

acetyl-CoA levels and mitochondrial bioenergetics. Further investigation into the specific role 

NAT1 is playing in regulating cellular metabolism and bioenergetics is needed, ongoing, and will 

best be investigated via a multidisciplinary approach.  
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CHAPTER 4

 

METABOLOMICS 

 

Background 

Metabolomics is particularly well-suited for studying global metabolism as metabolites are 

the end-products of metabolism. In addition, performing an untargeted metabolomics study allows 

the collection of abundance data on many metabolites at once, from a single sample, giving a 

global snapshot of metabolism. While we acknowledge that untargeted metabolomics is still 

unable to detect and/or quantify ALL metabolites found in humans, it is the best way to get a 

global view of metabolism. The Human Metabolome Database (HMDB) approximates there are 

22,000 endogenous metabolites that have been detected153 however less than a thousand can be 

reliably measured. Many metabolomics studies have been conducted to better understand breast 

cancer and resulting alterations in metabolism154-164 and the use of metabolomics for systems 

biology approaches has recently been reviewed165. Additionally, there has been increased 

interest recently in “oncometabolites”—metabolites that when dysregulated can contribute to the 

progression of cancer166-170. Notably, it has been suggested that oncometabolites can affect 

mitochondrial dynamics166. 

Materials and Methods 

 A global, untargeted metabolomics approach was utilized to interrogate differences in 

metabolic profile across six biological replicates of previously constructed and characterized 

MDA-MB-231 breast cancer cell lines expressing parental (Scrambled), increased (Up), 

decreased (Down, CRISPR 2-12), or knockout (CRISPR 2-19, CRISPR 5-50) levels of human 

arylamine N-acetyltransferase 1 (NAT1). All cell lines were cultured in high-glucose Dulbecco's 
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Modified Eagle Medium (DMEM), with 10% fetal bovine serum, 5% glutamine, and 5% 

penicillin/streptomycin.  

 Cells were plated in triplicate per biological replicate at a density of 500,000 cells per 150 

x 25 mm cell plate, resulting in 18 plates total. Three plates were combined to form a single 

biological sample so that enough biological mass would be collected for future analysis. Cells 

were allowed to grow for three days in an incubator at 37 °C containing 5% CO2. Prior to 

collecting the cells, 200 μL of media from each plate was reserved. Media from the 3 plates that 

were combined as a single biological replicate were collected in the same vial. Vials containing 

media were centrifuged to pellet out any cells that may have been present and the resulting 

supernatants were placed into separate cryovials. Cryovials containing media samples were then 

flash frozen in liquid nitrogen for 1 minute and then stored in -80 °C freezer for possible future 

metabolomic analysis. 

 Cells were then harvested on ice by adding 5 mL 0.25% trypsin and scraping the cells 

from the plate. Three plates of cells were combined to form one sample (biological replicate) to 

ensure there was enough cells for analysis. After harvesting the cells were washed 3 times with 

ice-cold 1 x PBS. Supernatant was removed and 100 μL of cell pellet from 3 samples of each cell 

line was reserved for transcriptomic analysis (presented in Chapter 5). The cryovials containing 

cell pellets were then flash frozen in liquid nitrogen for 1 minute followed by immediate storage at 

-80 °C. Samples were then shipped on dry ice to Metabolon Inc. (Durham, NC) for sample 

preparation and analysis, as described below. 

Sample Accessioning 

Following receipt, samples were inventoried and immediately stored at -80 oC by 

Metabolon. The Metabolon Laboratory Information Management System (LIMS) system was 

utilized for sample management. Samples were assigned a unique identifier by the LIMS that was 

associated with the original source identifier only. This identifier was used to track all sample 

handling, tasks, results, etc. The samples (and all derived aliquots) were tracked by the LIMS 

system. All portions of any sample were automatically assigned their own unique identifiers by the 
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LIMS when a new task was created; the relationship of these samples was also tracked. All 

samples were maintained at -80 oC until processed. 

Sample Preparation 

Metabolon sample preparation has been described in great detail elsewhere171 but is 

presented briefly here. Samples were prepared using the automated MicroLab STAR® system 

(Hamilton Company, Reno, NV). Several recovery standards (described in great detail 

elsewhere171) were added prior to the first step in the extraction process for quality control (QC) 

purposes. To remove protein, dissociate small molecules bound to protein or trapped in the 

precipitated protein matrix, and to recover chemically diverse metabolites, proteins were 

precipitated with methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) 

followed by centrifugation. The resulting extract was divided into five fractions: two for analysis by 

two separate reverse phase ultrahigh performance tandem mass spectroscopy (RP/UPLC-

MS/MS) methods with positive ion mode electrospray ionization (ESI), one for analysis by 

RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by hydrophilic interaction liquid 

chromatography (HILIC)/UPLC-MS/MS with negative ion mode ESI, and one sample was 

reserved for backup. Samples were placed briefly on a TurboVap® (Zymark) to remove the 

organic solvent. The sample extracts were stored overnight under nitrogen before preparation for 

analysis.  

Quality Assessment/Quality Control (QA/QC) 

Several types of controls were analyzed in concert with the experimental samples: a 

pooled matrix sample generated by taking a small volume of each experimental sample served as 

a technical replicate throughout the data set; extracted water samples served as blanks; and a 

cocktail of QC standards that were carefully chosen not to interfere with the measurement of 

endogenous compounds were spiked into every analyzed sample, allowed instrument 

performance monitoring and aided chromatographic alignment. Instrument variability was 

determined by calculating the median relative standard deviation (RSD) for the standards that 

were added to each sample prior to injection into the mass spectrometers. Overall process 

variability was determined by calculating the median RSD for all endogenous metabolites (i.e., 
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non-instrument standards) present in 100% of the pooled matrix samples. Experimental samples 

were randomized across the platform run with QC samples spaced evenly among the injections. 

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-

MS/MS) 

All methods utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) 

and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a 

heated electrospray ionization (HESI-II) source and an Orbitrap mass analyzer operated at 

35,000 mass resolution. The sample extract was dried, then reconstituted in solvents compatible 

to each of the four methods. Each reconstitution solvent contained a series of standards at fixed 

concentrations to ensure injection and chromatographic consistency. One aliquot was analyzed 

using acidic positive ion conditions, chromatographically optimized for more hydrophilic 

compounds. In this method, the extract was gradient eluted from a C18 column (Waters UPLC 

ethylene bridged hybrid (BEH) C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 

0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another aliquot was also 

analyzed using acidic positive ion conditions, however it was chromatographically optimized for 

more hydrophobic compounds. In this method, the extract was gradient eluted from the same 

aforementioned C18 column using methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA and 

was operated at an overall higher organic content. Another aliquot was analyzed using basic 

negative ion optimized conditions using a separate dedicated C18 column. The basic extracts 

were gradient eluted from the column using methanol and water, however with 6.5 mM 

ammonium bicarbonate at pH 8.0. The fourth aliquot was analyzed via negative ionization 

following elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a 

gradient consisting of water and acetonitrile with 10 mM ammonium formate, pH 10.8. The MS 

analysis alternated between MS and data-dependent MSn scans using dynamic exclusion. The 

scan range varied slightly between methods but covered 70-1000 m/z. Raw data files were 

archived and extracted as described below. 

Data Extraction and Compound Identification 
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Raw data were extracted, peak-identified and QC processed by Metabolon utilizing 

proprietary methods. Compounds were identified by comparison to library entries of purified 

standards or recurrent unknown entities. Metabolon maintains a library based on authenticated 

standards that contains the retention time/index (RI), mass to charge ratio (m/z), and 

chromatographic data (including MS/MS spectral data) on all molecules present in the library. 

Furthermore, biochemical identifications are based on three criteria: retention index within a 

narrow RI window of the proposed identification, accurate mass match to the library +/- 10 ppm, 

and the MS/MS forward and reverse scores between the experimental data and authentic 

standards. The MS/MS scores are based on a comparison of the ions present in the experimental 

spectrum to the ions present in the library spectrum. While there may be similarities between 

these molecules based on one of these factors, the use of all three data points can be utilized to 

distinguish and differentiate biochemicals. More than 3300 commercially available purified 

standard compounds have been acquired and registered into LIMS for analysis on all platforms 

for determination of their analytical characteristics. Additional mass spectral entries have been 

created for structurally unnamed biochemicals, which have been identified by virtue of their 

recurrent nature (both chromatographic and mass spectral). These compounds have the potential 

to be identified by future acquisition of a matching purified standard or by classical structural 

analysis. 

Curation 

A variety of curation procedures were carried out by Metabolon to ensure that a high 

quality data set was made available for statistical analysis and data interpretation. The QC and 

curation processes were designed to ensure accurate and consistent identification of true 

chemical entities, and to remove those representing system artifacts, mis-assignments, and 

background noise. Metabolon data analysts use proprietary visualization and interpretation 

software to confirm the consistency of peak identification among the various samples. Library 

matches for each compound were checked for each sample and corrected if necessary. 

Metabolite Quantification and Data Normalization 
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Peaks were quantified using area-under-the-curve. For studies spanning multiple days, a 

data normalization step was performed to correct variation resulting from instrument inter-day 

tuning differences. Essentially, each compound was corrected by registering the medians equal 

to one (1.00) and normalizing each data point proportionately. For studies that did not require 

more than one day of analysis, no normalization is necessary, other than for purposes of data 

visualization. Biochemical data was also normalized to total protein as determined by Bradford 

assay to account for differences in metabolite levels due to differences in the amount of material 

present in each sample. 

Statistical Analyses 

 Figure 4.1 illustrates experimental approach and data analyses methods. Normality of 

data was accessed via the Shapiro–Wilk test; normality of non-log and log transformed data was 

visualized (Figure 4.2). All statistical analyses were performed on log transformed data using R: A 

Language and Environment for Statistical Computing version 3.3.1132. One-way ANOVA was 

performed to test for significant differences between groups for each metabolite at an alpha level 

of 0.05. Q-values were then calculated using the false discovery rate method to correct for 

multiple hypothesis testing172. Dunnett’s post-tests were utilized to compare all groups (Up, 

Down, CRISPR 2-12, CRISPR 2-19, CRISPR 5-50) to the Scrambled group for those metabolites 

with one-way ANOVA q£0.05. Q-values were then calculated using the false discovery rate (FDR) 

method for Dunnett’s post-test p-values. 

 Fold-change was calculated using equation 1 (shown below). Briefly, the mean 

abundance for each metabolite was calculated for each group. We then divided the mean of the 

comparison group (Up, Down, CRISPR 2-12, CRISPR 2-19, CRISPR 5-50) by the mean of the 

Scrambled group to give us fold-change relative to the Scrambled group. 

!" = 2%&'()
*+
,+% Equation 1 

In the equation, FC = fold-change, -̅ = average metabolite abundance in the reference group, /0= 

average metabolite abundance in the comparison group. A negative sign was added to 

the fold-change when metabolite abundance was lower in the comparison group compared to the 

reference group. 
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Figure 4.1 
 

 
Figure 4.1: Metabolomics Experimental Approach Diagram. 

Six biological replicates from each cell line were collected (3 plates of cells were pooled to form a 

single biological replicate to have enough sample for analysis). Samples were then analyzed by 

UPLC-MS/MS at Metabolon using 4 methods optimized for the greatest coverage across the 

metabolome. Following metabolite identification, abundance data was protein normalized, median 

scaled, minimum values imputed, and log-transformed. Metabolite abundances were then 

analyzed for differential abundance, correlation with NAT1 N-acetylation activity, unbiased 

multivariate analysis/clustering, and pathway enrichment. 
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Figure 4.2 

 
Figure 4.2: Accessing Normality of Metabolomics Data. 

Normality of raw metabolite intensities before (A) and after log transformation was assessed (B). 

Normality of non-protein normalized metabolite abundances before (C) and after log 

transformation was assessed (D). Normality of protein normalized metabolite abundances before 

(E) and after log transformation was assessed (F). For all, log transformation led to approximate 

normality. 
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Data were plotted as volcano plots to simultaneously visualize the between group differences in 

abundance of all detected metabolites and significance. Additionally, data were plotted as box-

plots to better visualize the abundance distribution of each metabolite between all groups. 

Pearson correlation was calculated between NAT1 activity and relative metabolite abundance for 

all metabolites to generate hypotheses about novel NAT1 substrates or products. Additionally, 

Pearson correlation was calculated between carnosine and metabolites whose abundance was 

concordantly altered in the two NAT1 KO cell lines. Data were also plotted as a heatmap and 

hierarchal clustering was conducted using the Weighted Pair Group Method with Arithmetic Mean 

(WPGMA) method. Principal component analysis was conducted by singular value decomposition 

of the centered data matrix. The loadings of the first (x-axis) and second (y-axis) principal 

component were plotted. Weighted gene co-expression network analysis (WGCNA) was 

conducted on metabolite abundance data. Enrichment analysis was conducted for each group 

compared to Scrambled. The normalized enrichment score was utilized to determine the relative 

degree of enrichment. 

Results 

Univariate Analyses 

A large proportion (515/567; 90.8%) of the detected metabolites were found to 

significantly differ (q £ 0.05) between the six cell lines (Table 4.1). Following Dunnett’s post tests 

it was observed that more metabolites differed in the cell lines constructed via CRISPR/Cas9 than 

the cell lines constructed via siRNA when compared to the Scrambled cell line. Thirty-four point 

four percent, 28.4%, 61.7%, 64.4%, and 53.8% of total detected metabolites were differentially 

expressed in the Down, Up, CRISPR 2-12, CRISPR 2-19, and CRISPR 5-50 groups, 

respectively. Metabolites were further characterized by direction of fold-change compared to 

Scrambled (Table 4.1; Figures 4.3 – 4.7); more metabolites were decreased than increased in all 

group comparisons to Scrambled except the CRISPR 2-19 cell line. The CRISPR/Cas-9 

generated cell lines had not only more total metabolites differentially expressed compared to the 

siRNA generated cell lines, but also more metabolites whose fold-changes were greater than 4. 
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Table 4.1 
 
Metabolomics Summary Statistics 

One-way 
ANOVA 

Statistical Comparison 

All Groups 

Total 
Metabolites 

p ≤ 0.05 

519 

Total 
Metabolites 

q ≤ 0.05 

515 

Dunnett’s 

t-test  
Post Test 

Statistical Comparison 

Down 

Scrambled 

Up 

Scrambled 

CRISPR 2-12 

Scrambled 

CRISPR 2-19 

Scrambled 

CRISPR 5-50 

Scrambled 

Total 
Metabolites 

p ≤ 0.05 

220 199 380 384 326 

Metabolites 

(↑↓) 68|152 155|44 190|190 179|205 173|153 

Total 
Metabolites 

q ≤ 0.05 

198 161 352 365 305 

Metabolites 

(↑↓) 60|138 30|131 175|177 173|192 163|142 

 

One-way ANOVA was conducted for each metabolite abundance between all groups. q-values 

were calculated from resulting one-way ANOVA p-values to account for the multiple hypothesis 

testing. Dunnett’s t-test post tests were conducted for each group compared to Scrambled on 

metabolites found to significantly vary between all groups. Significant metabolites were further 

characterized by direction of fold-change; metabolites with increased abundance are shown in 

green while metabolites with decreased abundances are shown in red. q-values were calculated 

from resulting Dunnett’s t-test p-values. 
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Figure 4.3 

 
Figure 4.3: Down vs Scrambled Volcano Plot.  

Each dot represents a single metabolite and is color coded according to q-value. The black dots 

represent metabolites that had a Dunnett’s post test q-value greater than 0.05, blue dots 

represent metabolites that had a q-value less than or equal to 0.05 but greater than 0.01, and red 

dots represent metabolites that had a q-value less than or equal to 0.01. Negative fold changes 

represent a decrease in that metabolite compared to the Scrambled group while positive fold 

changes represent an increase in that metabolite compared to the Scrambled group. 
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Figure 4.4 

 
Figure 4.4: Up vs Scrambled Volcano Plot. 

Each dot represents a single metabolite and is color coded according to q-value. The black dots 

represent metabolites that had a Dunnett’s post test q-value greater than 0.05, blue dots 

represent metabolites that had a q-value less than or equal to 0.05 but greater than 0.01, and red 

dots represent metabolites that had a q-value less than or equal to 0.01. Negative fold changes 

represent a decrease in that metabolite compared to the Scrambled group while positive fold 

changes represent an increase in that metabolite compared to the Scrambled group. 
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Figure 4.5 

 
Figure 4.5: CRISPR 2-12 vs Scrambled Volcano Plot. 

Each dot represents a single metabolite and is color coded according to q-value. The black dots 

represent metabolites that had a Dunnett’s post test q-value greater than 0.05, blue dots 

represent metabolites that had a q-value less than or equal to 0.05 but greater than 0.01, and red 

dots represent metabolites that had a q-value less than or equal to 0.01. Negative fold changes 

represent a decrease in that metabolite compared to the Scrambled group while positive fold 

changes represent an increase in that metabolite compared to the Scrambled group. 
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Figure 4.6 

 
Figure 4.6: CRISPR 2-19 vs Scrambled Volcano Plot. 

Each dot represents a single metabolite and is color coded according to q-value. The black dots 

represent metabolites that had a Dunnett’s post test q-value greater than 0.05, blue dots 

represent metabolites that had a q-value less than or equal to 0.05 but greater than 0.01, and red 

dots represent metabolites that had a q-value less than or equal to 0.01. Negative fold changes 

represent a decrease in that metabolite compared to the Scrambled group while positive fold 

changes represent an increase in that metabolite compared to the Scrambled group. 
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Figure 4.7 

 
 
Figure 4.7: CRISPR 5-50 vs Scrambled Volcano Plot. 

Each dot represents a single metabolite and is color coded according to q-value. The black dots 

represent metabolites that had a Dunnett’s post test q-value greater than 0.05, blue dots 

represent metabolites that had a q-value less than or equal to 0.05 but greater than 0.01, and red 

dots represent metabolites that had a q-value less than or equal to 0.01. Negative fold changes 

represent a decrease in that metabolite compared to the Scrambled group while positive fold 

changes represent an increase in that metabolite compared to the Scrambled group. 
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The overlap in significant metabolites with a fold-change greater than or equal to 2 was 

compared between the two NAT1 KO cell lines and the Scrambled group (Figure 4.8). Eighteen 

metabolites were increased concordantly in the two NAT1 KO cell lines compared to Scrambled 

with 102 and 32 metabolites uniquely increased in the CRISPR 2-19 and CRISPR 5-50 cell lines, 

respectively. Twenty-five metabolites were decreased concordantly in the two NAT1 KO cell lines 

compared to Scrambled with 58 and 38 metabolites uniquely decreased in the CRISPR 2-19 and 

CRISPR 5-50 cell lines, respectively. Table 4.2 lists metabolites whose abundances were 

concordantly changed in the NAT1 KO cell lines. More metabolites had conflicting differential 

abundance between the two CRISPR NAT1 KO cell lines compared to Scrambled than those that 

agreed. Notably, many of the metabolites decreased concordantly in the CRISPR NAT1 KO cell 

lines were carnitine conjugates. Assessing correlation between carnitine and all metabolites 

concordantly changed in the CRISPR NAT1 KO cell lines revealed the abundance of most 

metabolites were associated with carnitine (Table 4.2). This suggests dysregulation of carnitine is 

driving the differential abundances observed in this subset of metabolites. 

Eight metabolites, N-acetylasparagine, N-acetylputrescine, saccharopine, cytidine, 1-

palmitoyl-2-alpha linolenoyl-GPC (16:0/18:3n3), isovalerylcarnitine (C5), cysteine sulfinic acid, 

and serotonin, were significantly associated with NAT1 PABA N-acetylation activity (Table 4.3). 

The last five of the eight metabolites listed had a high degree of variation in the within-group 

measurement of metabolite abundance therefore the association is not as well defined as the 

others. The top two metabolites correlated with PABA N-acetylation, N-acetylasparagine (Figure 

4.9; Table 4.4) and N-acetylputrescine (Figure 4.10; Table 4.5), had a correlation coefficient (r) 

value greater than 0.9 and are N-acetylated compounds, suggesting they may be products of N-

acetylation by NAT1. Two of the metabolites significantly correlated with PABA N-acetylation, 

saccharopine (Figure 4.11; Table 4.6) and isovalerylcarnitine (C5), had an inverse relationship 

suggesting a role in a NAT1 catalyzed reaction as the substrate or possibly down-stream of a 

NAT1 catalyzed reaction. Additionally, differential acetyl-CoA levels due to NAT1’s ability to 

hydrolyze acetyl-CoA could be driving these observations. 

Multivariate/Multivariable Analyses 
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Figure 4.8 
 

 
 

Figure 4.8: Concordance of Metabolite Abundance Differences in CRISPR NAT1 Knockout 

Cell Lines. 

Significant metabolites with a fold-change greater than or equal to 2 were compared between 

CRISPR/Cas9 generated NAT1 knockout cell lines. Eighteen metabolites were increased 

concordantly in the two NAT1 KO cell lines compared to Scrambled with 102 and 32 metabolites 

uniquely increased in the CRISPR 2-19 and CRISPR 5-50 cell lines, respectively. Twenty-five 

metabolites were decreased concordantly in the two NAT1 KO cell lines compared to Scrambled 

with 58 and 38 metabolites uniquely decreased in the CRISPR 2-19 and CRISPR 5-50 cell lines, 

respectively. Green: metabolites increased compared to Scrambled; red: metabolites decreased 

compared to Scrambled. 
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Table 4.2 
 
Metabolites Concordantly Differentially Abundant in CRISPR 2-19 and CRISPR 5-50 Cell Lines 

M # BIOCHEMICAL ANOVA 
q-value 

FOLD-CHANGE 
CORRELATION 

WITH 
CARNITINE 

CRISPR
2-19/S 

CRISPR 
5-50/S 

 

M6 
1-(1-enyl-palmitoyl)-2-linoleoyl-GPE  

(P-16:0/18:2)* 
<0.0001 4.1 2.2 -0.60 

M26 13-HODE + 9-HODE 0<0.002 2.5 2.0 -0.68 

M33 1-linoleoyl-GPE (18:2)* <0.0001 5.4 3.6 -0.68 

M116 3-hydroxydecanoate <0.0001 2.7 3.3 -0.91 

M119 3-hydroxylaurate <0.0001 2.2 2.3 -0.77 

M120 3-hydroxyoctanoate <0.0001 2.8 3.3 -0.62 

M233 
dihydroxyacetone phosphate  

(DHAP) 
<0.0001 5.5 4.5 -0.77 

M339 lactose <0.0001 26.4 19.1 -0.82 

M387 N-acetyl-beta-alanine <0.0001 13.3 4.1 -0.72 

M417 nicotinamide ribonucleotide (NMN) <0.0001 25.9 2.9 -0.41 

M437 oleoylcholine <0.0001 8.3 2.6 -0.66 

M445 palmitoleoyl ethanolamide* <0.0001 3.0 2.3 -0.70 

M447 palmitoloelycholine <0.0001 8.4 2.4 -0.57 

M452 palmitoylcholine <0.0001 9.7 2.1 -0.53 

M456 penicillin G <0.0001 18.2 5.7 -0.70 

M481 pyridoxine (Vitamin B6) <0.0001 4.5 3.8 -0.83 

M526 stearoyl ethanolamide <0.0001 2.6 2.2 -0.82 

M555 urate <0.0001 2.0 3.5 -0.87 

M102 2'-O-methylcytidine <0.002 0.4 0.4 0.88 

M110 3-aminoisobutyrate <0.0001 0.3 0.5 0.79 

M132 4-hydroxyglutamate <0.0001 0.2 0.2 0.93 

M161 adrenoylcarnitine (C22:4)* <0.0001 0.1 0.1 0.92 

M176 arachidonoylcarnitine (C20:4) <0.0001 0.2 0.2 0.91 

M190 beta-guanidinopropanoate <0.0001 0.3 0.4 0.84 

M210 cis-4-decenoylcarnitine (C10:1) <0.0001 0.2 0.4 0.69 

M218 cystathionine <0.0001 0.2 0.1 0.92 

M226 cytidine diphosphate <0.0001 0.3 0.4 0.85 

M231 
dihomo-linolenoylcarnitine  

(20:3n3 or 6)* 
<0.0001 0.1 0.2 0.86 

M232 dihomo-linoleoylcarnitine (C20:2)* <0.0001 0.1 0.4 0.88 

*Continued on Next Page 
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M242 docosatrienoylcarnitine (C22:3)* <0.0001 0.1 0.2 0.88 

M344 laurylcarnitine (C12) <0.0001 0.2 0.5 0.85 

M352 linolenoylcarnitine (C18:3)* <0.0001 0.1 0.2 0.83 

M353 linoleoylcarnitine (C18:2)* <0.0001 0.0 0.3 0.77 

M371 myristoleoylcarnitine (C14:1)* <0.0001 0.1 0.4 0.75 

M376 N2,N2-dimethylguanosine <0.006 0.5 0.4 0.70 

M384 N-acetylasparagine <0.0001 0.1 0.1 0.28 

M412 N-carbamoylaspartate <0.0001 0.1 0.1 0.89 

M441 orotate <0.0001 0.1 0.1 0.95 

M448 
palmitoyl dihydrosphingomyelin  

(d18:0/16:0)* 
<0.0001 0.4 0.4 0.95 

M453 pantetheine <0.0001 0.5 0.3 0.78 

M508 
sphingomyelin  

(d18:0/18:0, d19:0/17:0)* 
<0.0001 0.4 0.5 0.63 

M544 tryptamine <0.0001 0.5 0.5 0.93 

M559 uridine 5'-triphosphate (UTP) <0.0001 0.04 0.1 0.95 

 

Metabolites concordantly differentially abundant in CRISPR 2-19 and CRISPR 5-50 cell lines 

were identified. Eighteen metabolites were concordantly increased while 25 metabolites were 

concordantly decreased. Pearson correlation between identified concordant metabolites and 

carnitine was conducted. M# represents an arbitraily assigned identifier for analysis purposes, 

biochemical is the metabolite identity, ANOVA q-value is the one-way ANOVA q-value, and 

correlation is the Pearson correlation coefficient between that metabolite and carnitine. Fold-

changes were color coded according to direction of fold-change with green for metabolites 

increased compared to Scrambled and red for metabolites decreased compared to Scrambled. 
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Table 4.3 
 

Metabolites Significantly Correlated with NAT1 N-acetylation Activity 

M# BIOCHEMICAL p-value 
CORRELATION 
COEFFICIENT 

M384 N-acetylasparagine 0.00030 0.986 
M404 N-acetylputrescine 0.0046 0.944 
M491 saccharopine 0.022 -0.876 
M224 cytidine 0.029 0.856 
M49 1-palmitoyl-2-alpha-linolenoyl-GPC (16:0/18:3n3)* 0.043 0.825 
M336 isovalerylcarnitine (C5) 0.046 -0.820 
M220 cysteine sulfinic acid 0.047 0.816 
M498 serotonin 0.050 0.811 

 

Pearson correlation between NAT1 N-acetylation activity in constructed cell lines and all 567 

detected metabolites was conducted. Eight metabolites were significantly correlated with NAT1 

N-acetylation activity. M# represents an arbitrability assigned identifier for analysis purposes, 

biochemical is the metabolite identity, p-value is the Pearson correlation p-value, and correlation 

is the Pearson correlation coefficient. Correlation coefficients were color coded according to 

direction of correlation, with green for positive correlation and red for inverse (negative) 

correlation. 
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Table 4.4 
 
N-acetylasparagine 

One-way 

ANOVA 

Statistical Comparison 

All Groups 

q-value <0.00001 

Dunnett’s 

t-test  
Post Test 

Statistical Comparison 

Down 

Scrambled 

Up 

Scrambled 

CRISPR 2-12 

Scrambled 

CRISPR 2-19 

Scrambled 

CRISPR 5-50 

Scrambled 

q-value <0.001 <0.00001 <0.0001 <0.00001 <0.00001 

Fold-
Change 

-2.3 3.0 -2.5 -11.6 -17.9 

 

One-way ANOVA was conducted for N-acetylasparagine abundance between all groups. q-

values were calculated from resulting one-way ANOVA p-values to account for the multiple 

hypothesis testing. Dunnett’s t-test post tests were conducted for each group compared to 

Scrambled. N-acetylasparagine abundance was further characterized by direction of fold-change; 

metabolites with increased abundance are shown in green while metabolites with decreased 

abundances are shown in red. q-values were calculated from resulting Dunnett’s t-test p-values.
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Table 4.5 
 
N-acetylputrescine 

One-way 

ANOVA 

Statistical Comparison 

All Groups 

q-value <0.0001 

Dunnett’s 

t-test  
Post Test 

Statistical Comparison 

Down 

Scrambled 

Up 

Scrambled 

CRISPR 2-12 

Scrambled 

CRISPR 2-19 

Scrambled 

CRISPR 5-50 

Scrambled 

q-value 0.03 <0.00001 0.95 <0.00001 0.003 

Fold-
Change 

-1.2 1.7 1 -1.9 -1.3 

 

One-way ANOVA was conducted for N-acetylputrescine abundance between all groups. q-values 

were calculated from resulting one-way ANOVA p-values to account for the multiple hypothesis 

testing. Dunnett’s t-test post tests were conducted for each group compared to Scrambled. N-

acetylputrescine abundance was further characterized by direction of fold-change; metabolites 

with increased abundance are shown in green while metabolites with decreased abundances are 

shown in red. q-values were calculated from resulting Dunnett’s t-test p-values
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Table 4.6 
 
Saccharopine 

One-way 

ANOVA 

Statistical Comparison 

All Groups 

q-value <0.00001 

Dunnett’s 

t-test  
Post Test 

Statistical Comparison 

Down 

Scrambled 

Up 

Scrambled 

CRISPR 2-12 

Scrambled 

CRISPR 2-19 

Scrambled 

CRISPR 5-50 

Scrambled 

q-value <0.001 <0.00001 0.57 <0.00001 <0.00001 

Fold-
Change 

-1.4 -2.9 1 1.8 1.7 

 
One-way ANOVA was conducted for saccharopine abundance between all groups. q-values were 

calculated from resulting one-way ANOVA p-values to account for the multiple hypothesis testing. 

Dunnett’s t-test post tests were conducted for each group compared to Scrambled. Saccharopine 

abundance was further characterized by direction of fold-change; metabolites with increased 

abundance are shown in green while metabolites with decreased abundances are shown in red. 

q-values were calculated from resulting Dunnett’s t-test p-values.
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Figure 4.9 
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Figure 4.9: N-acetylasparagine Abundance Distribution and Correlation with NAT1 N-

acetylation Activity. 

(A) Boxplots of abundance distribution of N-acetylasparagine in each cell line. In the boxplots, the 

solid black line represents the median, the upper hinge represents the 75th quartile and the lower 

hinge represents the 25th quartile. The upper whisker represents the largest observation less 

than or equal to the upper hinge + 1.5 x IQR, the lower whisker represents the smallest 

observation greater than or equal to the lower hinge - 1.5 * IQR. (B) Correlation plot between N-

acetylasparagine abundance and NAT1 N-acetylation activity in each cell line. Error bars 

represent standard deviation. Pearson correlation coefficient = 0.986, p-value < 0.001 
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Figure 4.10 
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Figure 4.10: N-acetylputrescine Abundance Distribution and Correlation with NAT1 N-

acetylation Activity. 

(A) Boxplots of abundance distribution of N-acetylputrescine in each cell line. In the boxplots, the 

solid black line represents the median, the upper hinge represents the 75th quartile and the lower 

hinge represents the 25th quartile. The upper whisker represents the largest observation less 

than or equal to the upper hinge + 1.5 x IQR, the lower whisker represents the smallest 

observation greater than or equal to the lower hinge - 1.5 * IQR. (B) Correlation plot between N-

acetylputrescine abundance and NAT1 N-acetylation activity in each cell line. Error bars 

represent standard deviation. Pearson correlation coefficient = 0.944, p-value < 0.01 
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Figure 4.11 
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Figure 4.11: Saccharopine Abundance Distribution and Correlation with NAT1 N-

acetylation Activity. 

(A) Boxplots of abundance distribution of Saccharopine in each cell line. In the boxplots, the solid 

black line represents the median, the upper hinge represents the 75th quartile and the lower 

hinge represents the 25th quartile. The upper whisker represents the largest observation less 

than or equal to the upper hinge + 1.5 x IQR, the lower whisker represents the smallest 

observation greater than or equal to the lower hinge - 1.5 * IQR. (B) Correlation plot between 

Saccharopine abundance and NAT1 N-acetylation activity in each cell line. Error bars represent 

standard deviation. Pearson correlation coefficient = -0.876, p-value <0.05 
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Unsupervised hierarchical clustering of each sample revealed the global metabolomic 

profile of each cell line is distinct (Figure 4.12). The individual sample replicates clustered 

accurately by group except for sample 10 of the Down group that clustered with the Scrambled 

group. The first split in the dendrogram of the hierarchical clustering is between the two 

CRISPR/Cas9 cell lines constructed using guide RNA 2 and the other four cell lines; this provides 

evidence that those two cell lines have global metabolic profiles that are more similar to each 

other than to the respective cell lines that express the same level of NAT1 N-acetylation activity. 

The heatmap visualization of the data shows distinct clusters of metabolites whose relative 

abundance is much more similar between the two cell lines constructed using CRISPR/Cas9 

guide RNA 2 but have different levels of NAT1 activity than the two CRISPR/Cas9 cell lines that 

were constructed using two different guide RNAs but both had no detectable NAT1 activity. 

Similarly, principal component analysis showed that the CRISPR/Cas9 generated cell 

lines had global metabolomic profiles that were distinct from the siRNA generated cell lines as 

well as each other. In our dataset, principal component 1 explains 53% of the variance in the data 

while principal component 2 explains 14% of the variance (Figure 4.13). There are two types of 

variance within the data set; within group and between group variance. For our experimental 

question, we are most interested in the between group variance. The CRISPR 2-12 and CRISPR 

2-19 groups are separated from the other four groups by principal component 1. This reveals that 

these two groups have global metabolomics profiles that are similar to each other but very 

different from the other four groups given that PC1 represents 53% of the variance in our dataset. 

The CRISPR 5-50 group is separated from the other five groups along principal component 2. 

From the loadings of each principal component we can infer which metabolites, together, 

contribute the most to the separation between the groups and thus the variance between the 

groups (Figure 4.14). Most metabolites in the dataset are not contributing to the variance 

observed. There are groups of approximately 5-15 metabolites that are contributing the greatest 

to each principle component (in each direction). Adenosine and carnosine related metabolites are 

negatively correlated with principal component 1 while phosphate related metabolites are  
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Figure 4.12 
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Figure 4.12: Metabolomics Heatmap and Hierarchical Clustering. 

Metabolites colored red on the heatmap had a median scaled relative abundance less than 1, metabolites colored white had a median scaled 

relative abundance of 1, and metabolites colored blue had a median scaled relative abundance greater than 1. Each column represents a single 

metabolite and each row represents a single metabolomics sample. Samples are color coded according to cell line identity. Unbiased hierarchical 

clustering reveals the two CRISPR/Cas9 cell lines constructed using guide RNA 2 are more similar than the two NAT1 complete knockout cell 

lines, as would be expected.
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Figure 4.13 
 

 
Figure 4.13: Principal Component Analysis Scores Plot. 

Each symbol represents an individual metabolomics sample, is numbered by sample number, 

and color coded by cell line. Principal component one (PC1) represents 53% of the total variance 

in our dataset and separates the CRISPR 2-12 and CRISPR 2-19 cell lines from all other cell 

lines. Principal component 2 (PC2) represents 14% of the total variance in our dataset and 

separates the CRISPR 5-50 cell line from all other cell lines.
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Figure 4.14 
 

 
Figure 4.14: Principal Component Loadings Plot. 

Loadings from principal component 1 and principal component 2 are plotted showing which metabolites have the greatest contribution to each 

principal component. Each point represents a single metabolite and is color-coded by contribution to principal component. 
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positively correlated. Lactate related metabolites are negatively correlated with principal 

component 2 while phosphate and carnitine related metabolites are positively correlated. 

Pathway Analysis 

Pathway enrichment analysis was conducted on each on each group compared to the 

Scrambled group (Figure 4.15). A normalized enrichment score of 1.2 in at least one of the 

groups was selected as the cut-off value for significance. The Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways were used173,174. Disease associated pathways were removed from 

the analysis results. Amino acid, lipid, and fatty acid metabolism pathways were found to be 

significantly enriched. Some enriched pathways did not include all group comparisons suggesting 

differential impacts on metabolism.  

Discussion 

Given that (theoretically) only a single gene, NAT1, was genetically altered in each cell 

line, we expected only a small proportion of metabolite abundances to be significantly different, 

given the vast homeostasis mechanisms present175-177. However, we observed a very large 

proportion (~90%) of all metabolites detected to be significantly altered. Additionally, very few, if 

any, differences in metabolite abundances were expected between the two NAT1 knockout cell 

lines since each cell line should have the exact same genome. Yet one of the most striking 

observations of this study is the differences in relative metabolite abundance between the two 

complete NAT1 knockout cell lines. The hierarchical clustering, principal components analysis, 

and pathway enrichment analysis show there were significant differences between the two cell 

lines constructed using CRISPR/Cas9 guide RNA 2 and the cell line constructed using 

CRISPR/Cas9 guide RNA 5. Even though, in terms of NAT1 activity, the CRISPR 2-19 and 

CRISPR 5-50 cell lines are identical, their metabolic profiles are extremely different. This result 

suggests there are additional genetic differences between the two cell lines (discussed in greater 

detail in Chapter 7). However, we have not identified what genes the additional differences are in 

as whole genome sequencing of the cell lines would be required. The large number of 

differentially abundant metabolites between each knockout cell line compared to the Scrambled 

cell line and compared to each other could be because the cell lines have undergone additional 
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unique mutations during passaging or because each CRISPR guide RNA used caused unique 

off-target effects in addition to targeting NAT1. To focus on metabolome differences associated 

with varying levels of NAT1 in breast cancer, we have focused our interpretation of this study to 

metabolites that agreed between the two CRISPR NAT1 knockout cell lines. 

Ten of 25 metabolites decreased concordantly between the two CRISPR NAT1 KO cell 

lines were metabolites containing carnitine, more specifically fatty acyl-coA carnitine conjugates 

(Table 4.2). To further clarify whether this observation was due to dysregulation of fatty acyl-coA’s 

or carnitine in NAT1 KO cell lines, association between carnitine and metabolites decreased and 

increased concordantly in both NAT1 KO cell lines was determined. Nearly every metabolite 

concordantly differentially abundant showed strong correlation with carnitine suggesting the 

observation is due to dysregulation of carnitine. Carnitine is biosynthesized from lysine and 

methionine178 with important biological roles in the transport of activated long-chain fatty acids 

from the cytosol to the mitochondrial matrix for beta-oxidation179,180, modulation of the acyl-

CoA/CoA ratio180,181, and storage of energy as acetylcarnitine181,182. Further studies are required 

to discern whether these observations are due to NAT1 directly or indirectly due to NAT1’s effect 

on acetyl-CoA levels or other possible indirect effects. 

Notably, NAT1 has been shown to have redundancy with methylthioribose-1-phosphate 

isomerase (MRI-1) in the methionine salvage pathway, but this role was not observed in MDA-

MB-231 cells since they do not have a functional methionine salvage pathway due to a lack of 

methylthioadenosine phosphorylase (MTAP) activity107. However, this observation by other NAT 

researchers adds interest to deciphering the relationship between NAT1 and carnitine since 

carnitine is closely connected biochemically to methionine. It will be important for future studies to 

focus on these relationships and pathways to gain a better understanding of the role of NAT1 in 

breast cancer cell metabolism. 

The strong positive association between the abundance of N-acetylasparagine and NAT1 

activity in the 6 MDA-MB-231 cell lines is consistent with N-acetylasparagine being a product of 

NAT1 N-acetylation (Figure 4.16). There is currently no known mechanism or enzyme 

responsible for the acetylation of free amino acids. It is hypothesized that acetylated free amino  
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Figure 4.15 

 
Figure 4.15: Metabolomics Pathway Enrichment Analysis. 

Pathway enrichment analysis was conducted for each group compared to Scrambled and is 

color-coded by comparison. We utilized the normalized enrichment score to determine the 

relative degree of enrichment. U vs S: Up vs Scrambled; D vs S: Down vs Scrambled; C212 vs S: 

CRISPR 2-12 vs Scrambled; C219 vs S: CRISPR 2-19 vs Scrambled; C550 vs S: CRISPR 5-50 

vs Scrambled. 
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Figure 4.16 
 

 
Figure 4.16: Possible Association Between NAT1 and N-acetylasparagine. 

The positive relationship between NAT1 N-acetylation activity and the abundance of N-

acetylasparagine suggests either L-asparagine is a NAT1 substrate or acetyl-CoA levels affect 

the activity of an enzyme for which L-asparagine is a substrate.

NAT1 or 
Acetyl-CoA?
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acids originate from the breakdown of N-terminal acetylated proteins however L-asparagine 

residues in proteins are not known to be acetylated by N-terminal acetyltransferases (different 

family of N-acetyltransferases from NAT1 and NAT2)183. Additionally, the biosynthesis of N-

acetylasparagine is not defined in the literature. Recombinant murine and human aminoacylase 2 

(ASPA) have been reported to catabolize N-acetylasparagine, albeit at a much lower level than 

the prototypic ASPA substrate N-acetylaspartate184. Additionally, aminoacylase 1 deficiency 

(ACY1), a rare inborn error of metabolism disease, is diagnosed by increased N-acetylated amino 

acids in the urine, including N-acetylasparagine185 suggesting ACY1 can also metabolize N-

acetylasparagine. Given the abundance distribution of N-acetylasparagine in our constructed cell 

lines, we hypothesize L-asparagine is the substrate being N-acetylated by NAT1 to form N-

acetylasparagine however the substrate could be a different biochemical. 

Similarly, the strong positive association between the abundance of N-acetylputrescine 

and NAT1 N-acetylation activity in the 6 MDA-MB-231 cell lines is consistent with N-

acetylputrescine being a product of NAT1 N-acetylation (Figure 4.17). Putrescine is known to be 

N-acetylated by Spermidine/Spermine N1-Acetyltransferase 1 (SAT1) and Spermidine/Spermine 

N1-Acetyltransferase 2 (SAT2) but with much lower affinity than for other SAT substrates such as 

spermidine186. Redundancy in non-homologous metabolic enzymes has been shown to 

occur187,188 and we postulate NAT1 and the SATs may both be able to N-acetylate putrescine.  

Both L-asparagine and putrescine have been implicated in the promotion of cell 

growth189-194. The data indicate cell lines with higher levels of NAT1 activity have increased 

amounts of N-acetylated asparagine and putrescine while cell lines with decreased and knocked-

out NAT1 activity have decreased amounts of N-acetylated asparagine and putrescine. It is 

predicted this leads to decreased asparagine and putrescine in cell lines with high NAT1 and 

increased asparagine and putrescine in cell lines with decreased and knocked-out levels of NAT1 

relative to cell lines with basal NAT1 activity. It has been shown that intracellular asparagine 

exchanges with extracellular amino acids to promote mTORC1 activation, protein and nucleotide 

synthesis and cell proliferation under normal growth (non-starvation) conditions190. Additionally, it  
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Figure 4.17 

 
 

Figure 4.17: Possible Association Between NAT1 and N-acetylputrescine. 

The positive relationship between NAT1 N-acetylation activity and the abundance of N-

acetylputrescine suggests either putrescine is a NAT1 substrate or acetyl-CoA levels affect the 

activity of an enzyme for which putrescine is a substrate.
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has been reported that the invasiveness of a mouse breast cancer model could be modulated 

either by altering asparagine biosynthetic capacity or by modifying extracellular asparagine pools 

with decreases in asparagine leading to decreased metastatic burden189. Polyamines, such as 

putrescine, are known to facilitate the interactions of transcription factors, such as estrogen 

receptors with their specific response element and are involved in the proliferation of ER negative 

breast cancer tumor cells (reviewed in 195). Additionally, rises in intracellular polyamine 

concentrations has been associated with increased cell proliferation and has been linked to 

tumorigenesis196-200. This data, interpreted through the finding of previous studies, suggests cell 

lines with knocked-out NAT1 may have increased cell growth capabilities due to higher levels of 

asparagine and putrescine. 

 The strong negative association between the abundance of saccharopine and NAT1 

activity in the 6 MDA-MB-231 cell lines suggests saccharopine is a NAT1 substrate or located 

upstream of a NAT1 catalyzed reaction (Figure 4.18). Saccharopine is an intermediate in the 

main pathway responsible for the catabolism of lysine201,202. This observation may be connected 

to lysine’s role in carnitine biosynthesis178.  

Pathway analysis indicated pathways that directly involve acetyl-coA such as the lysine 

degradation (Figure 4.19) and tryptophan metabolism pathways were enriched for differences. 

Additionally, pathways that feed into the TCA cycle were also significantly enriched suggesting 

varying levels of NAT1 impact energy metabolism. 

Summary and Conclusions 

These results support the hypothesis that NAT1 is not just a xenobiotic metabolizing 

enzyme and may have a role in endogenous cellular metabolism whether that is directly or 

indirectly through the ability of NAT1 to metabolize acetyl-CoA remains unclear. The 

metabolomics data have shown NAT1 expression differentially affects cellular metabolism 

dependent on the level of expression. Additionally, potential novel substrates and products of N-

acetylation by NAT1 have been identified but further validation is required. These metabolites 

have recently been implicated in enhanced cell growth and metastatic potential in breast cancer 
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Figure 4.18 
 

 
Figure 4.18: Possible Association Between NAT1 and Saccharopine. 

The inverse relationship between NAT1 N-acetylation activity and the abundance of saccharopine 

suggests either saccharopine is a NAT1 substrate, acetyl-CoA levels affect the activity of an 

enzyme for which saccharopine is a substrate, lysine, the substrate that is degraded to form 

saccharopine, is a NAT1 substrate or acetyl-CoA levels affect the activity of an enzyme for which 

lysine is a substrate. 
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Figure 4.19 
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Figure 4.19: Lysine Degradation Pathway. 

NAT1 knockout cell lines, CRISPR 2-19 and CRISPR 5-50, metabolite abundance data compared to Scrambled cell line projected onto the KEGG 

lysine degradation pathway. Metabolites abundances in yellow are decreased in the NAT1 knockout cell lines, metabolites in gray are unchanged, 

and metabolites in blue are increased in the NAT1 knockout cell lines. 
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models suggesting they may be the key to understanding how varying levels of NAT1 affect 

breast cancer risk and progression. Additionally, many of the pathways significantly enriched in 

pathway analysis are pathways where acetyl-CoA plays a role, adding further evidence for the 

connection between NAT1 and acetyl-CoA in metabolism.
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CHAPTER 5

 

TRANSCRIPTOMICS 

 

Background 

Transcriptomics allows measurement of global changes in gene abundance between 

samples and gives a snapshot of mRNA expression. Resulting information can be utilized to 

determine genes that may be interacting. While not all mRNAs will be translated into proteins and 

there are additional regulatory mechanisms that occur prior to protein expression, mRNA 

abundances can still provide a lot of information about a system. Additionally, numerous studies 

have utilized transcriptomics to better understand breast cancer203-207.  

Materials and Methods 

Collection of Samples 

 Figure 5.1 illustrates the experimental approach and workflow of sample collection 

described below. Cells were plated in triplicate per biological replicate at a concentration of 

500,000 cells per 150 x 25 mm cell plate for both transcriptomics and metabolomics analysis. All 

cell lines were cultured in high-glucose Dulbecco's Modified Eagle Medium (DMEM), with 10% 

fetal bovine serum, 5% glutamine, and 5% penicillin/streptomycin added. Cells were allowed to 

grow for three days at 37°C and 5% CO2 in an incubator.  

 Cells were then harvested on ice by adding 5 mL 0.25% trypsin and scraping the cells 

from the plate. Three plates were combined to form one sample (biological replicate). Three 

biological replicates for each cell line were collected for transcriptomics analysis. After harvesting 

the cells, cells were washed 3 times with ice-cold 1 x PBS. All supernatant was removed and 100 

µL of cell pellet was reserved for transcriptomics analysis. The remaining cell pellet was reserved 
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Figure 5.1 
 

 
Figure 5.1: Transcriptomics Experimental and data analysis approach. 

Three biological replicates from each cell line were collected. RNA was extracted and RNA-seq 

libraries prepared. Samples were then sequenced on the Illumina NextSeq 500 instrument. 

Following preprocessing of resulting data by the TopHat pipeline, genes were analyzed for 

differential abundance, unbiased multivariate analysis/clustering, and pathway enrichment. 

Notably, transcriptomics samples were the same samples collected for metabolomics analysis 

(discussed in Chapter 4).
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for metabolomic analysis (presented in Chapter 4). Samples were then flash frozen by placing in 

a pool of liquid nitrogen for 1 minute and stored in an -80 °C freezer.  

Transcriptomics 

RNA Isolation 

Total RNA was isolated from MDA-MB-231 breast cancer cells expressing parental 

(Scrambled), increased (Up), decreased (Down, CRISPR 2-12), and knockout (CRISPR 2-19, 

CRISPR 5-50) levels of NAT1 using the RNeasy® Mini Kit (Qiagen Sciences, Germantown, 

Maryland) according to manufacturer’s instructions. RNA purity was evaluated, and 

concentrations were measured in each sample using a NanoDrop Bioanalyzer (Life Technologies 

Sciences).  

Library Preparation 

Libraries were prepared in collaboration with the University of Louisville Genomics Core 

(who kindly allowed me to be a part of the process) using the TruSeq Stranded mRNA LT Sample 

Prep Kit- Set A (Illumina, San Diego, California; Cat# RS-122-2101) with poly-A enrichment per 

manufacturer’s instructions. One µg of total RNA (in a volume of 50 µL) from each sample was 

used in library preparation. Briefly, the total RNA was fragmented to improve sequence coverage 

over the transcriptome. Next, the first strand of cDNA was synthesized from the cleaved RNA 

fragments that were primed with random hexamers using reverse transcriptase and random 

primers. Then the second strand of cDNA was synthesized, thus providing double stranded blunt 

end cDNA. Next, a single ‘A’ nucleotide was added to the 3’ ends of the blunt fragments to 

prevent them from ligating to one another during the adapter ligation reaction. A corresponding 

single ‘T’ nucleotide on the 3’ end of the adapter provides a complementary overhang for ligating 

the adapter to the fragment. Then, multiple indexing adapters were ligated to the ends of the 

double stranded cDNA, preparing them for hybridization onto a flow cell. Next the DNA fragments 

were enriched using polymerase chain reaction (PCR) to selectively enrich those DNA fragments 

that have adapter molecules on both ends and to amplify the amount of DNA in the library. The 

PCR was performed with a PCR Primer Cocktail (included in the TruSeq Stranded mRNA LT 

Sample Prep Kit- Set A) that anneals to the ends of the adapters. Finally, 30 µl of eluted library 
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was collected and stored at -20 oC. To avoid skewing the representation of the library, the 

number of PCR cycles were minimized. This kit includes steps to validate and normalize 

constructed libraries and methods to check quality control. 

Library Validation 

Quality: Size, purity and semi quantitation were performed on an Agilent Bioanalyzer 

using the Agilent DNA 1000 Kit (Santa Clara, CA). The final fragment size for all the samples was 

approximately 300 basepairs as expected according to the protocol. 

Quantity: Sequencing library quantitation was performed by quantitative polymerase 

chain reaction (qPCR) using the KAPA Library Quantitation Kit (Roche, Basel, Switzerland) for 

Illumina Platforms. A standard curve method was generated for quantitation using 1-5 DNA 

standards provided with the kit.  

Normalize and Pool Libraries  

Ten µl of sample was transferred from the wells to a new MIDI plate. The concentration of 

the libraries were then normalized to 10 nM using Tris-HCl 10 mM, pH 8.5 with 0.1% Tween 20. 

Five µl of each sample was then transferred to be pooled into a new LowBind 1.5 ml micro 

centrifuge tube for a total volume of 60 µl pooled 10 nM library. Then 4 nM dilution was made 

from the 10 nM pooled library by diluting with Tris-HCl 10 mM, pH 8.5 with 0.1% Tween 20. 

Denaturing and diluting Libraries for the Nextseq 500 

A total volume of 1.3 mL of 1.8 pM denatured library was needed for sequencing using 

the NextSeq 500/550 75 cycle High Output Kit v2 (FC-404-2005; Illumina, San Diego, CA) kit. 

Pooled 4 nM library was denatured by mixing with diluted NaOH and incubated at room 

temperature for 5 minutes. Tris HCl, 200 mM, pH 7.0 was then added. The reaction mixture was 

diluted to 20 pM using a pre-chilled Hybridization Buffer (included in the NextSeq 500/550 75 

cycle High Output Kit v2). The 20 pM denatured library was further diluted to 1.8 pM using the 

same Hybridization Buffer. Before loading onto the reagent cartridge, 1.3 µl of denatured 20 pM 

Phix control (Illumina, San Diego, CA; FC-110-3001) was added to the 1299 µl of denatured 1.8 

pM library to a total volume of 1.3 mL for the first sequencing run (for the 2nd sequencing run 1.9 

pM library was used).  
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Sequencing  

Sequencing was performed on the University of Louisville Center for Genetics and 

Molecular Medicine’s (CGeMM) Illumina NextSeq 500 using the NextSeq 500/550 75 cycle High 

Output Kit v2 (FC-404-2005). A second run was performed to increase the number of reads. For 

each run, 72 single-end raw sequencing files (.fastq)208 representing six conditions with three 

biological replicates and four lanes per replicate were downloaded from Illumina’s BaseSpace209 

(https://basespace.illumina.com/) onto the Kentucky Biomedical Research Infrastructure Network 

(KBRIN) server for analysis using pre-written scripts. 

RNA-Seq Analysis 

Resulting data were preprocessed and analyzed using the tuxedo suite210,211 pipeline 

which includes TopHat, Cufflinks, Cuffmerge, and Cuffdiff. Cuffdiff was utilized to calculate 

differential gene expression for all groups (Up, Down, CRISPR 2-12, CRISPR 2-19, CRISPR 5-

50) compared to the Scrambled group211. Quality control (QC) of the raw sequence data was 

performed using FastQC (version 0.10.1)212. Although the FastQC results indicate the last base of 

all samples has a lower quality value, we chose not to trim in this case. Concatenated sequences 

were directly aligned to the Homo sapiens hg38 reference genome assembly (hg38.fa) using 

TopHat2 (version 2.0.13)213, generating alignment files in bam format. Table 5.1 indicates the 

number of raw reads successfully aligned for each of the samples. 

 Further analysis and visualization of the resulting data were performed using R: A 

Language and Environment for Statistical Computing version 3.3.1132. Fold-change and 

significance of differential gene expression between groups was visualized using volcano plots. 

The Pearson correlation coefficient was calculated between NAT1 and NAT2 transcript 

abundance and transcript abundance of all other genes to generate hypotheses about genes that 

may be interacting with NAT1 and NAT2, respectively. Data also were plotted as a heatmap and 

hierarchal clustering was conducted using the WPGMA method. Principal component analysis 

was conducted by singular value decomposition of the centered data matrix. The loadings of the 

first (x-axis) and second (y-axis) principal components were plotted. Weighted gene co-

expression network analysis (WGCNA) was conducted on metabolite abundance data to identify 
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Table 5.1 
 
Transcriptomics Sample Alignment 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The number of raw reads successfully aligned to the homo sapiens reference genome assembly 

hg.38 for each sample using TopHat2. Percent aligned was calculated by dividing aligned reads 

by input reads for each sample. 

SAMPLE INPUT 
READS 

ALIGNED 
READS 

PERCENT 
ALIGNED 

Scrambled 1 37,984,684 36,841,298 97.0% 
Scrambled 2 35,361,628 34,368,699 97.2% 
Scrambled 3 38,238,715 36,597,025 95.7% 

Down 1 41,290,001 40,114,301 97.2% 
Down 2 41,339,117 40,184,597 97.2% 
Down 3 44,859,187 43,503,707 97.0% 

Up 1 38,199,308 37,143,906 97.0% 
Up 2 37,337,039 36,125,963 96.8% 
Up 3 39,022,651 37,890,392 97.1% 

CRISPR 2-12 1 33,319,727 32,384,934 97.2% 
CRISPR 2-12 2 38,610,686 37,399,482 96.9% 
CRISPR 2-12 3 38,275,581 37,201,657 97.2% 

CRISPR 2-19 1 38,870,999 37,718,655 97.0% 
CRISPR 2-19 2 34,811,726 33,815,087 97.1% 
CRISPR 2-19 3 34,097,370 33,138,856 97.2% 

CRISPR 5-50 1 35,429,756 34,386,174 97.1% 
CRISPR 5-50 2 42,535,551 41,226,671 96.9% 
CRISPR 5-50 3 37,749,977 36,718,233 97.3% 
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modules of related metabolites given the topology of the weighted network. Pathway enrichment 

analysis was conducted for each group compared to Scrambled. The normalized enrichment 

score was utilized to determine the relative degree of enrichment. 

Quantitative Measurement of NAT1 and NAT2 mRNA 

Reverse transcription- quantitative polymerase chain reaction (RT-qPCR) was conducted 

for NAT1 and NAT2 mRNAs in all 6 constructed cell lines as previously described40,96,214. Briefly, 

total RNA was isolated from each cell line using the RNeasy Mini Kit (Qiagen, Germantown, MD). 

Isolated RNA was used to transcribe cDNA using the High Capacity Reverse Transcriptase kit 

(Life Technologies, Carlsbad, CA). Resulting cDNA was utilized for quantitative measurement of 

NAT1 and NAT2 mRNAs via RT-qPCR. TaqMan analysis was performed using the ABI 7700 

sequence detection system (Applied Biosystems, Foster City, CA). Utilized gene probes were 

designed previously to discriminate between NAT1 and NAT2. 

NAT2 N-Acetylation Activity Assays 

In vitro NAT2 N-acetylation activity was determined in each constructed cell line as 

previously described12,215. Briefly, cell lysate from each cell line was incubated with 1 mM acetyl-

coenzyme A and 300 µM sulfamethazine (SMZ) at 37°C for 10 minutes. Reactions were 

terminated with the addition of 1/10 reaction volume 1 M acetic acid. Reaction products were 

collected and analyzed using an Agilent Technologies 1260 Infinity high performance liquid 

chromatography (HPLC) using a LiChrospher ® 100 RP-18 (5 µm) column to determine the 

amount of acetylated product. 

Results 

Expression of many genes was found to significantly differ (q £ 0.05, |FC|>2) between the 

six cell lines (Table 5.2). More genes were differentially expressed in the cell lines with decreased 

or knockout NAT1 (Down, CRISPR 2-12, CRISPR 2-19, CRISPR 5-50) than the cell line with 

increased NAT1 activity (Up) when compared to the Scrambled cell line. Two thousand sixty-five, 

544, 1911, 2383, and 1937 genes were differentially expressed in the Down, Up, CRISPR 2-12, 

CRISPR 2-19, and CRISPR 5-50 groups, respectively (Table 5.2). Genes were further 

characterized by direction of fold-change compared to Scrambled (Figures 5.2 - 5.6). MSR1 gene 
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Table 5.2 
 
Transcriptomics Summary Statistics 

Student’s 
t-test  

Post Test 

Statistical Comparison 

Down 
Scrambled 

Up 
Scrambled 

CRISPR 2-12 
Scrambled 

CRISPR 2-19 
Scrambled 

CRISPR 5-50 
Scrambled 

Total 
DEGs 

q ≤ 0.05; 
FC ≥ 2 

2065 544 1911 2383 1937 

DEGs 
(↑↓) 680|1385 310|234 1169|742 1472|911 1112|825 

DEGs = differentially expressed genes 

Cuffdiff was utilized to calculate differential gene expression for all groups (Up, Down, CRISPR 2-

12, CRISPR 2-19, CRISPR 5-50) compared to the Scrambled group211. Significantly differentially 

expressed genes were further characterized by direction of fold-change; genes with increased 

abundance are shown in green while genes with decreased abundances are shown in red.  
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Figure 5.2 

 
Figure 5.2: Up vs Scrambled Volcano Plot. 

Each dot represents a single gene and is color coded according to q-value. The black dots represent genes that had a Dunnett’s post test q-value 

greater than 0.05, blue dots represent genes that had a q-value less than or equal to 0.05 but greater than 0.01, and red dots represent genes that 

had a q-value less than or equal to 0.01. Negative fold changes represent a decrease in that gene compared to the Scrambled group while 

positive fold changes represent an increase in that gene compared to the Scrambled group. NAT1 is shown by a purple dot while NAT2 is shown 

by a green dot. 
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Figure 5.3 

 
Figure 5.3: Down vs Scrambled Volcano Plot. 

Each dot represents a single gene and is color coded according to q-value. The black dots represent genes that had a Dunnett’s post test q-value 

greater than 0.05, blue dots represent genes that had a q-value less than or equal to 0.05 but greater than 0.01, and red dots represent genes that 

had a q-value less than or equal to 0.01. Negative fold changes represent a decrease in that gene compared to the Scrambled group while 

positive fold changes represent an increase in that gene compared to the Scrambled group. NAT1 is shown by a purple dot while NAT2 is shown 

by a green dot. 
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Figure 5.4 

 
Figure 5.4: CRISPR 2-12 vs Scrambled Volcano Plot. 

Each dot represents a single gene and is color coded according to q-value. The black dots represent genes that had a Dunnett’s post test q-value 

greater than 0.05, blue dots represent genes that had a q-value less than or equal to 0.05 but greater than 0.01, and red dots represent genes that 

had a q-value less than or equal to 0.01. Negative fold changes represent a decrease in that gene compared to the Scrambled group while 

positive fold changes represent an increase in that gene compared to the Scrambled group. NAT1 is shown by a purple dot while NAT2 is shown 

by a green dot. 
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Figure 5.5 

 
Figure 5.5: CRISPR 2-19 vs Scrambled Volcano Plot. 

Each dot represents a single gene and is color coded according to q-value. The black dots represent genes that had a Dunnett’s post test q-value 

greater than 0.05, blue dots represent genes that had a q-value less than or equal to 0.05 but greater than 0.01, and red dots represent genes that 

had a q-value less than or equal to 0.01. Negative fold changes represent a decrease in that gene compared to the Scrambled group while 

positive fold changes represent an increase in that gene compared to the Scrambled group. NAT1 is shown by a purple dot while NAT2 is shown 

by a green dot. 
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Figure 5.6 

 
Figure 5.6: CRISPR 5-50 vs Scrambled Volcano Plot. 

Each dot represents a single gene and is color coded according to q-value. The black dots represent genes that had a Dunnett’s post test q-value 

greater than 0.05, blue dots represent genes that had a q-value less than or equal to 0.05 but greater than 0.01, and red dots represent genes that 

had a q-value less than or equal to 0.01. Negative fold changes represent a decrease in that gene compared to the Scrambled group while 

positive fold changes represent an increase in that gene compared to the Scrambled group. NAT1 is shown by a purple dot while NAT2 is shown 

by a green dot. 
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expression was compared between the cell lines since it has previously been reported that NAT1 

has redundancy with the MSR1 enzyme (Table 5.3). However MSR1 was differentially expressed 

only between the CRISPR 2-12 cell line and the Scrambled cell line. 

The overlap in genes that were differentially expressed with a fold-change greater than or 

equal to 2 was compared between the two NAT1 KO cell lines and the Scrambled group (Figure 

5.7). Five hundred ninety-nine genes were increased concordantly in the two NAT1 KO cell lines 

compared to Scrambled with 873 and 512 genes uniquely increased in the CRISPR 2-19 and 

CRISPR 5-50 cell lines, respectively. Three hundred nineteen genes were decreased 

concordantly in the two NAT1 KO cell lines compared to Scrambled with 592 and 506 genes 

uniquely decreased in the CRISPR 2-19 and CRISPR 5-50 cell lines, respectively. More genes 

had conflicting differential expression between the two CRISPR NAT1 KO cell lines compared to 

Scrambled that those that agreed.  

 Transcript expression of NAT1 and its isozyme, NAT2, were compared in all cell lines. 

Notably, in the two complete NAT1 knockout cell lines (CRISPR 2-19 & CRISPR 5-50), NAT2 

transcripts were significantly increased 6.7- and 2.8-fold, respectively, compared to the 

Scrambled cell line (Figure 5.8; Table 5.4), however NAT2 transcript expression was not 

increased in any of the other cell lines (p>0.05; Up, Down, CRISPR 2-12). Individual NAT2 

transcript mapping in the RNA-seq data in the Scrambled and NAT1 knockout cell lines, CRISPR 

2-19 and CRISPR 5-50, was visualized using Integrated Genomics Viewer (IGV; Figure 5.9). This 

observation was verified with RT-qPCR analysis for NAT1 and NAT2 in all six cell lines (Figure 

5.10). Although, not significant for all cell lines, there was a trend of decreased NAT1 transcripts 

and increased NAT2 transcripts in the RT-qPCR data. NAT2 activity assays were conducted for 

all 6 constructed cell lines using the NAT2 specific substrate sulfamethazine (SMZ) however no 

NAT2 activity was detected in any cell line. Currently, the functionality of the NAT2 transcripts 

produced in the NAT1 knockout cell lines is unknown. 

Many more genes correlated with NAT2 transcript abundance than NAT1 transcript 

abundance (r|≥0.9|). Twenty-two genes correlated with NAT1 (Table 5.5) while 342 genes were 

correlated with NAT2 (Table 5.6--abbreviated to show top 50 positively correlated and all 
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Table 5.3 
 
Differential Expression of the Methylthioribose-1-Phosphate Isomerase (MRI1) Gene 

COMPARISON Log2 FC 
Comparison/Scrambled q-value 

Up vs Scrambled 0.39 0.93 

Down vs Scrambled -0.03 0.98 

CRISPR 2-12 vs Scrambled 1.52 0.01 

CRISPR 2-19 vs Scrambled 1 0.16 

CRISPR 5-50 vs Scrambled 0.86 0.17 

 

Methylthioribose-1-phosphate isomerase (MRI1) transcript fold-changes between each cell line 

compared to the Scrambled cell line. Fold-change and q-value were calculated using cuffdiff. 

Significant differential gene expression is color-coded by direction of fold-change with increases 

shown in green while decreases are shown in red.  
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Figure 5.7 
 

 
Figure 5.7: Gene Concordance Between CRISPR 2-19 and CRISPR 5-50 Cell Lines Compared to Scrambled. 

Genes significantly differentially expressed with a fold-change greater than or equal to 2 were compared between CRISPR/Cas9 generated NAT1 

knockout cell lines. Five hundred ninety-nine genes were increased concordantly in the two NAT1 KO cell lines compared to Scrambled with 873 

and 512 genes uniquely increased in the CRISPR 2-19 and CRISPR 5-50 cell lines, respectively. Three hundred nineteen genes were decreased 

concordantly in the two NAT1 KO cell lines compared to Scrambled with 592 and 506 genes uniquely decreased in the CRISPR 2-19 and CRISPR 

5-50 cell lines, respectively. Green: genes up-regulated compared to Scrambled; red: genes down-regulated compared to Scrambled. 
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Figure 5.8 

 
Figure 5.8: NAT1 and NAT2 Gene Expression in Each Cell Line Compared to Scrambled 

and Up. 

Fold change of NAT1 and NAT2 between each cell line (Down, Up, CRISPR 2-12, CRISPR 2-19, 

and CRISPR 5-50) compared to Scrambled was assessed. We additionally compared NAT1 and 

NAT2 gene expression in all cell lines to the Up cell line. In the heatmap, red represents a 

decrease in gene expression, black represents no change, and green represents an increase in 

gene expression.
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Table 5.4 
 
Differential Expression of the N-acetyltransferase (NAT) Genes 

COMPARISON GENE Log2 FC 
Comparison/Scrambled q-value 

Up vs Scrambled 
NAT1 3.3 0.003 

NAT2 0.1 1 

Down vs Scrambled 
NAT1 -0.7 0.08 

NAT2 -0.9 1 

CRISPR 2-12 vs Scrambled 
NAT1 -1.0 0.009 

NAT2 -1.6 1 

CRISPR 2-19 vs Scrambled 
NAT1 -1.1 0.02 

NAT2 6.7 0.0005 

CRISPR 5-50 vs Scrambled 
NAT1 -1.9 0.0005 

NAT2 2.8 0.006 
 
NAT transcript fold-changes between each cell line compared to the Scrambled cell line. Fold-change and q-value were calculated using cuffdiff. 

Genes with q≥0.05 were considered significantly differentially expressed. Significant differential gene expression is color-coded by direction of 

fold-change with increases shown in green while decreases are shown in red.  
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Figure 5.9 
 

 
Figure 5.9: Integrated Genomics Viewer (IGV) NAT2 Transcript Mapping 

Raw transcript reads mapping to NAT2 were visualized with IGV. Each gray bar represents a single transcript read. Colored lines in the transcripts 

represent the presence of a SNP in comparison to the homo sapiens hg.38 reference genome.
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Figure 5.10 

 
Figure 5.10: NAT1 and NAT2 mRNA Expression. 

NAT1 and NAT2 were quantitated via RT-qPCR in the six constructed cell lines as well as the parental MDA-MB-231 cell line. 

Results represent are from 3 independent experiments with 3 replicates in each experiment and are reported relative to the Parent cell line. Bars 

represent log2 mean ± SEM. N=3. *=p<0.05, **=p<0.01, ***=p<0.001.
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Table 5.5 
 
Genes Correlated with NAT1 Transcript Abundance 

ENSEMBLE  
GENE ID  

GENE q-value CORRELATION 
 

ENSG00000171428 NAT1 N/A 1.00 
ENSG00000202310 Y_RNA <0.00001 0.98 
ENSG00000253377 AC068672.2 <0.00001 0.98 
ENSG00000258168 AC025569.1 <0.00001 0.96 
ENSG00000176571 CNBD1 <0.00001 0.96 
ENSG00000174125 TLR1 <0.00001 0.95 
ENSG00000167355 AC087380.1 <0.00001 0.94 
ENSG00000165078 CPA6 <0.0001 0.93 
ENSG00000187189 TSPYL4 <0.0001 0.92 
ENSG00000173157 ADAMTS20 <0.0001 0.92 
ENSG00000106034 CPED1 <0.0001 0.92 
ENSG00000081148 IMPG2 <0.0001 0.92 
ENSG00000165424 ZCCHC24 <0.0001 0.92 
ENSG00000170915 PAQR8 <0.0001 0.92 
ENSG00000162139 NEU3 0.0001 0.91 
ENSG00000173930 SLCO4C1 0.0001 0.91 
ENSG00000141219 C17orf80 0.0001 0.91 
ENSG00000270157 NA 0.0001 0.91 
ENSG00000179331 RAB39A 0.0002 0.91 
ENSG00000196449 YRDC <0.0001 -0.92 
ENSG00000054116 TRAPPC3 0.0001 -0.91 
ENSG00000116288 PARK7 0.0002 -0.90 

 
Pearson correlation between NAT1 gene abundance in constructed cell lines and all genes in the 

transcriptomics dataset was conducted. Twenty-two genes were significantly correlated (r > 0.90) 

with NAT1 transcript abundance. q-value is the Pearson correlation q-value, and correlation is the 

Pearson correlation coefficient. Correlation coefficients were color coded according to direction of 

correlation with green for positive correlation and red for inverse (negative) correlation. 
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Table 5.6 
 
Genes Correlated with NAT2 Transcript Abundance (Abbreviated to top 50 genes) 

ENSEMBLE  
GENE ID  

GENE p-value CORRELATION 
COEFFICIENT 

ENSG00000156006 NAT2 NA 1.00 
ENSG00000186479 RGS7BP <0.00001 1.00 
ENSG00000158270 COLEC12 <0.00001 1.00 
ENSG00000021645 NRXN3 <0.00001 1.00 
ENSG00000188086 PRSS45 <0.00001 1.00 
ENSG00000179097 HTR1F <0.00001 1.00 
ENSG00000197506 SLC28A3 <0.00001 1.00 
ENSG00000134247 PTGFRN <0.00001 1.00 
ENSG00000267313 KC6 <0.00001 1.00 
ENSG00000112902 SEMA5A <0.00001 1.00 
ENSG00000243486 AC068985.1 <0.00001 1.00 
ENSG00000129514 FOXA1 <0.00001 1.00 
ENSG00000261122 LINC02167 <0.00001 1.00 
ENSG00000233403 AC121342.1 <0.00001 1.00 
ENSG00000078596 ITM2A <0.00001 0.99 
ENSG00000095777 MYO3A <0.00001 0.99 
ENSG00000105383 CD33 <0.00001 0.99 
ENSG00000105851 PIK3CG <0.00001 0.99 
ENSG00000110002 VWA5A <0.00001 0.99 
ENSG00000115165 CYTIP <0.00001 0.99 
ENSG00000124429 POF1B <0.00001 0.99 
ENSG00000125848 FLRT3 <0.00001 0.99 
ENSG00000130224 LRCH2 <0.00001 0.99 
ENSG00000137745 MMP13 <0.00001 0.99 
ENSG00000140379 BCL2A1 <0.00001 0.99 
ENSG00000140563 MCTP2 <0.00001 0.99 
ENSG00000143061 IGSF3 <0.00001 0.99 
ENSG00000145649 GZMA <0.00001 0.99 
ENSG00000147246 HTR2C <0.00001 0.99 
ENSG00000149573 MPZL2 <0.00001 0.99 
ENSG00000152217 SETBP1 <0.00001 0.99 
ENSG00000155622 XAGE2 <0.00001 0.99 

*continued on next page 
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ENSG00000165061 ZMAT4 <0.00001 0.99 
ENSG00000165449 SLC16A9 <0.00001 0.99 
ENSG00000165795 MIR6717 <0.00001 0.99 
ENSG00000165868 HSPA12A <0.00001 0.99 
ENSG00000166669 ATF7IP2 <0.00001 0.99 
ENSG00000170927 PKHD1 <0.00001 0.99 
ENSG00000171004 HS6ST2 <0.00001 0.99 
ENSG00000178235 SLITRK1 <0.00001 0.99 
ENSG00000180287 PLD5 <0.00001 0.99 
ENSG00000183230 CTNNA3 <0.00001 0.99 
ENSG00000184564 SLITRK6 <0.00001 0.99 
ENSG00000189398 OR7E12P <0.00001 0.99 
ENSG00000205628 LINC01446 <0.00001 0.99 
ENSG00000223756 TSSC2 <0.00001 0.99 
ENSG00000224960 PPP4R3CP <0.00001 0.99 
ENSG00000226372 DCAF8L1 <0.00001 0.99 
ENSG00000255501 CARD18 <0.00001 0.99 
ENSG00000261780 LOC100505817 <0.00001 0.99 
ENSG00000238755 NA <0.00001 0.99 
ENSG00000253651 NA <0.00001 0.99 
ENSG00000228065 NA <0.00001 0.99 
ENSG00000151208 DLG5 <0.00001 -0.91 

 
Pearson correlation between NAT2 gene abundance in constructed cell lines and all genes in the 

transcriptomics dataset was conducted. Three hundred forty-two genes were significantly 

correlated (r > 0.90) with NAT1 transcript abundance. q-value is the Pearson correlation q-value, 

and correlation is the Pearson correlation coefficient. Correlation coefficients were color coded 

according to direction of correlation with green for positive correlation and red for inverse 

(negative) correlation.
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negatively correlated). This observation may be because of the low abundance of NAT2 in most 

of our cell lines. Notably, multiple genes associated with NAT1 transcript abundance are located 

on chromosome 8, the same chromosome on which NAT1 is located. There was no overlap in 

genes correlated with NAT1 and NAT2 transcript expression, suggesting different regulation 

mechanisms. 

Correlation Concordance 

 To determine if the genes strongly correlated with NAT1 and NAT2 transcript expression, 

respectively, show the same relationship in other independent datasets correlation was compared 

in publicly available data repositories. Gene expression data for top 20 genes in the lists as well 

as NAT1 and NAT2 were downloaded from the cancer cell line encyclopedia (CCLE) and the 

cancer genome atlas (TCGA). Breast cancer datasets were utilized since our original samples 

were from the breast cancer cell line MDA-MB-231. However, there are data for many different 

cancers in the repositories. Correlation between NAT1 and NAT2 and the genes they correlated 

with in the transcriptomics dataset was assessed in the two independent datasets using the 

Pearson method. 

Unsupervised hierarchical clustering of each sample revealed the global transcriptomic 

profile of each cell line is distinct (Figure 5.11). The individual sample replicates clustered 

accurately by group. The first split in the dendrogram of the hierarchical clustering is between the 

two CRISPR/Cas9 cell lines constructed using guide RNA 2 and the other four cell lines; this 

provides evidence that those two cell lines have global transcriptomic profiles that are more 

similar to each other than to the respective cell lines that express the same level of NAT1 N-

acetylation activity. The heatmap visualization of the data shows distinct clusters of gene 

transcripts whose expression is much more similar between the two cell lines constructed using 

CRISPR/Cas9 guide RNA 2 but have different levels of NAT1 activity than the two CRISPR/Cas9 

cell lines that were constructed using two different guide RNAs but both had no detectable NAT1 

activity. Differential gene expression between each cell line compared to Scrambled was also 

visualized as a heatmap with hierarchical clustering (Figure 5.12).



 

 

126 
 

Figure 5.11 
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Figure 5.11: Hierarchical Clustering and Heatmap of Each Cell Lines Global Transcriptomics Signature.  

Genes colored red on the heatmap had a median scaled relative abundance less than 1, genes colored white had a median scaled relative 

abundance of 1, and genes colored blue had a median scaled relative abundance greater than 1. Each column represents a single gene and each 

row represents a single transcriptomics sample; rows are labeled with sample number. Samples are color coded according to cell line identity. 

Unbiased hierarchical clustering reveals the two CRISPR/Cas9 cell lines constructed using guide RNA 2 are more similar than the two NAT1 

complete knockout cell lines as would be expected. 
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Figure 5.12 
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Figure 5.12: Hierarchical Clustering and Heatmap of Differential Gene Expression Compared to Scrambled. 

Each column represents a single gene and each row represents the average gene expression for the specific comparison labeled across the three 

biological replicates. Red represents genes that were decreased compared to Scrambled, black represents no change, and green represents 

genes increased compared to Scrambled. U vs S: Up vs Scrambled; D vs S: Down vs Scrambled; C 212 vs S: CRISPR 2-12 vs Scrambled; C 219 

vs S: CRISPR 2-19 vs Scrambled; C 550 vs S: CRISPR 5-50 vs Scrambled. 
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Similarly, principal component analysis showed that the CRISPR/Cas9 generated cell 

lines had global transcriptomic profiles that were distinct from the siRNA generated cell lines as 

well as each other. In our dataset, principal component 1 explains 43% of the variance in the data 

while principal component 2 explains 17% of the variance (Figure 5.13). There are two types of 

variance within the data set; within group and between group variance. For our experimental 

question, we are most interested in the between group variance. The CRISPR 2-12, CRISPR 2-

19, and CRISPR 5-50 groups are separated from the other three groups by principal component 

1 (PC1). This reveals that the Scrambled, Up, and Down groups have global transcriptomic 

profiles that are similar to each other but very different from the other three groups given that PC1 

represents 43% of the variance in our dataset. The CRISPR 5-50 group is separated from the 

other five groups along principal component 2. 

WGCNA Analysis 

 Weighted gene correlation network analysis was conducted to analyze networks of genes 

whose expression suggested interaction and/or involvement in the same pathways. First, all 

transcriptomics data were analyzed with the WGCNA algorithm to create modules of genes 

(Figure 5.14). Next Pearson correlation was conducted on resulting modules to identify modules 

correlated with NAT1 N-acetylation activity (Figure 5.15). We used this analysis to identify genes 

whose network topology suggested interaction with NAT2 as a strategy to identify genes that may 

have a role in the transcription of NAT2 (Figure 5.16). 

Pathway Analysis 

Pathway enrichment analysis was conducted on each group compared to the Scrambled 

group (Figure 5.17). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways173,174 that 

had a normalized enrichment score of ≥ 1.60 were focused on. Disease associated pathways 

were removed from the analysis results because samples are known to be malignant thus 

confounding any possible conclusions about other diseases. Many pathways were significantly 

enriched for differences; amino acid, lipid, and nucleotide metabolism pathways were significantly 

enriched. Some enriched pathways did not include all group comparisons suggesting differential 

impacts on metabolism. 
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Figure 5.13 
 

 
Figure 5.13: Transcriptomics Principal Components Analysis. 

Each symbol represents an individual transcriptomics sample and is color coded by cell line. 

Principal component one represents 43% of the total variance in the dataset and separates the 

CRISPR 2-12 and CRISPR 2-19 cell lines from all other cell lines. Principal component 2 

represents 17% of the total variance in our dataset and separates the CRISPR 5-50 cell line from 

all other cell lines.
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Figure 5.14 

 
Figure 5.14: WGCNA Transcript Module Branches by Color 

The Weighted Gene Correlation Network Analysis (WGCNA) algorithm was used to create modules of correlated genes based on topological 

overlap. Each module assignment is designated by a color. The clustering for each module of genes is shown. Modules of genes were utilized in 

further analysis. 
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Figure 5.15 
 

 
 

Figure 5.15: Correlation Between WGCNA Transcript Modules and NAT1 N-acetylation Activity. 

To identify gene modules related to varying levels of NAT1 correlation analysis between the module score of each sample and NAT1 N-acetylation 

activity was conducted. Four modules, white, yellow3, thistle, and tan, were associated with NAT1 activity. Each point represents a single 

metabolomics sample and is color coded according to cell line. 

 

NAT1 Activity (log scale) 
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Figure 5.16 
 

 
Figure 5.16: Heatmap of genes in WGCNA white module. 

Heatmap showing relative gene expression for each gene in the white module. NAT2 is contained 

in this module. Clustering of genes in the white module is shown. Genes colored red on the 

heatmap had a median scaled relative abundance less than 1, genes colored white had a median 

scaled relative abundance of 1, and genes colored blue had a median scaled relative abundance 

greater than 1. Clustering indicates degree of topological overlap in gene expression.

NAT2 
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Figure 5.17 
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Figure 5.17: Transcriptomics Enrichment Analysis. 

Pathway enrichment analysis was conducted for each group compared to Scrambled and is color-coded by comparison. We utilized the 

normalized enrichment score to determine the relative degree of enrichment. U vs S: Up vs Scrambled; D vs S: Down vs Scrambled; C212 vs S: 

CRISPR 2-12 vs Scrambled; C219 vs S: CRISPR 2-19 vs Scrambled; C550 vs S: CRISPR 5-50 vs Scrambled. 
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Discussion  

Given that (theoretically) only a single gene, NAT1, was genetically altered in each cell 

line, it was expected that only a small proportion of genes would be differentially expressed, given 

the vast homeostasis mechanisms present175-177. However, a very large proportion (~90%) of all 

genes were observed to be significantly differentially expressed. Additionally, very few, if any, 

differences in gene expression were expected between the two NAT1 knockout cell lines because 

each cell line should otherwise have the exact same genome. Yet one of the most striking 

observations of this study is the differences in gene expression between the two complete NAT1 

knockout cell lines. The hierarchical clustering, principal components analysis, and pathway 

enrichment analysis show there were significant differences between the two cell lines 

constructed using CRISPR/Cas9 guide RNA 2 and the cell line constructed using CRISPR/Cas9 

guide RNA 5. Even though, in terms of NAT1 activity the CRISPR 2-19 and CRISPR 5-50, cell 

lines are identical, their transcriptomic profiles are extremely different. This result suggests there 

are additional genetic differences between the two cell lines. The large number of differentially 

expressed genes between each knockout cell line compared to the Scrambled cell line and 

compared to each other could be because the cell lines have undergone additional unique 

mutations and/or because each CRISPR guide RNA used caused unique off-target effects in 

addition to targeting NAT1. To focus on transcriptome differences associated with varying levels 

of NAT1 in breast cancer, interpretation of this study has been focused on differentially expressed 

genes that agreed between the two CRISPR NAT1 knockout cell lines. 

The observation that the complete knockout, but not knockdown, of NAT1 lead to NAT2 

transcript production leads to the postulation that there may be a compensation mechanism that 

occurs when NAT1 N-acetylation is lost, suggesting NAT1 has an essential role. There have been 

reports of genetic compensation in a zebrafish model in which a gene was knocked out by a 

deleterious mutation but not in a zebrafish model where the same gene was knocked down by 

siRNA216. There have been cases reported of humans that have no detectable NAT1 N-

acetylation activity but NAT2 expression and/or activity was not investigated. Notably, a 

retrospective analysis of publicly available NAT1 and NAT2 gene expression data in established 



 

 138 

breast cancer cell lines, primary breast tumor tissues, and normal breast tissues showed a small 

positive correlation between the two genes217. One reason that study did not observe an inverse 

relationship between NAT1 and NAT2 gene expression may be because complete knockout of 

NAT1 may be necessary before the compensation mechanism occurs since NAT2 transcripts 

were only observed in the complete NAT1 KO cell lines but not the cell lines with decreased 

NAT1.  

NAT1 has been shown to have redundancy with methylthioribose-1-phosphate isomerase 

(MRI1) in the methionine salvage pathway107. However, MRI1 was only differentially expressed 

(increased) in one cell line, CRISPR 2-12, compared to Scrambled. As the MDA-MB-231 cell line 

does not have a functional methionine salvage pathway this result is not surprising. This example 

highlights the importance of studying the effects of varying NAT1 in multiple cell lines as each has 

unique mutations that may confound results. 

Summary and Conclusions 

This is the first study to measure the global transcriptome profile of breast cancer cells 

with varying levels of NAT1 N-acetylation activity. Most notably, NAT1 knockout and knockdown 

had a much greater impact on differential gene expression than the overexpression of NAT1. 

Additionally, NAT2 transcript production was observed in the two complete NAT1 knockout cell 

lines, CRISPR 2-19 and CRISPR 5-50, but not any of the other cell lines. This observation 

suggests NAT2 transcripts are produced as a compensation mechanism for the complete loss of 

NAT1. However, the mechanism by which the cell senses the loss of NAT1 and transcribes NAT2 

has not been identified and requires further investigation. Although NAT2 transcripts were 

detected in the NAT1 knockout cell lines, NAT2 N-acetylation activity was not thus the 

functionality of the NAT2 transcripts requires further investigation. Since this is the first study to 

measure the global transcriptome profile of breast cancer cells with varying levels of NAT1 N-

acetylation activity I envision this transcriptomics dataset being mined for years to come as new 

discoveries are made about NAT1. An important use of this data will be comparisons and joint 

analysis between the transcriptomics data presented in this chapter and the metabolomics data 

presented in Chapter 4; this comparison is discussed in Chapter 6. 
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CHAPTER 6

 

COMBINING DATASETS 

 

Background 

 The ability to combine multiple omics datasets for joint analysis is important for achieving 

a systems biology view of metabolism as there are many layers of regulation at each step, 

including transcriptional, translational, and post-translational regulation. Additionally, comparing 

results from multiple omics datasets can provide confidence that observations are not due to 

chance when multiple, independently measured datasets support a specific conclusion. Multi-

omics integration is a relatively new area of research and as such methodologies are still being 

developed and improved (reviewed in 218). There are many tools currently available, including 

MetaCore™, MetaboAnalyst219, InCroMAP220, PaintOmics221,222, Pathview223, MixOmics224, and 

3Omics225. However, the “best” methodology for multi-omics integration is a fiercely debated topic 

in the omics field. It is the author’s opinion that there is considerable room for improvement and 

development of tools in the field of multi-omics analyses. Currently, most tools for combining 

omics datasets perform a pathway enrichment analysis using data from the multiple datasets. 

However, pathway enrichment analysis is highly biased by what is currently known about 

metabolism and what can be measured/detected by the omics methods. Bioinformatics skills as 

well as broad knowledge of metabolism are indispensable when utilizing the above mentioned 

omics integration tools to obtain and interpret the results in a meaningful way. 

Methods and Results 

Bioenergetics and Transcriptomics 

To combine the bioenergetics and transcriptomics datasets expression of nuclear-

encoded mitochondrial genes from the transcriptomics data was compared between constructed 
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cell lines. First, a list of ENTREZ gene IDs was created containing all mitochondrial complex 

genes from the HUGO gene nomenclature committee website226; the list contained 96 genes. 

Although the hg.38 reference assembly, which includes the human mitochondrial genome, was 

utilized for transcript mapping, mitochondrial DNA (mtDNA) encoded genes were not detected in 

the transcriptomics dataset. It is hypothesized that this is because of the relatively low abundance 

of mitochondrial DNA compared to nuclear DNA. Nuclear-encoded mitochondrial gene 

expression in all cell lines was visualized utilizing a heatmap (Figure 6.1). Fold change and 

significance of differential expression of those mitochondrial genes was visualized using volcano 

plots (Figure 6.2). Tables 6.1 – 6.4 lists fold-change and significance of all differentially expressed 

mitochondrial genes by cell line comparison. Notably, no mitochondrial genes were significantly 

differentially expressed between the Up and Scrambled cell lines. Additionally, most 

mitochondrial genes in the cell lines with decreased or knockout NAT1 N-acetylation activity 

(Down, CRISPR 2-12, CRISPR 2-19, and CRISPR 5-50) were downregulated compared to the 

cell line with parental NAT1 N-acetylation activity (Scrambled). Table 6.5 lists mitochondrial 

genes that were concordantly differentially expressed (q ≤ 0.05) in the two NAT1 knockout cell 

lines, CRISPR 2-19 and CRISPR 5-50. 

Metabolomics and Transcriptomics 

To combine the metabolomics and transcriptomics datasets a combined pathway 

enrichment analysis was performed and both metabolite abundance (from metabolomics dataset) 

and gene expression (from transcriptomics dataset) were mapped onto KEGG pathway maps for 

visualization utilizing Pathview223, an R/Bioconductor package for pathway-based data integration 

and visualization. For the combined enrichment analysis, the normalized enrichment score for 

each pathway from both datasets was averaged. Many KEGG pathways showed significant 

enrichment in the combined analysis (Figure 6.3), including 1. lysine degradation (Figure 6.4), 2. 

alanine, aspartate, and glutamate metabolism, 3. amino sugar and nucleotide sugar metabolism, 

4. AMPK signaling, 5. biosynthesis of unsaturated fatty acids, 6. fructose and 
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Figure 6.1 
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Figure 6.1: Heatmap of Mitochondrial Gene Expression. 

Mitochondrial gene expression from the transcriptomics dataset was compared between constructed cell lines. A list of 96 ENTREZ gene IDs was 

created for all mitochondrial complex genes from the HUGO gene nomenclature committee website226. Transcript abundance was plotted as a 

heatmap. Cyan represents genes not expressed, yellow represents genes lowly expressed, and orange and red represent genes with high 

expression. Each row represents average transcript expression for 3 biological replicates from each cell line and columns represent a single 

mitochondrial gene. 
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Figure 6.2  

 
 

 
 
 
 

0

1

2

3

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Log2 Fold Change

−L
og

10
 q
−v

al
ue ID

DS

US

C12S

C19S

C50S

Mitochondrial Genes

1.5

2.0

2.5

3.0

−3 −2 −1 0 1 2
Log2 Fold Change

−L
og

10
 q
−v

al
ue ID

DS

US

C12S

C19S

C50S

Mitochondrial Genes

A 

B 



 

 144 

Figure 6.2: Mitochondrial Gene Expression 

Mitochondrial gene expression was compared in the constructed cell lines. Genes were selected 

by creating a list of ENTREZ gene IDs for all mitochondrial complex genes from the HUGO gene 

nomenclature committee website226. Each point represents a single mitochondrial gene and is 

color coded by cell line compared to Scrambled. US: Up vs Scrambled; DS: Down vs Scrambled; 

C212S: CRISPR 2-12 vs Scrambled; C219S: CRISPR 2-19 vs Scrambled; C550 S: CRISPR 5-50 

vs Scrambled. (A) All data was visualized as a volcano plot. (B) Only genes significantly 

differentially expressed were plotted. 
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Table 6.1 
 
Differentially Abundant Nuclear-encoded Mitochondrial Genes in Down Cell Line Compared to 
Scrambled 

COMPARISON ENSEMBL GENE ENTREZ ID GENE SYMBOL 
log2 
Fold-

Change 
q-value 

Down vs 
Scrambled 

ENSG00000099624 513 ATP5D -2.80 0.0005 

ENSG00000124172 514 ATP5E -0.68 0.0042 

ENSG00000135390 517 ATP5G2 -0.86 0.0005 

ENSG00000131143 1327 COX4I1 -1.21 0.0005 

ENSG00000135940 1329 COX5B -0.69 0.0005 

ENSG00000126267 1340 COX6B1 -0.79 0.0005 

ENSG00000131174 1349 COX7B 0.55 0.0129 

ENSG00000127184 1350 COX7C -0.40 0.0257 

ENSG00000176340 1351 COX8A -1.34 0.0005 

ENSG00000179091 1537 CYC1 -1.10 0.0005 

ENSG00000170906 4696 NDUFA3 -1.62 0.0387 

ENSG00000099795 4713 NDUFB7 -3.06 0.0005 

ENSG00000167792 4723 NDUFV1 -0.94 0.0005 

ENSG00000164258 4724 NDUFS4 -0.38 0.0431 

ENSG00000145494 4726 NDUFS6 -0.80 0.0045 

ENSG00000110717 4728 NDUFS8 -1.47 0.0005 

ENSG00000010256 7384 UQCRC1 -1.02 0.0005 

ENSG00000127540 10975 UQCR11 -1.20 0.0005 

ENSG00000184076 29796 UQCR10 -1.14 0.0005 

ENSG00000186010 51079 NDUFA13 -2.13 0.0005 

ENSG00000147123 54539 NDUFB11 -0.60 0.0260 

ENSG00000174886 126328 NDUFA11 -2.22 0.0005 

ENSG00000115286 374291 NDUFS7 -2.07 0.0005 
 

Nuclear-encoded Mitochondrial Genes Differentially Abundant in the Down Cell Line Compared to 

Scrambled are listed. 
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Table 6.2 
 
Differentially Abundant Nuclear-encoded Mitochondrial Genes in CRISPR 2-12 Cell Line 
Compared to Scrambled 

COMPARISON ENSEMBL GENE ENTREZ ID GENE SYMBOL 
log2 
Fold-

Change 
q-value 

CRISPR 2-12 
vs Scrambled 

ENSG00000110955 506 ATP5B -0.53 0.0038 

ENSG00000124172 514 ATP5E -0.73 0.0087 

ENSG00000135390 517 ATP5G2 -0.58 0.0009 

ENSG00000127184 1350 COX7C -0.43 0.0178 

ENSG00000128609 4698 NDUFA5 -1.11 0.0005 

ENSG00000184983 4700 NDUFA6 -0.49 0.0326 

ENSG00000139180 4704 NDUFA9 -0.58 0.0280 

ENSG00000004779 4706 NDUFAB1 -0.75 0.0005 

ENSG00000183648 4707 NDUFB1 -0.55 0.0059 

ENSG00000090266 4708 NDUFB2 -0.95 0.0024 

ENSG00000164258 4724 NDUFS4 -0.64 0.0005 

ENSG00000160194 4731 NDUFV3 0.78 0.0005 

ENSG00000156467 7381 UQCRB -0.73 0.0005 

ENSG00000169021 7386 UQCRFS1 -0.59 0.0005 

ENSG00000178741 9377 COX5A -0.64 0.0005 

ENSG00000241468 9551 ATP5J2 -0.83 0.0393 

ENSG00000167863 10476 ATP5H| -0.64 0.0034 

ENSG00000127540 10975 UQCR11 -0.83 0.0097 

ENSG00000164405 27089 UQCRQ -0.50 0.0313 

ENSG00000184076 29796 UQCR10 -0.66 0.0005 

ENSG00000174886 126328 NDUFA11 -0.62 0.0230 
 
Nuclear-encoded Mitochondrial Genes Differentially Abundant in the CRISPR 2-12 Cell Line 

Compared to Scrambled are listed. 
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Table 6.3 
 
Differentially Abundant Nuclear-encoded Mitochondrial Genes in CRISPR 2-19 Cell Line 
Compared to Scrambled 

COMPARISON ENSEMBL GENE ENTREZ ID GENE 
SYMBOL 

log2  
Fold-Change q-value 

CRISPR 2-19 
vs Scrambled 

ENSG00000165629 509 ATP5C1 -0.73 0.0013 

ENSG00000099624 513 ATP5D -1.36 0.0076 

ENSG00000124172 514 ATP5E -0.98 0.0013 

ENSG00000135390 517 ATP5G2 -1.07 0.0005 

ENSG00000131143 1327 COX4I1 -0.80 0.0094 

ENSG00000126267 1340 COX6B1 -0.55 0.0312 

ENSG00000127184 1350 COX7C -1.06 0.0005 

ENSG00000176340 1351 COX8A -1.09 0.0016 

ENSG00000131495 4695 NDUFA2 -1.47 0.0398 

ENSG00000128609 4698 NDUFA5 -0.83 0.0005 

ENSG00000184983 4700 NDUFA6 -0.59 0.0306 

ENSG00000119421 4702 NDUFA8 -0.61 0.0039 

ENSG00000139180 4704 NDUFA9 -0.59 0.0494 

ENSG00000004779 4706 NDUFAB1 -0.60 0.0076 

ENSG00000183648 4707 NDUFB1 -0.64 0.0057 

ENSG00000090266 4708 NDUFB2 -0.85 0.0336 
ENSG00000065518 4710 NDUFB4 -0.61 0.0272 
ENSG00000099795 4713 NDUFB7 -1.00 0.0051 

ENSG00000167792 4723 NDUFV1 -0.58 0.0231 

ENSG00000164258 4724 NDUFS4 -0.80 0.0005 

ENSG00000160194 4731 NDUFV3 0.86 0.0033 

ENSG00000156467 7381 UQCRB -0.58 0.0071 

ENSG00000169021 7386 UQCRFS1 -0.62 0.0005 

ENSG00000178741 9377 COX5A -0.51 0.0156 

ENSG00000241468 9551 ATP5J2 -0.93 0.0356 

ENSG00000167863 10476 ATP5H -0.68 0.0042 

ENSG00000127540 10975 UQCR11 -0.99 0.0039 

ENSG00000164405 27089 UQCRQ -1.06 0.0005 

ENSG00000184076 29796 UQCR10 -0.94 0.0005 

ENSG00000160471 125965 COX6B2 2.04 0.0013 

ENSG00000174886 126328 NDUFA11 -1.77 0.0005 

ENSG00000115286 374291 NDUFS7 -2.25 0.0005 
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Nuclear-encoded Mitochondrial Genes Differentially Abundant in the CRISPR 2-19 Cell Line 

Compared to Scrambled are listed. 
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Table 6.4 
 
Differentially Abundant Nuclear-encoded Mitochondrial Genes in CRISPR 5-50 Cell Line 
Compared to Scrambled 

COMPARISON ENSEMBL GENE ENTREZ ID GENE SYMBOL 
log2 
Fold-

Change 
q-value 

CRISPR 5-50 vs 
Scrambled 

ENSG00000110955 506 ATP5B -0.55 0.0013 

ENSG00000124172 514 ATP5E -0.80 0.0005 

ENSG00000154518 518 ATP5G3 -0.38 0.0383 

ENSG00000169020 521 ATP5I -0.75 0.0005 

ENSG00000135940 1329 COX5B -0.46 0.0160 

ENSG00000127184 1350 COX7C -0.90 0.0005 

ENSG00000125356 4694 NDUFA1 0.57 0.0023 

ENSG00000128609 4698 NDUFA5 -0.48 0.0217 

ENSG00000184983 4700 NDUFA6 -0.85 0.0005 

ENSG00000004779 4706 NDUFAB1 -1.81 0.0005 

ENSG00000183648 4707 NDUFB1 -0.62 0.0013 

ENSG00000065518 4710 NDUFB4 -0.49 0.0361 

ENSG00000158864 4720 NDUFS2 0.55 0.0074 

ENSG00000164258 4724 NDUFS4 -0.63 0.0005 

ENSG00000145494 4726 NDUFS6 -0.53 0.0271 

ENSG00000204370 6392 SDHD -0.68 0.0294 

ENSG00000156467 7381 UQCRB -0.58 0.0013 

ENSG00000169021 7386 UQCRFS1 -0.53 0.0009 

ENSG00000178741 9377 COX5A -0.52 0.0027 

ENSG00000167863 10476 ATP5H -0.53 0.0068 

ENSG00000164405 27089 UQCRQ -1.12 0.0005 

ENSG00000160471 125965 COX6B2 2.05 0.0005 
 

Nuclear-encoded Mitochondrial Genes Differentially Abundant in the CRISPR 5-50 Cell Line 

Compared to Scrambled are listed. 
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Table 6.5 
 
Nuclear-encoded Mitochondrial Genes Concordantly Differentially Abundant in CRISPR 2-19 and CRISPR 5-50 Cell Lines 

ENSEMBL GENE ID ENTREZ ID GENE SYMBOL/DESCRIPTION 
log2FC.C.R 

CRISPR 2-19/S CRISPR 5-50/S 
ENSG00000124172 514 ATP5E|ATP synthase, H+ transporting, 

mitochondrial F1 complex, epsilon subunit -0.98 -0.80 

ENSG00000127184 1350 COX7C|cytochrome c oxidase subunit VIIc -1.06 -0.90 

ENSG00000128609 4698 NDUFA5|NADH dehydrogenase 
(ubiquinone) 1 alpha subcomplex, 5 -0.83 -0.48 

ENSG00000184983 4700 
NDUFA6|NADH dehydrogenase 
(ubiquinone) 1 alpha subcomplex, 6, 
14kDa 

-0.59 -0.85 

ENSG00000004779 4706 
NDUFAB1|NADH dehydrogenase 
(ubiquinone) 1, alpha/beta subcomplex, 1, 
8kDa 

-0.60 -1.81 

ENSG00000183648 4707 NDUFB1|NADH dehydrogenase 
(ubiquinone) 1 beta subcomplex, 1, 7kDa -0.64 -0.62 

ENSG00000065518 4710 NDUFB4|NADH dehydrogenase 
(ubiquinone) 1 beta subcomplex, 4, 15kDa -0.61 -0.49 

ENSG00000164258 4724 
NDUFS4|NADH dehydrogenase 
(ubiquinone) Fe-S protein 4, 18kDa 
(NADH-coenzyme Q reductase) 

-0.80 -0.63 

ENSG00000156467 7381 UQCRB|ubiquinol-cytochrome c reductase 
binding protein -0.58 -0.58 

ENSG00000169021 7386 UQCRFS1|ubiquinol-cytochrome c 
reductase, Rieske iron-sulfur polypeptide 1 -0.62 -0.53 

ENSG00000178741 9377 COX5A|cytochrome c oxidase subunit Va -0.51 -0.52 

ENSG00000167863 10476 ATP5H|ATP synthase, H+ transporting, 
mitochondrial Fo complex, subunit d -0.68 -0.53 

ENSG00000164405 27089 UQCRQ|ubiquinol-cytochrome c 
reductase, complex III subunit VII, 9.5kDa -1.06 -1.12 

ENSG00000160471 125965 COX6B2|cytochrome c oxidase subunit 
VIb polypeptide 2 (testis) 2.04 2.05 

 
Nuclear-encoded Mitochondrial Genes Concordantly Differentially Abundant in CRISPR 2-19 and CRISPR 5-50 Cell Lines 
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Figure 6.3  
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Figure 6.3: Combined Metabolomics and Transcriptomics Enrichment Analysis. 

Pathway enrichment analysis was conducted for each group compared to Scrambled and is color-coded by comparison. The normalized 

enrichment score was utilized to determine the relative degree of enrichment. U vs S: Up vs Scrambled; D vs S: Down vs Scrambled; C212 vs S: 

CRISPR 2-12 vs Scrambled; C219 vs S: CRISPR 2-19 vs Scrambled; C550 vs S: CRISPR 5-50 vs Scrambled. 
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Figure 6.4  
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Figure 6.4: Metabolites and Genes Projected onto the KEGG Lysine Degradation Pathway. 

NAT1 knockout cell lines, CRISPR 2-19 and CRISPR 5-50, metabolite abundance and gene expression data compared to Scrambled cell line 

projected onto the KEGG lysine degradation pathway. Metabolite abundances in yellow are decreased in the NAT1 knockout cell lines, 

metabolites in gray are unchanged, and metabolites in blue are increased in the NAT1 knockout cell lines. Gene abundances in red are decreased 

in the NAT1 knockout cell lines, genes in gray are unchanged, and genes in green are increased in the NAT1 knockout cell lines. The CRISPR 2-

19 cell line abundance and expression data are shown on the right of the circles and boxes, respectively, while the CRISPR 5-50 cell line 

abundance and expression data are shown on the left of the circles and boxes, respectively.
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mannose metabolism, 7. glycerolipid metabolism, 8. glycerophospholipid metabolism, 9. 

pyrmidine metabolism, 10. sphingolipid metabolism, and 11. sulfur metabolism. Notably, the Up 

cell line compared to the Scrambled cell line was not significantly enriched in 5 of the pathways.  

MixOmics224, an R package for omics feature selection and multiple data integration, was 

additionally utilized to conduct sparse partial least squares-discriminant analysis (sPLS-DA)227 

utilizing the metabolomics and transcriptomics datasets as blocks. The transcriptomics dataset 

was first filtered to remove genes that had no detected expression in any sample, leaving 25,515 

genes. A second filter was then applied to remove genes from the analysis for which 16 or more 

of the 18 total samples had no expression recorded; this left 23,931 genes in the dataset after 

both filters were applied. Additionally, because the chosen analysis relies on paired biological 

samples, only data from metabolomics samples that had corresponding transcriptomics data 

were utilized. This analysis had 18 samples total with 3 samples in each group.  

Tuning of the algorithm parameters was required. First, a design matrix was created 

where blocks (metabolomics and transcriptomics datasets) were correlated with a link of 0.1. 

Utilizing four components was found to be optimal in minimizing the overall error rate. Therefore 4 

components were utilized in the final model (Figure 6.5). The model was also tuned for the 

optimal number of variables to be selected from each dataset. It is important to note that the 

tuning function was set to favor relatively small numbers of variables to aide in interpretation of 

the final model results. The discriminant ability of components 1 and 2 was then visualized for 

each group in each block (metabolomics and transcriptomics; Figure 6.6). Component 1 

separated the CRISPR 5-50 cell line from the other cell lines; the corresponding loadings plot of 

component 1 visualized metabolites and genes that contribute the most to this discrimination 

(Figure 6.7; Tables 6.6 and 6.7). Conversely, component 2 separated the CRISPR/Cas9 

constructed cell lines from the siRNA constructed cell lines; however, the metabolites and genes 

of component 2 have greater contribution to the separation of the cell lines constructed using 

guide RNA 2 from all other cell lines. The corresponding loadings plot of component 2 visualized 

metabolites and genes that contributed the most to this discrimination and are each color coded 

by which group it is contributing to most (Figure 6.8; Tables 6.8 and 6.9). This result suggests that 
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Figure 6.5 

 

Figure 6.5 Optimization of Number of Components Included in sPLS-DA. 

Solid lines represent the overall error rate. Blue line represents the max distance measure, 

orange line represents the centroids distance measure, and gray line represents the mahalanobis 

distance measure. Four components were chosen for the sPLS-DA model.

0.
2

0.
4

0.
6

0.
8

1.
0

Component

C
la

ss
ifi

ca
tio

n 
er

ro
r r

at
e

1 2 3 4 5

Overall.BER
Overall.ER
max.dist
centroids.dist
mahalanobis.dist



 

 157 

Figure 6.6 
 

 
 
Figure 6.6: sPLS-DA Scores Plot. 

Scores plot showing the discriminant ability of sPLS-DA components 1 (variate 1) and 2 (variate 

2) for each group in each block (metab=metabolomics dataset and trans=transcriptomics 

dataset). S: Scrambled; U: Up; D: Down; C12: CRISPR 2-12; C19: CRISPR 2-19; C50: CRISPR 

5-50. 
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Figure 6.7  
 

 
Figure 6.7: sPLS-DA Component 1 Loadings Plot. 

Component 1 separates the CRISPR 5-50 cell line from the other cell lines; the corresponding 

loadings plot of component 1 visualizes metabolites and genes that are contributing the most to 

this discrimination S: Scrambled; U: Up; D: Down; C12: CRISPR 2-12; C19: CRISPR 2-19; C50: 

CRISPR 5-50. 
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Table 6.6 
 
sPLS-DA Component 1 Metabolites 

M# BIOCHEMICAL 
M327 indolelactate 

M462 phenyllactate (PLA) 

M259 galactosylglycerol* 

M265 gamma-glutamyl-epsilon-lysine 

M324 imidazole lactate 

M189 beta-citrylglutamate 

M180 argininosuccinate 

M364 methionine sulfoxide 

M530 sulfate* 

 

Metabolites included in sPLS-DA component 1. 
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Table 6.7 
 
sPLS-DA Component 1 Genes 

ENSEMBL GENE ID ENTREZ GENE NAME 
ENSG00000019186 cytochrome P450 family 24 subfamily A member 1 (CYP24A1) 

ENSG00000030304 muscle associated receptor tyrosine kinase (MUSK) 

ENSG00000100628 ankyrin repeat and SOCS box containing 2 (ASB2) 

ENSG00000126752 SSX family member 1 (SSX1) 

ENSG00000131370 SH3 domain binding protein 5 (SH3BP5) 

ENSG00000138347 myopalladin (MYPN) 

ENSG00000156395 sortilin related VPS10 domain containing receptor 3 (SORCS3) 

ENSG00000162366 PDZK1 interacting protein 1 (PDZK1IP1) 

ENSG00000162639 HEN1 methyltransferase homolog 1 (HENMT1) 

ENSG00000170848 pregnancy specific beta-1-glycoprotein 6 (PSG6) 

ENSG00000173432 serum amyloid A1 (SAA1) 

ENSG00000183668 pregnancy specific beta-1-glycoprotein 9 (PSG9) 

ENSG00000231924 pregnancy specific beta-1-glycoprotein 1 (PSG1) 

ENSG00000248596 centrosomal protein 192kDa pseudogene (LOC643201) 

ENSG00000249306 long intergenic non-protein coding RNA 1411 (LINC01411) 

ENSG00000275896 protease, serine 2 (PRSS2) 

ENSG00000248257 NA 

ENSG00000248191 NA 

 

Genes included in sPLS-DA component 1. 
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Figure 6.8 
 

 
Figure 6.8: sPLS-DA Component 2 Loadings Plot. 

Component 2 separates the CRISPR/Cas9 constructed cell lines from the siRNA constructed cell 

lines; however, the metabolites and genes of component 2 have greater contribution to the 

separation of the cell lines constructed using guide RNA 2 from all other cell lines. The 

corresponding loadings plot of component 2 visualizes metabolites and genes that are 

contributing the most to this discrimination and are each color coded by which group it is 

contributing to most S: Scrambled; U: Up; D: Down; C12: CRISPR 2-12; C19: CRISPR 2-19; C50: 

CRISPR 5-50. 
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Table 6.8 
 
sPLS-DA Component 2 Metabolites 

M# BIOCHEMICAL 
M447 palmitoloelycholine 

M437 oleoylcholine 

M452 palmitoylcholine * 

M31 1-lignoceroyl-GPC (24:0) 

M78 1-stearoyl-GPC (18:0) 

 

Metabolites included in sPLS-DA component 2. 
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Table 6.9 
 
sPLS-DA Component 2 Genes 

ENSEMBL GENE ID ENTREZ GENE NAME 
ENSG00000084734 glucokinase regulator (GCKR) 

ENSG00000100181 
transmembrane phosphatase with tensin homology pseudogene 1 
(TPTEP1) 

ENSG00000115216 nuclear receptor binding protein 1 (NRBP1) 

ENSG00000168032 ectonucleoside triphosphate diphosphohydrolase 3 (ENTPD3) 

ENSG00000185860 coiled-coil domain containing 190 (CCDC190) 

ENSG00000213190 
myeloid/lymphoid or mixed-lineage leukemia; translocated to, 11 
(MLLT11) 

ENSG00000227372 TP73 antisense RNA 1 (TP73-AS1) 

ENSG00000263753 long intergenic non-protein coding RNA 667 (LINC00667) 

ENSG00000084734 glucokinase regulator (GCKR) 

 

Genes included in sPLS-DA component 2. 
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while choline metabolism is altered in the CRISPR/Cas9 constructed cell lines it is dysregulated 

to a greater extent in the cell lines constructed using guide RNA 2. 

We have additionally utilized a chord diagram (also known as circos plot) to visualize the 

correlations between variables of different types (i.e. metabolites and genes; Figure 6.9). A 

correlation cut-off of 0.9 was chosen; positive correlations are shown with green connectors while 

negative correlations are shown with red connectors. A high degree of correlation between 

variables was observed with most correlations being positive. The data are also presented as a 

clustered heatmap specifically implemented to represent the multi-omics molecular signature 

expression for each sample (Figure 6.10). Each cell line has a unique multi-omics signature with 

distinct clusters of both metabolites and genes that appear to differentiate each cell line. This 

result agrees with the hierarchical clustering and heatmaps generated for each dataset 

independently, as each cell line had a unique global metabolomics and transcriptomics signature, 

respectively. 

Additionally, differential gene expression of SAT1 and SAT2 in the transcriptomics 

dataset were evaluated because SAT1 and SAT2 are known to N-acetylate putrescine and N-

acetylputrescine was positively correlated with NAT1 N-acetylation activity in the metabolomics 

dataset. SAT1 expression was significantly increased in the Down, CRISPR 2-12, and CRISPR 2-

19 cell lines compared to the Scrambled cell line (Table 6.10). This result suggests the Down, 

CRISPR 2-12, and CRISPR 2-19 cell lines should have increased N-acetylputrescine abundance 

compared to Scrambled. However, N-acetylputrescine abundances were observed to be 

decreased in those cell lines in the metabolomics dataset compared to the Scrambled cell line. 

These findings suggest the expression of SAT1 is not responsible for the N-acetylputrescine 

abundance observations. SAT2 was not significantly differentially expressed in any cell lines 

compared to the Scrambled cell line (Table 6.10).  

Discussion 

 The presence of additional differences other than NAT1 (presented in Chapter 7) 

complicates interpretation of the results. However, the combined results from all experiments 

have been utilized to develop a working postulation of the role of NAT1 in breast cancer cell 
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Table 6.10 
 
Differential Expression of the Spermidine/Spermine N1-Acetyltransferase (SAT) Genes 

COMPARISON GENE Log2 FC 
Comparison/Scrambled q-value 

Up vs Scrambled 
SAT1 0.17 0.85 

SAT2 -0.61 0.84 

Down vs Scrambled 
SAT1 0.41 0.02 

SAT2 -0.81 0.56 

CRISPR 2-12 vs Scrambled 
SAT1 0.93 <0.001 

SAT2 -0.08 0.97 

CRISPR 2-19 vs Scrambled 
SAT1 1.50 <0.001 

SAT2 -0.56 0.73 

CRISPR 5-50 vs Scrambled 
SAT1 0.24 0.24 

SAT2 0.15 0.94 

 
SAT transcript fold-changes between each cell line compared to the Scrambled cell line. Fold-

change and q-value were calculated using cuffdiff. Genes with q≥0.05 were considered 

significantly differentially expressed. Significant differential gene expression is color-coded by 

direction of fold-change with increases shown in green.  
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Figure 6.9 

 
Figure 6.9: Circos Plot of Metabolites and Transcripts Included in sPLS-DA Model. 

Metabolites are colored orange and genes are colored blue. A correlation cut-off of 0.9 was 

chosen; positive correlations are shown with green connectors while negative correlations are 

shown with red connectors. Relative abundances are shown with color coded lines on the outside 

of the plot. S: Scrambled; U: Up; D: Down; C12: CRISPR 2-12; C19: CRISPR 2-19; C50: CRISPR 
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Figure 6.10 
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Figure 6.10: Combined Metabolomics and Transcriptomics Hierarchical Clustering and Heatmap. 

Each row represents a single biological replicate and each column represents a single variable (gene or metabolite). Variables colored purple, 

blue, or green on the heatmap had a median scaled relative abundance less than 1, genes colored yellow had a median scaled relative 

abundance of 1, and genes colored orange or red had a median scaled relative abundance greater than 1. S: Scrambled; U: Up; D: Down; C12: 

CRISPR 2-12; C19: CRISPR 2-19; C50: CRISPR 5-50. Green represents the Up cell line, yellow represents the Down cell line, light red 

represents the Scrambled cell line, cyan represents the CRISPR 2-12 cell line, sky blue represents the CRISPR 2-19 cell line, and pink/purple 

represents the CRISPR 5-50 cell line.
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metabolism (Figure 6.11). Although many pathways were significantly enriched in the combined 

pathway analysis, the lysine degradation pathway has been focused on. Both carnitine and 

saccharopine, significant metabolites from the metabolomics dataset, are included in the lysine 

degradation pathway. Carnitine, an important metabolite in many pathways related to acetyl-CoA, 

is biosynthesized from methionine and lysine178. Notably, NAT1 has a role in the methionine 

salvage pathway107. Saccharopine is the first metabolite formed in the main lysine degradation 

pathway in mammals201,202. Further experiments will be necessary to understand how NAT1 is 

connected to the lysine degradation pathway.  

More generally, it was observed in the experiments presented in this dissertation that 

manipulation of NAT1 alters many metabolic pathways including amino acid, fatty acid, and 

nucleotide metabolism however it has been harder to narrow in on NAT1’s role specifically due to 

the presence of differences other than NAT1. While the exact mechanism by which NAT1 affects 

breast cancer cell metabolism has not been identified, significant “pieces” have been added to the 

“puzzle”. I predict, that as more experiments investigating the role of NAT1 in breast cancer are 

conducted, the bioenergetics, metabolomics, transcriptomics and combined analyses results 

presented here will not only have better context for interpretation but can also be utilized to add 

supporting or refuting information to those studies. 

Summary and Conclusions 

 Combined analysis of the bioenergetics & transcriptomics and metabolomics & 

transcriptomics datasets was conducted utilizing currently available bioinformatics tools. The joint 

analysis of the bioenergetics and transcriptomics analysis suggest differential mitochondrial gene 

expression may help explain some of our bioenergetics observations however further 

experiments investigating mitochondrial number and morphology are needed to gain a better 

understanding of the relationship between NAT1 and mitochondria. Notably, mitochondrial 

function has been linked to regulation of metabolism, cell-cycle control, and cell death in addition 

to mitochondria’s well-known role as the energy producers of the cell228. 

 Although the combined metabolomics and transcriptomics pathway analysis indicated 11 

KEGG biochemical pathways were significantly enriched, the lysine degradation pathway was 
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Figure 6.11 
 

 
Figure 6.11: Overall Dissertation Conclusion. 

The overall dissertation conclusion is that NAT1 has a role in the lysine degradation pathway 

however whether it is a direct role or a result of NAT1’s ability to hydrolyze acetyl-CoA remains 

unknown. By utilizing a systems biology approach we were able to measure that fatty acyl-CoA 

carnitine conjugates are decreased when NAT1 is knocked out. Fatty acyl-CoA conjugates are 

necessary for transporting fatty acyl-CoAs to the mitochondria for beta-oxidation which in turn 

produces acetyl-CoA. We observed differences in mitochondrial bioenergetics. Additionally, 

carnitine is biosynthesized from methionine and lysine and lysine is degraded to saccharopine. 

Saccharopine is increased when NAT1 is knocked out. 
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focused on. Interpretation of the other pathways was complicated by the strong evidence of 

differences in addition to NAT1 in the genetically modified cell lines. Additionally, the strongly 

suggested presence of mutation of genes in addition to NAT1 lead to the sPLS-DA model not 

yielding useful information about genes and transcripts, that together, vary based on NAT1 N-

acetylation activity. As better methods to integrate omics datasets become available, the datasets 

generated in this dissertation can be re-evaluated for novel insights. Currently available methods 

either have a reliance on pathway databases (hindering detection of unknown biochemical 

reactions) or have been developed to aide in the discovery of biomarkers or classification of 

patient samples.  
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CHAPTER 7

 

EVIDENCE OF DIFFERENCES OTHER THAN IN NAT1 IN GENETICALLY MODIFIED CELL 

LINES 

 

Background 

 The constructed MDA-MB-231 cell lines utilized for the experiments presented in this 

dissertation were designed to vary only in NAT1 and were expected to have otherwise identical 

genomes. The guide RNAs utilized for construction were specifically designed to target only the 

NAT1 genomic sequence, thus limiting the risk of off-target effects. However, in all three datasets, 

bioenergetics (Chapter 3), metabolomics (Chapter 4), and transcriptomics (Chapter 5), evidence 

of differences in addition to NAT1 were observed in the constructed MDA-MB-231 cell lines which 

we discuss in detail in this chapter (Figure 7.1). Although evidence of differences in addition to 

NAT1 were observed between the CRISPR/Cas9 NAT1 knockout cell lines, the additional genes 

altered have not been identified. A whole genome sequencing (WGS) approach would be 

necessary to determine what additional genes differ between the cell lines. I postulate that the 

observed additional differences are likely due to both CRISPR/Cas9 off-target effects as well as 

mutations in the cell lines that may have occurred during clonal isolation, passaging, and/or 

propagation. STR-profiling authenticated all constructed cell lines as MDA-MB-231 but is limited 

by the fact that only a few genomic locations are interrogated. Mutations could have occurred at 

locations not probed by STR-profiling. 

While I acknowledge that there is very strong evidence of differences in addition to NAT1 

expression in the constructed cell lines, the elegant study design and sample selection utilized in 

this dissertation allowed those differences to be filtered out and focus to be placed on results that 

were due to the modulation of NAT1. For example, observations and results that were present
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Figure 7.1  
 

 
 



 

 

174 
 

Figure 7.1: Evidence of Additional Differences Between Cell Lines Other Than NAT1. 

There are many sources of evidence for the assertion that there are differences other than NAT1 in the constructed cell lines. Concordance 

between both metabolites and genes was lower than disagreement between the two MDA-MB-231 cell lines with no detectable NAT1 N-

acetylation activity but constructed using two different guide RNAs; metabolites and genes in green were increased while metabolites and genes in 

red were decreased. Additionally, the first branch in hierarchical clustering, in both the metabolomics and transcriptomics datasets, separated the 

two MDA-MB-231 cell lines constructed utilizing guide RNA 2 but with different levels of NAT1 N-acetylation activity. In the bioenergetics dataset, 

both mitochondrial reserve capacity and baseline ECAR were significantly increased in the CRISPR 2-19 cell line compared to the CRISPR 5-50 

cell line, even both have no detectable NAT1 activity. Principal component analysis in the metabolomics dataset revealed most of the variance in 

the dataset was between the two MDA-MB-231 cell lines constructed utilizing guide RNA 2 but with different levels of NAT1 N-acetylation activity 

and all other cell lines. Data is color coded by cell line; Scrambled:salmon, Up:green, Down:mustard, CRISPR 2-12:teal, CRISPR 2-19:sky blue, 

CRISPR 5-50:pinkish purple. 
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in both NAT1 knockout cell lines were focused on, given any off-target effects caused by the use 

of a single guide RNA are likely not present in both cell lines. Additionally, mutations that 

occurred during clonal isolation or passaging are not likely to have occurred in the same gene in 

multiple cell lines thus allowing a focus on similarities rather than differences in the two NAT1 

knockout cell lines. 

Bioenergetics  

Mitochondrial reserve capacity was increased in both NAT1 knockout cell lines (CRISPR 

2-19 and CRISPR 5-50) compared to the Parent, Scrambled, and Up cell lines. However, it was 

also significantly higher in the CRISPR 2-19 cell line compared to the CRISPR 5-50 cell line 

suggesting differences other than NAT1 between the two cell lines. Baseline ECAR was also 

significantly increased in the CRISPR 2-19 cell line compared to the CRISPR 5-50 cell line. In the 

bioenergetics conclusions (Chapter 3), observations have been attributed to the modulation of 

NAT1 only if the change was observed in the same direction in both NAT1 knockout cell lines, 

CRISPR 2-19 and CRISPR 5-50. Unfortunately, the CRISPR 2-12 cell line was not utilized in the 

Bioenergetics studies thus preventing comparison between the two cell lines constructed via 

guide RNA 2. 

Metabolomics  

Multiple analyses of the metabolomics dataset suggested there are differences in 

addition to NAT1 between the constructed cell lines. Comparing metabolites that were 

concordantly differentially abundant in the two complete NAT1 knockout cell lines revealed many 

more metabolites were uniquely differentially abundant than agreed between the two NAT1 

knockout cell lines, with only 16% concordance between the CRISPR 2-19 and CRISPR 5-50 cell 

lines. Additionally, hierarchical clustering analysis revealed the cell lines constructed using guide 

RNA 2, CRISPR 2-12 and CRISPR 2-19, had more similar global metabolomics profiles than the 

cell lines with comparable NAT1 N-acetylation activity, Down and CRISPR 5-50, respectively. 

Furthermore, principal component analysis of the data revealed that nearly 53% of the total 

variance in the metabolomics data was between the two cell lines generated using guide RNA 2 

and all other cell lines while approximately 17% of the total variance in the data was between the 
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CRISPR 5-50 cell line and all other cell lines. The first two principle components, together, 

account for approximately 70% of the total variance in the dataset and separate the 

CRISPR/Cas9 constructed cell lines from the siRNA constructed cell lines. 

Transcriptomics 

Similar to the metabolomics dataset, many more genes were uniquely differentially 

expressed than were concordantly differentially expressed between the two NAT1 knockout cell 

lines with only 27% concordance between the CRISPR 2-19 and CRISPR 5-50 cell lines. 

Additionally, hierarchical clustering analysis revealed the cell lines constructed using guide RNA 

2, CRISPR 2-12 and CRISPR 2-19, had more similar global transcriptomics profiles than the cell 

lines with comparable NAT1 N-acetylation activity, Down and CRISPR 5-50, respectively. 

Furthermore, principal component analysis supported this conclusion although the results were 

not as striking as the metabolomics principal component analysis. 

Combined Analysis 

 Analysis of the combined metabolomics and transcriptomics datasets also indicates there 

are differences other than NAT1 in our constructed cell lines. Component 1 of the sPLS-DA 

discriminates the CRISPR 5-50 cell line from all others; the metabolites found in component 1 are 

characterized by lactate and sulfate moieties thus suggesting the CRISPR 5-50 has additional 

mutations in pathways that contain these metabolites. Component 2 of the sPLS-DA 

discriminates the CRISPR 2-12 and CRISPR 2-19 cell lines from all others; the metabolites found 

in component 2 are characterized by choline moieties thus suggesting the CRISPR 2-12 and 

CRISPR 2-19 cell lines have additional mutations in pathways that contain choline metabolites.  

Discussion 

 Since February 2013, when it was first reported that the CRISPR/Cas9 system could be 

used to edit eukaryotic genomes229, many researchers and labs around the world have taken 

advantage of this system as a research tool to study the role of single genes in a variety of 

diseases230-239. Although the CRISPR/Cas9 system has been shown to have high specificity, it is 

still possible for the guide RNAs used to cause off-target effects240-242. Also, when using the clonal 

isolation method to select single cells where the gene of interest has been knocked-out rather 



 

 177 

than a pool of cells, the chance of spontaneous, independent mutations occurring in each 

generated cell line increases. These off-target effects and spontaneous mutations may lead to 

incorrect conclusions about the role of the specific gene under investigation.  

There are multiple online tools, including MIT CRISPR Design Tool243 and E-CRISP244, 

that use algorithms to generate CRISPR gRNA sequences and predict off-target mutation sites of 

those gRNAs based on “rules” about mismatch number and position. The E-CRISP web-based 

“evaluation” algorithm has been utilized to predict off-target mutation sites based on the 

sequences of the two guide RNAs utilized during construction (Table 7.1 & 7.2); MIT CRISPR 

Design Tool does not allow posteriori evaluation of gRNA sequences. The transcriptomics 

dataset was then utilized to compare gene expression of genes in which there was a predicted 

off-target sites. The author acknowledges that RNA expression does not always correlate 

perfectly with protein function and will not indicate definitely if a mutation causing knockout of the 

gene has occurred. However, a decrease in NAT1 transcripts in the two NAT1 knockout cell lines 

was observed and decreases in transcript abundance of off-target genes can serve as a proxy 

measure for off-target effects. No differences were observed in any of the genes predicted by the 

web-based algorithms to have off-target mutations. 

Additionally, there are currently multiple methods available that have been developed 

specifically to detect off-target activity of CRISPR-Cas9 guide RNAs such as integrase-defective 

lentiviral vectors (IDLVs)245, Digenome-seq246, GUIDE-seq247, and qEva-CRISPR248, however 

these need to be performed during construction. Additionally, some researchers use whole 

genome sequencing (WGS) to evaluate the presence of possible off-target mutations. This is the 

only method that can definitively identify additional mutations a posteriori construction. Notably, 

however, not all researchers make use of these technologies to profile their cell lines. Moreover, 

many studies utilizing CRISPR/Cas9 technology to construct knockout cell lines do not conduct 

global, holistic profiling of the resulting cell lines but rather make small, very targeted, reductionist 

measurements. Additionally, very few studies utilize two different guide RNAs to knockout the 

gene of interest. The author hypothesizes other studies utilizing CRISPR/Cas9 
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Table 7.1 
 
Guide RNA 2 predicted targets 

TARGET 
CHROMOSOME START END GENE TARGET 

(ENSBL ID) 
GENE 
NAME SEQUENCE DIRECTION 

20 62393719 62393742 ENSG00000149679 CABLES2 TGAAGGGAACAACTCAGATCAAG fw 
5 149360724 149360747 ENSG00000145882 PCYOX1L CAAAGGGAACAGCTCGGACAAAG fw 
9 78994637 78994660 NA NA TAAAGAGAACAGCTGGGATCAAG fw 
17 74041132 74041155 NA NA CTAAGGGGACAGCTGGGATCCAG fw 
4 1816643 1816666 ENSG00000168924 LETM1 AGAAGGGCCCAGCTCGGATCCAG fw 
2 63708726 63708749 ENSG00000143951 WDPCP AAATGGGAACAGCTCCGATCTAG rc 
8 18222137 18222160 ENSG00000171428 NAT1 CAAAGGGAACAGCTCGGATCTGG rc 
8 18400093 18400116 ENSG00000156006 NAT2 CAAAGGGAACAGCCCGGATCTGG rc 

 

E-CRISP web-based “evaluation” algorithm was utilized to predict off-target mutation sites based on the sequences of the guide RNA 2 utilized 

during construction. fw = forward orientation, rc = reverse orientation
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Table 7.2 
 
Guide RNA 5 predicted targets 

TARGET 
CHROMOSOME START END GENE TARGETS 

(ENSBL ID) GENE NAME SEQUENCE DIRECTION 
3 122941233 122941256 ENSG00000082684 SEMA5B ACATTGGCTCTAAGAAGCCTAAG fw 
8 77188268 77188291 NA NA TCATTGGCTAGAACAAGTCTTAG rc 
21 24269418 24269441 NA NA GAATTGGCTATCAGAAGTCCTAG fw 
2 194868769 194868792 NA NA AAAATGGCTACAAGAAGTCTTAG fw 
CHR_HSCHR6_ 
MHC_COX_CTG1 30001513 30001536 ENSG00000229653 NCRNA00171 CTATTGGTTATAAGAAGTCACAG fw 

CHR_HSCHR6_ 
MHC_APD_CTG1 30004125 30004148 ENSG00000236598 NCRNA00171 CTATTGGTTATAAGAAGTCACAG fw 

CHR_HSCHR6_ 
MHC_DBB_CTG1 30001951 30001974 ENSG00000225618 NCRNA00171 CTATTGGTTATAAGAAGTCACAG fw 

8 91943377 91943400 NA NA TTATTGGCTATAAGATGCCTCAG rc 
2 208352693 208352716 ENSG00000115020 PIKFYVE GAATTGGTTATAAGAACTCTCAG fw 
3 104893231 104893254 NA NA TCATTGGATATGAGAAGTCTCAG fw 
5 117577755 117577778 NA NA TAATTGGCTAGAAGAAGTTTCAG rc 
6 123305929 123305952 ENSG00000186439 TRDN TCAGTGGCTATAACAAGTCTCAG fw 
18 39817888 39817911 NA NA GGATTGGCTATAAGAAGTAAGAG fw 
5 91359933 91359956 NA NA TGGTTGGCTATAAGAAGACTGGG fw 
7 22336060 22336083 ENSG00000136237 RAPGEF5 GCATTGGGAATAAGAAGTCTGGG rc 
8 18222075 18222098 ENSG00000171428 NAT1 GAATTGGCTATAAGAAGTCTAGG fw 
8 18400031 18400054 ENSG00000156006 NAT2 GAATTGGCTATAAGAACTCTAGG fw 
1 90780522 90780545 NA NA GGATTGGCTATATGAAGTCAAGG fw 
11 37011189 37011212 NA NA TTATTAGCTATAAGAAGGCTAGG rc 

 

E-CRISP web-based “evaluation” algorithm was utilized to predict off-target mutation sites based on the sequences of the guide RNA 5 utilized 

during construction. fw = forward orientation, rc = reverse orientation
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generated cell lines most likely have additional differences in addition to their gene of interest but 

do not make measurements that would allow detection of such differences. Convincing evidence 

has been presented in this chapter that greater caution should be applied when interpreting 

results from studies utilizing CRISPR/Cas9 to knockout a single gene of interest especially when 

those studies have not profiled the cell lines globally, utilizing at least one omics technology 

and/or utilizing two different guide RNA’s to knockout the gene thus constructing two knockout 

cell lines for comparison. Great bias is introduced via the reductionist approach in those studies 

and that bias may lead to naivety about additional mutations in samples. 

 As an example, in a study by Tsai et al. multiple CRISPR/Cas guide RNAs were used to 

edit the gene VEGFA, on chromosome 6, to compare on-target and off-target mutations247. The 

authors found the selected guide RNAs could also target genes on virtually every one of the other 

22 human chromosomes. Although each CRISPR guide RNA had zero to a dozen or so predicted 

off-target sites (by previously discussed web-based algorithms), neither algorithmic software used 

(MIT CRISPR Design Tool243 and E-CRISP244) identified the vast majority of off-target sites247; 

depending on the guide RNA, 0 to >150 off-target mutations were observed. Additionally, the off-

target sites had diverse sequences making prediction of where off-target effects occur rather 

difficult. Without prediction of these off-target sites, scientists would have no idea where to look in 

the genome for possible off-target mutations and no idea those errors were possible. This 

example highlights the importance of global profiling (unbiased measurement of many aspects of 

the global system) of CRISPR/Cas9 generated cell lines as well as the importance of including 

cell lines generated with multiple different guide RNAs to be able to filter out off-target effects. 

Notably, another study found that many off-target sites were mutated with frequencies 

comparable to or even higher than the on-target site249. 

Summary and Conclusions 

 The results from all experiments presented in this dissertation, 1. bioenergetics (Chapter 

3), 2. metabolomics (Chapter 4), and 3. transcriptomics (Chapter 5), strongly suggest the 

constructed MDA-MB-231 cell lines had differences in gene(s) other than NAT1 that were 

unexpected. Without the sophisticated study design in which a global systems biology approach 
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was utilized as well as multiple guide RNAs, I most likely would not have been aware that there 

were additional differences between the cell lines. Additionally, it would have been nearly 

impossible to parse out what effects were due to NAT1 and what effects were due to these 

additional differences. These findings have especially great implications for researchers planning 

to utilize CRISPR/Cas9 gene editing technology in humans; I assert that the potential for off-

target effects using CRISPR/Cas9 has been underappreciated and under-reported in the 

literature due to the lack of global profiling. Currently, considerable research is being conducted 

on ways to optimize CRISPR editing efficiency and decrease the number of off-target effects that 

occur when utilizing CRISPR/Cas9 technology to edit genes250. Additionally, researchers in the 

field are working on better ways to detect and/or predict off-target effects given both are still a 

major challenge. 
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CHAPTER 8

 

SUMMARY AND CONCLUSIONS 

 

Summary 

This dissertation presents convincing evidence that NAT1, whether directly or through an 

effect on acetyl-CoA levels, has a role in cellular metabolism and energetics in MDA-MB-231 

breast cancer cells. Mitochondrial bioenergetics, specifically reserve capacity, maximal 

respiration, and glycolytic reserve capacity were increased in the NAT1 knockout cell lines 

(CRISPR 2-19 and CRISPR 5-50) while bioenergetics in the cell line with increased NAT1 N-

acetylation activity (Up) were not significantly different from the cell lines with parental NAT1 N-

acetylation activity (Parent and Scrambled). Additionally, in both the metabolomics and 

transcriptomics experiments presented in this dissertation, metabolite abundances and gene 

transcript expression were more dysregulated in the NAT1 knockout cell lines (CRISPR 2-19 and 

CRISPR 5-50) than the cell line with increased NAT1 (Up) compared to the cell line with parental 

NAT1 N-acetylation activity (Scrambled) suggesting the loss of NAT1 has a greater impact on 

metabolism than its overexpression. 

 By utilizing a global systems biology approach, new directions for future research on 

NAT1’s role in breast cancer cell metabolism have been generated that would not have been 

considered otherwise. Systems biology allows a more unbiased view compared to traditional 

reductionist approaches, thus enabling NAT1 research to be stimulated in a novel direction. The 

data presented in this dissertation has also shown that the knockout of NAT1 induced more 

changes bioenergetically, metabolically, and transcriptionally compared to the overexpression of 

NAT1. As there is active research in the NAT field on the development of small molecule 
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inhibitors of NAT1, it is important to understand how the knockout of NAT1 N-acetylation activity 

and expression affects global cellular metabolism. 

Strengths of This Work 

The experimental design strategies and research presented in this dissertation have 

several strengths that enabled many novel insights as well as the formulation of additional 

hypotheses about NAT1’s role in breast cancer and, more generally, metabolism. The first major 

strength I will discuss is the use of publicly available data to annotate previously undefined 

relationships between NAT1, NAT2, & ESR1 in established breast cancer cell lines, primary 

breast tumors, and normal breast tissue. For these analyses data was accessed and analyzed 

(fairly quickly) without the need to do, what would have been, expensive wet-lab experiments. 

Publicly available data repositories offer a wealth of knowledge but, until now, have been under-

utilized in NAT research. Additionally, the data repositories can be utilized to evaluate whether 

the relationships observed in the datasets presented in this dissertation are also present in the 

larger publicly available datasets. 

A second strength of this work was the careful and thoughtful selection of samples. By 

choosing a single breast cancer cell line and genetically modifying only NAT1 (theoretically) any 

confounding factors that might be introduced when utilizing breast cancer cell lines with innately 

different levels of NAT1 activity due to different genetic backgrounds and the presence of 

additional unique mutations in each cell line have been eliminated. The MDA-MB-231 cell line 

was chosen rather than an estrogen receptor positive cell line because cell lines with NAT1 

knocked out as well as overexpressed were desired. To this end, a breast cancer cell line with an 

approximate mid-level of NAT1 activity was selected. However, very few of the breast cancer cell 

lines available for research (approximately 57 total) have been characterized for NAT1 N-

acetylation activity. Therefore, RNA expression was used as a proxy for NAT1 N-acetylation 

activity because publicly available data on NAT1 RNA expression of all 57 breast cancer cell lines 

are available (discussed and utilized in Chapter 2). The MDA-MB-231 cell line expresses an 

approximate mid-level of NAT1 RNA compared to the other 56 breast cancer cell lines. 

Additionally, this cell line is frequently utilized in breast cancer research and has been utilized in 
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previous studies looking at NAT1’s role in breast cancer thus allowing comparison of experiments 

and observations more readily. 

Additionally, during construction of the MDA-MB-231 breast cancer cell lines with varying 

levels of NAT1 N-acetylation activity two different methods, siRNA and CRISPR/Cas9, were 

utilized. This strategy helped to ensure any results or conclusions reported are truly due to 

differences in NAT1 activity and not a result of the methodology utilized to modulate NAT1 

expression. To this end, during construction of the complete NAT1 knockout cell lines via 

CRISPR/Cas9 technology two unique NAT1 targeting guide RNAs were utilized, again ensuring 

any results or conclusions reported are truly due to differences in NAT1 activity because guide 

RNAs have been shown to cause off-target effects. In fact, as presented in Chapter 7, there is 

strong evidence of additional differences other than NAT1 in the genetically modified cell lines; 

without inclusion of NAT1 knockout cell lines constructed via different guide RNAs (CRISPR 2-19 

and CRISPR 5-50) and cell lines constructed with the same guide RNA but that had different 

levels of NAT1 N-acetylation activity (CRISPR 2-12 and CRISPR 2-19), this observation would 

most likely have been missed and the results would be unknowingly confounded. 

The third major advantage of the work presented in this dissertation is the systems 

biology approach utilized to evaluate the dissertation hypothesis rather than the more traditional 

reductionist approach. Notably, by using the exact same biological samples, collected and grown 

at the exact same time in the metabolomics and transcriptomics experiments we integrated the 

two resulting datasets on cells under identical biological conditions. Additionally, bioenergetics 

and transcriptomics experiments were integrated by comparing mitochondrial gene expression. A 

global systems biology approach has enabled stimulation of NAT1 research in new directions.  

Caveats and Weaknesses 

Although the work presented in this dissertation was well planned and executed there are 

nevertheless caveats and weaknesses. The first caveat to acknowledge is that although this 

dissertation asserts that a global analysis of the complete system was performed, that is not 

entirely true. The field of metabolomics is limited by the number of metabolites that can be 

detected analytically. Therefore, that assertion must be qualified to acknowledge that this study 
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was a global metabolomics experiment in that data was collected on as many metabolites as was 

feasible which still represents a small proportion of all metabolites present in the human 

metabolome (Figure 8.1). Additionally, because metabolites were only isolated from cell pellets 

and not the surrounding media, metabolites excreted from the cell that would be important in 

understanding NAT1’s effects on cellular metabolism may have been missed. However, media 

was collected and reserved during collection of cell pellet samples for possible future analyses. 

Another caveat to acknowledge is the bias introduced by reliance on NAT1 N-acetylation 

activity as a measure for NAT1 function. Although NAT1 N-acetylation is increased, decreased, 

and not detectable in the constructed cell lines, it remains unknown if possible additional 

functions/roles of NAT1 were not also affected and contribute to our overall observations in an as 

yet uncharacterized manner. It will also be important for future studies to evaluate the findings 

presented in this dissertation in additional breast cancer cell lines, untransformed (normal) breast 

cell lines, and other cancers. 

Notably, although sample choice was a major strength in this work it can also be viewed 

as a weakness. The conclusions presented in this dissertation are based on results derived from 

modulating NAT1 in a single breast cancer cell line; however, breast cancer is a very 

heterogenous disease. The MDA-MB-231 breast cancer cell line may have unique mutations in 

genes that are regulators, interactors, producing or metabolizing substrates for NAT1, or altering 

metabolism independent of NAT1 status. It will be important for future work to conduct 

experiments in other breast cancer cell lines and more generally, other cancer types where NAT1 

is commonly overexpressed, to determine if our observations hold true. Although human breast 

tumor samples would have been more biologically relevant, as the tumor microenvironment would 

have been better represented, human samples would add more confounding factors when 

interpreting results. Additionally, there is a great need to analyze data from human subjects to 

see if these observations correlate with samples from a complete human system. Similarly, the 

research presented here was conducted on samples that were already malignant in nature, 

making inferences about NAT1’s role in breast cancer risk or tumorigenesis not possible. Results 
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Figure 8.1 

 
Figure 8.1: Limitations of “Global” Metabolomics. 

A Venn diagram depicting a significant issue in “global” metabolomics. Researchers are limited by 

metabolite annotation, the ability to analytically detect metabolites, and the localization of 

metabolites. When attempting to make inference about changes in metabolic pathways 

metabolites in the intersection of the three circles are observed when the target metabolic 

pathway is the entire rectangle. These difficulties limit the ability to obtain a true global view of 

metabolism however there is abundant research being conducted in the field to improve all three. 
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may be different if experiments were performed on non-malignant breast cells and further studies 

in non-malignant cells are necessary. 

Another weakness of the work presented here was the presence of differences other than 

NAT1 in the constructed cell lines (presented in Chapter 7). These additional differences 

complicated interpretations of the data. However, without a global systems biology approach, we 

would not have realized there were additional differences and may have incorrectly attributed 

results to the modulation of NAT1. It is the author’s opinion that other CRISPR/Cas9 studies also 

have off-target effects. However, the measurements or observations that are made do not allow a 

high-level global view so these off-target effects may be missed. Additionally, inclusion of two 

NAT1 knockout cell lines that were generated using two different guide RNAs differences that 

were truly due to the modulation of NAT1 to be focused on. In the future, whole genome 

sequencing of the cell lines utilized in this study should be conducted to determine exactly which 

genes these additional differences have occurred in. This may aide interpretation of some of the 

results presented in this dissertation. 

The final weakness of this work to be discussed was the inability to stably rescue NAT1 

in the constructed NAT1 knockout cell lines. This rescue would have allowed greater confidence 

that observations and results were truly due to the knockout of NAT1. It is predicted that any 

observations truly due to NAT1 knockout would be reversed with the rescue of NAT1 activity and 

conversely, predicted that any observations due to differences other than NAT1 would not be 

reversed by the rescue of NAT1. 

Future Directions 

In addition to the results and conclusions that were presented in this dissertation, many 

novel hypotheses about the role of NAT1 in breast cancer, and more generally cellular 

metabolism, have been generated. As such, I propose numerous future directions to further 

delineate the mechanism by which NAT1 affects breast cancer progression and the possible role 

of NAT1 in cellular metabolism. 

The first future direction, which is currently in progress, is to incubate the cell lines used 

in this study with L-asparagine to measure how this supplementation affects cell growth and 
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invasive ability, given the strong positive correlation between NAT1 N-acetylation activity and N-

acetylasparagine and the recently proposed role of L-asparagine in breast cancer cell growth and 

metastasis189,190. Although our lab currently does not have the ability to readily measure L-

asparagine and/or N-acetylasparagine, the proposed experiments will help determine if cell lines 

with varying NAT1 N-acetylation activities respond differently to L-asparagine supplementation. If 

differences in growth and metastatic are observed based on NAT1 activity, that will add evidence 

to the hypothesis that there is a relationship between NAT1 and L-asparagine. Additionally, our 

lab is currently working with collaborators to develop an HPLC-fluorescence detection method to 

detect N-acetylasparagine and L-asparagine. Once this method is optimized, recombinant human 

NAT1 expressed in yeast lysates could be incubated with acetyl-CoA and L-asparagine to 

evaluate if NAT1 is directly catalyzing the N-acetylation of L-asparagine more directly. Until then, 

our lab is conducting competitive activity assays between PABA and L-asparagine to see if the 

rate of N-acetylation of PABA is affected in the presence of L-asparagine in the reaction. 

Similarly, studies using putrescine instead of L-asparagine could be performed given there is 

evidence both biochemicals may be NAT1 substrates. 

An additional area of future research will be further evaluating the mechanism by which 

NAT2 transcripts are increased in NAT1 knockout cell lines (CRISPR 2-19 and CRISPR 5-50). 

From the results of the transcriptomics data, a list of candidate genes that are predicted to 

interact with NAT2 has been created. The candidate genes were chosen based on correlated 

expression with NAT2 expression and also based on clustering with NAT2 in the WGCNA 

analysis. While this phenomenon was observed in the constructed breast cancer cell lines, it is 

unclear if this occurs in humans. I propose analyzing NAT1 and NAT2 gene expression data in 

human subjects with no detectable NAT1 activity to see if the phenomenon is present. One 

foreseeable limitation is the relatively rare occurrence of humans with no detectable NAT1 

activity. While functional NAT2 N-acetylation activity was not observed in the NAT1 knockout cell 

lines, investigating the mechanism by which NAT2 transcripts are produced will be an important 

area of NAT research in the future. An additional area of research will be investigating miRNAs 
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that possibly target NAT2 to help explain the observation of NAT2 transcripts but no NAT2 N-

acetylation activity. 

On the basis that many of our observations and results can be traced to reactions that 

involve mitochondria, an additional future direction is to probe mitochondrial mass, biogenesis, 

and morphology in our constructed cell lines. Additionally, reactive oxygen species (ROS) in 

mitochondria can be evaluated. This will help determine if the observations presented in this 

dissertation are related to changes in mitochondria biogenesis/number directly or dysregulation of 

the reactions that occur in mitochondria. 

Given the strong evidence of genetic differences in addition to NAT1 in the constructed 

cell lines utilized in the studies presented in this dissertation, I propose performing WGS to 

determine the exact location of the differences. This method is the only way to definitively 

determine the genetic differences between the constructed cell lines. Once additional genetic 

differences between the cell lines are determined, that information may be utilized to study those 

genes. Additionally, the results of this proposed experiment will have great implications for past, 

present, and future studies utilizing CRISPR/Cas9. 

The final future direction proposed is integrating the three datasets presented in this 

dissertation with the proteomics and acetylomics previously collected by our lab (collected only 

for the complete NAT1 knockout cell lines, CRISPR 2-19 and CRISPR 5-50). As human 

metabolism is a very highly regulated process and composed of many layers, combining these 

datasets would add an additional level to the systems biology approach presented in this 

dissertation. Combining the datasets will not be easy but improved methodology for combining 

multi-omics datasets is currently a rich area of development (discussed in Chapter 6) in the 

systems biology field. 

Overall Conclusions 

This dissertation has presented evidence that greater caution should be exercised in 

interpretation of results from single gene knockout studies utilizing CRISPR/Cas9. The elegant 

study design utilized in this dissertation enabled me to conclude CRISPR/Cas9 can cause off-

target effects in sites not predicted by web-based algorithms that would confound conclusions. 
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Furthermore, I have shown that publicly available datasets can be used to complement and 

enhance wet-lab experiments very quickly and inexpensively. 

I have presented strong evidence that NAT1, whether directly or through the effect of 

NAT1 on acetyl-CoA levels, has an effect on acyl-CoA carnitine conjugates, lysine degradation, 

and mitochondrial function (Figure 6.11). Saccharopine is the first product formed during lysine 

degradation in mammals and was increased in cell lines with decreased levels and knockout 

NAT1 (Down, CRISPR 2-12, CRISPR 2-19, and CRISPR 5-50). Notably, carnitine is 

biosynthesized from methionine and lysine. Increases in saccharopine suggest more lysine is 

degraded, leaving less lysine for carnitine biosynthesis. Fatty acyl-CoA carnitine conjugate 

metabolites were decreased in the NAT1 knockout cell lines (CRISPR 2-19 and CRISPR 5-50) 

and those metabolites were strongly correlated with carnitine abundance. In humans, fatty acyl-

CoAs are conjugated to carnitine for transport to the mitochondria and subsequent beta oxidation 

producing acetyl-CoA. The decrease in fatty acyl-CoA conjugates in the NAT1 knockout cell lines 

(CRISPR 2-19 and CRISPR 5-50) suggest less acetyl-CoA is produced by this mitochondrial 

pathway. It remains unknown whether this is a dysregulation of energetics or complex feedback 

due to increased acetyl-CoA because of decreased NAT1 catalyzed hydrolysis of acetyl-CoA.  

Overall, this dissertation describes the first studies to investigate the effect varying 

human NAT1 activity has on the bioenergetics profile, metabolome, and transcriptome of a breast 

cancer cell line. This dissertation has generated vast amounts of data that I foresee being utilized 

for years to come as we learn more about NAT1 thus providing a valuable resource for future 

studies. Additionally, I have used this data to generate novel hypotheses about the role of NAT1 

in breast cancer, and more generally cellular metabolism. Furthermore, I have identified 

biochemicals that are likely products of NAT1 N-acetylation, N-acetylasparagine and N-

acetylputrescine, however further studies are needed to confirm this. While I have not identified 

the exact mechanism by which NAT1 affects cellular metabolism or breast cancer progression, 

the data presented in this dissertation add important pieces to the puzzle, putting NAT 

researchers one step closer to that goal. 
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r  Spearman Correlation Coefficient 

2-AF  2-aminoflourene 

4-ABP  4-aminobiphenyl 

3’UTR  3 Prime Untranslated Region 

Acetyl-CoA Acetyl Coenzyme A 

ACS   American Cancer Society 

ACY1  Aminoacylase 1 

ALK  Anaplastic Lymphoma Receptor Tyrosine Kinase 

AMPK  5' Adenosine Monophosphate-Activated Protein Kinase 

ANOVA  Analysis of Variance 

ASPA  Aminoacylase 2 

ATCC  American Type Culture Collection 

ATP  Adenosine Triphosphate 

BRCA  Breast Invasive Cohort in TCGA 

BRCA1  Breast Cancer 1, Early Onset 

BRCA2  Breast Cancer 2, Early Onset 

CCLE  Cancer Cell Line Encyclopedia 

cDNA  Complementary Deoxyribose Nucleic Acid 

CGeMM Center for Genetics and Molecular Medicine 

cKIT  KIT Proto-Oncogene Receptor Tyrosine Kinase 

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats 

CRISPR/Cas9 Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR Associated 

Protein 9 
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DMEM  Dulbecco's Modified Eagle Medium 

DNA  Deoxyribonucleic Acid 

ECAR  Extracellular Acidification Rate 

EGFR  Epidermal Growth Factor Receptor 

ER+  Estrogen Receptor Positive 

ER-  Estrogen Receptor Negative 

ER  Estrogen Receptor 

ESR1  Estrogen Receptor 1 

ESI  Electrospray Ionization 

FA  Formic Acid 

FCCP  Carbonyl Cyanide-p-trifluoromethoxyphenylhydrazone 

FRT  Flippase Recognition Target 

GFP  Green Fluorescent Protein 

GI  Gastrointestinal 

GNAQ/GNA11 G Protein Subunit Alpha Q/G Protein Subunit Alpha 11 

gRNA(s) Guide Ribonucleic Acid(s) 

HER2  Human Epidermal Growth Factor Receptor 2 

HESI  Heated Electrospray Ionization 

HILIC  Hydrophilic Interaction Liquid Chromatography 

HMDB  Human Metabolome Database 

HPLC  High Performance Liquid Chromatography 

HUGO  Human Genome Organization 

IDLVs  Integrase-Defective Lentiviral Vectors 

IGV  Integrative Genomics Viewer 

IQR  Interquartile Range 

KBRIN  Kentucky Biomedical Research Infrastructure Network 

KEGG  Kyoto Encyclopedia of Genes and Genomes 

KO   Knockout 
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LIMS  Laboratory Information Management System  

MATCH  Molecular Analysis for Therapy Choice 

MET  Hepatocyte Growth Factor Receptor 

MIT  Massachusetts Institute of Technology 

MR1  Methylthioribose-1-Phosphate Isomerase 

mRNA  Messenger Ribonucleic Acid 

MS  Mass Spectrometry 

MTAP  Methylthioadenosine Phosphorylase 

mTOR  Mechanistic Target of Rapamycin Kinase 

MTT  3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide 

m/z   Mass to Charge Ratio 

NAT1  arylamine N-acetyltransferase 1 

NAT2  arylamine N-acetyltransferase 2 

NATs  arylamine N-acetyltransferases 

NCI  National Cancer Institute 

NTRK  Neurotrophic Tyrosine Kinase 

OCR  Oxygen Consumption Rate 

ORF  Open Reading Frame 

PABA  p-aminosalicylate 

pABG  p-aminobenzoylglutamate 

PAS  p-aminosalicylate 

PBS  Phosphate Buffered Saline 

PC1  Principal Component 1 

PCR  Polymerase Chain Reaction 

PCA  Principal Component Analysis 

PFPA  Perfluoropentanoic Acid 

PR  Progesterone Receptor 

QA/QC  Quality Assessment/Quality Control 
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QC  Quality Control 

qPCR  Quantitative Polymerase Chain Reaction 

r  Pearson Correlation Coefficient  

RI  Retention Index 

RNA  Ribonucleic Acid 

RNA-Seq Ribonucleic Acid Sequencing 

ROS1  ROS Proto-Oncogene 1, Receptor Tyrosine Kinase 

RP  Reverse Phase 

RPKM  Reads Per Kilobase of Transcript per Million Mapped Reads 

RSD  Relative Standard Deviation 

RSEM  RNA-Seq by Expectation- Maximization  

RT-PCR Reverse Transcription-Polymerase Chain Reaction 

RT-qPCR Reverse Transcription-Quantitative Polymerase Chain Reaction 

SAT1  Spermidine/Spermine N1-Acetyltransferase 1 

SAT2  Spermidine/Spermine N1-Acetyltransferase 2 

SEM  Standard Error of the Mean 

shRNA  Short Hairpin Ribonucleic Acid 

siRNA  Silencing Ribonucleic Acid 

SMO/PTCH1 Smoothened, Frizzled Class Receptor/Patched 1 

SMZ  Sulfamethazine 

SNPs  Single Nucleotide Polymorphisms 

sPLS-DA Sparse Partial Least Squares-Discriminant Analysis 

STR  Short Tandem Repeat 

TCA  Citric Acid Cycle 

TCGA  The Cancer Genome Atlas 

TNBC  Triple Negative Breast Cancer 

TSC1  Tuberous Sclerosis Complex Subunit 1 

TSC2  Tuberous Sclerosis Complex Subunit 2 
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UPLC  Ultra Performance Liquid Chromatography 

UPLC- MS/MS Ultra Performance Liquid Chromatography- Tandem Mass Spectrometry 

VEGFA  Vascular Endothelial Growth Factor A 

WGCNA Weighted Gene Co-expression Network Analysis 

WGS  Whole Genome Sequencing 

WPGMA Weighted Pair Group Method with Arithmetic Mean 
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