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ABSTRACT 

EXPLORING THE KNOWLEDGE OF ALGEBRA FOR TEACHING 

Jonathan David Watkins 

November 14, 2018 

For the past few decades, researchers in mathematics education have been 

exploring the concept of pedagogical content knowledge (PCK)— or knowledge related 

to teaching content—and applying it to various areas of mathematics, such as algebra.  

Research related to teacher knowledge of algebra is critical because researchers (e.g., 

Hill, Rowan, & Ball, 2005) have found correlations between some types of teacher 

knowledge and student achievement in mathematics; students from around the world are 

outperforming U.S. students on international assessments of mathematics, including 

algebra (Organization for Economic Cooperation and Development, 2014, 2016); and 

algebra plays an integral role in the K-12 mathematics curriculum in the U.S. (National 

Council of Teachers of Mathematics, 2000). 

Given this background, the purpose of this study was to explore the knowledge of 

algebra for teaching (KAT) by investigating the following research questions: What is the 

factor structure underlying mathematics teachers’ KAT, as measured by an established 

instrument?  Are KAT constructs measured similarly in preservice and inservice 

teachers?  And if so, are there latent mean differences in the KAT of these two groups?  

These research questions were addressed using multiple-group confirmatory factor 

analysis—a form of structural equation modeling—to analyze survey 
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data (n = 1,248) gathered by KAT researchers at Michigan State University.  These 

researchers designed an instrument to measure three types of algebra knowledge, based 

on their conceptual framework of KAT: knowledge of school algebra; knowledge of 

advanced mathematics; and mathematics-for-teaching knowledge, which is similar to 

PCK (Reckase, McCrory, Floden, Ferrini-Mundy, & Senk, 2015). 

The analyses suggested that KAT may be a unidimensional construct because a 

one-factor KAT model fit the data better than a two- or three-factor model.  Additionally, 

the analyses suggested that KAT was measured similarly in preservice and inservice 

teachers, and that preservice teachers had slightly higher KAT than inservice teachers. 

Following the results, there is a discussion of connections between the findings 

and the research literature and implications of the findings, such as providing more CK- 

and PCK-focused professional development opportunities for algebra teachers.  The 

researcher concludes with some recommendations for future research and closing 

remarks. 
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CHAPTER 1 

INTRODUCTION 

Kate and Ashley are freshmen at Anytown High School.  They are enrolled in Mr. 

Stein’s Algebra I class and are learning how to solve systems of two linear equations in 

two unknowns.  Kate always has enjoyed mathematics and is able to solve most of the 

problems in the lesson using the substitution and elimination methods.  However, Ashley 

is struggling greatly with solving systems using these two new methods.  She tries to 

enlist the help of her friend Kate, but to no avail.  Kate tells Ashley that she “just gets it,” 

as she tries unsuccessfully to explain her process.  When Ashley examines Kate’s 

homework, she notices that her friend has written very little on her paper.  “I don’t have 

to write a lot because I do most of the work in my head,” Kate explains.   

Ashley then asks Mr. Stein—a first-year mathematics teacher—for assistance 

with the lesson but experiences similar results.  She explains the difficulties that she is 

having to Mr. Stein, but he also seems unable to address Ashley’s errors and 

misunderstandings of the content.  Ashley thinks to herself, “I’m sure that Mr. Stein 

‘knows’ algebra, but he just doesn’t seem to be able to meet me at my level.” 

Although the scenario described above is fictitious, it is based on a true story; in 

fact, it is based on many true stories.  Consider a friend, classmate, or even a teacher who 

is “good” at mathematics but has difficulty using that knowledge to facilitate others’ 

mathematics learning.  How would you describe this person’s knowledge of 



2 

mathematics?  What about his/her knowledge of mathematics for teaching?  Prior to the 

1980s, most research related to knowledge for teaching mathematics generally focused on 

subject matter knowledge (SMK) and proxies of teacher knowledge, such as the number 

of subject matter courses taken in college and years of experience in the classroom (Hill, 

Sleep, Lewis, & Ball, 2007).  Based on the large number of college-level mathematics 

courses that Mr. Stein had to complete to be eligible to teach mathematics at the 

secondary level, he very likely would score well on measures that focus on SMK.  But 

clearly, scenarios such as the one described above highlight the fact that these measures 

may give an incomplete picture of an individual’s actual knowledge for teaching.  So, 

what types of knowledge are necessary to be an effective teacher of algebra?   

During his 1985 Presidential Address at the American Educational Research 

Association annual meeting, Lee Shulman revolutionized the way researchers thought 

about knowledge for teaching with the introduction of the concept of pedagogical content 

knowledge (PCK), or the content knowledge needed for teaching.  According to Shulman 

(1986), PCK included “the most useful forms of representation…of ideas [from one’s 

content area], the most powerful analogies, illustrations, examples, explanations, and 

demonstrations—in a word, the ways of representing and formulating the subject that 

make it comprehensible to others” (p. 9).  Since his seminal remarks, a number of 

researchers have been working to explore and unpack the concept of PCK and apply it to 

mathematics and specific areas within the discipline (e.g., algebra).  For example, the 

Knowledge of Algebra for Teaching (KAT) research team at Michigan State University 

has developed a comprehensive framework for KAT, as well as an instrument designed to 

measure KAT in preservice and inservice teachers.  The KAT framework consists of 
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three types of knowledge: knowledge of school algebra, knowledge of advanced 

mathematics, and mathematics-for-teaching knowledge; and the KAT instrument 

includes multiple-choice and open-ended items that are designed to measure these three 

types of algebra knowledge. 

Significance of KAT 

There are several reasons that the exploration of teacher knowledge—and more 

specifically KAT—is significant for the field of mathematics education, especially in the 

United States.  First, students from around the world are outperforming U.S. students on 

international mathematics assessments, such as the Trends in International Mathematics 

and Science Study (TIMSS) assessment and the Program for International Student 

Assessment (PISA) (Mullis, Martin, Foy, & Hooper, 2016; Organization for Economic 

Cooperation and Development, 2014, 2016).  Second, several researchers (e.g., Hill, 

Rowan, & Ball, 2005) have found correlations between some types of teacher knowledge 

(e.g., PCK) and student achievement.  And third, algebra plays an integral role in the K-

12 mathematics curriculum in the U.S. (National Council of Teachers of Mathematics 

[NCTM], 2000; National Governors Association Center for Best Practices [NGACBP] & 

Council of Chief State School Officers [CCSSO], 2010).  Each of these issues will be 

discussed in the sections that follow. 

International Assessments in Mathematics 

TIMSS and PISA are two well-known assessments in mathematics (and other 

content areas, such as science) and are commonly used to compare student achievement 

at the international level.  TIMSS is conducted every four years by the International 

Association for the Evaluation of Educational Achievement (IEA) and is administered to 
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a large sample of fourth- and eighth-grade students from around the world (Mullis et al., 

2016).  PISA is conducted every three years by the Organization for Economic 

Cooperation and Development (OECD) and is administered to a large sample of 15-year-

old students from around the world (OECD, 2014, 2016). 

U.S. eighth-graders have consistently earned above average mathematics scores 

on the TIMSS assessment, which contains four content domains in mathematics: number, 

algebra, geometry, and data/chance (Mullis et al., 2016).  The mean mathematics score 

for U.S. students on TIMSS 2015 was 518, which was statistically significantly higher 

than the mean (500) of the combined achievement distribution.  Of the 39 countries that 

participated in the eighth-grade mathematics assessment in 2015, 16 of them (e.g., 

Singapore, Canada, England, and the U.S.) earned scores that were statistically 

significantly higher than the mean; 2 of them (Australia and Sweden) earned scores that 

were not statistically significantly different from the mean; and 21 of them (e.g., Italy, 

Chile, and South Africa) earned scores that were statistically significantly below the 

mean (Mullis et al., 2016). 

Even though U.S. eighth-graders scored above the mean in 2015, their mean score 

(518) was much lower than the mean score of several other countries, including 

Singapore (621), the Republic of Korea (606), Chinese Taipei (599), Hong Kong (594), 

and Japan (586).  Also, only 10% of U.S. eighth-graders who participated in TIMSS 2015 

met the advanced international benchmark, which included the ability to solve linear 

equations; and only 37% met the high international benchmark, which included the 

ability to simplify and work with algebraic expressions (Mullis et al., 2016). 
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Despite their above-average performance on TIMSS, U.S. students have 

consistently earned relatively low scores on PISA assessments.  PISA 2012 focused on 

mathematics—specifically numbers, algebra, and geometry—and was administered to 

15-year-old students from 65 participating countries/economies (OECD, 2014).  The 

mean mathematics score for U.S. students on PISA 2012 was 481, which was statistically 

significantly below the OECD average of 494.  Of the 65 participating 

countries/economies in 2012, 23 of them (e.g., Singapore, Canada, and Germany) earned 

scores that were statistically significantly above the OECD average; 8 of them (e.g., 

France and the United Kingdom) earned scores that were not statistically significantly 

different from the OECD average; and 34 of them (e.g., Sweden, Mexico, Brazil, and the 

U.S.) earned scores that were statistically significantly below the OECD average.  

Additionally, the U.S. mean mathematics score was well below the score of the top-

performing country/economy: Shanghai-China, which earned a mean score of 613.  

According to OECD, a score difference of 41 points corresponds to about one academic 

year of schooling; thus, 15-year-old students in Shanghai-China were on average about 

three years ahead of U.S. 15-year-olds in mathematics at the time of the study (OECD, 

2014). 

In 2015, the major focus of PISA was science, but there was still a minor 

mathematics component.  Unfortunately, the mean mathematics score for U.S. students 

on PISA 2015 dropped to 470, which was again below average and well below the top-

performing country/economy: Singapore, which earned a mean score of 564 (OECD, 

2016). 
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Thus, students from around the world are outperforming U.S. students in algebra 

and other areas of mathematics on widely-recognized international assessments.  More 

specifically, many U.S. eighth-grade students are struggling with basic algebra skills, 

such as simplifying expressions and solving linear equations (Mullis et al., 2016).  And 

15-year-old students in the U.S. are performing well-below average in the areas of 

number, algebra, and geometry (OECD, 2014, 2016). 

Researchers in the mathematics-education community are concerned about U.S. 

students’ performance on these types of assessments, as well as students’ mathematics 

achievement in general.  Thus, a number of studies have focused on how teacher-related 

factors affect student achievement, as it is a general assumption in education that teachers 

directly impact student learning (Eisenberg, 1977). 

Teacher Knowledge and Student Achievement 

Teacher knowledge is one of the teacher-related factors that has been investigated 

over the past few decades because researchers believe this factor may play an important 

role in addressing students’ difficulties in mathematics.  In particular, several studies 

(e.g., Baumert et al., 2010; Campbell et al., 2014; Hill et al., 2005; Mohr-Schroeder, 

Ronau, Peters, Lee, & Bush, 2017) have shown relationships between teacher knowledge 

and student achievement.  For example, Hill and her colleagues found that a group of 

elementary-school “teachers’ mathematical knowledge for teaching positively predicted 

student gains in mathematics achievement” (Hill et al., 2005, p. 399).  And Baumert and 

his colleagues found similar results with secondary students in Germany.  In particular, 

they found that PCK explained about 39% of the between-class variance in student 

achievement at the end of the school year (Baumert et al., 2010), which is considerable.   
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Both of these teacher-knowledge studies used instruments that were specifically 

designed to measure an individual’s knowledge for teaching mathematics (i.e., PCK).  

For example, Figure 1 shows an item from the instrument used in the Hill and colleagues 

(2005) study.  This item is quite different from content questions generally found in 

mathematics textbooks and assessments because it requires individuals to make a 

judgment (based on content knowledge) that generally only mathematics teachers are 

required to make.  For instance, engineers most likely would never need to judge the 

validity of a unique or student-generated method for multiplying large numbers. 

Figure 1.  Item measuring content knowledge for teaching mathematics at the 

elementary-school level.  Adapted from “Effects of Teachers’ Mathematical 

Knowledge for Teaching on Student Achievement,” by H. C. Hill, B. Rowan, 

and D. L. Ball, American Educational Research Journal, 42, p. 402.  Copyright 

2005 by the American Educational Research Association. 

 

Before Shulman introduced the concept of PCK, researchers often measured 

teacher knowledge using assessments of SMK and/or proxy measures of teacher 

knowledge, such as number of years of teaching experience.  Often these researchers 

Imagine that you are working with your class on multiplying large numbers.  

Among your students’ papers, you notice that some have displayed their work 

in the following ways: 

 

 Student A  Student B  Student C 

  

      35        35        35 

 ×   25   ×   25   ×   25 

    125      175        25 

 + 75     + 700      150 

    875      875      100 

       + 600 

          875 

 

Which of these students would you judge to be using a method that could be 

used to multiply any two whole numbers? 
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(e.g., Begle, 1972; Eisenberg, 1977) found little or no correlation between teachers’ 

knowledge of mathematics and student achievement.  For example, Begle (1972) used the 

following variables for teacher knowledge of algebra in his study: performance on an 

advanced algebra assessment, which included a number of abstract-algebra questions; 

number of years of teaching experience; number of mathematics courses taken in college 

beyond calculus; and college GPA in mathematics.  Ultimately, he—and Eisenberg, who 

replicated his study—found no correlation between teacher knowledge of algebra and 

student achievement (Begle, 1972; Eisenberg, 1977). 

Based on these studies, it appears that some types of teacher knowledge (i.e., 

PCK) may contribute more to student achievement in mathematics than other types of 

teacher knowledge (i.e., SMK).  Additionally, proxy measures of teacher knowledge may 

have led to misleading results in prior research and may not be valid.  Therefore, it would 

be beneficial to have a greater understanding of the various types of teacher knowledge 

and their effects on mathematics achievement. 

Algebra in the K-12 Curriculum 

Now that the case for exploring the knowledge for teaching mathematics has been 

made, what about the case for algebra?  That is, why is there a need to focus specifically 

on knowledge of algebra for teaching?  There are several specific reasons to focus on 

algebra (and KAT), including that (a) algebra comprises a significant portion of the K-12 

mathematics curriculum in the U.S. (NCTM, 2000; NGACBP & CCSSO, 2010); (b) 

mathematics students often experience great difficulty in learning algebra (Blume & 

Heckman, 2000; National Mathematics Advisory Panel, 2008; RAND Mathematics 

Study Panel, 2003); and (c) algebra is a “gatekeeper” course and prerequisite for nearly 
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all other areas of mathematics (RAND Mathematics Study Panel, 2003).  These reasons 

will now be discussed briefly. 

First, algebra is an integral part of the K-12 mathematics curriculum in the U.S.  

The National Council of Teachers of Mathematics’ (NCTM) seminal work, Principles 

and Standards for School Mathematics, lists algebra as one of five central content goals 

in mathematics for students in grades K-12 (NCTM, 2000).  More recently, the Common 

Core State Standards for Mathematics (CCSSM) (NGACBP & CCSSO, 2010)—which 

are the standards on which many state standards in the U.S. are based today—includes 

algebra throughout the K-12 curriculum.  In particular, there are standards related to 

operations and algebraic thinking for students in grades K-5, expressions and equations 

for students in grades 6-8, and algebra and functions for students in grades 8-12.  In fact, 

algebra and functions comprise two of the six conceptual categories for high-school 

standards in CCSSM (NGACBP & CCSSO, 2010). 

Despite the pervasiveness of algebra in the K-12 curriculum, many students 

struggle to understand algebraic concepts (Blume & Heckman, 2000).  After a nearly 

two-year investigation that focused on preparing students for algebra, the President’s 

National Mathematics Advisory Panel (2008) concluded that: 

Too many students in middle or high school algebra classes are woefully 

unprepared for learning even the basics of algebra.  The types of errors these 

students make when attempting to solve algebraic equations reveal they do not 

have a firm understanding of many basic principles of arithmetic.  Many students 

also have difficulty grasping the syntax or structure of algebraic expressions and 

do not understand procedures for transforming equations…. (p. 32) 
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Other reports (e.g., RAND Mathematics Study Panel, 2003) and studies (e.g., OECD, 

2014; Mullis et al., 2016) have also documented U.S. students’ difficulties in learning 

and understanding algebra. 

Unfortunately, students often pay a high price for struggling with algebraic 

concepts because courses in algebra often serve as “gatekeepers” in many programs.  

Thus, “without proficiency in algebra, students cannot access a full range of educational 

and career options” (RAND Mathematics Study Panel, 2003, p. xx).  Similarly, algebra 

skills are necessary for nearly all areas of mathematics (e.g., geometry, probability, and 

calculus), as well as many concepts in science (Usiskin, 1995, 2004). 

In summary, there are a number of reasons why KAT is an important area for 

exploration and greater understanding.  First, U.S. students are being outperformed in 

algebra by their peers around the world.  Second, there appears to be a connection 

between some types of teacher knowledge and student achievement in mathematics.  And 

third, algebra in an integral part of the K-12 mathematics curriculum. 

Purpose Statement and Research Questions 

Given the significance of teacher knowledge and algebra, the purpose of the 

present study was to explore the various aspects of the knowledge of algebra for teaching 

(KAT), which will be defined as the set of mathematical knowledge that is necessary to 

be an effective teacher of algebra.  A secondary purpose was to compare and contrast 

preservice and inservice mathematics teachers’ KAT.  To address these purposes, I 

investigated the following three research questions: 
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1. What is the factor structure underlying mathematics teachers’ knowledge 

of algebra for teaching (KAT), as measured by an established KAT 

instrument?  (This instrument is described in Chapter 2.) 

2. Are KAT constructs measured similarly in preservice and inservice 

teachers? 

3. And if so, are there latent mean differences in the KAT of these two 

groups? 

In other words, the main goals of the study were to explore the specific types of 

knowledge that comprise KAT (via an established KAT instrument) and to determine 

whether preservice or inservice teachers demonstrated higher levels of KAT (based on 

their performance on this KAT instrument). 

The three research questions were addressed using confirmatory factor analysis 

(CFA), a form of structural equation modeling (SEM) commonly used to explore latent—

or unobserved—variables, such as knowledge.  In particular, the first question was 

addressed by developing a variety of CFA models based on theory, evaluating them for 

model fit, and using statistical tests to compare them.  The second question was addressed 

by using multiple-groups CFA analyses to determine if the values of model parameters 

differed across groups (i.e., preservice and inservice teachers), as well as whether or not 

measures operated the same in those groups (Brown, 2006).  And the third question was 

addressed by testing for latent mean differences between the two groups. 

Organization of the Study 

Including this introductory chapter, the current study is organized into five 

chapters.  Chapter 1 addressed the rationale for the study and outlined the purpose and 
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research questions for the study.  Chapter 2 contains a comprehensive review of the 

literature on algebra, teacher knowledge, and the KAT framework and study (conducted 

by the KAT research team).  Chapter 3 describes the characteristics of the sample and 

instrument used in this study and outlines the statistical method (CFA) that was used.  

Chapter 4 outlines the results of the study, which includes the analyses of several 

proposed CFA models for KAT and multiple-groups CFA analyses to compare preservice 

and inservice teachers’ KAT.  And Chapter 5 contains a discussion of the results (i.e., 

implications of the study) and concluding remarks.  
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CHAPTER 2 

LITERATURE REVIEW 

Because the focus of this study is on middle- and high-school mathematics 

teachers’ knowledge of algebra for teaching, the purpose of this review is to synthesize 

the literature on both algebra and teacher knowledge.  The review contains three main 

foci: algebra, teacher knowledge, and the Knowledge of Algebra for Teaching (KAT) 

framework, which frames this study.  In the first part, various views of algebra are 

discussed, as well as student thinking about algebra and teaching methods/strategies 

related to algebra.  In the second part, teacher knowledge is described in terms of content 

knowledge (CK), general pedagogical knowledge (GPK), and pedagogical content 

knowledge (PCK).  Within the discussions of CK and PCK, explicit connections to 

algebra are made.  And in the third part, a KAT framework is presented, and relationships 

among the components of this framework (knowledge of school algebra, knowledge of 

advanced mathematics, and mathematics-for-teaching knowledge) and the general 

framework of teacher knowledge (CK, GPK, and PCK) are discussed. 

Algebra 

In the first part of the review, a brief overview of algebra is presented by 

exploring several complementary views of algebra (such as algebra as generalized 

arithmetic and algebra as functions and relationships among quantities).  These views are 

prevalent in the teaching and learning of algebra and their influence can be seen in the 

various curricular materials available to mathematics teachers.  Additionally, research-
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informed insights into student thinking about two main areas of algebra—

expressions/equations and functions—are discussed.  And finally, several teaching 

methods and strategies that research suggests might be effective for deepening students’ 

understandings in algebra are explored. 

Views of Algebra 

There are many different but related views of algebra.  They include (a) algebra as 

generalized arithmetic (Bell, 1996; Kaput, 1995; Usiskin, 1999), (b) algebra as symbolic 

manipulation (Kaput, 1995); (c) algebra as forming and solving equations (Bell, 1996; 

Usiskin, 1999); (d) algebra as functions and relationships among quantities (Cooney, 

Beckmann, & Lloyd, 2010; Heid, 1996; Kaput, 1995; Usiskin, 1999); (e) algebra as the 

study of structure (Kaput, 1995; Usiskin, 1999); and (f) algebra as an activity (Kieran, 

1996; Lee, 1997).  These various views of algebra are the focus of the discussion that 

follows. 

Algebra as generalized arithmetic.  Generalization plays a major role in algebra 

(Usiskin, 1999).  In the algebra as generalized arithmetic view, variables are used to 

generalize arithmetic patterns.  For example, consider the set of integers under addition.  

The mathematical sentences –3 + 0 = –3 and 0 + 7 = 7 illustrate an important property of 

integer addition, namely the additive identity property.  This property also can be 

generalized with variables as follows: a + 0 = 0 + a = a for all integers a.  Similarly, 4 + 9 

= 9 + 4 and –5 + 2 = 2 + (–5) illustrate the commutative property of integer addition, 

which can also be generalized with variables as a + b = b + a for all integers a and b.  

According to Kaput (1995), this view of algebra is popular for several reasons, including 

that “it explicitly builds on what students presumably know (arithmetic), helps generalize 
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that knowledge, helps build a more general ability to generalize…, and exploits the rich 

intrinsic structure of the integers as a context for pattern development, formalization, and 

argument” (p. 7). 

Algebra as symbolic manipulation.  The algebra as symbolic manipulation view 

is a commonly-held viewpoint that places emphasis on skills and procedures (Kieran, 

2007).  These skills and procedures include simplifying expressions, using formal 

methods (i.e., substitution and elimination) to solve systems of equations, and factoring 

polynomial and rational expressions.  Variables serve as unknowns or constants in the 

symbolic-manipulation view of algebra (Usiskin, 1999).  For example, solving the linear 

equation 8(x + 2) = 3x + x – 1 for the unknown variable x involves using several different 

procedures, including the distributive property of multiplication over addition, and using 

inverse operations to solve for the unknown, x. 

Algebra as forming and solving equations.  Although the view of algebra as 

forming and solving equations overlaps with the previous view (algebra as symbolic 

manipulation), it extends beyond symbolically solving equations to modeling situations 

using expressions and equations, as well as engaging in a larger problem-solving process 

(Bell, 1996).  This view includes translating English phrases into algebraic notation (e.g., 

translating “9 less than twice a number” to 2n – 9) and using algebraic expressions and 

equations to represent and solve real-world problems.  For example, the expression 3.50 

+ 2.25m could be used to represent the fare of a certain taxi company with an initial pick-

up fee of $3.50 and a charge of $2.25 per mile.  (Note that m represents the number of 

miles.)  If a passenger were charged a fare of $19.25, solving the equation 3.50 + 2.25m = 

19.25 for m would reveal that the passenger traveled 7 miles (m = 7) by taxi. 
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Algebra as functions and relationships among quantities.  If the symbolic-

manipulation view reflects a more traditional viewpoint of algebra, the functional view 

reflects more of a reform viewpoint.  The emphasis of this view is on functions and 

representing functional situations (Kieran, 2007).  Functions can be used to show 

relationships among quantities that vary and are usually defined as single-valued 

mappings (or correspondences) between one set—called the domain—and another set—

called the range (Cooney et al., 2010).  Generally, in school algebra, the set of real 

numbers serves as both the domain and range of functions.  In this view of algebra, a 

variable can take the form of “an argument (i.e., stands for the domain value of a 

function) or a parameter (i.e., stands for a number on which other numbers depend)” 

(Usiskin, 1999, p. 10).  For example, in the function f(x) = 3x + 1, x represents an element 

of the domain of the function (the first set), whereas f(x) represents the corresponding 

element of the range (the second set).  So, the element x = 1 in the domain is mapped to 

the element f(1) = 3(1) + 1 = 4 in the range.  This is an example of a linear function, 

which becomes clear after investigating multiple representations of this function (see 

Figure 2).  The taxi problem from the previous section could also be modeled using 

functions.  Specifically, the linear function f (m) = 3.50 + 2.25m describes the 

relationship between the number of miles traveled, m, and the total fare, f (m).  In this 

scenario, the fare is a function of the number of miles traveled. 

Functions can also model other relationships, including ones that are quadratic, 

exponential, and trigonometric.  For instance, exponential functions are often used to 

model situations involving exponential growth and decay.  In summary, the functional 

view of algebra “centers on developing experiences with functions and families of 
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functions through encounters with real-world situations whose quantitative relationships 

can be described by those models” (Heid, 1996, p. 239). 

 

 

Algebra as the study of structure.  The focus of the algebra as the study of 

structure view is on form (i.e., recognizing the form of algebraic expressions) and 

transformation (Pimm, 1995; Usiskin, 1999).  For example, the difference of two perfect 

squares can be factored as follows: x2 – y2 = (x + y)(x – y).  This algebraic structure can 

be used to factor similar expressions, such as 25x2 – 9 and sin2 x – cos2 x, or to simplify 

rational expressions, such as 
𝑥2−4

𝑥−2
.  In the structure view of algebra, variables simply 

serve as arbitrary symbols because the focus is on form rather than functions (variables as 

arguments), equations (variables as unknowns), or patterns (variables as generalizers) 

(Usiskin, 1999).  

Algebra as an activity.  This final view of algebra as an activity does not 

emphasize a certain aspect of algebra (e.g., symbolic manipulation, representing 

 

Figure 2.  Tabular and graphical representation of the function f (x) = 3x + 1. 
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functional situations); instead, it unifies many of the previous viewpoints by 

characterizing algebra as “an activity, something you do, an area of action…” (Lee, 1997, 

p. 187).  There are at least three types of activities in algebra: generational, 

transformational, and global/meta-level (Kieran, 1996).  Generational activities include 

forming or generating expressions and equations in algebra (similar to the “forming and 

solving equations” view of algebra); transformational activities include enacting rule-

based skills, such as performing operations, simplifying, and factoring (similar to the 

“symbolic manipulation” view of algebra); and global/meta-level activities refer to 

activities for which algebra can be used as a tool.  These include problem solving, 

modeling, studying functional relationships, and exploring algebraic structures, which 

incorporates the remaining views of algebra discussed in this section (Kieran, 1996). 

Summary.  There are a number of different but complementary views of algebra.  

These viewpoints focus on various aspects of algebra, including generalizing patterns, 

manipulating symbols, forming and solving equations, representing and exploring 

functional situations, and recognizing and transforming algebraic structures.  However, 

two common foci also emerge from these viewpoints and help to unify them: 

expressions/equations and functions.  (Note that these are also two of the main areas of 

focus of the high-school mathematics standards in CCSSM, which was discussed in the 

previous chapter.)  In the sections that follow, student thinking in these areas of algebra 

will be discussed, as well as relevant teaching methods and strategies. 

Student Thinking in Algebra 

Over the past few decades, there has been a great deal of research on students’ 

algebraic thinking (e.g., Breidenbach, Dubinsky, Hawks, & Nichols, 1992; Knuth, 
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Stephens, McNeil, & Alibali, 2006; Leinhardt, Zaslavsky, & Stein, 1990; MacGregor & 

Stacey, 1997; Matz, 1982).  These studies have focused on students’ understandings of 

algebraic concepts and their common errors and misconceptions, as well as teaching 

strategies to address these errors and misconceptions.  Research related to student 

thinking in algebra is of particular interest in this review because it can inform the types 

of knowledge about students that teachers need to teach algebra.  The following 

discussion on student thinking is divided into the two content foci that emerged from the 

collective views of algebra: 1) expressions and equations and 2) functions. 

Expressions and equations.  Research related to student thinking about algebraic 

expressions and equations includes studies that explore the concept of variable and 

variable meaning (e.g., Küchemann, 1978; MacGregor & Stacey, 1997; Usiskin, 1999), 

equivalence and the equal sign (e.g., Asquith, Stephens, Knuth, & Alibali, 2007; Knuth, 

et al., 2006), and extrapolation techniques, such as linearity and generalization (e.g., 

Matz, 1982).  Student thinking in each of these areas is explored in the sections that 

follow. 

Variables and variable meaning.  As suggested by the preceding discussion on 

views of algebra, variables have many uses in algebra.  They can represent generalized 

numbers, unknowns, arguments, parameters, or arbitrary symbols (Küchemann, 1978; 

Usiskin, 1999).  (See the previous discussion on the various views of algebra for more 

details.)  Additionally, variables can be used incorrectly to represent objects 

(Küchemann, 1978), which will be discussed in the next paragraph.  With these many 

different uses of variables, it may not be surprising that algebra students often struggle to 

understand and effectively use variables.  Common student misconceptions related to 
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variables include viewing variables as abbreviations or labels (e.g., Küchemann, 1978), 

viewing all variables as specific values (e.g., Asquith et al., 2007), and being unable to 

accept expressions containing variables as final answers to problems (e.g., Collis, 1975). 

First, students often see variables as abbreviations or labels for actual objects 

rather than as the number of objects, especially when working with real-world 

applications (Collis, 1975; Küchemann, 1978; MacGregor & Stacey, 1997). Consider the 

following word problem: 

Blue pencils cost 5 pence each and red pencils cost 6 pence each.  I buy some blue 

and some red pencils and altogether it cost me 90 pence.  If b is the number of 

blue pencils bought, and if r is the number of red pencils bought, what can you 

write down about b or r? (Küchemann, 1978, p. 25) 

Students who view variables as abbreviations/labels might give the following response:   

b + r = 90, thinking that this equation would indicate that the blue pencils (b) and red 

pencils (r) together would cost 90 pence.  Students also might determine one possible 

solution, such as b = 12 and r = 5, and write 12b + 5r = 90, because 12 blue pencils and 5 

red pencils cost 90 pence.  And in fact, both of these types of responses were very 

prevalent among the approximately 3,000 students who participated in Küchemann’s 

(1978) study.  This same type of phenomenon has been prevalent in college students’ 

reasoning, as evidenced by the considerable literature surrounding the students and 

professors problem (e.g., Clement, 1982).  (In particular, when asked to use variables to 

represent the situation in which “there are six times as many students as professors,” 

students often respond with “6s = p,” in which s and p are incorrectly used as labels for 

students and professors, respectively.) 



21 

Second, students often have difficulty viewing variables as representing varying 

quantities rather than specific values (Collis, 1975; Küchemann, 1978; Asquith et al., 

2007).  Consider the following question posed to a sample of middle-school students: 

“Can you tell which is larger, 3n or n + 6?  Please explain your answer” (Asquith et al., 

2007, p. 255).  Instead of noticing that 3n will be larger than n + 6 for some values of n 

and smaller for other values of n, several students simply evaluated 3n and n + 6 for a 

single value of n (such as n = 1) and made their decision accordingly (n + 6 is larger than 

3n because 7 > 3) (Asquith et al., 2007).  Küchemann (1978) posed a similar question to 

the students in his study and observed the same misconception. 

And third, some students are unable to accept expressions containing variables 

(e.g., 3x + 1) as final answers when asked to simplify algebraic expressions (Collis, 1975; 

Küchemann, 1978).  For example, when novice algebra students are given an expression 

such as 5x + 9y – 3(x + 3y – 7) and asked to simplify it, they often have difficulty 

accepting 2x + 21 as their final answer.  To these students, 2x + 21 seems unresolved and 

has a lack of closure (Collis, 1975; Küchemann, 1978), perhaps due to their previous 

experience working with numerical equations that do not contain variables and that can 

generally be simplified to an integer solution (e.g., 5 + 7 × 32 = 68). 

The preceding misconception can lead students to search for ways to remove 

variables from their expressions (Küchemann, 1978).  Consider the following problem: 

“David is 10 cm taller than Con.  Con is h cm tall.  What can you write for David’s 

height?” (MacGregor & Stacey, 1997, p. 5).  The correct answer is that David is h + 10 

cm tall.  However, several middle- and high-school students who were posed this 

question found a variety of unique solutions that did not involve the variable h.  In 
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particular, several students assigned the variable h a value of 8 based on its position in the 

alphabet and concluded that David was 18 cm tall; others chose a reasonable height for 

Con and simply added 10 to the number to find David’s height; and a few believed that 

variables must always equal 1 (possibly confusing x = 1x with x = 1) and concluded that 

David was 11 cm tall (MacGregor & Stacey, 1997). 

Equivalence and the equal sign.  In addition to their difficulty with variables, 

many elementary-, middle-, and even high-school students do not fully understand the 

idea of equivalence or the role of the equal sign in mathematical sentences (Asquith et al., 

2007; Baroody & Ginsburg, 1983; Behr, Erlwanger, & Nichols, 1980; Falkner, Levi, & 

Carpenter, 1999; Kieran, 1981; Knuth et al., 2006; Powell 2015).  In particular, students 

tend to have an operational view of the equal sign rather than a relational one (Asquith et 

al., 2007; Knuth et al., 2006; Powell 2015). That is, they see the equal sign as a signal to 

“do something” (i.e., write their answer) as opposed to a relational symbol that shows 

that the “two sides…should balance or be the same” (Powell, 2015, p. 267). 

Students with an operational view of the equal sign often have difficulty 

understanding equality sentences such as 7 = 3 + 4 and 8 = 8 (Kieran, 1981; Falkner et 

al., 1999; Powell, 2015).  In a study involving sixth-graders, students were asked to talk 

about these two math sentences (Falkner et al., 1999).  Students’ comments related to 7 = 

3 + 4 included that the equation was written “the wrong way” or “backward” (p. 234).  

And for 8 = 8, one student indicated that “you just shouldn’t write it that way” (p. 235).  

These students were also asked to solve the problem: 8 + 4 =  + 5, and all of them 

responded with an answer of 12 (ignoring the “+ 5”) or 17 (finding the sum of all three 

numbers). 
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Students in middle and high school often demonstrate their limited understanding 

of the equal sign by writing “equality strings” that are not true (Asquith et al., 2007; 

Kieran, 1981; Knuth et al., 2006).  For example, when solving an equation such as x + 4 

= 11, students may write the following “equality string”:  x + 4 = 11 – 4 = 7.  However, 

this is not a proper use of the equal sign because it implies that x + 4 = 7 when in fact      

x = 7. 

Students should develop a relational view of the equal sign to truly understand 

how to solve non-trivial algebraic equations, such as 5x – 7 = 2x + 8 (Kieran, 1981).  

Filloy and Rojano (1989) have labeled linear equations with variables on both sides as 

non-arithmetical equations and claimed that there is a considerable jump in the level of 

difficulty (which they have termed “the didactic cut”) as students move from arithmetical 

equations (e.g., 5x – 7 = 3) to non-arithmetical equations.  A relational view may help 

students understand the various properties of equality that are necessary to solve for x in 

both types of linear equations.  For example, students with a relational view might be 

more likely than students with an operational view to understand that adding or 

subtracting the same number on both sides of the equation creates an equivalent equation.  

In one study, middle-school students who gave a relational definition of the equal sign 

were more likely to solve a two-step linear equation correctly than students who gave an 

operational definition (Knuth et al., 2006). 

Extrapolation techniques.  Although students’ difficulties with variables and the 

equal sign may explain some of their struggles with algebra, many common student 

errors can actually be attributed to the misuse of extrapolation techniques—i.e., 

techniques that students use “to bridge the gap between known rules and unfamiliar 
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problems” (Matz, 1982, p. 27).  Extrapolation techniques can be divided into at least two 

categories: linearity and generalization (Matz, 1982). 

Linearity.  Students begin having experiences related to linearity from early 

childhood (Van Dooren, De Bock, Janssens, & Verschaffel, 2008).  For example, 

children may notice that one of their stuffed-animal toys has two eyes, two have four 

eyes, three have six eyes, and so on.  Later, they encounter linear situations involving 

money (e.g., one piece of candy costs 25¢, so three pieces cost 75¢).  Students’ 

experiences with linearity can lead them to apply aspects of linearity inappropriately in 

mathematics, such as during the process of manipulating algebraic expressions and 

equations (Matz, 1982; Van Dooren et al., 2008).  Typical linearity issues include 

generalized distribution errors, such as (𝑥 + 𝑦)2 =  𝑥2+𝑦2;  √𝑥 + 𝑦 = √𝑥 + √𝑦; 

cancelation errors, such as 
𝑎𝑥+𝑦

𝑎
= 𝑥 + 𝑦; and reciprocal errors, such as 

1

𝑥
+

1

𝑦
=

1

𝑧
 →  𝑥 +

𝑦 = 𝑧.  All of these types of errors “seem to indicate that students do not realize that not 

all operators or procedures behave like the linear ones they are most familiar with” 

(Matz, 1982, p. 33). 

Generalization.  In addition to linearity errors, the other major extrapolation 

technique that is misused by students is generalization.  In these cases, students try to 

“[bridge] the gap between known rules and unfamiliar problems by revising a known rule 

to accommodate particular operators and numbers that appear in a new situation” (Matz, 

1982, p. 33).  For example, when students are first introduced to the concept of solving 

quadratic equations, they often fail to realize that (x – a)(x – b) = c implies that x – a = c 

or x – b = c is only true when c = 0 (due to the zero-product property).  Therefore, novice 



25 

students who are asked to solve the quadratic equation x2 – 4x – 12 = –7 may produce the 

following incorrect work: 

x2 – 4x – 12 = –7 

(x – 6)(x + 2) = –7 

x – 6 = –7 → x = 1 x + 2 = –7 → x = 9. 

Section review.  In summary, algebra students often struggle to fully grasp the 

various meanings and uses of variables, hold an operational view of the equal sign (as 

opposed to a relational view), and misuse extrapolation techniques, as demonstrated by 

the generalized distribution error (𝑥 + 𝑦)2 =  𝑥2+𝑦2.  The discussion will now shift 

from student thinking about expressions and equations to their thinking about functions.  

Equations and functions are closely related because equations can sometimes be used to 

define functions.  (For example, the linear equation y = 2x + 1 defines a function; in 

particular, y is a function of x in this case.) 

Functions.  Research in the area of student thinking about functions includes 

studies that explore students’ limited view of functions (e.g., Breidenbach et al., 1992), 

their tendency to conflate graphical representations of functions with the visual attributes 

of the situations being modeled (e.g., Monk, 1992), and their conceptions of functions as 

actions, processes, and objects (e.g., Dubinsky & Harel, 1992).  After a brief discussion 

on defining the function concept, student thinking related to these areas will be explored. 

Definitions of function.  Although the definition of function has evolved over the 

past few centuries (Even, 1993), two general definitions of the concept are widely used 

today—one related to the idea of correspondence and the other to covariation (Cooney et 

al., 2010; Leinhardt, et al., 1990; Lloyd & Wilson, 1998).  The correspondence definition 
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is the most common type of definition seen in mathematics textbooks and classrooms 

today (Leinhardt et al., 1990).  It is intentionally broad and abstract and defines functions 

as single-valued mappings (or correspondences) between two sets (Cooney et al., 2010).  

The mappings are single-valued because each element in the first set (the domain) is 

mapped to exactly one element in the second set (the range).  In addition to explicitly 

stating this univalence requirement of functions, the correspondence definition of 

function also implicitly reveals the arbitrary nature of functions (Even, 1993).  That is, 

“functions do not have to exhibit some regularity, be described by any specific expression 

or particular shaped graph.  The arbitrary nature of the two sets means that functions do 

not have to be sets of numbers” (Even, 1993, p. 96).   

In contrast, the covariation definition of function is restricted to contexts that 

involve mappings from real numbers to real numbers, and the focus is on how quantities 

vary together (Cooney et al., 2010; Leinhardt et al., 1990).  For example, students with a 

covariation view would most likely look at the table in Figure 2 and notice that as x 

increases by 1 unit, y increases by 3 units.  (On the other hand, students with a 

correspondence view would be more likely to notice the mappings from x to y, such as –2 

→ –5 and 1→ 4.)  The covariation definition of function is much more concrete than the 

correspondence definition and appeals to students’ intuitions about dependence, 

causality, and covariation (Cooney et al., 2010; Leinhardt et al., 1990). 

Limited view of functions.  Although these two definitions of function apply to a 

wide variety of situations, a review of the literature reveals that students often have a very 

restricted view of functions.  In particular, many students do not believe that many-to-one 

correspondences (e.g., constant functions, such as f(x) = 2), relations given by more than 
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one formula or rule (e.g., piecewise functions), and relations with arbitrary 

correspondences are actually functions (Leinhardt et al., 1990; Oehrtman, Carlson, & 

Thompson, 2008).  Additionally, students often believe that only linear graphs or graphs 

that have a clear pattern can represent functions (Leinhardt et al., 1990). 

And students’ limited view of functions seems to persist into college.  In a study 

of preservice mathematics teachers, Breidenbach et al. (1992) found that the preservice 

teachers had difficulty identifying functions written as sets and mappings, equations, 

graphs, tables, and physical situations.  More specifically, many believed that the 

following did not represent functional situations: {(x, 2x + 1): x in the set of all integers} 

(about 50% of the sample), the graph of an exponential function (about 59%), and a table 

listing nine distinct names in one column and an amount owed in a second column (about 

51%).  Also, about 69% of the students believed that y4 = x3 could not be described using 

one or more functions (Breidenbach et al., 1992). 

Students’ (and teachers’) limited views of functions can also be seen by observing 

their use of function notation.  In one study, “when asked to express s as a function of t, 

many high performing precalculus students did not know that their objective was to write 

a formula in the form of ‘s = <some expression containing a t>’” (Oehrtman et al., 2008, 

p. 30).  And some of the students were unable to describe the meaning of the symbols in a 

simple linear function, such as f(x) = 3x (Oehrtman et al., 2008). 

Students’ concept image of functions—or mental pictures and properties 

associated with the function concept (Tall & Vinner, 1981)—may explain some of the 

issues that students have with functions and function notation.  According to Thompson 

(1994), “A predominant image evoked in students by the word ‘function’ is of two 
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written expressions separated by an equal sign” (p. 24).  For many students, “f(x)” means 

little more than “the formula to use is…” (Thompson, 1994). 

Iconic interpretation.  Not only do students have a restricted view of functions 

and their graphs, but they also have difficulty constructing and interpreting graphs of 

functions that represent real-world situations (Leinhardt et al., 1990; Monk, 1992; 

Oehrtman et al., 2008).  In particular, students often interpret the shape of a graph as a 

literal picture of the visual attributes of the situation (Leinhardt et al., 1990).  According 

to Oehrtman and colleagues (2008): 

When dealing with functions as models of concrete situation, there are often 

topographical structures within the real-world setting itself (e.g., the curves of a 

racetrack, the elevation of a road traveling across hilly terrain, or the shape of a 

container being filled with liquid) that students see as being reflected in the 

function’s graph.  (p. 29) 

 

 

Figure 3.  Graph representing the velocity of two cars over time.  Adapted 

from “Students’ Understanding of a Function Given by a Physical Model,” 

by S. Monk, 1992, in G. Harel and E. Dubinsky (Eds.), The Concept of 

Function: Aspects of Epistemology and Pedagogy, p. 175.  Copyright 1992 

by the Mathematical Association of America. 
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For example, the graphs in Figure 3 show the velocity of two cars over time.  

When asked to interpret the graphs, many students confuse speed with position and claim 

that the two cars collide after an hour (at t = 1) or that Car B is catching up to or passing 

Car A around the one-hour mark (Monk, 1992).  Thus, students are likely viewing the 

graph as a picture of the situation and not as a graphical representation of functions that 

map a set of inputs to a set of outputs (Oerhtman et al., 2008). 

Action, process, and object conceptions of functions.  In addition to studying 

students’ difficulties with functions and graphs, researchers (e.g., Breidenbach et al., 

1992) have developed theories and frameworks to better understand students’ various 

conceptions of functions.  In this section, Action-Process-Object-Schema (APOS) 

theory—a well-known theory related to students’ mental construction of processes and 

objects—will be discussed. 

According to APOS theory, students generally begin the study of functions with 

an action conception of functions.  Students with an action conception need external 

clues—such as formulas or recipes—to work with functions (Asiala et al., 1996; 

Breidenbach et al., 1992) and think about functions one step at a time (Dubinsky & Harel, 

1992).  At this stage, students can do little more than evaluate a function for a given value 

or manipulate a function using a step-by-step procedure (Asiala et al., 1996). 

 After students have had multiple opportunities to perform actions on functions 

and to reflect upon these actions, their conceptions of function may become processes 

(Asiala et al., 1996; Breidenbach et al., 1992).  In contrast to actions, processes are more 

internal and dynamic.  “An individual who has a process conception of a transformation 

can reflect on, describe, or even reverse the steps of the transformation without actually 



30 

performing those steps” (Asiala et al., 1996, p. 10).  In the context of functions, students 

with a process conception can visualize a function receiving multiple inputs, performing 

operations on these inputs, and generating outputs without explicitly carrying out the 

computations.  They can also combine processes—which is necessary for function 

composition—and reverse processes—which is necessary for finding inverses (Asiala et 

al., 1996).  Additionally, students with a process conception can begin to truly understand 

what it means for a function to be “one-to-one” or “onto” and can work with functions 

whose domain and/or range are not numbers (Breidenbach et al., 1992). 

Students with a process conception can begin to develop an object conception of 

functions over time.  According to Asiala and colleagues (1996): 

When an individual reflects on operations applied to a particular process, becomes 

aware of the process as a totality, realizes that transformations (whether they be 

actions or processes) can act on it, and is able to actually construct such 

transformations, then he or she is thinking of this process as an object.  In this 

case, we say that the process has been encapsulated to an object.  (p. 11) 

Students with an object conception of functions are able to think more globally about 

functions.  That is, they begin to consider properties and behaviors of functions and 

families of functions (Arcavi, Drijvers, & Stacey, 2017).  These students can also operate 

on sets of functions in a meaningful way (Thompson, 1994).  For example, they should 

be able to compose two functions, say f(x) and g(x), and reason about how the domain 

and range of f and g would affect the domain and range of f ○ g and g ○ f.  Therefore, one 

goal of instruction should be to help students develop an object conception of functions. 
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Section review.  In summary, algebra students often have a narrow view of 

functions and incorrectly interpret graphs of real-world situations as literal pictures/ 

images of the situations.  Additionally, students generally have action or process 

conceptions of functions, but with practice and experience, they can develop object 

conceptions. 

Based on this review of the literature on student thinking about expressions, 

equations, and functions, it is evident that mathematics teachers need to develop a 

knowledge base of student thinking to inform their teaching.  In the section that follows, 

research-based teaching methods and strategies in algebra will be discussed and 

connected to the research on student thinking (outlined in this review). 

Teaching Methods and Strategies in Algebra 

Mathematics teachers need to be equipped with the tools necessary to help 

students develop conceptual understandings in mathematics (including algebra) and to 

overcome any misconceptions they might develop.  These tools include (a) building on 

students’ prior knowledge (e.g., Arcavi et al., 2017); (b) choosing a wide range of rich 

examples, tasks, and questions (e.g., Leinhardt et al., 1990); (c) promoting problem 

solving (e.g., Star et al., 2015); (d) using multiple representations (e.g., Goldin & 

Shteingold, 2001); (e) using manipulatives (e.g., Leitze & Kitt, 2000); and (f) 

incorporating technology (e.g., Yerushalmy & Chazan, 2008).  Each of these teaching 

methods/strategies are explored in the sections that follow. 

Prior knowledge.  Students enter the mathematics classroom with knowledge 

that they have acquired both inside and outside of the classroom, and research suggests 

that when teachers incorporate this knowledge into their instruction, student achievement 
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can increase (see Carpenter & Fennema, 1992).  Teachers can build on students’ prior 

out-of-school knowledge by exploring algebraic concepts using familiar real-world 

contexts, as well as games and puzzles (Arcavi et al., 2017; Kalchman & Koedinger, 

2005).  For example, students could explore linear functions by considering an authentic 

situation: going to the movies.  More specifically, they could explore how the total cost 

of going to the movies varies as the number of tickets purchased increases using tables, 

graphs, and/or equations.   

Additionally, teachers can build on students’ prior school-based knowledge by 

considering what students have learned in their previous classes and applying that 

knowledge to new learning situations.  Thus, teachers need “to make public and shared 

the knowledge carried from math and other subjects and to work from that base…” 

(Leinhardt et al., 1990, p. 48).  For example, before working with rational expressions, a 

teacher might want to review how to add, subtract, multiply, and divide rational numbers 

(that do not include variables) and help students to make connections between operating 

on rational numbers (e.g., 
2

5
×

2

3
=

4

15
) and operating on rational expressions (e.g., 

𝑎

𝑏
×

𝑎

𝑐
=

𝑎2

𝑏𝑐
). 

Teachers also need to consider students’ misconceptions and other inaccuracies in 

their thinking when building on students’ prior knowledge, as misconceptions can greatly 

impede student learning (National Research Council, 2000).  In particular, teachers 

should consider possible student misconceptions—such as the generalized distribution 

error, discussed in the previous section on student thinking—and determine how they can 

best be addressed during instruction.  In this case, a teacher may ask students to rewrite 

(𝑥 + 𝑦)2 as (𝑥 + 𝑦)(𝑥 + 𝑦) and expand it using the distributive property, or she may ask 
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students to determine whether (𝑥 + 𝑦)2 = 𝑥2 + 𝑦2 is true or false by selecting specific 

values for x and y and then evaluating the “identity.” 

Ultimately, teachers need to be aware that all students enter their classroom with 

existing knowledge that can facilitate their learning, as well as knowledge that can hinder 

their learning (National Research Council, 2000).  Therefore, teachers should strive to 

build upon students’ accurate conceptions and help them address their misconceptions. 

Examples, tasks, and questions.  Students’ prior knowledge is one factor that 

algebra teachers should consider when choosing which examples, tasks, and questions to 

explore in the classroom.  According to Leinhardt et al. (1990), “The selection of 

examples is the art of teaching mathematics.  Making available for consideration by the 

student an example that exemplifies or challenges can anchor or critically elucidate a 

point” (p. 52).  In the paragraphs that follow, a brief discussion on high-quality examples, 

tasks, and questions will be presented. 

Examples.  When selecting which examples to explore with students, teachers 

should incorporate examples with both standard and nonstandard forms of expression 

(Powell, 2015).  For instance, when discussing how to solve quadratic equations, teachers 

should be sure to include some quadratic equations that are in standard form (i.e., ax2 + 

bx + c = 0) and others that are not.  Research suggests that teachers should also consider 

using solved problems (i.e., problems with their full solution) during instruction (Star et 

al., 2015).  In particular, teachers should present solved problems and ask students to 

analyze and discuss the steps and solution strategy used to solve each problem.  

Similarly, teachers can capitalize on students’ mistakes by presenting problems with 

incorrect solutions.  “Requiring students to detect errors made by others can raise 
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awareness of their own mistakes” (Arcavi et al., 2017, p. 97).  For example, a teacher 

could present a typical cancellation error, such as 
𝑎𝑥+𝑦

𝑎
= 𝑥 + 𝑦, and use it as an 

opportunity to discuss the rationale behind the mistake (i.e., misconceptions about 

linearity) and how to avoid it in the future. 

Tasks.  In addition to exploring a variety of examples and solved problems in 

class, teachers should strongly consider incorporating tasks of high cognitive demand.  In 

the area of functions, this type of task generally requires interpretation (e.g., classification 

tasks), construction (e.g., prediction tasks), or possibly both (e.g., translation and scaling 

tasks) (Leinhardt et al., 1990).  When selecting and/or developing tasks, teachers should 

consider tasks that are aligned with appropriate standards, have multiple entry points, 

involve exploratory approaches, require the use of multiple representations, are open-

ended (i.e., have more than one solution), and make connections to students’ prior 

knowledge, because tasks with these characteristics tend to promote deep learning of 

mathematical concepts and problem solving (Ronau, Meyer, & Crites, 2014).  (Note that 

problem solving will be discussed in the next section.) 

High-quality tasks can take many forms, including model-eliciting activities. 

These tasks involve simulating real-world situations that involve mathematical thinking 

and generally require students to interpret situations, construct basic mathematical 

models (i.e., descriptions or explanations), and make predictions or recommendations 

based on their models (Lesh & Lehrer, 2003).  Model-eliciting activities also stimulate 

students “to invent, extend, revise, and refine many of the important ideas throughout the 

mathematics curriculum…” (Van Dooren et al., 2008, p. 335).  For example, students 

could be given a number of different statistics for a group of basketball players (e.g., 
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height, vertical jump, free-throw shooting percentage) and be asked to develop a 

mathematical model to determine which players should be chosen for a hypothetical 

team.  Model-eliciting task are generally considered high quality because they meet 

most—if not all—of the criteria listed above (e.g., they have multiple entry points and are 

open-ended).  Additionally, they can be used to help students move from action and 

process conceptions to develop broader conceptions (i.e., object conceptions).  That is, 

model-eliciting tasks challenge students to think more globally about mathematical 

concepts. 

Questions.  Not only do teachers need to carefully select the examples and tasks 

that they will use in the classroom, but they also need to consider the questions they will 

pose to students as they work on these examples and tasks.  There are at least three types 

of questions that promote conceptual understandings in algebra: reversibility, flexibility, 

and generalization questions (Dougherty, 2001; Ronau et al., 2014).  Reversibility 

questions generally ask students to create a problem for a given solution.  For example, 

they could be asked the following question: what are the equations of three lines that pass 

through the point (1, 2)?  Flexibility questions ask students to compare and contrast 

problems or to solve a problem in multiple ways.  For example, they could be asked: how 

are the functions f(x) = x2 and g(x) = (x – 3)2 + 1 similar, and how are they different? Or 

they could be asked to solve x2 = (x – 3)2 + 1 using more than one method (e.g., 

algebraically and graphically by determining the intersection of the graphs of f(x) and 

g(x)).  Generalization questions ask students to use examples to find a pattern, or they ask 

them to create specific examples of a generalization, such as a rule or pattern.  For 

example, students could be given the graphs of several sets of perpendicular lines and 
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asked the following: what is the relationship between the slopes of perpendicular lines 

(opposite reciprocal)?  They could also be asked to draw the graph of a quadratic 

equation with no real solutions. 

As with high-quality tasks, reversibility, flexibility, and generalization questions 

can help students develop object conceptions of expressions, equations, and functions by 

requiring them to think more globally about these concepts.  Additionally, these types of 

questions can broaden students’ views of functions, which is quite narrow according to 

the literature. 

Problem solving.  Selecting appropriate questions and tasks is an important 

component of problem-solving instruction, which refers to the entire process of 

incorporating meaningful tasks into classroom instruction (Lester, 2013; NCTM, 2000).  

According to Lester and Kehle (2003): 

Successful problem solving involves coordinating previous experiences, 

knowledge, familiar representations and patterns of inference, and intuitions in an 

effort to generate new representations and related patterns of inference that 

resolve some tension or ambiguity (i.e., lack of meaningful representations and 

supporting inferential moves) that prompted the original problem-solving activity.  

(p. 510) 

To help their students become better problem solvers, teachers should select and 

develop meaningful problem-solving tasks.  But this is only the beginning.  Teachers 

should also listen to their students as they engage in problem solving and use students’ 

ideas as “thinking devices” during classroom discourse, ask good probing questions to 

stimulate critical thinking, help students apply appropriate problem-solving methods and 
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strategies, and encourage productive struggle (Cai, 2010; DiMatteo & Lester, 2010; 

Knuth & Peressini, 2001; Lester, 2013).  Productive struggle refers to students’ efforts to 

make sense of non-routine problems and understand the underlying mathematical 

concepts (Hiebert & Grouws, 2007).  Productive struggle requires perseverance, as 

students often have to attempt several approaches/strategies to solve meaningful tasks.  

Thus, teachers should give students ample time to grapple with tasks and should be 

careful not to intervene too quickly or do the thinking for their students (Warshauer, 

2015).  Instead, they should consider probing questions that can facilitate students’ 

learning. 

Problem solving is the focal point of several reform curricula (e.g., Connected 

Mathematics Project and Interactive Mathematics Program) that have been developed 

over the past few decades.  These curricula generally consist of a sequence of tasks that 

drive instruction, and the teacher serves as a facilitator (as described above).  Reform 

curricula have been studied extensively, and their use in the mathematics classroom has 

been linked to increased student achievement (see Senk & Thompson, 2003).  In one 

particular study, a group of students who learned algebra using the Connected 

Mathematics Project curriculum outperformed a group of students who used a more 

traditional curriculum on open-ended and problem-solving tasks (Post et al., 2008).  The 

students who used the reform curricula also performed as well as the control group on 

procedural tasks (Post et al., 2008). 

Multiple representations.  As previously mentioned, when planning instruction, 

teachers should incorporate tasks and examples that require students to use multiple 

representations, such as graphs, tables, equations, and verbal descriptions (Ronau et al., 
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2014).  “Effective mathematical thinking involves understanding the relationships among 

different representations of ‘the same’ concept as well as the structural similarities (and 

differences) among representational systems” (Goldin & Shteingold, 2001, p. 9).  

Suggestions for teachers include “copresenting” representations within the same lesson 

(Kalchman & Koedinger, 2005), exploring the types of information that various 

representations convey (Star et al., 2015), and asking students to make judgments across 

representations (Oehrtman et al., 2008).  For example, during a lesson on linear 

equations, students could be asked to explore the equation y = 3x – 1, as well as its 

graphical and tabular representations, and to determine what information is revealed by 

each representation.  (In this case, the equation clearly reveals the line’s slope and y-

intercept, the graph reveals its x- and y-intercepts and end behavior, and the table reveals 

the linear relationship between variables.) 

As discussed in the previous section on student thinking about functions, students 

often find it difficult to construct and interpret graphs of functions that represent real-

world situations.  However, students may experience greater success in this area if their 

teachers ask them to use graphical representations on a regular basis, as well as connect 

the graphs to other representations and make decisions based on multiple representations. 

Manipulatives.  In addition to graphs, tables, equations, and verbal descriptions, 

manipulatives are another type of representation that can help students build connections 

among algebraic concepts.  Manipulatives can be physical/concrete (e.g., blocks or tiles) 

or virtual (e.g., computer applets) and come in many different forms.  But they have a 

common purpose: to provide physical models of abstract concepts that can be 

manipulated by the learner (Balka, 1993; Suh & Moyer, 2007). 
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Despite evidence that manipulatives can improve student achievement (Rakes, 

Valentine, McGatha, & Ronau, 2010; Sowell, 1989; Suh & Moyer, 2007), they are often 

underutilized in mathematics teaching and learning, especially in middle and secondary 

education (Leitze & Kitt, 2000; Tooke, Hyatt, Leigh, Snyder, & Borda, 1992).  Thus, 

teachers should look for meaningful ways to incorporate manipulatives into instruction.  

Balance scales and algebra tiles are two types of manipulatives that are frequently used in 

algebra classrooms. 

Balance scales are designed to help students learn how to solve linear equations 

(Powell, 2015).  Basic balance scales generally have two pans—one for each side of a 

linear equation—and at least two types of blocks—a unit block that represents 1 and a 

variable block that represents an unknown x.  (Note that there are advanced virtual 

balance scales include a block that represents –1, four pans, and/or a pulley system for 

negative integers.)  Figure 4 shows an example of a concrete balance scale.  According to 

Suh and Moyer (2007): 

Once the beam balances to represent the given linear equation, students can 

choose to perform any arithmetic operation, as long as they perform the same 

operation on both sides of the equation, thus keeping the pans balanced.  If the 

equation is not balanced, the beam will slant to one side.  The goal…is to get a 

single x-box on one side, with the amount needed for balance on the other side, 

thus giving the value of x…. (p. 160) 

There are several benefits of using balance scales to explore the topic of solving 

linear equations.  They include providing students a mental picture and concrete model of 

the process required to solve linear equation (Vlassis, 2002) and helping them develop a  
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relational view of the equal sign (Rojano & Martínez, 2009).  More specifically, balance 

scales can reinforce the idea that both sides of a linear equation should be balanced or the 

same (Powell, 2015). 

 

 

Algebra tiles also are designed to help students learn how to solve linear 

equations, but they can also be used to model multiplying monomials and binomials and 

factoring quadratic expressions (Leitze & Kitt, 2000).  Algebra tiles generally consist of 

small squares (with dimensions of 1 × 1 and an area of 1 to represent 1), rectangles (with 

dimensions of 1 × x and an area of x to represent x), and large squares (with dimensions 

of x × x and an area of x2 to represent x2).  (Note that the length of the rectangle is equal 

to the side length of the small square, and the width is equal to the side length of the large 

square.)  Figure 5 shows an example of a set of algebra tiles. 

Working with algebra tiles can help students gain deeper understandings of the 

concept of variable, number properties and principles, and concepts in geometry 

(Chappell & Strutchens, 2001).  For example, the use of algebra tiles “combines an 

algebraic and a geometric approach to algebraic concepts using an array-multiplication 

Figure 4.  Example of a balance scale. 
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model similar to that employed in many elementary school classrooms” (Leitze & Kitt, 

2000, p. 463).  However, teachers should be careful to make connections between 

students’ work with manipulatives (e.g., algebra tiles and balance scales) and the abstract 

mathematical ideas the materials are meant to promote (Bohan & Shawaker, 1994).  In 

short, if students do not understand how their work with manipulatives is related to the 

mathematical concepts they are learning, they most likely won’t benefit from their use. 

 

 

Both balance scales and algebra tiles are available in physical and virtual forms.  

(Virtual manipulatives are freely available online through websites such as the National 

Library of Virtual Manipulatives: http://nlvm.usu.edu/.)  However, teachers need to be 

Figure 5.  Example of a set of algebra tiles. 
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aware that there are differences between physical and virtual manipulatives.  In 

particular, physical manipulatives are concrete representations, whereas virtual 

manipulatives are iconic representations.  And based on Bruner’s (1966) “enactive-

iconic-symbolic” modes of representation, some members of the mathematics-education 

community in the U.S. and abroad believe students should work with concrete 

representations before iconic (e.g., virtual) ones.  (See Hoong, Kin, & Pien, 2015, for 

more details.) 

Technology.  Virtual manipulatives and other digital tools—such as spreadsheets, 

graphing utilities, and computer algebra systems (CAS)—can greatly enhance 

mathematics teaching and learning in algebra when used strategically in the classroom 

(Rakes et al., 2010; Yerushalmy & Chazan, 2008).  In particular, spreadsheets and 

graphing tools can be used to help students discover relationships among quantities; CAS 

usage can reduce students’ cognitive load by performing algebraic manipulations; and all 

of these tools can be used to support students’ conceptual understandings of algebraic 

concepts through multiple representation (Yerushalmy & Chazan, 2008).  Technology 

available to mathematics teachers and their students include graphing calculators and 

interactive whiteboards (IWB), computers/laptops, tablets, and smartphones, which can 

often access online resources such as applets and video clips (Arcavi et al., 2017). 

Although teachers should incorporate technology into their algebra instruction, it 

is important that they are careful and deliberate in their choice of tasks and digital tools.  

More specifically, they need to choose purposeful tasks in which one or more digital 

tools are needed to enhance students’ conceptual understandings.  Additionally, teachers 

need to “act as a conductor who organizes the teaching in such a way, that the 
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‘mathematics hidden in the work with the tool’ becomes explicit and subject to 

discussion” (Arcavi et al., 2017, p. 130). 

Section review.  In summary, mathematics teachers need to be familiar with 

research-based teaching strategies and methods and how to use them effectively in the 

classroom.  These strategies/methods include building on students’ prior knowledge, 

choosing a wide range of rich tasks, promoting problem solving, using multiple 

representations (including manipulatives), and incorporating technology. 

Based on this review of the literature, it is clear that algebra teachers need more 

than simply content knowledge (i.e., knowledge of algebra and other areas of 

mathematics) to be effective.  They also need to be knowledgeable about their students’ 

algebraic thinking (including misconceptions), as well as appropriate mathematics 

teaching strategies to use during instruction.  In the next section, frameworks related to 

teacher knowledge (both general and mathematics-focused) will be discussed and 

synthesized, and connections to algebra will be made. 

Teacher Knowledge 

A number of researchers (e.g., Ball, Thames, & Phelps, 2008; Herbst & Kosko, 

2014; Kilpatrick et al., 2015; Krauss, Baumert, & Blum, 2008; McCrory et al., 2012; 

Mohr-Schroeder et al., 2017; Rowland, Huckstep, & Thwaites, 2005) have built upon 

Shulman’s (1986) broad conceptions of content knowledge (CK) and pedagogical content 

knowledge (PCK) to develop frameworks specifically focused on the knowledge 

necessary for teaching mathematics.  Although they use different terminology and labels, 

all of these frameworks of teacher knowledge contain constructs related to CK and PCK, 
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which is the interaction of CK and general pedagogical knowledge (GPK).  (See Figure 6 

for a Venn diagram of the relationships among CK, PCK, and GPK.) 

 

 

 

 

 

 

 

 

 

 

All three types of knowledge will now be explored, with an emphasis on CK and 

PCK.  More specifically, various frameworks that focus on mathematics teacher 

knowledge in general (e.g., the Mathematical Knowledge for Teaching and knowledge 

quartet frameworks) and on teacher knowledge at the secondary level (e.g., the 

Mathematical Understanding for Secondary Teaching and COACTIV frameworks) will 

be examined to develop a general consensus about the knowledge necessary to teach 

algebra. 

Content Knowledge 

Content knowledge (CK) refers to teachers’ knowledge of subject matter, 

including the content that they teach (Shulman, 1986).  This type of knowledge consists 

of a comprehensive understanding of the facts and concepts of the discipline, as well as a 

deep understanding of its underlying structures (Shulman, 1986).  In mathematics, facts 

Content 

Knowledge 

(CK) 

General 

Pedagogical 
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Figure 6.  Venn diagram showing the relationships among CK, GPK, and PCK 
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include definitions, formulas, procedures, and foundational information (e.g., 

multiplication facts), and concepts include general ideas in mathematics, such as the 

function concept—which was previously discussed in this review.  The underlying 

structures of mathematics include the organization of facts and concepts within the 

discipline, as well as “the set of ways in which truth or falsehood, validity or invalidity, 

are established [e.g., reasoning and proof in mathematics]” (Shulman, 1986, p. 9).  In 

short, CK refers to knowledge of the major facts and concepts of a domain, why they are 

important and true, and how they are related.  However, researchers in mathematics 

education have conceptualized CK in slightly different ways. 

In the COACTIV teacher knowledge framework (for secondary mathematics 

teachers), CK is conceptualized as having a deep understanding of the concepts found in 

the high-school mathematics curriculum.  According to the COACTIV research team, 

this deep understanding lies somewhere between “the school-level mathematical 

knowledge that good school students have, and the university-level mathematical 

knowledge that does not overlap with the content of the school curriculum…” (Krauss et 

al., 2008, p. 876). 

CK also coincides closely with the “foundation” dimension of Rowland, 

Huckstep, and Thwaites’ (2005) knowledge quartet, which is a model of mathematics 

teachers’ knowledge.  This dimension of the quartet involves the knowledge and 

understanding of mathematics that is acquired in academic settings and includes 

conceptual understandings (i.e., knowing the “whys”) in mathematics (Rowland et al., 

2005).  This dimension also includes other aspects (e.g., teachers’ personal beliefs), 

which are not directly related to CK. 
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Additionally, CK is closely related to the “mathematical proficiency” perspective 

outlined in the Mathematical Understanding for Secondary Teaching (MUST) framework 

(Kilpatrick et al., 2015).  The “mathematical proficiency” perspective refers to all of the 

mathematical knowledge/capabilities that teachers need, and it contains several strands, 

including conceptual understanding, procedural fluency, strategic competence, and 

adaptive reasoning—which were originally outlined in the National Research Council’s 

(2001) seminal work, Adding It Up: Helping Children Learn Mathematics.  If conceptual 

understanding is “knowing why” in mathematics, then procedural fluency is “knowing 

how” (i.e., understanding how and when to apply algorithms and procedures, and 

applying them efficiently).  For example, students must know how and when to apply the 

distributive property of multiplication over addition to express the product of two 

binomial expressions as a single polynomial expression—e.g., (𝑥 + 3)(𝑥 − 4) = 𝑥2 −

4𝑥 + 3𝑥 − 12 = 𝑥2 − 𝑥 − 12.  Next, strategic competence involves using problem-

solving strategies to approach mathematical tasks, as well as evaluating the effectiveness 

of these strategies.  And last, adaptive reasoning involves the ability to adapt to changes 

in assumptions and conventions in mathematics.  For example, when working with 

matrices, students need to understand that matrix multiplication is not commutative, 

consider how this change affects computing with matrices, and be able to adjust—or 

adapt—to this change. 

The preceding sections suggest that although different terminology may be used, 

there is fairly universal agreement that the content knowledge that mathematics teachers 

need includes deep understandings of mathematical facts, concepts, and procedures.  

Although there is less agreement about how to partition CK into subdomains, one widely-
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recognized model—the Mathematical Knowledge for Teaching (MKT) framework 

developed by Ball and colleagues (2008)—partitions CK into common content 

knowledge (CCK), specialized content knowledge (SCK), and horizon content 

knowledge.  Because the latter subdomain’s inclusion in the MKT model is provisional 

(Ball et al., 2008), only the first two subdomains (CCK and SCK) will be discussed.  

Additionally, connections to similar constructs will be examined. 

Common content knowledge (CCK).  CCK refers to subject matter knowledge 

and skills in mathematics that are not unique to teaching (Ball et al., 2008).  Therefore, 

this subdomain includes all of the mathematics that is commonly taught and learned in 

the classroom at the elementary, secondary, and postsecondary levels.  In the United 

States, the K-12 mathematics curriculum generally reflects the content guidelines 

outlined in two significant standards documents: Principles and Standards for School 

Mathematics (PSSM) (NCTM, 2000) and the Common Core State Standards for 

Mathematics (CCSSM) (NGACBP & CCSSO, 2010).  Thus, these documents outline the 

CCK that U.S. mathematics teachers should have. 

Focusing on algebra, PSSM recommends that algebra students learn about 

patterns, relations, and functions (such as rates of change); variables, expressions, 

equations, and inequalities (such as the ability to write equivalent forms of expressions 

and to manipulate equations); and mathematical modeling, such as determining functions 

that can model quantitative relationships (NCTM, 2000).  Similarly, the CCSSM outlines 

a clear and coherent set of standards related to high-school algebra.  For example, high-

school algebra students are expected to work with expressions (e.g., simplify expressions 

and perform operations on polynomials), as well as solve and represent equations and 
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inequalities (NGACBP & CCSSO, 2010).  Additionally, standards relating to functions 

include building and interpreting functions that model relationships in the real-world and 

creating and analyzing multiple representations of functions (NGACBP & CCSSO, 

2010).   

These algebra standards are fairly consistent among countries with high-achieving 

mathematics students.  For example, students in Singapore and Japan generally score 

very well on TIMSS and PISA mathematics assessments, and these countries have 

algebra standards that are closely aligned to CCSSM.  In particular, the national 

mathematics curriculum of Singapore places emphasis on the following concepts in 

algebra at the secondary level: ratio and proportion, algebraic expressions and formulas, 

functions and their graphs, solving equations and inequalities, and solving problems in 

real-world contexts (Ministry of Education, Singapore, 2012).  Similarly, the national 

mathematics curriculum of Japan places emphasis on linear and quadratic equations, 

systems of equations, and functional relationships in algebra at the secondary level 

(Takahashi, Watanabe, & Yoshida, 2008). 

There is a great deal of overlap in U.S. algebra standards/goals described in 

PSSM and CCSSM, as well as international standards.  Considered together, these 

documents give a rich picture of what algebra should look like and what algebra teachers 

should know to be effective in the mathematics classroom. 

Specialized content knowledge (SCK).  SCK refers to knowledge and skills in 

mathematics that are unique to teaching (Ball et al., 2008).  More specifically, a 

mathematics teacher might use SCK to explain a rule/procedure or evaluate the merit of 

an unconventional algorithm or approach (Hill, Schilling, & Ball, 2004).  These 
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unconventional approaches can be student-generated or teacher-generated.  For example, 

in algebra, students often learn a variety of techniques for factoring quadratic 

expressions, such as the “AC” methods (which involves factoring by grouping).  Thus, 

teachers need SCK to determine whether or not unfamiliar approaches to factoring are 

valid.  (Note that this type of knowledge is considered “specialized” because it is 

knowledge that is needed by teachers but not by mathematics experts in other fields.) 

General Pedagogical Knowledge 

General pedagogical knowledge (GPK) refers to teachers’ knowledge of the 

processes and practices that are critical to teaching and learning.  This type of knowledge 

involves understanding theories and methods of instruction, student thinking/learning, 

strategies of classroom management, lesson planning, and assessment (Koehler & 

Mishra, 2009; König, Blömeke, Paine, Schmidt, & Hsieh, 2011).  Building on students’ 

prior knowledge in general (as previously discussed) could be considered GPK because it 

is related to student thinking and can be applied in subject areas other than mathematics. 

Because the focus of this study is knowledge specific to teaching mathematics, 

GPK will not be discussed in greater detail here.  The purpose of this brief introduction of 

GPK is to provide some context for pedagogical content knowledge, which is knowledge 

in the intersection of CK and GPK. 

Pedagogical Content Knowledge 

Pedagogical content knowledge (PCK) refers to the dimension of content 

knowledge that is directly related to pedagogy (i.e., the interaction of CK and GPK).  

PCK includes all of the content-specific examples, tasks, representations, and strategies 

that teachers use to help their students learn; additionally, it includes awareness of 
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students’ conceptions and preconceptions about the subject matter (Shulman, 1986).  

These preconceptions include the misconceptions addressed earlier in this review. 

Within the context of mathematics, PCK can be partitioned into several 

subdomains.  In particular, the well-known MKT model (Ball et al., 2008) divides PCK 

into the following subdomains: knowledge of content and students (KCS), knowledge of 

content and teaching (KCT), and knowledge of content and curriculum, which Ball and 

colleagues (2008) suggest is a provisional subdomain.  Given their widespread use, the 

first two subdomains (KCS and KCT) will now be discussed, and connections to similar 

constructs will be examined. 

Knowledge of content and students (KCS).  KCS is the combination of 

knowing about students and knowing about the subject matter (Ball et al., 2008).  This 

type of PCK includes anticipating students’ thinking (i.e., their conceptions, processes, 

and connections), interpreting and responding appropriately to their emerging ideas, and 

developing lessons (i.e., choosing examples and representations) based on students’ 

needs (Ball et al., 2008; Petrou & Goulding, 2011).   

In algebra, KCS involves being knowledgeable about students’ thinking and 

misconceptions in algebra (see previous discussion on student thinking about 

expressions, equations, and function) and using this knowledge to inform instructional 

decisions.  For example, when simplifying rational expressions, such as 
5𝑥+10

5𝑥
, students 

often make “cancelation” errors by canceling terms that are joined with addition or 

subtraction.  In this case, a student might try to cancel “5x” from the numerator and 

denominator and then incorrectly conclude that the expression is equal to 10 or 11.  Thus, 

an experienced teacher who understands this misconception might use a few examples, 
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such as 
5+10

5
= 3 (not 10 or 11) and 

5×10

5
=

50

5
= 10, to demonstrate that it is only 

appropriate to divide common factors (i.e., the parts joined with multiplication). 

KCS is closed related to constructs explicated in other frameworks, including the 

“contingency” dimension of the knowledge-quartet framework (Rowland, Huckstep, & 

Thwaites, 2005), the “mathematical context for teaching” perspective outlined in the 

Mathematical Understanding for Secondary Teaching (MUST) framework (Kilpatrick et 

al., 2015), and the “knowledge of student misconceptions and difficulties” from the 

COAVTIV framework (Krauss et al., 2008).  Each of these constructs will now be briefly 

described. 

First, the “contingency” dimension of the knowledge-quartet framework involves 

“the ability to ‘think on one’s feet’; it is about contingent action” (Rowland, Huckstep, & 

Thwaites, 2005, p. 263).  More specifically, it refers to the ability to respond 

appropriately to students’ incomplete thinking in the moment and deviate from the lesson 

plan, as needed, to meet students’ needs (Rowland et al., 2005). 

Similarly, the “mathematical context for teaching” perspective outlined in the 

MUST framework involves accessing, understanding, and assessing students’ 

mathematical thinking (Kilpatrick et al., 2015).  In this case, accessing and understanding 

students’ thinking refers to uncovering students’ conceptions through their written work 

and classroom discourse.  And assessing students’ thinking refers to formatively 

assessing students’ ability to use and connect mathematics concepts and using this 

information to guide instruction (Kilpatrick et al., 2015). 

Likewise, “knowledge of student misconceptions and difficulties,” which the 

COACTIV researcher team described as a subdimension of PCK (Krauss et al., 2008), 
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includes the ability to “detect, analyze (e.g., give cognitive reasons for a given problem), 

or predict a typical student error or comprehension difficulty” (Krauss et al., 2008, p. 

876). 

Considering all of these various constructs, KCS can be summarized as the ability 

to anticipate and understand students’ thinking and to respond to it appropriately “in the 

moment.”  It also involves formatively assessing students’ thinking and modifying 

instruction to increase their understanding. 

Knowledge of content and teaching (KCT).  KCT is the combination of 

knowing about teaching and knowing about the subject matter (Ball et al., 2008).  This 

type of PCK involves making decisions related to instructional design, such as the choice 

and sequencing of examples and activities (Ball et al., 2008) and the creation of 

representations and examples—a strand of the MUST model’s “mathematical activity” 

perspective.  KCT also includes evaluating “the instructional advantages and 

disadvantages of representations used to teach a specific idea and [identifying] what 

different methods and procedures afford instructionally” (Ball et al., 2008, p. 401).   

In algebra (and other areas of mathematics), KCT involves using the teaching 

methods and strategies that were outlined earlier in this review.  These strategies include 

choosing rich sets of examples/tasks, promoting problem solving, using multiple 

representations (of functions, etc.), and using manipulatives (e.g., algebra tiles).  For 

example, when preparing a lesson on solving linear equations, an experienced teacher 

might sequence her examples as follows (in a logical progression from least to most 

complex): one-step equations with the variable on the left side of the equation, such as  

2x = 10; one-step equations with the variable on the right side of the equation, such as     
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–8 = y + 7; two-step equations, such as –3x + 5 = 11; multi-step equations involving 

distribution, such as 9 = 5(x + 7); and multi-step equations with variables on both sides of 

the equation, such as –2(x + 1) = 4x + 6. 

Like KCS, KCT is also closely related to constructs explicated in other 

frameworks.  They include the “transformation” and “connection” dimensions of the 

knowledge-quartet framework (Rowland et al., 2005), the “mathematical context for 

teaching” perspective of the MUST model (Kilpatrick et al., 2015), and the “knowledge 

of mathematical tasks” and “knowledge of mathematics-specific instructional strategies” 

from the COACTIV framework (Krauss et al., 2008).  Each of these constructs will now 

be briefly described. 

The “transformation” and “connection” dimensions of the knowledge-quartet 

framework correspond directly to KCT.  The “transformation” dimension includes the 

choice and use of examples and representations, whereas the “connection” dimension 

includes the sequencing of examples and topics, as well as the overall coherence of the 

planning and teaching (Rowland et al., 2005).   

Likewise, the “mathematical context for teaching” perspective of the MUST 

model involves the teacher’s ability “to identify foundational or prerequisite concepts that 

enhance the learning of a concept…[and] how the concept fits learning trajectories” 

(Kilpatrick et al., 2015, p. 27).  This perspective has several strands and is broader than 

KCT; however, KCT is very similar to this perspective’s strand related to knowing and 

using the curriculum. 

Lastly, there are two PCK subdimensions identified in the COACTIV 

framework—“knowledge of mathematical tasks” and “knowledge of mathematics-
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specific instructional strategies” (Krauss et al., 2008)—that closely resemble KCT.  

“Knowledge of mathematical tasks” includes the ability to select and implement 

appropriate tasks (as discussed earlier in this review), as well as the ability to produce 

multiple solutions to a problem.  And “knowledge of mathematics-specific instructional 

strategies” includes the ability to “explain mathematical situations or to provide useful 

representations, analogies, illustrations, or examples to make mathematical content 

accessible to students” (Krauss et al., 2008, p. 876). 

Considering all of these various constructs, KCT can be described as the ability to 

use knowledge of the curriculum to select and create examples and representations.  It 

also involves understanding the advantages and disadvantages of examples and 

representations and how to sequence them for maximum impact in the classroom. 

Section Review 

In summary, teacher knowledge can be categorized into three large domains: 

content knowledge (CK), general pedagogical knowledge (GPK), and pedagogical 

content knowledge (PCK), which is knowledge at the intersection of CK and GPK.  And 

these domains can be further divided into subdomains.  In particular, CK includes 

common content knowledge (CCK) and specialized content knowledge (SCK), and PCK 

includes knowledge of content and students (KCS) and knowledge of content and 

teaching (KCT).  (See Figure 7 for a visual representation of these relationships.) 
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Preservice and Inservice Teachers’ Mathematical Knowledge for Teaching 

A number of studies related to preservice and inservice mathematics teachers’ 

knowledge for teaching have revealed that many mathematics teachers may have some 

deficiencies in their CK and PCK.  In one international study, the Teacher Education and 

Development Study in Mathematics (TEDS-M), researchers investigated the CK and 

PCK of preservice mathematics teachers from 17 countries (including the U.S.).  The 

TEDS-M assessment included CK items related to number and operation, algebra and 

functions, geometry and measurement, and data and chance.  It also included PCK items 

related to mathematics curricular knowledge, knowledge of planning for mathematics 

teaching and learning, and knowledge of enacting mathematics for teaching and learning 

(Tatto et al., 2012).   

TEDS-M found that the mean CK score for lower secondary (up to Grade 10) 

preservice teachers in the U.S. was 468, which was statistically significantly below the 

 

Figure 7.  Venn diagram showing the relationships among knowledge types. 
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international mean of 500.  However, the mean CK score for lower and upper secondary 

preservice teachers (i.e., middle- and high-school preservice teachers in the U.S.) was 

553, which was statistically significantly above the international mean.  Also, about 

87.1% of the U.S preservice secondary teachers in the sample reached at least the first 

CK benchmark on the TEDS-M assessment, which indicated that they were “likely to 

evaluate algebraic expressions correctly, and solve simple linear and quadratic equations 

[correctly]…” (Tatto et al., 2012, p. 142).  However, only 44.5% reached the second CK 

benchmark, which indicated that they “were likely to correctly answer questions about 

functions…, to read, analyze, and apply abstract definitions and notation, and to make 

and recognize simple arguments” (Tatto et al., 2012, p. 144).  Therefore, the TEDS-M 

study suggests that many middle- and high-school preservice mathematics teachers in the 

U.S. have some major gaps in their CK. 

Additionally, the mean PCK score for lower secondary preservice teachers in the 

U.S. (471) was statistically significantly below the international mean of 500, whereas 

the PCK score for lower and upper secondary preservice teachers (542) was statistically 

significantly above the international mean.  However, only 61.0% of the U.S. preservice 

secondary teachers reached the PCK benchmark, which indicated that they were likely to 

be familiar with at least some mathematics curricula, to be able to plan and enact 

mathematics instruction, and to analyze simple student errors (Tatto et al., 2012).  Thus, 

the TEDS-M study suggests that middle- and high-school preservice mathematics 

teachers in the U.S. could improve in the area of PCK, as well. 

In another study related to secondary teachers’ knowledge for teaching, 152 

prospective teachers completed an open-ended questionnaire related to the function 
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concept—as previously discussed in the section on student conceptions of algebra—and 

demonstrated limited understandings of the concept (Even, 1993).  The prospective 

teachers also tended to focus on rules (e.g., the vertical line test) rather than conceptual 

understandings of the concept (Even, 1993).  Similarly, Huang and Kulm (2012) 

administered the KAT instrument (which is described in the next section) and several 

open-ended items related to functions to 115 preservice teachers and found that most of 

them had limited knowledge of algebra (and functions) for teaching.  In particular, these 

preservice teachers struggled with the appropriate use of graphical representations and 

experienced difficulty manipulating symbols, solving some types of equations (including 

quadratic equations), and reasoning in algebra (Huang & Kulm, 2012).   

In one of the few teacher-knowledge studies of inservice mathematics teachers at 

the secondary level, Cankoy (2010) investigated how 58 teachers explained division by 

zero (a ÷ 0) and why any nonzero number raised to the zero power is one (a0 = 1).  When 

describing division by zero, about 81% of the inservice teachers gave procedural 

explanations—such as stating that “it is a rule”—whereas 10% gave more conceptual 

responses that involved patterns or the idea of limits.  (The remaining 9% did not 

respond.)  When describing a0 = 1, about 76% of the teachers gave procedural 

explanations, whereas only 24% gave conceptual responses that involved algebraic 

manipulation—such as 1 =
𝑎4

𝑎4 = 𝑎4−4 = 𝑎0—or patterns (Cankoy, 2010). 

There is also relatively little research that compares preservice and inservice 

mathematics teachers’ knowledge for teaching.  In Germany, the COACTIV research 

team (Krauss et al., 2008) surveyed 198 inservice mathematics teachers, 90 preservice 

teachers (at the end of their education programs), and 30 secondary students (18-19 years 
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old) who were enrolled in advanced mathematics courses.  Participants completed 35 

open-ended items related to CK and PCK in mathematics, including items focused on 

algebra content and teaching algebra.  As the researchers expected, the inservice teachers 

statistically significantly outperformed preservice teachers and secondary students on 

both CK and PCK items.  Also, preservice teachers outperformed secondary students on 

both item types.  Thus, they concluded that CK and PCK continue to grow during 

preservice teacher training and professionalization (Krauss et al., 2008). 

In a related study, the COACTIV research team (Kleickmann et al., 2013) 

compared cross-sectional data from four groups of mathematics teachers: beginning 

preservice teachers (n = 117), third-year preservice teachers (n = 126), student teachers (n 

= 539), and inservice teachers (n = 198).  Participants completed open-ended items 

related to CK and PCK in mathematics.  After controlling for several covariates (such as 

GPA), researchers found the following for academic-track teachers: the CK of third-year 

preservice teachers was 0.58 standard deviations (SD) higher than the CK of beginning 

preservice teachers, and the CK of student teachers was 0.44 SD higher than the CK of 

third-year preservice teachers.  Inservice teachers scored about the same as student 

teachers on CK items.  Thus, the data suggest that CK develops primarily during 

preservice teacher training (Kleickmann et al., 2013). 

Additionally, after controlling for covariates, the PCK of third-year preservice 

teachers was 0.60 SD higher than the PCK beginning preservice teachers; the PCK of 

student teachers was 0.53 SD higher than the PCK of third-year preservice teachers; and 

the PCK of inservice teachers was 0.46 SD higher than the PCK of student teachers.  “As 

observed for CK…, the first phase of teacher education seems to play an important role in 
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the development of PCK.  However, the learning opportunities offered in the induction 

phase also seem to foster the development of PCK” (Kleickmann et al., 2013, p. 99). 

In a third study comparing preservice and inservice mathematics teachers, 

researchers at UCLA investigated algebra teacher subject matter knowledge and 

pedagogical content knowledge using two knowledge-mapping tasks, the algebra items 

from the MKT (Hill et al., 2008) instrument, and a Student Response Analysis (SRA) 

task (Buschang, Gregory, Delacruz, & Baker, 2012).  Participants included 13 subject-

matter experts (i.e., students in a doctoral program in mathematics), 10 PCK experts (i.e., 

teachers with National Board Certification or who were serving as teacher trainers), 17 

novice teachers (i.e., teachers with no more than two years of experience), and 46 

experienced teachers (i.e., teachers with more than two years of experience and who did 

not meet the PCK expert requirement).  Despite the relatively small sample size, the 

PCK-expert teachers scored statistically-significantly higher than both novice and 

experienced teachers on the MKT task.  Additionally, the experienced teachers slightly 

outperformed the novice teachers, but the result was not significant.  Another noteworthy 

trend was that the PCK-expert teachers scored higher than novice and experienced 

teachers on the SRA task—which was designed to measure teachers’ PCK, and more 

specifically, their knowledge of content and students, or KCS.  Also, as expected, the 

novice and experienced teachers scored higher than the subject-matter experts on the 

SRA task (Buschang et al., 2012). 

In summary, the preservice and inservice teachers who participated in these 

studies generally had limited conceptions of some algebraic concepts (such as functions), 

had issues related to planning and enacting mathematics instruction, and tended to use 
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procedural rather than conceptual explanations.  Additionally, inservice teachers 

generally had higher PCK than preservice teachers, but they had about the same CK as 

preservice teachers who were student teaching. 

Knowledge of Algebra for Teaching Framework 

The knowledge of algebra for teaching (KAT) framework was developed by 

researchers at Michigan State University (including Robert Floden, Joan Ferrini-Mundy, 

Raven McCrory, Mark D. Reckase, and Sharon L. Senk) to describe the mathematical 

knowledge necessary to be an effective teacher of algebra.  The KAT framework consists 

of three types of knowledge: knowledge of school algebra, knowledge of advanced 

mathematics, and mathematics-for-teaching knowledge.  The first two types of 

knowledge describe the subject matter knowledge that mathematics teachers need to 

teach algebra, whereas the third type of knowledge describes the content knowledge that 

is unique to teaching algebra.  Each type will be discussed in the sections that follow. 

Knowledge of School Algebra 

Knowledge of school algebra refers to teachers having a deep understanding of 

the actual algebra topics that they will teach (e.g., solving linear and quadratic equations) 

and can be classified as CCK.  (Recall that CCK involves subject matter knowledge and 

skills in mathematics that are not unique to teaching.)  In the United States, school 

algebra equates to the mathematics courses conventionally referred to as algebra I and II 

(McCrory et al., 2012).  The scope of the content and proficiencies associated with school 

algebra was previously outlined in the CCK and algebra sections. 

Knowledge of Advanced Mathematics 

Knowledge of advanced mathematics can also be classified as CCK and refers to 
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a deep understanding of advanced topics in algebra and other areas of mathematics that 

most secondary teachers are not expected to teach.  In essence, algebra teachers need to 

know more mathematics than they are expected to teach because it can help them deepen 

their understanding of school algebra by giving them “some perspective on the trajectory 

and growth of mathematical ideas beyond school algebra” (McCrory et al., 2012, p. 597).  

A few of the college-level courses that are relevant to secondary algebra teachers include 

calculus, linear algebra, mathematical analysis (both real and complex), and abstract 

algebra (McCrory et al., 2012).   

Content from a typical abstract algebra course can exemplify some of the 

relationships between knowledge of school algebra and knowledge of advanced 

mathematics.  Abstract algebra courses generally focus on rings and fields, which are 

foundational concepts for prospective secondary mathematics teachers (Conference 

Board of the Mathematical Sciences, 2012).  Rings are sets with two binary operations—

addition and multiplication—and the following properties: addition is commutative and 

associative; there is an additive identity; every element has an additive inverse; and 

multiplication is associative and distributes over addition.  Fields are rings with several 

additional properties, namely that multiplication is commutative, there is a multiplicative 

identity, and every nonzero element has a multiplicative inverse.  These two algebraic 

structures are important because they can help teachers think more abstractly about the 

set of integers under addition and multiplication (which is an example of a ring), as well 

as the set of real numbers and complex numbers under addition and multiplication (which 

are examples of fields). 
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Mathematics-for-Teaching Knowledge 

Mathematics-for-teaching knowledge is “knowledge that is mathematical, that is 

intuitively useful for teaching, and that is unlikely to be taught explicitly, except to 

teachers” (McCrory et al., 2012, p. 598).  This type of knowledge can be classified a 

combination of SCK and PCK (Reckase et al., 2015).  (Recall that SCK refers to content 

knowledge that is unique to teaching, whereas PCK refers to content knowledge related 

to student thinking—or KCS—and teaching—or KCT.)  Mathematics-for-teaching 

knowledge includes 

…such things as the mathematical entailments of representations and 

manipulatives, what makes a particular concept mathematically difficult, how 

mathematical errors reflect specific misconceptions, and how advanced 

knowledge is connected to school knowledge.  It also includes mathematics 

needed to identify mathematical goals within and across lessons, to choose among 

algebraic tasks or texts, to select what to emphasize with curricular trajectories in 

mind, and to enact other tasks of teaching.  (Reckase et al., 2015, p. 252)  

KAT Research 

In addition to developing the KAT framework discussed in the previous section, 

researchers involved in the KAT project also designed an instrument (i.e., an algebra 

assessment) to measure preservice and inservice mathematics teachers’ knowledge of 

school algebra, knowledge of advanced mathematics, and mathematics-for-teaching 

knowledge.  (The development of this KAT instrument is described in Reckase et al., 

2015.) 
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The KAT instrument has two forms (20 questions per form with five questions 

appearing on both forms) and includes both multiple-choice and open-ended items.  Each 

item addresses one of the three types of knowledge described in the KAT framework 

(e.g., mathematics-for-teaching knowledge); one of the following major topics in algebra: 

functions and their properties or expressions, equations, and inequalities; and one of the 

following subtopics: core concepts and procedures, representations, applications, or 

reasoning and proof (Reckase et al., 2015).  (See the Method section for more details 

about the KAT instrument.) 

After developing their instrument, project researchers administered the two forms 

of the KAT assessment to 841 inservice, preservice, and former mathematics teachers.  

Preliminary factor analyses of the data indicated modest support for distinct dimensions 

of knowledge of algebra for teaching (KAT) but not for the three-dimensional structure 

proposed in the KAT framework (Reckase et al., 2015).  In particular, parallel analysis, 

which involves comparing the eigenvalues obtained from a sample to eigenvalues 

calculated from random data (McCoach, Gable, & Madura, 2013), suggested two, not 

three, dimensions of KAT.  And cluster analysis showed two main clusters—one which 

contained most of the “teaching knowledge” items and another which contained most of 

the “school knowledge” items.  The “advanced mathematics knowledge” items were 

fairly scattered (Reckase et al., 2015). 

In the following chapter, I discuss the research methodology that I used to further 

analyze the factor structure of the data gathered during the final phase of the KAT 

project.  In particular, I explain how confirmatory factor analysis (CFA) was used to 

explore several theories related to the knowledge of algebra for teaching, including the 
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three-factor theory proposed by KAT researchers.  I also discuss how multiple-groups 

CFA was used to compare the KAT of preservice and inservice mathematics teachers. 
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CHAPTER 3 

METHOD 

As previously mentioned, the purpose of this study was to explore the various 

theories related to the knowledge of algebra for teaching (KAT), as well as to compare 

and contrast KAT in preservice and inservice mathematics teachers.  To address these 

purposes, I investigated the following research questions: 

1. What is the factor structure underlying mathematics teachers’ KAT, as 

measured by an established KAT instrument? 

2. Are KAT constructs measured similarly in preservice and inservice 

teachers? 

3. And if so, are there latent-mean differences in the KAT of these two 

groups? 

These research questions were addressed using confirmatory factor analysis 

(CFA), which is a component of structural equation modeling (SEM).  Both SEM and 

CFA are discussed in the following section. 

Structural Equation Modeling and Confirmatory Factor Analysis 

SEM is an extension of the general linear model (GLM) and refers to an entire 

family of statistical techniques that allows analysis of both observed variables (i.e., 

variables that are measured) and latent variables (i.e., variables that are not directly 

measured and generally correspond to factors that are not observable, such as attitude and 
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knowledge).  The main goals of SEM are “(1) to understand patterns of covariances 

among a set of observed variables and (2) to explain as much of their variance as possible 

with the researcher’s model” (Kline, 2011, p. 10).  SEM models can be decomposed into 

measurement models, which relate observed variables with latent variables, and structural 

models, which relate latent variables to other latent variables (Byrne, 2012).  One of the 

major advantages of SEM over more traditional statistical techniques is that SEM 

accounts for the measurement error in all observed variables (Adelson, 2012). 

CFA is a form of SEM that involves only measurement models.  It is used when 

researchers have theories related to the structure of one or more constructs, or factors.  

(Note that the terms “construct” and “factor” are used interchangeably.)  CFA requires 

researchers to use their theories to create apriori models that specify the number of 

factors, how the factors are related to observed variables such as items on a survey, and 

whether or not factors should be correlated (Thompson, 2004).  Statistical software, such 

as Mplus, can then be used to analyze these models. 

Use of CFA in the Study 

In the present study, I addressed the first research question (related to the factor 

structure underlying mathematics’ teachers KAT) by developing, evaluating, and 

comparing a variety of theory-driven CFA models.  In particular, I specified a three-

factor CFA model (knowledge of school algebra, knowledge of advanced mathematics, 

and mathematics-for-teaching knowledge), based on the KAT framework; a two-factor 

CFA model (knowledge of algebra and mathematics-for teaching knowledge), as 

proposed by the KAT research team; and a one-factor CFA model (knowledge of algebra 

for teaching), based on research that has questioned the multidimensionality of the 
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teacher-knowledge construct (e.g., Kahan, Cooper, & Bethea, 2003) and/or the ability to 

empirically measure distinct dimensions of teacher knowledge (e.g., Herbst & Kosko, 

2014; Mohr-Schroeder et al., 2017; Schilling, Blunk, & Hill, 2007).  (These models are 

discussed in more detail in the Hypothesized CFA Models section.) 

I addressed the second question (related to the measurement of KAT constructs in 

preservice and inservice teachers) by using a special type of CFA—multiple-groups CFA.  

Multiple-groups analysis allows researchers to examine whether the values of model 

parameters differ across groups (e.g., inservice and preservice teachers), as well as 

whether or not measures operate the same in those groups (Brown, 2006).  After 

considering these measurement issues, I was able to address the third question (related to 

possible differences in preservice and inservice mathematics teachers’ KAT) by testing 

for latent mean differences between the two groups. 

Participant Characteristics 

As previously mentioned, I analyzed data gathered by the researchers involved 

with the KAT project.  The data set included survey responses from 1,248 middle- and 

high-school mathematics teachers, undergraduate and graduate students (many preservice 

mathematics teachers), mathematicians, and mathematics teacher educators.  (Note that 

the original dataset contained 1,265 participants, but 17 were not included in this study 

due to missing and/or miscoded data.  For example, a few participants had data values 

that were outside the range of possible answer choices.) 

Approximately 45% (n = 563) of the participants were enrolled in college (as 

undergraduate or graduate students) when they completed the KAT survey, and about 

42% (n = 523) were not enrolled (e.g., college graduates).  The remaining 13% (n = 162) 
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were missing data on this item.  Additionally, about 63% (n = 780) of the participants had 

earned or were working toward a major or minor in mathematics, and about 58% (n = 

720) were teaching or had recent teaching experience in mathematics at the middle- or 

high-school level.  Table 1 gives a more detailed description of the sample.   

Table 1 

Description of the Study Participants (N = 1248) 

 Frequency  Percent 

College/university status    

Not enrolled 523  41.9 

Freshman (1st year) 15  1.2 

Sophomore (2nd year) 34  2.7 

Junior (3rd year) 86  6.9 

Senior (4th year) 147  11.8 

Graduate student 239  19.2 

College student (Other/ 

unknown status) 

42  3.4 

Unknown (missing data) 162  13.0 

Mathematics background    

Mathematics major 661  53.0 

Mathematics minor 119  9.5 

Not a math major or minor 250  20.0 

Unknown (missing data) 218  17.5 

Teaching status    

Inservice teacher 677  54.2 

Former teacher (last 5 years) 43  3.4 

Preservice teacher/no teaching 343  27.5 

Unknown (missing data) 185  14.8 

 

 Note that 42 participants indicated that they were currently attending college but 

did not give their year of study or chose “other.”  Also, 218 participants had missing 

and/or miscoded data for one or both of the following questions:  What is/was your major 

in college?  What is/was your minor in college?  Thus, these participants’ mathematics 

backgrounds are unknown.  Additionally, 185 participants had missing and/or miscoded 

data for one or both of the following questions: Are you currently employed as a middle 
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or high school teacher?  Have you taught in middle or high school in the last five years?  

Thus, their teaching status is unknown. 

Sampling Procedures 

Although not explicitly stated by the KAT research team (Reckase et al., 2015), 

the sample described above is a convenience sample.  More specifically, the sample 

includes teachers who participated in professional development activities with KAT 

researchers, advanced students in teacher preparation programs at several institutions, 

graduate students in mathematics, and faculty members from the Michigan State 

University mathematics department (M. Reckase, personal communication, April 10, 

2017).  KAT researchers made an effort to include a variety of groups—such as 

undergraduate students, mathematicians, and middle- and high-school mathematics 

teachers—because they believed these groups would have unique knowledge profiles.  

“For example, the mathematicians and undergraduate mathematics majors [should] be 

high on the advanced mathematics dimension and low on the teaching knowledge 

dimension, whereas the middle school mathematics teachers (many of whom would not 

have majored in mathematics) [should] be low on advanced knowledge but high on 

teaching knowledge” (Reckase et al., 2015, p. 252). 

Survey of Knowledge for Teaching Algebra 

Study participants completed one of two forms of the Survey of Knowledge for 

Teaching Algebra, which I will refer to as the KAT assessment.  Each form of the KAT 

assessment contains 20 questions: 17 multiple-choice and three open-ended items.  (Four 

multiple-choice and one open-ended item are included on both forms, for a total of 35 

unique items.) 
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Table 2 

Characteristics of Assessment Items (Type of Knowledge Assessed) 

 Form 1  Form 2 

Multiple-choice    

Item 1 School  School 

Item 2 School  School 

Item 3 School  School 

Item 4 School  Teaching 

Item 5 Teaching  Advanced 

Item 6 Teaching  School 

Item 7 School  Advanced 

Item 8 School  Teaching 

Item 9 Advanced  School 

Item 10 School  Teaching 

Item 11 Teaching  Teaching 

Item 12 Advanced  School 

Item 13a School  School 

Item 14a School  School 

Item 15a Teaching  Teaching 

Item 16a Advanced  Advanced 

Item 17 School  Advanced 

Open-ended    

Item 18a Teaching  Teaching 

Item 19 School  School 

Item 20 Advanced  Advanced 
aDenotes items that appear on both forms of the KAT assessment 

As discussed in the previous chapter, each item is designed to address one of the 

three types of knowledge outlined in the KAT framework: knowledge of school algebra, 

knowledge of advanced mathematics, or mathematics-for-teaching knowledge; one of 

two algebra topics: functions and their properties or expressions, equations, and 

inequalities; and one of four subtopics: core concepts and procedures, representations, 

applications, or reasoning and proof (Reckase et al., 2015).  Table 2 shows the type of 

KAT knowledge intended to be assessed by each of the test items.  In summary, there are 

11 items on Form 1 and nine items on Form 2 that assess knowledge of school algebra, 

four items on Form 1 and five items on Form 2 that assess knowledge of advanced 
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mathematics, and five items on Form 1 and six items on Form 2 that assess mathematics-

for-teaching knowledge.  (Note that multiple-choice questions 13-16 and open-ended 

question 18 appear on both forms.) 

The KAT assessment is still in use today, so its items are protected and only 

available to researchers who sign a strict confidentiality agreement.  A few of the KAT 

assessment items have been released and are discussed below.  (See Figures 8-10.)  

Specific details about the development of the items that appear on the KAT assessment 

can be found in Reckase and colleagues (2015).  

 

 

Figure 8 shows an example of a released multiple-choice item from the KAT 

assessment that is intended to assess knowledge of school algebra.  Recall that knowledge 

of school algebra refers to a deep understanding of the algebra topics that are taught in 

 

Figure 8.  Released item that assesses knowledge of school algebra.  Copyright 2006, 

Knowing Mathematics for Teaching Algebra (KAT) Project, NSF REC-0337595, 

Division of Science and Mathematics Education, Michigan State University. 
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the middle- and high-school mathematics classroom.  This type of knowledge can be 

classified as common content knowledge (CCK).  

 

 

Figure 9 shows an example of a released item that is intended to assess knowledge 

of advanced mathematics.  Recall that knowledge of advanced mathematics refers to a 

deep understanding of advanced topics in algebra and other areas of mathematics (e.g., 

 

Figure 9.  Released item that assesses knowledge of advanced mathematics.  Copyright 

2006, Knowing Mathematics for Teaching Algebra (KAT) Project, NSF REC-0337595, 

Division of Science and Mathematics Education, Michigan State University. 
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calculus and linear algebra) that are not generally taught to middle- and high-school 

students.  This type of knowledge can also be classified as CCK. 

 

 

 

Figure 10.  Released item that assesses mathematics-for-teaching knowledge.  Copyright 

2006, Knowing Mathematics for Teaching Algebra (KAT) Project, NSF REC-0337595, 

Division of Science and Mathematics Education, Michigan State University. 



74 

And Figure 10 shows an example of a released multiple-choice item that is 

intended to assess mathematics-for-teaching knowledge.  Recall that teaching knowledge 

refers to mathematical knowledge that is especially useful for teaching and encompasses 

both specialized content knowledge (SCK) and pedagogical content knowledge (PCK). 

Hypothesized CFA Models 

The items on the KAT assessment served as indicators of latent constructs (e.g., 

mathematics-for-teaching knowledge) in three hypothesized CFA models.  In these 

models, observed variables (i.e., the KAT assessment items) are represented by 

rectangles, and latent variables (including measurement error) are represented by ovals or 

circles, which is standard practice in SEM (Kline, 2011).  Additionally, correlations are 

indicated with curved double-headed arrows, and causal paths are indicated with straight 

single-headed arrows.  For example, in Figure 11, the arrows from the Advanced 

Mathematics Knowledge latent construct (circle) to the Q5, Q7, Q16, Q17, and Q20 

indicators (rectangles) show that the KAT researchers predicted that teachers’ knowledge  

of advanced mathematics would affect their responses to these test items.  The error 

terms (small circles) show that measurement error also would affect their responses.  

(Note that the “1”s in the model indicate the scaling of the latent variables, which is 

discussed in the model-identification section.) 

As previously mentioned, I addressed my first research question (related to the 

factor structure underlying mathematics’ teachers KAT) by creating, evaluating, and 

comparing three theory-driven CFA models.  Each of these models will be described in 

the sections that follow. 
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Three-Factor KAT Model 

First, I specified a three-factor CFA model, based on the KAT framework.  This 

model included three latent variables: knowledge of school algebra, knowledge of 

advanced mathematics, and mathematics-for-teaching knowledge.  The information given 

in Table 2 was used to assign indicators to each latent variable.  Figure 11 shows the 

three-factor CFA model that corresponds to Form 2 of the KAT assessment. (A similar 

model was created for Form 1 of the assessment.) 

Two-Factor KAT Model 

Next, I specified a two-factor CFA model, as proposed by the KAT research team.  

In particular, Reckase and colleagues (2015) hypothesized that “the Advanced 

Mathematics items scale is an upper extension of the School Algebra scale” (p. 265).  

This model included two latent variables: knowledge of algebra and mathematics-for-

teaching knowledge.  Thus, all indicators of knowledge of advanced mathematics were 

reassigned to the knowledge of algebra variable.  Figure 12 shows the two-factor CFA 

model that corresponds to Form 2 of the KAT assessment.  (Again, a similar model was 

created for Form 1 of the assessment.) 

One-Factor KAT Model  

Finally, I specified a one-factor CFA model, based on research (e.g., Kahan et al., 

2003; Schilling et al., 2007) that questions the ability to empirically measure distinct 

dimensions of teacher knowledge.  More specifically, a number of studies have shown 

high correlations between CK and PCK.  This model only included one latent variable: 

knowledge of algebra for teaching.  Thus, all indicators were assigned to this latent 

variable. 
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Figure 11.  Three-factor CFA model for Form 2 of the KAT assessment. 
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Identification 

After developing these CFA models, I evaluated model identification.  In the 

broadest sense, “the issue of identification focuses on whether or not there is a unique set 

of parameters consistent with the data” (Byrne, 2012, p. 32).  CFA models can be 

empirically underidentified (if the number of degrees of freedom is less than 0), just-

identified (df = 0), or overidentified (df > 0), which is preferable. 

Figure 12.  Two-factor CFA model for Form 2 of the KAT assessment. 
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To ensure that my hypothesized CFA models were overidentified, I calculated 

each model’s degrees of freedom, which is simply the difference between the number of 

knowns (i.e., observations) and the number of unknowns in a model.  If there are m 

observed variables in a model, then there are  
𝑚(𝑚+1)

2
 knowns (i.e., the number of 

unique elements in the variance-covariance matrix).  For example, the three-factor CFA 

model in Figure 11 has 
20(21)

2
=  210 knowns because there are 20 items on each form 

of the KAT assessment.  The number of unknowns (in CFA) is the sum of the error 

variances, factor variances, correlations, and paths (that are not fixed).  Thus, the three-

factor model in Figure 11 has 20 (error variances) + 3 (factor variances) + 3 (correlation) 

+ 17 (paths) = 43 unknowns and 210 – 43 = 167 degrees of freedom.  Using a similar 

procedure, I confirmed that my two-factor and one-factor CFA models were also 

overidentified, with 169 and 170 degrees of freedom, respectively. 

I also had to scale all latent variables in the models (both error terms and factors), 

which involved setting specific unstandardized residual path coefficients to 1 (see Figures 

11 and 12).  By fixing the paths between error terms and indicators to 1, I assigned each 

error term “a scale related to variance in the indicator…that is unexplained by the factor 

this indicator is supposed to reflect…” (Kline, 2011, p. 127).  I also scaled all latent 

variables using the marker variable strategy (see Brown, 2006) because the latent 

variables were unobserved and had no units of measurement.  By fixing the path between 

each factor and one of its indicators to 1, I essentially assigned each factor the metric of 

that particular indicator (Brown, 2006).  For example, the Advanced Mathematics 

Knowledge factor in Figure 11 shares the same metric as the Q20 indicator in that model.  
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Clearly, marker variables should be closely related to their respective factors and have 

highly reliable scores (Kline, 2011), which is the case for the marker variables used in 

this study.  (Note that the specific marker variables used in this study are available upon 

request; however, they are not given in this chapter because the specific items on the 

KAT assessment are not available to the public.  Also note that the actual marker 

variables used in this study vary from those shown in Figures 11-12.) 

Model Estimation 

After evaluating model identification, I used the statistics software Mplus 

(Version 8; Muthén & Muthén, 2017) to run my actual analyses.  I chose this particular 

software package because it includes the option to use weighted least squares with 

adjusted mean and variance (WLSMV), which is the preferred estimation method for 

analyzing a model that contains dichotomous variables (e.g., multiple-choice items that 

are either correct or incorrect; Byrne, 2012) and also allows for analysis of a multiple-

groups CFA (which was needed to compare preservice and inservice teachers’ KAT).  

Model Fit 

Using the output produced by Mplus, I evaluated the fit of the hypothesized 

models, when appropriate.  (Note that the latent variable covariance matrix was not 

positive definite for some models, so model fit was irrelevant and therefore not 

considered in these cases.  This is described in greater detail in the Chapter 4 section on 

the analysis of the three-factor model.)  Model fit refers to the process of determining 

how well the models fit the sample data.  As is often the case in statistics, there is an art 

and science to evaluating model fit; that is, researchers have to consider multiple model 

fit indices (which often give conflicting information) and make judgments about whether 
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there is adequate model fit.  Some of the more commonly-used fit indices include the 

Tucker-Lewis Index (TLI), Comparative Fit Index (CFI), Root Mean Square Error of 

Approximation (RMSEA), and model chi-square (Byrne, 2012; Kline, 2011).  The TLI 

and CFI are “goodness-of-fit” statistics with a range of 0 (bad) to 1 (good).  These indices 

compare the hypothesized model to the baseline (“worst”) model and add a penalty for 

each parameter estimated.  Generally speaking, a TLI/CFI value of at least .90 indicates 

acceptable fit, and a value of at least .95 indicates good fit (Byrne, 2012).   

On the other hand, the RMSEA is a “badness-of-fit” statistic (with no upper 

bound) that “takes into account the error of approximation in the population…” (Byrne, 

2012, p. 73).  As a rule of thumb, RMSEA indicates good fit for values between 0 (best) 

and .05, marginal fit for values between .05 and .08, mediocre fit for values between .08 

and .10, and poor fit for values greater than .10 (Byrne, 2012). 

Lastly, the model chi-square is another “badness-of-fit” statistic that “tests the 

difference in fit between a given overidentified model and whatever unspecified model 

would imply a covariance matrix that perfectly corresponds to the data covariance 

matrix” (Kline, 2011, p. 200).  Unfortunately, this fit index is negatively influenced by 

large samples, so it does not always provide valuable information.  As a general rule, a 

chi-square p-value of greater than .05 indicates good model fit (Kline, 2011). 

Model Respecification and Comparison 

 After evaluating model fit, I considered respecifications (i.e., modifications) to 

the models, based on theory and empirical evidence.  More specifically, I examined the 

modification indices produced by Mplus to see if any respecifications—such as 

correlating the error variances of any pairs of indicators—seemed logical and appropriate.  
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(Modification indices show where correlations and paths can be added to a model to 

improve overall fit.) 

Afterward, I had planned to compare my CFA models using chi-square difference 

tests, which often are used to compare nested models.  In this study, the three models are 

nested because it is possible to move between the models by simply removing (or adding) 

latent variables.  For example, I removed one latent construct (knowledge of advanced 

mathematics) from the three-factor KAT model to create the two-factor model.  

Unfortunately, several of the models had latent variable covariance matrices that were not 

positive definite, so comparing the models using this method was not possible. 

Multiple-Group Analysis 

Because I was interested in conducting a CFA with multiple groups (to address 

my second and third research questions), I tested my “best” hypothesized model for 

configural invariance, measurement invariance, and latent mean differences, respectively, 

as outlined in Byrne (2012) and Muthén and Muthén (2011).  (Note that the order of 

these tests is important because a model should demonstrate configural invariance before 

it is tested for measurement invariance, and it should demonstrate at least partial 

measurement invariance before it is used to investigate latent mean differences.)  Each of 

these tests is briefly described below. 

Testing for Configural Invariance 

The test for configural invariance is used to reveal how well the number of factors 

and factor-loading pattern in a baseline model represent the data in both groups of interest 

(preservice and inservice teachers in this study).  To conduct this test, 
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no equality constraints are imposed on any of the parameters.  Thus, the same 

parameters that were estimated in the baseline model for each group separately 

are again estimated in this multigroup model.  In essence, then, you can think of 

the model being tested here as a multigroup representation of the baseline model.  

(Byrne, 2012, p. 206) 

Testing for Measurement Invariance 

The test for measurement invariance is used to determine whether or not equality 

constraints can be imposed across groups on any or all of the factor loadings.  More 

specifically, the configural model is compared to an invariance model with constrained 

factor loadings/thresholds.  When this test results in a statistically significant change in χ2 

(Δ χ2; p < .05) or a change in CFI (ΔCFI) greater than .01 (Cheung & Rensvold, 2002), it 

indicates non-invariance and suggests that equality constraints should not be imposed on 

one or more of the factor loadings.  In this case, modification indices can be examined to 

determine which factor loadings may not be equal across groups.  After equality 

constraints are removed for any “troublesome” factor loadings, models can be tested for 

partial measurement invariance. 

Testing for Latent Mean Differences 

Lastly, the test for latent mean differences is used to investigate whether or not 

there are significant differences in group means.  (In this study, I was investigating 

differences in preservice and inservice teachers’ knowledge of algebra for teaching.)  

This test involves fixing the factor means of one group to zero while labeling the factor 

means of the other group; this allows the parameters to be freely estimated for the latter 

group. 
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Conclusion 

In summary, I analyzed KAT-assessment data gathered from researchers at 

Michigan State; the assessment contains items related to school algebra, advanced 

mathematics, and teaching knowledge.  I used confirmatory factor analysis (CFA) to 

explore several theory-driven models related to the knowledge of algebra for teaching 

(KAT) to examine the structure of the data.  Additionally, I used multiple-group CFA to 

compare and contrast the KAT of preservice and inservice mathematics teachers.  In the 

next chapter, I outline the major findings from my analyses. 
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CHAPTER 4 

RESULTS 

Findings from this study are presented in this chapter.  In particular, I begin by 

briefly discussing relevant descriptive statistics, such as the proportion of teachers who 

correctly answered the various types of KAT questions.  Then, I address each of the three 

research questions.  Recall that this study attempts to answer the following research 

questions:  

1. What is the factor structure underlying mathematics teachers’ knowledge 

of algebra for teaching (KAT), as measured by an established KAT 

instrument? 

2. Are KAT constructs measured similarly in preservice and inservice 

teachers? 

3. And if so, are there latent-mean differences in the KAT of these two 

groups? 

Descriptive Statistics 

Before addressing my research questions, I examined a number of descriptive 

statistics for the KAT assessment data.  Recall that there are two forms of the KAT 

assessment, and each form contains 17 multiple-choice items and 3 open-ended items.  

Table 3 displays the proportion of correct answers given on the multiple-choice items by 
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group (full sample, preservice teachers, and inservice teachers) and by question type 

(school algebra, advanced mathematics, and mathematics-for-teaching knowledge).   

Table 3 

Proportion of Correct Answers on MC Items by Group and Question Type 

 Form 1  Form 2 

Group / Question Type M (SDa)  M (SDa) 

Full sample n = 637  n = 611 

School Algebra .640 (.177) 

.421 (.069) 

.486 (.148) 

 .624 (.142) 

Advanced Mathematics  .417 (.129) 

Teaching Knowledge  .600 (.152) 

Preservice teachers n = 160  n = 183 

School Algebra .670 (.195)  .642 (.159) 

Advanced Mathematics .477 (.085)  .455 (.146) 

Teaching Knowledge .494 (.123)  .623 (.124) 

Inservice teachers n = 405  n = 272 

School Algebra .613 (.177)  .654 (.139) 

Advanced Mathematics .379 (.064)  .429 (.112) 

Teaching Knowledge .473 (.169)  .608 (.179) 
aStandard deviation of the proportions for all questions of the given question type 

From this table, it is clear that participants in this sample had the least difficulty 

with the multiple-choice items related to school algebra knowledge and the most 

difficulty with the multiple-choice items related to advanced mathematics knowledge.  

The proportion of correct answers on the multiple-choice items related to mathematics-

for-teaching knowledge fell between the proportions of correct answers for the other two 

categories.  More specifically, the full sample correctly answered: 64.0% of the school 

algebra items on Form 1 and 62.4% on Form 2; 48.6% of the teaching items on Form 1 

and 60.0% on Form 2; and 42.1% of the advanced mathematics items on Form 1 and 

41.7% on Form 2.  Note that the results were very similar in all groups (i.e., the full 

sample, preservice teachers, and inservice teachers) and across both forms of the 
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assessment, with the exception of the items related to mathematics-for-teaching 

knowledge. 

Additionally, on the multiple-choice items, the preservice teachers in the sample 

generally outperformed the inservice teachers on all question types and across both 

forms.  The only exception was Form 2 multiple-choice items related to school algebra 

knowledge for which inservice teachers slightly outperformed preservice teachers (65.4% 

vs. 64.2%). 

Table 4 displays the average score on the open-ended items by group and by 

question type.  Recall that there is only one open-ended item per question type on each 

form of the KAT assessment.  Participants earned a score between 0-4 for each open-

ended item, for which a score of 0 indicated an entirely incorrect solution and a score of 4 

indicated a complete and correct solution. 

Table 4 

Average Score on Open-Ended Items by Group and Question Type 

 Form 1  Form 2 

Group / Question Type M (SDa)  M (SDa) 

Full sample n = 637  n = 611 

School Algebra 1.88 (1.34) 

1.78 (1.37) 

1.46 (1.83) 

 2.05 (1.31) 

Advanced Mathematics  2.28 (1.53) 

Teaching Knowledge  1.40 (1.54) 

Preservice teachers n = 160  n = 183 

School Algebra 2.13 (1.22)  2.15 (1.32) 

Advanced Mathematics 1.71 (1.27)  2.36 (1.46) 

Teaching Knowledge 1.88 (1.90)  1.73 (1.70) 

Inservice teachers n = 405  n = 272 

School Algebra 1.72 (1.37)  2.06 (1.36) 

Advanced Mathematics 1.70 (1.36)  2.20 (1.58) 

Teaching Knowledge 1.17 (1.72)  1.28 (1.48) 
aStandard deviation of the scores for each open-ended item 



87 

Unlike the multiple-choice items, participants in all groups and across both forms 

generally had the most difficulty with the open-ended item related to teaching 

knowledge.  There was less consistency across forms on the least-difficult items, as the 

participants who took Form 1 had the least difficulty with the open-ended item related to 

school algebra knowledge whereas the participants who took Form 2 had the least 

difficulty with the open-ended item related to advanced mathematics knowledge. 

Similar to the finding for the multiple-choice items, the preservice teachers in the 

sample outperformed the inservice teachers on all question types and across both forms 

on the open-ended items.  However, in general, the scores for all open-ended items were 

fairly low, considering that participants could earn up to 4 points and the average scores 

on these items for the full sample were between 1.40 and 2.28. 

In addition to calculating these descriptive statistics, I examined the inter-item 

correlations for the two forms of the KAT assessment.  Tables 5 and 7 present the inter-

item correlations, means, and ranges for Form 1 and Form 2, respectively, using the 

entire sample.  Additionally, Tables 6 and 8 present the same information for the samples 

of preservice and inservice teachers.  Based on these tables, it is evident that the items on 

both forms show divergent validity because their intercorrelations are relatively low—in 

particular, they are less than .5 in most cases, and only one intercorrelation is greater than 

.7 (see Kline, 2011).  (Divergent validity is a type of construct validity that tests whether 

items that should not be related are actually unrelated.)  However, the items on both 

forms do not show convergent validity because, in general, the intercorrelations among 

the items that are supposed to measure the same construct (e.g., mathematics-for-teaching 

knowledge) are not consistently higher than their intercorrelations among the items that 
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Table 5 

Summary of Inter-Item Correlations, Means, and Ranges for KAT Assessment Form 1 (Full Sample) 

Type (Item) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 T1 T2 T3 T4 T5 A1 A2 A3 A4 

S1a (1) –                    

S2 (2) .26 –                   

S3 (3) .34 .41 –                  

S4 (4) .08 .17 .21 –                 

S5 (7) .23 .41 .41 .19 –                

S6 (8) .38 .52 .39 .25 .41 –               

S7 (10) .30 .42 .44 .16 .37 .43 –              

S8 (13) .36 .52 .42 .19 .53 .57 .49 –             

S9 (14) .15 .20 .15 .24 .16 .26 .15 .33 –            

S10 (17) .28 .55 .63 .25 .57 .43 .56 .61 .28 –           

S11 (19) .35 .49 .46 .17 .48 .43 .45 .58 .36 .67 –          

T1b (5) .22 .29 .24 .20 .40 .30 .24 .39 .19 .26 .37 –         

T2 (6) .37 .42 .42 .23 .46 .34 .39 .38 .31 .34 .37 .18 –        

T3 (11) .32 .19 .22 .03 .23 .18 .25 .37 .13 .44 .26 .18 .26 –       

T4 (15) .01 .32 .08 .10 .34 .24 .30 .23 .11 .32 .35 .34 .12 .19 –      

T5 (18) .29 .36 .36 .27 .36 .43 .41 .51 .26 .62 .54 .36 .30 .24 .33 –     

A1c (9) .03 .16 .22 .15 .28 .38 .23 .13 .13 .25 .32 .27 .22 .05 .23 .39 –    

A2 (12) .31 .21 .14 .16 .26 .33 .17 .31 .14 .20 .29 .23 .21 .23 .25 .28 .21 –   

A3 (16) .36 .52 .44 .19 .47 .59 .45 .60 .29 .60 .60 .41 .37 .24 .36 .57 .38 .34 –  

A4 (20) .45 .53 .37 .24 .57 .51 .45 .60 .28 .71 .64 .35 .39 .22 .28 .62 .38 .37 .68 – 

M .77 .76 .88 .31 .71 .36 .76 .54 .60 .72 1.78 .37 .51 .72 .34 1.88 .36 .38 .52 1.46 

Range 0-1d 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-4 0-1 0-1 0-1 0-1 0-4 0-1 0-1 0-1 0-4 

Note. Shaded cells indicate correlations that are not statistically significantly different from zero.  For all other correlations, p < .05 (two-tailed). 
aSchool Algebra Knowledge item (11 total).  bTeaching Knowledge item (5 total).  cAdvanced Mathematics Knowledge item (4 total).  dFor 

multiple-choice items, 0 = incorrect response and 1 = correct response. 

 

 

 

 



 

 

8
9

 

Table 6 

Summary of Inter-Item Correlations, Means, and Ranges for KAT Assessment Form 1 (Preservice and Inservice Teachers) 

Type (Item) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 T1 T2 T3 T4 T5 A1 A2 A3 A4 

M .75 .75 .86 .29 .64 .32 .74 .51 .61 .65 1.70 .33 .55 .72 .30 1.72 .33 .34 .47 1.17 

S1a (1) – .25 .36 .01 .25 .30 .30 .30 .12 .32 .33 .16 .35 .35 .04 .25 .04 .23 .30 .43 

S2 (2) .24 – .42 .22 .40 .42 .42 .54 .27 .56 .51 .18 .42 .25 .32 .31 .15 .16 .51 .51 

S3 (3) .16 .50 – .26 .44 .39 .54 .41 .23 .63 .51 .36 .57 .28 .13 .37 .21 .12 .44 .35 

S4 (4) .39 .13 .13 – .26 .24 .15 .18 .22 .23 .21 .20 .26 .06 .21 .32 .17 .16 .22 .28 

S5 (7) .02 .34 .02 .11 – .41 .39 .60 .23 .56 .50 .37 .56 .32 .37 .34 .31 .26 .46 .55 

S6 (8) .49 .68 .31 .28 .22 – .42 .58 .29 .43 .38 .19 .30 .23 .21 .37 .32 .26 .61 .51 

S7 (10) .27 .45 .12 .21 .33 .37 – .54 .20 .60 .48 .17 .48 .25 .38 .39 .25 .13 .47 .50 

S8 (13) .45 .43 .34 .13 .19 .49 .35 – .40 .63 .64 .37 .48 .46 .29 .53 .20 .36 .61 .70 

S9 (14) .16 .09 .03 .26 .06 .16 .11 .11 – .37 .48 .21 .31 .19 .14 .35 .13 .18 .38 .41 

S10 (17) .14 .64 .69 .30 .41 .34 .41 .54 .13 – .70 .22 .44 .55 .32 .57 .22 .19 .60 .71 

S11 (19) .33 .37 .12 .23 .33 .42 .34 .39 .08 .53 – .33 .40 .36 .37 .54 .33 .31 .60 .69 

T1b (5) .35 .50 -.11 .15 .46 .51 .31 .38 .17 .15 .51 – .21 .25 .28 .28 .21 .23 .36 .30 

T2 (6) .42 .41 .14 .33 .26 .37 .23 .21 .28 .17 .33 .21 – .35 .23 .32 .27 .25 .45 .50 

T3 (11) .23 .03 .06 -.01 .05 .05 .21 .23 -.03 .21 .00 .03 .15 – .22 .34 .04 .30 .29 .34 

T4 (15) -.23 .22 -.22 -.12 .17 .32 .06 .05 .13 .15 .30 .39 .00 .13 – .36 .32 .27 .42 .28 

T5 (18) .26 .48 .25 .16 .16 .49 .43 .41 .07 .66 .58 .43 .27 .04 .22 – .38 .27 .58 .63 

A1c (9) -.02 .18 .21 .16 .13 .38 .11 -.06 .09 .31 .33 .31 .16 .07 .15 .34 – .22 .43 .48 

A2 (12) .44 .16 .27 .17 .01 .38 .11 .24 .05 .06 .24 .21 .14 .13 .01 .24 .25 – .35 .30 

A3 (16) .45 .52 .34 .26 .38 .53 .40 .53 .15 .54 .52 .49 .21 .09 .22 .56 .23 .32 – .72 

A4 (20) .43 .50 .31 .31 .35 .44 .28 .38 .16 .57 .51 .38 .26 .07 .18 .49 .20 .37 .49 – 

M .77 .78 .93 .34 .84 .36 .74 .59 .52 .83 1.71 .42 .43 .71 .42 2.13 .39 .44 .59 1.88 

Range 0-1d 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-4 0-1 0-1 0-1 0-1 0-4 0-1 0-1 0-1 0-4 

Note. Summary of data for preservice teachers on lower diagonal and summary of data for inservice teachers on upper diagonal.  Shaded cells 

indicate correlations that are not statistically significantly different from zero.  For all other correlations, p < .05 (two-tailed). 

aSchool Algebra Knowledge item (11 total).  bTeaching Knowledge item (5 total).  cAdvanced Mathematics Knowledge item (4 total).  dFor 

multiple-choice items, 0 = incorrect response and 1 = correct response. 
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Table 7 

Summary of Inter-Item Correlations, Means, and Ranges for KAT Assessment Form 2 (Full Sample) 

Type (Item) S1 S2  S3 S4 S5 S6 S7 S8 S9 T1 T2 T3 T4 T5 T6 A1 A2 A3 A4 A5 

S1a (1) –                    

S2 (2) .34 –                   

S3 (3) .41 .22 –                  

S4 (6) .44 .35 .33 –                 

S5 (9) .34 .21 .21 .31 –                

S6 (12) .30 .33 .46 .40 .16 –               

S7 (13) .44 .33 .37 .47 .26 .48 –              

S8 (14) .23 .34 .35 .26 .23 .32 .27 –             

S9 (19) .36 .23 .30 .40 .10 .39 .45 .25 –            

T1b (4) .25 .21 .25 .27 .21 .35 .37 .27 .25 –           

T2 (8) .26 .18 .25 .27 .24 .17 .30 .18 .25 .22 –          

T3 (10) .21 .15 .25 .24 .15 .15 .19 .10 .24 .27 .17 –         

T4 (11) .48 .37 .41 .38 .24 .44 .46 .30 .29 .27 .18 .30 –        

T5 (15) .27 .14 .31 .34 .14 .28 .35 .25 .49 .16 .18 .18 .25 –       

T6 (18) .33 .28 .36 .32 .15 .37 .30 .16 .45 .30 .16 .17 .22 .24 –      

A1c (5) .31 .28 .40 .37 .34 .44 .53 .38 .36 .38 .25 .12 .33 .42 .35 –     

A2 (7) .37 .34 .27 .37 .33 .42 .41 .27 .29 .29 .25 .21 .41 .30 .33 .47 –    

A3 (16) .61 .41 .48 .52 .34 .54 .54 .35 .43 .32 .27 .22 .52 .46 .43 .52 .45 –   

A4 (17) .43 .30 .49 .35 .15 .46 .45 .36 .47 .38 .22 .18 .40 .41 .38 .61 .37 .52 –  

A5 (20) .44 .24 .31 .46 .23 .35 .39 .25 .59 .32 .26 .16 .30 .34 .52 .44 .40 .55 .44 – 

M .67 .63 .61 .76 .85 .33 .55 .60 2.28 .63 .50 .73 .78 .36 2.05 .27 .51 .57 .31 1.40 

Range 0-1d 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-4 0-1 0-1 0-1 0-1 0-1 0-4 0-1 0-1 0-1 0-1 0-4 

Note. Shaded cells indicate correlations that are not statistically significantly different from zero.  For all other correlations, p < .05 (two-tailed). 
aSchool Algebra Knowledge item (9 total).  bTeaching Knowledge item (6 total).  cAdvanced Mathematics Knowledge item (5 total).  dFor 

multiple-choice items, 0 = incorrect response and 1 = correct response. 
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Table 8 

Summary of Inter-Item Correlations, Means, and Ranges for KAT Assessment Form 2 (Preservice and Inservice Teachers) 

Type (Item) S1 S2  S3 S4 S5 S6 S7 S8 S9 T1 T2 T3 T4 T5 T6 A1 A2 A3 A4 A5 

M .69 .64 .67 .79 .86 .36 .58 .64 2.20 .61 .53 .74 .84 .32 2.06 .31 .52 .56 .33 1.28 

S1a (1) – .42 .58 .43 .30 .37 .38 .23 .50 .29 .33 .27 .63 .23 .42 .23 .39 .56 .53 .54 

S2 (2) .27 – .32 .41 .28 .39 .37 .42 .40 .15 .32 .19 .54 .19 .34 .38 .49 .48 .38 .37 

S3 (3) .15 .07 – .41 .34 .54 .42 .34 .41 .29 .31 .15 .53 .31 .41 .28 .30 .62 .45 .48 

S4 (6) .39 .19 .16 – .21 .45 .59 .17 .52 .33 .27 .06 .28 .30 .47 .24 .33 .48 .17 .45 

S5 (9) .28 .16 .06 .31 – .28 .50 .41 .19 .28 .14 .14 .37 .17 .20 .30 .42 .35 .04 .18 

S6 (12) .27 .28 .56 .46 .16 – .48 .29 .46 .33 .21 .16 .38 .33 .42 .42 .38 .67 .45 .24 

S7 (13) .49 .29 .38 .51 .04 .58 – .22 .55 .28 .33 .01 .38 .31 .37 .54 .46 .44 .46 .43 

S8 (14) .25 .20 .46 .36 .18 .38 .19 – .25 .31 .12 .12 .28 .31 .28 .36 .42 .46 .39 .23 

S9 (19) .39 .18 .43 .40 .14 .57 .49 .29 – .38 .27 .22 .32 .40 .52 .37 .36 .48 .51 .67 

T1b (4) .19 .31 .11 .24 .16 .36 .46 .22 .24 – .29 .20 .12 .34 .29 .42 .33 .30 .39 .32 

T2 (8) .22 .12 .14 .12 .29 .12 .30 .11 .16 .05 – .02 .19 .11 .15 .19 .37 .26 .35 .20 

T3 (10) .14 .10 .15 .37 .23 .13 .30 .03 .24 .24 .19 – .32 -.05 .12 .05 .16 .12 .13 .09 

T4 (11) .34 .21 .42 .47 .27 .44 .46 .23 .43 .31 .03 .35 – .32 .35 .25 .45 .64 .44 .46 

T5 (15) .21 -.02 .32 .29 .26 .25 .40 .15 .50 .08 .17 .33 .18 – .15 .37 .35 .35 .38 .27 

T6 (18) .35 .34 .35 .28 .24 .48 .33 .33 .56 .43 .29 .19 .19 .30 – .26 .40 .43 .39 .51 

A1c (5) .26 .24 .54 .47 .19 .58 .55 .34 .56 .34 .25 .11 .33 .55 .62 – .53 .44 .63 .38 

A2 (7) .41 .27 .22 .52 .27 .47 .35 .20 .35 .31 .16 .34 .46 .29 .32 .51 – .48 .35 .32 

A3 (16) .51 .30 .30 .53 .48 .66 .56 .20 .54 .31 .34 .27 .42 .49 .53 .61 .45 – .52 .59 

A4 (17) .27 .22 .53 .44 .29 .60 .42 .33 .54 .42 .02 .10 .28 .35 .46 .65 .43 .50 – .41 

A5 (20) .30 .12 .25 .61 .27 .60 .47 .40 .68 .36 .32 .25 .29 .44 .62 .66 .48 .63 .56 – 

M .75 .64 .63 .77 .88 .32 .57 .57 2.36 .69 .51 .73 .75 .44 2.15 .28 .55 .64 .34 1.73 

Range 0-1d 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-4 0-1 0-1 0-1 0-1 0-1 0-4 0-1 0-1 0-1 0-1 0-4 

Note. Summary of data for preservice teachers on lower diagonal and summary of data for inservice teachers on upper diagonal.  Shaded cells 

indicate correlations that are not statistically significantly different from zero.  For all other correlations, p < .05 (two-tailed). 

aSchool Algebra Knowledge item (9 total).  bTeaching Knowledge item (6 total).  cAdvanced Mathematics Knowledge item (5 total).  dFor 

multiple-choice items, 0 = incorrect response and 1 = correct response.  
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are supposed to measure other constructs.  (Convergent validity is a type of construct 

validity that tests whether items that should be related are actually related.) 

RQ 1: Factor Structure Underlying Mathematics Teachers’ KAT 

As described in Chapter 3, I addressed the first research question by developing, 

evaluating, and comparing three CFA models: a three-factor model (knowledge of school 

algebra, knowledge of advanced mathematics, and mathematics-for-teaching knowledge) 

based on the KAT framework (McCrory et al., 2012); a two-factor model (knowledge of 

algebra and mathematics-for-teaching knowledge) as proposed by the KAT research team 

(Reckase et al., 2015); and a one-factor CFA model (knowledge of algebra for teaching) 

based on research (e.g., Kahan et al., 2003; Schilling et al., 2007) questioning the ability 

to empirically measure distinct dimensions of teacher knowledge.  I discuss each of these 

models in the sections that follow. 

Three-Factor Model 

The three-factor model contains three latent factors: knowledge of school algebra, 

knowledge of advanced mathematics, and mathematics-for-teaching knowledge.  (See 

Chapter 3 for a detailed description of this model.)  Upon running this model in Mplus 

using WLSMV estimation, I received error messages for both datasets (Form 1 and Form 

2), which indicated that the latent variable covariance matrices were not positive definite. 

That is, each of the covariance matrices produced a nonpositive determinant, which 

indicated that the variance was negative or zero (but this is not possible).  When this 

occurs, the results of the analysis are meaningless.  Upon further inspection, I found very 

high estimated correlations (.94, .99, and .99) among the three factors on Form 1, and the 

estimated correlations among the factors on Form 2 were all greater than 1 (1.004, 1.063, 
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and 1.086).  According to psychometrician and Mplus developer Bengt Muthén, “A 

correlation estimate of 1 means that…factors are indistinguishable.  A correlation 

estimate higher than 1 means that the model does not make sense for the data because 

correlations should not be higher than 1” (Muthén, 2011).  In these types of situations, 

Muthén recommends disregarding the troublesome model and exploring other models 

(Muthén, 2011).   

Therefore, I concluded that the three-factor model did not make sense for either 

dataset (Form 1 or 2).  Given the error messages received during the analyses, it would 

have been inappropriate to consider fit statistics for this model, so the next logical step 

was to explore my two-factor model. 

Two-Factor Model 

The two-factor model contains two latent factors: knowledge of algebra—which 

combines knowledge of school algebra and advanced mathematics—and mathematics-

for-teaching knowledge.  (See Chapter 3 for a detailed description of this model.)  Upon 

running this model, I again received error messages for both datasets indicating that the 

latent variable covariance matrices were not positive definite.  Again, I found that the 

estimated correlations among the latent factors were all greater than 1.  In particular, the 

estimated correlation between the two factors was 1.007 for the Form 1 data and 1.074 

for the Form 2 data. 

 Therefore, I concluded that the two-factor model also did not make sense for 

either of the datasets.  The final step was to explore my one-factor model. 
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One-Factor Model  

The one-factor model contains only one latent factor: knowledge of algebra for 

teaching.  (See Chapter 3 for a detailed description of this model.)  This model ran 

without any errors for both datasets, so I evaluated the fit of the models.  Table 9 displays 

the values of several model fit indices (e.g., RMSEA, CFI, and TLI) that were produced 

by Mplus during the analysis phase.  Note that there are fit indices for the full sample, 

preservice teachers, and inservice teachers.  (I will only discuss the fit indices for the full 

sample in this section.  Fit indices for the subgroups are addressed in the discussion of 

Research Question 2.) 

Table 9 

Model Fit Statistics for One-Factor Model by Group 

Group / Model Fit Statistics Form 1  Form 2 

Full sample    

Chi-square p-value < .001d 

.031 

.981 

 < .001d 

RMSEAa  .033 

CFIb  .975 

TLIc .979  .972 

Preservice teachers    

Chi-square p-value .402  .231 

RMSEA .012  .021 

CFI .995  .991 

TLI .994  .990 

Inservice teachers    

Chi-square p-value .001d  < .001d 

RMSEA .030  .040 

CFI .984  .965 

TLI .983  .961 
aRoot Mean Square Error of Approximation. bComparative Fit Index.  cTucker-Lewis Index 
dModel fit statistic that suggested poor model fit.  (All others suggested very good model fit.) 

 

Based on the model fit statistics, the one-factor model had very good fit for the 

Form 1 data (RMSEA = .031; CFI = .981; TLI = .979) and for the Form 2 data (RMSEA 

= .033; CFI = .975; TLI = .972) because the CFI and TLI values were greater than .95 
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and the RMSEA values were less than .05.  Note that the chi-square p-values in Table 9 

suggested very poor model fit in both cases (p < .001 for Form 1 and Form 2), but this 

was expected because this fit index is negatively influenced by large samples (Byrne, 

2012).  Therefore, I relied more heavily on the other measures of model fit. 

Next, I examined the modification indices (M.I.) to determine whether any model 

respecifications would be logical or appropriate.  Generally speaking, adding paths and 

correlations with larger M.I. values are more likely to improve model fit than adding 

those with smaller M.I. values (Kline, 2011).  In this study, all of the M.I. values were 

less than 3.84 (the critical value of χ2 with 1 df at p < .05) for both datasets, indicating 

that overall model fit would not statistically significantly improve if a fixed parameter in 

the model were freely estimated (Brown, 2006).  This suggested that no model 

respecifications were necessary, which was not surprising given that both models had 

very good fit.  (Refer to Table 9.) 

Originally, I had planned to compare my various CFA models using the chi-

square difference test, which is used to compare nested models.  However, because the 

two- and three-factor models had latent variable covariance matrices that were not 

positive definite, I was not able to compare the models using this method.  Ultimately, I 

concluded that the one-factor model was best because it exhibited good model-data fit 

(for both forms), and the analysis of the other models resulted in errors that suggested 

they were poor-fitting models and that the latent constructs could not be distinguished. 

RQ 2: Measurement of KAT in Preservice/Inservice Teachers 

I addressed the second research question (related to whether KAT constructs were 

measured similarly in preservice and inservice teachers) by conducting a multiple-group 
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CFA.  This involved testing my best hypothesized model (i.e., the one-factor model) for 

configural invariance, measurement invariance, and latent mean differences, respectively.  

(See Chapter 3 for more details on these tests.) 

Test for Configural Invariance 

Recall that testing for configural invariance reveals how well the factor-loading 

pattern and the number of latent constructs in the baseline model represent the data in all 

of the groups of interest.  To test for configural invariance, I first fit the one-factor model 

separately for my two groups—preservice and inservice teachers—and examined their fit 

indices.  As shown in Table 9, the RMSEA, CFI, and TLI values indicated very good 

model fit for both groups of teachers and across both forms.  Additionally, the chi-square 

p-values suggested good model fit for preservice teachers across both forms. 

Then, I fit a multigroup baseline model by allowing all parameters to be freely 

estimated except factor means, which were fixed to zero in both groups, and scale factors, 

which were fixed to one in both groups.  This configural model had very good fit for the 

Form 1 data (RMSEA = .033; CFI = .977; TLI = .975) and for the Form 2 data (RMSEA 

= .036; CFI = .971; TLI = .969), as the CFI and TLI values were greater than .95 and the 

RMSEA values were less than .05.  This was expected because the previously-described 

work revealed the baseline model fit each group well. 

Test for Measurement Invariance 

Because configural invariance was supported, the next step was to test for 

measurement invariance.  Recall that testing for measurement invariance is used to 

determine whether equality constraints can be imposed across groups on any or all of the 

factor loadings/thresholds.  I fit an invariance model by holding factor loadings and 
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thresholds equal across both groups and fixing factor means to zero and scale factors to 

one for preservice teachers and allowing factor means and scale factors to be freely 

estimated for inservice teachers.  This invariance model had very good fit for the Form 1 

data (RMSEA = .032; CFI = .978; TLI = .977) and for the Form 2 data (RMSEA = .034;   

CFI = .973; TLI = .972). 

Additionally, the corrected chi-square difference test and ΔCFI test both indicated 

that the invariance model should be chosen over the configural/baseline model for both 

forms.  In particular, Δχ2(18) = 16.243, p = .58, for Form 1, and Δχ2(18) = 13.279, p = 

.77, for Form 2; and ΔCFI = .001 for Form 1 and ΔCFI = .002 for Form 2.  (Recall from 

Chapter 3 that a statistically nonsignificant Δχ2 and a ΔCFI < 0.1 indicate measurement 

invariance.) 

Based on these analyses, I concluded that KAT constructs were measured 

similarly in the preservice and inservice teachers in this study.  This allowed me to 

progress to the final phase of multiple-group CFA analysis, which involved comparing 

the latent means of the groups of interest. 

RQ 3: Differences in the KAT of Preservice/Inservice Teachers 

Because measurement invariance was supported, I was finally able to test for 

scalar invariance—that is, to compare the latent means of the preservice and inservice 

teachers’ knowledge of algebra for teaching.  This involved fixing the factor mean of one 

group to zero and allowing the mean to be freely estimated in the other group.  (Note that 

I fixed the factor mean of preservice teachers to zero in this study.)   

By analyzing the Mplus output generated during the test for measurement 

invariance, I found a latent mean difference of approximately –0.216 (S.E. = 0.064, p = 
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.001) in knowledge of algebra for teaching between preservice and inservice teachers for 

Form 1, and a latent mean difference of approximately –0.101 (S.E. = 0.055, p = .065) in 

knowledge of algebra for teaching between preservice and inservice teachers for Form 2.  

Because I chose to estimate the latent means of the inservice teachers, this indicated that 

inservice teachers had significantly (p < .05) lower knowledge of algebra for teaching 

than preservice teachers for Form 1, but the difference in these two groups of teachers 

was not statistically significantly different from zero (p > .05) for Form 2. 

I also calculated standardized effect sizes (i.e., Cohen’s d values) to determine the 

magnitude of the latent mean differences.  Following the procedures outlined in Hancock 

(2001), I found an effect size of d = 0.369 for Form 1 and d = 0.200 for Form 2.  (This 

indicated that the latent means for preservice teachers were 0.369 standard deviations and 

0.200 standard deviations higher than for inservice teachers, respectively.)  According to 

Cohen (1988), an effect size of 0.2 is generally classified as a “small” effect, and an 

effect size of 0.5 is generally classified a “medium” effect.  So, the latent mean 

differences in KAT between the preservice and inservice teachers in this study could be 

classifed as a “small” to “medium” effect. 

Ultimately, I concluded that the preservice teachers had slightly higher knowledge 

of algebra for teaching than inservice teachers.  This conclusion was based on three major 

findings.  First, inservice teachers had a lower latent mean than preservice teachers for 

both forms, even though the difference wasn’t statistically significant for Form 2.  

Second, the latent mean differences between preservice and inservice teachers could be 

classified as a “medium” effect size for Form 1.  And third, the descriptive statistics 

discussed at the beginning of this chapter revealed that the preservice-teacher group 
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outperformed the inservice-teacher group on all question types (school algebra, advanced 

mathematics, and mathematics-for-teaching knowledge) and across both forms. 

Conclusion 

In summary, I found that the one-factor (knowledge of algebra for teaching) 

model for KAT fit the data better than the two-factor (knowledge of algebra and 

mathematics-for-teaching knowledge) and three-factor (knowledge of school algebra, 

knowledge of advanced mathematics, and mathematics-for-teaching knowledge) models 

across both forms of the assessment.  That is, in response to Research Question 1, the 

analyses suggested that KAT may be a unidimensional (rather than a multidimensional) 

construct.  Additionally, in response to Research Question 2, I found that KAT was 

measured similarly in preservice and inservice teachers (using the tests for configural and 

measurement invariance), and in response to Research Question 3, I found that preservice 

teachers had slightly higher KAT than inservice teachers. 
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CHAPTER 5 

DISCUSSION 

The goal of this chapter is to reflect on the major findings presented in Chapter 4.  

It includes a brief summary of my KAT study, as well as a discussion of important 

connections between the findings and the research literature, implications of the findings, 

important conclusions drawn from the data, and recommendations for future research. 

Summary of the Study 

The main purpose of the present study was to explore the factor structure of the 

knowledge of algebra for teaching (KAT) via an instrument developed by researchers at 

Michigan State University, and a secondary purpose was to compare and contrast the 

KAT of preservice and inservice mathematics teachers.  To address these purposes, I 

investigated the following research questions: 

1. What is the factor structure underlying mathematics’ teachers KAT, as 

measured by an established KAT instrument? 

2. Are KAT constructs measured similarly in preservice and inservice 

teachers? 

3. And if so, are there latent mean differences in the KAT of these two 

groups? 

These research questions were addressed using confirmatory factor analysis 

(CFA), a form of structural equation modeling (SEM) commonly used to explore latent—
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or unobserved—variables.  More specifically, the first question was addressed by 

developing a variety of CFA models, based on theory and research; evaluating them for 

model fit; and using statistical tests to compare them.  The second question was 

addressed by using multiple-groups CFA analyses to determine if the values of model 

parameters differed across groups (i.e., preservice and inservice teachers), as well as 

whether or not the measures operated the same in those groups.  And the third question 

was addressed by testing for latent mean differences between the two groups of teachers. 

Upon analyzing the data—which included survey responses from 1,248 middle- 

and high-school mathematics teachers, undergraduate and graduate students (including 

many preservice mathematics teachers), mathematicians, and mathematics teacher 

educators—I found that a unidimensional model of KAT best fit the data across both 

forms of the assessment.  That is, a one-factor (knowledge of algebra for teaching) model 

for KAT fit the data better than a two-factor (knowledge of algebra and mathematics-for-

teaching knowledge) or three-factor (knowledge of school algebra, knowledge of 

advanced mathematics, and mathematics-for-teaching knowledge) model.  Also, I found 

that KAT was measured similarly in preservice and inservice teachers, and that 

preservice teachers had slightly higher KAT than inservice teachers. 

Linking Findings to the Literature 

The two major findings in this study (i.e., the lack of support for a 

multidimensional model of KAT and the performance of preservice teachers relative to 

inservice teachers on KAT-related assessment items) are surprising and unexpected, 

especially given the research literature on algebra, teacher knowledge, and KAT.  In the 
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following sections, I compare my research findings with the theories and findings that 

were outlined in my literature review (in Chapter 2). 

Lack of Support for a Multidimensional KAT Model 

As previously mentioned, my analyses suggested that KAT is a unidimensional 

construct.  However, there are several reasons why this finding is surprising.  First, it 

does not support the model developed by the KAT research team.  These researchers 

hypothesized that KAT is composed of three distinct factors: knowledge of school 

algebra, knowledge of advanced mathematics, and mathematics-for-teaching knowledge 

(McCrory et al., 2012), but my analyses suggested only one factor. 

Additionally, most models related to mathematical knowledge for teaching (e.g., 

Ball et al., 2008; Kilpatrick et al., 2015; Kleickmann et al., 2013; Krauss et al., 2008; 

McCrory et al., 2012; Rowland et al., 2005) are multidimensional.  These models include 

the Mathematical Knowledge for Teaching (MKT) framework, which consists of six 

domains of teacher knowledge, including common content knowledge (CCK), 

specialized content knowledge SCK), knowledge of content and students (KCS), and 

knowledge of content and teaching (KCT) (Ball et al., 2008).  Other models include the 

COACTIV and Mathematical Understanding for Secondary Teaching (MUST) models, 

as well as the knowledge-quartet framework.  The COACTIV model consists of two 

factors related to teacher knowledge, content knowledge (CK) and pedagogical content 

knowledge (PCK) (Kleickmann et al., 2013; Krauss et al., 2008).  In contrast, the MUST 

and knowledge quartet frameworks are distinctly different from the previous models, but 

they are still multidimensional.  In particular, the MUST model consists of three 

perspectives: mathematical proficiency, mathematical activity, and mathematical context 



 

103 

for teaching (Kilpatrick et al., 2015); and the knowledge quartet consists of four 

dimensions of teacher knowledge: foundation, transformation, connection, and 

contingency (Rowland et al., 2005).  (See Chapter 2 for additional information about 

these frameworks.)  

Not only are there numerous examples of multidimensional models of 

mathematical knowledge for teaching in the research literature, but also several of these 

models (e.g., Hill et al., 2004; Krauss et al., 2008) have been empirically-supported.  In 

particular, Hill and colleagues (2004) were able to at least partially support their MKT 

model using factor analyses.  More specifically, their analyses revealed several distinct 

factors, including CCK, SCK, and KCS (Hill et al., 2004).  Additionally, the COACTIV 

research team was able to find empirical support for their two-factor (CK and PCK) 

model for secondary mathematics teachers’ knowledge for teaching (Krauss et al., 2008). 

And during their exploratory analyses with an initial sample, the KAT research team 

found empirical support for at least two distinct dimensions of KAT (Reckase et al., 

2015). 

Although most models of mathematical knowledge for teaching are 

multidimensional, a few researchers have developed unidimensional ones.  For example, 

Kahan and colleagues (2003) developed a one-factor—mathematical content knowledge 

(MCK)—model for teacher knowledge, which they used to explore the relationships 

between teachers’ MCK and their teaching.  However, even these researchers 

acknowledged that their knowledge construct does not capture all elements of PCK: “We 

are well aware that teacher factors other than MCK are at work in teaching in 
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practice….[and] our focus on the role of MCK is not intended to exclude other factors” 

(Kahan et al., 2003, p. 231). 

Even though it is widely accepted that mathematical knowledge for teaching is 

multidimensional, this study is not the first to find empirical support for a one-factor 

model of teacher knowledge in mathematics.  For example, Mohr-Schroeder and 

colleagues (2017) developed a three-factor model of teachers’ knowledge for teaching 

geometry, which closely resembles the KAT framework.  In particular, their Geometry 

Assessment for Secondary Teachers (GAST) includes items from the following three 

subdomains of their framework: knowledge of school geometry, knowledge of advanced 

geometry, and geometry PCK; however, their analyses suggested that a one-factor model 

fit the data better than a three-factor model (Mohr-Schroeder et al., 2017).  Similarly, 

Herbst and Kosko (2014) developed a four-factor framework of mathematical knowledge 

for teaching geometry (MKT-G), which included the following MKT subdomains: CCK, 

SCK, KCT, and KCS.  Similar to the GAST research team, these researchers developed 

an instrument to measure their framework’s four subdomains of teacher knowledge, but 

their analyses also suggested a single measure of knowledge for teaching geometry 

(Herbst & Kosko, 2014). 

Performance of Preservice Teachers on KAT Assessment 

In addition to finding support for a one-factor KAT model, my analyses also 

suggested that preservice teachers had slightly (but statistically significantly) higher KAT 

than inservice teachers.  This finding is also surprising because it contradicts many of the 

findings in the literature (e.g., Buschang et al., 2012; Kleickmann et al., 2013; Krauss et 

al., 2008).  More specifically, the COACTIV research team found that the PCK of the 
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German inservice teachers who participated in their study was 0.46 standard deviations 

higher than the PCK of the student teachers (Kleickmann et al., 2013).  In contrast, the 

KAT of the preservice teachers in this study was 0.369 standard deviations higher than 

the KAT of inservice teachers for Form 1 and 0.200 standard deviations higher for Form 

2.  Additionally, Buschang and colleagues (2012) found that expert teachers (e.g., teacher 

trainers) outperformed both preservice and experienced teachers on an algebra task 

designed to measure PCK.  Generally speaking, the limited number of studies in this area 

have found that inservice mathematics teachers have higher PCK than preservice 

teachers, and that inservice teachers generally have the same or higher CK as preservice 

teachers (e.g., Buschang et al., 2012; Kleickmann et al., 2013; Krauss et al., 2008). 

However, even though the preservice teachers in this study demonstrated slightly 

higher KAT than the inservice teachers, both groups struggled on the assessment.  More 

specifically, the sample of preservice and inservice teachers answered fewer than half of 

the multiple-choice items related to advanced mathematics correctly (across both forms), 

fewer than half of the multiple-choice items related to teaching knowledge correctly (for 

Form 1), and about two-thirds of the multiple-choice items related to school algebra 

knowledge correctly (across both forms).  Additionally, their scores on all open-ended 

items were fairly low, considering that participants could earn up to 4 points per item and 

the average scores on these items were between 1.17 and 2.36 for the sample of 

preservice/inservice teachers.  (See Tables 3-4 in Chapter 4 for more details.) 

Although it is somewhat alarming that the preservice and inservice teachers in this 

study struggled on the KAT assessment, the result was not completely unexpected given 

the literature on knowledge for teaching mathematics (e.g., Cankoy, 2010; Even, 1993; 
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Huang & Kulm, 2012; Tatto et al., 2012).  For example, Huang and Kulm (2012) 

administered the KAT assessment and several open-ended items related to functions to a 

group of preservice teachers and found that most of them had limited knowledge of 

algebra for teaching. 

Discussion Questions 

So, why did the data in this study suggest a unidimensional model for KAT?  And 

why did preservice teachers score higher than inservice teachers on KAT-related items?  

In the next section, I discuss several plausible explanations for these major findings. 

Plausible Explanations and Implications 

This final discussion is divided into four parts.  First, I explore several possible 

explanations for the major findings in the study.  Then, I discuss implications of the 

findings, as well as recommendations for future research and a few closing thoughts 

about KAT. 

Plausible Explanations for the Findings 

Unidimensional KAT construct.  Given the theoretical and empirical support for 

multidimensional models of teacher knowledge in mathematics, it is possible—but not 

likely—that KAT is a unidimensional construct.  Although the data did not support three 

distinct factors of KAT (knowledge of school algebra, knowledge of advanced 

mathematics, and mathematics-for-teaching knowledge), as theorized by the KAT 

research team, it is plausible that there are at least two distinct factors: one related to CK 

(i.e., algebra knowledge) and one related to PCK (i.e., algebra-for-teaching knowledge).  

In fact, KAT researchers found empirical support—through cluster and parallel 
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analyses—for two dimensions of KAT during their analyses of an initial sample (Reckase 

et al., 2015). 

A more reasonable explanation for this finding is that it is extremely difficult to 

create assessment items (especially multiple-choice items) that can measure teaching 

knowledge because this type of knowledge may be closely connected to content 

knowledge.  According to the KAT research team, “Often it is possible to answer the 

Teaching items using solid mathematics skills without having acquired the knowledge 

through classroom experience or pedagogy-related coursework or professional 

development” (Reckase et al., 2015, p. 263).  After piloting the KAT assessment with an 

initial sample, researchers reclassified several of the items that were designed to measure 

mathematics-for-teaching knowledge because their analyses suggested that the items 

actually measured school algebra knowledge (Reckase et al., 2015). 

Although it may be easier to create and distinguish between items that measure 

school algebra and advanced mathematics knowledge, it is possible that these two types 

of items actually measure the same construct.  In fact, after their initial analyses, the KAT 

research team hypothesized that “the Advanced Mathematics items scale is an upper 

extension of the School Algebra scale” (Reckase et al., 2015, p. 265).  That is, both types 

of items appear to measure the same construct, algebra knowledge. 

Performance of preservice teachers on KAT assessment.  Given that inservice 

teachers often score higher than preservice teachers on assessments related to PCK 

(Buschang et al., 2012; Kleickmann et al., 2013; Krauss et al., 2008), it is also surprising 

that the preservice teachers in this study answered more questions correctly on the KAT 
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assessment than the inservice teachers.  However, there are reasonable explanations for 

this finding, as well. 

First, recall that the KAT assessment includes a set of advanced mathematics 

items, which includes questions from calculus, abstract algebra, analysis, and linear 

algebra.  Because the preservice teachers had most likely taken advanced courses in 

mathematics more recently than the inservice teachers, they may have been more 

prepared to answer these types of questions.  In fact, Table 3 (in Chapter 4) shows that 

preservice teachers outperformed inservice teachers on advanced mathematics items 

more than they outperformed them on the school algebra and mathematics-for-teaching 

knowledge items.  For example, the preservice teachers who took Form 1 of the KAT 

assessment answered 47.7% of the advanced mathematics questions correctly, whereas 

the inservice teachers only answered 37.9% of the advanced mathematics questions 

correctly—a difference of nearly 10%.  However, the difference in the proportion of 

correct answers for the two groups was negligible—only 2.1% (for Form 1) and 1.5% 

(for Form 2)—on items that were designed to measure teaching knowledge. 

Also recall that middle- and high-school mathematics preservice teachers (as a 

group) in the U.S. have performed well on some recent assessments of teacher 

knowledge, including the TEDS-M (Tatto et al., 2012).  In this international study (which 

included preservice teachers in 17 countries), researchers found that the CK and PCK of 

mathematics preservice teachers in the U.S. were statistically significantly above the 

international mean (Tatto et al., 2012).  Therefore, it is possible that colleges of education 

are producing stronger teacher candidates than in the past, which could help explain why 

the preservice teachers in this study outperformed the inservice teachers. 
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Additionally, it is possible that the inservice teachers’ views of algebra and 

teaching practices could have affected their performance on the KAT assessment.  In 

particular, many of the inservice teachers in the sample may have had limited views of 

algebra, such as the algebra as symbolic manipulation (Kaput, 1995) and/or the algebra 

as forming and solving equations (Bell, 1996; Usiskin, 1999) viewpoints.  Also, they may 

have taught (and likely still teach) in a procedural manner, focusing on rules and 

procedures rather than conceptual understandings in algebra.  Recall that Cankoy (2010) 

found that the inservice mathematics teachers in his study overwhelmingly gave rule-

based explanations for several concepts, including division by zero.  It is possible that the 

inservice teachers would have performed better on the KAT assessment if they had more 

sophisticated views of algebra, including the algebra as functions and relationships 

among quantities viewpoint (Cooney et al., 2010; Heid, 1996; Kaput, 1995; Usiskin, 

1999), and focused on teaching conceptually by implementing some of the teaching 

strategies discussed in Chapter 2.  These strategies include building on students’ prior 

knowledge (e.g., Arcavi et al., 2017), promoting problem solving (e.g., Star et al., 2015), 

using multiple representations (e.g., Goldin & Shteingold, 2001), using manipulatives 

(e.g., Leitze & Kitt, 2000), and incorporating technology into instruction (e.g., 

Yerushalmy & Chazan, 2008). 

Another plausible explanation for this finding is that the sample of preservice and 

inservice teachers in this study may not be representative of the population of all 

preservice and inservice teachers.  According to a member of the KAT researcher team, 

the sample of preservice teachers included a number of advanced college students who 

were studying mathematics education at Michigan State University (M. Reckase, 
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personal communication, April 10, 2017).  Michigan State has one of the strongest 

mathematics education programs in the U.S. (Reyes, Glasgow, Teuscher, & Nevels, 

2007), so its preservice teachers may have higher KAT than many preservice teachers.  

Additionally, most of the inservice teachers in the sample were recruited while they were 

participating in professional development activities (M. Reckase, personal 

communication, April 10, 2017), so they also may not be representative of the population 

of inservice teachers.  In particular, the sample may have included many novice teachers 

who were seeking additional training, or it may have included many motivated and 

innovative teachers who regularly take advantage of PD opportunities. 

Also, the sample of inservice teachers may not be representative of algebra 

teachers because we do not know which mathematics courses the inservice teachers 

actually taught.  It is possible that some of these teachers taught courses other than 

algebra, such as statistics and geometry.  During their study, Herbst and Kosko (2014) 

found that geometry teachers had more MKT-G than other high-school mathematics 

teachers, so it is very possible that algebra teachers have more KAT than other high-

school math teachers, as well. 

Implications of the Findings 

Based on the findings in this study, it is evident that we still do not have a clear 

and complete understanding of KAT (and more generally, teacher knowledge in 

mathematics).  Although it may be useful to conceptualize KAT as a three-dimensional 

construct—composed of school algebra knowledge, advanced mathematics knowledge, 

and mathematics-for-teaching knowledge—there is currently no empirical support for a 

three-factor model.  However, it is important that we continue to explore KAT and 
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related constructs for several reasons, including that students from around the world are 

outperforming U.S. students on international mathematics assessments (Mullis et al., 

2016; OECD, 2014, 2016); researchers (e.g., Hill et al., 2005) have found correlations 

between some types of teacher knowledge (e.g., PCK) and student achievement; and 

algebra plays an integral role in the K-12 mathematics curriculum in the U.S. (NCTM, 

2000; NGACBP & CCSSO, 2010). 

Additionally, the findings suggest that we most likely need to provide more CK- 

and PCK-focused professional development (PD) opportunities for inservice algebra 

teachers.  Recall that the preservice teachers in this study outperformed the inservice 

teachers across both forms of the KAT assessment.  Therefore, inservice algebra teachers 

would likely benefit from PD focused on reviewing important concepts in algebra, 

discussing appropriate strategies for teaching these concepts, and considering how 

students think about these concepts (as discussed in Chapter 2). 

Moreover, preservice teachers may benefit from additional experiences related to 

KAT in their content and method courses during their undergraduate studies.  As 

previously mentioned, although the preservice teachers in the study outperformed the 

inservice teachers, both groups struggled on the KAT assessment.  This suggests that 

there may be major gaps in the KAT of both preservice and inservice teachers, which is 

consistent with the literature on mathematics teachers’ knowledge (e.g., Cankoy, 2010; 

Even, 1993; Huang & Kulm, 2012; Tatto et al., 2012). 

Recommendations for Future Research 

Given the findings in this study (as well as studies by the KAT research team), 

there is still much to learn about KAT.  Recommendations for future research include 
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replicating the current study with a new sample of preservice and inservice teachers; 

developing and empirically evaluating new theoretical models for KAT, such as a two-

factor model with CK- and PCK-related components; and creating and testing new KAT-

related items, especially items that can measure mathematics-for-teaching knowledge.  

Also, researchers should consider developing and testing a variety of item types, 

including constructed-response (CR) and video-analysis questions.  The latter question 

type requires students to analyze video clips of classroom instruction and has been used 

by Kersting (2008) and other researchers as a novel approach to measuring teaching 

knowledge.  Different item types should be explored because they may reveal aspects of 

KAT that cannot be revealed using multiple-choice (i.e., dichotomous) items.  According 

to Martinez (1999), “The range of cognitions [e.g., knowledge, procedures, and schemas] 

that can be elicited by CR items is greater than the range of multiple-choice items” (p. 

209).  Therefore, it is possible that CR (and other types of) items may be able to detect 

distinct dimensions of KAT. 

Additional recommendations include developing and evaluating the effectiveness 

of CK- and PCK-focused professional development experiences for inservice algebra 

teachers, as well as innovative algebra activities for preservice teachers to explore in their 

content and methods courses.  Potential areas of exploration could include designing 

high-quality tasks, incorporating manipulatives and technology into instruction, 

promoting problem solving, and analyzing student thinking in algebra (as discussed in 

Chapter 2).  Perhaps, engaging in these types of experiences would increase the KAT of 

both preservice and inservice teachers, which in turn could possibly lead to increases in 

student achievement in the algebra classroom. 
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Concluding Remarks 

Although algebra comprises a significant portion the K-12 mathematics 

curriculum in the U.S. (NCTM, 2000; NGA CBP & CCSSO, 2010), our students 

continue to struggle with even the most basic algebra skills (Blume & Heckman, 2000; 

Mullis et al., 2016; National Mathematics Advisory Panel, 2008; OECD, 2014, 2016; 

RAND Mathematics Study Panel, 2003).  This study and others (e.g., Cankoy, 2010; 

Even, 1993; Huang & Kulm, 2012; Tatto et al., 2012) have found that our algebra 

teachers may have limited knowledge of algebra for teaching.  This finding is rather 

alarming because recent studies in the area of mathematical knowledge for teaching (e.g., 

Baumert et al., 2010; Campbell et al., 2014; Hill et al., 2005) have found relationships 

between teacher knowledge and student achievement.  Unfortunately, the results of this 

study also reveal that we still know relatively little about mathematics teachers’ 

knowledge of algebra.  In particular, the KAT research team hypothesized that KAT is 

composed of three distinct factors, but this study only found empirical support for a one-

factor model.  If we can gain deeper understandings of KAT and how to help our 

preservice and inservice teachers develop this knowledge, we may begin to see better 

teaching in the algebra classroom and increases in our students’ overall achievement in 

algebra.  
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