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ABSTRACT

MODELING AND SIMULATION METHODOLOGIES FOR SPINAL CORD
STIMULATION
Saliyva Kumara Kirigeeganage

November 28, 2018

The use of neural prostheses to improve health of paraplegics has been a prime
interest of neuroscientists over the last few decades. Scientists have performed ex-
periments with spinal cord stimulation (SCS) to enable voluntary motor function of
paralyzed patients. However, the experimentation on the human spinal cord is not a
trivial task. Therefore, modeling and simulation techniques play a significant role in
understanding the underlying concepts and mechanics of the spinal cord stimulation.
In this work, simulation and modeling techniques related to spinal cord stimulation
were investigated.

The initial work was intended to visualize the electric field distribution patterns
in the spinal cord. A system consisting a set of stimulating electrodes with a model
of the spinal cord was built and simulations were performed by applying different
stimuli to the electrodes. Depending on the complexity of the model, the simulation
times can be varying. However, the system demonstrated the ability to visualize the
field distributions inside the spinal cord for static and transient stimuli. This data
can be used to aid experimental studies and to better understand the results of the
spinal cord stimulation by mapping known experimental results to the simulation

results.
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The stimulation of biological tissue raises safety concerns. Therefore, a methodol-
ogy utilizes in electrical stimulation of biological systems known as charge balancing
was studied. The importance of charge balancing and the effects of using charge
balancing was studied with simulation studies. The simulation results showed ex-
tensive charge accumulation in the biological tissue, around the stimulation sites,
when charge balancing was not utilized. Hence, the studies showed the importance
of using charge balancing and the importance of avoiding pulse collisions. Stimu-
lation sequences that utilizes different stimuli with different frequencies results in a
phenomenon known as pulse collision. Pulse collisions cause complications in charge
balancing and should be avoided or reduced in stimulation procedures. An algorithm
and a software based on the algorithm was developed to reduce pulse collisions by
optimizing pulse positioning. The tool showed significant reduction in pulse collisions
for simulation sequences that were used in experimental settings. The current version
of the software is capable of optimizing up to five different pulses.

Coupling the electric fields and action potentials generated in neurons due to the
electric fields can lead to significant discoveries on the mechanics of the SCS. There-
fore, the investigation of bi-domain models has valuable implications. Bi-domain
models were built by combining different neural models with electric field results.
The simulations proved the possibility of visualizing the action potentials in neurons,
when the spinal cord was stimulated using electrical pulses. Having the optimized
neural models that simulate the behavior of the motor neurons can aid the experimen-
tal studies by easily identifying the proper stimulation sequences to activate motor
neurons.

The final section of this work was focused on using machine learning in neuro-
science for optimization purposes. Well known Hodgkin-Huxley (HH) model and a
recently published Izhikevich mathematical model were used for this task. The HH

model is a widely used, biophysically meaningful model that can simulate the action

vil



potentials in the nerve axons. It is mainly used to simulate the type 2 behavior of the
axon firing. However, other types of neuron spiking and bursting have been observed
in the literature. This work demonstrates the optimization of the HH model parame-
ters to simulate neuron bursting behavior. The results of the study demonstrate that
it is possible to extend the HH model beyond its intended type 2 behavior and can be
modified to simulate more complex neuron firing patterns including neuron bursting.
The optimized HH model was able to generate bursting patterns corresponding to the
two target bursting patterns used in this study with error values < 18% for phasic

bursting and < 6% for tonic bursting.
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CHAPTER 1

INTRODUCTION

1.1 Background

For decades man and machine shared a symbiotic relationship for the betterment
of each other. This union is becoming more and more common as the technology
advances. For the most part, machines have been assisting humans to improve their
lifestyle and quality of life. However, improving health and curing illnesses using
machines is an area of active research. Today, having machines implanted inside the
human body to heal an injury or to cure an illness is not fiction.

Neural prosthetics is an area of research that focuses solely on creating interfaces
to open communication with machines and the nervous system. Neural prostheses!
have been used extensively in the last five decades to restore some neural functions
by selectively stimulating neurons. The first known implant, a cochlear implant was
made in 1957. Other pioneering inventions in this area include the development of
the first internal pacemaker? in 1958 and the first motor prosthesis for foot drop in
a hemiplegic in 1961. Further, the research conducted in the late 80’s and early 90’s
proved that the functional electrical stimulation (FES)? allowed paraplegics to walk

and the lumbar anterior root implant facilitated standing [1].

IDevices that are capable of restoring functions lost due to an injury or neural damage.

2«A pacemaker is a small device that’s placed in the chest or abdomen to help control abnormal
heart rhythms.” https://www.nhlbi.nih.gov/health-topics/pacemakers

3 Application of small electrical pulses to paralyzed muscles to restore or improve their function



Figure 1.1. Typical neural prosthesis used in SCS. On left a spinal cord stimulator
from Medtronic(C) and on right a set of electrode arrays from Boston Scientific(©).

In 2001, it was recorded that since 1963 over 40000 neural prostheses have been
implanted [2, 3]. These prostheses can either be spinal cord implants (SCI) or deep
brain implants (DBI). A typical neural prosthesis used in spinal cord stimulation
(SCS)* is shown in Fig. 1.1. Common research that utilize these prostheses are in
the areas of restoration of hearing, improvement of bladder and bowel functions and
relieving of chronic pain [4, 5, 6, 7.

Another active field of research that has a great importance in health care is the
treatment of spinal cord injuries. Spinal cord injury is a significant cause of paralysis.
Out of 5.6 million cases of paralysis recorded in 2009, 23% are attributed to spinal
cord injuries (refer Fig. 1.2). Records show that there are more than 1.2 million
people with spinal cord injuries in the United States [8]. Patients with spinal cord
injuries confront complications when performing basic life activities. Depending on
the severity of the injury these patients could loose the ability to walk, stand and
move their arms. These injuries could often lead to secondary complications in bowl,
bladder and sexual functions.

Recent studies have shown that SCS can be utilized to enable voluntary motor

4A therapy that provides pain relief by blocking pain signals before they reach the brain



Causes of Paralysis
N= 5,596,000

Other 526,000 9%

Post-Polio Syndrome
272,000 5%

Stroke

Cerebral Palsy 1,608,000 29%

412,000 7%

Neurofibromatosis
212,000 4%

—— Unspecified
Birth Defect

Traumatic Brain 110,000 2%

Injury 242,000 4%

Multiple Sclerosis

. ' 939,000 17%
Spinal Cord Injury

1,275,000 23%

Figure 1.2. Causes of paralysis according to a study conducted by Reeve Foun-
dation, in a cooperative agreement with the U.S. Centers for Disease Control and
Prevention (CDC)][g].

functions in patients with spinal cord injuries [9, 10]. In a study performed at the
Frazier rehab center at the University of Louisville’s Kentucky Spinal Cord Injury
Research Center, four individuals received SCS and all four regained the ability to
independently stand and acquire some voluntary control of the toes, ankles, knees
and hips [11, 12].

Even though there has been breakthroughs and improvements in the way of using
SCIs to treat patients, the underlying mechanisms of the SCS is not well understood.
For instance, it is known that the SCS can enable voluntary motor functions in
paraplegics. However, a certain stimuli that enabled or restored a certain functionality

in an individual might not do the same for a second individual. Therefore, the efficacy



Figure 1.3. The first four individuals who received SCS at the Frazier rehab center
at the University of Louisville’s Kentucky Spinal Cord Injury Research Center. Left
to right: Andrew Meas, Dustin Shillcox, Kent Stephenson and Rob Summers. Photo:
University of Louisville, KY.

of SCS when treating paraplegic or hemiplegic patients rely heavily on trial and error
approaches. These approaches can be time consuming and unreliable at times.

Due to some of the drawbacks of SCS and the insufficient knowledge of underlying
mechanisms, doctors and researchers are actively trying to better understand the

science of SCS. One of the ways to do this is via simulation studies.

1.2 Possible Simulation and Modeling Studies

Electrical stimulation of the spinal cord and the central nervous system in general has
been used for decades with clinical perspectives as well as for fundamental research
(13, 14, 15]. Despite the widespread use and the groundbreaking results the physics

and the underlying mechanisms of the electrical stimulation is far form being under-



stood. To overcome experimental limitations and better understand the electrical
stimulation, modeling approaches have been used since the 80’s [16, 17]. Simula-
tion studies can model various components of SCS system and help understand the
connections between the external stimuli and the internal mechanisms of the body.
Therefore, various aspects of SCS can be identified for the purposes of simulations.
The simulations can include electric field distribution studies, ion and charge distri-
bution studies under stimulation and cellular level simulations to study the behavior

of the neurons. Details of these studies are described in the following chapters.



CHAPTER 2

PRELIMINARY SIMULATION STUDIES

As mentioned in the previous chapter, a variety of simulation studies can be performed

to simulate different aspects of the SCS.

2.1 Electric Field Simulation

In the early stages of this study, one of the main objectives was to observe the behavior
of the electric fields in the spinal cord when it was stimulated with external electrical
stimuli. In experiments performed on patients with spinal cord injuries, the external
stimuli were applied to the spinal cord using a 16 electrode array' manufactured
by Medtronic?. The goal was to find stimulus patterns and threshold intensities
that would be used to stimulate certain parts of the spinal cord. By stimulating
specific regions of the spinal cord, the deactivated or damaged neural paths could
be activated to re-enable the communication between the brain and the different
parts of the human body [9]. The same experimental procedure was needed to be
simulated in a computational environment to replicate the experimental results and
better understand the physics and the chemistry behind SCS.

Since the simulations involved solving mathematical equations in 3D space, it

was determined to use a specialized tool to perform the simulations. Therefore it

IElectrode array which was used in the patient trials mentioned in chapter 1
2Medtronic is one of the world’s largest medical device manufacturing companies|[18]



was decided to use the commercially available COMOSL Multiphysics® 3 simulation
software to perform this study. Over the course of this study, version 4.4, 5.0 and 5.1 of
COMSOL have been used. COMSOL is based on the computational technique finite
element method (FEM). FEM utilizes a piecewise approximation technique where
the bounded domain of interest is divided in to finite number of non-overlapping
elements. Depending on the number of spatial dimensions of the study, these elements
can take different shapes. Usually they take triangular or rectangular shapes for 2D
studies and tetrahedral or hexahedral for 3D studies. Once these elements are defined,
the functions that are of interest to the study are approximated by trial functions.
Usually the trial functions are chosen to be polynomials. The boundary conditions
are applied along the local and global boundaries. The result is an approximation
of the variational form of the system by a linear combination of a finite set of trial
functions.

COMSOL requires a model setup before the system can be solved to extract the

desired results. Typical work flow of a COMSOL simulation is as follows.
1. Creating the model
2. Applying materials
3. Applying Physics
4. Generating a mesh
5. Solving the problem
6. Extracting the results

The following sections summarize the information on above steps that were used

to solve the electric field distributions in the spinal cord.

30ne of the leading software tools, that is used in finite element analysis and multi-physics
simulations
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Figure 2.1. Medtronic 16 electrode array
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Figure 2.2. Medtronic 16 electrode array dimensions

2.1.1 Creating the Model Geometry

The Medtronic 16 electrode array (fig. 2.1) consists of 16 Platinum - Iridium elec-
trodes arranged in 3 rows (5 - 6 - 5 arrangement) and a Silicone rubber paddle on
which the electrodes are embedded. To support the structure of the paddle, there
exists a polyester mesh inside the Silicone rubber. Due to the complexity of the struc-
ture, it was decided to create the model using SolidWorks rather than the built-in
model builder inside COMSOL.

Materials used and the dimensions of the array were taken from the Medtronic
implant manual[19]. Dimensions of the arrays are shown in the figure 2.2.

Using the actual dimensions obtained from the Medtronic implant manual, models

with the exact scale were built in SolidWorks. Actual electrodes in the array have soft



and curved edges and the paddle contains a slight bend along the center electrode
row. These features were accounted for in the model making. However, the soft
edges on the electrodes and on the paddle causes the mesh* to be extremely fine
when it comes to mesh the model inside COMSOL. Although an extremely fine mesh
can be generated in COMSOL, the resulting mesh causes the computational time to
be increased significantly. Therefore, it was decided to remove the soft edges in the
model and to keep rough edges in the final model to decrease the complexity of the
mesh and to reduce the computational time. Furthermore, the paddle plays a key
role in retaining the structure of the actual array. However, it does not affect® the
simulation results. Therefore the paddle can also be removed from the final model.
By having less geometry the simulation time can be decreased further. Different
variations of the model that were created in SolidWorks are shown in the figure 2.3

For the reasons mentioned in the previous paragraph, it was decided to use the
model that contains only the electrodes in the final simulations (Figure 2.3c). The
model of the electrode array is only a part of the final model that would be used in the
simulations. A piece of geometry that would represent the spinal cord is also needed.
The spinal cord is a complex structure that is made up of different sections that
possess different material properties. However for initial electric field simulations, it
was decided to use a simple tubular structure to represent the spinal cord. The final
model that consists of the electrode array and the tubular structure to represent the

spinal cord is shown in figure 2.4.

4Meshing is the process of dividing the domain of interest in to a finite number of non-overlapping
elements as described in the previous section

5Although the Silicone rubber in the array has a different permittivity value from the other
materials in the model and causes the electric fields to change, we are interested in the electric fields
above the electrodes rather than the electric fields in the direction of the paddle



(a) Model with soft edges in the electrodes and the paddle

(b) Model with the curved paddle

(c) Model that contains only electrodes

Figure 2.3. Different 3D models of the Medtronic array created in SolidWorks
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Figure 2.4. Final model used for the simulation

2.1.2  Materials, Physics and Mesh

Once a model geometry is created for the simulation study, materials must be applied
to the geometry to provide the necessary material parameters that would be used in
solving the equations of the system.

Since the model was simplified to improve the computational efficiency by reducing
the computational time, the final model used in the simulation contains only two
types of materials. One material that represents the electrodes and one material that
represents the environment that surrounds the electrode array.

According to the Medtronic implant manual, the electrodes are coated with an
alloy made out of Platinum and Iridium. The material properties of this alloy varies
depending on the Platinum to Iridium ratio used for the alloy. The exact ratio of
the alloy was not provided and the the values of the material properties for this alloy
was not found in the literature. Further, the environment in which the electrodes
were embedded was simplified to a single material, the exact material properties of

the spinal cord could not be used. In the laboratory experiments performed with the

11



electrode array, typically this environment was a Saline solution. However, for the
purposes of this simulation the properties of this environment can be any value that
is biologically meaningful and plausible. Therefore, for the simulation, the properties
of stainless steel and the properties of blood were used for the electrodes and the
surrounding environment respectively. Specific material properties that were used for

the electromagnetic simulations are listed in the table 2.1.

Table 2.1. Material Properties of Stainless Steel and Blood[20]

Permittivity, ¢ Conductivity, o (S/m)

Stainless Steel 1 x 10 1.35 x 106
Blood 1.2 x 103 0.7

Once the materials were assigned to the model geometry, the next step is to
add the necessary physics modules to the model. Physics modules inside COMSOL
must be chosen according to the type of the simulation that is required to obtain the
desired results. For instance, in this case, the requirement is to obtain the electric filed
distribution patterns inside the spinal cord or the environment in which the electrode
array is embedded. For this specific case, COMSOL provides two physics modules,
Electrostatics (es) and Electric Currents (ec). Once these modules were employed in
the model, necessary boundary conditions must be applied. In this study, simulations
were performed such that some electrodes were stimulated with voltage pulses while
some electrodes were grounded and some electrodes remain floating (high impedance)

COMSOL provides variety of presets to create the mesh for the model. However,
depending on the complexity of the model making a custom mesh may be beneficial
in cases. Although the geometry is not very complex in this study a custom generated
mesh was used because of the size variation of the model geometry. A very fine mesh
was used for the electrodes and a coarse mesh was used for the tubular surrounding

environment. Figure 2.5 shows the mesh that was generated in this study.
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Figure 2.5. Mesh of the Final model

2.1.3 Simulating the Model
2.1.3.1 Simulating Using Test Pulses

The system can be simulated once the materials and physics were set and the model
geometry was meshed. The duration for the simulations can vary depending on
various factors. Therefore it is always a good idea to simulate the system for a
simplistic case before simulating using the actual simulation parameters. Performing
a test simulation is also useful in verifying the setup of the simulation as well as
estimating the simulation time. For this purpose, two test pulses were first defined.
COMSOL provides different mathematical functions to create stimuli with different
shapes. The built-in function f1c2hs was used to create the test pulses. The table 2.2
shows the exact expressions used to define this test pulses under COMSOL’s global
definitions section.

Once the pulses have been defined, they were applied to two electrode configura-

tions identified as the 'maximum current configurations’ and two separate simulations
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Table 2.2. Expressions used to generate pulses for test simulation

Pulse Expression

Anode 2% (flc2hs(t + 0.1,0.01) — fle2hs(t — 0.2,0.01) — exp(—5 * (t)) *
fle2hs(t — 0.4,0.01) = 8)

Cathode —2% (flc2hs(t +0.1,0.01) — fle2hs(t — 0.2,0.01) — exp(—=5 * (1)) *

fle2hs(t — 0.4,0.01) = 8)

were performed. Figure 2.6 shows the two pulses and the electrode configurations to
which they were applied.

The boundary conditions for these two simulations were set such that the elec-
trodes marked as GND were grounded and the electrodes marked as + and — were

stimulated using the Anode and Cathode pulses respectively.

2.1.3.2 Simulating Using Experimentally Used Pulses

Once the model setup is verified using the test simulation, the second simulation was
performed using the data from the experimentally used simulation pulses. In this
case, rather than applying a single pulse to multiple electrodes, a combination of
pulses, high impedance and ground conditions were applied to electrodes according
to a scheme used in the actual experimental SCS studies. The scheme used in this
simulation is one of many schemes that are used in experiments and is identified as
a “program”. A program defines the transient boundary conditions applied to each
electrode in the 16 electrode array at certain time intervals. The program used in this
simulation is shown in the figure 2.7. The R in the figure indicates the return or the
ground (GND) boundary condition while the X indicates high impedance or floating
boundary condition.

To better understand the boundary conditions applied to a single electrode, con-
sider boundary conditions applied to electrode 1 (Figure.2.7a). At t = 0 the electrode
must be stimulated with 2.5V pulse. The pulse contains a positive voltage for a cer-

tain amount of time and a negative voltage for different amount of time. This type of
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(a) Anode pulse and the used electrode configuration
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(b) cathode pulse and the used electrode configuration

Figure 2.6. Two pulses and the electrode configurations
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Figure 2.7. The program used in the simulation
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a pulse is called a charge balanced voltage pulse®. After a 6ms has passed since the
application of the fist pulse a 0.7V pulse must be applied. Finally, the boundary con-
ditions of the electrode must be set to ground(GND) and floating mode respectively
at the given time markers.

The variations in the boundary conditions for a given electrode raised a question in
simulating the entire simulation range (24ms) as a whole, because COMSOL did not
have the capability to handle a voltage boundary condition and a floating boundary
condition for a given domain in a single simulation setup. Therefore it was decided
to break the simulation into four sets where each set simulates a period of 6ms
of the total simulation. This way each electrode can take either a voltage boundary
condition or a floating boundary condition according the figure 2.7 within the selected
set.

It can be seen by observing the figure 2.7 that there are 6 different boundary
conditions. These include four voltage pulses (0.7V pulse, 2.0V pulse, 2.5V pulse
and 3.5V pulse) a ground and a floating condition. The four voltage pulses were
defined under COMSOL’s global definitions section and added to the corresponding
model domains using the Terminal Boundary Condition option in COMSOL. The
expressions used to generate four different voltage pulses are shown in the table 2.3.
The voltage pulses generated using the expressions shown in the table 2.3 are shown
in the figure 2.8.

Using the pulse boundary conditions shown in table 2.3 as well as ground and
floating boundary conditions, 4 simulations were performed. Since the four separate
simulations represented a breakdown of a single large simulation, the continuity be-
tween individual simulations had to be preserved. In order to do this, the last set of
results of the first transient simulation was used as the initial condition of the second

transient simulation. The same approach was taken for the 3rd and 4th simulation

6More on charge balancing and charged balanced pulses are described in the section 2.2
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Table 2.3. Expressions used to generate four voltage pulses

Pulse Expression
0.7V 0.7 flc2hs(t40.01,0.01)—0.875% flc2hs(t—0.45,0.01)+0.175% flc2hs(t—
2.25,0.01)
2.0V 2.0xflc2hs(t+0.01,0.01)—2.500x flc2hs(t—0.45,0.01)40.500x flc2hs(t—
2.25,0.01)
2.5V 2.5%flc2hs(t40.01,0.01)—3.125x% flc2hs(t—0.45,0.01)40.625% flc2hs(t—
2.25,0.01)
3.5V 3.5 flc2hs(t+0.01,0.01)—4.375% flc2hs(t—0.45,0.01)40.875x% flc2hs(t—
2.25,0.01)
F 3 o
(a) 0.7V pulse (b) 2.0V pulse
g 1'2; ; 15
3o : o
(c) 2.5V pulse (d) 3.5V pulse

Figure 2.8. Voltage pulses generated using the expressions in the table 2.3

sets as shown in equation (2.1).
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2.1.4 Results

Both of the simulations mentioned in the previous section were transient simulations.
This implies that the results from the simulations were functions of time. Because
the resolution of the each simulation was set to about 4 frames per millisecond, a
large number of result frames were extracted at specific time intervals. Therefore, it
is not convenient to illustrate the results from each time frame, but only the most

relevant results are discussed in this chapter.

2.1.4.1 Results - Simulation of a Test Pulse

Simulations were performed for an anode pulse with a positive voltage and a negative
charge balancing section and for a cathode pulse with a negative voltage and a posi-
tive charge balancing section. Although charge balancing is crucial in stimulating a
biological system it is not intended to affect the results of the stimulation. Therefore,
only the results obtained in the stimulation section of the pulses are illustrated here.

Figure 2.9 shows the voltage distribution along the surface of the electrodes. Al-
though the actual magnitudes of the potentials are different, the potential difference
remains the same between anode and cathode pulse simulations. This indicates that
there are two possible ways to stimulate a system to obtain the same exact result.
Figure 2.10 shows the magnitudes and directions of electric fields 1mm above and

parallel to the surface of the electrodes. Slight differences in the magnitudes of the
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Figure 2.9. Potential distribution along the surface of the electrodes

electric fields are observed, yet the directions of the electric fields are identical for

both cases.

2.1.4.2 Results - Simulation of Experimentally Used Pulses

As discussed in the previous section, the actual stimuli considered in this simulation
consisted of 16 different waveforms supplied to the electrodes in a period of 24ms.
To avoid the complications in setting up the boundary conditions of the simulation,

the full sequence was divided in to four 6ms sections. Each of these four quarters
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Figure 2.10. Magnitudes and directions of electric fields - Imm above and parallel
to the electrodes

contained 16 waveform signals intended for the 16 electrodes’. Considering the pulse
boundary conditions applied to the system, the first 450us of each quarter was the
stimulation section while the next 2250us was the charge balancing section. The
remaining 3300us was a relaxation period. Hence the most important section in each
quarter was the first 450us. Therefore the results extracted in this 450us period in
each quarter are illustrated here.

The potential distributions and vertical cross sections of the electric fields are

"Review figure 2.7a and figure 2.7b

22



illustrated here. Each figure shows the results extracted at t = 240us in each quarter.
All four plots in a given figure refers to the same scale shown in the right hand side
of the figure while the two numbers on top and bottom of each plot denotes the
maximum and minimum values recorded at each quarter. x and y axes in the figures

denotes the spacial dimensions in millimeters.

Time=2.4e-4 s Surface: Electric potential (V) Contour: Electric potential (V)
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Figure 2.11. Potential distribution along the surface of the electrodes

Figure 2.11 shows the potential distributions along the surface of the electrodes.
Minimum values in the 1st, 3rd and 4th quarters are shown to be a really small value
instead of zero. However these values are practically zero. Figure 2.12 shows the
directions and magnitudes of electric fields, 1mm above and parallel to the surface
of the electrodes. Since all four plots refers to the same scale, the scale had to
be adjusted in such a way that the results in all four quarters could be visualized
properly. Due to this, the regions that contain values above the maximum value in

the scale are shown in a highly saturated maroon color.
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Figure 2.12. Magnitudes and directions of electric fields - Imm above and parallel
to the electrodes

2.2 Charge Balancing and Electro-Chemistry Simulations

2.2.1 Charge Balancing at the Electrode-Tissue Interface

The primary objective of neural stimulation is to activate excitable tissue where there
is a neural dysfunction and is accomplished by transferring charge over a conducting
electrode into nerve tissue. This process may induce oxidation reduction reactions at
the electrode-tissue interface and could lead to electrode and tissue damage. There-
fore it is important to prevent or reduce this damages by minimizing the charge
accumulation around the stimulation interface.

There are two primary mechanisms of charge transfer at the electrode-tissue in-
terface. One is the non-Faradaic reaction where no electrons are transferred between
the electrode and the tissue. The other is the Faradaic reaction where electrons are

transferred between the electrode and the tissue at the interface[21]. In the non-
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Figure 2.13. Two electrode model of the electrode-tissue interface[22]

Faradaic mechanism, the electrode that is stimulated with a positive voltage attracts
negatively charged ions while the electrode that is stimulated with a negative voltage
attracts positively charged ions. Therefore an electrical current is induced due to the
movement of the ions. Because of this characteristic behavior the interface can be
modeled as an electrical capacitor known as the double layer capacitor, Cy. On the
other hand, in Faradaic mechanism, electron removal and electron addition to the
system occur at the positively driven and negatively driven electrodes respectively.
To successfully stimulate a biological system at least two electrodes are needed to
complete a current path from one electrode to the other, where one electrode would
stay at a relatively positive voltage while the other stay at a relatively negative volt-
age. These two electrodes and the electrode-tissue interface where non-Faradaic and
Faradaic processes occur can be modeled in an electrical circuit as shown in figure
2.13. In the model shown in the figure 2.13 Cy; is the double layer capacitance which
represents the non-Faradaic process, while R; is the Faradaic resistance that repre-
sents the charge transfer between the electrode and the tissue. R, is the resistance of
the tissue and A¢ is defined as the equilibrium potential between the electrode and
the tissue. The value of A¢ is typically small and can be neglected for simplicity.
Since there is no external charge injection to the system the non-Faradaic process
is reversible and harmless. However, the Faradaic process can be harmless and re-

versible or harmful and non reversible. Therefore it is important to ensure that the
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Faradaic process is reversible during the stimulation. There are several approaches
that can be used to ensure the reversibility of the Faradaic process by preventing or
reducing the charge accumulation at the electrode-tissue interface.

There are few common approaches when it comes to applying stimuli in the neural
stimulation. The most common approach is to apply a constant stimulation current
for a certain time. This approach is known as constant current stimulation (CCS).
The other openings are voltage controlled stimulation (VCS) and constant charge
or switched capacitor stimulation|[23, 24, 25]. VCS method is the simplest design
which is considered to be efficient in stimulation but lacks the control over the charge
being injected to the tissue since it is dependent on the impedance of the electrode-
tissue interface [26]. The impedance of the electrode-tissue interface has been shown
to fluctuate during stimulation[27, 28, 29]. On the other hand the constant charge
method has better controllability, however the capacitors that needs to be used are
very costly, very large and would take a considerable amount of space in a circuit.

Regardless of the method used the Faradaic process must be minimized. The
most common way of doing this is to maintain a zero potential difference across
the Cy capacitor after each stimulation cycle. The technique to achieve this task is
known as charge balancing. There are various methods to achieve charge balancing in
biological systems. One of the simplest ways of performing this is to utilize biphasic
stimulation pulses as the stimuli to the electrodes. Different variations of biphasic
current waveforms are possible and shown in the figure 2.14[30]. [., I, t., t, and
tip are the cathodic current, the anodic current, the cathodic half-phase period, the
anodic half-phase period and the inter phase delay respectively.

In order to balance out the charge accumulation after stimulation, each of the
pulses has to meet a certain criteria. For symmetric and asymmetric biphasic pulses
this criterion is to satisfy the equation (2.2a) while for monophasic the equation that

needs to be satisfied is (2.2b).
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Figure 2.14. Different bi-phasic current pulses that can be used in neural stimula-
tion. The parameters can vary widely depending on the application and the system

I.xt.=1,xt, (2.2a)

Lxt = / L(t)dt (2.2b)

2.2.2 Simulation of Charge Balancing Using FEM

The fundamentals of the double layer capacitance and the charge balancing discussed
in the previous section can be simulated using a FEM analysis. COMSOL multiphyics
was used for this simulation as it provides an electro-chemistry module that supports
the physics of double layer capacitance and charge balancing.

Since this was a proof-of-concept simulation to observe the charge transport
through a medium when a stimulus was applied to the medium via an electrode,
a simplified geometry was used. As it was described in section 2.2.1, a minimum of
two electrodes are required to perform a stimulation by completing a current path.
Therefore, a simple geometry with two steel electrodes stimulating in a saline solution
was considered.

The physics of the simulation was to solve for the charge transport properties

in the solution under the influences of both ionic concentration gradient created by
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Figure 2.15. Geometry used for electro-chemistry and charge balancing simulation

the ions in the solution and an electric field created by the external stimulus applied
through the two electrodes. Dilute species (ions with low concentrations) obey the

Nernst-Planck equation (2.3) for mass transport[31, 32].

N; =—=D;V¢; — Uiz Fe; Vo (2.3)

The Nernst-Planck equation (2.3) describes the fluxes (N;, mol - m™2s71) of two
ions with opposite charge in the solution where D; (m?s™!) is the diffusion coefficient,
Ui (s -mol - Kg™') is the mobility, 2; is the charge number, F' (C' - mol™') is the
Faraday’s constant, ¢; (mol - m™3) is the concentration and ¢ (V') is the potential.

Assuming that there exists no heterogeneous reactions in the solution, the gov-

erning equation for the two ions in the steady state can be written as (2.4).

80i
ot

The electric fields obey Gauss’s law (2.5), where E (V - m™!) is the electric field,

+V-N; =0 (2.4)
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p (C'-m™3) is the space charge density, ¢, is the permittivity of the solution and ¢ is

the permittivity of the free space.

v-E=2L (2.5a)

€5€

p = FZ 2iCi (2.5b)

When the two equations (2.3) and (2.5) are combined the final equation, the

Nernst-Planck-Poisson equation (2.6) for the system can be obtained[33, 34].

F
2 _ ;=0 2.6
ng—l—ESE EZ 2 (2.6)

Sodium and Chloride was considered to be the two ions for this study. The
diffusion coeflicients for the ions in a saline solution depends on the salinity as well as
the temperature of the solution. The diffusion coefficients of a solution with salinity,
S = 34.864 and the temperature, T = 25°C' was considered (see Table 2.4). Table
2.5 shows the material properties used for the simulations.

Table 2.4. Diffusion coefficients of Na™ and CI~ ions in a saline solution with
salinity, S' = 34.864 and temperature, T' = 25°C' [35].

Cl= Nat
Di (10710 m2s~1) 1771 12.12

Table 2.5. Material properties for steel and saline used in the simulations

Steel Saline
Electrical conductivity (S-m™')  1.35 x 10° 0.7
Relative permittivity 1x10%  1.2x103
Electrolyte conductivity (S -m™!) N/A 0.7

Once the physics and the material properties were set, two simulations were per-
formed where one of the electrodes was grounded while the other electrode was stim-

ulated with a current pulse. In the first simulation, a charge balanced asymmetric

29



biphasic current pulse was used as the stimulus, while a charge imbalanced biphasic

current pulse was used in the second simulation.

2.2.3 Results of the Charge Balancing Simulations

Two proof-of-concept simulations were performed to simulate the effects of charge
distribution in a biological system under stimulation. First a simulation was per-
formed to observe the effects when a charge balanced biphasic stimulus was applied
to the system. The two stimuli used in the simulations are shown in the figure 2.16.
The simulation results extracted from the first simulation are shown in figures
2.17 and 2.18. Figure 2.17 shows the charge concentrations of Na®™ and CI~ ions
extracted over time at an edge of the stimulating electrode. It can be seen that at
time ¢ = 0 both Na™ and CI~ ions have their initial concentration which was set to
be 300mol - m~3 in the simulation. As the transient simulation progresses, the Na*
concentration starts to drop while the C'I~ concentration starts to rise at the selected
edge. This observation agrees with the theory because at the anodic phase of the
pulse, the edge attracts the negative ions while repelling the positive ions. As the
cathodic phase of the pulse begins, the concentrations start to reach back to their
steady concentration level and at the end of the charge balanced biphasic pulse this
concentration level is reached. Figure 2.18 shows the same phenomena in a 3D space
where the charge concentration in the electrode-tissue interface is clearly shown.
The second simulation shows the distribution of the charges in the electrode-tissue
interface when a charge unbalanced pulse is used as the stimuli. The simulation results
extracted from the second simulation are shown in figures 2.19 and 2.20. Results of the
second simulation is identical to the results of the first simulation until time ¢t = 5ms
is reached where the balancing of the charges should have reached. However, as it is
shown in figure 2.16b, the cathodic pulse continues for 5 more milliseconds after this

point causing a charge imbalance to build up. It is evident from both figures 2.19
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Figure 2.16. Two stimuli applied to one of the electrodes in the two simulations
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Figure 2.17. Balanced charge concentration in mol -m~3 at an edge of the electrode
with respect to time

and 2.20 that an excess of charges are accumulated in the electrode-tissue interface
at the end of the stimulation pulse.

It has been shown and discussed in the literature that therapeutic electrical stim-
ulation can cause tissue damage[36, 37]. Multiple factors such as the duration of the
stimulation and thresholds of the stimulation can contribute to the level of damage
to the tissues. Regardless of the factor, a major cause of the tissue damage is the
accumulation of charge in the electrode-tissue interface. Therefore, it is critical to
minimize the charge accumulation during and after the stimulation.

From the results of the two simulations it is apparent that using charge balanced
biphasic pulses can prevent or reduce the charge accumulation in the electrode-tissue
interface. However, it has been shown that due to the capacitive-resistive nature of
the load, charge balancing may not be achieved even with a use of charge balanced

biphasic pulses[22, 38]. Therefore, additional methods of charge balancing must be
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Figure 2.18. Balanced Sodium ion concentration in mol - m™2 at the electrode-

tissue interface with respect to time. (a) at the anodic phase of the pulse, (b) at the
cathodic phase of the pulse, (c) at the end of the pulse
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Figure 2.19. Unbalanced charge concentration in mol - m™ at an edge of the
electrode with respect to time

employed along with the use of charge balanced biphasic pulses[39, 40, 41].

2.3 Pulse Position Optimization

As it was described in the previous section 2.2, preventing the tissue damage dur-
ing the spinal stimulation is critical. Therefore, different active and passive charge
balancing methods are being utilized in not only spinal but any kind of a biological
system stimulation. Regardless of the method used, biphasic pulses are used to min-
imize the charge accumulation at the electrode-tissue interface. To demonstrate the
benefit of using biphasic pulses, a simple case of two electrodes with a single stimulus
pulse was simulated and the results were discussed in the section 2.2. However, an
actual stimulation scheme known as a “program”, uses more than 2 electrodes and
more than one stimulus pulse at a give point in time. Therefore, two or more elec-

trodes can provide activation pulses to the biological system at once. This results

34



Time=0.001 s Surface: Concentration (malim’) -

vhx
¥ 299
(a)
Time=0.004 s Surface: Concentration (malim’) 2
300
3
00
299
vhx
¥ 300
(b)
Time=0.0153 Surface: Concentration (malim’) it
A 301
301
300
299
o0
vhx

(c)

Figure 2.20. Unbalanced Sodium ion concentration in mol - m~=2 at the electrode-
tissue interface with respect to time. (a) at the anodic phase of the pulse, (b) at the
cathodic phase of the pulse, (c) at the end of the pulse
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in events known as pulse collisions or pulse overlaps. A pulse collision is where the
anodic, cathodic or shorting phase of one stimulus pulse coincides with the anodic,
cathodic or shorting phase of another stimulus pulse driving a second electrode. See
fig. 2.21.

The pulse collision events are known to create perturbations in the shape of the
biphasic pulses. This minimizes the ability to reduce charge accumulation after each
stimulus pulse. Therefore, in an actual stimulation process, the pulse collision events
must be eliminated or reduced as much as possible. In an actual stimulation program
similar to the one shown in figure 2.7, multiple waveforms that have multiple frequen-
cies are used. Therefore, mathematically it is not possible to completely remove the
pulse collision events. However, the pulse collision events can be minimized. This
minimization process can be done by varying the starting position (pulse shifting)
of each stimulus pulse. Although the method to minimize the collisions appear to
be straightforward, finding the optimum shifting positions can be laborious and time
consuming. To simplify this task and to easily find the optimum shifting position, an
algorithm was developed and a software program was written based on the algorithm.

The flowchart of the developed algorithm that can optimize three waveforms is
shown in the figure 2.22. The same algorithm can be extended to optimize any
number of simultaneous waveforms. At the time this algorithm and software were
developed, five waveforms were the maximum number of simultaneous waveforms that
were used in the experiments. Therefore, a software program was written to support
and optimize up to five simultaneous waveforms. MATLAB code that was written
to make the graphical user interface (GUI) as well as to minimize the collisions are
shown in the Appendixz A. The software has gone through several versions and the
interface of the final version (Version 4.3) is shown in the figure 2.23.

As it can be seen from the figure 2.23, the software provides the capability to

perform the optimization of up to five different waveforms. Once the number of
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Figure 2.21. Composition of a biphasic pulse and the definitions of a pulse collision.
(a). Example composition of a biphasic pulse. (b). Example of a waveform collision.
(c). Example of a non-collision.
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Figure 2.23. Interface of the PPO Software
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waveforms are set, the waveform information are entered in the second section of th
GUI. The default values for the waveform offset is set to zero, indicating no waveform
shifts are performed and all the waveforms start at the same time. Clicking on the
generate button generates the waveforms for the provided information and a summary
of the results. In order to optimize the pulse positions, the calculate button is clicked.
Depending on the provided parameters, this can take a few seconds to several minutes
to find the optimum waveform offsets. Once the software returns the optimum values,
they can be entered in the waveform offsets section in the GUI and regenerate the
waveforms that are placed at optimum positions.

Figures 2.24 and 2.25 show the results obtained from the PPO software. Results
show the waveform data for three waveforms before and after the optimization. The
Waveforms used here have the frequencies 25H z, 33H z and 50H z. The figure 2.24a
shows the waveform positions before the optimization and the figure 2.25a shows the
corresponding collision data. It can be seen from the data that there are 7 collisions in
the shown time range of 200ms. The figure 2.24b shows the same waveforms after the
positions have been optimized and the figure 2.25b shows the corresponding collision
data table. It is evident that the optimization has reduced the number of collisions
from 7 to 1.

Although it might not be mathematically possible to remove all the collisions
further optimization is possible by changing some of the parameters of the algorithm.
For instance, in the optimization settings there is a parameter called step size of the
loop which is set to 250 by default. This indicates that waveforms are shifted by 25us
steps to find the optimum positions. However this number can be changed according

to the needs and a more optimum result if exists can be found.
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Figure 2.24. Waveforms generated via the PPO software. (Red rectangles show the
collisions). (a). Waveforms without any pulse shifting. (b). Waveforms with pulse

shifting applied.
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Figure 2.25. Data tables corresponding to the plots in figure 2.24 obtained via the
PPO software. (a). Collision results for waveforms without shifting. (b). Collision
results for waveforms with shifting applied.
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CHAPTER 3

THE SPINAL CORD

3.1 Introduction to the Spinal Cord

The spinal cord is a long, thin, fragile, tubular structure that facilitates a bundle of
nerve tissue and other cells. The structure extends from the foramen magnum where
it is continuous with medulla oblongata to the level of the first or the second lumbar
vertebrae. Length and width of the spinal cord varies on number of factors including
the gender of the person. However on average, the length of the spinal cord of a
grown human is about 43cm — 45¢m. The width of the spinal cord varies along the
length of the spinal cord, ranging about 13mm in the cervical and lumbar regions
to about 6.5mm in the thoracic region. A diagram of the spinal cord and different
regions of the spinal cord are shown in the figure 3.1.

The primary function of the spinal cord is to maintain the communication between
the brain and the body. This includes the transmission of the nerve signals from the
motor cortex to the brain and from the sensory neurons to the sensory cortex. As
it was discussed in chapter 1.1, this communication gets interrupted in a spinal cord
injury. Therefore, external stimuli are used to bridge the communication across the

damaged area of the spinal cord.
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Figure 3.1. Spinal cord and different regions of the spinal cord
3.2 Modeling the Spinal Cord

In the chapter 2.1 it was shown, the methods and results extracted from the electric
field simulations performed in a proof of concept study. The primary objective of
the simulations was to gain an insight in to the electric field distribution patterns
in a region of the spinal cord. This information is then used to optimize the stimuli
intensities and patterns to alter the electric field distribution pattern as necessary.
In parallel to the simulation studies a different group of researchers performed ex-

periments, where they were trying to activate damaged neural communications in
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a group of patients with spinal cord injuries. The focus of this experimental study
was to activate the voluntary muscle movements. To optimize the parameters of the
experimental study, an accurate representation of the electric field distributions in
the spinal cord was needed. Therefore, the preliminary electric filed simulation study
was extended to incorporate the actual geometry of the spinal cord and the electrode
array.

A detailed model representation of the spinal cord needs to include different sec-
tions of the spinal cord as shown in the figure 3.2. In the experimental studies the
electrode array was implanted on the surface of the dura matter of the spinal cord.
Therefore, extra layers cerebrospinal fluid (CSF), dura matter and the epidural fat
was included in the model geometry. As it was described in chapter 3.1 the dimensions
of the spinal cord varies depending on different factors. Therefore, average measured
dimensions of the lumbar region (L1-L5) of the spinal cord were used to create the

model geometry[42].

White matter Gray matter

Dorsal horn

Ventral horn

Figure 3.2. Cross section of the spinal cord

The detailed 3D model of spinal cord with 16 electrodes created in Solid Works is
shown in the figure 3.3. For the same reasons explained in the chapter 2.1 the paddle

of the electrode array was not included in the model.
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Figure 3.3. Detailed 3D model of the spinal cord and the electrodes created in Solid
Works

46



Once the 3D model is prepared it was imported to COMSOL multiphysics. The
physics of the simulation remains similar to the previous study since the goal here was
the observation of the electric field distributions as before. However, a different section
of the spinal cord had to be provided with the corresponding material properties.

The values of the dielectric properties of the biological tissues varies on the fre-
quency. Studies have been conducted and models have been presented in the literature
to calculate relevant dielectric properties at a desired frequency. In a series of papers
Gabriel et al. published their experimental measurements of dielectric properties of
biological tissues [43, 44, 45]. Further, Anderson and Rowley have published an Excel
based calculator that calculates dielectric properties of biological tissue for a given
frequency [46]. Other scholars who have conducted and published work similar to
this have also provided the relevant material properties [47, 48, 49]. The dielectric

properties used in this study are listed in the table 3.1.

Table 3.1. Dielectric properties for different biological tissue in the spinal cord

Electrical Conductivity (Sm™') Permittivity

White matter (Longitudinal) 0.6 38.79
White matter (Transverse) 0.083 1846.05
Gray matter 0.23 458.89
CSF 2 108.89
Dura matter 0.6 141.25
Epidural Fat 0.04 38.72

Since the model geometry had evolved from the previous electric field simulation
study, the computational cost also increased. Hence, the amount of time and compu-
tational resources needed to solve the problem had increased. Therefore, to test the
simulation setup, a static simulation was performed instead of a transient one. Only
two electrode pairs were used where one electrode in each pair stimulated the model
with a static 5V, while the other electrode was grounded. 5V was used because it

was a typically used value in the actual human experiments. Figure 3.4 shows the
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two pairs of electrodes used in the simulation.

Ground

Figure 3.4. Two pairs of electrodes and the stimuli applied to them

The goal of the experiments performed on the patients with a SCI was to enable
the lost communication in the spinal cord sustained from their injury. The specific
study was focusing on the motor functions of the patients and was trying to activate
the communications in the motor neurons. Therefore, the simulation was targeted to
explore the effects of the stimuli in the ventral horns which ares the regions of the
spinal cord where the motor neurons are located.

Three planes were defined on which the results of the simulation were extracted.
Defined three planes are shown in the figure 3.5. The results extracted on the defined

planes are shown in the figures 3.6, 3.7 and 3.8.

50

(a) (b) (c)

Figure 3.5. Three planes on which the results were extracted. (a). Horizontal plane,
(b). Vertical plane, (c). Plane across a pair of active electrodes.
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Figure 3.6. Potential distribution in the spinal cord from the stimuli shown in figure
3.4. Red rectangles encloses the regions where the motor neurons are located. (a).
Potential distribution parallel to the electrodes, (b). Potential distribution in the
plane that goes through two active electrodes.

The red rectangles in the figures 3.6, 3.7 and 3.8 shows the regions of interest
where the motor neurons are located. From the potential distributions it can be seen
that the potential at the ventral horns is about 50% different that at the surface
of the active electrodes. On the other hand, the electric field distribution patterns
indicate that the electric fields in the ventral horns are significantly lower than the
electric fields in the vicinity of the active electrodes. The theoretical results could
not be compared with the experimental observations, since it was not possible to

map the potential distribution or the electric field distributions in an actual human
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Figure 3.7. Electric field distribution in the spinal cord from the stimuli shown in
figure 3.4. Red rectangles encloses the regions where the motor neurons are located.
(a). Electric field distribution parallel to the electrodes (b). Electric field distribution
in the plane that goes through two active electrodes.

spinal cord under stimulation. However, the results show the possibility of visualizing
the electric fields and potential distributions inside the spinal cord using 3D FEM
software. Given that the results show the approximate potential and electric field
values in the spinal cord when stimulated, it can be deduced that the electric field
values between 10V /mm—20V/mm are reasonably sufficient to activate the disturbed
communication in a damaged spinal cord.

The researchers who were involved in the human experimental studies explored

the possibility to correlate the electric or potential distribution patterns in the spinal
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Figure 3.8. Electric field distribution in the spinal cord from the stimuli shown in
figure 3.4. Red rectangles encloses the regions where the motor neurons are located.
(a). Electric field distribution perpendicular to the electrodes through the left ventral
horn, (b). Electric field distribution perpendicular to the electrodes through the right
ventral horn.

cord to a muscle movement they’ve observed in the patients[9, 10]. However, corre-
lating one data set to another requires a large number of data samples which were
not available at the time of this simulations. Further, one set of stimulation param-
eters that worked for one patient would not necessarily work for a second patient.
This indicated that the observed muscle movements are correlated not only with the
stimulation parameters but also with the properties of the spinal cord damage.

Due to the lack of resources and funding to find a correlation between the simu-
lation and experimental results, it was decided to take a different approach to study
the effects of stimulation. It was decided to explore the microscopic behavior of the

spinal cord, instead of a macroscopic behavior. Primarily, the behavior of individual
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neurons under different stimuli.
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CHAPTER 4

NEURON LEVEL MODELING

All of the previous simulation studies on the spinal cord and spinal cord stimulation
described the macroscopic behaviors of the spinal cord. However, as it was described
in chapter 3.2, a study of microscopic behaviors of the spinal cord could lead to under-
standing a different perspective of the spinal cord stimulation and could possibly shed

light on some of the unknowns of the internal mechanics of spinal cord stimulation.

4.1 Anatomy and the Physiology of a Neuron

Before delving in to the modeling and mechanics of a neuron, it is important to
understand the anatomy and the physiology of the nervous system and neurons.
The nervous system of an animal is a complex system that is responsible for all the
sensations, actions as well as thoughts and emotions. This complex system is broken
down into small parts as shown in the figure 4.1.

As shown in the figure 4.1, the main component is the Central Nervous System
(CNS) which includes the brain and the spinal cord. Next is the Peripheral Ner-
vous System (PNS), which includes the cranial nerves and spinal nerves that extend
outward from the brain and the spinal cord. PNS controls the communication be-
tween the CNS and the rest of the body. PNS includes both the sensory division
which conducts impulses from the receptors to the CNS and the motor division that

conducts impulses from the CNS to the muscles and glands. The motor division is
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Figure 4.1. Major parts of the vertebrae nervous system [50].

broken down into two more parts identified as the somatic nervous system and the
autonomic nervous system (ANS) which includes the cardiac muscles, the smooth
muscles and the glands that mediates the involuntary movements. The focus of this
study and the aforementioned experimental studies that attempts to regain muscle
movement in paralyzed patients is rooted in the somatic nervous system as it controls
the voluntary muscle movements.

The nerve cell or the neuron is the basic building block of the nervous system
that is responsible for cellular communication between the brain and the rest of the
body. The human brain alone comprises 86 billion neurons, each linked to thousands
of other neurons [51]. Therefore, the brain has trillions of specialized connections
between neurons known as synapses [52]. The brain signals which are transmitted

from one neuron to another neuron through a synapse are conducted along the neuron
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Figure 4.2. Structure of a nerve showing the fascicles and axons.

via a structure known as the axon. An axon also known as a nerve fiber is a long, thin
projection of a nerve cell that conducts electrical impulses known as action potentials
away from the neuron body. Typically, larger number of neurons are grouped together
to create other structures. A multitude of axons are grouped together to create a
structure called a fascicle. Multiple fascicles along with blood vessels are grouped
together to create a nerve. Figure 4.2 shows an illustration of a nerve fiber and its
internal structures.

There are many different types of neurons with different shapes, sizes and physi-
ological differences. However, most of their general properties and behaviors can be
summarized using a generic neuron as the illustration shown in figure 4.3.

Based on the presence of the myelin sheath around the axon, neurons are catego-
rized in to two categories, the myelinated neurons and the non-myelinated neurons.
Myelin is formed by a cell called a Schwann cell in the PNS and the CNS. Having a
myelin sheath around the axon increases the speed of the nerve conduction. Myeli-

nation has also made possible the development of larger body sizes in vertebrates
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Figure 4.3. Structure of a neuron. The direction of pulse propagation is from left
to right.

[53].An axon may have a large number of Schwann cells covering it with small gaps
in between them. This gap in between Schwann cells is referred to as the node of
Ranvier. It is at the nodes of Ranvier where series of ion exchanges (mainly sodium
and potassium ) occur to create nerve impulses that propagate information through

the axon.

4.2 Membrane Potential

Like every animal cell, the neuron is enclosed in a plasma membrane. This membrane
marks the border through which different substances can enter and leave the cell. The
extra and intra-cellular fluid typically contains Na™(sodium), K™ (potassium) and
Cl~ (chloride) ions. Transmembrane proteins also known as ion transporters regularly
push ions through the membrane and establish a concentration gradient across the
membrane [54]. Typically, Na™ and CI~ are at high concentrations in the outside
region of the nerve cells and at low concentrations in the inside regions whereas, K+
is at a high concentration inside the nerve cell and at a low concentration outside the

nerve cell (see figure 4.4) [55]. The differences in the concentration of ions on each
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Figure 4.4. Illustration of the neuron cell membrane and the ion concentrations.

side of the membrane leads to a potential difference called the membrane potential

and is shown by the equation (4.1). V; is the potential inside the cell and V, is the

potential outside the cell.

V=V =V, (4.1)

The unbalanced sodium ions outside the cell and the potassium ions inside the
cell line up on the either side of the membrane surface and attract each other. The
point at which the forces of the electric fields completely counteract the force due to
diffusion is called the equilibrium potential. At this point, the net flow of the specific
ions is zero. Typical values of this resting or equilibrium potential varies between
—40mv and —80mu.

The membrane potential that depends on the movement of the ions through the

membrane can be explained by the Goldman equation (4.2) [56, 57, 58, 59].

_ INaEiNe + 9x Bk + goilion

Vin
9INa T 9x + gcu

(4.2)

where, gna, gk and go; are the ion conductivities and Fy,, Fx and E¢; are the
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Nernst potentials of the corresponding ions (4.3) [60, 61].

RT  ¢;°
E, = —in-+ 4.3
J ZjF anl ( )

where, R is the gas constant, 7" is the temperature, z; is the valence of the specific
ion, F' is the Faraday’s constant, c;° is the concentration of the specific ion outside
the cell and ¢;° is the concentration of the specific ion inside the cell. By substituting
corresponding values to the (4.3), it can be found that sodium and potassium has the

following resting potentials when measured from outside to inside (4.4).

Eng = 55mV (4.4a)

Ex = —75mV (4.4b)

4.3 Nerve Conduction and Action Potentials

Neurons can receive signals from tens of thousands of other neurons [62]. The in-
formation received from one neuron is passed to other neurons via a time varying
voltage pulse that propagates through the axon. This voltage pulse is created in a
neuron by a rapid rise followed by a fall in the membrane potential. This spike of
voltage is referred to as the action potential. The typical form of an action potential
and the different phases it goes through are shown in the figure 4.5. The proteins
that are embedded in the cell membrane are believed to be responsible for creating
the action potentials. They can assume different formations and allow specific ions
to pass through them. Therefore, they are considered as gates that depend on the
voltage and called voltage-gated ion channels.

As it was mentioned before, the action potential propagation through the axon is
mediated by the voltage-gated ion channels. As the membrane potential is near the

resting potential (—70muv), the ion channels are closed. If the membrane receives a

58



+40

Na® ions in
sl \% 3
= ©
- N o]
> 0 9 G ES
& L % K ions out
) & =
()} Q o
a 3
Ie)
= Threshold  J Failed e
-55 initiations
- Resting state
70 |e—— e i, S S

Hyperpolarization
0 1 2 3 4 5
Time (ms)

Figure 4.5. Typical form of an action potential

stimulus that is greater than the threshold, the ion channels rapidly begin to open
thus depolarizing the membrane. The opened ion channels allow an inward flow
of Na™ ions which changes the electric field gradient, and in-turn further increases
the membrane potential. This process proceeds until more and more channels are
opened. The rapid influx of Na™ ions causes the polarity of the membrane to reverse
and the Na' gated channels to close. As the Na™ gated channels start closing, the
K™ channels start to open and an outward flow of Kt ions is started. This makes

the electric field gradient to reverse and the membrane potential to go back to its

resting value.

4.4 Modeling Neurons - The HH Model

For decades, researchers have been using different mathematical models to simulate
the behavior of the axons and the neurons. Having accurate mathematical mod-
els that accurately demonstrates the behavior of a biological system aids scientific

exploration immensely.

Researchers started making significant progress in the field of nerve excitation
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Figure 4.6. Photograph of an action potential recorded from a squid axon that was
published for the first time 1939 [64].

since the beginning of 1930’s. In an extensive work published in 1936, Hill proposed
the formal description of nerve excitation using two variables, which were called
threshold(U) and local potential(V) [63]. After the publication of the two factor
theory by Hill, a large number of mathematicians entered the field of neuroscience
proposing new approaches to explain the neural excitation. However, no advance-
ments to the theory was made until Hodgkin and Huxley published their seminal
experimental findings in 1939. For the first time in history they recorded the intra-
cellular action potentials from a giant squid axon [64]. Their findings first published
in 1939, was a true revolution in the field of neuroscience.

Right after their ground breaking findings in 1939, Hodgkin and Huxley had to
abandon their research for few years due to the world war. However, in 1945 they
started to continue the work they began in 1939 on action potentials in the squid
giant axon [65]. These studies utilized a voltage clamped technique, which led to the
conclusion that there exists independent pathways for sodium and potassium in the

cell membrane [66].
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Around the same time, Hodgkin was working on another study where he stim-
ulated crustacean nerves using constant current stimuli. In this work he identified
different classes or types of neuron excitations. Type 1 neurons fired with a wide
range of frequencies that depended upon the strength of the stimulus current. Neu-
rons of type 2 fired with a narrow range of frequencies that were relatively insensitive
to the stimulus strength. Type 3 neurons that had a higher threshold either failed to
repeat or fired once or twice only when the threshold was exceeded [67].

Following the studies on the crustacean nerves, in 1952, Hodgkin and Huxley
published a series of papers that described a physiological model which simulates
type 2 behavior of a giant squid axon. Hodgkin and Huxley were awarded the 1963
Nobel prize in Physiology and medicine for this outstanding work.

Hodgkin and Huxley publish a series of five papers in 1952 describing their find-
ings. The first four papers summarized the experimental technique they’ve used to
characterize the membrane potentials [68, 69, 70, 71]. The fifth paper put the exper-
imental data into an extensive theoretical framework [72].

The model represented the nerve membrane as an electrical network. The mem-
brane was considered to be an insulator and its capacitance was modeled using a
capacitor with fixed capacitance. The proteins that control the flow of ions or the
ion pathways were modeled using resistors. Figure 4.7 shows the electrical network
presented in their work [72].

The three parallel resistors in the model represent the ion pathways as mentioned
before. Out of the three resistors, the two Ry, and Ry are ion specific for Na*
and KT respectively. The third one R; represents the leakage phenomena that is
generated by the unspecified ions. Modern extended versions of the Hodgkin-Huxley
model specify extra resistors to represent the Cat and CI~ ions as well. Although this
extra description allows an accurate representation of the membrane, the conceptual

basis of today’s modern models is perfectly aligned with the original Hodgkin-Huxley

61



Outside

|
A | |
oY D— l :
SN ke R
- + +
I — __=I"
+ |Ena Ex E,
A |

Inside

Figure 4.7. Electrical model of the neuron membrane [72].

version.

Referring to the figure 4.7, the total current passing through the membrane can
be taken as the summation of the membrane current and the ionic current (4.5).
dV

I=Cy (4.5)

where,

I is the total membrane current density (inward current positive)

I; is the ionic current density (inward current positive)

V' is the displacement of the membrane potential from its resting value
(polarization positive)

Cyr is the membrane capacitance

t is time
The ionic current I; can be further subdivide into current components carried by
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Na™ ions (Iy,), K ions (Ix) and other unspecified ions (Iy).

Li=1Ina+Ix+1; (4.6)

The individual ionic currents can be represented in terms of the ionic conductances

(9na, 9k and gr).

Inoe = gna(E — Eng) (4.7a)
IK = gK<E — EK) (4713)
Iy = gr(F — EyL) (4.7¢)

where, Ey, and Eg are the equilibrium potentials for the Na* and KT ions.
E';, is the potential at which the leakage current due to unspecified ions is zero.
The equilibrium potentials can be calculated using the Nernst equation (4.3). For

application purposes it is more convenient to write the equation (4.7) as follows.

[Na - gNa(v - vNa) (48&)
Ix = g (V — Vi) (4.8b)
[L = gL(V - VL) (48C)
where,
V-FE—E, (4.92)
VNa - ENa, - Er (49b)
VK = EK — ET (490)
Vi = EL— F, (4.94)
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where, I, is the absolute value of the resting potential. V', Vi,, Vk and V; are
the displacements of the corresponding potentials from the resting potential.
From the data collected via their voltage clamp experiments, Hodgkin and Huxley

proposed the following equations to model the behavior of gy, and gg.

9INa = GNam’h (4.10a)

gx = grn' (4.10b)

The two new equations (4.10) introduced three new functions m, n and h that are
dependant on membrane potential and time. These three functions are called gating
variables and may be given a physical meaning under some assumptions. Given a
physical basis, m, n and h are identified as potassium channel activation, sodium
channel activation and sodium channel inactivation respectively. Each of the gating

variables obeys a linear differential equation and is written as follows.

dm _ (1 —m) — Bm (4.11a)
dt

dn

— = 1—n)— B0 4.11
i Ofn( 77) Bun ( b)
% =ap(l—h)— Byh (4.11c)

The functions «,,, «, and «p and (,,, B, and [, are called the transfer rate
constants and are dependant on the membrane potential. As mentioned before, they
cannot be derived from theory and are fitted to the experimental data. Each of the
rate constants requires a several parameters to get a perfect fit to the experimental
data. Therefore, it can be said that the Hodgkin-Huxley model is a parametrization
of the electrical features of the cell membrane.

Although the equations (4.10) and (4.11) may be given a physical meaning under

some assumptions, the two particular equations were chosen among many possible
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solutions that could fit the data from the experiments performed by Hodgkin and
Huxley. This implies that the two equations lack a real physical basis.
The transfer rate constants introduced in the equation (4.11) are given by the

equations (4.12) and (4.13) in the original paper [72].

0.1(V + 25)

Oy = Vo 1 (4.12a)
exp —o
0.01(V + 10)
ap = V10 1 (4.12b)
exp—5
0.07 v (4.12¢)
= 0.07Texp — .
ap Xp 20
v
= dexp — 4.13
Bm exp 7o (4.13a)
B, — 0125 exp — (4.13b)
= 0.125exp — .
P50
1
B =130 (4.13c)
exp 0 +1

In the model equations, potentials are given in mV, current densities in uA/cm?,

conductances in m - moh/cm?, capacity in uF/cm? and time in msec.

4.4.1 The propagating action potential

The Hodgkin-Huxley model described in the section 4.4 is static description where
a uniform membrane potential is predicted at each instant over the entire length of
the axon. Therefore no current along the axon can be seen and the net membrane
current remains zero. The form of the action potential for a stimulus at ¢ = 0 can

therefore be calculated by solving (4.14) with I = 0, the initial condition V' =V}, and
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Figure 4.8. One dimensional electrical cable model of the squid giant axon. [74].

the steady state values of the m, n and h.

dv
I= (JM% + gren*(V — Vi) + gnamh(V — Vivg) + g (V — V1) (4.14)

A dynamical extension to the static model can be obtained by combining the
known Hodgkin-Huxley model with cable theory [73, 74]. One dimensional cable
model of the squid giant axon is illustrated in the figure 4.8.

The cable model provides a relationship between the membrane current and the
spacial variation of the membrane potential (4.15).

1 0%V

= —_— 4.15
! ry 4+ 1y 012 ( )

where, i is the membrane current per unit length, r; and 79 are the internal and
external resistances per unit length and x is the distance along the axon. r; can
be neglected in such situations where the axon is surrounded by a large volume of

conducting fluid and ry > r;. Therefore, the equation can be re-written as,

Lo

i=—
ro Ox?

(4.16)
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or

a 0%V
= —— 4.17
2R 0x? (4.17)
where, [ is the membrane current density, a is the radius of the axon and R is
the specific resistance of the intracellular space. Substituting (4.17) in (4.14), the

equation (4.18) can be obtained [74].

a O*V )%
575 = Cu—mr + 3k (V = Vi) + gnam®h(V — Viva) + Gr(V =V, 4.18
2R Or2 M ot + gxn ( K) + gNam h( Na) +gL( L) ( )

During steady state propagation, the membrane potential against time at any
given point is similar in shape to that of the membrane potential against the distance
at any one time. Therefore, it can be written that,

v 10*V

FreR T (4.19)

where ¢ is the velocity of conductance. Combining (4.18) and (4.19) one can
change the above partial differential equation to an ordinary differential equation

(4.20).

a d*V av N )
g g~ gy T Irn (V= Vi) + gnam"h(V = Vive) + 90V = Vi) (4.20)

The equation (4.18) or (4.20), along with the equation (4.11) are often referred to

as the complete Hodgkin-Huxley equations for the propagating action potential.

4.4.2 Modeling in MATLAB

The implementation of a complex model in a simulation environment is not an easy

task, specially when it involves solving multiple differential equations. Therefore, the
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model was first implemented in the MATLAB environment. Since it is quite compli-
cated to solve partial differential equations, it was decided to test the static model
in MATLAB and implement the dynamic model with partial differential equations in
COMSOL, once the MATLAB tests are completed.

4.4.2.1 Runge-Kutta Method

The central part of modeling the Hodgkin-Huxley model using a computational tool
is to solve the differential equations. There are multitude of numerical methods
available which can be used to solve differential equations. Each of them have their
pros and cons and the user has to determine which method is best for the application.
Sometimes the computational tool comes equipped with its own unique set of tools
that can be used as well.

Although, a method such as the Euler method can be used to solve the differential
equations, the order of the error in the solutions is relatively high and the solution
obtained is often considered unacceptable. Therefore, it was decided to employ a
Runge-Kutta method as it offers a good balance between the computational speed
and the accuracy.

The Runge-Kutta methods are a family of numerical methods which include the
Euler routine for the approximation of ordinary differential equations. The most
widely used method in the family is the fourth order Runge-Kutta method which is
generally referred to as the RK4 method. The method utilizes the first five terms of
the Taylor series to derive the relevant equations|75].

Assume that the problem in hand is a first order differential equation with a

known initial condition as shown below,

dy

i flz,y)  with  y(0) =y

Given the size of the time step is h, the first five terms of the Taylor series can be
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written as:
1 / 2 1 " 3 1 " 4
Yie1 = Yi + [(@s, i) h + Ef (25, y:)h* + gf (25, y:)h° + Ef (25, ys)h

The Runge-Kutta method suggests that, the above equation can be represented in a

form,
Yir1r = Yi + (arky + agky + asks + asky)h
where, the constants are found to be,

1

and,
k1:f(50i:yz‘)
ko = f(2s+ Sogi - Shah)
2 = J T 27% 21
1 1
k‘3:f($i+§,’yi+§k2h)

ky = f(x; + h,y; + ksh)

4.4.2.2 MATLAB Simulation Results

Using the RK4 method described in the section 4.4.2.1, the static Hodgkin-Huxley

model was solved. Listed below are the equations and constants used to solve the

model [76].
av 1 o o _
O [I = guen*(V = Vg) — gnam’h(V = Viva) — 30 (V = V1)) (4.21)
and,
Eng = 55.1TmV Gna = 1.2mS/em? (4.22a)
Eyx = —72.14mV gx = 0.36m.S/cm? (4.22b)
By = —49.42mV gr = 0.003mS/cm? (4.22¢)
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0.03mA/cm?.

Crn = 0.01pF/cm?

dU
% = OéU(l - U) - BUU

where, U is m, n or h. The o and [ are given by,

0.1(V + 35)

< V+35)
1 —exp

0.01(V + 50)

< V+50)
1—eXp

(V 4 60)
h-OO?exp( + )

o = s (0
B, = 0.125 exp (W)
1
bn = L (—(V + 30))
exXp —10

(4.23)

(4.24)

(4.25a)

(4.25D)

(4.25¢)

(4.26a)
(4.26D)

(4.26¢)

The solution of the model provides the membrane potentials as well as the varia-

tions of the m, n and h values with respect to the membrane potential.

The figures 4.9 and 4.10 show the solutions obtained from the model. It can be
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seen from the results that the action potentials are generated in the axons for stimulus
pulses above a certain threshold. Results also indicated that this threshold was about
Just above the threshold the model generates a single action potential
spike after which the membrane potential returns to its resting value of —60mV" (fig.

4.9a). As the threshold of the stimulus increases a train of spikes are generated by
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Figure 4.9. Single action potential spike obtained from the static Hodgkin-Huxley
model. (a). Membrane potential and the external current that takes the shape of a

step stimulus (b). Phase plots of the corresponding m, n and h values.
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Figure 4.10. A train of action potential spikes obtained from the static Hodgkin-

Huxley model. (a).

Membrane potential and the external current that takes the

shape of a step stimulus (b). Phase plots of the corresponding m, n and h values.
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the model (fig. 4.10a). As the threshold of the stimulus was increased further, the
frequency of the action potential spikes in the train of spikes was increased.

A nonlinear proportionality was observed between the stimulus threshold and the
frequency of spikes in a selected range. The stimulus thresholds beyond the upper
limit of the range produced a single peak that lacked the characteristics of the action
potential spike. The proportionality was observed in the range 0.03mA/cm? < I <
2mA/em?. In this range the frequency and the current was observed to have a

relationship described by the equation (4.27) and is shown in the figure 4.11.

f = 141.762"% (4.27)

4.4.3 Modeling in COMSOL
4.4.3.1 Methodology

While it is important to understand the behavior of axons and neurons, scientists
and researchers do not have direct access to isolate and stimulate neurons in living
beings. Therefore, a variety of electrode arrays and high density micro-electrode
arrays are being used to selectively activate and stimulate the nervous system. This
requires optimizing the parameters of the stimulating device, which in-turn requires
a thorough understanding of the effects of stimulation on biological systems. Two
main stages can be identified in a typical system that model the external stimuli as
well as the responses of the neurons. The first stage is the modeling of the electric
field distributions in the muscles and tissues due to the external stimuli. The second
is the computation of the responses of the target cells or the neurons. These two
stages can be addressed by two main methodologies [77].

The computation of the electric field distribution in the extracellular space can
be performed using a finite element analysis study. This allows taking into consid-

eration the realistic geometry and the material properties such as permittivity and
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Figure 4.11. Frequency of the action potential spikes versus the external current
stimulus threshold.

conductivity of the medium. The second stage of the process, the modeling of the
neuron responses are typically performed in a framework that is separate from the
finite element study environment [78, 79]. This approach is referred to as the the
hybrid FEM-cable-equation approach. The NEURON software is a commonly used
tool to simulate the cable equation based neuron models [80]. This method relies on
two assumptions, the first, the membrane potential is only a function of the axial
coordinates. Second, the effects on the extracellular potential due to the presence
of the nerve fiber is negligible. However, these assumptions have been challenged
in the literature [81]. An alternative method of calculating the neural responses in

the same FEM environment as that used to calculate the extracellular potential has
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Figure 4.12. Two methodologies used to model effects on neurons due to external
stimulation [77]. (a). Hybrid FEM-cable-equation approach and (b). Whole FEM
approach.

* Compute simultaneously the potential
field in the extra and intracellular
domains

proven valuable in recent studies [77, 82, 83]. This second method which does not
depend on the above assumptions, uses only a finite element analysis environment
and is identified as the whole FEM approach. COMSOL Multiphysics is a tool that
is commonly used to perform the whole FEM approach. The two methodologies are
summarized in the figure 4.12.

Due to the drawbacks of the hybrid FEM-cable-equation method and the steep
nature of the learning curve of the NEURON software it was decided to use the whole
FEM approach for this study.

As it is described in the outline of the whole FEM approach the process was
started with building the geometry of the extra and intracellular domains. The
3D model of the spinal cord built in the chapter 3.2 could have been used as the
extracellular domain of the geometry. However, due to the computational complexity

of the procedure, a 2D geometry was created to represent a segment of the spinal
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Figure 4.13. 2D model used for simulations representing the longitudinal section
of the spinal cord with two embedded electrode; where A, B, C, D and E represent
epidural fat, Dura matter, CSF, white matter and gray matter, respectively.

cord. To represent the intracellular domain or a single axon, a 20 mm long 1D
structure was placed inside the model of the spinal cord segment. The 2D geometry
of the extracellular domain was modeled referencing the 3D model described in the
chapter 3.2. The model represented a longitudinal section of the spinal cord with two
embedded electrodes (see figure 4.13).

Simulation of the behavior of the motor neurons under external stimulation is one
of the main focuses of this study. These motor neurons known as alpha or gamma
cells are located in the ventral horns of the spinal cord. Therefore the 1D structure
that represents a motor neuron or a single motor axon was placed in the region that
represents the ventral horns.

Material properties shown in the table 3.1 were used as the material properties for
2D spinal cord model. The physics of the simulation involves solving the simplified
Maxwell’s equations to compute the potential and electric field distributions in the
2D spinal cord model and solving the Hodgkin-Huxley cable equation in the 1D axon
model simultaneously[83, 84]. The Dirichlet boundary conditions were applied to the
two electrodes in the 2D model such that one of them was grounded while the other
was used as the active electrode that provided the electric stimulus to the system.

The simplified Maxwell’s equation used to model the extracellular potential is shown
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Figure 4.14. Summary of the steps of the whole FEM bi-domain simulation ap-
proach using COMSOL.

in the equation (4.28). The equations, (4.18), (4.22), (4.23), (4.24) and (4.25) were

used to solve the membrane potential generated in the 1D motor axon.

VY (oVV) -V (Naa‘f) —0 (4.28)

The extracellular potential solved by the equation (4.28) is coupled to the in-
tracellular potential by the equation (4.29), where V, is the extracellular potential

calculated from (4.28) and V. is the resting potential of the axon.

V==V.—Vies (429)

Once the physics were set, the model was meshed using a tetrahedral mesh with a
finer mesh around the electrodes and a coarser mesh in the extracellular regions. The
mesh consisted approximately 5500 domain elements and 800 boundary elements.
The number of degrees of freedom solved for in the model was approximately 11500.

A summary of the approach used to solve the bi-domain model is shown in the

figure 4.14. The whole FEM approach allows the five main steps shown in the fig-
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ure to be evaluated simultaneously. The main outcomes of the method include the
ability to simulate the behavior of the axon for the external stimuli as well as the
ability to simulate the effects on the extracellular domain due to the action potentials
generated in the axons. This implies that the method is capable of simulating the
electromyography (EMG) measurements.

Once the materials and physics were set, the model was simulated for a square
pulse stimulus with a pulse width of 5ms and an amplitude of 15mV" as shown in the
step 1 of the figure 4.14. The radius and the resistivity of the axon was set to bum

and 2005 - cm respectively.

4.4.3.2 COMSOL Simulation Results

The results obtained from the simulations can be categorized in to three main cate-
gories. The effects on muscles or the extracellular region due to the external stimuli,
the action potentials generated in the nerve axons or the intracellular region due to
the external stimuli and the effects on muscles due to the action potentials and the
external stimuli.

The results of the first category are similar to what was discussed in the chapters,
2.1.4 and 3.2. The action potential generated in the axon due to the external stimuli
demonstrated that for stimuli above a threshold, nerve conduction and information
transmission can be observed. The action potential information extracted from the
simulation are shown in the figure 4.15. The role of the dendrites in the nerve axon is
to catch the stimulation information received form an external stimuli or from axon
terminals of a second axon. For this simulation, the left end of the 1D structure
was set to receive the external input produced by the stimulus applied to one of the
electrodes. Hence the left end of the 1D structure becomes the dendrite and the
propagation direction is then set from left to right. It can be seen from the figure

4.15 that the propagation of information in the form of action potential indeed takes
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Figure 4.15. Action potential obtained from the simulation. (a). Action potential
at different points on the axon with respect to time. (b). Action potential along the
axon at different time instances.
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Figure 4.16. Effects on the extracellular region due to the action potential in the
intracellular region

place from left to right as expected.

Figure 4.16 shows the effects on the extracellular region due to the action potential
in the axon. Two data points were defined underneath the axon as shown in the figure
and the electric potential due to the axon at these two points was extracted. The
typical amplitudes of the EMG signals vary between 0 — 10mV (peak to peak) [85]
which this simulation falls within. Further, EMG signals demonstrate specific features
similar to action potentials[86]. Therefore, the extracellular potential results display
similarities to the above features and show the typical EMG characteristics observed
in the literature.

In Summary, the bi-domain model that utilizes a whole FEM approach provides
the capability to solve the extracellular potential as well as the intracellular action
potential due to external stimulation simultaneously. This method is preferred over

the hybrid FEM-cable-equation approach since it does not make the assumptions that
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were challenged in the literature!.

4.5 Modeling Neurons - The Izhikevich Model

As it was discussed in the previous section, since it’s inception, the Hodgkin-Huxley
model has been used to study, understand and extend the knowledge on neural com-
munication for over half a century. It’s close relationship to the actual biology and
chemistry of the neurons have been a driving factor for its wide use. Other re-
searchers, mathematicians and scientists alike have put forward various other models
to explain and model the behavior of the neurons. Among many of these models
include, FitzHugh-Nagumo model [87], Hindmarsh Rose model [88] and the Wilson-
Cowan model [89] just to name a few.

One of the major drawbacks of the classic Hodgkin-Huxley model over some of the
other models listed above is it’s inability to model bursting behavior of the neurons.
Bursting can be defined as the repeated firing of groups of spikes in the neurons.
The Hodgkin-Huxley model was developed to simulate the type 2 behavior of the
neurons which generate action potential spikes in a narrow range of frequencies that
are relatively insensitive to the stimulus amplitude [67]. However, there are neurons
that demonstrate a bursting behavior which is distinct from the spiking patterns
mentioned above. Neuron bursting has been observed and studied. The importance

of the bursting behaviors have been discussed in the literature [90, 91, 92].

4.5.1 The Izhikevich Model

The Izhikevich model is a recently published simple mathematical model that is both
computationally efficient and is capable of simulating variety of spiking as well as
bursting patterns [93]. It has also been demonstrated that the Izhikevich model can

be utilized to simulate a large number of neurons. Although the model has been

1Refer section 4.4.3.1

81



used to simulate the bursting patterns of the neurons, it has not been used in a FEM
study to create a bi-domain model of the spinal cord. Hence, it was attempted to
take the model described in the previous section one step further by extending its
demonstrated capabilities in the literature. A bi-domain model with the Izhikevich
model would be capable of simulating a variety of neurons including the ones that
generate bursting patterns.

The model consists of two, two-dimensional ordinary differential equations as

shown in the equation (4.30)

dv

i 0.04v® 4+ 5v + 140 —u + I (4.30a)
du

— = — 4.30b
ik (bv — u) ( )

The model also contains an auxiliary condition (4.31) that resets the voltage spike.

V< C
ifv > 30mV, then (4.31)

u+—u+d

In (4.31), v and u are dimensionless variables where v represents the membrane
potential of the nerve axon while u represents the membrane recovery variable. The
parameters a, b, c and d are dimensionless parameters and are used to describe the
time scale of the recovery variable u, the sensitivity of the recovery variable u, the
after spike reset value of the membrane potential v and the after spike reset value
of the recovery variable u respectively. The auxiliary condition is used to reset the
variables v and u after the spike reaches its maximum (+30mV).

The membrane potential v has a unit of mV and the time t has has a unit of
ms. The resting potential of the model depends on the value of the parameter b and
can include a value between —70mV and —60mV. The model does not have a fixed

threshold potential. Therefore the threshold potential can reach a value as low as
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—55mV or as high as —40mV depending on the history of the membrane potential

prior to the spike.

4.5.2 Modeling in COMSOL

In order to perform simulations using the Izhikevich model, the same two dimensional
model (see fig. 4.13) used in chapter 4.4.3 was used. The goal was to implement a
model similar to the bi-domain model implemented previously using the Hodgkin-
Huxley equations. Although it was possible to implement a bi-domain model using
the Izhikevich model, it was complicated to implement the whole-FEM approach
to solve the bi-domain model simultaneously for the extracellular potential and the
intracellular potential because of the auxiliary condition in the Izhikevich model.
Implementing the auxiliary condition (4.31) involved extra steps of calculations,
due to the nature of the Izhikevich model. This condition is used to reset the voltage
spike after it reached a predefined maximum. This involved modifying the solutions of
the differential equations (4.30) after the solution was computed. In order to perform
this modification, the previous solutions of the differential equations must be accessed
before the current step is computed. However, older versions of COMSOL did not
allow the user to access these previous solutions. Throughout the simulation work
mentioned in the previous chapters, various versions of COMSOL including v4.4, v5.0
and v5.1 have been used. In the latest version (v5.1) used in this work, COMOSL
included a new feature called the previous solution operator which provided the ability
to perform the very steps needed to implement the auxiliary condition. However, in
order to utilize this feature the simulation of the model had to be broken into two
steps to calculate the extracellular potential and intracellular potentials separately.
First, the extracellular potential in the 2D model was computed for a step potential
stimulus and then the potential at the dendrite of the axon was extracted as a function

of time. This voltage function was then applied to the Izhikevich model as the
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external stimulus to solve for the intracellular potential. Further, the Izhikevich model
does not have the capability to calculate the propagation of the action potentials.
Therefore having a geometry to represent a nerve axon became impractical. However,
the simulation would provide the information on the activation status of selected

axons.

4.5.3 COMSOL Simulation Results

The bi-domain model was first solved in the 2D extracellular domain and the extra-
cellular potential at the center point of the gray matter region was extracted as a
function of time. This data was then applied to the Izhikevich model as the external
stimulus. The Izhikevich model was solved multiple times for different model pa-
rameters to obtain different spiking and bursting patterns. The intracellular action
potentials obtained in different simulation runs are shown in the figure 4.17. The
different categories of spiking and bursting patterns are obtained by changing the
values of 4 model parameters a, b, c and d between the runs. Different choices of the
parameters give rise to different intrinsic firing patterns. These include some of the
known types of neocortical and thalamic neurons [94, 95]. Parameter values used to

generate the shown results are listed in the table 4.1.

Table 4.1. Values of the parameters a, b, c and d used to generate the firing patterns
shown in fig. 4.17

Tonic Spiking Phasic Spiking Tonic Bursting Phasic Bursting

a 0.02 0.02 0.02 0.02
b 0.20 0.25 0.20 0.25
c —65.00 —65.00 —50.00 —55.00
d 6.00 6.00 2.00 0.05
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4.5.4 COMSOL Application

Multiple variables, different electrical stimuli, and the possibility of extracting time
varying potentials at different point locations result in numerous possible variations
in the simulations. The management of these options is addressed using a COMSOL
application built with the COMSOL application builder utility.

The interface of the created application is shown in the figure 4.18. The appli-
cation provides the ability to change all the variables, change the stimulation pulse,
and change the location of the point at which the 2D potential is extracted.

The Izhikevich model has the ability to simulate a variety of spiking and bursting
patterns. These patterns are a result of the values taken by the variables in Izhikevich
model. Five of these variable value sets are also predefined within the application.
The custom application also allows the user to easily navigate through the simulation
process and visualize the resulting potential distributions and the action potentials.
Figure 4.19 shows the simulation steps and the basic procedure of setting up a sim-
ulation using the created COMSOL application. The numbers 1, 2 and 3 shown in
figure 4.19 shows the corresponding user input sections in the custom application

shown in figure 4.18.
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Figure 4.19. Flowchart of the simulation procedure using the COMSOL application.
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CHAPTER 5

OPTIMIZING THE HODGKIN-HUXLEY MODEL

The Hodgkin-Huxley (HH) model is a widely used biophysically meaningful model
that can simulate the action potentials in the nerve axons. It is mainly used to sim-
ulate the type 2 behavior of the axon firing!. However, other types of neuron spiking
and bursting have been observed in the literature?. This chapter discusses a key nov-
elty of this research, showing the optimization of the classic HH model parameters
to simulate neuron bursting behavior. This has not been shown in previously in the
literature. The results of the work discussed in this chapter demonstrates that it is
possible to extend the HH model beyond its intended type 2 behavior and can be

modified to simulate more complex neuron firing patterns including neuron bursting.

5.1 Optimizing the HH model

As it was discussed in the previous chapter, following the studies on crustacean nerves,
Hodgkin and Huxley published a series of papers that describe a physiological model
which simulates type 2 behavior of a giant squid axon. The complex model consists of
a system of linear and non-linear differential equations along with a set of parametric
equations that models the ion channels of the axon [68, 69, 70, 72]. For the last
six decades, the HH model has been widely used to better understand the action

potentials in the axons and the nervous system.

IDifferent types of neurons including type 2 neurons were discussed in section 4.4
2Neuron bursting was discussed in section 4.5
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Although the original HH model is widely used, it lacks the ability to model the
bursting behavior of the neurons as described in section 4.5. Even though there
exists other models that simulate the bursting behavior as well as regular spiking,
either they have simulation limitations or they are strictly mathematical and are
not biophysically meaningful. It has been theorized that the HH model has the
capability to simulate a wide variety of spiking and bursting patterns in addition to
its intended type 2 behavior [96]. However, due to the computational complexity
of the model, these capabilities have not been previously explored to improve and
extend the model. In this work, it is demonstrated the possibility of extending the
HH model by identifying defined constants in the model equations as variables that
can be adjusted to get different spiking and bursting patterns, without adding any
additional parameters to the original HH model.

The HH model consists of a system of differential equations (5.1) and (5.2) As
described in section 4.4. The model also consists two sets of rate constants equations

known as « (5.3) and 8 (5.4) equations.

1
el [Tewt — Gren*(V = Vi) = gnam®h(V = Viva) — go(V = V)] (5.1)

du

o ay(l1=U) — BuU  where, U is m, n or h (5.2)
0.1(V + 35)
< v+35 ) (5.3)
1 —exp
001(v+50
< v+5o ) (5.3b)
1 —exp
ap = 0.07 exp ( V + 50) ) (5.3¢c)
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Bm = 4exp (%) (5.4a)
b, = oz () (5.4b)
£ + exp (—1<V£ 30)) (5.4c)

Simulation studies performed using the HH model in the sections 4.4.2 and 4.4.3
have shown that by changing the parameter values in (5.3) and (5.4), different mem-
brane potentials can be produced. However, finding the parameters that result in a
specific spiking or a bursting pattern can be computationally demanding and difficult.
This chapter addresses this task of modeling the bursting behavior and finding the
set of parameters to activate it.

The concept behind the optimization was to generalize equations (5.3) and (5.4)
to increase the parameter space so that the solution space can be expanded. First,
the constants in (5.3) and (5.4) that can be controlled and would affect the resulting
membrane potential were identified. In this process, 23 constants, listed in table
5.1, were identified as tunable. Then, the identified 23 constants in the original HH
model were transposed to variables that can be varied as shown in equations (5.5)
and (5.6). Different sets of parameters could be assigned to these variables to obtain
different spiking or bursting patterns. Equations (5.3) and (5.4) can be produced by
substituting the original set of parameters from Table. 5.1 to the variables in (5.5)

and (5.6).
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Om1 (Vm + OémQ)

= — (5.5a)
Um3 — € ¥m5
. anl(vm + (lng)
a, = e (5.5b)
Qp3 — € Qns
= oy eh2(Vimtans) (5.5¢)
B, = /)’mle’g’"’Q(Vm+6m3) (5.6a)
B Vm + ﬁnQ
Bn = Bnie P (5.6b)
5 B (5.6¢)

- Bha + e~ Pn3(Vm+Bna)

Qmis Oniy Qlhis Bmis Bni and By, represent the 23 parameters that were identified
as tunable. External current .. that is applied to the system (see (5.1)) can also
be treated as a tunable parameter that would affect the output. Therefore, the
dimensionality of the optimization problem at hand was set to 24 to match target

bursting patterns.

5.1.1 Target Bursting Patterns

In order to compute values for the identified parameters it was decided to use two
target bursting patterns. Izhikevich identifies a large number of simulated spiking
and bursting patterns in his 2004 paper [96]. The phasic bursting and the tonic
bursting patterns were selected as the targets for this study. The simulated data
for these two target bursting patterns shown in fig.5.1 were generated using the the
mathematical model created by Izhikevich [93]. The goal of this work is to adapt these
two target bursting patterns demonstrated by Izhikevich to the HH model because it

has biophysical meaning and is not just a mathematical model.
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Figure 5.1. Two target bursting patterns used in the study. (a). Tonic bursting.
(b). Phasic bursting. Each plot shows the action potential response to an external
step current input. Time resolution is 0.04ms.[93].
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Table 5.1. Parameter values that produce the original rate constants equations (5.3)
and (5.4) form the generalized rate constants equations (5.5) and (5.6)

Parameter Value

Ut 0.100
2 35.000
Um3 1.000
Ut 35.000
ms 10.000
Un1 0.010
no 50.000
U3 1.000
Ot 50.000
s 10.000
U 0.070
ho —0.050
s 60.000
Bim1 4.000
Brno —0.056
B3 60.000
B 0.125
Bra 60.000
Brs 80.000
Bhi 1.000
Bha 1.000
B3 0.100
Bha 30.000

5.2 Parameter Optimization and Fitness Function

The word optimization comes from the root optimum which means the best or most
favorable point. Therefore when an optimization is performed on a mathematical
problem, the result is the selection of the best elements from an ensemble of alternative
elements. In the most simplest case, the optimization can be either maximizing
or minimizing a function of the mathematical problem by choosing values for the

function from a given domain. Mathematically, this can be written as,
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given: a function f: A — R
find elements x5 € A
where f(x¢) < f(x) forall x € A
or

f(x0) > f(x)forallx e A

This mathematical formulation is identified as the definition of an optimization
of a mathematical function. Here, the domain A is some subset of the real numbers
R and known as the search space of the function f.

The function f is identified by different names such as, the objective function,
the lost function, the cost function, the error function, the fitness function, etc. An
optimum solution would be the set of values from A that minimizes (or maximizes)
the function f.

The error function for this problem was chosen to indicate a measure of how
close a resulting HH membrane potential pattern was to one of the targets we have
chosen in section (fig. 5.1). In this case, the error function was the relative difference
between the target pattern and the pattern that was obtained by modifying the HH
parameters.

The calculation of the relative error was done in parts. The mean squared error
between the reference data set and the obtained data set from the modified HH model

was the major component of this calculation and is shown in (5.7).

1 q
€ = 5 Z (sz — V;efi)Z (57)
=1

where V,,,; is the membrane potential obtained from the Hodgkin-Huxley model,
Vyepi is the reference potential shown in fig. 5.1 and ¢ is the number of time samples

in the V,,, data array.
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This problem falls into the category of constrained optimization because there
are large sections of the solution space that carry infeasible solutions. Therefore, to
avoid having these infeasible solutions in the population and in-turn to improve the
effectiveness of the optimization process, additional penalties were attributed to the
error function by comparing features of V,, with V,.;. These features include the
number of local and global extrema and the values and the positions of the extrema.

Once the error function or the fitness function is defined, a selected optimization
can be used to minimize of maximize the function. Since the error function indicates
the difference between the reference and calculated bursting patterns, the error func-
tion increases as the two patterns differ from each other. Therefore, in this case the
error function needed to be minimized to find the optimal solution. The next section
discusses some of the optimization methods that can be used to optimize an error

function.

5.3 Different Optimization Techniques

Mathematical optimization of functions is a whole branch of study which concentrates
solely on different optimization techniques and methods to find the best values for
the objective functions. Before deciding on a specific optimization technique to solve
this problem, different options were considered. Some of the methods considered and

employed are described below.

5.3.1 Brute Force Method

One of the simplest methods that can be employed to solve problems is the brute
force® approach. Since this method lacks a mathematical foundation, it is often iden-
tified as the naive brute force approach. Regardless of it’s lack of mathematical basis

this method can be useful in certain situations to explore the problem while a better

3Brute Force is also known as the proof by exhaustion
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method of optimization is implemented. Although brute force is useful, it is compu-
tationally extremely expensive and very inefficient since the method evaluates each
and every possible solution in the parameter space to figure out the best out of them.
For instance, if this method was to be employed for this particular problem, and if
it was assumed each of the tunable parameters could take four possible values, the
number of permutations the solver would have to go through is 4% > 70 Trillion.
Even if a computer could go through all of these 70 trillion permutations in a reason-
able amount of time, it cannot be guaranteed that four discrete values would provide

the optimum solution to the problem.

5.3.2 Random Search

Randomness is often used in mathematics to solve problems that are deterministic
in nature. Monte Carlo methods are a whole class of algorithms that are based on
randomness. The optimization methods that generate and use random variables are
known as the stochastic optimizations. Random search is one of the simplest stochas-
tic optimization algorithms used commonly in mathematics. The random search is
considered to be a better option compared to the brute force approach. Therefore, a
random search algorithm was employed in the initial stage of the optimization process.

The random search algorithm used in this work can be summarized as follows.

Step 1. Define the parameter space by setting up upper and lower limits
for the parameters.

Step 2. Generate a random set of parameters selecting values from the
parameter space.

Step 3. Evaluate the error function for the selected random parameter
set.

Step 4. Stop the optimization if the stopping criteria is met. Otherwise

return to Step 2.
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Figure 5.2. Flow chart of the random search algorithm.
A flowchart of the above algorithm is shown in the figure 5.2.
One of the major factors that determines if the random search can ever find an

optimum result is the definition of the search space. To have a non-zero probability

of finding the optimum result, the optimum parameters must be within the param-
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eter search space. However, a mathematical way to guarantee the existence of the
optimum result within the parameter space is non-existent. Therefore, to improve
the probability of finding a desired outcome, several random search simulations must
be run with varying search spaces between them.

A custom Matlab program was developed to simplify the process of running mul-
tiple simulations with varying parameter spaces. The GUI of the software (fig. 5.3)
allows the user to update the parameter space easily and run a random search simu-
lations. The software allows the user to change lower and upper limits of the search
space using few different ways. The user can either type in the desired limits or set
the limits based on a percentage difference from a reference values. The user can also
choose to save the intermediate results for future reference. The saved intermediate
results show the output for a given set of parameters as shown in the figure 5.4).

Multiple instances of the random search optimizations were run alongside other
optimizations. Although this method did not yield any valuable results, the interme-

diate results provided some insight in to the limits of the parameters.

5.3.3 Gradient Descent

Gradient descent is another commonly used optimization algorithm which is a first-
order iterative? algorithm that is used to find the extrema (usually a minimum) of
a function. To find a local minima of a function, the gradient of the function is
evaluated for a given set of parameters and then the parameters are shifted in the
direction of the negative gradient. Repeating this procedure guarantees the discovery
of the local optimum of the target function. However, it cannot be certain that the
global optimum of the function can be found using this method.

In general, gradient descent algorithms are capable of finding optimum points of

a function. These optimum points include minima, maxima or inflection points. If

4«An iterative method is a mathematical procedure that uses an initial guess to generate a
sequence of improving approximate solutions.” - Wikipedia
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Figure 5.5. The error function with respect to two parameters of the HH model.

the target function has large number of these optimum points in the search space,
the task of finding the global optimum using the gradient descent becomes inefficient.
Depending on the target function some techniques such as use of multiple starting
points can be used to increase the effectiveness of the algorithm. However, in the
specific case, the error function contains large number of local extrema which makes
the use of gradient descent ineffective. The figure 5.5 shows the shape of the error

function for this specific case with respect to two parameters of the HH model.

5.3.4 Genetic Algorithm

Over the last few decades heuristic search methods have gained an extreme popularity.
Having once been looked down on in the field of optimization, these algorithms have
gained a huge amount of respect today. One of the top contenders in this category
is the genetic algorithm (GA). The term genetic algorithm and its basic fundamen-
tals were first proposed by Holland in his book Adaptation in Natural and Artificial
Systems in 1975 [97]. The GA falls in to a whole class of algorithms known as evolu-
tionary algorithms (EA) that are based on the concepts of the natural selection and

biological evolution.
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Like all the other EAs, GA is inspired by the process of natural selection where
the survival of the fittest is guaranteed in a competing environment. The survivors
of this environment would go on to produce offspring that carry the strong genetic
markers to the future generations. Continuing this process of passing the strong
genetic markers down generations is the key aspect of natural selection.

In a GA application, a solution to a problem is encoded by a chromosome. A pop-
ulation is created using these chromosomes. A selection is made from the population
based on a fitness function to produce offspring who inherits the characteristics of
their parents. The generated offspring become the new population and the process
continues until a stopping criteria is met.

The entire process of a GA is divided in to five basic phases.

1. Initial population
2. Fitness function
3. Selection

4. Crossover
5

Mutation

The processes performed in phases 4 and 5 are called genetic operations.

5.3.4.1 Initial Population

The process begins with a set of solutions to the problem called individuals. This
initial set of individuals is called the initial population. Each of these solutions or
the individuals are encoded using some form of encoding method to be used in the
algorithm. Once encoded, each individual is called a chromosome. There are various
encoding methods being used in practice. The binary encoding method and the value
encoding method are two of the techniques that are very popular.

Binary encoding is the process where all the information in the solution is encoded

using a string of bits 0 and 1.
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Table 5.2. Example of a binary encoding

Chromosome A | 011100110110000101101100
Chromosome B | 011101010010111001101100

Although binary encoding is a commonly used it does not fit as a natural method
for some optimization problems.

Value encoding is the process where all the information is encoded using some
numbers, letters or objects. For most problems this method fits as a natural method

of encoding.

Table 5.3. Examples of value encoding

Chromosome A | 2.345 7.768 11.8978 5.231
Chromosome B | AMC TKK NPS DLG
Chromosome C + — X -

Each segment of a chromosome is called a gene(a parameter or a variable of the

solution) and a set of genes are joined to create a chromosome.

Chromosome A 1 1 0 1 0 1 B Gene

B Chromosome

Chromosome B 0 1 0 1 0 1 B Population

Chromosome C 1 0 0 1 1 1

Chromosome D 1 1 1 1 0 1

Figure 5.6. Examples of gene, chromosome and population terms.

5.3.4.2 Fitness Function

The fitness function determines how fit a chromosome is. Fitness function can be

one of the most important components of a GA. The probability that a selected
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Figure 5.7. Illustration of a roulette wheel selection method.

chromosome be used to produce the next generation is based on its fitness score.

5.3.4.3 Selection

Selection is the process of selecting chromosomes based on their fitness score, to
produce the next population. There exist various methods on how to select the best
chromosomes. For example, roulette wheel selection, tournament selection and rank
selection are some of the common methods described in the literature [97, 98].

In this work, the roulette wheel selection method® was employed. The roulette
wheel selection can be visualized as follows. Consider a pie chart with n slices where
n being the number of chromosomes in the population. Each chromosome gets a slice
in the pie chart which is proportional to the fitness value it scored. Now the pie chart
is rotated and the chromosome that lands on a fixed point is selected as the first

parent. The same process is repeated to choose the second parent.

5The roulette wheel method is a member of one of the most popular selection methods known
as the fitness proportionate selection

105



In the figure 5.7, A, B, C, D, E and F are chromosomes and the roulette wheel
has selected chromosome F as a parent. It is evident from the figure that the higher
the fitness score, the higher the probability of being selected as a parent. In the
development process, roulette wheel selection can be performed using the following

algorithm [99].

Step 1. Evaluate the fitness, f;, of each chromosome in the population.
Step 2. Calculate the probability, p;, of selecting each chromosome of

the population:
o f
Z?:l fz

where n is the population size.
Step 3. Calculate the cumulative probability, ¢;, for each individual:
d; = Z;:l pj
Step 4. Generate a random number, r, where r € (0, 1) .
Step 5. if r < ¢ then select the first chromosome, x, else select the
chromosome, z;, where ¢; — 1 < r < g;.
Step 6. Repeat the steps 4 and 5 n times to select n candidates for the

mating pool.

5.3.4.4 Crossover

After the mating pool has been selected, individuals from the pool are recombined
or “crossed-over” to create new offspring. It is intended that the new offspring are
better than their parents. In the literature, a variety of crossover methods have been
described. Some of these methods are problem specific and cannot be scaled to all
of the GA optimization problems. Some of the generic crossover methods are shown
here.

One of the most commonly used crossover methods is the n-point crossover.
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Figure 5.8. Illustration of an n-point crossover method. (a). One point crossover.
(b). Two point crossover.

One-point and two-point crossover methods fall under this category. In one-point
crossover, a crossover site is selected at random and a parent chromosome is sliced
into two alleles®. The alleles in the same side of the crossover points of the two parents
are interchanged to create two new offspring. Similarly, in two-point crossover, two
crossover points are selected at random and the alleles between the two crossover

points are interchanged to create new offspring as shown in figure 5.8.

5.3.4.5 Mutation

After the crossover operation, it is expected that the offspring are better than their
parents. Even if the offspring were not superior to their parents, it is expected, they
will be different from their parents. However, if the alleles that were interchanged
between the parents in the crossover operation were identical, the offspring would

not be different from their parents. The mutation is the process by which the above

SAllele - Any of the alternative forms of a gene
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Figure 5.9. Illustration of a single bit mutation in a binary encoded chromosome.

described problem is eliminated. The mutation adds diversity to the population
and ensures the possibility of exploring the entire population without a premature
convergence. Typically, in a population of offspring, the mutation is applied to only
a small subset of offspring.

The figure 5.9 shows an illustration of a single bit mutation in a binary encoded
chromosome. Depending on the optimization problem, mutation can occur in one or

more genes in the chromosome.

5.3.4.6 Stopping Criteria

After the genetic operations, the crossover and the mutation, a new population is
created and is tested for its fitness for the target problem. This process is repeated
until a stopping criteria is reached. There are only a few different stopping criteria

being used in practice. Some of the common stopping criteria are:

1. A target fitness value is found or a solution that satisfies the problem
is found.

2. Fixed number of generations have reached.

3. Percentage increase of best fitness value over a fixed number of gen-

erations is less than a predefined value.

One or more of above criteria are used to terminate a GA optimization.
The figure 5.10 shows a flowchart of a GA combining all of the above described

components.
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Figure 5.10. A flowchart of a genetic algorithm.
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5.4 Optimizing using the Genetic Algorithm

The HH optimization began by identifying 24 parameters that would be optimized
to produce two target bursting patterns as it was described in the previous sections.
After exploring different optimization techniques, it was decided to use a GA due to
the explained drawbacks of the other methods.

The first step of the process is to create an initial population of chromosomes that
contain the information of the 24 target parameters. Since the target parameters
could have positive or negative real numbers, the value encoding was used and a
set of chromosomes that contained all 24 parameter values was created. A random
parameter generator was used to create the initial population. The chromosomes that
did not have a fitness above a critical value were rejected from the candidate pool to
ensure the quality of the initial population.

Equation (5.7) was used to calculate the fitness of a given chromosome. Since
(5.7) is an error equation, smaller error values provided a higher fitness score. In
the actual optimization process, the GA would try to minimize the error function in
(5.7).

A population of randomly generated 200 chromosomes was used to initialize the
problem. The size of the initial population is a significant characteristic of GAs that
determines the quality of the solution found as well as the computational resources
required to find it [100, 101]. Although this can be subjective and dependent upon
various factors, the initial population size is often selected to be ten times the number
of dimensions in the problem [102].

The roulette wheel selection method was used throughout multiple optimization
runs. Before the selection step, 5% of the best chromosomes were selected for the
next generation. The rest of the population was created using the genetic operations.
While an 80% of the next generation is created using crossover, the remaining 15% is

created using both crossover and mutation. The above percentages used in the GA
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were chosen arbitrarily.

Two stopping criteria (criteria 1 and 3 listed in the section 5.3.4.6) were used
to stop the optimization. Typically the optimizations are set to stop after a certain
number of generations. The number of generations that a GA would go through to
produce an optimum result may vary on various factors and the maximum value for
this number of generations could depend on the size of the population, fitness of the
initial population as well as the percentage of mutation [103, 104]. This can also be
dependent upon the specific optimization problem. Due to all of the above reasons it

was decided not to use the number of generations stopping criteria.

5.4.1 Results of the Genetic Algorithm optimization

A genetic algorithm based parameter search method was employed to explore the pos-
sibility of using HH model to simulate bursting behavior of the neurons. 23 constants
in the HH model were converted to parameters that can be modified and the ge-
netic algorithm was used to optimize these parameters to obtain two neuron bursting
patterns. Results from the genetic algorithm shown in fig.5.11 displayed membrane
potential patterns that have the characteristics of bursting behaviors similar to the
references used for the optimization. All the simulations were performed with an
external current that takes the shape of a step function. The optimized parameters
found in the study are listed in the tonic and phasic columns in Table 5.4. One
can produce fig.5.11 by substituting the tonic and phasic values from Table 5.4 in
the equations (5.5) and (5.6). and solving the HH model. The absolute percentage
error values of the two resulting bursting patterns with respect to the target bursting
patterns are listed in Table 5.5. Equation (5.8) was used to calculate the absolute

percentage error.

Vm - V;“ef

100 5.8
Vg | % (58)

absolute percentage error =
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Figure 5.11. Two bursting patterns found from the genetic algorithm corresponding
to the used references. (a). Tonic bursting. (b). Phasic bursting.

One of the important observations made while studying these results is the be-
havior of the gating variables in the phase space as shown in the fig. 5.12. When
the HH model was originally developed in 1952, the authors had to come up with

some postulates about the existence of three fictional particles that would describe
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Figure 5.12. Phase space plots corresponding to the bursting patterns shown in
figure 5.11. (a). Tonic bursting. (b). Phasic bursting. (i), (ii) and (iii) corresponds
to the gating variables m, n and h respectively.
the states of the Sodium and Potassium channels in the axon. n,m and h are the
dimensionless quantities that are associated with the activation of the Potassium
channel, activation of the Sodium channel and the inactivation of the Sodium chan-
nel respectively. The values of n,m and h were such that 0 < n,m,h < 1. In order
to fit the data they obtained from the experiments, Hodgkin and Huxley chose (4.10)
among many possible solutions to explain Potassium and Sodium channel activation.
The behavior of the gating variables in phase space for the parameters in the original
model is shown in the fig. 4.9b and fig. 4.10b. It can be noted that the values range
between 0 and 1. However, when simulating the bursting behavior the values of the
gating variables exceeded these limits.

The observation of having gating variables that exceed the original limits can be

due to the limitations of the HH model. More recent studies have found the existence
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Table 5.4. Optimized parameter values that produce fig. 5.11 compared with the
parameters that produce the original HH model (5.3) and (5.4)

Parameter Original Tonic Phasic

O 0.100 —0.160 —0.113
W 35.000 26.450 50.790
U3 1.000 0.200 —0.241
Uma 35.000 33.000 36.560
s 10.000 11.301  6.307
Qn1 0.010 0.086 0.013
Qno 50.000 35.573 38.338
Qn3 1.000 —2.745 —1.200
na 50.000 50.116 43.679
ns 10.000 12.608 14.799
U 0.070  0.007 —0.077
ho —0.050 0.220 —0.028
s 60.000 38.500 64.935
Bm1 4.000 5.450  4.404
Brno —0.056 0.046  0.013
Brns 60.000 52.420 58.466
B 0.125 0.993  0.828
Bra 60.000 55.346 50.960
Brs 80.000 89.568 79.297
Bhi 1.000 0.140 —0.748
Bha 1.000 2.044 —1.901
B3 0.100 —0.116  0.740
Bha 30.000 39.537 29.871
- 0.100 0.115  0.207

Table 5.5. Absolute percentage error values of the two resulting bursting patterns
with respect to the target bursting patterns

Tonic Phasic
Absolute percentage error  5.88% 17.91%

of additional channels in the neuronal membranes beyond Sodium and Potassium.
The presence of these additional channels has implications on the membrane poten-
tials [105, 106]. Further, as stated before the equations associated with the gating
variables lack a physical basis. Hence the known limits of the gating variables may
only suit the specific pattern or patterns of membrane potentials for which the orig-

inal model was intended for. However, this study explores the possibilities of the
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model beyond its intended capabilities.

Although the results did not perfectly match the target patterns that were used,
they demonstrated the ability to modify the HH model to simulate bursting behavior
with an error less than 6% for tonic bursting and an error less than 18% for phasic
bursting. While the proposed HH model seems more complex compared to a simple
mathematical model like Izhikevich model that offers more flexibility, it has been
demonstrated that HH model is comparable to Izhikevich model in computational
cost [107]. Therefore, it is worth exploring the possibility of expanding the HH model
beyond its original model parameters to simulate the bursting behavior because the
equations of the HH model have a biophysical meaning unlike a pure mathematical

model like the Izhikevich model.
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CHAPTER 6

SUMMARY AND FUTURE WORK

Over the last few decades, neural prostheses have been used to improve human health
and to restore neural functions lost due to injury. The spinal cord implants(SCI)
used to perform spinal cord stimulation to relieve chronic pain is a great example
for a neural prosthesis. The use of neural prostheses such as SCI and the successes
they have had in the neuroscience field has led the scientific community to perform
extensive research in the field. Recent studies in this field found the capability to
use SCS to enable voluntary motor functions in patients with spinal cord injury
(9, 10]. These recent developments have pushed researchers to explore and better
understand the underlying functionality of the SCS that activates motor functions in
paralyzed patients. However, it is not practical and very difficult to perform extensive
experimentation on the human spinal cord. Therefore, modeling and simulation can
be utilized in neuroscience to portray visual depictions of the SCS and to get a better
picture of the above mentioned observations.

The work in this dissertation has embodied different modeling and simulation
approaches related to SCS. The work began with simulations to visualize the elec-
tric field distributions in the spinal cord during stimulation. The researchers who
conducted the groundbreaking discovery that the SCS can be used to activate motor
function, believed that the controlled activation of motor neurons utilizing different

electric filed patterns is the key to push their work to the next level and allow pa-
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tients with spinal cord injuries the ability to walk again. Studies performed in this
regard using FEM has shown the ability to easily configure electrode positioning and
stimulus parameters to quickly perform simulations to help visualize the electric field
distributions in the spinal cord.

The electrical stimulation on biological tissue raises significant safety concerns that
cannot be disregarded. Therefore, safety measures must be taken and the importance
of these safety measures must be studied. One of the most discussed topics related
to safety in SCS is the charge balancing in electrical stimulation. Simulations were
performed to visualize the charge balancing and to explore the electro-chemistry
related to SCS. The results of the electro-chemistry solutions showed the importance
of using a charge balanced, biphasic pulse as the stimulus to prevent the charge
accumulation in biological tissue. Further, a novel concept known as pulse position
optimization (PPO) was developed to minimize the pulse collisions in SCS and custom
software was developed to perform PPO. PPO software provide the ability to optimize
up to 5 independent stimuli waveforms to minimize pulse collisions.

Neuron level simulations were performed to explore the potential simulation work
in the micro or cellular level to aid SCS studies. The modeling of spiking and bursting
behavior of neurons were explored using Hodgkin-Huxley and the Izhikevich models.
The Bi-domain models were built to combine electric filed simulations with neuron
level simulations to provide information on neuron activation for given voltage pulse
stimuli. This work utilized finite element modeling using software modules as well as
equation based modeling techniques in COMSOL multiphysics software platform.

One of the major contrasts between the two models used in the cellular level
simulations; the HH model and the Izhikevich model is that the HH model has a
biological significance while the Izhikevich model is purely mathematical. A major
drawback in the classic HH model is that it does not have the capability to simulate

bursting behavior of neurons. However, HH model consists of enough parameters

117



that can be modified to replicate bursting behavior. Therefore, the last part of this
work was focused on modifying the classic HH model parameters to produce bursting
behaviors. Two bursting patterns were selected as target patterns to limit the scope of
the work. Different optimization techniques were studied and considered as potential
methods of optimization before selecting a machine learning approach to solve the
problem. A genetic algorithm based method was used to find the parameters for
the HH model that would produce two of the known bursting patterns described
by Izhikevich [93]. The optimized HH model was able to generate bursting patterns
corresponding to the two target bursting patterns used in this study with error values
< 18% for Phasic bursting and < 6% for Tonic Bursting.

A comparison of the best mean absolute percent error values obtained from the
methods considered to optimize HH parameters are listed in Table 6.1. Gradient
descent method was not employed for any simulations, therefore, no error values

were calculated.

Table 6.1. Comparison of the best mean absolute percent error values obtained
from the different methods considered to optimize the HH parameters

Optimization Method  Tonic Phasic
Genetic Algorithm 5.88% 17.91%
Random Search > 70.00% > 70.00%
Brute Force > 90.00% > 90.00%
Gradient Descent NA NA

The work done in this study provided a lot of insights to potential future work
that can be performed to improve the understanding as well as the effectiveness
of SCS. One of most important areas of investigation is the integration of multiple
neurons in bi-domain models. The simulations performed in this work, focused on
embedding a single neuron in spinal cord to couple electric field effects to neuron
activation. This can be extended to model multiple neurons to study the action
potential propagation through a chain of neurons. In order to transmit signals from

one neuron to another, the physics and chemistry of synapses must be explored.

118



Tuft

Apical
dendrites

- Soma

J Basal
f b dendrites

Layer [1/111 Subiculum

/B

Layer /101 Layer ¥ CAl

Mature Reviews | Meurcoscience

Figure 6.1. (a), (b). The structures of pyramidal neurons from different cortical
areas. (c). A schematic drawing of a pyramidal neuron.[109].

Further, detailed descriptions of actual neurons (fig. 6.1) are documented and can
be found in the literature [108, 109]. Information on these actual neurons can be
used to build accurate models of actual neurons so that these models can be used to

implement bi-domain models.
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One other potential extension of the bi-domain model is the incorporation of the
actual spinal cord damage data into the modeling process. Even though the electric
field distribution patterns in the spinal cord can be evaluated for a given stimuli, the
result may not be accurate for a selected individual with a certain form of damage to
their spinal cord. Hence, to better customize the simulations for each individual and
to optimize the application of the external electrical stimuli, the data related to the
damage of the spinal cord must be embedded into the model. Finite element analysis
studies conducted by Arle et al. had shown that it is possible to model effects of
scar on patterns of dorsal column stimulation [48]. Similar techniques can be utilized
to model the effects of spinal cord damage on the electric field patterns. Including
such secondary effects on the electric field evaluations can produce the most accurate
results.

It is vital to use the actual stimulation parameters in the simulation studies to
make the relevant correlation between the stimuli and the desired simulation outputs.
However, this study did not have the access to most of the stimulation parameter data
used in human experiments. Therefore, the simulation studies were limited to proof
of concept stage. The next phase of the study could use the real stimulation data
and tune the simulations to assist human experiment studies.

The use of machine learning and data analytic techniques not only in scientific
tasks but also in day-to-day tasks has become a new phenomenon. As shown in the
last part of this dissertation, machine learning and various optimization techniques
can improve SCS work significantly. The optimizations done in this work show the
ability to improve existing models to give more information about the internal me-
chanics of SCS. Similar optimization techniques can be used to map the different
stimuli input to one or more known outputs of SCS. For instance, the provided stim-
uli in SCS can be recorded alongside various muscle movement data such as EMG.

The recorded data can then be used with machine learning algorithms such as the
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genetic algorithm used in this study to find the optimum stimuli to obtain certain
muscle movements. This process can even be automated to reduce hundreds of man
hours of manual fine tuning of stimulus parameters to find the optimum one. If a ma-
chine learning system is developed with a feedback mechanism to determine whether
or not a certain SCS input is effective, the system in theory could learn the opti-
mum parameters on its own. This method could be the most preferable since one set
of optimum parameters used for one patient may not be the optimum for a second

patient.
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Appendix A: Acronyms and Symbols

SCI  Spinal Cord Implant
DBI Deep Brain Implant
SCS  Spinal Cord Stimulation
FES Functional Electrical Stimulation
FEM Finite Element Method
CCS  Constant Current Stimulation
VCS Voltage Controlled Stimulation
PPO Pulse Position Optimization
CSF  Cerebrospinal Fluid
GUI Graphical User Interface
CNS Central Nervous System
PNS Peripheral Nervous System
ANS Autonomic Nervous System
EMG Electromyography
GA Genetic Algorithm
EA Evolutionary Algorithms
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9Na;, 9K, gci
ENCU EK
Ey

Permittivity
Conductivity (S/m)

Double layer capacitance (F)
Faradaic resistance (Q2)

Tissue resistance (€2)
Equlibrium potential (V)

Flux (mol - m™2s71)

Diffusion Coefficient (m?s™!)
mobility (s -mol - Kg™1)
Charge number

Faraday’s constant (C' - mol™!)
Concentration (mol - m™3)
Space charge density (C - m™3)

Membrane potential (mV)

Membrane capacitance (uF'/cm?)

Ionic conductivity of Sodium, Potassium and Chloride ions
Equilibrium potential of Sodium and Potassium ions
Equilibrium potential at zero leakage current

131



Appendix B: Pulse Position Optimization Program

The following shows the PPO algorithm and the supporting programs used to achieve
and simulate PPO.

1. minimize_collisions.m

1 function str = minimize_collisions(freq, src_pw, src.amp,
int_delay, ...

2 recharge_factor, shorting._factor, time, loop_-increment, val)

3 tic;

4 %% Enter Waveform Data

5 sink_pw = src_pwxrecharge_factor; % sink - pulse width (micro
seconds)

6 sink_amp = src_amp/recharge_factor; % sink amplitude

7 shorting = src_pwxshorting_factor; % shorting (micro seconds)

8 iter = val;

9

10 %% Generate Waveforms
11 p_cell = cell(l,iter);
12 state_cell = cell(l,iter);

13

14 for i=l:iter

15 [p-cell{i}, state_cell{i}, -] = wave_gen( src_pw (i),

src_amp (1),
16 int_delay (i), sink_pw(i), sink_amp (i), shorting(i),
freg(i), time);

17 end

18

19 %% Modify waveform states to separate resting and non-resting
portions

20 for i=l:iter

21 state_cell{i} = state_cell{i}>0;

22 end

23

24 %% offset waveforms and waveform states

25 % collision data stores the offset values and number of collisions.

26 % collision_data(n) = number of collisions

27 % collision_data(l:n-1) = offset values of n-1 waveforms

28

29 collision_data = zeros(l,S);

30 collision_data(l)=
I

31 if (val == val == || val ==5)
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32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74
75
76
7
78
79
80
81
82
83
84

collision_data (2)=0;
elseif (val == || val ==5)
collision_data (3)=0;
elseif (val ==5)
collision_data (4)=0;
end
collision_data(val)=1le5;

fall = strfind(state_cell{val}, [l 01);
rise = strfind(state_cell{val}, [0 1]);
shift_gap = abs(fall(l)-rise(l))+abs(fall(2)-rise(1l));
permutations = ceil (shift_gap/loop_increment) " (val-1);

index =0;
canceled = 0;

wb = waitbar (0, 'Finding the optimum position...', ...

'CreateCancelBtn', 'setappdata (gcbf, ' 'Cancel'’,

1))

set (wb, 'Name', 'Waveform Generator: Progress')

if val ==
for offset_i=0:loop_increment:shift _gap
if canceled == 1
break;
end

index=index+1;

[}

% offset n-1 waveforms so they won't start at once

x_offset = offset_i;

state_cell_copy =

state_cell;

z_cell = cell(l,iter-1);

for i=1:1

z.cell{i} = p_cell{i}~*0;

z.cell{i} (x_offset+l:end)=state_cell copy{i}...

(l:end-x_offset);

state_cell_copy{i}=z_cell{i};

end

%% Calculate Collisions and Grace periods

no_collision = 0;
no_of_collisions

count_collisions(state_cell_copy,val);

if(collision_data(2)>no_of_collisions)
collision_data (l)=offset_ij;
collision_data (2)=no_of_collisions;

end

%update waitbar
if (mod(i,1)==0)

o

o

to slow the update rate

waitbar (index/permutations) ;

end

if getappdata (wb, 'Cancel')
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85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

canceled = 1;
break;
end

end
end

if val == 3
for offset_i=0:loop_increment:shift_gap
if canceled == 1
break;
end
for offset_j=0:1loop-increment:shift_gap

index=index+1;
o

% offset n-1 waveforms so they won't start at once
x_offset = [offset_i,offset_j];

state_cell_copy = state_cell;

z_cell = cell(l,iter-1);
for i=1:2
z.cell{i} = pcell{i}~*0;
z.cell{i}(x_offset (i)+l:end)=...
state_cell _copy{i}(l:end-x_offset (i));
state_cell_copy{i}=z_cell{i};
end

%% Calculate Collisions and Grace periods
no_of_collisions =
count_collisions (state_cell_copy,val);

if(collision_data(3)>no_-of_collisions)
collision_data (l)=offset_ij;
collision_data (2)=offset_j;
collision_data(3)=no_of_collisions;
end

$update waitbar

if (mod(i,1)==0) % to slow the update rate
waitbar (index/permutations) ;

end

if getappdata (wb, 'Cancel')
canceled = 1;
break;

end

end
end
end

if val == 4
for offset_i=0:1loop_increment:shift_gap
if canceled == 1
break;
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138 end

139 for offset_j=0:1loop-increment:shift_gap
140 if canceled == 1
141 break;
142 end
143 for offset k=0:1loop_increment:shift _gap
144 index=index+1;
145 % offset n-1 waveforms so they won't start at once
146 x_offset = [offset_i,offset_j,offset k];
147
148 state_cell _copy = state_cell;
149
150 z_cell = cell(l,iter-1);
151 for i=1:3
152 z.cell{i} = p.cell{i}«0;
153 z_cell{i} (x_offset(i)+l:end)=...
154 state_cell_copy{i}(l:end-x_offset (i));
155 state_cell copy{i}=z_cell{i};
156 end
157
158 %% Calculate Collisions and Grace periods
159 no_-of_collisions =
count_collisions (state_cell_copy,val);
160
161 if(collision_data(4)>no_of_collisions)
162 collision_data(l)=offset_i;
163 collision_data(2)=offset_j;
164 collision_data (3)=offset_k;
165 collision_data(4)=no_of_collisions;
166 end
167
168 Supdate waitbar
169 if (mod(i,1l)==0) % to slow the update rate
170 waitbar (index/permutations) ;
171 end
172 if getappdata (wb, 'Cancel')
173 canceled = 1;
174 break;
175 end
176 end
177 end
178 end
179 end
180
181 if val ==
182 for offset_i=0:1loop_.increment:shift_gap
183 if canceled == 1
184 break;
185 end
186 for offset_j=0:1loop-increment:shift_gap
187 if canceled == 1
188 break;
189 end
190 for offset_k=0:1loop_-increment:shift_gap
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191
192
193
194
195
196

197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

if canceled == 1
break;

end

for offset_1=0:1loop_-increment:shift_gap
index=index+1;
% offset n-1 waveforms so they won't start
at once

x_offset =

[offset_i,offset_j,offset k,offset_1];
state_cell _copy = state_cell;

z_cell = cell(l,iter-1);
for i=1:4
z.cell{i} = p_cell{i}~*0;
z_cell{i} (x_offset (i)+l:end)=...
state_cell copy{i} (l:end-x_offset (i));
state_cell_copy{i}=z_cell{i};
end

%% Calculate Collisions and Grace periods
no_.of_collisions=count_collisions...
(state_cell_copy,val);
if(collision_data(5)>no_of_collisions)
collision_data (1l)=offset_i;

collision_data(2)=offset_j;
collision_data(3)=offset_k;
collision_data(4)=offset_1;
collision_data (5)=no_.of_collisions;
end
%Supdate waitbar
if (mod(i,1l)==0) % to slow the update rate
waitbar (index/permutations) ;
end
if getappdata (wb, 'Cancel')
canceled = 1;
break;
end
end
end
end
end
end
delete (wb) ;
cal_time = toc;
if val ==
if canceled ==
str = sprintf (['Optimization program aborted\n'...

"Current Best shifting value: %d\n'...
'(Elapsed time 1is %.3f

seconds) '],collision_data(l),cal_time);
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else
str = sprintf (['Best shifting value for the entered
data:'...
'%d\n (Elapsed time is %.3f seconds)'],...
collision_data(l),cal_time);
end

elseif val ==
if canceled ==

str = sprintf (['Optimization program aborted\n'...
'Current Best shifting values:'...
' %d, %d\n (Elapsed time is %.3f seconds)'], ...
collision_data(l),collision_data(2),cal_time);
else
str = sprintf (['Best shifting values for the entered
data:'...
' %d, %d\n (Elapsed time is %.3f seconds)'], ...
collision_data(l),collision_data(2),cal_time);
end

elseif val ==
if canceled ==
str = sprintf(['Optimization program aborted\n'...
'Current Best shifting values: %d, %d, %d\n'...

' (Elapsed time is %$.3f seconds)'],collision_data(l),...
collision_data(2),collision_data(3),cal_time);

else

str = sprintf(['Best shifting values for the entered

data:'...
' %d, %d, %d\n (Elapsed time is %$.3f seconds) '], ...
collision_data(l),collision_data(2),collision_data(3), ...
cal_time);

end

elseif val ==
if canceled ==

str = sprintf (['Optimization program aborted\n'...
'Current Best shifting values: %d, %d, %d, %d\n'...
' (Elapsed time is %.3f seconds)'], ...

collision_data(l),collision_data(2), ...
collision_data(3),collision_data(4),cal_time);

else
str = sprintf(['Best shifting values for the entered
data:'...
' %d, %d, %d, %d\n (Elapsed time is %$.3f seconds)']l, ...
collision_data(l),collision_data(2),collision_data(3),...
collision_data(4),cal_time);
end
end
end

137



2. waveforms.m

1 function waveforms (freq, src_pw, src_.amp, int_delay, y-offset,...
2 recharge_factor, shorting._factor, time, x_offset,
disp_status, val)

3 clc;

4 %% Enter Waveform Data

5 sink_pw = src_pwxrecharge_factor; % sink - pulse width (micro
seconds)

sink_amp = src_amp/recharge_factor; % sink amplitude

6

7 shorting = src_pwxshorting_factor; % shorting (micro seconds)
8 iditer = val;
9

10 %% Generate Waveforms
11 p_cell = cell(l,iter);
12 state_cell = cell(1l,iter);

13

14 for i=l:iter

15 [p.cell{i}, state_cell{i}, t] = wave_gen( src_pw(i),
src_amp (i), ...

16 int_delay (i), sink_pw(i), sink_amp (i), shorting(i),

freq(i), time);
17 end
18

19 %% offset waveforms and waveform states
20 z_cell = cell(l,iter-1);
21 for i=l:iter-1

22 z.cell{i} = p_cell{i}~*0;

23 z.cell{i}(x_offset (i)+l:end)=p-cell{i}(l:end-x_offset (i));

24 p-cell{i}=z cell{i};

25

26 z.cell{i} = p.cell{i}x0-111;

27 z.cell{i} (x_offset (i)+1l:end)=state_cell{i}(l:end-x_offset (i));

28 state_cell{i}=z_cell{i};

29 end

30

31 %% Modify waveform states to separate resting and non-resting
portions

32 for i=l:iter

33 state.cell{i} = state_.cell{i}>0;

34 end

35

36 %% Calculate Collisions and no-wave periods

37 if val == 2

38 collision_combinations = 1;%2C2

39 elseif val==

40 collision_combinations = 4;%3C2+3C3

41 elseif val ==

42 collision_combinations = 11;%4C2+4C3+4C4

43 elseif val ==

44 collision_combinations = 26;%5C2+5C3+5C4+5CH

45 end

46
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47 rest_cell = cell(l,collision_combinations);

48 collision_cell = cell(l,collision_combinations);

49 min_freq = zeros(l,collision_combinations);

50 str_array=cell(l,collision_combinations);

51 $%%%%%%%%%% Collisions between waveform-A and waveform-B

52

53 index = 0;

54 if (val ==2 || val ==3 || val==4 || val ==5)

55 for i=l:iter-1

56 for j=i+l:iter

57 index = index + 1;

58 rest_cell{index}=state_cell{i}+state_cell{J};

59 rest_cell{index}=rest_cell{index}==0;

60

61 collision_cell{index}=state_cell{i}+state_cell{j};
62 collision_cell{index}=collision_cell{index}==2;
63

64 f list = [freqg(i), freq(])];

65 min_freqg(index) = min(f_list);

66 str.array{index}=sprintf ('%dHz, %dHz',6 freq(i),freqg(j));
67 end

68 end

69 end

70

71 if val==3

72 index = index+1;

73 f list = [freq(i),freq(3)];

74 min_freqg(index) = min(f_list);

75 str_array{index}=sprintf ('All Three');

76 collision_cell{index}=(state_cell{l}+state_cell{2}...

a +state_cell{3})==3;

78 rest cell{index}=(state.cell{l}+state cell{2}+state_cell{3})==0;
79 end

80

81 %%%%%%%%%%% Collisions between three waveforms (A-B-C, A-B-D, etc)
82 if (val==4 || val ==5)

83 for i=l:iter-2

84 for j=i+l:iter-1

85 for k = j+l:iter

86 index = index + 1;

87 rest_cell{index}=state cell{i}+state_cell{j}+...
88 state_cell{k};

89 rest_cell{index}=rest_cell{index}==0;

90

91 collision.cell{index}=...

92 state_cell{i}+state_cell{j}+state_cell{k};
93 collision_cell{index}=collision_cell{index}==3;
94

95 f list = [freq(i), freq(]j),freq(k)1;

96 min_freg(index) = min(f_list);

97 str.array{index}=...

98 sprintf ('$dHz, %$dHz, S%$dHz', freqg(i), freqg(j),freqg(k));
99 end

100 end
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end

end

if val==
index = index+1;
flist = [freq(i), freq(j),freq(k)]1;
min_freg(index) = min(f_list);

str_array{index}=sprintf ('All Four');
collision_cell{index}=...

(state_cell{l}+state_cell{2}+state cell{3}+statecell{4})==4;

rest_cell{index}=...

(state_cell{l}+state cell{2}+state cell{3}+state_cell{4})==0;

end

$%%%%%%%%%% Collisions between four waveforms (A-B-C-D, A-B-D-E,
etc)

if val==5

for i=l:iter-3
for j=i+l:iter-2
for k = j+l:iter-1
for 1 = k+l:iter
index = index + 1;
rest_cell{index}=state_cell{i}+...
state_cell{j}+state_cell{k}+state_cell{l};

rest_cell{index}=rest_cell{index}==0;

collision._cell{index}=state_cell{i}+...
state_cell{j}+state_cell{k}+state_cell{l};
collision._cell{index}=collision_cell{index}==4;

f list = [freq(i),freq(j), freqgq(k), freqgq(l)];

min_freqg(index) = min(f_list);

str.array{index}=sprintf ('%dHz, %dHz, %dHz,
%dHz', ...
freq(i), freq(j),freq(k), freq(l));

end
end
end

$%%%%%%%%%% Collisions between all five waveforms

index=index+1;

f list = [freq(i),freq(j), freq(k),freg(l)];

min_freg(index) = min(f_list);

str_array{index}=sprintf ('All Five');

collision_cell{index}=(state_cell{l}+state.cell{2}+...
state_cell{3}+state_cell{4}+state_cell{5})==5;

rest_cell{index}=(state_cell{l}+state_cell{2}+...
state_cell{3}+state.cell{4}+state_cell{5})==0;

clear index;

end

%% Plot Waveforms

if disp.status(l)==1
figure
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hold on
for i=l:iter
plot (t, p-cell{i}+y offset (i));
str = sprintf('f = %d Hz, PW = %d us',freqgq(i), srcpw(i));
text (led4, y.offset (i)+src_amp(i)+3, str, 'Color', 'k'");
end
hold off

xlabel ("time (\mus)');
ylabel ('Amplitude');
title(sprintf ('Re-charging - x%.1f, Shorting - x%.1f',...
recharge_factor, shorting_factor));
end

%% Plot Collisions
if disp_status(3)==
figure
hold on
for i = l:collision_combinations
plot (t,collision_cell{i}+i*2,'r");
str = sprintf('%s colliding',str_array{i});
text (led4, 2+i+1.5, str, 'Color', 'k');
end
hold off

switch val
case 2
ylim([1.5 3.5]);
case 3
ylim ([0 117]);
case 4
ylim ([0 25]);
case 5
ylim ([0 561);
end
end

%% Create a data table
if disp.status(2)==
percentage_waiting = zeros(l,collision_combinations);
no_of_collisions = zeros(l,collision_combinations);
percentage_collisions = zeros(l,collision_combinations);
for i=l:collision_combinations
percentage_waiting (i)=sum(rest_cell{i}) /...
length(rest_cell{i})*100;

if length(strfind(collision_cell{i}, [1 01)) #...
length(strfind(collision_cell{i}, [0 11]))
noof_collisions (i) = length...
(strfind(collision.cell{i}, [0 11))+1;
else
no_.of_collisions (i) = length...
(strfind(collision_cell{i}, [0 11));
end
percentage_collisions (i) = no-of_collisions(i)/...
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207 (min_freg (i) *timexle-6)+100;

208 end

209

210 percentage_waiting = percentage_waiting';

211 no_of_collisions = no.of_collisions';

212 percentage_collisions = percentage._collisions’';

213 total_collisions = sum(no_of_collisions);

214

215 data=[percentage_waiting,no_of_collisions,percentage_collisions];
216 cnames={'%No Pulse', '# Collisions','$% Collisions'};
217

218 switch val

219 case 2

220 xPos = 440;

221 yPos = 440;

222 tableH = 40;

223 tableW = 337;

224

225 case 3

226 xPos = 440;

227 yPos = 440;

228 tableH = 90;

229 tableW = 337;

230

231 case 4

232 xPos = 440;

233 yPos = 300;

234 tableH = 220;

235 tableW = 405;

236

237 case 5

238 xPos = 440;

239 yPos = 150;

240 tableH = 490;

241 tableW = 470;

242 end

243

244 f=figure ('Position', [xPos yPos tableW tableH]);

245 t = uitable(f, 'Position', [0.1 0.1 1.9 0.9],'Data', ...
246 data, 'ColumnName', cnames, 'RowName', str_array) ;
247 tableextent = get (t, 'Extent');

248 oldposition = get(t, 'Position');

249 newposition = [oldposition(l) oldposition(2)...

250 tableextent (3) tableextent (4)];

251 set (t, 'Position', newposition);

252

253 fprintf ('Total Collsions = %d\n',total_collisions);
254 fprintf (['NOTE: Percentage collision is a worst case number,'...
255 ' where\npercentage_collision ='...

256 ' no.of_collisions/no_of_pulses_from_loweset_'...
257 'frequency*100\n']);

258

259 end

260 end
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3. wave_gen.m

© 0 N O O W N
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26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

function [ wave, wave_state, time ] = wave_gen( src_pw,
int_delay, sink_pw, sink_amp, short, freq, T)

use all the input variables in micro seconds
make smallest time unit to 5Sus

o o oo

all the other parameters will be multiples of 5

dt = 10;

t_pulse = le6/freq;

t = 0:dt:t_pulse;

pulse = zeros(l,length(t));

pulse_state keeps the record of the state of the pulse
1000 - charge

1100 - inter pulse delay

1200 - recharge

1300 - shorting

-111 - wait

pulse_state = zeros(l,length(t));

0% o0 o0 o0 o oP

tl = src_pw;

t2 = tl1 + int_delay;
t3 = t2 + sink_pw;
t4 = t3 + short;

for i=1l:1length(t)
if (ixdt<tl)
pulse (i) = src_amp;

pulse_state (i) = 1000;
elseif (i*xdt<t2)

pulse (i) = 0;

pulse_state (i) = 1100;

elseif (ixdt<t3)
pulse (i) = -sink_amp;

pulse_state (i) = 1200;
elseif (i+xdt<td)
pulse (i) = 0;
pulse_state (i) = 1300;
else
pulse (i) = 0;
pulse_state (i) = -111;
end
end
time = 0:dt:T;
wave = zeros(l,length(time));
wave_state = zeros(l,length(time));

for i=l:length(time)
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52
53
54
55
56
57
58
59 end

end

index = mod (i, length(pulse));
if index == 0
index = length (pulse);

end
wave (1) = pulse (index);
wave_state (i) = pulse_state (index);
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Appendix C: Matlab Programs Used for Optimization

1. random_search.m
The program that performed random search optimization.

1

© 00 N O Otk W N

W W W W W W W W NDNDNIDNIDNDDNDDNDINDNRFRRFR B B B R B B B &
N O Ot R WN RO © 0N WN RO O 00NNt WN RO

function HH_simulate (alpha_-mins, alpha_maxs, beta_mins,

betamaxs, ...
n_plots, data.option.val,

$Constants set for all Methods
Cm=0.01; Membrane Capcitance uF/cm”2
dt=0.04; Time Step ms

t=0:dt:200; %Time Array ms

o
o
o
o

$ Define stimulus
I=zeros (l,length(t));
I(round(length(I)=*0.1) :end)=1le-1;

ENa=55.17; % mv Na reversal potential
EK=-72.14; % mv K reversal potential
E1=-49.42; % mv Leakage reversal potential

gbarNa=1.2; % mS/cm”2 Na conductance
gbarkK=0.36; % mS/cm”2 K conductance
gbarl=0.003; % mS/cm”2 Leakage conductance

[}

% V(1)=-60; % Initial Membrane voltage

%% Known working Parameters

working_vals_.ah = [0.07,-0.05,60];
working_vals.am = [0.1,35,1,35,10];
working_vals_.an = [0.01,50,1,50,10];

working_vals_bm [4,-0.0556,60];
working vals_bn = [0.125,60,80];
working_vals.bh = [1,1,0.1,30];

%% File save options
if save_checkBox

button = questdlg('Save the output plots in default folder?'

if strcmp (button, 'Yes')

disp('Plots will be saved in the default directory');

disp('../Figures/"
ff = pwd,
if —exist ('Figures', 'dir'")

oo
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38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
e
78
79
80
81
82
83
84
85
86
87
88
89
90

else

end

if —exist (sprintf('%s\\%s',£f, 'Figures'),'dir")
mkdir ('Figures');

end
folder =

elseif strcmp (button ,

folder =

else

[)

'Figures';

"No')

uigetdir;
disp('Plots will be saved in the specified directory');
disp (folder);

S uiwait (msgbox ('No plots will be saved',6'',
continue_choice =

'error'))

you wish to continue?', ...

'Warning', ...
'Yes', 'No', 'No"');

if strcmp (continue_choice, "No')

retur
end
end;

button =

n

'Cancel’;

if data-option.val ==
and Max values for variable

o9

3% Alphas - Min

alpha_h_amin =

alpha_h_a_max

alpha_h_b_min
alpha_h_b_max

alpha_h_c.min
alpha_h_c_max

alpha_m_a_min
alpha_m_a_max

alpha_m_ b_min
alpha_m_b_max

alpha_-m_c_min
alpha_m_c_max

alpham.d.min
alpha_m_d_max

alpha_m_e_min
alpha_m_e_max

alpha_n_a_min
alpha_n_a_max

alpha_n_b_min
alpha_n_b_max

alphamins (1) ;
alphamaxs (1) ;

alphamins (2);
alpha_maxs (2);

alphamins (3);
alpha maxs (3);

alpha_mins (4);
alpha_maxs (4);

alpha mins (5);
alpha-maxs (5);

alpha_mins (6);
alpha_maxs (6);

alpha mins (7);
alphamaxs (7);

alpha_mins (8);
alpha_maxs (8);

alpha_mins (9);
alpha_maxs (9);

alphamins (10);
alpha maxs (10);
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92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

alpha_n_c.min
alpha_n_c_max

alpha_.n.d.min =

alpha_n_d._max

alpha_n_e_min
alpha_n_e_max

%% Betas - Min
= beta_mins (1);
= beta_maxs (1) ;

beta_h_a_min
beta_h_a_max

beta_h_b_min
beta_h_b_max

beta_h_c_min
beta_h_c_max

beta_h_d_min
beta_h_d.max

beta_m_a_min
beta_m_a_max

beta_m_b_min
beta_m_b_max

beta_m_c_min
beta_m_c_max

beta_n_a_min
beta_n_a_-max

beta_n_b_min
beta_n_b_max

beta_.n_c_min
beta_n_c_max

$% Alphas - Min
alpha_h_amin =

alpha_h_a_max

alpha_h_ b_min
alpha_h_b_max

alpha_h_c.min
alpha_h_c_max

alpha_m_a_min
alpha_m_a_max

alphamins (11);
alphamaxs (11);

alphamins (12);
alphamaxs (12);

alphamins (13);
alphamaxs (13);

and Max values for variable

= beta_mins (2);
= beta_maxs (2);

= beta-mins (3);
= beta_maxs (3);

= beta_mins (4);
= beta_maxs (4);

= beta_mins (5);
= beta_maxs (5);

= beta_mins (6);
= beta_maxs (6);

= beta_mins (7);
= beta_maxs (7);

= beta_mins (8);
= beta_maxs (8);

= beta_mins (9);
= beta_maxs (9);

= beta-mins (10);
= beta_maxs (10);

elseif data_option_val ==
and Max values

alphamins (1)
alphamins (1)

alpha_mins (2);
alpha_mins (2);

alpha_mins (3);
alpha_mins (3);

alpha_mins (4);
alpha mins (4);
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145 alphamb.min = alphamins (5);
146 alpha_-m_b_.max = alpha-mins (5);
147

148 alpham_cmin = alphamins (6);
149 alpha_m_c.max = alpha-mins (6);
150

151 alpha_m_.d.min = alpha-mins(7);
152 alpha_.m_d.max = alphamins (7);
153

154 alpham_emin = alphamins (8);
155 alpha_m_e.max = alpha-mins(8);
156

157 alpha_n_.a.min = alpha-mins (9);
158 alpha_-n_a.max = alpha-mins (9);
159

160 alpha_nb.min = alphamins (10);
161 alpha-n.b_max = alphamins (10);
162

163 alpha_.n.cmin = alphamins (11);
164 alpha_n_.cmax = alphamins (11);
165

166 alpha-n.d.min = alphamins (12);
167 alpha_-n.d.max = alphamins (12);
168

169 alpha_n_emin = alphamins(13);
170 alpha_n_emax = alphamins (13);
171

172 %% Betas - Min and Max values for variable
173 beta_h_a.min = beta_mins (1l);

174 beta_h_a_-max = beta_mins (1);

175

176 beta_h_b_min = beta_mins (2);

177 beta_h_b_.max = beta_mins (2);

178

179 beta_h_c_min = beta_mins (3);

180 beta_h_c_.max = beta_mins (3);

181

182 beta_h_.d.min = beta_mins (4);

183 beta_h_.d_.max = beta_mins (4);

184

185 beta_.m_a.min = beta_mins (5);

186 beta_.m_a_.max = beta_mins (5);

187

188 beta.m_b.min = beta_mins (6);

189 beta_.m_b_max = beta_mins (6);

190

191 beta_.m_c.min = beta_mins (7);

192 beta_.m_c_max = beta_mins (7);

193

194 beta_.n_.a.min = beta_mins (8);

195 beta_n_a_.max = beta_mins (8);

196

197 beta_.n_b_min = beta_mins (9);

198 beta_.n_b_.max = beta_mins (9);
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199

200 beta_.n.c.min = beta.mins (10);

201 beta_n_c_max = beta_.mins (10);

202 end

203

204 %% setting up alpha_h variables

205 alpha_h_.a = (alpha_h_a.max - alpha_h_a_-min).*rand(n_plots,1)
+ alpha_h_a_min;

206 alpha_h b = (alpha_-h_.b.max - alpha_h_b_min).xrand(n_plots,1)
+ alpha_h b.min;

207 alpha_h.c = (alpha_h_ cmax - alpha_h_c.min).*rand(n_plots,1l)
+ alpha_h_c.min;

208 a-h_vals = [alpha_h_a,alpha_h.b,alpha_h_c];

209

210 %% setting up alpha.m variables (TO EDIT)

211 alpham.a = (alpha.m_amax - alpham_a.min).*rand(n_plots,1l)
+ alpha-m_a_min;

212 alpha.m.b = (alpha.m_b.max - alpha-m_b_min).xrand(n_plots,1)
+ alpha_m_b_min;

213 alpham.c = (alpha.m_.c.max - alpha-m_c_min).xrand(n_plots,1l)
+ alpha_m_c_min;

214 alpham.d = (alpha.-m_.d.max - alpha-m_.d.min).*rand(n_-plots,1l)
+ alpha_m_d-min;

215 alpha.m_e = (alpha.m_e_max - alpha.m_e_min).*rand(n_plots,1)
+ alpha_m_e_min;

216 am_vals = [alpham.,a,alphamb,alpham.c,alpham.d,alphame];

217

218 %% setting up alpha.n variables (TO EDIT)

219 alpha_.n.a = (alpha_-n.a.max - alpha-n_a_-min).xrand(n_plots,1)
+ alpha_n_amin;

220 alphanb = (alpha-n.b.max - alpha_-n_b_min).xrand(n_plots,1)
+ alpha_n b.min;

221 alpha-n.c = (alpha-n.c.max - alpha.-n_.c.min).*rand(n_-plots,1)
+ alpha_n_c_min;

222 alpha.n.d = (alpha.n.dmax - alpha.n.dmin).*rand(n_plots,1)
+ alpha_n_.d.min;

223 alpha.n_e = (alpha.n.emax - alphan_e.min).*rand(n_plots,1l)
+ alpha_-n_e_min;

224 a-n.vals = [alpha-n_a,alpha-n.b,alphan._c,alpha-n.d,alpha-n_e];

225

226 %% setting up beta_m variables

227 beta.m_a = (beta.m_a.max - beta_.m_a_min).*rand(n_plots,l) +
beta_m_a_min;

228 beta.m.b = (beta.m_b.max - beta-m_b_min).*rand(n-plots,1l) +
beta_m_b_min;

229 beta.m_.c = (beta.m_c.max - beta.m_.c.min).*rand(n_.plots,1l) +
beta_m_c_min;

230 b_m_vals = [beta_m_a,beta_m_b,beta_m_c];

231

232 %% setting up beta.n variables

233 beta.n.a = (beta.n_.a.max - beta_.n.a.min).*rand(n_.plots,1l) +
beta_n_a_min;

234 beta.n.b = (beta.n.b.max - beta.n b min).*xrand(n.plots,l) +

beta_-n_.b_min;
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00

o
o

beta.n.c = (beta.n_.c.max - beta.n_c_.min).*rand(n_plots,1l) +
beta_n_c_min;
b_n.vals = [beta_n_a,beta_.n_b,beta.n_c];

$% setting up beta_h variables

beta_h.a = (beta_h_a.max - beta_h_amin).*rand(n.plots,1l) +
beta_h_a_min;

beta_h.b = (beta_h_b.max - beta_h_.b_.min).*rand(n_.plots,1l) +
beta_h_b_min;

beta_h_.c = (beta_h_.c.max - beta_h_c_.min).*rand(n_plots,l) +
beta_h_c_.min;

beta_h.d = (beta_h.d.max - beta_h_.d.min).*rand(n_plots,l) +
beta_h_d_min;

b_h_.vals = [beta_h_a,beta_h_b,beta_h_c,beta_h_d];

create a waitbar if number of plots is larger than 5

if nplots > 5

end

Q

0

wb = waitbar (0, 'Simulating and

plotting...', 'CreateCancelBtn’,
'setappdata (gcbf, ''Cancel'', 1) ");
set (wb, "Name', "HH simulator: Progress', 'WindowStyle', 'modal');
% setappdata (wb, 'Cancel', 0)
frames = java.awt.Frame.getFrames/();

frames (end) .setAlwaysOnTop (1) ;

fig_.index = 0;

for

)

ki = l:nplots % 1lst value of the "ah" equation

% update waitbar
if exist('wb', 'var')
waitbar (ki/n_plots);
if getappdata (wb, "Cancel')

break;

end
end
V(1l)=-60;
temp_vals_ah = [a_h_vals (k ,1) a_h_vals(ki,2),a_-h_vals (ki, 3)]1;
temp_vals_.am = [a.m_vals(ki,1l),am.vals(ki,2),amvals(ki,3),...
am_vals (ki,4),a-m_vals (ki, 5)],
temp_vals_.an = [a-n_vals(ki,1l),a-n-vals(ki,2),a-n-vals (ki,3),
an_vals(ki,4),a.n_vals (ki, 5M

4

temp_vals_bm = [b.m_vals(ki,1l),bmvals(ki,2),b.mvals(ki,3)];

temp_vals_bn = [b.n_vals(ki,1l),b.nvals(ki,2),b.nvals(ki,3)];
temp_vals_bh =

[b_h_ vals(kl 1) b_h_vals (ki,2),b_h_vals (ki,3),b_h_vals(ki, 4)];

m(l)=am(temp_vals_am,V(1l))/ (am(temp_vals_am,V(1l))+...

)
bm(temp_vals bm,V(1l))); % Initial m-value
n(l)=an(temp-vals_an,V(l))/(an(temp-vals_an,V(1l))+...
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nitial n-value

bn(temp_vals bn,vV(1l))); 5 I
V(1l))/(ah(temp_vals_ah,V(1l))+
)i 5 I

)
h(l)=ah(temp-vals_ah,
)

bh (temp_vals_bh,V(1l)) nitial h-value

%% Runge—-Kutta Method

V(l)=-61; % Initial Membrane voltage

m(l)=am(temp_vals_am,V(1l))/(am(temp_vals_am,V(1l))+
bm(temp_-vals_bm,V(1l))); Initial m-value
n(l)=an(temp_vals_an,V(l))/(an(temp_vals_an,V(l))+...

h(l)=ah(temp_vals_ah,V(l))/(ah(temp_vals_ah,V(1l))+

)
bn(temp_-vals_bn,V(1l))); % Initial n-value

)
bh(temp_vals_bh,V(1))); %

Initial h-value

len = length(t);
current = le-1;

[o)

for i=l:len-1 % Loop through each step until time is finished
% disp (i) ;
%4 step method of Runge-Kutta
Kl=dt+HH (i, i, len,current, [V(i); n(i); m(i); h(i)]l, ...
temp_vals_ah, temp_vals_am, temp_vals_an,temp_vals_bh,
temp_vals_bm, temp_-vals_bn);
% obtain 4 k variables (V,m,n,h) from HH function
k1=K1(1,1);nl=K1(2,1);ml=K1(3,1);hl1=K1(4,1);
K2=dt+HH (i, i+ (0.5%dt), len, current, [V(1i)+(0.5xk1l);n(i)+...
(0.5*nl);m(1)+(0.5+ml) ;h(i)+(0.5xhl) ], temp_vals_ah,
temp_vals_am, temp_vals_an, temp_vals_bh,temp_vals_bm, ...
temp_vals_bn);
k2=K2 (1,1) ;n2=K2(2,1);m2=K2(3,1);h2=K2 (4,1);
K3=dt+HH (i, i+ (0.5*dt), len, current, [V(i)+(0.5xk2);n(i)+...
(0.5*n2) ;m(1)+(0.5+«m2) ;h(1i)+(0.5xh2) ], temp_vals_ah,
temp_vals_am, temp_vals_an, temp_vals_bh,temp_vals_bm, ...
temp_vals_bn);
k3=K3(1,1);n3=K3(2,1);m3=K3(3,1),;h3=K3(4,1);

K4=dt+HH (i, i+dt, len, current, [V(i)+k3;n (i) +n3;m(i)+m3;h (i) +h3],

temp_vals_ah, temp_vals_am, temp_vals_an,temp_vals_bh,
temp_vals_bm, temp_vals_bn);

k4=K4 (1,1);n4=K4(2,1),;m4=K4(3,1);h4=K4 (4,1);

%create next step for each variable
V(i+1)=V(i)+1/6% (k1+2xk2+2+xk3+k4);

n(i+l)=n(i)+1/6x (nl+2xn2+2%«n3+n4);
m(i+1l)=m(i)+1/6x (m1+2+m2+2*m3+m4) ;
h(i+1)=h(i)+1/6x (hl1+2xh2+2xh3+h4);

end

%set variables for graphing later

RK=V;

RKm=m;

RKn=n;

RKh=h;

clear V.m n h;
% Plots

Plot the functions
if fig_.index ==
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336 figure;

337 end;

338 fig_.index = fig_.index + 1;

339 subplot (1,15,1:11)

340 plot (t,RK);

341 hold on;

342 plot (t,I*100);

343 hold off;

344

345 xlabel ('Time (ms)');

346 ylabel ('Voltage (mV)"'");

347 title('Voltage Change for Hodgkin-Huxley Model');

348

349 y_-lim = get(gca, 'ylim');

350 y_text = y lim(l)+((y_-lim(2)-y_1lim(1l))*0.92);

351 text (10, y_text,sprintf('\\alpha h = %.2f * exp(%.2f (v +
$.28)) "', ...

352 temp_vals_ah(l),temp_-vals_ah (2),temp_-vals_ah(3)));

353

354 y_text = y lim(1l)+((y_-1lim(2)-y_1im(1))*0.88);

355 text (10, y_text,sprintf('\\alpham = %.2f * (v + %.2f)/(%.2f
- exp(—(v + %.2f)/%.2f))"

356 temp_vals_am(l), temp-vals_am(2), temp-vals_am(3), ...

357 temp_vals_am(4),temp_-vals_am(5)));

358

359 y_text = y lim(l)+((y_lim(2)-y_1lim(1l))*0.84);

360 text (10, y_text,sprintf('\\alphan = %.2f (v + %.2f)/(%.2f -
exp(—(v + $.2f)/%.2f)) "', ...

361 temp_vals_an(l),temp-vals_an (2),temp_vals_an(3), ...

362 temp_vals_an (4),temp_-vals_an(5)));

363

364 y_text = y lim(1l)+((y_lim(2)-y_1im (1)) *0.80);

365 text (10, y_-text,sprintf ('\\betam = %$.2f * exp(%.2f * (v +
$.28)) "', ...

366 temp_vals_bm(l),temp_-vals_bm(2),temp_-vals_bm(3)));

367

368 y_text = y lim(1l)+((y_lim(2)-y_1im (1)) *0.76);

369 text (10, y-text,sprintf ('\\betan = %$.2f * exp(-(v +
$.2f)/%.2£) ", ...

370 temp_vals_bn(l),temp_-vals_-bn (2),temp_-vals_bn(3)));

371

372 y-text = y lim(1l)+((y-1im(2)-y_1im(1l))=*0.72);

373 text (10, y_text, sprintf ('\\beta h =
$.2f/ (%.2f+exp (- (%.2f) » (v+%.2f))) "', ...

374 temp_vals_bh(l),temp-vals_-bh (2),temp_-vals_bh(3), ...

375 temp_vals_bh(4)));

376

377 set (gcf, 'Units', '"normalized', 'Position', [0.05 0.1 0.90 0.7571);

378

379 %% Plot the Data table

380 fig = gcf;

381 set (fig, '"PaperUnits', '"inches')

382

383 data_vals = padcat (working_vals_ah, temp_vals_ah,
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working.vals_am, ...

temp_-vals_am, working_vals_an, temp.-vals_an, working_-vals_bh, ...

temp_vals_bh, working_vals_.bm, temp_vals_bm,
working_.vals_bn, temp_vals_bn);
create_table(fig,data_vals)

%% Save Plot
if —strcmp (button, 'Cancel')
print (fig, sprintf ('%s\\%s_Fig_%d', folder, ...
datestr (now, 'dd-mmm-yyyy HH-MM-SSAM'"), fig_index), ...
'-dpng', '-r0")
end
end
if exist('wb', 'var'")
delete (wb) ;
end
return;

%% Functions
function a=ah(vals,v) $%Alpha value for variable h
a=vals (1) xexp (vals (2) x (vtvals(3)));

function a=am(vals,v) $Alpha for Variable m
a=vals (1)« (v+tvals (2))/ (vals(3)—-exp (- (v+vals (4))/vals(5)));

function a=an(vals,v)%Alpha for variable n
a=vals (1)« (vtvals(2))/ (vals(3)-exp (- (v+vals (4))/vals(5)));

function b =bh(vals,v) S%beta value for variable h
b=vals(1l)/ (vals (2)+exp (- (vals(3))*(v+tvals(4))));

function b=bm(vals,v) %Beta for variable m
b=vals (1) xexp (vals (2)* (vtvals(3)));

function b=bn(vals,v) %Beta for variable n
b=vals (1) xexp (- (v+vals (2)) /vals(3));

function dydt = HH(index, i, len,current,y,temp_vals_ah, ...
temp_vals_am, temp_-vals_an, temp_-vals_bh, temp_-vals_bm, temp_-vals_bn)
% Constants

ENa=55.17; % mv Na reversal potential

EK=-72.14; % mv K reversal potential

E1=-49.42; % mv Leakage reversal potential

gbarNa=1.2; % mS/cm”2 Na conductance

gbarkK=0.36; % mS/cm”2 K conductance

gbarl=0.003; % mS/cm”2 Leakage conductance

’

o oo

I = 0.1; %$Applied Current
disp (1)

I=zeros (1, len);
I(round(length(I)«*0.1) :end)=current;
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Cm = 0.01;
vV o=y(1l);
n = y(2);
m = y(3);
h = y(4);

%$Membrane Capacitance

Values set to equal input values

gNa=gbarNa*m~3*h;
gK=gbarK+n"4;

gl=gbarl;

INa=gNax* (V-ENa) ;
IK=gKx (V-EK) ;
Il=glx (V-E1l);

%$Hodgkin-Huxley Model Equation

dydt =

[((1/Cm)* (I(index) - (INa+IK+I1l)));

an(temp_-vals_an,V)* (1l-n)-bn(temp_-vals_bn,V) *n;

am(temp-vals_am,V
ah (temp-vals_ah,V

(
(

1-m) -bm(temp_-vals_bm,V)*m;
1-h)-bh(temp_-vals_bh,V) xh]

) *
) *

function create_table (f, data)

t_ah = uitable('Parent', £, 'Position', [1200
t_am = uitable('Parent', £, 'Position', [1100
t_an = uitable('Parent', f, 'Position', [1230
t_bh = uitable('Parent', £, 'Position', [1230
t_bm = uitable('Parent', £, 'Position', [1230
t_bn = uitable('Parent', £, 'Position', [1230
set (t_ah, 'Data', data(l:2,:));

set (t_ah, 'RowName', {'a_h','a_h_rand'});

set (t_am,
set (t_.am,

set (t_an,
set (t_an,

'Data', data(3:4,
'RowName',

)

{"am', 'a.m_rand'});

'Data', data(5:6,:));
'RowName', {'a.n','an_rand'});

set (t_bh, 'Data', data(7:8,:));

set (t_-bh, 'RowName', {'b_h','b_h_rand'});

set (t_bm, 'Data', data(9:10,:));

set (t_-bm, 'RowName', {'b.m','b.m.rand'});

set (t_bn, 'Data', data(l1:12,:));

set (t_-bn, 'RowName', {'b.n','b.n.rand'});
foregroundColor = [1 1 1];

backgroundColor = [0 .6 0;0.6 0 0];

set (t_ah, 'ForegroundColor', foregroundColor);
set (t_.am, 'ForegroundColor', foregroundColor);
set (t_.an, 'ForegroundColor', foregroundColor);
set (t_-bh, 'ForegroundColor', foregroundColor);
set (t_bm, 'ForegroundColor', foregroundColor);
set (t_-bn, 'ForegroundColor', foregroundColor);
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490
491 set (t-ah, 'BackgroundColor',backgroundColor);
492 set (t_am, 'BackgroundColor',backgroundColor);
493 set (t_-an, 'BackgroundColor',backgroundColor);
(
(
(

494 set (t_bh, 'BackgroundColor',backgroundColor);
495 set (t_bm, 'BackgroundColor',backgroundColor);
496 set (t_-bn, 'BackgroundColor',backgroundColor);

2. init_population.m
The program used to initialize the population with randomly generated chromosomes.

1 clear init_pop fitness_vals;

2 clc;

3 %%

4 set_save_dir;

5

6 global old.min;

7 old.min = 1el0;

8 loop._count = 0;

9 error_tolerence = leb;

10

11 while old.min > error_tolerence

12

13 loop_count = loop_count + 1;

14 fprintf ('Loop %d\n', loop_count) ;

15

16 max_limits = [0.1, 0.3, 44, -0.1, 40, 4, 50, 15, 0.2, 40,...

17 -2, 60, 15, 6, 0.2, 55, 2, 70, 95, 2, 3, 2, 45 0.3 2 2 21;

18 minlimits = [-0.1, 0.1, 38, -0.2, 20, -4, 20, 5, -0.2, 30,...

19 -3, 40, 8, 4, -0.2, 50, O, 50, 85, -2, 1.5, -2, 35 0.0 -2
-2 -21;

20

21 num_var = 27;

22 pop-size = 200;

23 init _pop = zeros(pop-size,num_var);

24

25 for i=l:num_var

26 romin = min_limits(1i);

27 r.max = max_limits (i);

28

29 r = (r.max-r-min) .xrand(pop-size,l) + r_min;

30

31 init_pop(:,1) = r;

32 end

33

34 %%

35

36 pop-size = length(init_pop);

37 fitness_vals = zeros(pop.size,l);

38
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47 end

for i=l:pop.size

fitness_vals (i) =

end

init_range_min =
init_range_max =

num._var =

3. HH_solve.m
The program used to solve the HH model.

© 00 N O O W N

W W W W W W W W NDNDDNDDNDDNIDNIDNDIDNDNRR R B B B B B
N O O R W RO © 000Ut RWN RO OO Ot W N RO

function

[}

o

dt=0.04;

t=0:dt:200;

init_potential

%% setting up alpha_-h variables

alpha_h_a
alpha_h_ b
alpha_h_c
a-h_vals

%% setting up alpha-m variables

am_vals

2

[RK, t] =

7;

= -65;

%$Time Array ms

= alphas(l);
alphas (2);
alphas (3);
[alpha_h_a,alpha_h.b,alpha_h_c];

alphas (4);

alphas
alphas
alphas

alphas
[alpha

alpham_.e,alpham_f];

%% setting up alpha.-n variables

alpha_n_a
alpha_n_b
alpha_n_c
alpha_n_d
alpha_n_e
alpha_n_f
a-n_.vals

alphan_e,alpha-n_f];

%% setting

beta_m.a
beta_m_b
beta_m_c
b_m_vals

alphas (1
alphas (
alphas (
alphas (
alphas (
alphas (

(5) 7
(6);
(7);
alphas (8);
(9);
_m_a,

11
12
13
14
15

14
4
4
14

14

0)7
)i
)i
)i
)i
)i

GA_HH_fitness_NEW (init_pop (i,

14

4

14

14

4

min(init_pop);
max (init_pop);

GA_HH_simulate (alphas,
Time Step ms / Change this to 0.1 for IZ and 0.04 for HH

betas,

(TO EDIT)

(TO EDIT)

)

current)

alpha-m.b,alpha-m_c,alpha-m_d,

[alpha_-n_a,alpha-nb,alpha-n.c,alpha-n_d,

up beta_m variables

betas (1) ;

= betas (2);

betas (3);

[beta_m_a, beta_m_b,beta_m_c];

156



38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91

%% setting up beta.n variables
beta_n_a = betas(4);
beta_n_b = betas (5);
beta_n_c = betas(6);
b_n_vals = [beta_n_a,beta_n_b,beta_.n_c];
%% setting up beta_h variables
beta_h_a = betas(7);
beta_h_b = betas (8);
beta_h_c = betas(9);
beta_h_d = betas (10);
beta_h_e = betas(1l1l);
b_h_.vals = [beta_h_a,beta_h_b,beta_h_.c,beta_h_d,beta_h_e];
V(l)=init_potential;
temp_vals_ah = [a_h_vals(l),a-h.vals(2),a_-h_-vals (3)];
temp_vals_.am = [a.m_vals(l),amvals(2),am.vals(3),...
a.m_vals (4),a-m_vals (5), a-m_vals (6)];
temp_vals_an = [a-n_-vals(l),a-n-vals(2),a-n-vals(3),...
a.n_vals (4),a-n_.vals(5), a.-n_.vals(6)];
temp_vals_.bm = [b.m_vals(l),b.mvals(2),bmvals(3)];
temp_vals_bn = [b.n_vals(l),b.nvals(2),b.nvals(3)];
temp_vals_bh = [b_h_vals(l),b_h vals(2),b_.h.vals(3),...
b_h_vals (4),b_h_vals (5)];
m(l)=am(temp_vals_am,V(1l))/ (am(temp_vals_am,V(1l))+...
bm(temp_vals bm,V(1l))); % Initial m-value
n(l)=an(temp_vals_an,V(l))/(an(temp_vals_an,V(1l))+...
bn(temp-vals_bn,V(1l))); % Initial n-value
h(l)=ah(temp_vals_ah,V(l))/ (ah(temp_vals_ah,V(1l))+...
bh (temp_vals_bh,V(1l))); % Initial h-value
%% RK4 Method
V(l)=init_potential; % Initial Membrane voltage
m(l)=am(temp_vals_am,V(1l))/(am(temp_vals_am,V (1)) ...
t+tbm(temp_vals_bm,V(1l))); % Initial m-value
n(l)=an(temp_vals_an,V(l))/(an(temp_vals_an,V(1l))...
+bn(temp_vals_bn,V(l))); % Initial n-value
h(l)=ah(temp_-vals_ah,V(l))/(ah(temp_-vals_ah,V(1l))...
+bh (temp_-vals_bh,V(1l))); % Initial h-value

len = length(t);

[o)

for i=l:1len-1 % Loop through each step until time is finished

[}

$ disp (i) ;
%4 step method of Runge-Kutta

Kl=dt+HH (i, 1, len,current, [V(1i); n(i); m(i); h(i)], ...
temp_vals_ah, temp_vals_am, temp_vals_an, temp_-vals_bh, ...

temp_-vals_bm, temp-vals_bn);
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92 k1=K1(1,1);nl=K1(2,1);ml=K1(3,1);hl1=K1(4,1);

93 K2=dt+HH (i,1i+(0.5%dt), len,current, [V(i)+(0.5%xk1l); ...

94 n(i)+(0.5+*nl);m(i)+(0.5*xml);h(i)+(0.5%hl)],temp_vals_ah, ...
95 temp_vals_am, temp_vals_an, temp_vals_bh,temp_vals_bm, ...

96 temp_vals_bn);

97 k2=K2 (1,1);n2=K2(2,1);m2=K2(3,1);h2=K2 (4,1);

98 K3=dt+HH (i,1i+(0.5%dt), len,current, [V(i)+(0.5%xk2); ...

99 n(i)+(0.5*n2);m(i)+(0.5xm2);h (i) +(0.5%h2)],temp_vals_ah, ...
100 temp_vals_am, temp_vals_an, temp_vals_bh,temp_vals_bm, ...

101 temp_vals_bn);

102 k3=K3(1,1);n3=K3(2,1);m3=K3(3,1);h3=K3(4,1);

103 K4=dt+HH (i, i+dt, len, current, [V(i)+k3;n (i) +n3;m(i)+m3;h (i) +h3], ...
104 temp_-vals_ah, temp_-vals_am, temp_vals_an, temp_-vals_bh, ...

105 temp_vals_bm, temp_-vals_bn);

106 k4=K4 (1,1);n4=K4(2,1);m4=K4(3,1);h4=K4 (4,1);

107 $create next step for each variable

108 V(i+1)=V(i)+1/6% (k1+2xk2+2xk3+k4);

109 n(i+l)=n(i)+1/6x (nl+2*n2+2+*n3+n4);

110 m(i+l)=m(i)+1/6* (m1+2+m2+2+m3+m4) ;

111 h(i+1)=h(1)+1/6x (hl+2xh2+2xh3+h4);

112 end

113 %$set variables for graphing later

114 RK=V;

115 RKm=m;

116 RKn=n;

117 RKh=h;

118 clear V m n h;

119

120 function a=ah(vals,v) S%$Alpha value for variable h

121 a=vals (1) xexp(vals (2) « (v+tvals(3)));

122

123 function a=am(vals,v) %Alpha for Variable m

124 a=vals (1) (v+vals(2))/ (vals(3)-vals (6)+exp (- (v+tvals(4))/vals(5)));
125

126 function a=an(vals,v)%Alpha for variable n

127 a=vals (1) (v+vals (2))/ (vals(3)-vals (6) xexp (- (vt+vals (4)) /vals(5)));
128

129 function b =bh(vals,v) %beta value for variable h

130 b=vals(l)/ (vals(2)+vals(5) xexp (- (vals(3)) * (v+tvals(4))));
131

132 function b=bm(vals,v) %$Beta for variable m

133 b=vals (1l) xexp(vals (2) « (v+tvals (3)));

134

135 function b=bn(vals,v) %Beta for variable n

136 b=vals (1) xexp (- (v+vals (2))/vals(3));

137

138 function dydt = HH(index, i, len,current,y, ...

139 temp_vals_ah,temp_vals_am,temp_vals_an,temp_-vals_bh, ...
140 temp_vals_bm, temp_vals_bn)

141 % Constants

142 ENa=55.17; % mv Na reversal potential

143 EK=-72.14; % mv K reversal potential

144 E1=-49.42; % mv Leakage reversal potential

145 gbarNa=1.2; % mS/cm”2 Na conductance

158



146 gbarK=0.36; % mS/cm”2 K conductance

147 gbarl=0.003; % mS/cm”2 Leakage conductance
148

149 I=zeros(l,len);

150 I (round(length(I)=x0.1) :end)=current;

151

152 Cm = 0.01; S%Membrane Capacitance

153 % Values set to equal input values
154 V = y(1);
155 n = y(2);
156 m = y(3);
157 h = y(4);

158 gNa=gbarNa*m~3+h;
159 gK=gbarK+n"4;
160 gl=gbarl;
161 INa=gNax (V-ENa) ;
162 IK=gKx (V-EK) ;
163 Il=gl=*(V-El1);
164
165 $Hodgkin-Huxley Model Equation
166 dydt = [((1/Cm)* (I (index)—- (INa+IK+I1l))); an(temp_vals_an,V)*...
167 (l-n)-bn(temp_-vals_bn,V)*n; am(temp-vals_am,V)*...
168 (1l-m)-bm(temp_vals_bm,V) *m;
ah (temp_-vals_ah,V)x (1-h)-bh(temp_-vals_bh,V)«h];

4. fitness_calculation.m
The main program used to calculate the chromosome fitness.

1
2 function e = GA_HH_ fitness_NEW (HH_param_in)
3 working-vals_ah =
[HH_param_in (01l) ,HH_ param_-in (02), HH_param_in (03) ];
4 working vals_am = [HH_param_in (04),HH_param_in (05), ...
5 HH param_in (06), HH param_in (07), HH param_in (08), HH_param_in (25)1];
6 working_vals_an = [HH._param_in(09),HH param_in (10),...
7 HH_param_in(1l1l), HH_.param_-in (12),HH_param_-in (13),HH_param_-in (26)1];
8 working_vals_bm =

[HH_param_in (14),HH_param_in (15), HH_param_in (16)];
9 working_vals_bn =
[HH param_in(17),HH param_in (18), HH param_in (19)];

10 working.vals_bh = [HH_param_-in (20),HH_param_-in (21), ...

11 HH_param-in (22),HH_param-in (23), HH_param_in (27)1;

12 current = HH_param_in (24);

13

14 5%

15 init_alphas = [working.vals_ah,working.vals_am,working_vals_an];
16 init_betas = [working.vals_bm,working._vals_bn,working_-vals_bh];
17

18 %% Load reference data

19 temp = load('phasic_bursting');
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20 f = fieldnames (temp);

21 AP_IZ = temp. (£{1});

22 % Smoothing Spikes

23 AP_I7Z = smooth(AP_I7Z,10, 'lowess');

24 AP_I17Z = AP_IZ'+5;

25 time_ IZ = temp. (£{2});

26 clear f temp

27

28 global old.minj;

29 global dir;

30

31 %%

32 [AP_HH, time_HH] = GA_HH_simulate(init_alphas,
init_betas, current);

33 e_regular = compute_error (AP_IZ,AP_HH);

34

35 %% Peak error calculation

36 [ymax_HH, imax_HH, ymin_HH, imin_HH] = extrema (AP_HH);

37 [ymax_IZ,imax_IZ,ymin_IZ,imin_IZ] = extrema (AP_I7Z);

38

39 e_max = compute_peak_error (imax_.IZ,ymax_IZ,imax_HH, ...

40 ymax_HH, length (time_I2));

41 e.min = compute_peak_error (imin_-IZ,ymin_IZ,imin_HH, ...

42 ymin_HH, length (time_IZ2));

43

44 %%

45

46 e = e_regular + e_.max + e_min;

47 PER_error = percentage_error (AP_IZ, AP_HH);

48

49 if (e < old.min)

50 old.min = e;

51 figure (123);

52 plot (time_I1Z2, AP_IZ,'r',time_HH,AP_HH, 'b'");

53 title(sprintf ('Fitness = $f (%.2£%%)',e, PER_error));

54

55 fig.path =

sprintf('%s\\intermediate_result_%d-%d.fig',dir, ...

56 round (e), round(PER_error));

57 saveas (123, fig_.path);

58

59 txt_path = sprintf ('%s\\HH param for figures.txt',dir);

60 fID = fopen(txt_path,'a');

61 fprintf (£ID, 'fitness = S%f \tHH Parameters = ',e);

62 fprintf (£ID, '%$f, ',HH_param_-in);

63 fprintf (£ID, "\n');

64 fclose (fID);

65 end

66

67 function e = percentage_error (AP_I1Z, AP_HH)

68 e =((AP_I1Z — AP_HH)* (AP_IZ - AP_HH) ')/ (AP_HH+AP_HH')«*100;

69

70

71 function error = compute_error (AP_IZ, AP_HH)
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72 if max (AP_HH) > 100 || min(AP_HH)< -100

73 error = 1el0;

74 else

75 error = ((AP_IZ—-AP_HH)x* (AP_IZ-AP_HH) '/length(AP_I1Z))."2;
76 end

v

78 function peak._error = compute_peak_error(il,yl,i2,y2,len)

79 compute_peak_error_external (il,yl,12,y2,len);

5. GA_run.m
A template program of the genetic algorithm used to run the simulations.

1 function run_S_GA ()

2 clc;

3 %% Generate (RANDOM) initial population
4 new_init_population_new_data;

5 population = init_pop;

6 clear init_pop;

7

8

9

% Define GA parameters
Elite Count

o° oo

10 EC = 0.1;

11 % Cross Over

12 CoO = 0.7;

13 % stall_generations = 200;

14 fitness_limit = 200;

15

16 fitness_vals = zeros (pop.size,l);

17 stop_.criterion.met = false;

18

19 GA_index = 0;

20

21 while —stop.criterion_met

22 GA_index = GA_index + 1;

23 fprintf ('GA iteration = %d\n', GA_index);

24 %% individual selection

25 nelites = round(pop-size * EC);

26 n_cross_overs = round(pop-sizex (1l - EC)=*CO);

27 n.mutants = pop.size - (n.elites + n_cross.overs);
28

29 if nmutants < 0

30 n_mutants = 0;

31 end

32

33 elites = population(l:n_elites, :);

34 parent_select = randperm(pop.-size, ceil(n.cross_overs=*0.5));
35 parents = population(parent_select, :);

36 mutant_select = randperm(pop-size, ceil (n.mutants=*0.5));
37 mutants = population (mutant_select, :);

38
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39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

% reproduction
Cross—Over

elite_children
regular_children

ceil (n_.cross_overs=*0.5));
ceil(n_cross_overs=0.5));

cross_over (elites,
cross_over (parents,

ceil (n.-mutants*0.5));
ceil (n.-mutants*0.5));

elite_mutants
regular_mutants

mutate (elites,
mutate (mutants,

elite_children;
regular_mutants];

population regular_children; ...

elite_mutants;

temp_length length (population);

if temp_length > pop_size

% population(pop.size+l:end, :) = [];
del = randperm(pop-size, temp_-length-pop-size);
population(del, :) = [];
else
disp ('Population size incorrect');
break;

end

%% Find the fitness
for i=l:pop-size

fitness_vals (i) = GA_HH_ fitness_NEW (population(i,:));
end
data-mat = [population fitness_vals];
[0, col] = size(data_mat);

% Sort the data matrix (in 'DESCENDING' order) by
fitness values
sortrows (data_mat, -col);

%% Check STOP criterion
stop_.criterion_met = check_stop._criterion...
(data_mat, col, fitness_limit);

end

function SCM = check_stop.criterion(data, fitness._col,
fitness_limit)
if data(l, fitness_col) < fitness_limit
SCM = true;

else
SCM = false;
end
function children = cross.over (parents, n_children)
[n.parents, col] = size(parents);
children = zeros(n_.children, col);
index = 0;
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91 while index < n_children

92 parent_select = randperm(n_parents, 2);

93 temp_parents = parents (parent_select, :);

94

95 break_point = randi([l,co0l-1], 1, 1);

96 childl = [temp_parents(l, l:break_point),...
97 temp_parents (2, break_point+l:end)];

98 child2 = [temp_parents (2, l:break_point),...
99 temp_parents (1, break_point+l:end)];

100

101 children (index+1, :) = childl;

102 children (index+2, :) = child2;

103 index = index+2;

104 end

105

106 function children = mutate (parents, n_children)

107

108 [n.parents, col] = size(parents);

109

110 % Selection

111 if n_children < n_parents

112 selection = randperm(n_parents, n-children);
113 children = parents(selection, :);

114 else

115 selection = randperm(n_parents, n_.children - n_parents);
116 children = [parents; parents(selection, :)];
117 end

118

119

120 % Mutation using loops

121 for i = 1l:n_children

122 temp = randi([1l, col],1l);

123 element = children (i, temp);

124 element = (2xelement) .*rand(l,1) - element;
125 children (i, temp) = children(i, temp) + element;
126 end
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