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ABSTRACT 

 As an increasing number of states legalize marijuana, it will become necessary to create a 

method for portable detection and quantification of tetrahydrocannabinol (THC), the principal 

psychoactive component of cannabis. The ability to identify impaired individuals without the need 

for traditional drug testing could prove invaluable to law enforcement and employers. Toward this 

end goal, surface enhanced Raman spectroscopy (SERS) with a silver treated, silicon nanowire 

substrate was investigated as a method for detection. 

 Acid wet etching of silicon with a hydrofluoric acid (HF) / silver nitrate (AgNO3) was the 

primary investigation method for this work. Various etching parameters were utilized, ranging 

from 2 M HF/0.02 M AgNO3, 5 M HF/0.02 M AgNO3, 5 M HF/0.10 M AgNO3, 8.15 M HF/0.02 

M AgNO3, to 12.2 M HF/0.02 M AgNO3. Bare, unetched silicon and silver sputtered silicon were 

tested as substrates for SERS for THC detection, but proved to have no signal enhancement. 

Nanowires were not present at 2 M HF/0.02 M AgNO3 etching conditions and the substrate 

provided no Raman enhancement. Residual silver from the wet etching was tested to see if it was 

a viable means of enhancing Raman signal. Measurements spanning from 5 M HF/0.02 M AgNO3 

to 12.2 M HF/0.02 M AgNO3 indicate residual silver can be used to enhance signal, but it’s sparse 

and irregular distribution over the silicon nanowire substrate leads to inconsistent measurements 

that require aiming the laser at residual silver deposits. The increased AgNO3 etching parameters 

(5 M HF/0.10 M AgNO3) yielded a residual silver particle film which obstructed the silicon 

nanowires. The resulting lack of Raman signal enhancement indicated nanowires were necessary 

in addition to silver for SERS activity. Etching parameters of 8.15 M HF/0.02 M AgNO3 and 12.2 

M HF/0.02 M AgNO3 both displayed Raman activity at 1.0 X 107 pg of THC on sputtered chips, 
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and at 3.15 pg on chips with residual silver. The 1.0 X 107 pg of THC tests were performed to 

determine if the chips could detect a relatively large amount of THC, while the 3.15 pg THC tests 

were performed to determine if the method could detect THC on the order of magnitude present 

in breath. The Raman response displayed by the tests indicted qualitative detection is possible. 

Quantitative tests with THC amounts ranging from 2.4 pg to 10,005.6 pg on the 8.15 M HF/0.02 

M AgNO3 (chosen due to its larger signal intensity compared to the other trial conditions) chip 

indicate reliable quantitative analysis was not possible with these conditions and should be the 

subject of future works.  
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I. INTRODUCTION 

Over the past 20 years scientists have been researching and creating more sensitive and 

effective means of trace chemical detection and analysis. Researchers have created systems which 

have a limit of detection (LOD) to as low as parts per billion in a sample. An effective method for 

creation of such systems is microfabrication. There are portable systems capable of detecting 

pollutants in water (Li et al., 2013) or detecting trace amounts of explosive compounds (Almaviva, 

Botti, Cantarini et al., 2012). Point of care diagnostic devices for medical care are under 

development as well (Wlodkowic and Cooper, 2010). Currently, there is a need for a device with 

similar sensing capabilities able to quickly and accurately detect and quantify 

tetrahydrocannabinol (THC), the principal psychoactive component of cannabis. 

Currently, 33 states have some form of widespread marijuana legality, with 10 states and 

the District of Columbia having recreational legality. As an increasing number of states legalize 

marijuana, it is becoming necessary to be able to identify impaired drivers or workers, analogous 

to the ability of a portable alcohol breathalyzer. A real time analyzer for marijuana would prove 

invaluable to law enforcement and companies desiring to identify impaired individuals.  
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Figure 1: Marijuana Legalization status as of December 2018 [Governing.com, 2018] 

 

The lack of field diagnostic tools leads to law enforcement relying on subjective criteria, 

such as coordination tests and basic arithmetic, for identifying impaired individuals (Bichell, 

2017). If an individual is suspected of being impaired, an arrest can be made, and a traditional drug 

test will be ordered. Traditional drug testing requires use of techniques such as thin layer 

chromatography, gas chromatography/mass spectrometry (GC-MS), radioimmunoassay, or 

enzyme immunoassay (Gustafson et al., 2004). Such techniques often require a sample of blood, 

urine, or hair be sent to a professional lab with the specialized equipment to analyze the sample. 

The specialized equipment in a lab can prove large and expensive; in addition, the time it takes to 

send a sample for analysis and get the results can be significant. Situations arise in which real time 

results are key, such as in a field sobriety test. In states where marijuana is legal recreationally, a 

simple positive/negative test would not suffice; the level of recent consumption must be quantified. 

Another challenge is the propensity of THC to linger in blood for up to 30 days from the time of 

use (U.S. National Library of Medicine, accessed 1 April 2017).  
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The objective of this research is to lay the groundwork for the creation of a “marijuana 

breathalyzer.” This research focuses on creating a microfabricated chemical sensing platform with 

the capability of measuring THC concentration. Surface-enhanced Raman spectroscopy (SERS) 

served as the primary detection method. Photolithography and deep reactive ion etching (DRIE) 

were explored as a method to create sharp tipped micropillar structures; however, wet chemical 

etching using a solution of hydrofluoric acid and silver nitrate was ultimately used as the 

fabrication method. The nanowire structures were coated with silver by a sputtering process to 

enhance the Raman signal strength. From there, various concentrations of THC in a methanol 

solution were evaporated on the device chip and Raman spectroscopy was used to analyze the 

sample. Concentrations near those found in exhaled breath were also created to test the potential 

of the device working as a breath analysis tool. 
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II. REVIEW OF LITERATURE 

A. CHEMISTRY OF THC IN THE BODY 

The work undertaken for the proposed device set out to accomplish the goals of identifying 

and quantifying the concentration of tetrahydrocannabinol (THC) and associated metabolites, 11-

hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC (THC-COOH), in a simulated breath 

sample.  

 

FIGURE 2-Tetrahydrocannabinol (THC) [Pubchem, 2018] 
 

                     

FIGURE 3- Primary metabolite 11-OH-THC 

[Pubchem, 2018]                                       
FIGURE 4- Secondary metabolite THC-

COOH [Pubchem, 2018] 
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The primary and secondary metabolites of THC are formed in the body by oxidative 

metabolism (Huestis et al., 1992). According to the National Institute on Drug Abuse, roughly 

80% to 90% of THC is excreted as metabolites within 5 days (1987). Currently in the field of drug 

testing, THC and associated metabolites are detected in bodily fluids (such as blood and urine) 

through thin layer chromatography, gas chromatography/mass spectrometry (GC-MS), 

radioimmunoassay, or enzyme immunoassay. For tests designed to detect any level of THC 

consumption, the target compound is either unconverted THC or the secondary metabolite THC-

COOH due to the comparatively longer amount of time THC-COOH resides in the body 

(compared to 11-OH-THC). Low levels of THC have been detected for more than 5 weeks in urine 

and feces. THC is processed in the liver which in turn produces the metabolites.  

This proves a design challenge for a breathalyzer-style device in that the markers of THC 

are mostly present in blood, urine, and fecal matter. Product designers have attempted to overcome 

this obstacle in the past by using saliva as the analyte (Day, Kuntz, Fieldman, 2010). A small 

portion of THC-COOH can be detected in saliva and used as a biomarker for the active intake of 

THC. In this technique, saliva is collected from a swab or by expectorating into a cup. The sample 

is then analyzed or stored in a preservative solution for off-site analysis. The target metabolite 

THC-COOH is then extracted from the sample, purified and concentrated using an extraction 

column, and analyzed using GC-MS. 
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B. SERS, WHAT IT IS AND HOW IT WORKS 

Surface enhanced Raman spectroscopy (SERS) is defined as the signal enhancement in 

Raman spectroscopy due to Raman scattering and the excitement of the localized surface plasmon 

resonance. The first observed instance of surface enhancement for Raman spectroscopy occurred 

in 1974 (Fleischmann, et al.). The researchers utilized electrochemical roughening on metals such 

as copper and silver to create enhancement of the Raman scattering. This technique resulted in an 

enhancement factor of 106. The enhancement stems from an electromagnetic enhancement 

mechanism and the chemical etchant mechanism (Stiles et al., 2008). An electromagnetic wave 

from a spectrometer interacts with the surface of the metal. A rough metal surface has the potential 

to excite localized surface plasmons. Localized surface plasmons are the electromagnetic field-

driven coherent oscillation of the surface conduction electrons in a material with negative and 

near-zero imaginary dielectric constants (Stiles et al., 2008). The excitement of the localized 

surface plasmons results in amplification of the electromagnetic fields at the metal surface. The 

increased intensity of the electromagnetic fields will then create an enhancement of Raman 

scattering. Raman scattering is the inelastic scattering of a photon from a molecule in which the 

frequency change precisely matches the difference in vibrational energy levels (Stiles et al., 2008). 

Figure 5 shows a conceptual illustration of SERS.   

 

Figure 5: Conceptual Illustration of SERS [Semrock.com, 2018] 



7 
 

The irreproducibility of early enhancement techniques stemming from the varied nature of 

electrochemical etching hindered the use of SERS as a consistent analytical tool. The advancement 

of nanofabrication in the late 1990’s led to more consistent SERS substrates and thus to a high 

degree of reliability. The ability to consistently identify an analyte on the level of a single molecule 

(Emory and Nie, 1997) stimulated growth in the field of SERS. Using metal nanoparticles has 

become a common method for SERS (Stiles et al., 2008).  

C. SERS FOR THC/DRUG DETECTION 

SERS for drug detection has become a topic of interest among researchers due to the 

potential for point-of-care detection. By combining microfluidics with a portable Raman 

spectrometer, researchers have been able to identify trace amounts of methamphetamine and other 

substances (Quang et al., 2008; Andreou et al., 2013). Successful techniques flow colloidal metal 

nanoparticles through microfluidic channels with the analyte in order to allow good mixing of the 

two. The analyte adsorbs to the metal nanoparticles and provides the enhancement for the Raman 

signal.  

Only recently have scientists begun to utilize SERS for the detection of THC. The first 

such endeavor utilized a capillary platform prepared by the in situ microwave synthesis of gold 

nanoparticles (Yüksel et al., 2016). The microwave synthesis technique allows for quick batch 

production of gold nanoparticle coated glass capillaries. The simplicity of analyte collection by 

capillaries could allow for routine analytics. The researchers confirmed THC detection down to 1 

nM through this method. The ability to detect to such a low level indicates SERS is a viable means 

for THC detection. THC has also been detected using SERS when the THC has been extracted 

from saliva (Inscore et al., 2011).  All efforts to detect THC utilizing SERS have relied upon liquid 
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phase sample analysis; the research presented here utilized a THC-methanol solution, with analysis 

being performed after methanol evaporation. Future works will attempt gas phase analysis with 

simulated breath samples.  

D. THC DETECTION IN GAS PHASE/EXHALED BREATH 

While SERS has not been utilized to detect gaseous THC, other methods have been used. 

Liquid chromatography-tandem mass spectrometry (LC-MC) and field asymmetric ion mobility 

spectrometry (FAIM) have found success in identifying THC in exhaled breath. An electronic nose 

approach has also successfully identified different forms of cannabis-based drugs based from 

gaseous samples. Several different research groups have utilized LC-MS as a detection method.  

Early attempts using LC-MS established exhaled breath as a promising medium for the 

analysis of THC (Beck et al., 2011). Samples were collected from patients using a mouthpiece and 

an Empore disk. The disk was then treated with various chemicals in order to prepare it for LC-

MS. Beck et al. were able to quantify the amount of THC in exhaled breath for 1 to 2 hours after 

use. However, the researchers were unable to detect the primary metabolite THC-COOH. 

Researchers from the National Institute on Drug Abuse and Karolinska University Hospital 

detected THC in breath by methanol extraction form breath pads, solid-phase extraction, and LC-

MS quantification (Himes et al., 2013). The researchers quantified THC detection for 50 pg/pad 

and determined THC could be detected for between 0.5 to 2 hours after inhalation. The primary 

metabolite THC-COOH was able to be detected as well, with a lower limit of 100 pg/pad.  A third 

study utilizing LC-MS was able to detect THC in exhaled breath of volunteers and correlate it to 

physiological changes (Coucke et al., 2016). THC-COOH was unable to be detected. The 
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researchers were able to detect THC over 3 hours after smoking with a mean concentration of 1479 

pg/sample.  

The researchers utilizing LC-MS analyzed real breath samples from volunteer participants. 

Other researchers utilizing FAIMS were able to detect THC in simulated breath samples down to 

65 ppb (Mohsen et al., 2014). Breath samples were simulated by taking a stock THC-methanol 

solution and heating in an oven to evaporate the methanol. A mass flow control then used dry air 

to dilute the samples to desired concentrations. The electronic nose method collected gaseous 

samples by having cannabis plants in a chamber and flowing nitrogen to feed the sample to the 

electronic nose chamber. The researchers were able to successfully calibrate the electronic nose to 

identify different cannabis buds, plants, or hashish (Haddi et al., 2011). 

Of the presented methods to analyze THC in breath, three utilized LC-MS, one utilized 

FAIMS, and one utilized an electronic nose approach. The FAIMS and electronic nose methods 

have been presented as a method for real time diagnostic for analyzing gaseous samples; the 

FAIMS technique is aimed at THC in breath, albeit a simulated breath sample. SERS has been 

utilized to identify THC in liquid samples but not in simulated breath samples and thus proves to 

be an opportunity to expand knowledge in the field of THC detection. A summary of recent studies 

for THC detection is pictured in Table 1. 
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Table 1 Summary of THC Detection Research 

Author 
Detection 
Method 

Sample Medium LOD LOD (pg) LOQ 
LOQ 
(pg) 

Teixeira et al, 
2007 

LC-MS Oral fluid 2 ng/mL 2000 5 ng/mL 5000 

Teixeira et al, 
2004 

LC-MS Spiked oral fluid 1 ng/mL 1000 2 ng/mL 2000 

Beck et al, 2011 LC-MS/MS Exhaled breath 
2.5 

pg/filter 
2.5     

Himes et al, 2013 LC-MS/MS Exhaled breath 50 pg/pad 50 
50 

pg/pad 
50 

Coucke et al, 
2016 

LC-MS/MS Exhaled breath 3 pg/filter 3 
6 

pg/filter 
6 

Milman et al, 
2010 

GC-MS Spiked oral fluid 0.5 ng/mL 500 
0.5 

ng/mL 
500 

Moshen et al, 
2014 

FAIMS 
Simulated 

breath 
65 ppb 65000     

Amjadi et al, 
2014 

SERS Methanol soln 
0.065 
μg/mL 

65000     

Yüksel et al, 2016 SERS Methanol soln 0.25 nM 78.6 1 nM 314.5 

 

E. MICROPILLARS AS SERS SUBSTRATE 

Micropillars, nanopillars, and nanowires possess a wide array of functionality in 

microfabricated devices.  Micropillars and nanopillars have been incorporated into 

micropreconcentrators (Li et al., 2013), microreactors, photovoltaics (Peng et al., 2005), and 

adhesives (Aksak et al., 2007). More relevant to this thesis, micropillars and nanowires have also 

been successfully utilized as a mixing aid or a substrate for SERS. As discussed in Section B, 

surface roughness increases the potential for excited local surface plasmons which in turn help 

create scattering. An array of nanowires or nanopillars can provide the necessary surface roughness 

for SERS. 
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Liu et al. successfully utilized a hexagonal micropillar array functionalized with gold 

nanoparticles to produce reliable SERS activity (2015). Nanowires modified with silver have 

successfully been utilized by researchers to create signal enhancement. Fang et al. metalized a 

silicon nanowire array with silver nitrate, covering the silicon nanowires with silver nanoparticles 

(2009). The researchers were able to directly use the metalized nanowires for Raman signal 

collection with an enhancement factor up to ~106. Shao et al. similarly used silver nitrate to modify 

silicon nanowires and were able to detect 25 μL of 1 X 10-16 M Rhodamine 6G (2008).  

There are various methods available to create a micropillar or nanowire substrate for SERS 

activity. The two main methods of interest for this thesis are dry silicon etching and wet silicon 

etching.  

F. DRY ETCHING 

Dry etching consists of selectively etching the surface of a material by physically 

bombarding the material with ions, chemically etching through a reaction at the surface, or by 

combining the two mechanisms (Madou, 2011). Popular dry etching techniques include plasma 

etching, ion-beam etching, and reactive ion etching.  

In plasma etching, a feed gas such as fluorine interacts with a plasma and diffuses to the 

substrate. The feed gas and the plasma form a volatile product in the substrate and causes the 

etching. Li et al. utilized plasma etching to create a “nanoforest” of silicon to use as a SERS 

substrate (2017). Figure 6 illustrates the fabrication process. To create the dense nanoforest array, 

the researchers spin-coated polyimide onto a silicon wafer. Oxygen plasma treating applied to the 

polyimide created vertical nanofiber bunches. These polyimide nanofibers acted as a mask for 
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silicon to create nanopillars. Cl2/HBr gas source plasma etching created the nanoforest. Stripping 

the polyimide with acid and then depositing a thin metal layer completed the process. Figure 7 

shows the morphology of the final product. The final morphology proves advantageous due to the 

high feature density which allows for signal enhancement.  

 

 

Figure 6- Polyimide Method: a) PI spun on; 

b) Plasma treating PI; c) Plasma etching; d) 

Wet etching; e) Metal deposition [Li et al., 

2017] 

 

Figure 7-  Morphology of Polyimide Method  

[Li et al., 2017]

 

Reactive ion etching utilizes high energy, chemically reactive plasma to etch the substrate. 

Inert ions from the plasma bombard the substrate surface; the momentum transfer from the ions to 

the surface breaks bonds and causes etching. By combining lithographic or masking techniques 

with reactive ion etching, micropillar arrays can be fabrication. Deep reactive ion etching (DRIE) 

is a type of reactive ion etching which cycles between isotropic plasma etching and surface 

passivation; the alternating steps of etching and passivation allow for vertical, uniform micropillar 

arrays.  
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Miller et al. investigated creating vertically aligned micropillars by controlling etch 

parameters (2012). By altering different etching parameters during the DRIE process, the 

researchers were able to successfully create a model to predict micropillar profile angle. SF6 was 

utilized as for the dry etching while C4F8 created the passivation layer. Parameters altered by the 

researchers include etch time, passivation time, coil power, and platen power. The derived model 

provides a useful framework for creating vertical pillars and angled features, such as sharp tips on 

a micropillar. Figure 8 shows the micropillar angle resulting from different process parameters. 

Figure 9 is the morphology of the micropillars.  

 

 

Figure 8- a) Variation of profile angle with etching and passivation times at 600 W and 12 W 

platen power. b) Profile angle at different etch to passivation cycle times with varying platen 

power at 600 W coil power. [Miller et al., 2012] 
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Figure 9- Silicon micropillars fabricated by DRIE exhibiting a) positive (>90°), b) negative 

(<90°) and c) near 90° profiles. [Miller et al., 2012] 

 

Liu et al. utilized dry etching to create silicon micropillars functionalized with silver 

nanoparticles as a SERS substrate (2015). The researchers used photolithography to pattern 

photoresist on a silicon wafer and then performed deep silicon etching to create the pillars. 

Germanium nanotapers were grown by chemical vapor deposition and then the pillars were 

immersed in silver nitrate. The silver nitrate and germanium perform a redox reaction and create 

silver nanoparticles on the micropillars. Figure 10 details the fabrication process. The researchers 

achieved an enhancement factor of 1.65 X 107.  
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Figure 10- Schematic for the synthesis of Ag-NP@Ge-nanotapers/Si-micropillar hierarchical 

arrays. [Liu et al., 2015] 
 

 

G. WET ETCHING 

 

Wet chemical etching techniques can create micropillar and nanowire structures as well. 

Peng et al. created a process for the fabrication of silicon nanowire arrays for photovoltaic 

applications (2005). The silicon nanowire arrays were fabricated by treating the silicon wafer with 

an HF-based aqueous solution containing silver nitrate in a sealed vessel. This process is based on 

galvanic displacement. The HF/AgNO3 solution is thought to create a micro-electrochemical redox 

process at the silicon surface (Peng et al., 2002). The anodic and cathodic reactions occur 

concurrently where the metallic atoms being deposited act as a cathode and the surrounding areas 

as the anode. The HF then selectively etches to create the nanowire structures. Figure 11 shows 

the chemical etching mechanism and Figure 12 shows the morphology of the nanowires.  
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Figure 11: HF/AGNO3 Etchant Mechanism (Srivastava et al, 2014) 

 

 

Figure 12- a) SEM cross-section image of silicon nanowire arrays. b) TEM image of an 

individual SiNW prepared from a p-type (111)-oriented silicon substrate. c) HRTEM image of 

the nanowire in Figure 1b (the inset is the ED pattern recorded along the [110] axis). d) HRTEM 

image of a nanowire synthesized from a p-type (100)-oriented silicon substrate (the inset is its 

ED pattern recorded along the [001] axis). (Peng et al., 2005) 
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The technique of etching silicon with an HF/AgNO3 solution has flexibility in the ability 

to create different morphologies. Temperature, etching time, and solution concentration all 

influence the final structure of the nanowires (Peng et al., 2002). To create the nanowires pictured 

in Figure 9, 2.99 g of AgNO3 was mixed with 50 mL of 50% HF and 200 mL of DI water. The 

solution was then heated in an open Teflon dish at 50 °C for 2 hours.   

H. DRY ETCHING VERSUS WET ETCHING 

While both dry etching and wet etching are both able to create microfabricated substrates 

for SERS activity, wet etching was the more advantageous technique in the case of this thesis. 

While wet etching necessitates the handling of hazardous chemicals, it eliminates the need for 

expensive dry etching equipment. The wet etching process to create a nanowire array requires 

fewer steps and less rigorous processing conditions than dry etching. Wet etching also gives more 

flexibility in the size of the silicon wafer being etched, allowing for less material to be used to 

investigate different processing conditions.  
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III. EXPERIMENTAL 

A. EXPERIMENTAL PLAN  

 Initially the experimental plan was to utilize photolithography, DRIE to achieve 

micro/nano pillars, and silver sputtering to create a SERS substrate. Research by Miller et al (2012) 

and Liu et al (2015) provided inspiration for the photolithography and DRIE method.  

Photolithography was successfully performed; however, DRIE was unable to be attempted due 

prolonged equipment malfunction. An alternative method consisting of a buffered oxide etch 

(BOE) and a KOH bath was pursued for a short time. The poor resolution of pillars resulting from 

this method led to it being taken out of consideration. 

 Considering the resources available, it was determined that wet chemical etching could 

provide the desired morphology for the nanopillar substrate. Initial trials were performed following 

the procedure of silicon nanowire solar cells, as the morphology of the nanowire solar cells could 

provide a viable SERS substrate (Yang et al., 2008). This method utilized silver nitrate and a 

hydrofluoric acid solution to etch silicon nanowires. Following removal of the residual silver and 

cleaning, SEM images revealed the morphology.  

 The SEM images showed an irregular surface morphology with a multitude of defects, 

indicating the need for further process optimization. Srivastava et al. (2014) provided clear 

parameters for achieving different surface morphology of nanowires. The method utilized the same 

silver nitrate/hydrofluoric acid wet etch of silicon as Yang et al but with different etch parameters. 

The etch parameters chosen for the presented work were based on the results of Srivastava et al. 

Micropillars with varying distances between wire bundles were fabricated and tested to determine 

the optimal SERS substrate. The different surface morphologies were achieved by altering the 
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silver nitrate and hydrofluoric acid concentrations. Substrates were tested with residual silver from 

the acid etch and with silver deposited on the surface by sputtering. A qualitative test using a THC-

methanol solution as the analyte was performed to determine the viability of the etched, sputtered 

silicon as a SERS substrate. A quantitative limit of detection test (LOD) test followed to investigate 

if different THC concentrations yield unique SERS response intensity and to determine the lowest 

detectable concentration.  

B. MATERIALS 

1. Silicon Wafer 

It was a single-side polished wafer with the following characteristics: Type: N; Grade: 

prime; Dopant: P; Resistivity: 1-10 Ω · cm; Orientation: <100> ± 0.5°; Grow Method: 

Cz; Diameter: 100 ± 0.2 mm; Thickness: 500 ± 15 μm. The wafer was diced into 1 X 1 

cm2 pieces for processing.  

2. N-Methylpyrrolidinone (NMP) Bath 

Supplied by Fisher Scientific at 99% purity and diluted. NMP was utilized in cleaning the 

silicon before etching.  

3. Buffered Oxide Etch (BOE)  

Supplied by Avantor Performance Materials, BOE is a mixture of ammonium fluoride 

(30-40%), hydrofluoric acid (1-10%), and water (55-65%). A short BOE bath was the 

final step of cleaning silicon.  

4. Hydrofluoric Acid (HF) 

Supplied by Avantor Performance Materials at 49% HF. HF was used to etch silicon and 

was diluted to various concentrations ranging from 2 M to 12.2 M. 
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5. Silver Nitrate (AgNO3) 

Supplied by Sigma-Aldrich, 100% purity. Silver nitrate is used in the chemical etch to 

facilitate creation of nanowires.  

6. (−)-trans-Δ9-THC Solution 

Supplied by Sigma-Aldrich. 1.0 mg/mL in methanol solution. Used as the analyte for 

Raman spectroscopy. Diluted to various concentrations in high purity methanol. 

7. Nitric Acid 

Supplied by Avantor Performance Materials, 70% nitric acid solution. Diluted nitric acid 

was utilized to remove residual silver from silicon after etching.  

C. EQUIPMENT 

 A chemical bench containing an NMP bath was utilized in the cleaning of the silicon wafer. 

An acid wet bench was utilized as the work station for the HF/AgNO3 etching of silicon. The acid 

wet bench had a BOE bath which was used as a cleaning step for silicon and also had a hotplate. 

The hot plate was necessary to keep the etching solution at 25 °C. All labware coming into contact 

with HF was required to be Nalgene since HF is corrosive to glass.  
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Figure 13: Acid Wet Bench 

 

 

Figure 14: Lesker PVD 75 Sputterer 

  

A Lesker PVD 75 sputterer was used to deposit silver particles onto the silicon nanowires. 

The sputterer deposited silver by bombarding a disc of silver with energy to release silver particles; 

the silver particles then deposited on the silicon surface. A relatively low power setting of 150 W 

was used to deposit the particles. Other specific parameters for the sputtering of silver follow in 

the procedures. A Dektak Profilometer was used to measure the thickness of the silver deposited 
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on the silicon nanowire surface. The height difference recorded by the tip of the profilometer arm 

corresponded to the silver thickness.  

 

Figure 15: Scanning Electron Microscope 
 

The SEM was utilized to image the surface morphology of the silicon post-etching. The 

images provided details on the nanowire density and silver distribution. The Raman spectrometer 

was used to identify analyte on the surface of the silicon substrate. A red laser (632 nm) was used 

to characterize the samples. Software called “Wire 3.4” was used to operate the Raman 

spectrometer and to record and display the results.  

 

Figure 16: Dektak Profilometer 
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Figure 17: Raman Spectrometer 
 

D. EXPERIMENTAL PROCEDURES 

 

i. Photolithography  

1. Obtain a 4 in, 0.5 mm thick single sided Si wafer with a 500 micron thick SiO2 

layer. The wafer was ensured to be clean by washing in the Quick Dump Washer 

and dried in the Spin Rinse Dryer. 

2. Shipley 1805 positive photoresist was spun onto the wafer using a spin recipe of 

500 RPM for 1 second and then 4000 RPM for 30 seconds. The wafer was then hot 

baked on a hot plate at 115 °C for 2 minutes. The spin-coated wafer was then 

removed from the hot plate and allowed to cool.  

3. The next step was exposing the photoresist with UV light. The photomask was 

inserted into the SUSS mask aligner and ensured to be centered over the wafer. 7 
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seconds was determined to be the optimal exposure time. The exposure utilized 

hard contact with the wafer and a light intensity of 12 mW/cm2.  

4. After exposure a shallow glass container with a developer was used to develop the 

photoresist. The optimal exposure time was determined to be roughly 15 seconds 

but may vary based on the age or amount of use the developer has already 

underwent.  

5. After development the quality of the photolithography was assessed by observation 

under a microscope. The purpose of this step was to ensure the photoresist is not 

over or under exposed or over or under developed.  

6. A BOE bath was then utilized, then a KOH bath. It was then determined that this 

method did not produce desirable results. An alternative fabrication method using 

single step wet etching was then pursued.  

 

ii. WET ETCHING SILICON WITH HF/AgNO3 SOLUTION 

a. BY YANG et al. (2008) PROCEDURES 

The first attempt at wet etching followed the procedures detailed by Yang et al (Yang et 

al., 2008). A scale was used to measure out 2.99 g of AgNO3. At an acid wet bench, Nalgene 

labware was gathered in preparation for mixing the etching solution. Proper personal protective 

equipment (PPE) was donned; this includes chemical resistant gloves, apron, and a full-face shield.  
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DI water was poured into a beaker and then precisely 200 mL was measured using a 

graduated cylinder. The water was poured in a 1000 mL Nalgene beaker which served as the 

container for etching.  

Next, roughly 50 mL of 49% HF was poured into a separate Nalgene beaker. A Nalgene 

graduated cylinder was then used to precisely measure 50 mL of HF. The 50 mL of HF was then 

slowly poured into the etching beaker.  

Next the AgNO3 was poured into the beaker. A stirring stone was put into the beaker and 

the beaker was set on a hot plate. The solution was mixed at 200 RPM until the AgNO3 dissolved. 

The stirring stone was removed, and the solution was heated to 50 °C. 

Once heated, a 1 cm X 1 cm piece of silicon wafer was lowered into the solution with a 

Nalgene basket for etching. The solution was etched for 2 hours.  

After etching the basket containing the wafer was washed in the quick dump rinse.  

After etching the wafer pieces were covered in silver dendrites; the wafers were physically 

removed from the silver and washed. The silver and the used etching solution was disposed in a 

hazardous waste container. 

b. BY SRIVASTAVA et al. (2014) PROCEDURES 

The steps for following the procedures set by Srivastava largely remained the same as 

previous except for changing etching parameters. A few improvements introduced in the presented 

work were also made to improve etching results. As before, the same labware setup was utilized. 

Varying HF and AgNO3 concentrations were utilized for different trials. Cleaning steps were 
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added before etching to ensure the silicon chips were free of contaminates. Cleaning consisted of 

a roughly 2-minute rinsing with acetone followed by a 1-minute NMP bath. Water was then used 

to rinse off any residual NMP and the silicon chip was dried with nitrogen. Next, a 10 second soak 

in BOE at the acid wet bench. The last step of the preprocess cleaning was to move the silicon chip 

from the BOE bath to the quick dump rinse for a water rinse. The etching solution temperature 

was lowered to 30 °C and the etching time was lowered to 1 hour. A nitric acid bath post-etching 

was introduced to remove residual silver on the silicon chip. The bath consisted of 40 mL of water 

and 10 mL of nitric acid. The silicon chip was left to soak in the bath for 10 minutes and agitated 

periodically. After the bath, the silicon chip was washed in the quick dump rinse.  

iii. SPUTTERING OF SILVER 

Sputtering was performed with the goal of depositing silver particles on the surface of the 

micropillars. Different settings were investigated to deposit a thin layer of silver (~25nm). The 

investigation is detailed in Section IV. The final settings used for the experiments are shown in the 

Table 2. 

Table 2: Optimized Sputtering Conditions 

Sputtering Conditions 

Metal Silver 

Power 150 W 

Pump Time 60 min 

Deposition Time 1 min 

Deposition Rate ~25 nm/min 

 

  First, the silver deposition rate was determined utilizing a taped-off glass slide as a 

substrate. A spare 4-inch silicon wafer was necessary to mount the glass slide for sputtering. Three 
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pieces of tape across the glass slide affixed it to the silicon wafer. Sputtering deposits silver on the 

surface of the glass slide and the tape. When the tape is removed, the glass slide beneath is exposed. 

The height difference from the glass slide and the silver layer was then measured with the 

profilometer (see next section). Once the desired silver thickness was achieved, the etched silicon 

chip is taped to the glass slide and sputtered. 

 The first step for sputtering was to vent the Lesker PVD 75 sputterer. The first step was 

loading the target (silver) into the PVD 75. The door was opened once the chamber was vented. 

The source shutter for the target was opened and the gas inlet tube was removed. The dark space 

shroud was removed followed by removing the rings for holding the target in place. The silver was 

placed at the target and affixed with the rings and shroud. The gas inlet tube was replaced. 

 Next a digital multi-meter was used to check for continuity. This ensures the silver target 

and the shroud are electrically isolated. Once continuity was confirmed, the source shutter was 

closed as was the door to the PVD 75. Next the substrate was loaded. To load the substrate, the 

substrate shutter was opened from the control screen. The substrate access panel was removed and 

the silicon wafer with the glass slide taped to it was inserted facing downward (toward the silver 

source). The access panel was replaced and the substrate shutter was closed. The machine was then 

vented. Once pumped down for the desired time, the argon gas flow was set to a constant rate and 

the DC power supply for the silver source was set to the desired power. The source shutter was 

then opened for the desired deposition time. Once reaching the deposition time, the shutter was 

closed and the source powered down. The machine was vented and the silver source and the sample 

were removed from the PVD-75.  
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iv. PROFILOMETER MEASUREMENT 

The Dektak Profilometer was used to measure the thickness of the silver deposition layer. 

The thickness of the silver deposition could then be divided by the deposition time from silver 

sputtering to get the deposition rate. The deposition rate was useful to know because it allowed 

for more efficient optimization of the sputtering settings. A relatively linear relationship between 

the sputtering source power and deposition rate made for easier optimization.  

The profilometer used a precise stylus tip to measure the height difference between 

surfaces. The height difference was the thickness of the silver layer. To load the sample in the 

profilometer, the glass slide was left on the silicon wafer. Tape was removed, exposing the 

surface of the glass slide.  Next the guard panel to the profilometer was opened and the 

load/unload command was entered. The stage of the profilometer moved forward and the silicon 

wafer with the glass slide on top was placed in the loading area. The stage was returned to the 

center and the guard panel was closed. Next, the “tower down to null position stylus up” icon 

was pressed. This lowers the stylus to the substrate surface, then releases it slightly to allow for 

repositioning. The stylus was positioned to run perpendicular to the groves left from the tape 

removal. Scan parameters were adjusted. Force applied to the stylus was set to 3 mg, the 

measurement range was set to 655 kA, and the profile was set to hills and valleys. The scan went 

from the silver surface, down to the glass substrate, and back to the silver surface again. Once the 

scan was complete, a level section of the silver dataset can be set to zero. This then shows the 

step difference when the stylus moves to the valley made by the tape and gives the measurement 

of the silver thickness.   
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v. SCANNING ELECTRON MICROSCOPY 

Surface morphology of etched silicon was viewed using a scanning electron microscope. 

Images were taken from a top down view and at a 20° angle. The samples were affixed to the 

viewing stage in the SEM and the chamber was flushed with nitrogen. Once focused on the 

surface, different areas of the sample were imaged. Results from the surface morphology 

informed changes to etching parameters to achieve the desired surface morphology. SEM images 

can be viewed in Section VI.  

vi. RAMAN SPECTROSCOPY 

Raman spectroscopy was used to characterize the silicon samples and to see if the etched 

silicon nanowire structure with silver could provide enough enhancement to detect trace levels of 

THC. Sample were prepared for Raman spectroscopy by cleaning the silicon chips with 

methanol. The analyte of THC in methanol solution was pipetted onto the silicon chip and then 

put in the Raman spectrometer for analysis. See Section IV for more details on the THC-

methanol analyte. After sample preparation, the Raman spectrometer is set up. On the attached 

computer, “Wire 3.4” program was used to run the Raman and record and display the result. The 

laser used was a 632 nm red laser set to 100% power with 1800 nm diffraction grating. These 

settings were selected in the program and the proper lenses for the laser and diffraction grating 

were installed in the spectrometer.  

The first step to using the Raman spectrometer was to open the Wire 3.4 program. After 

ensuring the proper settings were selected and the corresponding lenses and diffraction panel 

were in place, the laser was turned on by a switch on the machine. A light source for the sample 
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stage was turned on as well to illuminate the sample for the inboard microscope. After opening 

the sample changer, a sample was placed on the stage under the microscope and the desired 

magnification was selected in to see surface morphology. The sample stage was able to be 

manipulated to analyze a specific spot on the chip. Once the desired spot was selected, the image 

was brought into focus by adjusting the knobs. The sample chamber was closed and dials on the 

Raman were manipulated to allow the laser to enter the chamber and hit the sample. Focusing of 

the laser was oftentimes necessary as the laser had to be focused to the specific spot of analysis. 

Once the laser was focused on the sample, a spectral acquisition was selected from the program. 

After running the spectral acquisition, the results are displayed on a graph. The data was then 

saved to a text file and later graphed in Excel.  

At the start of each spectroscopy session, a plain silicon sample was run to ensure the 

Raman spectrometer was working properly. A sharp peak for silicon at 520 cm-1 indicated the 

spectrometer was operating as desired; if there was no silicon response peak, then the settings 

needed to be adjusted. The etched silicon nanowire substrates were also measured before being 

treated with analyte; any peaks other than silicon indicated possible contaminates on the surface.    

 

 

 



31 
 

IV. RESULTS AND DISCUSSION   

A. PHOTOLITHOGRAPHY 

Initially, photolithography and DRIE were pursued as a method to create a silicon 

micropillar substrate for SERS. As outlined in Section III A., photoresist was to serve as an etch 

mask for DRIE to create micropillars. However, the prolonged malfunction of the DRIE equipment 

led to pursuing KOH as an etching method. After the creation of micropillars, sputtering was 

planned for silver deposition. Figures 18 through 20 show a microscope image of the circular 

photoresist structures that were to serve as the mask for DRIE. Various pillar arrangements were 

designed on the photomask to investigate if pillar diameter, distance, and pattern (square grid 

versus hexagonal) affected SERS activity.  

 

Figure 18:  Photoresist pillars on Si, x5 magnification 
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Figure 19: Photoresist pillars, x20 magnification 
 

 

Figure 20: Photoresist pillars, x50 magnification 
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 The full experimental design for photolithography will not be included in the report due to 

it not being the final method pursued for SERS detection of THC. The decision to pursue acid wet 

etching with a HF/AgNO3 stems from three main factors: the prolonged malfunction of the DRIE; 

the inability to get the photoresist micropillars below 8 microns in diameter without significantly 

increasing production cost and lowering quality; and the poor initial results from the KOH bath as 

an alternative to DRIE. Figure 21 through 23 shows the degradation of the surface after the KOH 

etch. 

 

Figure 21: Post-etch photoresist pillars on Si, x5 magnification 
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Figure 22: Post-etch photoresist pillars on Si, x20 magnification 
 

 

Figure 23: Post-etch photoresist pillars on Si, x50 magnification 
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While further optimization of the KOH bath may have led to favorable results, wet etching 

by HF/AgNO3 had the potential to create a more dense SERS substrate than the photolithography 

and KOH method.  

B. WET ETCHING MORPHOLOGY 

a) BY YANG et al. (2008) PROCEDURES 

 

As described in Section III D, an acid wet etch using HF/AgNO3 to etch silicon was 

investigated to create a nanowire SERS substrate. Procedures described by Yang et al. (2008) 

served as the guide for the initial parameters. The etching parameters are detailed in Table 3.    

Table 3: Trial 1 and Trial 2 Etch Parameters 

 Trial 1 Trial 2 

Temperature 
°C 

50 30 

HF 
Concentration 

(mol/L) 
7.14 7.14 

AgNO3 
Concentration 

(mol/L) 
0.07 0.07 

Etch Time 
(min) 

120 60 

 

Trial 1 followed the exact procedure outlined by Yang et al. Immediately upon lowering 

the silicon wafer into the 50°C etching solution, vigorous etching began. The silicon wafer became 

black in color, bubbles vigorously propagated, and silver dendrites began building on the surface. 

After the 2 hours etch, the silicon chip was noticeably degraded. The chip was smaller in size and 
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appeared to have a significant amount of silicon etched away. SEM images reveal the morphology 

of the wafer as non-uniform. As seen in Figures 23 through 26, it appears silicon nanowires formed 

but became disarrayed due to the intensity of the etch. The SEM also revealed residual silver on 

the surface, some in the form of particles and other in the form of dendrites.   

 

Figure 24: Trial 1, 7.14 M HF, 2 hour, 50°C etch from top down view 
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Figure 25: Trial 1, 7.14 M HF, 2 hour, 50°C etch from top down view 
 

 

Figure 26: Trial 1, 7.14 M HF, 2 hour, 50°C etch from top down view 
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Figure 27: Trial 1, dendritic residual silver from top down view 
 

 

Figure 28: Trial 1, residual silver particles from top down view 
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 Due to the disarrayed surface morphology revealed by SEM images, trial 2 was set to run 

with a lower solution temperature of 30°C and an etching time of 1 hour. When the silicon chip 

was lowered into the etching solution, it reacted less vigorously than in trial 1. Instead of 

immediately blackening, the chip clouded over and slowly blackened. Bubbles formed but not as 

vigorously and there was less silver dendrite buildup on the surface of the chip. Top down view 

SEM images revealed a structure similar to the nanowire structure achieved by Yang et al. Deposits 

of silver still covered significant portions of the silicon surface. These more promising results led 

to the decision to investigate varying concentrations of HF and AgNO3 on the surface morphology 

with the goal of finding which morphology created the best Raman signal enhancement.  

 

Figure 29: Top view of trial 2, 1 hour, 30°C etch 
 

 

b)  BY SRIVASTAVA et al. (2014) PROCEDURES 
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While Yang et al. proved a good starting point, Srivastava et al. performed an in-depth 

investigation into the influence of HF and AgNO3 concentration on silicon nanowire morphology. 

The first set of trial parameters by done by this method are listed in Table 4.  

Table 4: Trial 4 through 6 Parameters 

 Trial 3 Trial 4 Trial 5 Trial 6 

Temperature 
°C 

30 30 30 30 

HF 
Concentration 

(mol/L) 
2.00 10.40 5.00 7.90 

AgNO3 
Concentration 

(mol/L) 
0.01 0.01 0.02 0.02 

Etch Time 
(min) 

20 20 20 20 

 

Trial 3 and Trial 4 were run first. Upon lowering the silicon chip into the respective etching 

solutions, reactivity appeared to be low. For Trial 3 there was bubbling and some silver dendrite 

build up. However, it was to a lower degree than before. For Trial 4 there was minimal bubbling 

and almost no silver dendrite formation. Silver dendrite formation on the silicon chip during 

etching was desirable because it indicates successful etching of the silicon. The low formation of 

silver dendrites prompted an increase of AgNO3 concentration for Trails 5 and 6. SEM images of 

Trials 3, 4, 5, and 6 are pictured in Figures 30 through 33. 
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Figure 30: Trial 3, 2.00 M HF viewed from top down 
 

 

Figure 31: Trial 5, 5.00 M HF viewed from top down 
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Figure 32: Trial 6, 7.90 M HF viewed from top down 
 

 

Figure 33: Trial 4, 10.40 M HF viewed from top down 
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 The results from Trials 3, 4, 5, and 6 would indicate the higher HF concentration inhibits 

etching. However, references suggest Trials 4 and 6 should have etched, so it is likely there was 

some procedural error in the experiment. It was theorized that the etching time was not long 

enough, as Trial 3 shows partial etching. This could also be an explanation as to why no nanowire 

features appear on Trial 4 and Trial 6.  

 It was decided for the next set of trials to follow Srivastava et al. more closely to replicate 

their results. The next set of trial parameters are shown in Table 5.  

Table 5: Trial 7 through 9 Parameters 

 Trial 7 Trial 8 Trial 9 

Temperature 
°C 

30 30 30 

HF 
Concentration 

(mol/L) 
2.00 8.15 12.20 

AgNO3 
Concentration 

(mol/L) 
0.02 0.02 0.02 

Etch Time 
(min) 

60 60 60 

 

 For Trials 7, 8, and 9, all factors were kept the same while HF concentration was varied. 

Before etching, the cleaning steps outlined in Section D ii. b) were introduced to ensure removal 

of surface contaminants before the etch. Also introduced was the post-etch nitric acid bath to 

removed residual silver from the silicon surface. Removal of residual silver allowed for better 

viewing of surface morphology.  
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 Trial 7 began to react immediately once the silicon was lowered into the etching solution. 

After 30 minutes the chip was covered in a modest amount of silver dendrites and was bubbling 

slowly. The bubbling was constant but not vigorous. For Trial 8, the etching also visibly began. 

Etching appeared to be more vigorous than Trial 7 and more silver dendrites built up on the chip. 

After 30 minutes the chip was covered in silver dendrites and the bubbling was steady. Trial 9 

behaved similarly to Trial 7, although to a slightly lesser degree. Trial 9 was more vigorous than 

Trial 7 but less so than Trial 8.  

 

Figure 34: Trial 7, 2 M HF viewed from 20° tilt 
 

 The Trial 7 SEM image shows the beginning of nanowire formation. However, nowhere 

on the chip did the nanowires successfully form. Trial 8 SEM images show large area, uniform 

nanowire formation.  
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Figure 35: Trial 8, 8.15 M HF viewed from top down 
 

 

Figure 36: Trial 8, 8.15 M HF viewed from 20° tilt 
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Figure 37: Trial 8, 8.15 M HF viewed from 20° tilt 
 

 Trial 9 also shows successful formation of nanowire structures. The successful formation 

of nanowires at 8.15 M and 12.2 M HF and the unsuccessful formation at 2 M HF led to the 

decision to add a 5 M HF set of trials for comparison. Also added to investigate was an increase 

in AgNO3 concentration to see how it would affect surface morphology and SERS activity.  
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Figure 38: Trial 9, 12.2 M HF viewed from top down 
 

 

Figure 39: Trial 9, 12.2 M HF viewed from 20° tilt 



48 
 

 

Figure 40: Trial 9, 12.2 M HF viewed from 20° tilt 
 

 With the confirmation of nanowire formation from the second set of trials, the third set of 

trials was performed. The conditions of Trial 8 and Trial 9 were repeated for Trial 12 and Trial 13, 

respectively. The difference was omitting the nitric acid bath to remove residual silver from the 

surface of the chip. For Trials 10 through 11, surface silver was not removed so as to later 

investigate the SERS performance of residual silver versus sputtered silver.  The parameters are 

outlined in Table 6. 
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Table 6: Trial 10 through 13 Parameters 

 Trial 10 Trial 11 Trial 12 Trial 13 

Temperature 
°C 

30 30 30 30 

HF 
Concentration 

(mol/L) 
5.00 5.00 8.15 12.20 

AgNO3 
Concentration 

(mol/L) 
0.10 0.02 0.02 0.02 

Etch Time 
(min) 

60 60 60 60 

 

 

Figure 41: Trial 10, 5 M HF, 0.10 M AgNO3, top down view 
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Figure 42: Trial 10, 5 M HF, 0.10 M AgNO3, top down view 
 

Figure 41 and 42 show images of from the Trial 10 which was run with a higher AgNO3 

concentration of 0.10 M. Trial 10 reacted the most vigorously; the silicon chip immediately was 

blackened and a steady stream of bubbles began. A large of silver dendrites formed. SEM images 

revealed the entirety of the silicon surface was covered in a layer silver. Without removing the 

silver, there was no way to confirm the presence of nanowires. Trial 11 was performed with the 

same HF concentration as Trial 10, 5M, and with a lower AgNO3 concentration of 0.02 M. Trial 

11 was observed to have similar behavior to Trial 8; steady bubbling and moderate silver buildup 

on the silicon chip. Under the SEM, micropillars visibly formed and the SEM images show residual 

silver on the surface as well. Figure 43 and Figure 44 show the Trial 11 silicon surface.  
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Figure 43: Trial 11, 5 M HF, 0.02 M AgNO3, residual silver top down view 
 

 

Figure 44: Trial 11, 5 M HF, 0.02 M AgNO3, residual silver top down view 
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 Figure 43 and Figure 44 show the irregularity of the residual silver. The silver was not 

spread uniformly across the surface and formed dendritic structures. Figure 45 shows the dendrites 

in slightly more detail. Figure 46 and Figure 47 show the residual silver resides atop the nanowire 

structures.  

 

Figure 45: Trial 11, 5 M HF, 0.02 M AgNO3, residual silver top down view 
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Figure 46: Trial 11, 5 M HF, 0.02 M AgNO3, residual silver, 20° tilt view 
 

 

Figure 47: Trial 11, 5 M HF, 0.02 M AgNO3, residual silver, 20° tilt view 
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As mentioned previously, Trial 12 and Trial 13 are repeats Trial 8 and Trial 9, respectively, 

but with residual silver. Figure 48 shows residual silver on the surface of the micropillars. Figure 

49 shows a closer view. Certain areas had silver formed in dendrites as pictured in previous figures 

as well as Figure 49 and Figure 50. Others had silver form in films similar to Figure 41; Figure 48 

and Figure 452 display this. For Trials 11, 12, and 13 displayed both areas of silver film and silver 

dendrites. The dendrites were scattered across the entire surface of the silicon nanowire surface, 

while the films were localized to different areas. As was the case with Trial 11 in Figure 47, the 

same behavior of silver sitting atop the nanowire structures is pictured in Figures 50 and 51 (Trial 

12) and Figures 53 and 54 (Trial 13).  

 

Figure 48: Trial 12, 8.15 M HF, 0.02 M AgNO3, top down view 
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Figure 49: Trial 12, 8.15 M HF, 0.02 M AgNO3, top down view 
 

 

Figure 50: Trial 12, 8.15 M HF, 0.02 M AgNO3, 20° tilt view 
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Figure 51: Trial 12, 8.15 M HF, 0.02 M AgNO3, 20° tilt view 
 

 

Figure 52: Trial 13, 12.2 M HF, 0.02 M AgNO3, top down view 



57 
 

 

Figure 53: Trial 13, 12.2 M HF, 0.02 M AgNO3, top down view 
 

 

Figure 54: Trial 13, 12.2 M HF, 0.02 M AgNO3, 20° tilt view 
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 Figures 55 through 59 show images of Trials 7, 8, and 9 after having silver sputtered onto 

the surface. Visually it appears little to no silver was deposited onto the surface; however, it is 

believed there is silver there due to the presence of silver adjacent to the chip on the glass slide 

during the sputtering process. Raman spectroscopy results in Section E also indicate the presence 

of silver due to the increased signal strength.  

 

Figure 55: Trial 7, 2 M HF, 0.02 M AGNO3, sputtered Ag top down view 
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Figure 56: Trial 8, 8.15 M HF, 0.02 M AGNO3, sputtered Ag top down view 
 

 

Figure 57: Trial 8, 8.15 M HF, 0.02 M AGNO3, sputtered Ag top down view 
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Figure 58: Trial 9, 12.2 M HF, 0.02 M AGNO3, sputtered Ag top down view 
 

 

Figure 59: Trial 9, 12.2 M HF, 0.02 M AGNO3, sputtered Ag top down view 
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C. SPUTTERING OF SILVER 

Sputtering of silver onto the nanowire silicon substrate was investigated through silver 

deposition using a Lesker PVD-75 sputterer and measured using a profilometer. As mentioned in 

Section III D iii, different conditions were set to try and deposit a ~25 nm layer of silver. The first 

attempt used a power of 300 W, a pump time of 30 minutes, and a deposition time of 1 minute. 

The resulting profilometer reading was roughly 80 nm, pictured in Figure 60. 

 

Figure 60: Profilometer measurement, 300 W power, 30 minute pump time, 1 minute deposition 

time 
 

 For the next sputtering attempt, the pump down time was increased to 60 minutes to 

increase the uniformity of the deposition. The power was lowered to 150 W to lower the thickness 
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of the deposition layer while the deposition time was kept at 1 minute. The resulting profilometer 

reading was roughly 35 nm, pictured in Figure 61.  

 

Figure 61: Profilometer measurement, 150 W power, 60 minute pump time, 1 minute deposition 

time 
 

 To decrease the sputtering thickness further, deposition time was lowered to 30 seconds 

while power remained at 150 W and pump time remained at 60 minutes. The resulting silver layer 

thickness was roughly 21 nm and is pictured in Figure 62. It was deemed that these sputtering 

conditions could be suitable for SERS activity and were used in all trials moving forward. 
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Figure 62: Profilometer measurement, 150 W power, 60 minute pump time, 30 second deposition 

time 
 

D. RAMAN SPECTROSCOPY RESULTS 

A stock solution of 1.0 mg/mL of (−)-trans-Δ9-THC in methanol solution was the analyte 

for Raman spectroscopy. The first attempts to detect THC were qualitative in nature; it was desired 

to show the silver sputtered, etched silicon chips could provide enough signal enhancement to 

detect trace amounts of THC. As reported by Yüksel et al. (2016), the characteristic peak for THC 

is at 1390 cm-1. 10 μL of the THC solution was deposited onto a bare (unetched) silicon chip and 

the resulting measurements are displayed in Figure 63. 10 μL (equal to 1.0 X 107 pg) was chosen 

as the starting point because it is significantly higher than the amount of THC typically found in 

exhaled breath (1479 pg for the case of Coucke et al., 2016). There is a strong peak intensity at 
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590 cm-1, corresponding to silicon. The lack of response at 1390 cm-1 evident in Figure 63 shows 

that unetched silicon has no SERS activity.  

 

Figure 63: 10 μL (1.0*107 pg) of THC on bare Si 
 

THC on a bare, unetched silicon with a film of silver sputtered on was also measured. 

Figure 64 displays the result. The response intensity was minimal, indicating unetched silicon and 

sputtered silver do not provide any Raman enhancement. As silver is not Raman active, no strong 

peaks are present. The film of silver covering the entire surface likely obstructed silicon enough 

to prevent the silicon peak from registering.  
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Figure 64: Bare Si chip, 10 μL (1.0*107 pg) of THC on bare Si with Ag sputtered on 

 

The silicon chip etched in 2 M HF, 0.02 M AgNO3 solution (Trial 7) was tested with 1006 

pg of THC. It was theorized that due to the lack of micropillar structures shown in the SEM image 

(Figure 31) that there would be limited SERS activity. Figure 65 confirmed this hypothesis. With 

1006 pg of THC, no Raman activity was detected (outside of silicon).  
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Figure 65: Trial 7 chip, 2 M HF, 0.02 M AgNO3 solution, 1006 pg of THC  
 

 The lack of etching displayed in the SEM images of Trial 7 combined with the no THC 

spectra displayed led to no further pursuit of the 2 M HF etching parameter chip. The remaining 

Raman trials focused on Trials 8, 9, 10, 11, and 12. Trial 10 and Trial 11 used 5 M HF solution 

and were utilized to investigate the potential of using residual from the HF/AgNO3 etch as a SERS 

mechanism. Figure 65 and Figure 66 display a dramatic difference in signal on the same chip. The 

Trial 11 chip was etched with a 5 M HF and 0.1 M AgNO3 solution and the residual silver was left 

on the surface. Figure 65 shows the spectral response of THC on an area with no residual silver, 

while Figure 66 shows the response on an area with residual silicon on the nanowires.  
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Figure 65: Trial 11, 5 M HF, 0.02 M AgNO3, 3.15 pg THC over no residual Ag 
 

 

Figure 66: Trial 11, 5 M HF, 0.02 M AgNO3, 3.15 pg THC over residual Ag 
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 3.15 pg was chosen as the amount for analysis due to it being well below the upper limit 

found in breath after consumption of THC by inhalation. Even though Figure 65 and Figure 66 

measurements were taken on the same chip, the spectral responses are completely different. The 

spectral responses indicate silver is necessary for Raman enhancement. Being able to rely on 

residual silver for signal enhancement would have been advantageous due to eliminating the need 

for sputtering equipment. However, the sparse and irregular distribution of residual silver ruled 

out relying on it for signal enhancement. While there is signal response in Figure 66 for THC, 

located at 1390 cm-1 with an intensity of 18,876, the surrounding peaks and background noise are 

a concern for quantification. But qualitatively, it appears Trial 11 conditions can detect a THC 

response with 3.15 pg of analyte.  

 Trial 10 was performed to determine if increasing the silver concentration would leave 

more residual silver and thus eliminate need the need for sputtering. The etch parameters were the 

same as Trail 11, but with 0.10 M AgNO3 in the etching solution instead of 0.02 M. Figure 41 

shows the SEM results of Trail 10 and Figure 67 shows the spectral response. The SEM images 

show a silver particle film across the surface of the chip, obscuring the nanowires beneath. The 

lack of a spectral response other than silicon suggest the nanowires need to be exposed for Raman 

signal enhancement to occur. 
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Figure 67: Trial 10, 10 μL (1.0*107 pg) of THC on Si chip etched with 5 M HF/0.10 M AgNO3 

with residual Ag 
 

 Thus far, it has been shown that silver particles enhance signal for THC detection while 

silver films and particle films provide no enhancement capabilities. The results also suggest the 

necessity of nanowires to provide enhancement, with the poorly etched Trial 7 chip not displaying 

signal and the Trial 10 chip not displaying signal due to the nanowires being obstructed by silver. 

Next, Trial 8 (8.15 M HF/0.02 M AgNO3 with sputtered silver) and Trial 12 (8.15 M HF/0.02 M 

AgNO3 with residual silver) were investigated. SEM images taken before sputtering on the Trial 

8 chip are shown in Figure 35 through Figure 37. The presence of defined nanowires indicates a 

successful etch and the potential for SERS activity once silver was deposited. The SEMS images 

in Figures 56 and 57 are of the Trail 8 chip after being sputtered. While no silver is blatantly visible 

in the images, it is believed that silver is present on the pillars. This conclusion is based on the 
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presence of silver adjacent to the chip after sputtering as well as the signal enhancement displayed 

in Figure 68. Figure 68 shows the sputtered Trial 8 chip signal response.  

 

Figure 65: Trial 8, 10 μL (1.0*107 pg) of THC on Si chip etched with 8.15 M HF/0.02 M AgNO3 

with sputtered silver 
 

 While there is background noise for the signal on the level of 8000 and the peaks are not 

sharp and defined, there is still a noticeable response at 1390 cm-1 of 28,586. It can be concluded 

from this that Trial 8 etching conditions and silver sputtering allow for qualitative detection of 

THC. Trial 12 with residual silver was tested with 3.15 pg of THC. The measurement in Figure 69 

was taken over an area with no residual silver visible while Figure 70 was measured over residual 

silver.   
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Figure 69: Trial 12, 3.15 pg of THC on Si chip etched with 8.15 M HF/0.02 M AgNO3 with 

residual silver, measurement over no silver area on chip 

 

Figure 70: Trial 12, 3.15 pg of THC on Si chip etched with 8.15 M HF/0.02 M AgNO3 with 

residual silver, measurement over silver on chip 
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 Much like Figure 65 (Trial 11), Figure 69 displays no spectral response for THC. This is 

to be expected because the measurement was taken over in an area with no silver. Without silver, 

signal enhancement is not possible in these circumstances. However, it is unexpected that Figure 

70 displays little signal enhancement. With Figure 66 (Trial 11) displaying a spectral response at 

the THC wavelength, it was hypothesized that signal enhancement would occur for Trial 12 as 

well. It was initially thought the etching parameter was not conducive to SERS activity, but later 

measurements with Trial 9 and Trial 13 (etching parameters of 12.2 M HF/0.02 M AgNO3) display 

spectral response with 3.15 pg THC. With trials at 5M HF and 12.2 M HF both displaying SERS 

activity while 8.15 M HF did not, it is thought that the 8.15 M HF chip measurements over silver 

may have been on a conglomerate of silver. The lack of response is similar to Figure 67, where 

silver covered the micropillar pillars. Perhaps if the measurement for Figure 70 had been over an 

area with slightly less silver, a spectral response for THC would have been observed.  

 Figure 71 shows the results from measuring 10 μL (1.0 X 107 pg) on Trial 9 ((etching 

parameters of 12.2 M HF/0.02 M AgNO3 with sputtered silver). The spectral response is similar 

in pattern to the Trial 8 counterpart in Figure 68, albeit with a peak of lower intensity (with a value 

of 15,248) at 1390 cm-1 and with less definition. Signal enhancement is there, but it is difficult to 

identify THC specifically due to the lack of peak definition.  
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Figure 71: Trial 9, 10 μL (1.0*107 pg) of THC on Si chip etched with 12.2 M HF/0.02 M AgNO3 

with sputtered silver 
 

Figure 72 (Trial 13, 12.2 M HF/0.02 M AgNO3 with residual silver, measurement over no 

silver area on chip) and Figure 73 (Trial 13, 12.2 M HF/0.02 M AgNO3 with residual silver, 

measurement over silver on chip) show results with 3.15 pg on the chips. Figure 72 again confirms 

that even with micropillars, if there is no silver present, signal enhancement does not occur.  The 

measurement shown in Figure 73 takes place over an area with residual silver and displays a 

spectral response. At the THC wavelength of 1390 cm-1 the response intensity is 7075. When 

comparing Figure 72 to Figure 73, it can be concluded that when measured over residual silver, 

Trial 13 etching conditions are able to qualitatively detect THC.  
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Figure 72: Trial 13, 3.15 pg of THC on Si chip etched with 12.2 M HF/0.02 M AgNO3 with 

residual silver, measurement over no silver area on chip 

 

Figure 73: Trial 13, 3.15 pg of THC on Si chip etched with 12.2 M HF/0.02 M AgNO3 with 

residual silver, measurement over no silver area on chip 
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 After performing qualitative tests for the detection of THC, a quantitative test was 

performed. The Trial 8 chip conditions (8.15 M HF.0.02 M AgNO3 etching solution) with 

sputtered silver was chosen as the substrate for this test due to it having the highest intensity 

spectral response of the tested chips. The quantitative test was not performed with chips utilizing 

residual silver due to the variability of measurement output from location on the chip (i.e. whether 

the measurement was over residual silver or not).   

 Various amounts of THC were tested for spectral response. One challenge to this step was 

the amount of background noise for the measurements. As can be seen in several of the previous 

figures in this work (such as Figure 66, Figure 68, Figure 71, and Figure 73) there is a certain level 

of background noise for the measurements. For quantitative analysis, the background noise was 

taken into account by subtracting the baseline from the response intensity for each amount of THC. 

For one set of data the baseline of the response was set to a flat section from the first half of the 

data (between 600 cm-1 and 800 cm-1). For the other set of data, the second half with a flat response 

was set as the baseline (between 2000 cm-1 and 3000 cm-1). The responses are shown in Figure 74 

and Figure 76. Calibration curves based on the response intensity at 1390 cm-1 are shown in Figure 

75 and Figure 77.  
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Figure 74: Raman response to various amounts of THC using the front part of the data as a 

baseline 
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Figure 75: Calibration curve from the response intensity at 1390 cm-1 from Figure 71 

 

The intensity values from at 1390 cm-1 from Figure 74 are displayed in Table 7. The 

highlighted values were used to generate the calibration curve in Figure 75. The highlighted vales 

were chosen because the associated linear regression proved to have an R2 value close to 1. The 

remaining three values were deemed outliers and not used for the regression. However, the outliers 

do raise the question of reliability of this method for identifying different amounts of THC.  
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Table 7: Intensity at 1390 cm-1 for Varying Amounts of THC (for Figure 72) 

THC amount (pg) Intensity 

2.358 8098.65 

5.502 2098.56 

10.218 3586.53 

25.938 3727.46 

49.518 4051.9 

100.136 4872.97 

502.568 12932.6 

1005.608 7983.5 

 

Figure 76 shows the spectral response with the tail part of the data acting as the baseline. 

Figure 77 shows the associated calibration curve, and Table 8 contains the associated data points 

for signal intensity at 1390 cm-1 in response to varying amounts of THC.  The calibration curve in 

Figure 77 generated from the Raman response in Figure 76 is not as good of a fit as the calibration 

curve in Figure 75, with a lower R2 value of 0.8728. Inconsistency between the front part as 

baseline and the tail part as baseline measurements leads to the conclusion that further work is 

necessary in order to develop this method as a reliable method for THC quantification. However, 

these initial results indicate promise in the method with further refinement. It should also be noted 

a distinct peak was consistently present at ~1590 cm-1. It is thought this peak corresponds to a 

potential overlap in methanol and THC response. This is supported by a similar response seen by 

Yüksel et al (2016). However, the intensity of the peak seen in the presented work is perplexing 

and deserves further investigation.  
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Figure 76: Raman response to various amounts of THC using the tail part of the data as a 

baseline 
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Figure 77: Calibration curve from the response intensity at 1390 cm-1 from Figure 73 
 

Table 8: Intensity at 1390 cm-1 for Varying Amounts of THC (for Figure 74) 

THC amount (pg) Intensity 

5.502 1667.03 

10.218 1501.23 

25.938 1925.71 

49.518 2613.49 

100.136 4132.09 

502.568 6908.05 

1005.608 8090.77 
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V. CONCLUSION 

The main objective presented in this work was to produce a microfabricated SERS platform 

for the detection of tetrahydrocannabinol (THC). It was desired to utilize silicon micropillars as 

the substrate with deposited silver acting as a mechanism for Raman enhancement. The work 

initially focused on utilizing photolithography to create the substrate, but the focus shifted to 

utilizing wet etching once cost considerations and equipment limitations came into consideration. 

A solution of hydrofluoric acid (HF) and silver nitrate (AgNO3) was used to etch silicon nanowires 

to serve as a SERS substrate. Various concentrations of HF were investigated to create an optimal 

substrate for SERS. With AgNO3 held constant at 0.02 M, etching was performed at 2 M, 5 M, 

8.15 M, and 12.2 M HF. A scanning electron microscope was used to view the results of silicon 

etching. 2 M HF failed to etch while 5 M, 8.15 M, and 12.2 M HF etched and produced nanowires. 

An increase of AgNO3 concentration to 0.10 M was tried with 5 M HF; it left a film of silver 

particles on the surface of the chip, obstructing nanowires. When the silicon chips were not cleaned 

of residual silver with a nitric acid wash, residual silver was seen on the micropillars. For chips 

that were cleaned, sputtering was used to deposit silver. Sputtering conditions of 150 W power, 

60-minute pump time, 30 second deposition time created a ~20 nm thick layer of silver and was 

determined to suitable for the investigation as the silver didn’t obstruct the nanowires. Raman 



82 
 

spectroscopy measurements were taken to qualitatively detect THC. It was proven bare silicon 

provides no signal enhancement, either with or without deposited silver.  

For the different concentrations of HF, measurements were taken with residual silver from 

the etch serving as the source of enhancement. At 5 M HF/0.02 M AgNO3, it was seen that 

nanowires with residual silver can detect a THC response at 1390 cm-1 from 3.15 pg. However, 

residual silver proved to be sparsely distributed on the chips, and measurements in areas with no 

residual silver showed no signs of enhancement. This was confirmed at etching conditions of 8.15 

M/0.02 M AgNO3 and 12.2 M/0.02 AgNO3 for 3.15 pg as well. Measurements taken with sputtered 

silver at etching conditions of 8.15 M/0.02 M AgNO3 and 12.2 M/0.02 AgNO3 showed at spectral 

response at 1390 cm-1, indicating the presence of THC. The 8.15 M HF condition had a more 

intense response than 12.2 M (28,586 versus 15,248, respectively) and thus was chosen as the 

conditions for quantitative investigation.  

The quantitative analysis sought to work past background noise that was prevalent in 

measurements. Flat sections of the background noise in was subtracted from sections of the data 

to try and filter out noise. The response intensity for various amounts of THC was taken at 1390 

cm-1 and graphed to create a calibration curve. With the front part of data taken as a baseline, the 

calibration curve was 𝑦 = 19.322𝑥 +  3174.1 and an R2 of 0.9982. With the tail part of the 
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response as the baseline, the calibration curve was 𝑦 = 6.3967𝑥 +  2389.3 with an R2 of 0.8728. 

The variability between the two measurements combined the with need to filter out background 

noise and the nonlinearity of certain data points leads to the conclusion that further work is 

necessary to accurately quantify trace amounts of THC by this method.  

VI. RECOMMENDATIONS 

Further optimize of etching parameters could lead to stronger SERS activity. Five different 

etching conditions were investigated, leaving many possibilities for different parameters to 

potentially create better conditions for Raman enhancement. An interesting aspect about residual 

silver was noticed, with some residual silver leaving feather-like dendritic structures. It would be 

interesting to investigate if this unique silver structure could provide more enhancement than 

sputtered silver. Utilizing photolithography was investigated in this work for a time and could 

prove to be a viable alternative if the proper photomask could be obtained. Photolithography 

combined with deep reactive ion etching (DRIE) would be a worthwhile alternative to pursue 

because it does not involve handling dangerous hydrofluoric acid from wet etching. In this work, 

THC in methanol solution was deposited directly onto the silicon substrate and allowed to 

evaporate. Quantification proved to be a challenge in this thesis; future works could attempt to 

improve quantification by minimizing background noise in measurements. Future works should 

investigate simulated breath samples by allowing the spiking a sample bag of breath with the THC 

solution.  
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