
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2019

Receptive fields optimization in deep learning for enhanced Receptive fields optimization in deep learning for enhanced

interpretability, diversity, and resource efficiency. interpretability, diversity, and resource efficiency.

Babajide Odunitan Ayinde
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Computational Engineering Commons, Other Electrical and Computer Engineering

Commons, and the Signal Processing Commons

Recommended Citation Recommended Citation
Ayinde, Babajide Odunitan, "Receptive fields optimization in deep learning for enhanced interpretability,
diversity, and resource efficiency." (2019). Electronic Theses and Dissertations. Paper 3243.
https://doi.org/10.18297/etd/3243

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=ir.library.louisville.edu%2Fetd%2F3243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=ir.library.louisville.edu%2Fetd%2F3243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=ir.library.louisville.edu%2Fetd%2F3243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=ir.library.louisville.edu%2Fetd%2F3243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3243
mailto:thinkir@louisville.edu

RECEPTIVE FIELDS OPTIMIZATION IN DEEP LEARNING FOR ENHANCED
INTERPRETABILITY, DIVERSITY, AND RESOURCE EFFICIENCY

By

Babajide Odunitan Ayinde
B.S., Obafemi Awolowo University, 2011

M.S., King Fahd University of Petroleum and Minerals, 2015

A Dissertation
Submitted to the Faculty of the

J.B. Speed School of Engineering of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy in Electrical Engineering

Electrical and Computer Engineering
University of Louisville

Louisville, Kentucky

May 2019

RECEPTIVE FIELDS OPTIMIZATION IN DEEP LEARNING FOR ENHANCED
INTERPRETABILITY, DIVERSITY, AND RESOURCE EFFICIENCY

Submitted by

Babajide Odunitan Ayinde

A Dissertation Approved on

January 23, 2019

by the Following Dissertation Committee:

Dr Jacek Zurada, Dissertation Director

Dr Tamer Inanc

Dr Eric Rouchka

Dr Huacheng Zeng

ii

DEDICATION

This is dedicated to God Almighty for availing the strength, inspiration, knowledge,

and understanding required to successfully complete this dissertation. I also dedicate this

work to my father Dr Folorunsho Ayinde and my late mother Felicia Mojisola Ayinde. To

my beloved wife Ajoke Ayinde and son David Ayinde who have been affected in every way

possible by this rigorous quest.

iii

ACKNOWLEDGMENTS

I would like to express my profound gratitude to my advisor, Dr. Jacek Zu-

rada, Director of the Computational Intelligence Laboratory at the University of

Louisville, for his valuable contributions, guidance, and support towards the com-

pletion of this work. I would also like to appreciate the School of Interdisciplinary

and Graduate Studies, University of Louisville for awarding me the Dissertation

Completion Fellowship to enable me put this work together. My appreciation also

goes to Dr Tamer Inanc for the knowledge impacted through the Digital Signal

Processing class and also for being one of my dissertation committee members. I

would also like to thank Dr. Eric Rouchka and Dr. Huacheng Zeng for agreeing

to serve on the dissertation committee. I am grateful for their suggestions, encour-

agements, and advice.

There are a number of people without whom this dissertation might not

have been written, and to whom I am greatly indebted. I thank my wife and son,

Ajoke and David, for their patience, sacrifice, and constant support while this dis-

sertation slowly assumes its current form. I am indebted to my dad Dr. Folorunsho

Ayinde, my parents-in-law Mr and Mrs Chiazor Ndidi, and Mr and Mrs Bamidele

Oresegun for their love, support, and words of encouragement. Thanks to all my

siblings, Dr Olusola, Engr. Olugbenga, Mrs Olukemi Oyem, Mrs Omobola Favour,

Engr. Ayokunle, Mrs Omolola Akinrinde, Engr. Tolulope for all their support and

prayers. I am grateful to all my friends and colleagues at University of Louisville

for the wonderful times we shared. A big thank you to everybody who contributed

in one way or the other to the success of this dissertation. Ultimately, I thank

Almighty God for every success in this process.

iv

ABSTRACT

RECEPTIVE FIELDS OPTIMIZATION IN DEEP LEARNING FOR ENHANCED

INTERPRETABILITY, DIVERSITY, AND RESOURCE EFFICIENCY

Babajide Odunitan Ayinde

January 23, 2019

In both supervised and unsupervised learning settings, deep neural net-

works (DNNs) are known to perform hierarchical and discriminative representa-

tion of data. They are capable of automatically extracting excellent hierarchy of

features from raw data without the need for manual feature engineering. Over

the past few years, the general trend has been that DNNs have grown deeper and

larger, amounting to huge number of final parameters and highly nonlinear cas-

cade of features, thus improving the flexibility and accuracy of resulting models.

In order to account for the scale, diversity and the difficulty of data DNNs learn

from, the architectural complexity and the excessive number of weights are of-

ten deliberately built in into their design. This flexibility and performance usu-

ally come with high computational and memory demands both during training

and inference. In addition, insight into the mappings DNN models perform and

human ability to understand them still remain very limited. This dissertation ad-

dresses some of these limitations by balancing three conflicting objectives: compu-

tational/memory demands, interpretability, and accuracy.

This dissertation first introduces some unsupervised feature learning meth-

ods in a broader context of dictionary learning. It also sets the tone for deep

v

autoencoder learning and constraints for data representations in light of remov-

ing some of the aforementioned bottlenecks such as the feature interpretability of

deep learning models with nonnegativity constraints on receptive fields. In ad-

dition, the two main classes of solution to the drawbacks associated with over-

parameterization/over-complete representation in deep learning models are also

presented. Subsequently, two novel methods, one for each solution class, are pre-

sented to address the problems resulting from over-complete representation ex-

hibited by most deep learning models. The first method is developed to achieve

inference-cost-efficient models via elimination of redundant features with negligi-

ble deterioration of prediction accuracy. This is important especially for deploying

deep learning models into resource-limited portable devices. The second method

aims at diversifying the features of DNNs in the learning phase to improve their

performance without undermining their size and capacity. Lastly, feature diversi-

fication is considered to stabilize adversarial learning and extensive experimental

outcomes show that these methods have the potential of advancing the current

state-of-the-art on different learning tasks and benchmark datasets.

vi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGMENTS . iv

ABSTRACT . v

List of Tables . x

List of Figures . xii

CHAPTER

INTRODUCTION . 1

I. CONSTRAINED FEATURE LEARNING 4

A. Dictionary Learning via Sparse Coding 4

B. Dictionary Learning via Nonnegative Matrix Factorization (NMF) 6

C. Dictionary Learning via Constrained Autoencoders 7

1. Constrained Autoencoders for Sparse Representation 9

2. Constrained Autoencoders for Part-based Data Represen-

tation . 11

II. CONSTRAINED AUTOENCODERS FOR ENHANCED DATA UN-

DERSTANDING . 16

A. L1/L2-Nonnegativity Constrained Sparse Autoencoder (L1/L2-

NCSAE) . 17

1. Implication of imposing nonnegative parameters with com-

posite decay function . 19

2. Experimental Results . 20

a. Unsupervised Feature Learning of Image Data 20

vii

b. Unsupervised Semantic Feature Learning from Textual

Data . 29

c. Illustration of Understandable Feature Extraction by L1/L2-

NCSAE . 30

B. Deep Learning of Understandable Features using Cascaded L1/L2-

NCSAE . 33

1. Image Classification with Enhanced Interpretability 35

2. Document Categorization with Enhanced Interpretability . 39

3. Performance Evaluation on Supervised Learning 43

C. Conclusion . 45

III. UNSUPERVISED NONREDUNDANT FEATURE EXTRACTION . . . 46

A. Filtering Redundancy Elimination in Autoencoder-based Deep

Networks . 47

1. Filter Clustering and Reduction 48

a. Static Reduction of the Number of Redundant Filters . . 48

b. Dynamic Reduction and Reconciliation of Filters 50

B. Experimental Setup . 52

a. Unsupervised Feature Reduction via Filter Pruning . . . 61

b. Effect of Redundant Feature Pruning on Supervised Learn-

ing . 64

C. Conclusion . 72

IV. REDUNDANCY-BASED FILTER PRUNING IN DEEP CONVOLU-

TIONAL NEURAL NETWORKS . 74

A. Convolutional Feature Clustering and Pruning 78

1. Method A: Pruning of Redundant Filters 80

2. Method B: Pruning of Random n f Filters 82

B. Experiments . 83

viii

1. VGG-16 on CIFAR-10 . 87

2. RESNET-56/110 on CIFAR-10 91

3. Prune and Train from Scratch 101

C. Conclusion . 102

V. FEATURE DIVERSIFICATION IN DEEP NEURAL NETWORKS . . . 103

A. Enhancing Feature Diversity by enforcing Dissimilar Feature Ex-

traction . 106

1. Diversity Regularization . 108

2. Implications of imposing feature diversity 110

B. Online Redundant Filter Detection and Dropout 111

1. Online Filtering Redundancy Dropout 112

2. Online Redundancy-based Dropout 113

C. Experiments . 115

1. Feature Evolution during Training 117

2. Diversity Regularized Image Classification 122

3. Diversity Regularized Natural Language Inference 126

D. Diversity Regularized Adversarial Learning (DiReAL) 131

E. Conclusion . 133

VI. CONCLUSIONS . 136

REFERENCES . 139

CURRICULUM VITAE . 159

ix

LIST OF TABLES

1 Classification accuracy on MNIST and NORB dataset [1] 44

2 Parameter settings [2] . 54

3 Classification performance on MNIST dataset using initial net-

work configuration 784-200-20-10 [2]. 65

4 Classification performance on MNIST dataset using initial net-

work configuration 784-1000-20-10 [2]. 67

5 Classification performance on MNIST dataset using initial net-

work configuration 784-1000-200-10 [2]. 69

6 Classification performance on MNIST dataset using initial net-

work configuration 784-500-500-10 [2]. 70

7 Classification performance on MNIST dataset using initial net-

work configuration 784-1000-1000-10 [2]. 71

8 Classification performance on NORB dataset [2]. 72

9 Pruning performance on CIFAR dataset using VGG-16 model

at τ = 0.54 [3]. 92

10 Performance evaluation for three pruning techniques on CIFAR-

10 dataset. Performance with the lowest test error is reported [3]. 93

11 Performance evaluation of three pruning techniques for ResNet

56/110 trained on CIFAR-10 dataset. Performance with the

lowest test error is reported [3]. 95

12 FLOP and CPU time reduction for inference. Operations in

convolutional and fully connected layer are considered for com-

puting FLOP [3]. 101

x

13 Performance on CIFAR dataset [3]. 102

14 Test-train error gap on MNIST [4] 120

15 Test error(%) on MNIST. Source: [4] 122

16 Test error(%) on CIFAR-10 without data augmentation. Source:

[4] . 125

17 Validation error on ImageNet. Source: [4] 126

18 A select examples from SNLI dataset where E, C, and N repre-

sent Entailment, Contradiction, and Neutral, respectively. Source:

[4] . 128

19 Test accuracy (%) on SNLI dataset. Source: [4] 130

xi

LIST OF FIGURES

1 Illustration of Data Matrix Factorization (X ≈ ΦA). X is the

data matrix, columns of Φ are basis vectors, and columns of A

are the encodings of the samples [5]. 5

2 Schematic diagram of a three-layer AE 8

3 RFs or weights of randomly selected 32 out of 196 (n′ = 196)

hidden neurons of (a) NNSAE (b) NCAE trained using MNIST

dataset. Black pixels indicate negative, grey pixels indicate

zero-valued weights and white pixels indicate positive weights.

The range of weights are scaled to [-1,1] and mapped to the

graycolor map. w = −1 is assigned to black, w = 0 to grey, and

w = 1 is assigned to white color [5]. 12

4 Representation of test image as a linear combination of 4 out of

196 constrained RFs and decoding filters learned from MNIST

dataset using NCAE with linear output activation function. In-

put consist of 784 values corresponding to a 28 × 28 pixel im-

age. Only 70 RFs with largest activations to test image "6" and

their corresponding decoding filters are shown. The RFs and

the decoding filters are rescaled and portrayed as images on the

right hand side. Black pixels indicate negative, and white pix-

els indicate positive weights. The range of weights are scaled

to [-1,1] and mapped to the graycolor map. w = −1 is assigned

to black, w = 0 to grey, and w = 1 is assigned to white color.

The biases are not shown [5]. 15

xii

5 Absolute function approximation using quadratic smoothing

functions with κ = 0.4, 0.7, 1.0 and 1.5 20

6 (a) Symmetric (G3) and skewed (G1 and G2) weight distribu-

tions. Decay function with three values of α1 and α2 for weight

distribution (b) G3 (c) G1 and (d) G2. [1] 21

7 196 receptive fields (W(1)) learned from MNIST digit data set

using (a) SAE, (b) DpAE (c) NCAE, and (d) L1/L2-NCSAE.

Black pixels indicate negative, and white pixels indicate pos-

itive weights. The range of weights are scaled to [-1,1] and

mapped to the graycolor map. w = −1 is assigned to black,

w = 0 to grey, and w = 1 is assigned to white color [1]. 23

8 Encoding weights (W(1)) histograms learned from MNIST digit

data set using (a) SAE, (b) DpAE (c) NCAE, and (d) L1/L2-

NCSAE [1]. 24

9 (a) Reconstruction error and (b) Sparsity of hidden units mea-

sured by KL-divergence using MNIST train dataset with p =

0.05 [1]. 24

10 t-SNE projection [6] of 196D representations of MNIST hand-

written digits using (a) SAE (b) DpAE (c) NCAE (d) L1/L2-

NCSAE [1]. 25

11 Weights of randomly selected 90 out of 200 receptive filters

of (a) SAE (b) DpAE (c) NCAE, and (d) L1/L2-NCSAE using

NORB dataset. The range of weights are scaled to [-1,1] and

mapped to the graycolor map. w <= −1 is assigned to black,

w = 0 to grey, and w >= 1 is assigned to white color [1]. 26

xiii

12 The distribution of 200 encoding (W(1)) and decoding filters

(W(2)) weights learned from NORB dataset using (a) DpAE (b)

NCAE (c) L1/L2-NCSAE [1]. 27

13 Visualizing 20D representations of a subset of Reuters Docu-

ments data using (a) DpAE, (b) NCAE, and (c) L1/L2-NCSAE

[1]. 32

14 Illustration of constrained (non-negative) RF feature extraction

using a L1/L2-NCSAE trained on synthetic data with 3 images

(left). The RFs learned (right) are rescaled and portrayed as im-

ages. The range of weights are scaled to [-1,1] and mapped to

the graycolor map. w = −1 is assigned to black, w = 0 to grey,

and w = 1 is assigned to white color. That is, black pixels indi-

cate negative, and white pixels indicate positive weights. The

dot product of each RF and input pattern shown as Activation

Scores and the outputs of Softmax layer as Softmax scores. a,b,

and c are the indices of input images; d,e, and f are the RFs

indices. The biases are not shown [5]. 34

15 Schematic diagram of a deep AE of L+ 1 layers constructed us-

ing Stacked Sparse Autoencoder (SSAE) and Softmax Classifier

(SMC). 35

xiv

16 Filtering the signal through the L1/L2-NCSAE trained using

the reduced MNIST data set with class labels 1, 2 and 6. The

test image is a 28×28 pixels image unrolled into a vector of

784 values. Both the input test sample and the receptive fields

of the first autoencoding layer are presented as images. The

weights of the output layer are plotted as a diagram with one

row for each output neuron and one column for every hidden

neuron in (L − 1)th layer. The architecture is 784-10-10-3. The

range of weights are scaled to [-1,1] and mapped to the gray-

color map. w = −1 is assigned to black, w = 0 to grey, and

w = 1 is assigned to white color. That is, black pixels indicate

negative, grey pixels indicate zero-valued weights and white

pixels indicate positive weights [1]. 38

xv

17 The weights were trained using two stacked L1/L2-NCSAEs.

RFs learned from the reduced NORB dataset are plotted as im-

ages at the bottom part of (a). The intensity of each pixel is

proportional to the magnitude of the weight connected to that

pixel in the input image with negative value indicating black,

positive values white, and the value 0 corresponding to gray.

The biases are not shown. The activations of first layer hidden

units for the NORB objects presented in (b) are depicted on the

bar chart on top of the RFs. The weights of the second layer AE

are plotted as a diagram at the topmost part of (a). Each row

of the plot corresponds to the weight of each hidden unit of

second AE and each column for weight of every hidden unit of

the first layer AE. The magnitude of the weight corresponds to

the area of each square; white indicates positive, grey indicates

zero, and black negative sign. The activations of second layer

hidden units are shown as bar chart in the right-hand side of

the second layer weight diagram. Each column shows the ac-

tivations of each hidden unit for five color-coded examples of

the same object. The outputs of Softmax layer for color-coded

test objects with class labels (c) "fourlegged animals" tagged as

class 1, (d) "human figures" as class 2, and (e) "airplanes" as

class 3 [1]. 40

18 Deep network trained on Reuters-21578 data using (a) DpAE,

(b) L1/L2-NCSAE. The area of each square is proportional to

the weight’s magnitude. The range of weights are scaled to [-

1,1] and mapped to the graycolor map. w = −1 is assigned to

black, w = 0 to grey, and w = 1 is assigned to white color [1]. . . 42

xvi

19 Filters learned from NORB data set using SAE with (a) 100 orig-

inal filters (b) 14 examples of very similar filters with their cor-

responding indices at the bottom (c) 32 filters resulting from

agglo-SAE with τ=16, and (d) 32 original filters. Black pixels

indicate negative, and white pixels indicate positive weights [2]. 51

20 Performance of AE on the NORB dataset. (a) Reconstruction

error vs. cluster similarity threshold. (b) Number of RFs vs.

cluster similarity threshold for 196 initial filters [2]. 55

21 Reconstruction error using SAE, NCAE, and L1/L2-NCAE trained

with the same number of hidden units from experiment with

agglo-SAE, agglo-NCAE, and agglo-L1/L2-NCAE on NORB data

[2]. 55

22 100 receptive fields learned from Yale Face Dataset using SAE

with examples of two duplicative RFs [2]. 56

23 100 receptive fields learned from Yale Face Dataset using NCAE

with examples of duplicative RFs [2]. 56

24 100 receptive fields learned using L1/L2-NCAE from Yale Face

Dataset, with examples of duplicative RFs [2]. 57

25 Filters learned from MNIST data set using SAE (a) 200 RFs with

examples of duplicative filters, (b) 125 RFs for agglo-SAE with

τ=0.6 [2] . 57

26 Performance of AE on the MNIST dataset vs. cluster similarity

threshold (a) Reconstruction error (b) RF size (n′
new) using 200

initial filters [2]. 58

xvii

27 Reconstruction error using SAE, NCAE, and L1/L2-NCAE trained

with the same number of hidden units from experiment with

agglo-SAE, agglo-NCAE, and agglo-L1/L2-NCAE on MNIST

data [2]. 58

28 KL-Divergence sparsity measure with respect to a desired p

= 0.05 using SAE, NCAE, and L1/L2-NCAE trained with the

same number of hidden units (n′
new) from experiment with agglo-

SAE, agglo-NCAE, and agglo-L1/L2-NCAE on MNIST data [2]. 59

29 t-SNE projection [6] of 200D representations of MNIST hand-

written digits using (a) SAE (b) NCAE (c) L1/L2-NCAE, (d)

174D representations using agglo-SAE (e) 153D representations

using agglo-NCAE, and (f) 172D representations using agglo-

L1/L2-NCAE [2]. 60

30 Pruning schema of lth layer. (a) Assume filters red, blue, and

green in the first, third, and fifth columns of W(l), respectively,

are very similar and are located in the same cluster (b) If filter

red is sampled as the representative of the cluster, filters blue

and green are redundant and their corresponding feature maps

in Z1+1 and related weights in the next layer (third and fifth

rows of W(l+1)) are all pruned [3]. 76

31 Average number of redundant features across all layers (n̄r)

against threshold τ with (a) one (b) two (c) three, and (d) four

hidden layers using MNIST dataset. Network width corre-

sponds to the number of hidden units per layer and network

depth corresponds to number of hidden layers. Networks with

more than one hidden layer have equal number of hidden units

in all layers. 85

xviii

32 t-SNE projection [7] of the activation of last layer of network

with (a) one and (b) four hidden layers using 5000 MNIST hand-

written digits test samples. All Networks have 1000 hidden

units in all layers and all layers use Sigmoid activation function. 86

33 Number of nonredundant filters (n f) vs. cluster similarity thresh-

old (τ) for VGG-16 trained on the CIFAR-10 dataset. Initial

number of filters for each layer is shown in the legend [3]. . . . 88

34 Sensitivity to pruning (a) redundant filters (b) random n′ − n f

filters, and (c) redundant filters and retraining for 30 epochs for

VGG-16 [3]. 90

35 Number of nonredundant filters (n f) vs. cluster similarity thresh-

old (τ) for ResNet-56 trained on the CIFAR-10 dataset. Initial

number of filters for each layer is shown in the legend [3]. . . . 94

36 Number of nonredundant filters (n f) vs. cluster similarity thresh-

old (τ) for ResNet-110 trained on the CIFAR-10 dataset. Initial

number of filters for each layer is shown in the legend [3]. . . . 96

37 Sensitivity to pruning n′ − n f redundant convolutional filters

in ResNet-56 [3]. 98

38 Sensitivity to pruning n′ − n f redundant convolutional filters

in ResNet-110 [3]. 100

39 Illustration of effect of divReg with λ = 10 and τ = 0.1 (a) on

three toy filters in (b) iteration 1 (c) iteration 2 and (d) iteration

4 [4]. 107

40 Effect of (a) diversity penalty factor λ and (b) thresholding pa-

rameter τ on diversity regularization cost JD (Figure best viewed

in color) [4] . 108

xix

41 The distribution of pairwise feature correlation (Ω(1)) in first

hidden layer at (a) epoch 2 (b) epoch 300 [4] 118

42 The distribution of pairwise feature correlation (Ω(2)) in sec-

ond hidden layer at (a) epoch 2 (b) epoch 300 [4] 119

43 150 out of 256 encoding features (left) learned from MNIST

digit data set with autoencoders using (a) L1, (b) Dropout (c)

orthoReg, and (d) divReg. The range of weights are scaled and

mapped to the graycolor map (right) [4]. 120

44 Performance of Multilayer Perceptron (with architecture 784-

1024-1024-10) regularized using divReg-1 and trained on the

MNIST dataset vs. threshold τ∗. (a) Number of nonredundant

features for 1024 initial features. (b) percentage classification

error [4] . 121

45 Evolution of dropout fraction (α) with divReg-2 using the MNIST

dataset for four different initializations of α in (a) layer 1 and

(b) layer 2. Source: [4] . 121

46 Performance evaluation using divReg-2 on MNIST dataset for

four different initializations of α. Source: [4] 127

47 Learning rate (ξ) schedule for experiments on CIFAR-10 dataset.

Source: [4] . 127

48 Schema of Diversity Regularized Adversarial Learning (DiReAL)132

49 Diversity loss of (a) generator with no regularization (b) gener-

ator with diReAL (c) discriminator with no regularization, and

(d) discriminator with DiReAL trained on MNIST dataset. . . . 133

50 Divergence, as measured by Wasserstein distance, between the

discriminator output for real and synthesized samples 134

xx

51 Synthesized hand-written digits with and without diversity Reg-

ularization. 134

xxi

INTRODUCTION

Many real-world learning problems involve high-dimensional data and the

curse of dimensionality is a fundamental issue. Analysis of data with high dimen-

sions usually results in significant increase in computational time and space [8, 9].

From practical standpoint, the importance of all features is not the same for a given

discriminative task and a good number of features are highly correlated or even re-

dundant. This redundancy, in general, would not only increase the computational

complexity of the learning process, but also would hinder the interpretability and

transparency of the resulting model. However, manual engineering and selection

of the most important feature set in high dimensional data for the purpose of elim-

inating redundancy is extremely difficult and labor-intensive.

Noticeable research efforts have addressed this issue by designing prepro-

cessing and feature extraction pipelines to condition original raw data into forms

effectively usable by learning algorithms. However, the process is tedious and

requires considerable efforts by experts. In fact, some of the best unsupervised

feature extractors (Restricted Boltzmann machines (RBMs) [10], Deep Belief Net-

works (DBNs) [11], autoencoders (AE) [12], stacked AE [13], Sparse coding [14],

Gaussian Mixture Models (GMMs) [15]) and supervised counterparts (Support

Vector Machines (SVM) [16], Gradient Boosting machines (GBMs) [17], neural net-

works [18, 19], etc) produce outputs that are unintelligible and inherently hard to

decipher their decision making processes. These issues are in fact more prominent

when multilayer deep learning (DL) architectures are used. The notion of "deep" in

DL does not refer to any kind of deeper understanding/knowledge, rather it refers

to the learning of many layers or hierarchies of feature representations. Therefore,

1

most of the existing DL models can only be used as black-boxes despite their good

performance because their knowledge is hidden and can hardly be used to explain

their decision making process. Thus limiting their applicability in domains where

both justifications of decisions and interpretable inference are required from ma-

chines as in medical applications and business intelligence [20].

Most of the problems associated with interpretability and computational

efficiency especially in DL models have been attributed to huge number of param-

eters, high nonlinearity, and redundancy in input and/or weight spaces [21], [22]

[23], [24]. Therefore, designing a fully trainable algorithms that have the capability

to learn the appropriate interpretable features and simultaneously eliminate re-

dundancy in both input and model is a step towards solving a long-standing open

problem of obtaining an optimal architecture that balances accuracy, memory de-

mand, and interpretability.

The following five chapters of this dissertation cover important methods in

constrained feature learning and data representation, describe methods of training

interpretable features, and discuss algorithms to improve post-training inference

cost of DNN models. Chapter II starts by describing some of the theoretical foun-

dations of representation learning via constrained data matrix decomposition. It

then describes some of the main methods for unsupervised feature extraction in

artificial neural networks and the concept of receptive fields (RFs). It also explains

how interpretable models can result from the extraction of additive part-based fea-

tures. It ends with presenting of two approaches for achieving part-based data de-

composition with neural networks and highlights some of their tradeoffs in terms

of part-based data decomposition and accuracy.

Chapters III focuses on improving the interpretability of autoencoder-based

DNN model while preserving the output accuracy. A novel method for impos-

ing non-negativity constraints on RFs is introduced to learn interpretable and dis-

2

criminative features. It focuses on methods that preserves the accuracy of mod-

els with interpretable features. Chapters IV and V describe methods that seek to

eliminate redundancy in both supervised and unsupervised neural network via

RF compression. Chapter IV presents two methods for unsupervised learning of

non-redundant sparse RFs to improve both computation and accuracy in the su-

pervised phase. Chapter V presents two methods for improving the post-training

computational efficiency of supervised deep convolutional neural networks, also

via elimination of redundant RFs. A novel method for imposing diversity among

RFs during training is presented and discussed in chapter VI to prevent redun-

dancy.

3

CHAPTER I

CONSTRAINED FEATURE LEARNING

Constrained feature learning (CFL) is an important concept in feature en-

gineering for unearthing latent representations of data useful for such machine

learning tasks as classification, regression, and compression. These representa-

tions could reveal what is important in data for a given discriminative task. CFL

algorithms that enable feature extraction can generate latent codes for test set dur-

ing inference [25,26]. CFL algorithms have become important tools in paradigm of

representation learning. These algorithms range from sparse coding concept orig-

inally introduced in [14] to Nonnegative Matrix Factorization (NMF) that enforces

nonnegativity of both basis vectors and the features to neural networks that im-

plement learning with a variety of constraints. They are able to learn constrained

representation usually by learning some dictionaries that represents the data. The

term dictionary is often used in the context of semantic analysis such as document

categorization. When dealing with other tasks and data, these dictionaries are

called receptive fields, filters, basis vectors or latent factors.

A. Dictionary Learning via Sparse Coding

Dictionary learning is best illustrated through sparse coding or data matrix

factorization. Assume data matrix X contains m data vectors xj as columns, each

with n elements as shown in Fig. 1. Sparse coding aims to find a set of k basis

vectors (columns φi of matrix Φ ∈ Rn×k) and encodings (columns aj of matrix

4

FIGURE 1 – Illustration of Data Matrix Factorization (X ≈ ΦA). X is the data ma-
trix, columns of Φ are basis vectors, and columns of A are the encodings of the
samples [5].

A ∈ Rk×m) such that X ≈ ΦA for X ∈ Rn×m, and aj is a sparse vector for every j.

When no limitation is imposed on k, it is possible to find via sparse coding an over-

complete representation of data in which the number of basis vectors k is greater

than the original data dimensionality n. That is, if k > n the linear system of equa-

tions is under-determined and sparsity enforcement is needed to avoid obtaining

a trivial solution [26].

In order to coerce aj to be sparse for every j, a sparsity term is introduced in

the objective function. Sparse combination of basis from an over-complete dictio-

nary to represent data has been suggested as the mechanism with which mammal

primary visual cortex (V1) work [14,27–30]. The data matrix decomposition is usu-

ally formulated as an optimization problem solvable by balancing out the error of

approximation of X by ΦA and the sparsity of A. During the optimization pro-

cess, a trivial solution may result in which entries of A are small due to sparsity

enforcement but are compensated by allowing entries of Φ to assume large val-

ues [27,31,32]. To alleviate this problem, magnitude constraints are usually placed

on the basis vectors φi through a process known as regularization by adding decay

term to the objective function. This magnitude constraint is sometimes referred to

as a weight decay penalty. Most sparse coding methods [14, 27, 33] require solv-

ing iterative optimization problem in order to compute feature descriptor which is

5

usually computational expensive [26]. The complete optimization objective is thus

formulated as in (1).

min
A,Φ

m

∑
j=1

[∥∥Φaj − xj
∥∥2

2 + γ1Sparsity(aj)

]
+ γ2

k

∑
i=1

‖φi‖2
2 (1)

where γ1 and γ2 are positive constants that adjust the relative importance of spar-

sity and magnitude (or regularization) constraints, respectively. Formula (1) mini-

mizes the distance between the data and its representation given the learned basis.

B. Dictionary Learning via Nonnegative Matrix Factorization (NMF)

Similar to sparse coding, NMF [34] belongs to a class of CFL paradigm

that essential to data analysis such as compression, feature selection, visualiza-

tion, just to mention a few [35]. NMF finds application in many diverse problem

space such as computational biology [36–41], blind source separation [42], cluster-

ing [43, 44], community detection [45], collaborative filtering [46], just to mention

a few. One of the motivation behind NMF is that the emergence of part-based

representation in human cognition can be conceptually tied to the nonnegativity

constraints [34]. The objective of NMF techniques in general is to approximate data

matrix X with nonnegative entries with low rank matrix WH, that is, X ≈ WH or

simply X = WH + N. One of the key choices in NMF is the quantification of qual-

ity of approximation, which generally depends on error N. The most commonly

used measure is the Frobenius norm of N, which assumes the noise in the data is

Gaussian. Another important consideration in CFL is the assumption on the struc-

ture of factors W and H. For instance, if columns of W are independent, then the

resulting heuristic become independent component analysis (ICA) [47].

The strict constraint on the structure of factors W and H in NMF is that

it enforces the encoding of both the basis vectors and features to be nonnegative

6

thereby resulting in additive data representation. The hidden structure of data can

be unfolded by learning features that have capabilities to extract the data parts.

Similar to the data decomposition illustrated in Fig. 1, NMF decomposes data ma-

trix X ∈ Rn×m with nonnegative real entries into product of two nonnegative ma-

trices W ∈ Rn×k and H ∈ Rk×m, that is, X ≈ WH. The factorization is generally

formulated as an optimization problem with loss function in (2)

min
W∈Rn×k,H∈Rk×m

||X − WH||2 such that W ≥ 0 and H ≥ 0 (2)

C. Dictionary Learning via Constrained Autoencoders

Dictionaries are also learnt via a specialized neural network architecture

known as autoencoder. One of the popular approaches to CFL is to train autoen-

coder (AE) in ways that enforces some desired attributes. The motivation behind

the autoencoding is to reconstruct the input from its encoded representation with

features that represent the data [48, 49]. The reconstruction is usually achieved by

additive linear (sometimes nonlinear) combination through decoding filters. After

training, generating latent encodings for test samples is extremely fast, requiring a

simple matrix-vector multiplication.

The model of the neural network AE shown in Fig. 2 aims to reconstruct its

input vector using unsupervised learning is given in (3).

x̂ = fW,b(x) ≈ x (3)

where x is a normalized input vector, W = {W1, W2}, and b = {b1, b2} respec-

tively represent the weight and biases of the network. It is worth mentioning that

the weight matrix W2 may optionally be constrained by W2 = WT
1 , in which case

the autoencoder is said to have tied weights. The concept of tied weights is mainly

used to reduce the effective number of parameters. Input data X is first encoded

7

x1

x2

xn−1

xn

x̂1

x̂2

x̂n−1

x̂n

DecoderEncoder

h1

hn′

Input Layer
Hidden
Layer

Decoding
Layer

b2

b1

W1 W2

FIGURE 2 – Schematic diagram of a three-layer AE

through W1 into features h. In turn, features h are mapped back to the data X̂

through W2 in accordance with h = σ(W1X + b1) where σ(�) is the activation

function. One of the commonly used activation functions is the logistic sigmoid

given as σ(x) = 1/(1 + exp(−x)). In order to solve for parameters W and b in (3), the

average reconstruction error in (4) serves as the optimization objective.

JAE(W, b) =
1
m

m

∑
i=1

‖σ(W2σ(W1xi + b1) + b2)− xi‖2
2 (4)

We should note that the dictionary learning in sparse coding (1) and AE (4)

differ by two aspects. Firstly, the reconstruction error (4) involves mapping of data

into itself by two matrices W1 and W2, while the same error being the first term

of (1) involves one matrix Φ. Secondly, (1) is solved by optimization, while (4) is

based on unsupervised learning of h.

Imposing meaningful limitations on network parameters generally forces

AE network to learn representations that attempts to unearth the underlying struc-

ture in data. One of such limitations could be limiting the hidden layer size for

compressed representation of the input. In this context, constrained AE implies

that some constraints such as sparsity, nonnegativity, weight-decay regulariza-

8

tion, and/or other constraint types are imposed on the learned features. Exam-

ples of such constraints are sparsity as in the Sparse Autoencoder (SAE) [50], or

nonnegativity and sparsity as in Nonnegativity-Constrained Autoencoder (NCAE)

[1, 51, 52].

Sparsification of features that represent data is increasingly important in

learning, especially from big data. This is because sparsity can facilitate efficient

and automatic feature selection. In addition, regularization can shrink the mag-

nitude of AE weights and improve the generalization. Therefore, constrained

AEs are not only used for feature dimensionality reduction, but also for extract-

ing sparse, part-based features, and for enhancing data understanding.

1. Constrained Autoencoders for Sparse Representation

In AE settings, a network is considered over-sized if the size of the hidden

layer is the same or larger than the input vector size n. In this scenario, AE can

be forced to learn useful representation if additional constraints are added. These

constraints can come in form of regularization to ensure sparsity of the hidden-

layer representation or addition of noise in the hidden layer. Sparse representation

can provide a interpretation of the input data in terms of a reduced number of

parts thereby revealing its hidden structure.

In order to force AE to learn sparse representation, h is bounded using the

Kullback-Leibler (KL) divergence function [53–56]. If hj(xi) denotes the activation

(or output) of hidden neuron j due to the input xi, the average activation of this

particular neuron is given as:

p̂j =
1
m

m

∑
i=1

hj(xi) (5)

If a sparse AE with target activation p is considered, one common method for

imposing sparsity is to limit the activation of hidden units using the KL function

9

[50] as in (6)

Sparsity(p||p̂) =
n′

∑
j=1

p log
p
p̂j

+ (1 − p) log
1 − p
1 − p̂j

(6)

One of many functions a regularizer provides is enforcing certain properties on the

weights. Note that weight decay term is also added to the cost function of AE as

to prevent overfitting [57]. For a conventional sparse autoencoder (SAE) the decay

term is given as in (7).

Decay(w) =
α

2

2

∑
l=1

sl

∑
i=1

sl+1

∑
j=1

||w(l)
i,j ||22 (7)

where α is the weight penalty factor, and w(l)
i,j represents the connection between

ith neuron in layer l − 1 and jth neuron in layer l. The overall cost function based

on (1) for SAE using penalization then becomes [50]:

JSAE(W, b) = JAE(W, b) + βSparsity(p||p̂) + Decay(w) (8)

where β controls the sparsity penalty term.

The gradient of (8) is computed in (11) for the purpose of updating the net-

work parameters using the backpropagation algorithm [18].

w(l)
ij = w(l)

ij − ξ
∂

∂w(l)
ij

JSAE(W, b) (9)

b(l)i = b(l)i − ξ
∂

∂b(l)i

JSAE(W, b) (10)

where

∂

∂w(l)
ij

JSAE(W, b) =
∂

∂w(l)
ij

JE
(
W, b

)
+ β

∂

∂w(l)
ij

Sparsity
(

p ‖ p̂
)
+ g(w(l)

ij) (11)

ξ > 0 is the learning rate and g(w(l)
ij) is called the decay function and it is given as

in (12)

g(w(l)
ij) = λw(l)

ij
(12)

10

Other popular methods for sparsifying AE features while preventing over-

fitting are the dropout technique [58] and family of k-sparse AEs [59,60]. In dropout

technique, units and their connections are randomly dropped from the network

during training. In effect, dropout tends to prevent neurons from co-adapting

thereby leading to good generalization. The concept of k-sparse AE relies on iden-

tifying the k neurons with largest activations and setting the rest to zero to prevent

overfitting. The k-sparse AE has been found suitable for many dataset because

the value k can be tuned to obtain desirable sparsity level in conformity with each

dataset.

2. Constrained Autoencoders for Part-based Data Representation

Part-based representation is a way of decomposing data into parts, which

when additively combined regenerate the data [34]. As shown in [34], one way of

representing data is by shattering it into various distinct pieces in a manner that

additive merging of these pieces can reconstruct the original data. Mapping this

intuition to AEs, the idea is to sparsely disintegrate data into parts in the encoding

layer and additively process the parts to recombine the original data in the decod-

ing layer.

One way to achieve data decomposition with AEs is by using asymmet-

ric piecewise linear weight decay function to constrain network parameters to be

nonnegative and the resulting network is called Nonnegative Sparse Autoencoder

(NNSAE) [61]. Unlike SAE, NNSAE is trained with an online algorithm and tied

weights and linear output activation function. It is capable of extracting nonneg-

ative features for part-based representation of data. The main difference between

11

FIGURE 3 – RFs or weights of randomly selected 32 out of 196 (n′ = 196) hidden
neurons of (a) NNSAE (b) NCAE trained using MNIST dataset. Black pixels indi-
cate negative, grey pixels indicate zero-valued weights and white pixels indicate
positive weights. The range of weights are scaled to [-1,1] and mapped to the gray-
color map. w = −1 is assigned to black, w = 0 to grey, and w = 1 is assigned to
white color [5].

12

conventional SAE and NNSAE is in the decay function given in (13)

g(w(l)
ij) =

{ −αw(l)
ij wij < 0

−βw(l)
ij wij ≥ 0

(13)

where α and β are hyperparameters and 0 ≤ α 	 1. If α = 1, the decay function in

(13) ensures a complete prohibition of negative weights. The weight decay func-

tion in (12) for SAE can also be viewed as imposing Gaussian prior distribution

on network weights while NNSAE uses a weight decay mechanism that assumes

a virtually deformed Gaussian prior that is skewed with respect to the sign of the

weight. It must be noted that α = β, (13) is equivalent to (12).

Another variant of NNSAE is the Nonnegativity-Constrained AE (NCAE)

[51], which also aim at eliminating negative weight through regularization. This

is achieved by imposing nonnegativity constraint in form of a penalty term by

replacing the decay term in (8) with (14)

Decay(w) =

{
α
2 ∑2

l=1 ∑sl
i=1 ∑

sl+1
j=1

(
w(l)

ij
)2 wij < 0

0 wij ≥ 0
(14)

where α > 0 is a nonnegativity-constraint weight penalty factor and decay func-

tion is given as

g(w(l)
ij) =

{ −αw(l)
ij wij < 0

0 wij ≥ 0
(15)

It is worthy to note that the decay function of NNSAE in (13) is a generalization of

both SAE when β = α as in (12) and NCAE when β = 0 as in (15).

Part-based data decomposition is illustrated using NCAE and NNSAE trained

on MNIST digit and both AEs have 196 hidden neurons. Weights of trained net-

works are portrayed as images of receptive fields (RFs). Figures 3a and b show

the RFs learned by NNSAE and NCAE, respectively. It can be observed that the

RFs learned are select parts of handwritten digits such as strokes and dots. The

learned featured are localized and tend to look like parts of digits. Part-based

13

representation is also illustrated in Figure 4 using NCAE trained on MNIST hand-

written characters. NCAE with linear decoder architecture (that is, the activation

function σ(�) for decoding layer is identity function) was trained in such a manner

that the column of W1 are coerced to be sparse. RFs and the decoding filters are

displayed on the right hand side. A test image of digit 6 shown is filtered through

the network and activations h are listed. The vector of activations is very sparse

since it only stimulates 4 out of 196 RFs. The test sample can be reconstructed by

additively combining four outputs of decoding filters scaled with magnitudes of

select h values.

14

MNIST HANDWRITTEN DIGITS CHARACTERS

Test sample

[h1, …, h70] = [0.4, 0.0, 0.0,0.0,…, 0.0, 0.6, 0.0,0.0,..., 0.9,0.0, 0.5,0.0,0.0,…, 0.0,0.0]

(Hidden Activations)

� � � � �
1
h

48
h

50
h� ��

34
h

FIGURE 4: Representation of test image as a linear combination of 4 out of 196

constrained RFs and decoding filters learned from MNIST dataset using NCAE

with linear output activation function. Input consist of 784 values corresponding

to a 28 × 28 pixel image. Only 70 RFs with largest activations to test image "6" and

their corresponding decoding filters are shown. The RFs and the decoding filters

are rescaled and portrayed as images on the right hand side. Black pixels indicate

negative, and white pixels indicate positive weights. The range of weights are

scaled to [-1,1] and mapped to the graycolor map. w = −1 is assigned to black,

w = 0 to grey, and w = 1 is assigned to white color. The biases are not shown [5].

15

CHAPTER II

CONSTRAINED AUTOENCODERS FOR ENHANCED DATA
UNDERSTANDING

It is a general belief that humans analyze complex interactions by breaking

them into isolated and understandable hierarchical concepts. Methods for learn-

ing understandable models, such as decision tree [62] extract only flat data de-

scriptions that lack hierarchical concepts. On the other hand, methods that builds

model with hierarchical structure usually extract features that are difficult to un-

derstand and/or interpret [63, 64]. As shown in [22], one way to reconcile the

requirements of hierarchical organization and easier human understandability of

concepts in neural networks is by imposing nonnegative-only weights. Moreover,

the emergence of part-based representation in human cognition can be conceptu-

ally tied to the nonnegativity constraints [34]. Although deep feedforward neural

networks have the capability to model multi-level abstraction of data, they are dif-

ficult to train and the understandability of features they learn is very limited [65].

Owing to unsupervised pretraining using AE or Restricted Boltzmann ma-

chine [66] and better initialization heuristics [67–70], the training difficulties have

been alleviated. Some heuristics have also attempted to address the problem of

understandability by extracting rules from neural network for individual neurons.

These heuristics, however, differentiate rules from individual neuron and their

states using special symbols, which in turns increases the opaqueness of the ex-

tracted rules. In addition, these symbolic rules becomes more complicated for

deep neural networks with no meaningful interpretations. Also, the rule extrac-

tion process have been shown to be computationally expensive [21].

16

The issue of understandability is addressed by drawing inspiration from the

idea of NMF [34] and sparse coding [71] and appropriately enforcing space non-

negative features. As highlighted in [22], understandability of features learned by

neural network models can be fostered by enforcing weights in the network to be

nonnegative. This would allow easier inspection and interpretation by eliminating

cancelations of incoming neuron signals. In addition, there are neural activities for

a subset of hidden units that are strongly correlated with the input and threshold of

this correlation is controlled by the bias term. The main shortcoming in [22] is that

sparse nonnegative features are obtained by directly mapping negative weights

to zero, in effect, significantly deteriorates the performance of the entire network.

That is, a portion of the performance is traded with extraction of understandable

features. In addition, the heuristic was developed and customized for shallow

neural networks. Of special interest to the work in this chapter is the extraction of

understandable deep neural network features that preserves the overall network

performance.

A. L1/L2-Nonnegativity Constrained Sparse Autoencoder (L1/L2-NCSAE)

As earlier shown using NNSAE [61] and NCAE [51], negative weight can be

eliminated from neural network models in an online fashion through regulariza-

tion. This is achieved by regularizing the learning cost function with appropriate

penalty term. However, a close scrutiny of the weight distribution of both the

encoding and decoding layer enforced by the penalty function of NCAE in (14)

reveals that many weights are still negative despite imposing nonnegativity con-

straints. The reason for this is that the original L2 norm used in NCAE penalizes

the negative weights with big magnitudes stronger than those with smaller magni-

tudes. This forces a good number of the weights to take on small negative values.

From experiments carried out using NCAE, these negative weights are essential

17

for achieve good performance in terms of both reconstruction and classification.

It will be shown that additional L1 term can be used to even out this occurrence,

that is, the additional L1 penalty forces most of the small-valued negative weights

to become zero. The resulting architecture extracts features that are more sparse

with improved reconstruction error and is renamed as L1/L2-Nonnegativity Con-

strained Sparse Autoencoder (L1/L2-NCSAE). The penalty term of NNSAE [61] in

(13) on the other hand also extracts strictly nonnegative feature, however, it does

so in a way that deteriorates the classification accuracy when used to pretrain a

deep network due of its relatively high reconstruction error.

In order to encourage higher degree of nonnegativity in network’s weights,

a penalty term in (16) is added to the objective function resulting in the cost func-

tion expression for L1/L2-NCSAE [1]. The negative weights are regularized by

minimizing their absolute values (L1 norm) and their squares (L2 norm). The com-

bined action of the L1 and L2 penalties is that they both select only the important

negative weights and limits their magnitude. This thus employ a penalty-based

negative weight pruning mechanism.

Decay(wij) =

{
α1Γ(wij, κ) + α2

2 ||wij||2 wij < 0

0 wij ≥ 0
(16)

where α1 and α2 are L1 and L2 nonnegativity-constraint weight penalty factors, re-

spectively. The decay function d(wij) is a composite function denoting the deriva-

tive of Decay(wij) (16) with respect to wij as in (17).

g(wij) =

{
α1∇w

∥∥wij
∥∥+ α2wij wij < 0

0 wij ≥ 0
(17)

18

1. Implication of imposing nonnegative parameters with composite decay func-

tion

The graphical illustration of the relation between the weight distribution

and the composite decay function is shown in Fig. 6. Ideally, addition of Frobe-

nius norm of the weight matrix (α||W||2F) in (12) to the reconstruction error im-

poses a Gaussian prior on the weight distribution as shown in curve G3 in Fig-

ure 6a. However, using the composite function in (17) results in imposition of

positively-skewed deformed Gaussian distribution as in curves G1 and G2. The

degree of nonnegativity can be adjusted using parameters α1 and α2. Both param-

eters have to be carefully chosen to enforce nonnegativity while simultaneously

ensuring good supervised learning outcomes. The effect of L1 (α2 = 0), L2 (α1 = 0)

and L1/L2 (α1 �= 0 and α2 �= 0) nonnegativity penalty terms on weight updates for

weight distributions G1, G2 and G3 are respectively shown in Figure 6c,d, and b.

It can be observed for all the three distributions that L1/L2 regularization enforces

stronger weight decay than individual L1 and L2 regularization. Other observation

from Figure 6 is that the more positively-skewed the weight distribution becomes,

the lesser the weight decay function.

The consequences of minimizing the reconstruction under the regulariza-

tion in (16) are that: (i) the average reconstruction error is reduced (ii) the spar-

sity of the hidden layer activations is increased because more negative weights are

forced to zero thereby leading to sparsity enhancement, and (iii) the number of

nonnegative weights is also increased. As earlier mentioned, the resultant effect

of penalizing the weights simultaneously with L1 and L2 norm is that they both

select only the important negative weights and limits their magnitude. However,

the L1 norm in (16) and (17) is non-differentiable at the origin, and this can lead

to numerical instability during simulations. To circumvent this drawback, one of

the well known smoothing function that approximates L1 norm is utilized. The

19

-2 -1 0 1 2
0

0.5

1

1.5

2
Quadratic, κ=0.4
Quadratic, κ=0.7
Quadratic, κ=1.0
Quadratic, κ=1.5
Absolute

FIGURE 5 – Absolute function approximation using quadratic smoothing func-
tions with κ = 0.4, 0.7, 1.0 and 1.5

approximation is defined as follows: Given any finite dimensional vector z and

positive constant κ, the following smoothing function approximates L1 norm:

Γ(z, κ) =

{ ||z|| ||z|| > κ

||z||2
2κ + κ

2 ||z|| ≤ κ

(18)

with gradient

∇zΓ(z, κ) =

{ z
||z|| ||z|| > κ

z
κ ||z|| ≤ κ

(19)

2. Experimental Results

a. Unsupervised Feature Learning of Image Data In the first set of experi-

ments, three-layer L1/L2-NCSAE, NCAE [51], DpAE [72], and conventional SAE

network with 196 hidden neurons were trained using MNIST dataset of handwrit-

ten digits and their ability to discover patterns in high dimensional data are com-

20

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

weight w

Pr
ob

ab
ili

ty
 D

ist
rib

ut
io

n
P(

w)

G1
G2
G3

(a)

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

w

g(
w)

α1= 1,α2= 1

α1= 1,α2= 0

α1= 0,α2= 1

(b)

−1 0.5 0 0.5 1
2

1.5

1

0.5

0

w

g(
w

)

α
1
= 1,α

2
= 1

α
1
= 1,α

2
= 0

α
1
= 0,α

2
= 1

(c)

−0.5 0 0.5 1 1.5
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

w

g(
w)

α1= 1,α2= 1

α1= 1,α2= 0

α1= 0,α2= 1

(d)

FIGURE 6: (a) Symmetric (G3) and skewed (G1 and G2) weight distributions. De-

cay function with three values of α1 and α2 for weight distribution (b) G3 (c) G1

and (d) G2. [1]

21

pared. These experiments were run one time and recorded. The encoding weights

W(1), also known as receptive fields or filters as in the case of image data, are re-

shaped, scaled, centered in a 28 × 28 pixel box and visualized. The filters learned

by L1/L2-NCSAE are compared with that learned by its counterparts, NCAE and

SAE. It can be easily observed from the results in Figure 25 that L1/L2-NCSAE

learned receptive fields that are more sparse and localized than those of SAE,

DpAE, and NCAE. It is remarked that the black pixels in both SAE and DpAE fea-

tures are results of the negative weights whose values and numbers are reduced in

NCAE with nonnegativity constraints, which are further reduced by imposing an

additional L1 penalty term in L1/L2-NCSAE as shown in the histograms located

on the right side of the figure. Although the penalty function in NCAE is a special

case of that in L1/L2-NCSAE (obtained by setting α1 to zero), a close scrutiny of

the weight distribution of both the encoding and decoding layer in NCAE reveals

that many weights are still negative despite imposing nonnegativity constraints.

The reason for this is that the original L2 norm used in NCAE penalizes the neg-

ative weights with big magnitudes stronger than those with smaller magnitudes.

This forces a good number of the weights to take on small negative values. L1/L2-

NCSAE uses additional L1 to even out this occurrence, that is, the L1 penalty forces

most of the negative weights to become nonnegative.

In the case of L1/L2-NCSAE, tiny strokes and dots which constitute the ba-

sic part of handwritten digits, are unearthed compared to SAE, DpAE, and NCAE.

Most of the features learned by SAE are major parts of the digits or the blurred

version of the digits, which are obviously not as sparse as those learned by L1/L2-

NCSAE. Also, the features learned by DpAE are fuzzy compared to those of L1/L2-

NCSAE which are sparse and distinct. Therefore, the achieved sparsity in the en-

coding can be traced to the ability of L1 and L2 regularization in enforcing high

degree of weights’ nonnegativity in the network.

22

(a
)S

A
E

(b
)D

pA
E

(c
)N

C
A

E

(d
)

L 1
/

L 2
-N

C
SA

E

FI
G

U
R

E
7:

19
6

re
ce

pt
iv

e
fie

ld
s

(W
(1
))

le
ar

ne
d

fr
om

M
N

IS
T

di
gi

td
at

a
se

tu
si

ng
(a

)S
A

E,
(b

)D
pA

E
(c

)N
C

A
E,

an
d

(d
)L

1/
L 2

-

N
C

SA
E.

Bl
ac

k
pi

xe
ls

in
di

ca
te

ne
ga

ti
ve

,a
nd

w
hi

te
pi

xe
ls

in
di

ca
te

po
si

ti
ve

w
ei

gh
ts

.T
he

ra
ng

e
of

w
ei

gh
ts

ar
e

sc
al

ed
to

[-
1,

1]

an
d

m
ap

pe
d

to
th

e
gr

ay
co

lo
r

m
ap

.w
=

−1
is

as
si

gn
ed

to
bl

ac
k,

w
=

0
to

gr
ey

,a
nd

w
=

1
is

as
si

gn
ed

to
w

hi
te

co
lo

r
[1

].

23

(a) SAE (b) DpAE

(c) NCAE (d) L1/L2-NCSAE

FIGURE 8: Encoding weights (W(1)) histograms learned from MNIST digit data

set using (a) SAE, (b) DpAE (c) NCAE, and (d) L1/L2-NCSAE [1].

100 200 300 400 5000

2

4

6

8

10

12

No. of hidden nodes

Re
co

ns
tru

cti
on

 er
ro

r

SAE
NCAE
L1/L2−NCSAE
DpAE

495 500
1.9

2
2.1
2.2
2.3

(a)

100 200 300 400 5000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

No. of hidden nodes

KL
−D

iv
er

ge
nc

e

SAE
NCAE
L1/L2−NCSAE
DpAE

480 490 500
2
4
6
8

x 10−3

(b)

FIGURE 9: (a) Reconstruction error and (b) Sparsity of hidden units measured by

KL-divergence using MNIST train dataset with p = 0.05 [1].

24

(a
)S

A
E

(b
)D

pA
E

(c
)N

C
A

E
(d

)
L 1

/
L 2

-N
C

SA
E

FI
G

U
R

E
10

:
t-

SN
E

pr
oj

ec
ti

on
[6

]
of

19
6D

re
pr

es
en

ta
ti

on
s

of
M

N
IS

T
ha

nd
w

ri
tt

en
di

gi
ts

us
in

g
(a

)
SA

E
(b

)
D

pA
E

(c
)

N
C

A
E

(d
)

L 1
/

L 2
-N

C
SA

E
[1

].

25

(a
)S

A
E

(b
)D

pA
E

(c
)N

C
A

E

(d
)

L 1
/

L 2
-N

C
SA

E

FI
G

U
R

E
11

:
W

ei
gh

ts
of

ra
nd

om
ly

se
le

ct
ed

90
ou

t
of

20
0

re
ce

pt
iv

e
fil

te
rs

of
(a

)
SA

E
(b

)
D

pA
E

(c
)

N
C

A
E,

an
d

(d
)

L 1
/

L 2
-

N
C

SA
E

us
in

g
N

O
R

B
da

ta
se

t.
Th

e
ra

ng
e

of
w

ei
gh

ts
ar

e
sc

al
ed

to
[-

1,
1]

an
d

m
ap

pe
d

to
th

e
gr

ay
co

lo
r

m
ap

.
w

<
=

−1
is

as
si

gn
ed

to
bl

ac
k,

w
=

0
to

gr
ey

,a
nd

w
>
=

1
is

as
si

gn
ed

to
w

hi
te

co
lo

r
[1

].

26

-0
.1

5
-0

.1
-0

.0
5

0
0.

05
0.

1
0.

15
0

10
00

20
00

number

μ
=-

0.
00

27

*
*

-0
.1

5
-0

.1
-0

.0
5

0
0.

05
0.

1
0.

15
0

10
00

20
00

number

μ
=-

0.
00

24

*
*

(a
)

-0
.6

-0
.4

-0
.2

0
0.

2
0.

4
0.

6
0.

8
0

10
00

20
00

30
00

40
00

number

A
vg

(W
 1

(i,
j))

=
-0

.0
02

6

* -0
.6

-0
.4

-0
.2

0
0.

2
0.

4
0.

6
0.

8
0

20
00

40
00

number

A
vg

(W
 2

(i,
j))

=0
.0

82
6

*
*

(b
)

-0
.5

0
0.

5
1

0

50
00

10
00

0

number

A
vg

(W
 1

(i,
j))

=
0.

00
17

-0
.5

0
0.

5
1

0

50
00

10
00

0

number

A
vg

(W
 2

(i,
j))

=0
.1

57
3

*

(c
)

FI
G

U
R

E
12

:T
he

di
st

ri
bu

ti
on

of
20

0
en

co
di

ng
(W

(1
))

an
d

de
co

di
ng

fil
te

rs
(W

(2
))

w
ei

gh
ts

le
ar

ne
d

fr
om

N
O

R
B

da
ta

se
tu

si
ng

(a
)D

pA
E

(b
)N

C
A

E
(c

)
L 1

/
L 2

-N
C

SA
E

[1
].

27

Likewise in Figure 9a, L1/L2-NCSAE with other AEs are compared in terms

of reconstruction error, while varying the number of hidden nodes. As expected, it

can be observed that L1/L2-NCSAE yields a reasonably lower reconstruction error

on the MNIST training set compared to SAE, DpAE, and NCAE. Although, a close

scrutiny of the result also reveals that the reconstruction error of L1/L2-NCSAE

deteriorates compared to NCAE when the hidden size grows beyond 400. How-

ever on the average, L1/L2-NCSAE reconstructs better than other AEs considered.

It can also be observed that DpAE with 50% dropout has high reconstruction error

when the hidden layer size is relatively small (100 or less). This is because the few

neurons left are unable to capture the dynamics in the data, which subsequently

results in underfitting the data. However, the reconstruction error improves as the

hidden layer size is increased. Lower reconstruction error in the case of L1/L2-

NCSAE and NCAE is an indication that nonnegativity constraint facilitates the

learning of parts of digits that are essential for reconstructing the digits. In ad-

dition, the KL-divergence sparsity measure reveals that L1/L2-NCSAE has more

sparse hidden activations than SAE, DpAE and NCAE for different hidden layer

size as shown in Figure 9b. Again, averaging over all the training examples, L1/L2-

NCSAE yields less activated hidden neurons compared to its counterparts.

Also, using t-distributed stochastic neighbor embedding (t-SNE) to project

the 196-D representation of MNIST handwritten digits to 2D space, the distribu-

tion of features encoded by 196 encoding filters of SAE, DpAE, NCAE, and L1/L2-

NCSAE are respectively visualized in Figures 10a, b, c, and d. A careful look at

Figure 10b reveals that digits "4" and "9" are overlapping in DpAE, and this will

inevitably increase the chance of misclassifying these two digits. It can also be ob-

served in Figure 10c corresponding to NCAE that digit "2" is projected with two

different landmarks. In sum, the manifolds of digits with L1/L2-NCSAE are more

separable than its counterpart as shown in Figure 10d, aiding the classifier to map

28

out the separating boundaries among the digits more easily.

In the second experiment, SAE, NCAE, L1/L2-NCSAE, and DpAE with 200

hidden nodes were trained using the NORB normalized-uniform dataset. The

NORB normalized-uniform dataset, which is the second dataset, contains 24, 300

training images and 24, 300 test images of 50 toys from 5 generic categories: four-

legged animals, human figures, airplanes, trucks, and cars. The training and test-

ing sets consist of 5 instances of each category. Each image consists of two chan-

nels, each of size 96 × 96 pixels. The inner 64 × 64 pixels of one of the channels

cropped out and resized using bicubic interpolation to 32 × 32 pixels that form a

vector with 1024 entries as the input. Randomly selected weights of 90 out of 200

neurons are plotted in Figure 19. It can be seen that L1/L2-NCSAE learned more

sparse features compared to features learned by all the other AEs considered. The

receptive fields learned by L1/L2-NCSAE captured the real actual edges of the

toys while the edges captured by NCAE are fuzzy, and those learned by DpAE

and SAE are holistic. As shown in the weight distribution depicted in Figure 12,

L1/L2-NCSAE has both its encoding and decoding weights centered around zero

with most of its weights positive when compared with those of DpAE and NCAE

that have weights distributed almost even on both sides of the origin.

b. Unsupervised Semantic Feature Learning from Textual Data In this ex-

periment DpAE, NCAE, and L1/L2-NCSAE are evaluated and compared based on

their ability to extract semantic features from text data, and how they are able to

discover the underlined structure in text data. For this purpose, the Reuters-21578

text categorization dataset with 200 features is utilized to train all the three types

of AEs with 20 hidden nodes. A subset of 500 examples belonging to categories

"grain", "crude", and "money-fx" was extracted from the test set. The experiments

were run three times, averaged and recorded. In Figure 13, the 20-dimensional rep-

resentations of the Reuters data subset using DpAE, NCAE, and L1/L2-NCSAE are

29

visualized. It can be observed that L1/L2-NCSAE is able to disentangle the doc-

uments into three distinct categories with more linear manifolds than NCAE. In

addition, L1/L2-NCSAE is able to group documents that are closer in the seman-

tic space into the same categories than DpAE that finds it difficult to group the

documents into any distinct categories with less overlap.

c. Illustration of Understandable Feature Extraction by L1/L2-NCSAE In

vision-related task, basis vectors sensitive to a region in an image and to specific

stimuli are called RFs. Figure 14 illustrates the idea of constrained RF using L1/L2

Nonnegativity Constrained Sparse Autoencoder (L1/L2-NCSAE) [1, 5] trained on

synthetic data that comprises of three images as depicted. L1/L2-NCSAE is a spe-

cialized AE architecture capable of extracting nonnegative features (and nonnega-

tive RFs) as shown. (L1/L2-NCSAE is explained in more detail in Section II). Input

X ∈ R25×3 consists of three 5 × 5 images. The three RFs are rows of weight matrix

W1 ∈ R3×25. For visualization they are resized to match the square input image

(both the inputs and the 25 weights of hidden neurons are presented as images).

Neurons’ outputs are the Activation Scores computed as the dot product of each

RF and the input pattern.

It can be observed from Figure 14 that first RF (1st row of Activation Scores

table) is most sensitive to first T-shaped image and captures features that strongly

react to T-shaped image. Similarly, second RF reacts mostly to the second input

pattern. Likewise the third input pattern stimulates the third RF and maximally

activates it with largest magnitude. It is remarked that using appropriate bias and

softmax layer, first RF helps in classifying first image, second RF for classifying

second one, and lastly, the third RF for third image. This observation is consis-

tent with what is observed at the output of the softmax neurons given as Softmax

scores in Figure 14. The Softmax layer is also known as the classification or output

layer [22, 73, 74]. Softmax scores are computed as Softmax(WC · h + bC), where

30

Softmax(v) maps a vector v into a vector of values according to Softmax(v)i =

exp (vi)/∑c
j=1 exp (vj), WC and bC are respectively the matrix of weights and vector of

bias values for the classification layer, and c is the size of the output vector equal

to the number of classes.

The concept of RFs is not restricted only to visual information but also to

many pattern recognition tasks such as those involving audio and semantic data.

31

FI
G

U
R

E
13

:
V

is
ua

liz
in

g
20

D
re

pr
es

en
ta

ti
on

s
of

a
su

bs
et

of
R

eu
te

rs
D

oc
um

en
ts

da
ta

us
in

g
(a

)
D

pA
E,

(b
)

N
C

A
E,

an
d

(c
)

L 1
/

L 2
-N

C
SA

E
[1

].

32

B. Deep Learning of Understandable Features using Cascaded L1/L2-NCSAE

Deep networks (DNs) based on AEs are created by stacking pretrained AEs

layer by layer, followed by a supervised fine-tuning. They are able to extract salient

features from input data through greedy, unsupervised, layerwise training algo-

rithm. In deep autoencoding, cascade of AEs is trained to detect feature hierar-

chies from training samples to generate latent encodings. Each additional layer of

AE adds an additional abstract representation of the input. Deep AE architectures

invariably result in lower layerwise reconstruction error and a better representa-

tion of the input [75]. One of the key factors that contributes to high performance of

deep network is the appropriate initialization achieved by pretraining each layer.In

deep feature learning, AEs are stacked over one another with the output of each

layer feeding the input of the successive layer. A greedy layer-wise training ap-

proach is adopted to train each successive layer [55]. The activations of the last AE

are then used as the input to the Softmax layer (SMC), a supervised classifier as

shown in Figure15. The parameters obtained after the training yield the transfor-

mation f : Rdx →Rd
h(L) which maps input to new high level feature representation

h(L). Since the activation of the last AE is the input to the Softmax layer, the train-

ing input of the supervised learning (classification) is given as {h(L)(k), y(k)}m
k=1

which is the pair of high level feature representation and its corresponding label.

In the case of nonnegativity-constrained AEs, it must be noted that weights in the

softmax layer are also nonnegativity constrained [1].

Deep autoencoding architectures offer a way to combine many simple trans-

formations into a more complicated one, but they do not enhance understandabil-

ity of data unless the base model, which is stacked, is an understandable one. It is

shown in this section that deep understandable features can be learnt by cascad-

ing L1/L2-NCSAEs followed by a classifier. Each layer of L1/L2-NCSAE is con-

strained to extract additive part-based features with high degree of understand-

33

d

1

2

3

4

25

e

f
Activation Scores

1st row
 of W1

2nd row
 of W1

3rd row
 of W1

1 (bias)

W1

5

6

Weights of three RFs
White = 1
Black = 0

Images
White = 1
Black = 0

Assume three 5x5
 Images are to be
 classified into 3 classes

Softmax Scores

0.03

0.97

0.01

0.94

0.01

0.02

0.03

0.02

0.97

0.60

2.24

0.81

0.92

0.48

0.74

0.18

0.27

2.29

Acti ation Scores

d e f

a

b

c

a

b

c

d

e

f

S ft S

1

a

b

c

2 3

Softmax neuron index

1 2 3

��� 253

X

FIGURE 14: Illustration of constrained (non-negative) RF feature extraction using

a L1/L2-NCSAE trained on synthetic data with 3 images (left). The RFs learned

(right) are rescaled and portrayed as images. The range of weights are scaled to

[-1,1] and mapped to the graycolor map. w = −1 is assigned to black, w = 0 to

grey, and w = 1 is assigned to white color. That is, black pixels indicate negative,

and white pixels indicate positive weights. The dot product of each RF and input

pattern shown as Activation Scores and the outputs of Softmax layer as Softmax

scores. a,b, and c are the indices of input images; d,e, and f are the RFs indices. The

biases are not shown [5].

34

x1

x2

xn−1

xn

bx

Input Layer

Hidden

b
(1)
h

h
(1)
1

h
(k)
1

h
(k)
n′
k

b
(k)
h

h
(1)
n′
1

h
(L)
1

SMC

W (S)

h
(L)
n′L

b
(L)
h

Layer 1
Layer k

Layer L

Hidden
Hidden

Output
Layer

W (1)

W (k)
W (L)

FIGURE 15 – Schematic diagram of a deep AE of L + 1 layers constructed using
Stacked Sparse Autoencoder (SSAE) and Softmax Classifier (SMC).

ability. The input to a particular L1/L2-NCSAE is the encoding of the preceding

L1/L2-NCSAE and the classifier simply combines the encodings of the last L1/L2-

NCSAE additively and in direct proportion to their weights. It must be noted that

the nonnegativity constraint is also imposed on the weights of the classification

layer in order to generate a model that is understandable end-to-end. One of the

most important advantages of L1/L2-NCSAE-based deep network is its ability to

be understandable and still show competitive performance on all the benchmark

datasets considered.

1. Image Classification with Enhanced Interpretability

In this experiment, the subset 1, 2 and 6 from the MNIST handwritten digits

as extracted for the purpose of understanding how the deep network constructed

using L1/L2-NCSAE processes and classifies its input. For easy interpretation, a

small deep network was constructed and trained by stacking two AEs with 10 hid-

den neurons each and 3 softmax neurons. The number of hidden neurons was

chosen to obtain reasonably good classification accuracy while keeping the net-

work reasonably small. The network is intentionally kept small because the full

35

MNIST data would require larger hidden layer size and this may limit network

interpretability. An image of digit 2 is then filtered through the network, and it can

be observed in Figure 16 that sparsification of the weights in all the layers is one

of the aftermath of nonnegativity constraints imposed on the network. Another

observation is that most of the weights in the network have been confined to non-

negative domain, which removes opaqueness of the deep learning process. It can

be seen that the fourth and seventh RFs of the first AE layer have dominant acti-

vations (with activation values 0.12 and 0.13 respectively) and they capture most

information about the test input. Also, they are able to filter distinct part of input

digit. The outputs of the first layer sigmoid constitute higher level features ex-

tracted from test image with emphasis on the fourth and seventh features. Subse-

quently in second layer the second, sixth, eight, and tenth neurons have dominant

activations (with activation values 0.0914, 0.0691, 0.0607, and 0.0606 respectively)

because they have stronger connections with the dominant neurons in first layer

than the rest. Lastly in the softmax layer, the second neuron was 99.62% activated

because it has strongest connections with the dominant neurons in second layer

thereby classifying the test image as "2".

The fostering of interpretability is also demonstrated using a subset of NORB

normalized-uniform dataset [76] with class labels "four-legged animals", "human

figures", "airplanes". The 1024-10-5-3 network configuration was trained on the

subset of the NORB data using two stacked L1/L2-NCSAEs and a Softmax layer.

Figure 17b shows the randomly sampled test patterns and the weights and activa-

tions of first and second AE layer are shown in Figure 17a. The bar charts indicate

the activations of hidden units for the sample input patterns. The features learned

by units in each layer are localized, sparse and allow easy interpretation of isolated

data parts. The features mostly show nonnegative weights making it easier to vi-

sualize to what input object patterns they respond. It can be seen that units in the

36

network discriminate among objects in the images and react differently to input

patterns. Third, sixth, eight, and ninth hidden units of layer 1 capture features that

are common to objects in class "2" and react mainly to them as shown in the first

layer activations. Also, the features captured by the second layer activations reveal

that second and fifth hidden units are mainly stimulated by objects in class "2".

37

Te
st

 s
am

pl
e

(I

m
ag

e)

W
ei

gh
ts

 a
n

d
 b

ia
se

s
of

 h
id

d
en

n

eu
ro

n
s

in
 L

ay
er

 1
,
ea

ch
 im

ag
e

is

fo
rm

ed
 fr

om
 w

ei
gh

ts
 o

f
a

si
n

gl
e

 n
eu

ro
n

1
.
 T

h
e

d
ot

-p
ro

d
u

ct
s

of

th

e
in

p
u

t
an

d

N
eu

ro
n

 w
ei

gh
ts

 i
n

 L

ay
er

 1

2
.
 T

h
e

b
ia

s
is

 a
d
d
ed

,

th
en

 t
h

e
si

gm
oi

d
 is

ap

p
lie

d

3
.
 T

h
e

b
ia

s
is

 a
d
d
ed

,

th
en

 t
h

e
si

gm
oi

d
 is

 a
p
p
li
ed

4
.
 T

h
e

d
ot

-p
ro

d
u

ct

 w
it

h
 c

la
ss

if
ic

at
io

n

 l
ay

er
 w

ei
gh

ts
.
B

ia
se

s

ar
e

ad
d
ed

5
.
 F

in
al

ly
,

th
e

so
ft

m
ax

 n

on
lin

ea
ri

ty
 i
s

ap
p
lie

d

 t
o

ge
t

p
ro

b
ab

ili
ti

es

-5
.8

81

-3
.3

29

-3
.1

69

-2
.9

19

-3
.1

63

-3
.1

73

-3
.0

98

-2
7.

69

-3
.5

67

-3
.3

44

=
0.

07
2

=
0.

04
4

=
0.

02
2

=
0.

12

=
0.

03
6

=
0.

07
3

=
0.

13

=
0.

01
6

=
0.

03
8

=
0.

08
2

-3
.9

17

-4
.1

42

-3
.5

50

-3
.3

81

-3
.6

99

-3
.9

69

-3
.4

10

-3
.9

87

-3
.8

99

-3
.7

93

=
0.

04
25

=
0.

09
14

=
0.

04
68

=
0.

04
39

=
0.

03
93

 =
 0

.0
69

1

=
0.

05
28

=
0.

06
07

=
0.

04
01

=
0.

06
06

=
53

.1
6

=
61

.0
7

=
55

.3
9

0.
00

04
 fo

r
“1

”

0.
99

62
 fo

r
“2

”

0.
00

34
 fo

r
“6

”

W
ei

gh
ts

 a
n

d
 b

ia
se

s
of

 h
id

d
en

n

eu
ro

n
s

in
 L

ay
er

 2
.
E

ac
h

ro

w
 i
s

a

ve
ct

or
 o

f
w

ei
gh

ts
 o

f
a

si
n

gl
e

 n
eu

ro
n

M
at

ri
x

of
 c

la
ss

if
ic

at
io

n
 w

ei
gh

ts

w
h

er
e

ea
ch

 r
ow

 r
ep

re
se

n
ts

 o
n

e
 o

u
tp

u
t

n
eu

ro
n

FI
G

U
R

E
16

:
Fi

lt
er

in
g

th
e

si
gn

al
th

ro
ug

h
th

e
L 1

/
L 2

-N
C

SA
E

tr
ai

ne
d

us
in

g
th

e
re

du
ce

d
M

N
IS

T
da

ta
se

t
w

it
h

cl
as

s
la

be
ls

1,

2
an

d
6.

Th
e

te
st

im
ag

e
is

a
28
×2

8
pi

xe
ls

im
ag

e
un

ro
lle

d
in

to
a

ve
ct

or
of

78
4

va
lu

es
.

Bo
th

th
e

in
pu

t
te

st
sa

m
pl

e
an

d
th

e

re
ce

pt
iv

e
fie

ld
s

of
th

e
fir

st
au

to
en

co
di

ng
la

ye
r

ar
e

pr
es

en
te

d
as

im
ag

es
.

Th
e

w
ei

gh
ts

of
th

e
ou

tp
ut

la
ye

r
ar

e
pl

ot
te

d
as

a

di
ag

ra
m

w
it

h
on

e
ro

w
fo

r
ea

ch
ou

tp
ut

ne
ur

on
an

d
on

e
co

lu
m

n
fo

r
ev

er
y

hi
dd

en
ne

ur
on

in
(L

−
1)

th
la

ye
r.

T
he

ar
ch

it
ec

tu
re

is
78

4-
10

-1
0-

3.
Th

e
ra

ng
e

of
w

ei
gh

ts
ar

e
sc

al
ed

to
[-

1,
1]

an
d

m
ap

pe
d

to
th

e
gr

ay
co

lo
r

m
ap

.
w

=
−1

is
as

si
gn

ed
to

bl
ac

k,

w
=

0
to

gr
ey

,a
nd

w
=

1
is

as
si

gn
ed

to
w

hi
te

co
lo

r.
Th

at
is

,b
la

ck
pi

xe
ls

in
di

ca
te

ne
ga

ti
ve

,g
re

y
pi

xe
ls

in
di

ca
te

ze
ro

-v
al

ue
d

w
ei

gh
ts

an
d

w
hi

te
pi

xe
ls

in
di

ca
te

po
si

ti
ve

w
ei

gh
ts

[1
].

38

The outputs of Softmax layer represent the a posteriori class probabilities for

a given sample and are denoted as Softmax scores. An important observation from

Figure 17a,b, and c is that hidden units in both layers did not capture significant

representative features for class "1" white color-coded test sample. This is one of

the reasons why it is misclassified into class "3" with probability of 0.57. The ar-

gument also goes for class "1" dark-grey color-coded test sample misclassified into

class "3" with probability of 0.60. In contrast, hidden units in both layers capture

significant representative features for class "2" test samples of all color codes. This

is why all class "2" test samples are classified correctly with high probabilities as

shown in Figure 17d. Lastly, the network contains a good number of representa-

tive features for class "3" test samples and was able to classify 4 out of 5 correctly

as given in Figure 17e.

2. Document Categorization with Enhanced Interpretability

In light of constructing an interpretable deep network, an L1/L2-NCSAE

pre-trained deep network with 10 hidden neurons in the first AE layer, 5 hidden

neurons in the second AE, and 10 output neurons (one for each category) in the

softmax layer was constructed. It was trained on Reuters data, and compared

with that pre-trained using DpAE. The interpretation of the encoding layer of the

first AE is provided by listing words associated with 10 strongest weights, and the

interpretation of the encoding layer of the second AE is portrayed as images char-

acterized by both the magnitude and sign of the weights. Compared to the AE

with weights of both signs shown in Figure 18a, Figure 18b allows for much better

insight into the categorization of the topics.

Topic earn in the output weight matrix resonates with the 5th hidden neuron

most, lesser with the 3rd, and somewhat with the 4th. This resonance can happen

only when the 5th hidden neuron reacts to input by words of columns 1 and 4,

39

3

2

1

3 2 1

1 2 3

(a) (b) (e)

Softmax scores

(c)

(d)

0.84 0.16 0.00

0.59 0.40 0.01

0.32 0.08 0.60

0.27 0.16 0.57

0.09 0.91 0.00

0.01 0.99 0.00

0.06 0.94 0.00

0.15 0.85 0.00

0.03 0.97 0.00

0.24 0.14 0.62

0.22 0.13 0.65

0.55 0.25 0.20

0.31 0.18 0.52

0.24 0.13 0.63

W
eig

ht
s o

f 5
 h

id
de

n
un

its
 in

 La
ye

r 2

Weights of 10 hidden units in Layer 1

Ac
tiv

at
io

ns
 of

 L
ay

er
 2

hi
dd

en
 u

ni
ts

Activations of Layer 1 hidden units

Cl
as

s
1 i

m
ag

es

Cl
as

s
2 i

m
ag

es

Cl
as

s
3

im
ag

es

0.87 0.13 0.00

FIGURE 17: The weights were trained using two stacked L1/L2-NCSAEs. RFs

learned from the reduced NORB dataset are plotted as images at the bottom part

of (a). The intensity of each pixel is proportional to the magnitude of the weight

connected to that pixel in the input image with negative value indicating black,

positive values white, and the value 0 corresponding to gray. The biases are not

shown. The activations of first layer hidden units for the NORB objects presented

in (b) are depicted on the bar chart on top of the RFs. The weights of the second

layer AE are plotted as a diagram at the topmost part of (a). Each row of the plot

corresponds to the weight of each hidden unit of second AE and each column for

weight of every hidden unit of the first layer AE. The magnitude of the weight

corresponds to the area of each square; white indicates positive, grey indicates

zero, and black negative sign. The activations of second layer hidden units are

shown as bar chart in the right-hand side of the second layer weight diagram. Each

column shows the activations of each hidden unit for five color-coded examples of

the same object. The outputs of Softmax layer for color-coded test objects with

class labels (c) "fourlegged animals" tagged as class 1, (d) "human figures" as class

2, and (e) "airplanes" as class 3 [1].

40

and in addition, to a lesser degree, when the 3rd hidden neuron reacts to input by

words of the 3rd column of words. So, in tandem, the dominant columns 1, 4 and

then also 3 are sets of words that trigger the category earn.

Analysis of the term words for the topic acq leads to a similar conclusion.

This topic also resonates with the two dominant hidden neurons 5 and 3 and some-

what also with neuron 2. These neurons 5 and 3 are driven again by the columns

of words 1,4, and 3. The difference between the categories is now that to a lesser

degree, the category acq is influenced by the 6th column of words. An interesting

point is in contribution of the 3rd column of words. The column connects only

to the 4th hidden neuron but weights from this neuron in the output layer are

smaller and hence less significant than for any other of the five neurons (or rows)

of the output weight matrix. Hence this column is of least relevance in the topical

categorization.

41

(a
)

(b
)

FI
G

U
R

E
18

:
D

ee
p

ne
tw

or
k

tr
ai

ne
d

on
R

eu
te

rs
-2

15
78

da
ta

us
in

g
(a

)
D

pA
E,

(b
)

L 1
/

L 2
-N

C
SA

E.
T

he
ar

ea
of

ea
ch

sq
ua

re

is
pr

op
or

ti
on

al
to

th
e

w
ei

gh
t’s

m
ag

ni
tu

de
.

Th
e

ra
ng

e
of

w
ei

gh
ts

ar
e

sc
al

ed
to

[-
1,

1]
an

d
m

ap
pe

d
to

th
e

gr
ay

co
lo

r
m

ap
.

w
=

−1
is

as
si

gn
ed

to
bl

ac
k,

w
=

0
to

gr
ey

,a
nd

w
=

1
is

as
si

gn
ed

to
w

hi
te

co
lo

r
[1

].

42

3. Performance Evaluation on Supervised Learning

In this set of experiments, a deep network was constructed using two stacked

L1/L2-NCSAE and a softmax layer for classification to test if the enhanced abil-

ity of the network to shatter data into parts and lead to improved classification.

Eventually, the entire deep network is fine-tuned to improve the accuracy of the

classification. In this set of experiments, the performance of pre-training a deep

network with L1/L2-NCSAE is compared with those pre-trained with recent AE

architectures. The MNIST and NORB data sets were utilized, and every run of

the experiments is repeated ten times and averaged to combat the effect of ran-

dom initialization. The classification accuracy of the deep network pre-trained

with NNSAE [61], DpAE [72], DAE [75], AAE [77], NCAE, and L1/L2-NCSAE

using MNIST and NORB data respectively are detailed in Table 4. The network

architectures are 784-196-20-10 and 1024-200-20-5 for MNIST and NORB dataset

respectively. It is remarked that for training of AAE with two layers of 196 hidden

units in the encoder, decoder, discriminator, and other hyperparameters tuned as

described in [77], the accuracy was 83.67%. The AAE reported in Table 4 used en-

coder, decoder, and discriminator each with two layers of 1000 hidden units and

trained for 1000 epochs. The classification accuracy and speed of convergence are

the figures of merit used to benchmark L1/L2-NCSAE with other AEs.

It is observed from the result that L1/L2-NCSAE-based deep network gives

an improved accuracy before fine-tuning compared to methods such as NNSAE,

NCAE, DpAE, and NCAE. However, the performance in terms of classification ac-

curacy after fine-tuning is very competitive. In fact, it can be inferred from the

p-value of the experiments conducted on MNIST and NORB in Table 4 that there

is no significant difference in the accuracy after fine-tuning between NCAE and

L1/L2-NCSAE even though most of the weights in L1/L2-NCSAE are nonnegativ-

ity constrained. Therefore it is remarked that even though the interpretability of

43

TABLE 1: Classification accuracy on MNIST and NORB dataset [1]

Before fine-tuning After fine-tuning

Dataset Mean (± SD) p-value Mean (± SD) p-value # Epochs

MNIST

SAE 0.735 ± 0.015 <0.001 0.977 ± 0.0007 <0.001 400

NCAE 0.844 (±0.0085) 0.0018 0.974 (±0.0012) 0.812 126

NNSAE 0.702 (±0.027) <0.0001 0.970 (±0.001) <0.0001 400

L1/L2-NCSAE 0.847 (±0.0077) - 0.974 (±0.0087) - 84

DAE (50% input dropout) 0.551 (±0.011) <0.0001 0.972 (±0.0021) 0.034 400

DpAE (50% hidden dropout) 0.172 (±0.0021) <0.0001 0.964 (±0.0017) <0.0001 400

AAE - - 0.912 (±0.0016) <0.0001 1000

NORB

SAE 0.562 ± 0.0245 <0.0001 0.814 ± 0.0099 0.041 400

NCAE 0.696 (±0.021) 0.406 0.817 (±0.0095) 0.001 305

NNSAE 0.208 (±0.025) <0.0001 0.738 (± 0.012) <0.001 400

L1/L2-NCSAE 0.695 (±0.0084) - 0.812 (±0.0001) - 196

DAE (50% input dropout) 0.461 (±0.0019) <0.0001 0.807 (±0.0015) 0.0103 400

DpAE (50% hidden dropout) 0.491 (±0.0013) <0.0001 0.815 (±0.0038) <0.0001 400

AAE - - 0.791 (±0.041) <0.0001 1000

the deep network has been fostered by constraining most of the weights to be non-

negative and sparse, nothing significant has been lost in terms of accuracy. In ad-

dition, network trained with L1/L2-NCSAE was also observed to converge faster

than its counterparts. On the other hand, NNSAE also has nonnegative weights

but with deterioration in accuracy, which is more conspicuous especially before

the fine-tuning stage. The improved accuracy before fine-tuning in L1/L2-NCSAE

based network can be traced to its ability to decompose data more into distin-

guishable parts. Although the performance of L1/L2-NCSAE after fine-tuning is

similar to those of DAE and NCAE but better than NNSAE, DpAE, and AAE,

L1/L2-NCSAE constrains most of the weights to be nonnegative and sparse to

foster transparency than for other AEs. However, DpAE and NCAE performed

44

slightly more accurate than L1/L2-NCSAE on NORB after network fine-tuning.

C. Conclusion

This chapter addresses the concept and properties of special regularization

of DL AE that takes advantage of non-negative encodings and at the same time of

special regularization. It has been shown that by using both L1 and L2 to penalize

the negative weights, most of them are forced to be nonnegative and sparse, and

hence the network interpretability is enhanced. In fact, it is also observed that most

of the weights in the Softmax layer become nonnegative and sparse. In sum, it has

been observed that encouraging nonnegativity in NCAE-based deep architecture

forces the layers to learn part-based representation of their input and leads to a

comparable classification accuracy before fine-tuning the entire deep network and

not-so-significant accuracy deterioration after fine-tuning. It has also been shown

on select examples that concurrent L1 and L2 regularization improve the network

interpretability. The performance of the proposed method was compared in terms

of sparsity, reconstruction error, and classification accuracy with the conventional

SAE and NCAE, and we utilized MNIST handwritten digits, Reuters documents,

and the NORB dataset to illustrate the proposed concepts.

45

CHAPTER III

UNSUPERVISED NONREDUNDANT FEATURE EXTRACTION

Feature extraction through constrained learning of RFs offers special promise

and has recently become one of the important tenets of DL [78]. In deep autoen-

coding, AE performs unsupervised learning to detect feature hierarchies which

shatter the data and generate features. In this process each added AE layer adds

one more abstract representation of inputs, in effect producing a cascade of encod-

ings. Further, the architectural complexity and the excessive number of weights

and units are often built in into the DL data representation by design and are de-

liberate [79], [78], [80], [81].

Observations from previous studies indicate that over-sized DL architec-

tures typically result in largely over-determined (or over-complete) systems [82,

83]. Unless special ad-hoc precautions are implemented to achieve acceptable ac-

curacy such as de-noising, contraction of layers, and elimination of initially as-

sumed and inherent redundancies, the generalization abilities of DL resulting meth-

ods suffer [82]. The resulting architectures may therefore not be the most compu-

tationally efficient due to their size, computational complexity, and due to their

over-representation of data. Such suboptimal architectures sometime may learn

local, or isolated features, especially with shallower architectures which have a

limited capacity to combine inputs/features.

To address the over-representation of data mapping into the DL multilayer

architectures, layers can be trained under specific and well-defined sets of con-

straints that remove a number of training limitations. The subsequent subsections

discuss the purpose and specific techniques of defining the constraints. The con-

46

straints criteria refer to the RFs (or simply filters) originally introduced in [71].

A. Filtering Redundancy Elimination in Autoencoder-based Deep Networks

In general, as a result of learning for minimum error of reconstruction or

classification, the RFs manifest themselves as quasi basis functions that are usually

sparse and of the same dimensionality as the input layer (or, in general, of dimen-

sionality of the preceding processing layer). It will be shown that a large number

of filters are similar or even duplicative, thus creating unnecessary amount of fil-

tering redundancy. The same features are therefore extracted multiple times [84].

In this section, the aim is to reduce the number of redundant RFs first in the offline

setting, and in order to fully leverage on the proposed heuristic, their clustering is

automated with the goal of reaching a predetermined number of filter clusters. It is

remarked that the proposed approach requires final retraining of the AE to lower

its reconstruction error. Further, we focus on filters that sort classes of images.

The most closely related approach to the described is the dropout technique

- one of the recently introduced heuristics to sparsify the AEs to prevent overfit-

ting. The key idea is to randomly drop units and their connections from the neural

network during training [58]. Other related work is the k-sparse AE [85–87], which

aims at reducing the number of filters by sorting the hidden units’ activations and

retaining k largest units, while setting the rest to zero. The algorithm that will dis-

cussed in this section, on the other hand, aims at detecting the number of filter

clusters according to the differentiation of filters based on their distances and the

reconstruction error value. Hence, the proposed method leads to comparable re-

construction error with a reduced number of filters.

The proposed method is also applicable to AEs that extract non-negative

latent features discussed in Chapters 1 and 2. In addition to using conventional

AE, this concept will also be demonstrated using two AE architectures with non-

47

negative weights that produce additive decompositions layer-wise [1, 51, 61]. The

novel way of obtaining a near-optimal number of filters for sparse representation

of data will also be discussed.

1. Filter Clustering and Reduction

Training of SAEs indicate that resulting RFs are duplicative thus leading to

a number of redundant RFs with the same feature to be extracted by two or more

filters. In this section, two heuristics that aim at agglomerative static and dynamic

clustering of filters as well as reduction of the hidden layer size are discussed.

These criteria need to enforce:

1. Static reduction of the number of redundant filters while preserving and/or

enhancing their sparsity. This reduction is analyzed and performed initially

in the offline mode and for the filters that have been pre-trained. The essence

of the pre-training is to avail the filters enough iterations.

2. Dynamic reduction and reconciliation of filters that is undertaken concur-

rently with their unsupervised learning. Such clustering of filters aims at

automatically choosing a good similarity threshold for RFs for a given AE

architecture and detecting the number of distinct filter clusters.

The above two criteria aim at producing a reduced set of filters. The term reduc-

tion refers here to computing their smallest number according to a specific chosen

measure.

a. Static Reduction of the Number of Redundant Filters The objective in this

section is removal of identical or very similar filters for the purpose of eliminating

duplicative retrieval of features. Suitable similarity measures are needed to express

the intra-filter distances between vectors Vs that define the filters. Assuming (Vs,

bs), s=1,...n’, are weight vectors and biases, each Vs corresponds to the s-th row of

48

the weight matrix W(1) as in Fig. 2

Vs = W
(1)
s s = 1, ...n′ (20)

Algorithm 1: Offline Feature Extraction (OFE)

1 function OFE (data, Autoencoder)

2 Input : data, Autoencoder

3 initialize: {n′
0, pretrain_iter, max_iter}

4 initialize W and b: W(init), b(init)

5 set: τ

6 W, b = TRAIN_AE
(

data, n′
0, W(init), b(init), pretrain_iter

)
7 L = COMPUTE_LOSS

(
data, W, b

)
8 n′

new, W(agglo), b(agglo) = AGGLOMCLUSTERING
(
W, b, τ

)
9 W(new), b(new) = Finetune_AE

(
data, n′

new, W(agglo), b(agglo), max_iter
)

10 function AgglomClustering (W, b, τ);

11 Input : {W, b, τ}

12 Output : Distinct filters and their biases � n′
new, W(new), b(new)

The set of n′ vectors Vs exhibits mutual distances as follows:

dsr = ||Vs − Vr|| s, r = 1, ...n′; s �= r (21)

A number of similarity testing/clustering algorithms can be applied for elimina-

tion (and possibly merger) of originally developed redundant filters. Based on a

comparative review, a clustering approach from [88, 89] has been adapted and re-

formulated for this purpose as shown in Algorithm 1.

Starting with each original filter as a potential cluster, agglomerative clus-

tering is performed by merging the two most similar clusters Ci and Cj as long as

the average similarity between their constituent filters is above a chosen cluster

49

similarity threshold denoted as τ [90, 91]. The similarity threshold is an hyperpa-

rameter that has to be set in order to achieve optimal performance. The set of n′

vectors Vs exhibits mutual similarities as follows:

similarity(Ci, Cj) =
∑Vs∈Ci,Vr∈Cj

NGC(Vs, Vr)

|Ci| × |Cj| > τ

i, j = 1, ...n′
new; s = 1, ...|Ci|, r = 1, ...|Cj| and s �= r

(22)

where the similarity between two filters is measured by Normalized Greyscale

Correlation (NGC):

NGC(Vs, Vr) =
∑n

k=1(pk − p̄k)(qk − q̄k)√
∑n

k=1(pk − p̄k)2 ∑n
k=1(qk − q̄k)2 (23)

where pk ∈ Vs and qk ∈ Vr; p̄k = ∑n
k=1 pk/n and q̄k = ∑n

k=1 qk/n and n is the size

of the filter vector Vs.

This clustering scheme guarantees that similar filters are grouped, and that the

clusters stay compact [90]. That is, the constituent filters in each cluster stay as

close as possible to one another or simply put, the intra-cluster distances are as

small as possible.

b. Dynamic Reduction and Reconciliation of Filters The objective here is to

discover c clusters in the set of n′ original filters, where c < n′. Further evalua-

tion is performed on how to replace filters that are within a single cluster with this

cluster prototype or centroid’s representation. The algorithm has been designed to

heuristically set τ to develop novel representation that expresses aggregated prop-

erties of input data across the training set. The Algorithm 2 also tries to reduce

the number of hidden units based on clustering of the input weights. It trains an

AE with initial number of hidden units for pretrain_iter epochs, which must be

chosen large enough to enable formation of duplicative filters. Number of hidden

units is initialized as large as practical and τ is also initialized to a small value

in order to fully activate the filter reduction heuristic. The reconstruction error is

evaluated using the weights and biases obtained from the pre-training stage. The

50

(a)

(b)

(c)

(d)

FIGURE 19: Filters learned from NORB data set using SAE with (a) 100 original

filters (b) 14 examples of very similar filters with their corresponding indices at the

bottom (c) 32 filters resulting from agglo-SAE with τ=16, and (d) 32 original filters.

Black pixels indicate negative, and white pixels indicate positive weights [2].

51

weight vectors are then clustered and filters with similarity above the threshold τ

are collapsed.

The resulting filters are fine-tuned for scan_iter epochs such that reconstruc-

tion error in (4) does not increase in comparison with the reconstruction error com-

puted using previous τ. If the reconstruction error reduces, τ value is incremented

by Δτ and the process is repeated. As mentioned above, the filter reduction be-

comes less active as τ increases, which in turn implies that reconstruction error

should decrease due to increasing number of hidden units. At certain τ value and

beyond, reconstruction error stops reducing which might be as a result of duplica-

tive filters formation. Once no significant decrease in the reconstruction error asso-

ciated with previous and current τ values is observed or the error starts to increase,

Algorithm 2 stops and outputs the optimal number of filters and the resulting τ.

The filters are then fine-tuned for max_iter epoch to ensure good reconstruction. It

is worth mentioning that Algorithms 1 and 2 are alternative approaches and can

be used independently. Also note that Algorithm 2 is an extended version of Al-

gorithm 1 where acceptable RF cluster similarity threshold is set automatically to

eliminate most redundant RFs, whereas in Algorithm 1 the hyperparameter τ is se-

lected using trial and error. In this chapter, SAE, NCAE, and L1/L2-NCAE denote

training using the approach in Algorithms 1 and 2 as agglo-SAE, agglo-NCAE and

agglo-L1/L2-NCAE, respectively.

B. Experimental Setup

This section discusses the performance of the proposed method in redun-

dant filter reduction and reported for three benchmark image data sets: MNIST,

NORB normalized-uniform dataset and the Yale face dataset. The input to the first

layer of the AE is the vector of pixel intensities. The training parameters in Ta-

ble 2 have been found experimentally for hyperparameter tuning of each of the

52

algorithm with various parameters that best minimize the cost function. In Algo-

rithm 1, pretrain_iter and max_iter were both experimentally set to 200. Both AEs

with RF clustering and those without clustering have very similar training time.

Although clustering overhead is introduced by the proposed algorithm.

It is worth mentioning that the computational complexity of the proposed

algorithm does not grow with increasing number of data points. Also, the method

proposed does not require a fully trained network but a network partially trained

for few epochs (pretrain_iter). For instance, SAE and agglo-SAE were both trained

for 400 epochs. In the case of agglo-SAE, the network was first pre-trained for 200

epochs, then clustering was performed, followed by fine-tuning for another 200

epochs. It must be noted that the last 200 epoch is faster in agglo-network than its

counterpart. This compensates for the clustering overhead. In Algorithm 2, hy-

perparameters pretrain_iter, scan_iter, and max_iter were set to 200, 50, and 150

respectively. It is remarked that this choice of iteration parameters should ensure

that both traditional AEs and agglo-based ones were trained with similar training

time. Also in experiments using Algorithm 2, Δτ was set to 0.5 and τ initialized to

1.

All experiments were performed on Intel(r) Core(TM) i7-6700 CPU @ 3.40Ghz

and a 64GB of RAM running a 64-bit Windows 10 Enterprise edition. The software

implementation has been with MATLAB 2015b, and LBFGS in minFunc [92] is

used to minimize the objective function. The usage time in seconds is the time

elapsed in seconds a fully trained deep network (DN) requires to classify all the

test samples.

53

Algorithm 2: Automatic Feature Extraction (AFE)

1 function AFE (data, Autoencoder)

2 Input : data, Autoencoder

3 initialize: n′
0, pretrain_iter, scan_iter, max_iter

4 initialize: W(init), b(init), k, τ,Δτ

5 W, b = TRAIN_AE
(

data, n′
0, W(init), b(init), pretrain_iter

)
6 L = COMPUTE_LOSS

(
data, W, b

)
7 while L(iter+1) < L(iter) do

{

8 n′
(iter+1), W(agglo), b(agglo) = AGGLOMCLUSTERING

(
W, b, τ

)
9 W(iter+1), b(iter+1) = TRAIN_AE

(
data, n′

(iter+1), W(agglo), b(agglo),

scan_iter
)

10 L(iter+1) = COMPUTE_LOSS
(
data, W(iter+1), b(iter+1))

11 if L(iter+1) ≥ L(iter):

12 return n′
(iter)

13 τ ←− τ+ Δτ

}

14 W, b = TRAIN_AE
(
data, n′

(iter), W(iter), b(iter), max_iter
)

TABLE 2

Parameter settings [2]

Parameters SAE NCAE L1/L2-NCAE

Sparsity penalty (β) 3 3 3

Sparsity parameter (p) 0.05 0.05 0.05

Weight decay penalty (α) 3e-3 - -

Nonnegativity constraint penalty (α1) - - 1e-4

Nonnegativity constraint penalty (α2) - 3e-3 3e-3

Maximum No. of Iterations 400 400 400

54

(a) (b)

FIGURE 20: Performance of AE on the NORB dataset. (a) Reconstruction error vs.

cluster similarity threshold. (b) Number of RFs vs. cluster similarity threshold for

196 initial filters [2].

0 20 40 60 80 100 120 140 160 180 2003

4

5

6

7

8

9

10

11

Number of filters

JAE

agglo−SAE
SAE
agglo−NCAE
NCAE
agglo−L1/L2−NCAE
L1/L2−NCAE

142 144
4.95

5
5.05

198 199
3.2
3.4
3.6
3.8

FIGURE 21: Reconstruction error using SAE, NCAE, and L1/L2-NCAE trained

with the same number of hidden units from experiment with agglo-SAE, agglo-

NCAE, and agglo-L1/L2-NCAE on NORB data [2].

55

FIGURE 22: 100 receptive fields learned from Yale Face Dataset using SAE with

examples of two duplicative RFs [2].

FIGURE 23: 100 receptive fields learned from Yale Face Dataset using NCAE with

examples of duplicative RFs [2].

56

FIGURE 24: 100 receptive fields learned using L1/L2-NCAE from Yale Face

Dataset, with examples of duplicative RFs [2].

(a)

(b)

FIGURE 25: Filters learned from MNIST data set using SAE (a) 200 RFs with ex-

amples of duplicative filters, (b) 125 RFs for agglo-SAE with τ=0.6 [2]

57

(a) (b)

FIGURE 26: Performance of AE on the MNIST dataset vs. cluster similarity thresh-

old (a) Reconstruction error (b) RF size (n′
new) using 200 initial filters [2].

0 20 40 60 80 100 120 140 160 180 2000

2

4

6

8

10

12

14

16

18

Number of filters

JAE

agglo−SAE
SAE
agglo−NCAE
NCAE
agglo−L1/L2−NCAE
L1/L2−NCAE

190 192

7.35
7.4

195 200
1.6

1.8

FIGURE 27: Reconstruction error using SAE, NCAE, and L1/L2-NCAE trained

with the same number of hidden units from experiment with agglo-SAE, agglo-

NCAE, and agglo-L1/L2-NCAE on MNIST data [2].

58

0 20 40 60 80 100 120 140 160 180 2000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of filters

DKL

agglo−SAE
SAE
agglo−NCAE
NCAE
agglo−L1/L2−NCAE
L1/L2−NCAE

190 192 194
0.104
0.106
0.108

199 200
0.015

0.02

FIGURE 28: KL-Divergence sparsity measure with respect to a desired p = 0.05 us-

ing SAE, NCAE, and L1/L2-NCAE trained with the same number of hidden units

(n′
new) from experiment with agglo-SAE, agglo-NCAE, and agglo-L1/L2-NCAE on

MNIST data [2].

59

FI
G

U
R

E
29

:
t-

SN
E

pr
oj

ec
ti

on
[6

]o
f2

00
D

re
pr

es
en

ta
ti

on
s

of
M

N
IS

T
ha

nd
w

ri
tt

en
di

gi
ts

us
in

g
(a

)S
A

E
(b

)
N

C
A

E
(c

)
L 1

/
L 2

-

N
C

A
E,

(d
)1

74
D

re
pr

es
en

ta
ti

on
s

us
in

g
ag

gl
o-

SA
E

(e
)1

53
D

re
pr

es
en

ta
ti

on
s

us
in

g
ag

gl
o-

N
C

A
E,

an
d

(f
)1

72
D

re
pr

es
en

ta
ti

on
s

us
in

g
ag

gl
o-

L 1
/

L 2
-N

C
A

E
[2

].

60

a. Unsupervised Feature Reduction via Filter Pruning In the first set of ex-

periments, conventional SAE with 100 hidden units is trained using the NORB

normalized-uniform dataset. To foster the claim that filter duplication is proba-

ble, the indexed RFs learned from NORB data are shown in Figure 19a. Figure 19b

shows select RFs from Figure 19a. The visual inspection indicates that a good num-

ber of these filters are very similar. In order to eliminate the redundancy of RFs in

Figure 19a, SAE is retrained with the Algorithm 1. Figure 19c shows the 32 RFs

learned using agglo-SAE with similarity threshold τ = 0.73. A quick inspection

reveals that most duplicative filters in Figure 19a have been grouped in Figure 19c.

In order to compare filter duplication and the consequent filtering redundancy

with and without the agglomerative clustering approach, conventional SAE was

trained with the same number of 32 hidden units. As shown in Figure 19d, a num-

ber of RFs resulting from SAE training with 32 hidden units can still be observed

even though the network was trained with the same number of hidden units as

produced by agglo-SAE heuristic.

Similarly, Nonnegativity Constrained Autoencoder (NCAE) [51] and L1/L2-

NCAE [1] with 200 hidden units each were trained using the NORB data. As ob-

served in Figure 20a, both agglo-NCAE and agglo-L1/L2-NCAE achieve better re-

construction accuracy than agglo-SAE. It can also be observed in Figure 20b that

more distinct filters are produced as τ is varied in agglo-NCAE and agglo-L1/L2-

NCAE than in agglo-SAE. This indicates that imposing nonnegativity constraint on

the network’s weights helps in learning an elevated number of distinct features,

while also improving the reconstruction. Again, SAE, NCAE, and L1/L2-NCAE

were trained with the same number of hidden units that resulted from the exper-

iment in Figure 20b. The error curves shown in Figure 21 reveal that networks

trained with agglo-SAE, agglo-NCAE and agglo-L1/L2-NCAE also yield a lower

reconstruction error in comparison with those trained without agglomerative-clustering-

61

based approach. Figure 21 is averaged over ten experiments to show the statisti-

cal significance of improved reconstruction capability of agglo-AEs over the tradi-

tional AEs considered (SAE, NCAE and L1/L2-NCAE).

The second set of experiments is to show redundant feature extraction us-

ing AEs trained on Yale Face Dataset [93]. The database contains 11 images of

15 individuals, one per different facial expression or configuration: center-light,

w/glasses, happy, left-light, w/no glasses, normal, right-light, sad, sleepy, sur-

prised, and wink. The original size of each image is 320×243 with 256 gray levels

per pixel. Each image is resized to 32×32 to reduce the computational time and

normalize between 0 and 1 [94]. SAE, NCAE and L1/L2-NCAE each with 100 hid-

den units were trained on this dataset and the RFs learned are shown in Figures 22,

23 and 24, respectively. It was observed that some of the filters are very similar

and will thereby extract similar features. Again, it is observed that both types

of nonnegativity-constrained AEs also learned duplicative filters that produce re-

dundant filtering. This experiment shows that the tendency to learn redundant

features is not specific to conventional SAE only but to a variety AE architectures.

In the third experiment, SAE, NCAE and L1/L2-NCAE were trained using

the MNIST digits dataset. A careful look at the 200 RFs of trained SAE in Figure 25a

shows that many of the filters are duplicative and redundant, and thereby result-

ing in redundant over-representation of data and increased computational com-

plexity. By visual inspection it can be observed that a good number of filters can

be considered as redundant and eliminated with no significant loss of reconstruc-

tion accuracy. By deploying Algorithm 1, 75 redundant filters were eliminated and

the resulting distinct agglomerative filters are shown in Figure 25b. In the case of

agglo-SAE, it was observed that the reconstruction error does not decrease signif-

icantly beyond the similarity threshold of 0.7 in Figure 26a, which corresponds to

approximately 172 filters in Figure 26b. No significant reduction in the reconstruc-

62

tion error was observed for agglo-NCAE and agglo-L1/L2-NCAE for values of τ

greater than 0.5 corresponding to 194 and 166 distinct filters, respectively. It is re-

marked that decreasing τ will decrease the number of RFs and hence increase the

error. By implication, increasing τ will lead to the increase of duplicative RFs. The

two bottom curves on Figure 26a also indicate that nonnegativity constraints yield

better reconstruction quality on this data set. It is again shown in Figure 26b that

imposition of nonnegativity constraints on the network’s weights results in net-

works with larger n′
new for a large range of similarity τ compared to SAE.

Similarly, SAE, NCAE, and L1/L2-NCAE were trained with the same n′
new

that resulted from the experiment in Figure 26b using the MNIST handwritten

digits data. It can be observed in Figure 27 that the proposed agglomerative-based

heuristic improves the reconstruction accuracy for all three AEs. Also, the sparsity

has increased in agglo-NCAE and agglo-L1/L2-NCAE, respectively, compared to

their counterparts NCAE and L1/L2-NCAE as shown in Figure 28.

However, no obvious sparsity improvement was noticed in the case of agglo-

SAE. The proposed heuristic has been also evaluated based on the distribution of

data in high level feature space. In this regard, t-distributed stochastic neighbor

embedding (t-SNE) was used to project the high-level representations (that is, the

hidden activations) of SAE, NCAE, L1/L2-NCAE, agglo-SAE, agglo-NCAE, and

agglo-L1/L2-NCAE to 2D space [6]. The 2D projections of high-level (200D) repre-

sentations of MNIST handwritten digits test set corresponding to hidden activities

of SAE, NCAE, and L1/L2-NCAE are respectively visualized in Figures 29a,b, and

c. For the purpose of comparison, 174, 153, and 172D representations of MNIST

handwritten digits for agglo-SAE, agglo-NCAE, and agglo-L1/L2-NCAE are re-

spectively depicted in Figures 29d,e, and f.

The t-SNE projections in Figure 29 no visible/obvious deterioration in the

manifolds of the 174D representations of agglo-SAE compared to 200-D represen-

63

tations of SAE. This is an indication that more than 25 hidden activations are re-

dundant and eliminating them does not deteriorate the manifold shown in Fig-

ure 29a and d. Similarly as shown in Figure 29b and e, approximatively 50 hidden

activations can be eliminated without overlapping the manifolds that enclose the

200-D representations of MNIST digits using NCAE. In a similar manner, elimina-

tion of more than 25 duplicative hidden activities has not adversely affected the

manifolds of the digits’ projections as shown in Figure 29f of agglo-L1/L2-NCAE

in comparison with Figure 29c of L1/L2-NCAE.

b. Effect of Redundant Feature Pruning on Supervised Learning In the last

set of experiments, a DN was tested using two stacked AEs and a softmax classifi-

cation output to evaluate the effect of filter reduction on classification. The network

was fine tuned by backpropagation algorithm to improve the classification accu-

racy. MNIST dataset was utilized for the first set of experiments, and it is noted

that the filter reduction algorithm is only implemented on the first layer of the DN

for experiments reported in Table 3. However, as will be shown below, this con-

cept can also be applied to all layers of the deep architectures. For convenience

of presentation on Tables 3-8, Λb and Λa are respectively defined in (24) and (25);

n′
1,new and n′

2,new are the number of agglomerative filters in the first and second

layer, respectively.

The classification accuracy and testing time are reported in Table 3 for the

three benchmark AEs. Reported are averaged results of 10 independent trials and

related mean values and standard deviation (SD) of 6 simulation series. It can be

observed from the results that removing redundant filters in agglo-SAE-pretrained

network does not deteriorate the classification performance of the DN. τ = 0.7 was

chosen based on the result in Fig. 26a, which shows that the reconstruction error

does not significantly decrease beyond τ = 0.7. This indicates that no matter how

many filters are added beyond n′
new corresponding to τ = 0.7, the performance

64

TABLE 3

Classification performance on MNIST dataset using initial network configuration
784-200-20-10 [2].

Architecture Mean (±SD) p-valueUsage time (±SD) (ms)

SAE (n′
1=200)

Λb 0.860 (±0.007) 0.1517 59.9 (±3.51)

Λa 0.977 (±0.0011) 0.8268 60.6 (±2.51)

agglo-SAE (τ=0.7)

n′
1,new 174 (±2) - -

Λb 0.855 (±0.005) - 59.2 (±1.93)

Λa 0.978 (±5.8e-4) - 54.0 (±2.09)

NCAE (n′
1=200)

Λb 0.849 (±0.008) 0.028 59.2 (±2.14)

Λa 0.975 (±8.94e-4) 0.0645 55 (±2.27)

agglo-NCAE (τ=0.35)

n′
1,new 153 (±3) - -

Λb 0.852 (±0.0061) - 50.9 (±2.44)

Λa 0.974 (±0.0016) - 48.6 (±1.29)

L1/L2-NCAE (n′
1 = 200)

Λb 0.845 (±0.205) 0.108 62.1 (±4.13)

Λa 0.974 (±0.0014) 0.7374 56.3 (±1.90)

agglo-L1/L2-NCAE (τ=0.5)

n′
1,new 172 (±3) - -

Λb 0.842 (±0.0067) - 58.2 (±1.84)

Λa 0.974 (±8.9e-4) - 53.1 (±1.12)

65

Λb =
Number of correctly classified test cases before supervised fine-tuning

Total number of test cases
(24)

Λa =
Number of correctly classified test cases after supervised fine-tuning

Total number of test cases
(25)

where Λb is commonly referred to as accuracy before fine-tuning and Λa as accu-

racy after fine-tuning.

of the DN is not likely to improve. One of the direct aftermaths of filter reduc-

tion is the drastic reduction in training time and the usage time. It is apparent

from the results that more than 6ms have been saved on the usage time, which is

significant when dealing with very large datasets encountered in real world sce-

narios. However, for agglo-NCAE-pretrained DN, a slight improvement of ≈ 1%

in classification accuracy was observed before fine-tuning and this can be due to

the features extracted in agglo-NCAE that are more sparse than those obtained us-

ing conventional NCAE. As can be inferred from the p-values, there is a significant

difference in the performance before fine-tuning and no significant improvement

observed after fine-tuning. Again τ=0.35 for NCAE was chosen in connection with

Fig. 26a.

The observations from experiments with DN pretrained using agglo-L1/L2-

NCAE also reveal that usage time is reduced and no significant difference was

noticed in the accuracy before and after finetuning compared to the L1/L2-NCAE-

pretrained network. It is worthy of note that the hidden size of the second layer

used in the first set of experiments was chosen to be 20 for computational reasons

and negligible reduction of RFs number was noticed for most of τ values consid-

ered. However, the size of the hidden layers of all the AEs were chosen to be as

66

TABLE 4

Classification performance on MNIST dataset using initial network configuration
784-1000-20-10 [2].

Architecture Mean (±SD) p-valueUsage time (±SD) (ms)

SAE (n′
1=1000, n′

2=20)

Λb 0.8063 (±0.0124) 0.0004 281.8 (±25.0)

Λa 0.9782 (± 0.000704) 0.0030 257.1 (± 34.2)

agglo-SAE (τ=0.7)

n′
1,new 889 (±6) - -

n′
2,new 17 (±1) - -

Λb 0.8514 (±0.0106) - 147.9 (±2.5)

Λa 0.9819 (±9.2e-4) - 146.7 (± 0.35)

DpAE (20% dropout)

Λb 0.7314 (± 0.0363) 0.0017 209.7 (± 30.9)

Λa 0.9585 (±0.0107) 0.0090 203.4 (± 38.5)

67

large as the hidden layer size of the first AE in subsequent experiments and near-

optimal number of RFs were obtained using the proposed heuristic.

In the next large-scale experiment reported in Tables 4-7, the effect of remov-

ing redundant filters on network performance is demonstrated using the MNIST

dataset. Every run of the experiments is repeated five times and averaged for

statistical significance. The classification performance of the DN pre-trained with

DpAE [72] was used as a benchmark. In Table 4, the number of hidden units in the

first and second layers were set to 1000 and 20 respectively. It can be observed from

the results that more than 100 redundant filters have been removed in the first layer

and 2 in second layer. An improved classification accuracy in agglo-SAE was also

observed after eliminating the redundancy compared to SAE and DpAE counter-

parts. In addition, the usage times of SAE and DpAE-trained networks have been

respectively reduced more than 40% and 28% in agglo-SAE. Similar trends were

observed in the classification accuracy after fine-tuning when the number of hid-

den units of the first and second layer were respectively set to 1000 and 200 as

detailed in Table 5.

In an attempt to investigate the effect of the proposed algorithm on over-

fitting, the number of hidden units of the first and second layer were increased to

500 and 500, respectively as in Table 6 and 1000-1000 as in Table 7. One of the key

observations in Tables 6-7 is that as the AE’s hidden layer size grows, the perfor-

mance of SAE deteriorates. It was also observed that the use of dropout did not

help in improving the performance. It is remarked that during the experiments,

20%, 30%, and 50% dropout fractions were tested and the one with the best out-

put performance was reported. However, in these experiments, agglo-SAE out-

performs both SAE and DpAE before and after fine-tuning. The performance of

agglo-SAE could be traced to its ability to eliminate filtering redundancy and it is

worth mentioning that such elimination might help in reducing overfitting. Table 8

68

TABLE 5

Classification performance on MNIST dataset using initial network configuration
784-1000-200-10 [2].

Architecture Mean (±SD) p-valueUsage time (±SD) (ms)

SAE (n′
1=1000, n′

2=200)

Λb 0.9604 (± 0.0014) 0.0151 324.1(±39)

Λa 0.9667 (±0.0015) 0.0172 290.2(±16)

agglo-SAE (τ=0.7)

n′
1,new 874 (±13) - -

n′
2,new 95(±2) - -

Λb 0.9422 (± 0.0039) - 162.3 (±43)

Λa 0.9826 (±3.9e-4) - 165.0 (±35.6)

DpAE (20% dropout)

Λb 0.9612 (± 0.0024) 0.3743 193.4 (±37.8)

Λa 0.9768 (± 0.0013) 0.3738 209.2 (± 41.4)

69

TABLE 6

Classification performance on MNIST dataset using initial network configuration
784-500-500-10 [2].

Architecture Mean (±SD) p-valueUsage time (±SD) (ms)

SAE (n′
1=500, n′

2=500)

Λb 0.9595 (±0.0012) <0.0001 240.6 (±10)

Λa 0.9642 (± 0.0012) 0.0025 223.6 (±16)

agglo-SAE (τ=0.7)

n′
1,new 483 (±3) - -

n′
2,new 392 (±3) - -

Λb 0.9708 (± 0.0013) - 220.8 (±9.8)

Λa 0.9785 (± 0.0046) - 211.8 (± 20)

DpAE (20% dropout)

Λb 0.9640 (±0.0074) 0.1777 253.7 (± 12.2)

Λa 0.9704 (± 0.0112) 0.1777 227.1 (±19.8)

reports the classification results on the small NORB data set and demonstrates that

the network with agglo-SAE outperforms the two other networks before and af-

ter fine-tuning. It can be noticed that more than 50% of the filters in first layer and

75% in the second layer were redundant and removed with improved classification

performance. Lastly, it was also observed that the results obtained in most of the

experiments using Algorithm 2 are close to the results obtained using Algorithm 1.

The conclusion drawn from this observation is that Algorithm 2 implements faster

search of hyperparameter τ, hence it is more practical in the training phase.

70

TABLE 7

Classification performance on MNIST dataset using initial network configuration
784-1000-1000-10 [2].

Architecture Mean (±SD) p-valueUsage time (±SD) (ms)

SAE (n′
1=1000, n′

2=1000)

Λb 0.9647 (± 0.0012) 0.0004 480.6 (±18.1)

Λa 0.9689 (±9.6e-4) <0.0001 476.1 (±57.9)

agglo-SAE (τ=0.7)

n′
1,new 844 (±6) - -

n′
2,new 272 (±10) - -

Λb 0.9730 (±8.9e-4) - 298.8 (± 8.2)

Λa 0.9812 (±9.0e-4) - 275.9 (±17)

DpAE (20% dropout)

Λb 0.9464 (±0.0513) 0.3124 403.4 (±59.5)

Λa 0.8483 (± 0.2701) 0.3336 378.2 (±57.7)

71

TABLE 8

Classification performance on NORB dataset [2].

Architecture Mean (±SD) p-valueUsage time (±SD) (ms)

SAE (n′
1=500, n′

2=500)

Λb 0.8085 (± 0.0065) 0.3516 385.7 (±38.8)

Λa 0.8143 (±0.0065) 0.0313 387.8 (±34.6)

agglo-SAE (τ=0.65)

n′
1,new 242 (±14) - -

n′
2,new 123 (±8) - -

Λb 0.8129 (±0.0102) - 159.1 (±27.0)

Λa 0.8303 (±0.0087) - 170.7 (±31.8)

DpAE (20% dropout)

Λb 0.5042 (±0.1377) 0.0062 443.0 (±66.1)

Λa 0.5090 (±0.1208) <0.001 475.2 (± 57.3)

C. Conclusion

This chapter proposes new techniques for data representation in the con-

text of DL for stacked AEs by leveraging on the ability to agglomerate regularized

sparse RFs and also by enhancing the feature generation process at the output layer

via controlled feature compression. The performance of the proposed method in

terms of decomposing data into parts and non-redundant feature extraction was

compared for the conventional SAE with constrained AEs of type DpAE, NCAE,

and L1/L2-NCAE. The proposed technique uses agglomerative clustering which

starts off by allocating each original filter to a separate cluster and merges two

most similar clusters as long as the average similarity between their members is

above a set threshold τ. This concept is illustrated using the NORB normalized-

uniform object data set, MNIST handwritten digits data and Yale Face Dataset.

72

The results show that a large number of originally generated RFs are overlapping

across these three data sets, creating unnecessary amount of filtering redundancy.

By using the proposed methods, such redundancy can be controlled, eliminated

and AEs are enabled to extract fewer and more distinctive features.

73

CHAPTER IV

REDUNDANCY-BASED FILTER PRUNING IN DEEP CONVOLUTIONAL
NEURAL NETWORKS

Due to large-scale labeled data and efficient architectural design, deep neu-

ral networks (DNNs) in recent years have shown superior performance in many

supervised learning tasks ranging from computer vision [73,95–98] to speech recog-

nition [99–101] and natural language processing [102,103]. Over the past few years,

the general trend has been that DNNs have grown deeper and larger, amounting to

huge number of final parameters. Their flexibility and performance usually come

with high computational and memory demands both during training and infer-

ence. A myriad of recent studies have shown that over-sized deep learning models

typically result in largely over-determined (or over-complete) systems [2, 23, 104–

107]. For instance, this over-complete representation is evidently pronounced in

features learned by popular deep neural network architectures such as AlexNet

[73] as emphasized by [24, 108].

The resulting oversized architectures may therefore be less computationally

efficient due to their size, over-parameterization and their high inference cost. To

account for the scale, diversity and the difficulty of data these models learn from,

the architectural complexity and the excessive number of weights are often delib-

erately built in into the design of DNN models [79, 105]. These over-sized mod-

els have expensive training and inference costs especially for applications with

constrained computational and power resources such as web services, mobile and

embedded devices. In addition to good accuracy, many resource-limited appli-

cations would greatly benefit from lower inference cost [109, 110]. While the de-

74

mand for high computational inefficiency in the training phase has been alleviated

with general-purpose computing engines otherwise known as Graphics Process-

ing Units (GPUs) to accelerate computations but powerful GPUs are unavailable

in hand-held devices.

Additionally, flexibility of DNN models may hinder their scalability and

practicality, and may result in extracting highly redundant parameters with risk of

over-fitting [111]. A symptom of learning replicated or similar features is that two

or more processing units extract very similar and correlated information. From an

information value standpoint, similar or shifted versions of features do not add

extra information to the feature hierarchy, and therefore should be possibly sup-

pressed. In other words, the activation of one unit should not be predictable based

on the activations of other units of the same layer. However, enforcing dissimilar-

ity of features in traditional way can be generally involved requiring computation

of intractable joint probability table and batch statistics. To address this problem

of over-representation, layers of deep and/or wide architectures have to be exam-

ined for possible redundancy to remove this limitation after training.

Knowing the level of redundancy in models is useful mainly for two rea-

sons. First, information about the level of redundancy in models can be used for

feature diversification in order to optimize their performance [?,24,111,112]. This is

addressed in Chapter VI. Secondly, it can be used to build accurate inference-cost-

efficient models via pruning for resource-limited applications to benefit greatly

from lower inference cost and high accuracy [109,110]. This is important in practice

because optimal architectures are unknown. However, pruning enables smaller

model to preserve knowledge from a larger model. Since learning a complex func-

tion directly with a small suboptimal architecture might result in low accuracy,

it is therefore necessary to first learn a task with larger architecture with many

parameters followed by pruning redundant and less important features [113]. In

75

particular, model compression particularly via pruning is important for transfer-

ring deep learning models to resource-limited portable devices.

FIGURE 30: Pruning schema of lth layer. (a) Assume filters red, blue, and green

in the first, third, and fifth columns of W(l), respectively, are very similar and are

located in the same cluster (b) If filter red is sampled as the representative of the

cluster, filters blue and green are redundant and their corresponding feature maps

in Z1+1 and related weights in the next layer (third and fifth rows of W(l+1)) are all

pruned [3].

Storage and computational cost reductions via model pruning techniques

have a long history [114–119]. For instance, Optimal Brain Damage [114] and Op-

76

timal Brain Surgeon [115] use second-order derivative information of the loss func-

tion to prune redundant network parameters. Other related work include but is

not limited to [113] which prunes based on particle filtering, [120] uses FFT to

avoid overhead due to convolution operation, and [121] uses depth multiplier

method to scale down the number of filters in each convolutional layer.

Feature redundancy has also been explored to construct a low rank basis of

features that are rank-1 in the spatial domain. However, this method involves ad-

ditional cumbersome optimization procedures. As demonstrated in [104], a frac-

tion of the parameters is sufficient to reconstruct the entire network by simply

training on low-rank decompositions of the weight matrices. HashedNets use a

hash function to randomly group weights into hash buckets, so that all weights

within the same hash bucket share a single parameter value for pruning pur-

poses [122]. Redundant features have also been localized and pruned using simple

thresholding mechanism [123].

Instead of localizing the redundant neurons in a fully-connected network,

[116] compresses a trained model by identifying a subset of diverse neurons. Re-

dundant feature maps are removed from a well trained network using particle

filtering to select the best combination from a number of randomly generated

masks [113]. With the assumptions that features are co-dependent within each

layer, [124] groups features in hierarchical order. Driven by feature map redun-

dancy, [125] factorizes a layer into 3× 3 and 1× 1 combinations and prunes redun-

dant feature maps. Closely related to the proposed work, [109] sorts and prunes

filters based on the sum of their absolute weights and [123] prunes weights with

magnitude below a set threshold.

More recently, [126] trains another neural network as pruning agent which

takes filter weights of the model to be pruned as input and outputs binary deci-

sions to remove or keep filters. Using the concept of tensor factorization and re-

77

construction, [127] eliminates redundancy by pruning the feature maps instead of

filter weights. The computational complexity of convolutional network has been

reduced by filter-group convolution with tiny accuracy loss while mostly preserv-

ing diversity in feature representation. Network reduction problem has also been

formulated as a binary integer optimization with a closed-form solution based on

final response importance [128].

A. Convolutional Feature Clustering and Pruning

Typically, DNNs consist of input, output, and many intermediate process-

ing layers. By letting the number of channels, height and width of input to the

lth layer be denoted as n′
l, hl, and vl, respectively. A layer (convolutional or fully-

connected) in the network transforms input Zl ∈ Rp into output Zl+1 ∈ Rq, where

Zl+1 serves as the input in layer l + 1. For convolutional neural network (CNN),

p and q are given as n′
l × hl × vl and n′

l+1 × hl+1 × vl+1, respectively. Whereas

for a fully-connected network (FCN), p and q denote n′
lhlvl × 1 and n′

l+1 × 1, re-

spectively. A convolutional layer convolves Zl with n′
l+1 3D filters χ ∈ Rn′

l×k×k,

resulting in n′
l+1 output feature maps (Zl+1). Each 3D filter consists of n′

l 2D ker-

nels ζ ∈ k × k. Unrolling and combining all features (or filters) in a single ma-

trix results in kernel matrix W(l) ∈ Rm×n′
l+1 where m = k2n′

l. In FCN, however,

a layer operation involves only vector-matrix multiplication with kernel matrix

W ∈ Rm×n′
l+1 , where m = n′

lhlvl. Additionally, w
(l)
i , i=1,...n′

l, denotes ith feature

in layer l, each w
(l)
i ∈ Rm corresponds to the i-th column of the kernel matrix

W(l) = [w
(l)
1 , ...w(l)

n′
l
] ∈ Rm×n′

l+1 .

In this section, two heuristics that aim at agglomerating and pruning convo-

lutional features are introduced. The objective here is to discover n f features that

are representative of n′
l original features using agglomerative hierarchical cluster-

ing approach. Achieving effective clustering of features involves choosing suitable

78

similarity measures to express the inter-feature distances between features wi that

connect the feature map Zl−1 to feature maps of layer l. This techniques is similar

to that described for autoencoder in Chapter III. It starts by putting each feature

vector wi in a separate potential clusters. Agglomerative clustering then merges

the two most similar clusters Ca and Cb as long as the average similarity between

their constituent feature vectors is above τ. The pair of clusters Ca and Cb exhibits

average mutual similarities as follows:

SIMC(Ca, Cb) =
∑φi∈Ca,φj∈Cb

SIMC(φi, φj)

|Ca| × |Cb| > τ

a, b = 1, ...n′
l; a �= b; i = 1, ...|Ca|;

j = 1, ...|Cb|; and i �= j

(26)

where φi = wi/
√||wi||2, SIMC(φ1, φ2) =

<φ1,φ2>
‖φ1‖‖φ2‖ is the cosine similarity between two

features and < φ1, φ2 > is the inner product of arbitrary feature vectors φ1 and φ2,

and τ is a set threshold.

It is remarked that the above similarity definition uses the graph-based-

group-average technique, which defines cluster proximity/similarity as the av-

erage of pairwise similarities (that is, the average length of edges of the graph)

of all pairs of features from different clusters. In this work, other similarity def-

initions such as the single-link and complete-link were also experimented with.

Single-link approach defines cluster similarity as the proximity between the two

closest feature vectors that are in different clusters. On the other hand, complete-

link assumes that cluster proximity is the proximity between the two farthest fea-

ture vectors of different clusters. Group average proximity definition empirically

yielded better performance compared to the other two definitions and thus, we

report experimental results using average proximity approach.

79

1. Method A: Pruning of Redundant Filters

The redundant convolutional feature-based pruning is detailed in Algo-

rithm 3 with the objective of grouping filters that are identical or very similar

in weight space. The algorithm also aims at removing filters that are identical

or very similar to eliminate duplicative retrieval of feature maps. The detection

and removal of redundant filters is generally tractable especially from practical

standpoint since the pruning heuristic uses one-shot pruning and retraining mech-

anism. As highlighted in Algorithm 3, the proposed pruning heuristic assumed a

fully-trained model as input and filter grouping is performed at every layer of the

model.

For a particular layer of the DNN model as in Figure 30, Algorithm 3 uses

Algorithm 4 to group all the filters φi (columns of the kernel matrix W(l)) into n f

clusters whose average similarity among cluster members is above a set thresh-

old τ while ensuring n f ≤ n′. One representative filter is randomly sampled from

each of the n f clusters. The output of Algorithm 4 is the list L f of indices of clusters’

representatives, which is equivalent to a subset of the indices of columns of W(l).

Algorithm 3 uses L f to subset W(l) and create a smaller kernel matrix W
(l)
pruned. Af-

ter obtaining all the new kernel matrices W
(l)
pruned, Algorithm 3 constructs a smaller

model initialized with W(l)pruned . In general, pruning a large fraction of filters gen-

erally results in performance deterioration. In fact, it is observed that some con-

volutional layers are extremely sensitive to pruning than others and this must be

taken into consideration when pruning such layers and/or models. In most cases,

restoring the performance after pruning, the pruned model is fine-tuned for pre-

scribed number of epochs.

It must be noted that if filters are grouped into the same cluster because they

have cosine similarity above τ, our approach in Algorithm 4 randomly chooses

80

Algorithm 3: Redundant Filter-based Pruning

1 for layer l in the trained model do

2 get: convolutional filters of lth layer W(l)

3 set: τ

4 Extract: distinct filters in W(l)

5 L f , n f = FILTERCLUSTERING
(

W(l), τ
)

6 initialize: W
(l)
pruned of the pruned model

7 k ← 0

8 for i in L f do

9 copy: ith column of W(l) into kth column of W
(l)
pruned

10 k ← k + 1

11 end for

12 end for

13 Construct the pruned model

14 Initialize the weights of lth layer with W
(l)
pruned

15 set: τ, retrain_epoch

16 for prescribed number of retrain_epoch do

17 fine-tune the pruned model

18 end for

81

one out of them as the cluster representative. Another approach considered in this

work uses cluster centroid as the representative. However, it has been observed

that the performance of this approach is similar to the random sampling in Algo-

rithm 4. This further suggests that the cluster centroid is very close to all filters in

the cluster. In this section, random selection is used in Algorithm 4 to inject some

stochasticity in the selection process.

Algorithm 4: Localization and Pruning of Redundant Filters (Method A)

1 FILTERCLUSTERING():

2 Input: {W, τ}

3 Scan for: cluster(s) of vectors in W with similarity > τ

4 Randomly sample and tag one representative filter from each of the

n f clusters as nonredundant

5 Outputs: List of Indices L f of distinct filters and n f in W;

6 return L f , n f ,

2. Method B: Pruning of Random n f Filters

Here, Algorithm 5 is used to detect the number of n f distinct filters in ker-

nel matrix W(l) of a given layer l. It then randomly samples n f out of n′
l filters

to construct the kernel matrix W
(l)
pruned of the pruned model. It is worth motivat-

ing and mentioning that Algorithms 4 and 5 are alternative approaches used by

Algorithm 3.

The main difference is that Algorithm 4 randomly samples one filter out

of every cluster of filters and prunes the remaining filters in all n f clusters. Note

that n f <= nl, where nl is the total number of filters in layer l. Algorithm 5 on

the other hand uses filter clustering algorithm only to estimate n f (the number of

82

Algorithm 5: Estimation and Random Pruning of n f filters (Method B)

1 FILTERCLUSTERING():

2 Input: {W, τ}

3 Scan for: cluster(s) of vectors in W with similarity > τ to estimate n f

4 Randomly sample n f filters

5 Outputs: List of Indices L f of randomly sampled filters and n f in W;

6 return L f , n f ,

distinct filter clusters) and randomly prunes n f out of nl filters. In other words,

Algorithm 4 localizes and prunes precisely the redundant filters, while Algorithm

5 just estimates how many filters to randomly prune.

B. Experiments

All experiments were performed on Intel(r) Core(TM) i7-6700 CPU @ 3.40Ghz

and a 64GB of RAM running a 64-bit Ubuntu 14.04 edition. The software imple-

mentation has been in Pytorch library 1 on two Titan X 12GB GPUs and the fil-

ter clustering was implemented in SciPy ecosystem [129]. The agglomeration of

filters using hierarchical clustering is practical for very wide and deep networks

even though the complexity of the agglomerative clustering algorithm itself is

O((n′
l)

2log(n′
l)). In most network, n′

l ≤ 1000 and number of layers is often less

than 200. For instance, clustering VGG-16 feature vectors empirically takes on the

average on our machine 14.1 milliseconds and this is executed only once during

training. This amounts to a negligible computational overhead for most deep ar-

chitectures.

The implementation of proposed filter pruning strategy is similar to that

in [109] in the sense that when a particular filter of a convolutional layer is pruned,

1http://pytorch.org/

83

its corresponding feature map is also pruned and the weights of the pruned fea-

ture map in the filter of the next convolutional layer are equally pruned. It must be

emphasized that after pruning the feature maps of last convolutional layer, the in-

put to the fully-connected layer has changed and its weight matrix must be pruned

accordingly.

In the preliminary experiment, a multilayer perceptron was trained using

MNIST digits [130]. Adam optimizer [131] with batch size of 128 was used to train

the model for 400 epochs. The number of redundant feature was computed as

nr = n′
l − n f after the models have been fully trained.

84

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

n̄r

O
n
e
 h

id
d
e
n
 l
a
y
e
r

n
′ 1
=
1
0
0

n
′ 1
=
2
0
0

n
′ 1
=
3
0
0

n
′ 1
=
5
0
0

n
′ 1
=
7
0
0

n
′ 1
=
1
0
0
0

(a
)

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

n̄r

T
h
re

e
 h

id
d
e
n
 l
a
y
e
rs

n
′ 1
=
n

′ 2
=
n

′ 3
=
1
0
0

n
′ 1
=
n

′ 2
=
n

′ 3
=
2
0
0

n
′ 1
=
n

′ 2
=
n

′ 3
=
3
0
0

n
′ 1
=
n

′ 2
=
n

′ 3
=
5
0
0

n
′ 1
=
n

′ 2
=
n

′ 3
=
7
0
0

n
′ 1
=
n

′ 2
=
n

′ 3
=
1
0
0
0

(b
)

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

n̄r

F
o
u
r

h
id

d
e
n
 l
a
y
e
rs

n
′ 1
=
n

′ 2
=
n

′ 3
=
n

′ 4
=
1
0
0

n
′ 1
=
n

′ 2
=
n

′ 3
=
n

′ 4
=
2
0
0

n
′ 1
=
n

′ 2
=
n

′ 3
=
n

′ 4
=
3
0
0

n
′ 1
=
n

′ 2
=
n

′ 3
=
n

′ 4
=
5
0
0

n
′ 1
=
n

′ 2
=
n

′ 3
=
n

′ 4
=
7
0
0

n
′ 1
=
n

′ 2
=
n

′ 3
=
n

′ 4
=
1
0
0
0

(c
)

FI
G

U
R

E
31

:
A

ve
ra

ge
nu

m
be

r
of

re
du

nd
an

tf
ea

tu
re

s
ac

ro
ss

al
ll

ay
er

s
(n̄

r)
ag

ai
ns

tt
hr

es
ho

ld
τ

w
it

h
(a

)o
ne

(b
)t

w
o

(c
)t

hr
ee

,

an
d

(d
)f

ou
r

hi
dd

en
la

ye
rs

us
in

g
M

N
IS

T
da

ta
se

t.
N

et
w

or
k

w
id

th
co

rr
es

po
nd

s
to

th
e

nu
m

be
r

of
hi

dd
en

un
it

s
pe

r
la

ye
r

an
d

ne
tw

or
k

de
pt

h
co

rr
es

po
nd

s
to

nu
m

be
r

of
hi

dd
en

la
ye

rs
.N

et
w

or
ks

w
it

h
m

or
e

th
an

on
e

hi
dd

en
la

ye
r

ha
ve

eq
ua

ln
um

be
r

of

hi
dd

en
un

it
s

in
al

ll
ay

er
s.

85

(a) (c)

FIGURE 32: t-SNE projection [7] of the activation of last layer of network with

(a) one and (b) four hidden layers using 5000 MNIST handwritten digits test sam-

ples. All Networks have 1000 hidden units in all layers and all layers use Sigmoid

activation function.

Figures 31 a,b,c, and d show the performance of multilayer perceptron with

one, two, three, and four hidden layer(s), respectively. The average number of

redundant features across all layers of the network is denoted as n̄r. It can be ob-

served in Figure 31 that both width (number of hidden units per layer) and depth

(number of layers in the network) increase n̄r. As the number of hidden units per

layer increases, n̄r grows almost linearly. Also, the higher the number of hidden

layers in a network, the higher the average number of redundant features extracted

and the higher the average feature pairwise correlations.

For instance, the network with one hidden layer and 100 hidden units does

not have any feature pair with similarity above 0.4. However, as the depth in-

creases (for two or more hidden layers) more feature pairs have similarity above

0.4. This observation is similar for other hidden layer sizes (200, 300, 500, 700, and

1000) and depth. In particular, as can be observed in Figure 31d that many feature

86

pairs in deep multilayer network (with four hidden layers) are almost perfectly

correlated with cosine similarity of 0.9 even with just 100 hidden units per layer.

Deep multilayer network was also evaluated based on the distribution of data in

high level feature space. In this regard, t-distributed stochastic neighbor embed-

ding (t-SNE) [7] was used to project the last hidden activations of a four-layer net-

work and that of a single layer as shown in Figures 32a and b, respectively. The

t-SNE projections show that network with four hidden layers has clustered acti-

vations compared to that of a single layer resulting in within class holes. This is

observation is pronounced for activations of digit 7.

CIFAR-10 dataset [132] was used in the second set of large-scale experiments

to validate and retrain pruned models. The dataset contains a labeled set of 60,000

32x32 color images belonging to 10 classes: airplanes, automobiles, birds, cats,

deer, dogs, frogs, horses, ships, and trucks. The dataset is split into 50000 and

10000 training and testing sets, respectively. FLOP was used to compare the com-

putational efficiency of the models because its evaluation is independent of any

underlying software and hardware. In order to fairly compare proposed method

with state-of-the-art, the FLOP was only calculated for the convolution and fully

connected layers. For CIFAR-10 dataset, the proposed redundant-feature-based

pruning was evaluated on three deep networks, namely: VGG-16 [133] and two

residual networks ResNet-56 and 110 [96]. The baseline accuracy for residual net-

works were obtained by following the procedures highlighted in [96].

1. VGG-16 on CIFAR-10

In this set of experiments, a modified version of the popular convolutional

neural network known as the VGG-16 [133] was used. It has 13 convolutional lay-

ers and 2 fully connected layers. In the modified version, each layer of convolution

is followed by a Batch Normalization layer [134]. A base model was trained for 350

87

epochs, with a batch-size of 128 and a learning rate 0.1. The learning rate was re-

duced by a factor of 10 at 150 and 250 epochs. After pruning, the pruned model

was finetuned with learning rate of 0.001 for 80 epochs to adjust the weights of the

remaining connections to regain the accuracy.

Figure 33 shows the number of nonredundant filters per layer for different

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

τ

0

50

100

150

200

250

300

nf

CIFAR10 VGG-16 prune redundant filters

Conv_1 64

Conv_2 64

Conv_3 128

Conv_4 128

Conv_5 256

Conv_6 256

Conv_7 256

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

τ

0

100

200

300

400

500

600

nf

CIFAR10 VGG-16 prune redundant filters

Conv_8 512

Conv_9 512

Conv_10 512

Conv_11 512

Conv_12 512

Conv_13 512

FIGURE 33: Number of nonredundant filters (n f) vs. cluster similarity threshold

(τ) for VGG-16 trained on the CIFAR-10 dataset. Initial number of filters for each

layer is shown in the legend [3].

τ values. As can be seen that some convolutional layers in VGG are prone to ex-

88

tracting features with very high correlation; examples of such as layer are layers1,

11, 12, and 13. Another very important observation is that later layers of VGG

are more susceptible to extracting redundant filters than earlier layers and can be

heavily pruned. Figure 34(a) shows the sensitivity of VGG-16 layers to pruning

and it can be observed that layers such as Conv 1, 3, 4, 9, 11, and 12 are very sen-

sitive. However, as can be observed in Figure 34(c), accuracy can be restored after

pruning filters in later layers (Conv 9, 11, and 12) compared to early ones (Conv 1,

3, and 4).

89

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

test error

C
IF

A
R

1
0
 V

G
G

-1
6
 p

ru
n
e
 r

e
d
u
n
d
a
n
t

fi
lt

e
rs

C
o
n
v
_
1

 6
4

C
o
n
v
_
2

 6
4

C
o
n
v
_
3

 1
2

8

C
o
n
v
_
4

 1
2

8

C
o
n
v
_
5

 2
5

6

C
o
n
v
_
6

 2
5

6

C
o
n
v
_
7

 2
5

6

C
o
n
v
_
8

 5
1

2

C
o
n
v
_
9

 5
1

2

C
o
n
v
_
1

0
 5

1
2

C
o
n
v
_
1

1
 5

1
2

C
o
n
v
_
1

2
 5

1
2

C
o
n
v
_
1

3
 5

1
2

(a
)P

ru
ne

n′
−

n
f

re
du

nd
an

tfi
lt

er
s

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

test error

C
IF

A
R

1
0
 V

G
G

-1
6
 p

ru
n
e
 r

a
n
d
o
m

 r
e
d
u
n
d
a
n
t

fi
lt

e
rs

C
o
n
v
_
1

 6
4

C
o
n
v
_
2

 6
4

C
o
n
v
_
3

 1
2

8

C
o
n
v
_
4

 1
2

8

C
o
n
v
_
5

 2
5

6

C
o
n
v
_
6

 2
5

6

C
o
n
v
_
7

 2
5

6

C
o
n
v
_
8

 5
1

2

C
o
n
v
_
9

 5
1

2

C
o
n
v
_
1

0
 5

1
2

C
o
n
v
_
1

1
 5

1
2

C
o
n
v
_
1

2
 5

1
2

C
o
n
v
_
1

3
 5

1
2

(b
)P

ru
ne

n′
−

n
f

ra
nd

om
fil

te
rs

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

6
.5

7
.0

7
.5

8
.0

test error

C
IF

A
R

1
0
 V

G
G

-1
6
 p

ru
n
e
 r

e
d
u
n
d
a
n
t

fi
lt

e
rs

 a
n
d
 r

e
tr

a
in

C
o
n
v
_
1

 6
4

C
o
n
v
_
2

 6
4

C
o
n
v
_
3

 1
2

8

C
o
n
v
_
4

 1
2

8

C
o
n
v
_
5

 2
5

6

C
o
n
v
_
6

 2
5

6

C
o
n
v
_
7

 2
5

6

C
o
n
v
_
8

 5
1

2

C
o
n
v
_
9

 5
1

2

C
o
n
v
_
1

0
 5

1
2

C
o
n
v
_
1

1
 5

1
2

C
o
n
v
_
1

2
 5

1
2

C
o
n
v
_
1

3
 5

1
2

(c
)P

ru
ne

re
du

nd
an

tfi
lt

er
s

an
d

re
tr

ai
n

FI
G

U
R

E
34

:
Se

ns
it

iv
it

y
to

pr
un

in
g

(a
)

re
du

nd
an

t
fil

te
rs

(b
)

ra
nd

om
n′

−
n

f
fil

te
rs

,a
nd

(c
)

re
du

nd
an

t
fil

te
rs

an
d

re
tr

ai
ni

ng

fo
r

30
ep

oc
hs

fo
r

V
G

G
-1

6
[3

].

90

For the final test score, the pruned model is finetuned on the entire training

set. In the pruning stage, a grid search was performed over τ values within 0.1

and 1.0, and found 0.54 gave the least test error. Table 9 reports the pruning per-

formance for τ = 0.54 and it can be easily observed that more than 90% of most of

the latter layer filters have been pruned and most of the sensitive earlier layers are

minimally pruned. Figure 34(b) depicts the sensitivity of trained VGG-16 model

to pruning using heuristic in Algorithm 5 that calculates the number of redundant

filters (n′ − n f) and randomly prunes them.

As seen in Table 10, for τ = 0.54 our approach in Algorithm 4 outper-

forms that Absolute filter sum approach [109], Network Sliming [135], Try-and-

learn [126] and are able to prune more than 78% of the parameters resulting in

40% FLOP reduction and a competitive classification accuracy. In addition, when

τ was tuned to 0.46, more than 40% FLOP reduction was achieved outperform-

ing variational method [136], which is one of the state-of-the-art. It is suspected

that proposed pruning approach outperforms other methods because it localizes

and prunes similar or shifted versions of filters that do not add extra information to

the feature hierarchy. This notion is reinforced from information theory standpoint

that the activation of one unit should not be predictable based on the activations

of other units of the same layer [137]. Another crucial observation is that heuristic

A achieves a better accuracy than Method B because random pruning is suspected

to remove dissimilar filters. It is strongly believe that Algorithm 4 performs better

than 5 because of its precise ability to remove redundancy. However, Algorithm 4

is a bit slower than 5 and that is the trade-off.

2. RESNET-56/110 on CIFAR-10

The architecture of residual networks is more complex than VGG and also

the number of parameters in the fully connected layer is relatively smaller and

91

layer vl × hl #Maps FLOP #Params #Maps FLOP%

Conv_1 32 × 32 64 1.8E+06 1.7E+03 32 50.0%

Conv_2 32 × 32 64 3.8E+07 3.7E+04 58 54.7%

Conv_3 16 × 16 128 1.9E+07 7.4E+04 125 11.5%

Conv_4 16 × 16 128 3.8E+07 1.5E+05 128 2.3%

Conv_5 8 × 8 256 1.9E+07 2.9E+05 256 0%

Conv_6 8 × 8 256 3.8E+07 5.9E+05 254 0.8%

Conv_7 8 × 8 256 3.8E+07 5.9E+05 252 2.3%

Conv_8 4 × 4 512 1.9E+07 1.2E+06 299 42.5%

Conv_9 4 × 4 512 3.8E+07 2.4E+06 164 81.3%

Conv_10 4 × 4 512 3.8E+07 2.4E+06 121 92.4%

Conv_11 2 × 2 512 9.4E+06 2.4E+06 59 97.3%

Conv_12 2 × 2 512 9.4E+06 2.4E+06 104 97.7%

Conv_13 2 × 2 512 9.4E+06 2.4E+06 129 94.9 %

TABLE 9

Pruning performance on CIFAR dataset using VGG-16 model at τ = 0.54 [3].

92

VGG-16 Model
% Accuracy

drop

% FLOP

Pruned

% Parameters

Pruned

Methods

[109] 0.40 34.2 64.0

[135] -0.17 38.6 -

[126] 0.60 34.2 -

[136] 0.81 62.9 -

Ours-A (τ = 0.54) 0.13 40.5 78.1

Ours-B (τ = 0.54) 0.50 40.5 78.1

Ours-A (τ = 0.46) 0.72 65.1 89.5

TABLE 10

Performance evaluation for three pruning techniques on CIFAR-10 dataset. Per-
formance with the lowest test error is reported [3].

this makes it a bit challenging to prune a large proportion of the parameters. Both

ResNet-56 and ResNet-110 have three stages of residual blocks for feature maps of

differing sizes. The size (vl × hl) of feature maps in stages 1,2, and 3 are 32 × 32,

16× 16, and 8× 8, respectively. Each stage has 9 and 18 residual blocks for ResNet-

56 and ResNet-110, respectively. A residual block consists of two convolutional

layers each followed by a Batch Normalization layer. Preceding the first stage is a

convolutional layer followed by a Batch Normalization layer2. Only the redundant

filters in first convolution layer of each block are pruned since the mapping for

selecting identity feature maps is unavailable.

2The Pytorch implementation of ResNet56/110 in https://github.com/D-X-Y/

ResNeXt-DenseNet was used as baseline models

93

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

468

1
0

1
2

1
4

1
6

n
f

C
IF

A
R

1
0
 R

e
s
N

e
t-

5
6
 p

ru
n
e
 r

e
d
u
n
d
a
n
t

fi
lt

e
rs

C
o
n
v
_
2
 1

6

C
o
n
v
_
4
 1

6

C
o
n
v
_
6
 1

6

C
o
n
v
_
8
 1

6

C
o
n
v
_
1

0
 1

6

C
o
n
v
_
1

2
 1

6

C
o
n
v
_
1

4
 1

6

C
o
n
v
_
1

6
 1

6

C
o
n
v
_
1

8
 1

6

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

1
0

1
5

2
0

2
5

3
0

3
5

n
f

C
IF

A
R

1
0
 R

e
s
N

e
t-

5
6
 p

ru
n
e
 r

e
d
u
n
d
a
n
t

fi
lt

e
rs

C
o
n
v
_
2

0
 3

2

C
o
n
v
_
2

2
 3

2

C
o
n
v
_
2

4
 3

2

C
o
n
v
_
2

6
 3

2

C
o
n
v
_
2

8
 3

2

C
o
n
v
_
3

0
 3

2

C
o
n
v
_
3

2
 3

2

C
o
n
v
_
3

4
 3

2

C
o
n
v
_
3

6
 3

2

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

n
f

C
IF

A
R

1
0
 R

e
s
N

e
t-

5
6
 p

ru
n
e
 r

e
d
u
n
d
a
n
t

fi
lt

e
rs

C
o
n
v
_
3

8
 6

4

C
o
n
v
_
4

0
 6

4

C
o
n
v
_
4

2
 6

4

C
o
n
v
_
4

4
 6

4

C
o
n
v
_
4

6
 6

4

C
o
n
v
_
4

8
 6

4

C
o
n
v
_
5

0
 6

4

C
o
n
v
_
5

2
 6

4

C
o
n
v
_
5

4
 6

4

FI
G

U
R

E
35

:N
um

be
r

of
no

nr
ed

un
da

nt
fil

te
rs

(n
f)

vs
.c

lu
st

er
si

m
ila

ri
ty

th
re

sh
ol

d
(τ

)f
or

R
es

N
et

-5
6

tr
ai

ne
d

on
th

e
C

IF
A

R
-1

0

da
ta

se
t.

In
it

ia
ln

um
be

r
of

fil
te

rs
fo

r
ea

ch
la

ye
r

is
sh

ow
n

in
th

e
le

ge
nd

[3
].

94

Model Error % FLOP Pruned % # Parameters Pruned %

ResNet-56 6.61 1.25 ×108 8.5 ×105

[109] 6.94 9.09 ×107 27.6% 7.3 ×105 13.7%

Ours-A 6.88 9.07 ×107 27.9% 6.5 ×105 23.7%

Ours-B 6.94 9.07 ×107 27.9 % 6.5 ×105 23.7 %

ResNet-110 6.35 2.53 ×108 1.72 ×106

[109] 6.70 1.55 ×108 38.6% 1.16 ×106 32.4%

Ours-A 6.73 1.54 ×108 39.1% 1.13 ×106 34.2%

Ours-B 7.41 1.54 ×108 39.1% 1.13 ×105 34.2%

TABLE 11

Performance evaluation of three pruning techniques for ResNet 56/110 trained on
CIFAR-10 dataset. Performance with the lowest test error is reported [3].

As can be observed in Figures 35 and 36 that convolutional layers in first

stage are prone to extracting more redundant features than those of second stage,

and the convolutional layers in the second stage are susceptible to extracting re-

dundant filters than those of third block, which is contrary to the observations in

experiments with VGG-16. In effect, more filters could be pruned from layers in

first stage than latter stages without losing much to accuracy. More specifically,

many layers in first stage of ResNet-56, such as Conv 2,8,10, and 26, have filters

that are more than 80% correlated and could be easily pruned. Similarly, convo-

lutional layers in the first stage of ResNet-110 exhibit similar tendency to produce

more filters that are redundant. Due to differing redundancy tendencies at each

stage, τ is customized for each of the stages. In pruning ResNet-56, τ is set to

0.253, 0.223, 0.20 as thresholds for stages 1,2, and 3, respectively. Similarly for

ResNet-110 τ values 0.18, 0.12, and 0.17 were used.

95

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

68

1
0

1
2

1
4

1
6

n
f

C
IF

A
R

1
0
 R

e
s
N

e
t-

1
1
0
 p

ru
n
e
 r

e
d
u
n
d
a
n
t

fi
lt

e
rs

C
o
n
v
_
2

 1
6

C
o
n
v
_
4

 1
6

C
o
n
v
_
6

 1
6

C
o
n
v
_
8

 1
6

C
o
n
v
_
1

0
 1

6

C
o
n
v
_
1

2
 1

6

C
o
n
v
_
1

4
 1

6

C
o
n
v
_
1

6
 1

6

C
o
n
v
_
1

8
 1

6

C
o
n
v
_
2

0
 1

6

C
o
n
v
_
2

2
 1

6

C
o
n
v
_
2

4
 1

6

C
o
n
v
_
2

6
 1

6

C
o
n
v
_
2

8
 1

6

C
o
n
v
_
3

0
 1

6

C
o
n
v
_
3

2
 1

6

C
o
n
v
_
3

4
 1

6

C
o
n
v
_
3

6
 1

6

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

1
0

1
5

2
0

2
5

3
0

3
5

n
f

C
IF

A
R

1
0
 R

e
s
N

e
t-

1
1
0
 p

ru
n
e
 r

e
d
u
n
d
a
n
t

fi
lt

e
rs

C
o
n
v
_
3

8
 3

2

C
o
n
v
_
4

0
 3

2

C
o
n
v
_
4

2
 3

2

C
o
n
v
_
4

4
 3

2

C
o
n
v
_
4

6
 3

2

C
o
n
v
_
4

8
 3

2

C
o
n
v
_
5

0
 3

2

C
o
n
v
_
5

2
 3

2

C
o
n
v
_
5

4
 3

2

C
o
n
v
_
5

6
 3

2

C
o
n
v
_
5

8
 3

2

C
o
n
v
_
6

0
 3

2

C
o
n
v
_
6

2
 3

2

C
o
n
v
_
6

4
 3

2

C
o
n
v
_
6

6
 3

2

C
o
n
v
_
6

8
 3

2

C
o
n
v
_
7

0
 3

2

C
o
n
v
_
7

2
 3

2

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

n
f

C
IF

A
R

1
0
 R

e
s
N

e
t-

1
1
0
 p

ru
n
e
 r

e
d
u
n
d
a
n
t

fi
lt

e
rs

C
o
n
v
_
7

4
 6

4

C
o
n
v
_
7

6
 6

4

C
o
n
v
_
7

8
 6

4

C
o
n
v
_
8

0
 6

4

C
o
n
v
_
8

2
 6

4

C
o
n
v
_
8

4
 6

4

C
o
n
v
_
8

6
 6

4

C
o
n
v
_
8

8
 6

4

C
o
n
v
_
9

0
 6

4

C
o
n
v
_
9

2
 6

4

C
o
n
v
_
9

4
 6

4

C
o
n
v
_
9

6
 6

4

C
o
n
v
_
9

8
 6

4

C
o
n
v
_
1

0
0

 6
4

C
o
n
v
_
1

0
2

 6
4

C
o
n
v
_
1

0
4

 6
4

C
o
n
v
_
1

0
6

 6
4

C
o
n
v
_
1

0
8

 6
4

FI
G

U
R

E
36

:N
um

be
ro

fn
on

re
du

nd
an

tfi
lt

er
s

(n
f)

vs
.c

lu
st

er
si

m
ila

ri
ty

th
re

sh
ol

d
(τ

)f
or

R
es

N
et

-1
10

tr
ai

ne
d

on
th

e
C

IF
A

R
-1

0

da
ta

se
t.

In
it

ia
ln

um
be

r
of

fil
te

rs
fo

r
ea

ch
la

ye
r

is
sh

ow
n

in
th

e
le

ge
nd

[3
].

96

Figure 37 shows the sensitivity of ResNet-56 layers to pruning and it can be

observed that layers such as Conv 10, 14, 16, 18, 20, 34, 36, 38, 52 and 54 are more

sensitive to filter pruning than other convolutional layers. Likewise for ResNet-

110, the layer sensitivity to pruning is depicted in Figure 38 and it can be observed

that Conv 1, 2, 38, 78, and 108 are sensitive to pruning. In order to regain the

accuracy by retraining the pruned model, these sensitive layers were also skipped

while pruning.

97

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

6789

1
0

1
1

1
2

1
3

test error

C
IF

A
R

1
0
 R

e
s
N

e
t-

5
6
 p

ru
n
e
 r

e
d
u
n
d
a
n
t

fi
lt

e
rs

C
o
n
v
_
2

 1
6

C
o
n
v
_
4

 1
6

C
o
n
v
_
6

 1
6

C
o
n
v
_
8

 1
6

C
o
n
v
_
1

0
 1

6

C
o
n
v
_
1

2
 1

6

C
o
n
v
_
1

4
 1

6

C
o
n
v
_
1

6
 1

6

C
o
n
v
_
1

8
 1

6

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

6789

1
0

1
1

1
2

1
3

1
4

1
5

test error

C
IF

A
R

1
0
 R

e
s
N

e
t-

5
6
 p

ru
n
e
 r

e
d
u
n
d
a
n
t

fi
lt

e
rs

C
o
n
v
_
2

0
 3

2

C
o
n
v
_
2

2
 3

2

C
o
n
v
_
2

4
 3

2

C
o
n
v
_
2

6
 3

2

C
o
n
v
_
2

8
 3

2

C
o
n
v
_
3

0
 3

2

C
o
n
v
_
3

2
 3

2

C
o
n
v
_
3

4
 3

2

C
o
n
v
_
3

6
 3

2

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

68

1
0

1
2

1
4

1
6

1
8

test error

C
IF

A
R

1
0
 R

e
s
N

e
t-

5
6
 p

ru
n
e
 r

e
d
u
n
d
a
n
t

fi
lt

e
rs

C
o
n
v
_
3

8
 6

4

C
o
n
v
_
4

0
 6

4

C
o
n
v
_
4

2
 6

4

C
o
n
v
_
4

4
 6

4

C
o
n
v
_
4

6
 6

4

C
o
n
v
_
4

8
 6

4

C
o
n
v
_
5

0
 6

4

C
o
n
v
_
5

2
 6

4

C
o
n
v
_
5

4
 6

4

FI
G

U
R

E
37

:S
en

si
ti

vi
ty

to
pr

un
in

g
n′

−
n

f
re

du
nd

an
tc

on
vo

lu
ti

on
al

fil
te

rs
in

R
es

N
et

-5
6

[3
].

98

As seen in Table 11 for ResNet-56, redundant-feature-based pruning meth-

ods A and B have competitive performance in terms of FLOP reduction and out-

perform that in [109]. Proposed approach reduces the number of effective parame-

ters by 10% with relatively better classification accuracy after retraining. However,

the effective number of parameters pruned was marginally increased in ResNet-

110 from 38.6% to 39.1%, resulting in approximately 2% increase.

99

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

test error

C
IF

A
R

1
0
 R

e
s
N

e
t-

1
1
0
 p

ru
n
e
 r

e
d
u
n
d
a
n
t

fi
lt

e
rs

C
o
n
v
_
2

 1
6

C
o
n
v
_
4

 1
6

C
o
n
v
_
6

 1
6

C
o
n
v
_
8

 1
6

C
o
n
v
_
1

0
 1

6

C
o
n
v
_
1

2
 1

6

C
o
n
v
_
1

4
 1

6

C
o
n
v
_
1

6
 1

6

C
o
n
v
_
1

8
 1

6

C
o
n
v
_
2

0
 1

6

C
o
n
v
_
2

2
 1

6

C
o
n
v
_
2

4
 1

6

C
o
n
v
_
2

6
 1

6

C
o
n
v
_
2

8
 1

6

C
o
n
v
_
3

0
 1

6

C
o
n
v
_
3

2
 1

6

C
o
n
v
_
3

4
 1

6

C
o
n
v
_
3

6
 1

6

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

6
.2

6
.4

6
.6

6
.8

7
.0

7
.2

7
.4

test error

C
IF

A
R

1
0
 R

e
s
N

e
t-

1
1
0
 p

ru
n
e
 r

e
d
u
n
d
a
n
t

fi
lt

e
rs

C
o
n
v
_
3

8
 3

2

C
o
n
v
_
4

0
 3

2

C
o
n
v
_
4

2
 3

2

C
o
n
v
_
4

4
 3

2

C
o
n
v
_
4

6
 3

2

C
o
n
v
_
4

8
 3

2

C
o
n
v
_
5

0
 3

2

C
o
n
v
_
5

2
 3

2

C
o
n
v
_
5

4
 3

2

C
o
n
v
_
5

6
 3

2

C
o
n
v
_
5

8
 3

2

C
o
n
v
_
6

0
 3

2

C
o
n
v
_
6

2
 3

2

C
o
n
v
_
6

4
 3

2

C
o
n
v
_
6

6
 3

2

C
o
n
v
_
6

8
 3

2

C
o
n
v
_
7

0
 3

2

C
o
n
v
_
7

2
 3

2

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

τ

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

test error

C
IF

A
R

1
0
 R

e
s
N

e
t-

1
1
0
 p

ru
n
e
 r

e
d
u
n
d
a
n
t

fi
lt

e
rs

C
o
n
v
_
7

4
 6

4

C
o
n
v
_
7

6
 6

4

C
o
n
v
_
7

8
 6

4

C
o
n
v
_
8

0
 6

4

C
o
n
v
_
8

2
 6

4

C
o
n
v
_
8

4
 6

4

C
o
n
v
_
8

6
 6

4

C
o
n
v
_
8

8
 6

4

C
o
n
v
_
9

0
 6

4

C
o
n
v
_
9

2
 6

4

C
o
n
v
_
9

4
 6

4

C
o
n
v
_
9

6
 6

4

C
o
n
v
_
9

8
 6

4

C
o
n
v
_
1

0
0

 6
4

C
o
n
v
_
1

0
2

 6
4

C
o
n
v
_
1

0
4

 6
4

C
o
n
v
_
1

0
6

 6
4

C
o
n
v
_
1

0
8

 6
4

FI
G

U
R

E
38

:S
en

si
ti

vi
ty

to
pr

un
in

g
n′

−
n

f
re

du
nd

an
tc

on
vo

lu
ti

on
al

fil
te

rs
in

R
es

N
et

-1
10

[3
].

100

Model FLOP Pruned % Time(s) Saved %

VGG-16 3.13 × 108 1.47

Ours-A 1.86 ×108 40.5% 0.94 34.01%

ResNet-56 1.25 ×108 1.16

Ours-A 9.07 ×107 27.9% 0.96 17.2%

ResNet-110 2.53 ×108 2.22

Ours-A 1.54 ×108 39.1% 1.80 18.9%

TABLE 12

FLOP and CPU time reduction for inference. Operations in convolutional and fully
connected layer are considered for computing FLOP [3].

The inference times for original and pruned models are reported in Table 12.

10,000 test images of CIFAR-10 dataset were used for the timing evaluation con-

ducted in Pytorch version 0.2.0_3 with Titan X (Pascal) GPU and cuDNN v8.0.44,

using a mini-batch of size 100. It can be observed that %FLOP reduction also trans-

lates almost directly into inference CPU time savings.

3. Prune and Train from Scratch

In order to see the effect of copying weights from the original (larger) model

to a pruned (smaller) model, two models (VGG-16 and ResNet-56) were pruned as

described above, re-initialized their weights, and trained them from scratch. As

shown in Table 13 that fine-tuning a pruned model is almost always better than re-

initializing and training a pruned model from scratch. It is observed that already-

trained filters may serve as good initialization for a smaller network which might

on its own be difficult to train. Other observation from Table 13 is that redundant-

feature-based pruning results in an architecture that attains a better performance

than its counterpart in [109]. This suggests that redundant-feature-based pruning

might be a potential approach to determining the architectural width of modern

101

Model Error %

VGG-16

Pruned [109] 6.60

Pruned (Ours-A) 6.33

Pruned-scratch-train [109] 6.88

Pruned-A-scratch-train (Ours-A) 6.79

ResNet-56

Pruned [109] 6.94

Pruned (Ours-A) 6.88

Pruned-scratch-train [109] 8.69

Pruned-scratch-train (Ours-A) 7.66

TABLE 13

Performance on CIFAR dataset [3].

deep neural network.

C. Conclusion

Motivated by the observations of recent studies that modern deep neural

network models often have large number of overlapping features amounting to

unnecessary filtering redundancy and high inference cost. By grouping features at

each layer according to a predefined measure in parameter space using agglom-

erative hierarchical clustering, it is shown in this chapter that redundancy can be

eliminated, inference cost (FLOPS) is reduced by 60% for VGG-16, 28%/39% for

ResNet-56/110 trained on CIFAR-10, and 28% for ResNet-34 trained on ImageNet

database. To recover the accuracy after pruning, models were finetuned for a few

iterations without the need to modify hyper-parameters.

102

CHAPTER V

FEATURE DIVERSIFICATION IN DEEP NEURAL NETWORKS

The expressiveness of deep neural networks, usually with huge number of

trainable parameters, sometimes comes at a disadvantage when trained on lim-

ited amount of data due to their susceptibility to overfitting. To circumvent this

problem, a plethora of regularization and initialization methods such as weight

decay, dropout [58], and weight initialization [70] have been purported to ame-

liorate overfitting and convergence problems resulting from data scarcity and net-

work size [24]. Moreover, recent advances in deep learning for image classifica-

tion [96,138], language processing [102,103], speech synthesis and recognition [99–

101] have been attributed to efficient regularization of randomly initialized deep

and complex models trained with Stochastic Gradient Descent (SGD).

Over the last few decades, research focused on strategies for reducing over-

fitting and improving the capabilities of deep neural network. Examples of such

strategies include Batch Normalization [134] that aims to minimize the internal co-

variance shift. Also, keeping similar variance at each layer’s input and output of

deep network using initialization has shown to preserve signal propagation and

improve generalization [68, 70]. Orthonormal initialization coupled with output

variance normalization has also been shown as decorrelating neural network’s ini-

tial weights for better convergence [139].

Another important and popular paradigm for reducing overfitting is regu-

larization. In general, the two most commonly used regularization paradigms uti-

lize the hidden activations, weights or output distribution. The first family of regu-

larization strategy aims to extenuate the model complexity by using weight decay

103

[1, 140] to reduce the number of effective model parameters, or using dropout [58]

to randomly drop hidden activations, or using DropConnect [141] to randomly

drop weights during training. Even though these methods have shown improve-

ments on generalization, they regularize in a manner that under-utilizes the capac-

ity of the model. The second family of regularization methods focuses on improv-

ing the generalization without undermining the model’s capacity. For instance,

[23] presented pre-training algorithms to learn decorrelated features and [142] dis-

cusses decorrelated activations using incoherent training.

Other mechanisms that also fall in the second category are those that reg-

ularize the output distribution. In this sense, entropy-based regularizer with de-

terministic annealing was applied to train multilayer perceptrons for the purpose

of avoiding poor initialization, local minima, and for improving model general-

ization [143]. Regularization has also been applied in form of label smoothing for

estimating the marginalized effect of label-dropout during training. This, in ef-

fect, reduces overfitting by restricting the model from assigning full probability to

each training sample and maintaining a reasonable ratio between the logits of the

incorrect classes [110]. Label smoothing has also been achieved using a teacher

model [144] instead of smoothing with uniform distribution as in [110]. Injecting

label noise has equally been shown to have a tremendous regularizing effect [145].

Moreover, models with high level of overfitting have recently been shown to as-

sign all output probability to a single class in the training set, thus giving rise to

output distributions with low entropy - a phenomenon referred to as overconfi-

dence [110]. Methods for effective regularization of overconfident networks have

also been reported that penalize the confident output distribution [146].

As reinforced in Chapters IV and V that over-sized deep neural networks

typically produce a high level of overfitting and usually rely on many redundant

features that can be either shifted version of each other or be very similar with little

104

or no variations. For instance, this redundancy is evidently pronounced in features

learned by popular deep neural network architecture such as AlexNet [73] as em-

phasized in [24, 108]. To address this redundancy problem, layers of deep and/or

wide architectures have to be trained under specific and well-defined sets of con-

straints in order to remove this limitation during training. The most closely related

work is the recently introduced regularization technique known as OrthoReg [24]

that locally enforces feature orthogonality by removing interference between nega-

tively correlated features. The key idea addressed is to regularize positively corre-

lated features during training. In effect, OrthoReg reduces overfitting by enforcing

higher decorrelation bounds on features. Proposed algorithms, on the other hand,

aim at regularizing both negatively and positively correlated features according to

their differentiation and based on their relative cosine distances. This way only fea-

tures correlated above a certain correlation threshold are penalize, thus strength-

ening feature diversity as training progresses. This approach affords the flexibility

of choosing the absolute correlation bound. Hence, the proposed method leads to

elimination of redundancy of features and better generalization.

Other related work is [147], which aims at training neural networks for clas-

sification with few training samples by constraining the hidden units to learn class-

wise invariant features, with samples of the same class having the same feature

representation. It is remarked that the proposed methods have the flavor of the

two aforementioned families of regularization in the sense that we aim to improve

generalization without undermining the model’s capacity by bounding the pair-

wise correlation of features and at the same time temporarily drop redundant fea-

ture maps during training.

The problem addressed in this chapter is four-fold: (i) an optimized algo-

rithm that inhibits learning of redundant filters is proposed, thereby enforcing

the extraction of diverse features (ii) using hierarchical agglomerative clustering

105

(HAC) to drop activations (or feature maps) of redundant features during training

is also proposed, (iii) heuristics that eliminate the computational overhead intro-

duced by HAC for very deep and/or wide neural networks by using the pairwise

feature correlation to compute the fraction of the feature maps to be dropped dur-

ing training is also proposed, and lastly (iv) the proposed regularization methods

are shown to improve state-of-the-art models across many benchmark learning

tasks and datasets.

A. Enhancing Feature Diversity by enforcing Dissimilar Feature Extraction

The objective here is to enforce constraints on the learning process by simply

encouraging diverse feature learning and preventing the extraction of redundant

features that are very similar or shifted version of one another. A symptom of

learning replicated or similar features is that two or more processing units extract

very similar and correlated information. From an information theory standpoint,

similar or shifted versions of filters do not add extra information to the feature

hierarchy, and therefore should be possibly suppressed. In other words, the acti-

vation of one unit should not be predictable based on the activations of other units

of the same layer. It is remarked that convolutional filtering have found to greatly

benefit from diversity or orthogonality of filters because it can alleviate gradient

vanishing or exploding problems [69,148]. Enforcing feature dissimilarity in tradi-

tional way can be generally involved and would require computation of huge joint

probability table and batch statistics which can be computationally intractable [24].

One tractable way of computing correlation between two features is by eval-

uating the cosine similarity measure (SIMC) between them:

SIMC(w1, w2) =
< w1, w2 >

‖ w1 ‖‖ w2 ‖ (27)

where < w1, w2 > is the inner product of arbitrary feature vectors w1 and w2. The

106

−1 0 1 2 3 4

−6

−4

−2

0

2

4
Toy filters, JD =2. 061538

(a)

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2
Gradient Descent (Iteration 1), JD =1. 99626

(b)

0 1 2 3 4 5 6

−4

−2

0

2

Gradient Descent (Iteration 2), JD =1. 894973

(c)

−2 0 2 4 6
−2

−1

0

1

2

3

Gradient Descent (Iteration 4), JD =1. 67008

(d)

FIGURE 39: Illustration of effect of divReg with λ = 10 and τ = 0.1 (a) on three

toy filters in (b) iteration 1 (c) iteration 2 and (d) iteration 4 [4].

similarity between two feature vectors corresponds to correlation between them,

that is, the cosine of the angle between the feature vectors in the feature space.

Since the entries of the vectors can take both negative and positive values, SIMC is

bounded by [-1,1]. It is 1 when w1=w2 or when w1 and w2 are identical. SIMC is

-1 when the two vectors are in exact opposite direction. The two filter vectors are

orthogonal in feature space when SIMC is 0. The corresponding distance measure

is given as DC = 1 − SIMC.

107

0 20 40 60 80 100

Iteration

0

20

40

60

80

100

120

J
D

λ=1 λ=3 λ=5 λ=7 λ=10 λ=20

(a)

0 20 40 60 80 100

Iteration

15

20

25

30

35

40

45

50

55

J
D

τ=0. 1

τ=0. 2

(b)

FIGURE 40: Effect of (a) diversity penalty factor λ and (b) thresholding parameter

τ on diversity regularization cost JD (Figure best viewed in color) [4]

1. Diversity Regularization

In order to minimize the extraction of redundant features during training, it

is necessary to maximize the information encoded by each processing hidden units

by incorporating a penalty term into the overall learning objective, here referred to

as diversity regularization (divReg). The constraints induced as a result of diver-

sity regularization term need to be reconciled with usual regularization through a

judicious choice of appropriate penalty function. The diversity regularization cost

(JD) for lth layer of the deep network is thus defined as:

JD(
(l)
w) =

1
2

n′

∑
i=1

n′

∑
j=1,j �=i

(l)
mi,j(SIMC(

(l)
wi,

(l)
wj))

2 (28)

where wi are the weights connecting the activations of layer l − 1 to ith neuron of

layer l, n′ is the number of neurons in layer l. mi,j is a binary mask variable defined

as

108

mi,j =

{ 1 |SIMC(wi, wj)| ≥ τ

0 i = j

0 otherwise

(29)

and 0 ≤ τ ≤ 1 is an hyperparameter. It is worthy to note that self correlation of

each feature vector wi has been discarded in (29). Also, both negative and positive

correlations above the threshold τ are taken into consideration. This implies fea-

ture pair with |SIMC| below τ will not be penalized.

It is important to also note the importance and relevance of τ in (29). Setting

τ = 0 results in orthogonal feature set and this is in most cases neither desirable

nor practical because some features are still required to be shared. For instance, if

we consider a model trained on CIAFR-10 dataset [132] that has "automobiles" and

"trucks" as two of its ten categories. If a particular lower-level feature describes the

"wheel", then, it will not be out of place if two higher-level features describing au-

tomobile and truck share common feature that describes the wheel. The choice of

τ determines the level of sharing allowed, that is, the degree of feature sharing

across features of a particular layer. In other words, τ serves as a trade-off parame-

ter that ensures some degree of feature sharing across multiple high-level features

and at the same time ensuring features are sufficiently dissimilar.

By letting Φ ∈ Rn×n′
contain n′ normalized filter vectors (receptive fields)

φi = wi/
√||wi||2 as columns, each with n elements corresponding to connections

from layer l − 1 to ith neuron of layer l, then, JD for all L layers can be rewritten as

a sum:

JD(φ) =
L

∑
l=1

⎛
⎝1

2

n′
l

∑
i=1

n′
l

∑
j=1

(
(l)
Ωij

)2
(l)
Mij

⎞
⎠ (30)

where
(l)
Ω ∈ Rn′×n′

denotes
(l)

ΦT
(l)
Φ which contains the inner products of each pair of

columns i and j of
(l)
Φ in each position i,j of Ω in layer l;

(l)
M ∈ Rn′×n′

is a binary

109

mask for layer l defined in (31); L is the number of layers to be regularized.

Mi,j =

{ 1 τ ≤ |Ωi,j| ≤ 1

0 i = j

0 otherwise

(31)

In order to enforce diversity of features while training, the diversity regularization

term (30) is added to the learning loss function J(θ; X, y), where θ comprises of

network’s weights (W) and biases (b); X, y are the data matrix and label vector,

respectively. The overall cost is then

Jnet = J(θ; X, y) + λJD(φ) (32)

where λ is the diversity penalty factor experimentally chosen to be 10. The weights

are updated as below using the error backpropagation:

w(l)
i,j = w(l)

i,j − ξ
∂

∂w(l)
i,j

Jnet (33)

b(l)j = b(l)j − ξ
∂

∂b(l)j

Jnet (34)

where ξ > 0 is the learning rate and the gradient of the loss function is computed

as in (35).

∂

∂w(l)
i,j

Jnet = ∇
w(l)

i,j
J(

(l)
θ ; X, y) + λ∇

w(l)
i,j

JD(φ) (35)

and

∇
w(l)

i,j
JD(φ) =

n

∑
k=1

(l)
Φi,k

(l)
Ωk,j

(l)
Mk,j (36)

2. Implications of imposing feature diversity

The graphical illustration of impact of diversity regularization on features

is shown in Fig. 39. Since this illustration does not utilize training data to update

110

feature matrix W(l) in Eq.(33), ∇W(l) J(
(l)
θ ; X, y) is thus set → 0. The three 2D filters

shown as vectors in Fig. 39a were synthesized for visual illustration and both τ

and λ were set to be 0.1 and 10, respectively. JD(φ) as a result of three initial filters

evaluates to 2.062 using Eq.(30) with L = 1. Making a step along the gradient re-

duces the diversity regularization cost to 1.996 as shown in Fig. 39b. Likewise, the

updated features after second and fourth iterations of gradient descent resulted in

diversity regularization cost of 1.895 and 1.67 as shown in Figs. 39c and d, respec-

tively. It is observed that at every iteration, the optimizer is forced to find features

that are less similar in order to minimize JD(φ).

Another crucial observation is that the filter distant from others in feature

space is less regularized and has little influence on the regularization of other fil-

ters. The effect of both diversity penalty factor λ and thresholding parameter τ

on diversity regularization cost JD is shown in Figs. 40a and b, respectively. As

expected, JD increases as the value of λ is increased for τ = 0.1. The effect of τ

on JD is also explored and it can be observed in Figs. 40b that when τ = 0.1, the

features are regularized more aggressively due to more feature-pair having sim-

ilarity exceeding this threshold value and leading to a situation whereby feature

vectors are heavily updated in every iteration leading to fluctuations of JD. In con-

trast, when τ = 0.2, features are heavily updated in the first fifteen iterations and

subsequently converges into a local optimum.

B. Online Redundant Filter Detection and Dropout

This section introduces the concept of online agglomerative hierarchical

clustering of features for detecting and dropping of Nr redundant features and

their maps during training originally introduced in [88] and cited in [2] for prun-

ing redundant features in unsupervised pretraining. In this section, two online

111

dropout heuristics considered both aim at online detection of redundant features

and:

1. dropping of redundant features maps in the forward pass during train-

ing. Here, clustering of features aims at automatically detecting the features

whose activations/maps will be dropped in each training epoch.

2. random dropping of Nr feature maps during training.

The above two criteria are alternative approaches and they both aim at temporarily

dropping a set of feature maps during training. The term redundant reflects a

choice of a specific chosen measure, SIMC and of the τ value.

1. Online Filtering Redundancy Dropout

The objective here is to dropout feature maps that have identical or very

similar features in the weight space according to well-defined similarity measure

and a chosen cluster similarity threshold denoted as
∗
τ as shown in Algorithm 6.

∗
τ

is an hyperparameter that has to be set in order to achieve optimal performance.

The nitty-gritty of the redundant feature dropout procedure is detailed in Algo-

rithm 6. It first initializes weights to small random numbers by following the

method introduced in [70]. Training data are shuffled and split into batches in

each epoch. The loss in (32) is computed on each batch of the training samples.

The backpropagation algorithm computes the gradient of the loss with respect to

all the model parameters. Weights and biases are updated using the update rules

in (33) and (34), respectively. At the end of every epoch, the weights connecting the

activations of layer l − 1 to neurons of layer l are examined for possible similarity.

The objective here is to discover n f clusters in the set of n′ original weight vectors

(or simply features), where n f ≤ n′. Upon detecting these distinct n f clusters, a

representative feature from each of these n f clusters is randomly sampled without

112

replacement and the remaining set of features are tagged as redundant (SR). This

process continues for prescribed number of epochs.

The detection of redundant feature vectors is generally tractable especially

from practical standpoint since the number of features in each layer is reasonably

sized (mostly less than a thousand).

2. Online Redundancy-based Dropout

The complexity of agglomerative clustering in Algorithm 6 is O((n′)2log(n′)),

which might sometimes make it impractical to deploy in online settings (that is,

during training) especially for large n′ and l. For instance, clustering 1024 feature

vectors empirically takes on average on our machine (see specs in the Section C)

12 seconds and this is executed at least once in every epoch. This amounts to at

least additional (12 ∗ l ∗ nbepoch) seconds of computational overhead, where l is

the number of layers and nbepoch is number of epochs. However, the computa-

tional overhead is practical for relatively shallow network architectures.

To circumvent this problem for very deep and wide networks, Algorithm 7

is proposed to estimate the dropout fraction based on the number of feature pairs

that are correlated above a set threshold
∗
τ. It uses cosine similarity with threshold-

ing mechanism to dynamically set the dropout fraction of conventional dropout

regularizer. This incorporates the redundancy information in the dropout mecha-

nism. It is worth motivating and mentioning that Algorithms 6 and 7 are alterna-

tive approaches and should be used independently. The main difference between

these algorithms is that Algorithm 6 uses hierarchical agglomerative clustering

to detect and drop out the exact redundant features in each epoch, while Algo-

rithm 7 estimates the number of feature maps to be randomly dropped at each

epoch. Computationally, the dropout fraction of layer l in each epoch in Algo-

rithm 7 is computed as the mean of the upper (or lower) triangular part of matrix

113

Algorithm 6: Online Redundant Feature Dropout (divReg-1)

1 {The parameters are: BS - the batch size, ξ - learning rate, n′ - number of

filters, τ - diversity regularization correlation threshold, and
∗
τ - filter

clustering similarity threshold}

2 {θ is the vector of concatenated weights (W(l)) and biases (b(l)).

Initialize θ from a normal distribution as proposed in [70]. Initialize

dropout fraction α}

3 θ ← θ0 {Initial weight and biases}

4 for prescribed number of epochs (nbepoch) do

5 permute training samples

6 for all batches of BS train samples do

7 Jnet ← loss on batch samples from eq. (32)

8 Δθ ← compute gradient using eq. (33) and (34)

9 {Make a step along the gradient}

10 θ ← θ − ξΔθ

11 end for

12 {Compute the set of redundant features}

13 SR ← FilterClustering1()

14 {Drop activation maps corresponding to features in SR}

15 end for

16 FilterClustering1():

17 Input: W(l),
∗
τ

18 Scan for cluster(s) of vectors in W(l) with SIMC >
∗
τ

19 {Randomly sample and tag one representative feature from each of the

n f clusters as non-redundant}

20 Output: Set of redundant features in W(l)

114

∗
M as in (37) below:

α(l) =
∑n′

i=1 ∑n′
j=1

∗
M

(l)
(i, j)

(n′)2 − n′
(37)

where

∗
M(i, j) =

{ 1
∗
τ ≤ |Ω(i, j)| ≤ 1

0 i = j

0 otherwise.

(38)

It must be noted that both Algorithms 6 and 7 are adaptive in the sense that they

adapt accordingly in every epoch to varying number of redundant filters. Another

crucial detail about Algorithm 7 is the initialization of α. Different initialization

values [0, 0.25, 0.5, 0.75] were experimented with, and it is found different values

work best for different datasets as will be detailed in Section IV. Unlike conven-

tional dropout [58] that randomly drops a fixed number of units throughout the

training process, the number of units dropped during training using Algorithms 6

and 7 adapts accordingly as training progresses. In this section, training under the

diversity regularization in (30) without dropout as divReg while training using Al-

gorithms 6 and 7 is denoted as divReg-1 and divReg-2, respectively.

Each of divReg-1 and divReg-2 can be used in tandem with the diversity

regularization introduced in the previous section. However, they could also be de-

ployed as stand-alone regularization tools in which case the regularization term in

(30) is discarded by setting λ = 0. It must be noted that when using any of these

procedures in conjunction with diversity regularization term (when λ �= 0), the

width of the similarity bound [-τ, τ] must be chosen as large as possible to allow

the detection of some similar features and also
∗
τ ≤ τ.

115

Algorithm 7: Online Redundancy-dependent Dropout (divReg-2)

1 {The parameters are: BS - the batch size, ξ - learning rate, n′ - number of

filters, α - dropout fraction, Nr - number of redundant filters, τ -

diversity regularization correlation threshold, and τ∗ }

2 {θ is the vector of concatenated weights (W(l)) and biases (b(l)).

3 Initialize θ from a normal distribution as proposed in [70].

4 θ ← θ0 {Initial weight and biases}

5 { Initialize α - dropout fraction}

6 for prescribed number of epochs (nbepoch) do

7 permute training samples

8 Nr ← 0 {Initial number of redundant features}

9 for all batches of BS train samples do

10 Jnet ← loss on samples in the batch b from eq. (32)

11 Δθ ← compute gradient using eq. (33) and (34)

12 {Make a step along the gradient}

13 θ ← θ − ξΔθ

14 end for

15 {Compute the binary mask M∗(l) in (38) for every layer}

16 {Compute and update α in (37) for every layer l}

17 end for

116

C. Experiments

Diversity regularization (divReg) was evaluated on MNIST dataset of hand-

written digits [130], CIFAR-10 [132], and Stanford Natural Language Inference

(SNLI) Corpus [149]. The software implementation has been in Keras library 3

with Tensorflow [150] backend on two Titan X 12GB GPUs4.

1. Feature Evolution during Training

In the preliminary experiment, a multilayer perceptron with two hidden

layers was trained using MNIST digits. Each layer has 1024 ReLU-activated hid-

den units and Adam optimizer [131] with batch size of 128 was used to train the

model for 300 epochs and τ and ξ in divReg was both set to 0.05. The hyperpa-

rameters of OrthoReg was set as reported in [24]. Fig. 41 shows the distribution

of pairwise correlation of first hidden layer features (
(1)
Ω =

(1)

ΦT
(1)
Φ) in the beginning

and end of training. It can be observed that divReg was able to constrain the pair-

wise feature correlations between the desired bound (-0.05 and 0.05) compared to

the highly correlated features extracted by unregularized counterpart. Although

OrthoReg was able to eliminate all the positively correlated features using expo-

nential squashing function, but it did so in a more rigid way which could lead to

extraction of noisy features. Similarly in Figs. 42a and b, the pairwise feature cor-

relations of the second hidden layer have been bounded by the set threshold for

divReg, unconstrained for unregularized model, and negatively correlated with

tight bound for OrthoReg.

Table 14 reports the performance of divReg along with four other regulariza-

tion techniques. All reported results are average performance over 5 independent

3https://keras.io/keras-the-python-deep-learning-library
4Implementation of divReg can be found in https://github.com/babajide07/

Diversity-Regularization-Keras-Implementation

117

trials alongside with their standard deviation. The results are separated and com-

pared on the basis of the class of the regularization technique. It can be observed

that Dropout outperforms L1 in terms of test error and also in terms of generaliza-

tion (as measured by the test-train error gap). The performance improvement of

Dropout technique in terms of generalization over L1 is statistically significant as

shown by the p-value. Similarly, the performance of divReg is better than both L2

and OrthoReg with respect to test error and generalization. Another keen observa-

tion is that the test-train error gap for divReg and L2 regularization is very similar

as inferred by the p-value, but the improvement in absolute test performance does

seem to be statistically significant.

−0.04 −0.02 0.00 0.02 0.04
0

5000

10000

15000

20000

25000

F
re

q
u
e
n
c
y

Epoch 2

divReg(τ = 0.05)

−1.0 −0.5 0.0 0.5 1.0 1.5
0

20000

40000

60000

80000

100000

120000

F
re

q
u
e
n
c
y No Regularization

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

SIM
C

0

100000

200000

300000

400000

500000

600000

F
re

q
u
e
n
c
y OrthoReg(λ = 10)

(a)

−0.04 −0.02 0.00 0.02 0.04
0

5000

10000

15000

20000

F
re

q
u
e
n
c
y

Epoch 300

divReg(τ = 0.05)

−0.5 0.0 0.5 1.0
0

20000
40000
60000
80000

100000
120000
140000
160000
180000

F
re

q
u
e
n
c
y No Regularization

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1

SIM
C

0

100000

200000

300000

400000

500000

600000

F
re

q
u
e
n
c
y OrthoReg(λ = 10)

(b)

FIGURE 41: The distribution of pairwise feature correlation (Ω(1)) in first hidden

layer at (a) epoch 2 (b) epoch 300 [4]

For qualitative comparison, a sparse autoencoder (AE) with 256 ReLU-activated

encoding units and 784 sigmoid-activated decoding units was trained on raw pix-

els of MNIST digits. The weights were initialized randomly by sampling from

Gaussian distribution with zero mean and standard deviation of 0.003 based on

118

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06
0

2000
4000
6000
8000

10000
12000
14000
16000

F
re

q
u
e
n
c
y

Epoch 2

divReg(τ = 0.05)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0

20000

40000

60000

80000

100000

120000

F
re

q
u
e
n
c
y No Regularization

−0.0016 −0.0014 −0.0012 −0.0010 −0.0008 −0.0006 −0.0004

SIMC

0

50000

100000

150000

200000

250000

F
re

q
u
e
n
c
y OrthoReg(λ = 10)

(a)

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06 0.08
0

5000

10000

15000

20000

25000

F
re

q
u
e
n
c
y

Epoch 300

divReg(τ = 0.05)

−0.5 0.0 0.5 1.0
0

20000

40000

60000

80000

100000

120000

F
re

q
u
e
n
c
y No Regularization

−0.0013 −0.0012 −0.0011 −0.0010 −0.0009 −0.0008 −0.0007

SIM
C

0

50000

100000

150000

200000

F
re

q
u
e
n
c
y OrthoReg(λ = 10)

(b)

FIGURE 42: The distribution of pairwise feature correlation (Ω(2)) in second hid-

den layer at (a) epoch 2 (b) epoch 300 [4]

[68]. The AE model was regularized with L1 (using decay parameter 10−4), dropout

(α = 0.5), OrthoReg (using angle-of-influence of 10), and divReg (τ=0.4) regular-

ization techniques and compared in terms of quality of the features learned. The

features learned using each of the regularization method are shown in Fig. 25. One

key observation is that L1 and dropout regularization resulted in some dead filters

as highlighted in Figs. 25a and b, whereas, the representations learned with Or-

thoReg looks noisy compared to those learned with divReg regularization.

In a similar vein, multilayer perceptron was trained on MNIST with two

ReLU-activated hidden layers and regularized by divReg-1. Number of hidden

units per layer was set 1024 and parameters of the model was again optimized

using Adam. As observed in Fig 44a, increasing τ∗ yields increased number of

dissimilar features because more and more features are considered occupying dis-

tinct clusters. Another interesting observation from this result is that earlier layers

are generally prone to extracting more distinct features than latter layers with the

same value of τ∗. Fig 44b is averaged over ten experiments to show the statistical

119

Regularization train (%) test (%) test-train (%) p-value

L1 0.8791 ± 0.0947 1.9367 ± 0.0666 1.0575 ± 0.1411 0.0331

Dropout (α = 0.5) [58] 0.4875 ± 0.0530 1.2250 ± 0.0071 0.7375 ± 0.0460 -

L2 0.4550 ± 0.2280 1.7375 ± 0.1115 1.2825 ± 0.1505 0.0812

OrthoReg [24] 0.0167 ± 0.0212 1.6950 ± 0.0495 1.6783 ± 0.0283 0.0176

divReg 0.0535 ± 0.0658 1.3150 ± 0.0212 1.2615 ± 0.0445 -

TABLE 14: Test-train error gap on MNIST [4]

(a) L1

(b) Dropout

(c) OrthoReg

(d) divReg

FIGURE 43: 150 out of 256 encoding features (left) learned from MNIST digit data

set with autoencoders using (a) L1, (b) Dropout (c) orthoReg, and (d) divReg. The

range of weights are scaled and mapped to the graycolor map (right) [4].

120

0.0 0.2 0.4 0.6 0.8 1.0

τ
∗

0

200

400

600

800

1000

1200

 N
u
m

b
e
r

o
f

n
o
n
re

d
u
n
d
a
n
t

fe
a
tu

re
s

initial number of features

layer 1

layer 2

(a)

0.0 0.2 0.4 0.6 0.8 1.0

τ
∗

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

 C
la

s
s
if
ic

a
ti

o
n
 e

rr
o
r

(%
)

train

test

(b)

FIGURE 44: Performance of Multilayer Perceptron (with architecture 784-1024-

1024-10) regularized using divReg-1 and trained on the MNIST dataset vs. thresh-

old τ∗. (a) Number of nonredundant features for 1024 initial features. (b) percent-

age classification error [4]

0 10 20 30 40 50

epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ro

p
o
u
t

F
ra

c
ti

o
n

Layer 1

0.00

0.25

0.50

0.75

(a)

0 10 20 30 40 50

epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ro

p
o
u
t

F
ra

c
ti

o
n

Layer 2

0.00

0.25

0.50

0.75

(b)

FIGURE 45: Evolution of dropout fraction (α) with divReg-2 using the MNIST

dataset for four different initializations of α in (a) layer 1 and (b) layer 2. Source: [4]

significance. The error curves shown in Figs 44b reveal that networks trained us-

ing divReg-1 with τ∗ 0.3 resulted in the lowest test-train error gap.

121

Model # layers size test (%)

Unregularized [141] 2 800 1.40

DropConnect [141] 2 800 1.20

Dropout [58] 2 1024 1.28 ± 0.06

Dropout [58] 3 1024 1.25 ± 0.04

OrthoReg [24] (+ Dropout) 2 1024 1.38 ± 0.03

Label Smoothing [110] (+ Dropout) 2 1024 1.21 ± 0.06

Confidence Penalty [146] (+ Dropout) 2 1024 1.17 ± 0.06

DivReg-2 2 1024 1.15 ± 0.03

DivReg-1 2 1024 1.10 ± 0.02

TABLE 15

Test error(%) on MNIST. Source: [4]

As mentioned earlier, a crucial step in achieving good performance with

divReg-2 is not only in the choice of τ∗ but also in the initialization of adaptive

dropout fraction α. Figs. 45a and b show the evolution of dropout fraction for four

different α initializations (0.0, 0.25, 0.50, 0.75) as training progresses for first and

second layers, respectively. For MNIST dataset, α initialized to 0.75 generalizes

better than other initializations as shown in Fig. 46 by the test-train classification

error gap. However, both the test and train accuracies are not as good as that ini-

tialized to 0.5, which has the best train and test error trade-off.

2. Diversity Regularized Image Classification

In the first set of experiments, multilayer perceptron with two ReLU-activated

hidden layers and a softmax layer for classification is again tested to ascertain if

122

the enhanced ability to extract dissimilar features would lead to improved clas-

sification accuracy using MNIST dataset. 9000 images from MNIST data were

randomly sampled from the training set as a held-out validation set for hyperpa-

rameter tuning and the network was retrained on the entire dataset using the best

hyperparameter configuration. Adam optimizer with batch size of 128 was used

for training the model for 300 epochs; τ and
∗
τ were set to 0.3 and 0.05 in divReg1

and divReg-2, respectively. The dropout fraction α in divReg-2 was initialized to

0.5. Every run of the experiment is repeated five times and averaged to combat the

effect of random initialization. The classification errors of model trained with di-

vReg were compared with state-of-the-art regularization techniques as detailed in

Table 15. It is observed from the result that the model trained using divReg-1 and

divReg-2 outperforms all other benchmark regularizers. The results also show that

dropping the maps of redundancy filters in divReg-1 leads to a better generaliza-

tion but introduces computational overhead comparable to divReg-2 with similar

performance.

In the second set of large scale image classification experiments, the current

state-of-the-art densely connected convolutional neural network (DenseNet) [151]

was trained on CIFAR-10 dataset to see effect of extracting dissimilar features on

classification performance. Again, 6000 images were randomly sampled from the

training set as a held-out validation set for hyperparameter tuning and the net-

work was retrained on the entire dataset using the best hyperparameter configu-

ration. Due to GPU memory constraints, 100-layer DenseNet with a growth rate

of 12 was used. The model was trained with stochastic gradient descent (SGD)

with batch-size of 64 for 150 epochs and ξ initialized to 0.1 and scheduled to 0.01,

0.1, 0.01, 0.001, 0.01, 0.001, and 0.0001 in epochs 20, 24, 44, 84, 104, 114, and 130,

respectively as shown in Fig. 47. For a fair comparison, the results presented in Ta-

ble 16 are for models trained without data augmentation. Hyperparameters τ and

123

∗
τ in divReg2 was also set to 0.5 and 0.2, respectively. The dropout fraction α was

initialized to 0.1. The implementation of DenseNet with bottleneck (BC) is lim-

ited to architecture with approximately 0.8M trainable parameters due to memory

constraints. The classification performance of the deep networks regularized with

Dropout [58], Label smoothing [110], confidence penalty [146], and OrthoReg [24]

were used as benchmark. The experiments were repeated five times and averaged.

It can be observed in Table 16 that divReg-2 outperforms all other regularizations

considered - an indication that extraction of dissimilar features and redundancy-

based adaptive dropout improve generalization of very deep neural network mod-

els.

124

M
o

d
e
l

#
la

y
e
rs

#
p

a
ra

m
e
te

rs
te

st
(%

)
#

ep
oc

hs

R
es

id
ua

lC
N

N
[9

6]
11

0
1.

7M
13

.6
3

30
0

St
oc

ha
st

ic
D

ep
th

R
es

id
ua

lC
N

N
[1

52
]

11
0

1.
7M

11
.6

6
50

0

D
en

se
ly

C
on

ne
ct

ed
C

N
N

(w
it

h
D

ro
po

ut
)[

15
1]

40
1.

0M
7.

00
30

0

D
en

se
ly

C
on

ne
ct

ed
C

N
N

(w
it

h
La

be
lS

m
oo

th
in

g
[1

10
]+

D
ro

po
ut

)
40

1.
0M

6.
89

30
0

D
en

se
ly

C
on

ne
ct

ed
C

N
N

(w
it

h
C

on
fid

en
ce

Pe
na

lt
y

[1
46

]+
D

ro
po

ut
)

40
1.

0M
6.

77
30

0

D
en

se
ly

C
on

ne
ct

ed
C

N
N

-B
C

(w
it

h
D

ro
po

ut
)[

15
1]

10
0

0.
8M

6.
8

(±
0.

05
7)

15
0

D
en

se
ly

C
on

ne
ct

ed
C

N
N

-B
C

(w
it

h
O

rt
ho

R
eg

[2
4]

+
D

ro
po

ut
)

10
0

0.
8M

11
.2

(±
0.

12
5)

15
0

D
e
n

se
ly

C
o

n
n

e
ct

e
d

C
N

N
-B

C
(w

it
h

D
iv

R
e
g

-2
)

1
0
0

0
.8

M
6
.3

(±
0.

08
3)

1
5
0

TA
BL

E
16

:T
es

te
rr

or
(%

)o
n

C
IF

A
R

-1
0

w
it

ho
ut

da
ta

au
gm

en
ta

ti
on

.S
ou

rc
e:

[4
]

125

Model Top-1 (%) Top-5 (%) # Epochs

ResNet-34 [96] 26.77 8.56 90

ResNet-34 + OrthoReg 33.21 12.42 90

ResNet-34 + divReg 26.33 8.0 90

TABLE 17: Validation error on ImageNet. Source: [4]

In the third set of experiments involving large-scale image classification,

experiments were performed on the 1000-class ImageNet 2012 dataset [153] which

contains about 1.2 million training images, 50,000 validation images, and 100,000

test images (with no published labels). The results are measured by top1/top-5

error rates [153]. ImageNet dataset was used to train a residual network known

as ResNet-34 [96], which has four stages of residual blocks and uses the projection

shortcut when the feature maps are down-sampled. The model was trained for 90

epochs, with a batch-size of 200 and a learning rate 0.1. Each layer of the model

is regularized using divReg with τ = 0.4. It can be observed in Table 17 that

divReg also outperforms both OrthoReg regularization method and unregularized

counterpart.

3. Diversity Regularized Natural Language Inference

In the last set of experiments, the efficacy of diversity regularization in en-

hancing the efficiency of models used for understanding semantic relationship be-

tween two sentences and recognizing textual entailment was demonstrated. This

task involves determining whether two observed sentences, first one is known as

the premise and the other referred to as the hypothesis, are contradictory, not re-

lated (neutral) or entailing. In this series of experiments, models are evaluated

on textual entailment recognition task using Stanford Natural Language Infer-

126

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

α (initialization)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 C
la

s
s
if
ic

a
ti

o
n
 e

rr
o
r

(%
)

train

test

FIGURE 46 – Performance evaluation using divReg-2 on MNIST dataset for four
different initializations of α. Source: [4]

0 20 40 60 80 100 120 140 160

epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

ξ

FIGURE 47 – Learning rate (ξ) schedule for experiments on CIFAR-10 dataset.
Source: [4]

127

Premise Hypothesis label

A soccer game with multiple

males playing

Some men are playing a

sport

E

A man inspects the uniform of

a figure in some East Asian

country

The man is sleeping C

A smiling costumed woman is

holding an umbrella

A happy woman in a fairy

costume holds an umbrella

N

TABLE 18: A select examples from SNLI dataset where E, C,

and N represent Entailment, Contradiction, and Neutral,

respectively. Source: [4]

ence (SNLI) dataset [149]. The original dataset contains 550, 152 duos of premise-

hypothesis sentences and their corresponding labels as training set, 10, 000 as val-

idation set, and 10, 000 as testing set. After the removal of sentence-pair with un-

known labels, 549, 367 pairs for training, 9, 842 for validation and 9, 824 for testing

were obtained. Select examples from SNLI dataset are shown in Table 18.

300-dimensional word embeddings from the pretrained 300D Glove 840B

vocabulary [154] was extracted from SNLI dataset, each for both the premise and

hypothesis sentences and fed them through a ReLU "translation" layer. The max-

imum sequence length was chosen to be 42 and the embeddings of words not in

the vocabulary are set to zero in accordance with [155]. The pretrained Glove em-

bedding layer contains more than 12 million parameters, which was fixed during

training to avoid overfitting [156] and computational overhead. The LSTM model

with 300 hidden units was used to encode the premise and hypothesis sentences

and the resulting two 300D embeddings are concatenated and fed into three layers

128

of fully-connected units with ReLU activations. The output of the last layer is fed

into Softmax layer for classification.

The overall model was trained using the Adam optimizer with batch-size

of 512 for 100 epochs while τ and
∗
τ in divReg-2 was also set to 0.5 and 0.2, respec-

tively. The dropout fraction α for both recurrent (LSTM) and fully-connected layers

was initialized to 0.2. The experiment was also performed by replacing LSTM with

a GRU. Results were benchmarked with recent sentence encoding-based models

and experimental results were illustrated in Table 19. It is remarked that the pa-

rameters of the Glove embedding layer were not included in the number of pa-

rameters computed in Table 19.

As can be observed from the results, diversity regularization and adap-

tive dropout significantly improved the performance of both the baseline LSTM

and GRU models. By initializing dropout fraction of both recurrent and fully-

connected units to 0.2, the model was able to figure out the suitable dropout frac-

tion in accordance with differentiation of features. In addition, setting τ to 0.5

ensures no feature pair have cosine similarity greater than 0.5. Another impor-

tant observation is that OrthoReg sometimes extracts noisy features in an attempt

to decorrelate features, which explains why the performance of some models de-

teriorates. Deep Gated Attn BiLSTM (D-GAB) encoders [157] is the state-of-the-

art sentence encoding-based model for SNLI dataset with test accuracy of 85.5%.

However, D-GAB was not regularized using diversity regularization because it has

more than 11 million parameters requiring larger memory than those compared in

Table 19.

129

M
o

d
e
l

#
p

a
ra

m
e
te

rs
te

st
(%

)

30
0D

LS
TM

(r
ec

ur
re

nt
dr

op
ou

t)
+

3
x

60
0D

R
eL

U
+

O
rt

ho
R

eg
1.

9
M

77
.4

30
0D

LS
TM

en
co

de
rs

[1
58

]
3.

0
M

80
.6

0

30
0D

LS
TM

(r
ec

ur
re

nt
dr

op
ou

t)
+

3
x

60
0D

R
eL

U
1.

9
M

82
.7

30
0D

SP
IN

N
-P

Ie
nc

od
er

s
[1

58
]

3.
7

M
83

.2

60
0D

(3
00

+3
00

)B
iL

ST
M

en
co

de
rs

[1
56

]
2.

0
M

83
.3

30
0D

N
TI

-S
LS

TM
-L

ST
M

en
co

de
rs

[1
55

]
4.

0
M

83
.4

3
0
0
D

L
S

T
M

(r
e
cu

rr
e
n

t
d

ro
p

o
u

t)
+

3
x

6
0
0
D

R
e
L

U
+

d
iv

R
e
g

2
1
.9

M
8
3
.9

30
0D

G
R

U
(r

ec
ur

re
nt

dr
op

ou
t)

+
3

x
60

0D
R

eL
U

1.
7

M
83

.0

30
0D

G
R

U
(r

ec
ur

re
nt

dr
op

ou
t)

+
3

x
60

0D
R

eL
U

+
O

rt
ho

R
eg

1.
7

M
80

.8

3
0
0
D

G
R

U
(r

e
cu

rr
e
n

t
d

ro
p

o
u

t)
+

3
x

6
0
0
D

R
e
L

U
+

d
iv

R
e
g

2
1
.7

M
8
4
.3

TA
BL

E
19

:T
es

ta
cc

ur
ac

y
(%

)o
n

SN
LI

da
ta

se
t.

So
ur

ce
:[

4]

130

D. Diversity Regularized Adversarial Learning (DiReAL)

The training of GAN can be abstracted as a non-cooperative game between

two players namely the generator G and discriminator D. The discriminator tries

to distinguish if the generated sample is from the real (pdata) or fake data distri-

bution (pz), while G tries to trick D into believing that generated sample is from

pdata by moving the generation manifold towards the data manifold. The discrim-

inator aims to maximize Ex∼pdata(x)
[logD(x)] when the input is sampled from real

distribution and given a fake image sample G(z), z ∼ pz(z), it is trained to output

probability, D(G(z)), close to zero by maximizing Ez∼pz(z)[log(1− D(G(z)))]. The

generator network, however, is trained to maximize the chances of D producing a

high probability for a fake image sample G(z) thus by minimizing Ez∼pz [log(1 −
D(G(z)))].

Since discriminator D is commonly parameterized as deep neural networks

and relies on many redundant filters, it is regularized during training to provide

more stable gradient to update both G and D. Diversity regularizer enforces con-

straints on the learning process by simply encouraging diverse filtering and dis-

courages D from extracting redundant filters. The idea behind diversifying fea-

tures is that in addition to gradient information provided by D, additional diver-

sity loss with more stable gradient is provided to refine both G and D as shown

in Fig.48. The diversity loss encourages weights of D to be diverse by pushing

them towards the nearest orthogonal manifold. Proposed diversity regulariza-

tion provides more efficient gradient flow, a more stable optimization, richness of

layer-wise features of resulting model, and improved sample quality compared to

benchmarks and baseline. The diversity regularization ensures the column space

of
(l)
Φ for lth layer of the discriminator does not concentrate in few direction during

training thus preventing them to be sensitive in few and limited directions.

In this experiment, a deep convolutional GAN (DCGAN) in [159] was trained

131

FIGURE 48 – Schema of Diversity Regularized Adversarial Learning (DiReAL)

using MNIST digits. A batch size of 64 was used to train the model for 100 epochs

and τ in divReg was set to 0.5. Fig. 49 shows the diversity loss of both generator

and discriminator for DiReAL and unregularized counterpart. It can be observed

that divReg was able to minimize the pairwise feature correlations compared to the

highly correlated features extracted by the unregularized counterpart. Specifically,

divReg was able to steadily minimize the diversity loss as training progresses com-

pared to the unregularized DCGAN, where extraction of similar features grows

with epoch of training, thus increasing the diversity loss. The divergence between

discriminator output for real handwritten digits and generated samples over 30

batches for regularized and the unregularized networks is shown in Fig. 50. The

divergence was measured using the Wasserstein distance measure [160] and it can

be observed that the regularizing effect of divReg stabilizes the adversarial train-

ing and prevents mode collapse. For unregularized network, however, the mode

started to collapse around 45th epoch. Closer look into the diversity of the gener-

ator in Fig. 49a, it is evident that just around the epoch of collapse the generator

starts extracting more and more redundant filters. It is suspected that divReg was

able to stabilize the training by pushing features to lie close to the orthogonal man-

ifold, thus preventing learned features from collapsing to an undesirable manifold.

132

Fig. 51 shows the handwritten digit samples synthesized with and without divReg

and it can be observed that diversification of features is beneficial for stabilizing

adversarial learning and ultimately improving the samples’ quality.

0 20 40 60 80 100

epoch

0

5000

10000

15000

20000

25000

G
e
n
e
ra

to
r

d
iv

e
rs

it
y
 l
o
s
s
 (
J G

)

(a)

0 20 40 60 80 100

epoch

0

50

100

150

200

250

300

350

400

G
e
n
e
ra

to
r

d
iv

e
rs

it
y
 l
o
s
s
 (
J G

)

(b)

0 20 40 60 80 100

epoch

200

400

600

800

1000

D
is

c
ri

m
in

a
to

r
d
iv

e
rs

it
y
 l
o
s
s
 (
J D

)

(c)

0 20 40 60 80 100

epoch

0

1

2

3

4

D
is

c
ri

m
in

a
to

r
d
iv

e
rs

it
y
 l
o
s
s
 (
J D

)

(d)

FIGURE 49: Diversity loss of (a) generator with no regularization (b) generator

with diReAL (c) discriminator with no regularization, and (d) discriminator with

DiReAL trained on MNIST dataset.

133

FIGURE 50 – Divergence, as measured by Wasserstein distance, between the dis-
criminator output for real and synthesized samples

FIGURE 51 – Synthesized hand-written digits with and without diversity Regular-
ization.

134

E. Conclusion

This chapter addresses the concept and properties of special regularization

of deep neural networks which initially produce a variety of complex receptive

fields. Proposed approach takes advantage of initially extracting diversified fea-

tures and eliminating features based on select redundancy measures. The perfor-

mance of the proposed regularization in terms of extracting diverse features and

improving generalization was compared with recent regularization techniques on

select tasks using state-of-the-art deep learning models. The results show that if

not properly constrained, deep neural network models are capable of extracting

very similar features thereby creating unnecessary amount of filtering redundancy.

By using the proposed methods, such redundancy can be controlled, eliminated

and networks are enabled to extract more distinctive features. It has also been

shown on select examples that concurrent extraction of diverse features and re-

dundant feature dropout improve model generalization. Generative models such

as generative adversarial networks have also been shown to benefit from feature

diversification by using stable diversity loss to stabilize adversarial learning. These

concepts are illustrated using MNIST handwritten digits, CIFAR-10, Celeb-A, STL-

10, ImageNet, and Stanford Natural Language Inference Dataset.

135

CHAPTER VI

CONCLUSIONS

Receptive fields optimization (RFO) in deep neural networks for improved

interpretability, performance, and computational efficiency has been detailed in

this dissertation. RFO is capable of enhancing feature extraction process and un-

earthing most important latent representations that are useful for many discrimi-

native and generative tasks. For discriminative purposes, optimization of recep-

tive fields could help reveal what is important/unimportant in data and/or model

for task such as classification, regression, clustering, and compression. For gener-

ative intent, RFO can help alleviate some of the problems associated with training

state-of-the-art generative models for data synthesis.

The task of optimizing receptive field in deep learning is an open-ended

adventure as it stands and it is often tailored towards or customized for solving

specific problems. As discussed in detail in Chapter III, RFO through imposition

of nonnegative receptive fields can help alleviate the difficulty in building and de-

veloping an accurate interpretable autoencoder-based deep learning models. It

was shown that by imposing nonnegativity-constraints on receptive fields, only

few important negative weights for retaining model’s performance are preserved

and reduced in magnitude. This enables the extraction of additive part-based data

decomposition.

Two offline RFO methods were proposed in Chapter IV for reducing redun-

dant receptive fields in unsupervised artificial neural network known as autoen-

coder. The proposed methods show that redundancy can be drastically reduced

even when autoencoders are cascaded into deep networks. It was also shown that

136

removing redundant receptive fields improves the computational efficiency of the

unsupervised feature extraction and reduces the effect of overfitting in the super-

vised phase. Post-training RFO was also detailed and extended in Chapter V into

a family of deep convolutional neural networks for improving computational effi-

ciency through network compression with minimal accuracy deterioration.

Finally, an online RFO method for preventing redundancy and imposing

feature diversity during training was presented and discussed in detail in chapter

VI. The regularization mechanism proposed inhibits the learning of redundant fil-

ters, thereby enforcing the extraction of diverse features. Additionally, hierarchical

agglomerative clustering was adapted to drop activations (or feature maps) of re-

dundant features during training for adapting the dropout fraction. Since agglom-

erative clustering is computationally expensive, a novel method was proposed

based on the pairwise feature correlation to eliminate the computational overhead

resulting from agglomerative clustering of features. This proposed method uses

pairwise feature correlation to compute adaptive dropout fraction during training.

The effectiveness of the algorithms were demonstrated across many learning tasks

and benchmark datasets and shown to improve the state-of-the-art.

RFO methods detailed in this dissertation have many practical implications.

First, one of the main obstacles limiting the application of deep neural networks

in medicine, military, and business analytics is the fact that its resulting models

are not sufficiently transparent or interpretable. This dissertation in part alleviates

these limitations by instilling power of explanation/interpretations into resulting

deep learning model. Second, it focuses on improving the computational efficiency

of deep neural network for both supervised and unsupervised settings. It enables

the use of accurate deep neural network models on computationally limited plat-

forms such as mobile and embedded devices. In addition to good accuracy, the

work in Chapters IV and V enables resource-limited devices to benefit greatly from

137

accurate deep neural network models with lower inference computational cost. It

enables large-scale DNNs models to execute efficiently offline on mobile devices

and medical wearables without the need for the conventional cloud-based solu-

tions.

In sum, algorithms introduced in this dissertation are particularly valuable

to so many aforementioned contemporary machine learning applications requir-

ing the use of intelligent and computationally efficient models interpretable by

domain users. The original contributions of the author of this dissertation include:

• The introduction of regularization method that balances the notion of inter-

pretability and accuracy in deep autoencoding neural networks with induc-

tion of simultaneous sparsity and nonnegativity constraints.

• Analysis and effect of redundant receptive fields on performance, computa-

tional efficiency and interpretability of supervised and unsupervised deep

neural network models.

• The introduction of two algorithms based on agglomerative clustering to au-

tomatically detect and eliminate redundancy in unsupervised deep autoen-

coding and supervised deep convolutional neural networks.

• The introduction of a novel online diversity regularization technique to in-

hibit the learning of redundant receptive fields for the purpose of enhancing

the efficiency of deep learning models and for stabilizing the training of gen-

erative adversarial networks.

• The introduction of a redundancy-feature-based adaptive dropout technique

to reduce the effect of overfitting in deep neural network models.

138

REFERENCES

[1] B. O. Ayinde and J. M. Zurada. Deep learning of constrained autoencoders

for enhanced understanding of data. IEEE Transactions on Neural Networks

and Learning Systems, 29(9):3969–3979, Sep. 2018.

[2] Babajide O Ayinde and Jacek M Zurada. Nonredundant sparse feature ex-

traction using autoencoders with receptive fields clustering. Neural Networks,

93:99–109, 2017.

[3] Babajide O Ayinde and Jacek M Zurada. Building efficient convnets using

redundant feature pruning. arXiv preprint arXiv:1802.07653, 2018.

[4] B. O. Ayinde, T. Inanc, and J. M. Zurada. Regularizing deep neural networks

by enhancing diversity in feature extraction. IEEE Transactions on Neural Net-

works and Learning Systems, pages 1–12, 2019.

[5] Babajide O Ayinde and Jacek M Zurada. Discovery through constraints: Im-

posing constraints on autoencoders for data representation and dictionary

learning. IEEE Systems, Man, and Cybernetics Magazine, 3(3):13–24, 2017.

[6] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of

Machine Learning Research, 9(11), 2008.

[7] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.

Journal of machine learning research, 9(Nov):2579–2605, 2008.

[8] Shuyang Wang, Zhengming Ding, and Yun Fu. Feature selection guided

auto-encoder. In AAAI, pages 2725–2731, 2017.

139

[9] Babajide O Ayinde and Hashim A Hashim. Energy-efficient deployment

of relay nodes in wireless sensor networks using evolutionary techniques.

International Journal of Wireless Information Networks, pages 1–16, 2018.

[10] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltz-

mann machines for collaborative filtering. In Proceedings of the 24th interna-

tional conference on Machine learning, pages 791–798. ACM, 2007.

[11] Abdel-rahman Mohamed, George E Dahl, Geoffrey Hinton, et al. Acoustic

modeling using deep belief networks. IEEE Trans. Audio, Speech & Language

Processing, 20(1):14–22, 2012.

[12] Geoffrey E Hinton and Richard S Zemel. Autoencoders, minimum descrip-

tion length and helmholtz free energy. In Advances in neural information pro-

cessing systems, pages 3–10, 1994.

[13] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-

Antoine Manzagol. Stacked denoising autoencoders: Learning useful rep-

resentations in a deep network with a local denoising criterion. Journal of

machine learning research, 11(Dec):3371–3408, 2010.

[14] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis

set: A strategy employed by v1. Vision Research, 37(23):3311–3325, 1997.

[15] Douglas Reynolds. Gaussian mixture models. Encyclopedia of biometrics,

pages 827–832, 2015.

[16] Nello Cristianini, John Shawe-Taylor, et al. An introduction to support vector

machines and other kernel-based learning methods. Cambridge university press,

2000.

140

[17] Jerome H Friedman. Greedy function approximation: a gradient boosting

machine. Annals of statistics, pages 1189–1232, 2001.

[18] J. M. Zurada. Introduction to Artificial Neural Systems. West Publishing Co.,

St. Paul, MN,USA, 1992.

[19] Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall

PTR, 1994.

[20] Jan Chorowski. Learning understandable classifier models. PhD Dissertation,

2012.

[21] Jan Chorowski and Jacek M Zurada. Extracting rules from neural networks

as decision diagrams. IEEE Transactions on Neural Networks, 22(12):2435–

2446, 2011.

[22] Jan Chorowski and Jacek M Zurada. Learning understandable neural net-

works with nonnegative weight constraints. IEEE transactions on Neural Net-

works and Learning Systems, 26(1):62–69, 2015.

[23] Yoshua Bengio and James S Bergstra. Slow, decorrelated features for pre-

training complex cell-like networks. In Advances in Neural Information Pro-

cessing Systems, pages 99–107, 2009.

[24] Pau Rodríguez, Jordi Gonzàlez, Guillem Cucurull, Josep M Gonfaus, and

Xavier Roca. Regularizing cnns with locally constrained decorrelations.

arXiv preprint arXiv:1611.01967, 2016.

[25] Jasper Snoek, Ryan P Adams, and Hugo Larochelle. Nonparametric guid-

ance of autoencoder representations using label information. Journal of Ma-

chine Learning Research, 13(Sep):2567–2588, 2012.

141

[26] Koray Kavukcuoglu, Rob Fergus, Yann LeCun, et al. Learning invariant fea-

tures through topographic filter maps. In Computer Vision and Pattern Recog-

nition, 2009. CVPR 2009. IEEE Conference on, pages 1605–1612. IEEE, 2009.

[27] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y Ng. Efficient sparse

coding algorithms. Advances in neural information processing systems, 19:801,

2007.

[28] Joseph F Murray and Kenneth Kreutz-Delgado. Learning sparse overcom-

plete codes for images. The Journal of VLSI Signal Processing, 45(1):97–110,

2006.

[29] Babajide O Ayinde and Ahmed H Desoky. Lossless image compression us-

ing zipper transformation. In Proceedings of the International Conference on

Image Processing, Computer Vision, and Pattern Recognition (IPCV), page 103.

The Steering Committee of The World Congress in Computer Science, 2016.

[30] Babajide O Ayinde. A fast and efficient near-lossless image compression

using zipper transformation. arXiv preprint arXiv:1710.02907, 2017.

[31] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictio-

nary learning for sparse coding. In Proceedings of the 26th annual international

conference on machine learning, pages 689–696. ACM, 2009.

[32] Jan Chorowski. Review of dimensionality reduction techniques. Technical

Paper (Internal Report), 2010.

[33] Christopher J Rozell, Don H Johnson, Richard G Baraniuk, and Bruno A

Olshausen. Sparse coding via thresholding and local competition in neural

circuits. Neural computation, 20(10):2526–2563, 2008.

142

[34] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative

matrix factorization. Nature, 401(6755):788–791, 1999.

[35] Nicolas Gillis. The why and how of nonnegative matrix factorization. Regu-

larization, Optimization, Kernels, and Support Vector Machines, 12(257), 2014.

[36] Karthik Devarajan. Nonnegative matrix factorization: an analytical and

interpretive tool in computational biology. PLoS computational biology,

4(7):e1000029, 2008.

[37] Oyetunji E Ogundijo and Xiaodong Wang. A sequential monte carlo ap-

proach to gene expression deconvolution. PloS one, 12(10):e0186167, 2017.

[38] Oyetunji E Ogundijo and Xiaodong Wang. Characterization of tumor het-

erogeneity by latent haplotypes: a sequential monte carlo approach. PeerJ,

6:e4838, 2018.

[39] Oyetunji E Ogundijo and Xiaodong Wang. Bayesian estimation of scaled

mutation rate under the coalescent: a sequential monte carlo approach. BMC

bioinformatics, 18(1):541, 2017.

[40] Oyetunji E Ogundijo, Abdulkadir Elmas, and Xiaodong Wang. Reverse en-

gineering gene regulatory networks from measurement with missing values.

EURASIP Journal on Bioinformatics and Systems Biology, 2017(1):2, 2016.

[41] Babajide O Ayinde, Sami El Ferik, Salim Ibrir, Moez Feki, and Bilal A Sid-

diqui. Backstepping control of an electro-hydraulic servo system subject to

disturbance and parameter uncertainty. In GCC Conference and Exhibition

(GCCCE), 2015 IEEE 8th, pages 1–6. IEEE, 2015.

143

[42] Tsung-Han Chan, Wing-Kin Ma, Chong-Yung Chi, and Yue Wang. A con-

vex analysis framework for blind separation of non-negative sources. IEEE

Transactions on Signal Processing, 56(10):5120–5134, 2008.

[43] Farial Shahnaz, Michael W Berry, V Paul Pauca, and Robert J Plemmons.

Document clustering using nonnegative matrix factorization. Information

Processing & Management, 42(2):373–386, 2006.

[44] Babajide Odunitan Ayinde and Abdulaziz Y Barnawi. Differential evolution

based deployment of wireless sensor networks. In Computer Systems and

Applications (AICCSA), 2014 IEEE/ACS 11th International Conference on, pages

131–137. IEEE, 2014.

[45] Fei Wang, Tao Li, Xin Wang, Shenghuo Zhu, and Chris Ding. Community

discovery using nonnegative matrix factorization. Data Mining and Knowl-

edge Discovery, 22(3):493–521, 2011.

[46] Prem Melville and Vikas Sindhwani. Recommender systems. In Encyclopedia

of machine learning, pages 829–838. Springer, 2011.

[47] Pierre Comon. Independent component analysis, a new concept? Signal

processing, 36(3):287–314, 1994.

[48] Jing Wang, Haibo He, and Danil V Prokhorov. A folded neural network

autoencoder for dimensionality reduction. Procedia Computer Science, 13:120–

127, 2012.

[49] Omar Dekhil, Hassan Hajjdiab, Babajide Ayinde, Ahmed Shalaby, Andy

Switala, Dawn Sosnin, Aliaa Elshamekh, Mohamed Ghazal, Robert Keyn-

ton, Gregory Barnes, et al. Using resting state functional mri to build a per-

sonalized autism diagnosis system. In Biomedical Imaging (ISBI 2018), 2018

IEEE 15th International Symposium on, pages 1381–1385. IEEE, 2018.

144

[50] A. Ng. Sparse autoencoder. In CS294A Lecture notes, URL https://web.

stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf, 2011. Stan-

ford University.

[51] E. Hosseini-Asl, J. M. Zurada, and O. Nasraoui. Deep learning of part-

based representation of data using sparse autoencoders with nonnegativ-

ity constraints. Neural Networks and Learning Systems, IEEE Transactions on,

27(12):2486–2498, 2016.

[52] Babajide O Ayinde, Ehsan Hosseini-Asl, and Jacek M Zurada. Visualizing

and understanding nonnegativity constrained sparse autoencoder in deep

learning. In Rutkowski L., Korytkowski M., Scherer R., Tadeusiewicz R., Zadeh L.,

Zurada J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture

Notes in Computer Science, vol 9692, pages 3–14. Springer, 2016.

[53] H. Lee, C. Ekanadham, and A. Ng. Sparse deep belief net model for visual

area v2. Advances in Neural Information Processing Systems, 7:873–830, 2007.

[54] V. Nair and G. E. Hinton. 3d object recognition with deep belief nets. Ad-

vances in Neural Information Processing Systems, pages 1339–1347, 2009.

[55] G. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep

belief nets. Neural Computation, 18(7):1527–1554, 2006.

[56] C. Poultney, S. Chopra, and Y. Cun. Efficient learning of sparse representa-

tions with an energy-based model. Advances in Neural Information Processing

Systems, pages 1137–1144, 2006.

[57] J Moody, S Hanson, Anders Krogh, and John A Hertz. A simple weight

decay can improve generalization. Advances in Neural Information Processing

Systems, 4:950–957, 1995.

145

[58] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks

from overfitting. The Journal of Machine Learning Research, 15(1):1929–1958,

2014.

[59] Alireza Makhzani and Brendan Frey. K-sparse autoencoders. arXiv preprint

arXiv:1312.5663, 2013.

[60] Alireza Makhzani and Brendan J Frey. Winner-take-all autoencoders. In

Advances in Neural Information Processing Systems, pages 2791–2799, 2015.

[61] A. Lemme, R. Reinhart, and J. Steil. Online learning and generalization

of parts-based image representations by non-negative sparse autoencoders.

Neural Networks, 33:194–203, 2012.

[62] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Clas-

sification and regression trees. CRC press, 1984.

[63] Włodzisław Duch, Rudy Setiono, and Jacek M Zurada. Computational intel-

ligence methods for rule-based data understanding. Proceedings of the IEEE,

92(5):771–805, 2004.

[64] Bart Baesens, Rudy Setiono, Christophe Mues, and Jan Vanthienen. Using

neural network rule extraction and decision tables for credit-risk evaluation.

Management science, 49(3):312–329, 2003.

[65] Robert Andrews, Joachim Diederich, and Alan B Tickle. Survey and critique

of techniques for extracting rules from trained artificial neural networks.

Knowledge-based systems, 8(6):373–389, 1995.

[66] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with

neural networks. Science, 313(5786):504–507, 2006.

146

[67] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Effi-

cient backprop. In Neural networks: Tricks of the trade, pages 9–50. Springer,

1998.

[68] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the Thirteenth Interna-

tional Conference on Artificial Intelligence and Statistics, pages 249–256, 2010.

[69] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions

to the nonlinear dynamics of learning in deep linear neural networks. arXiv

preprint arXiv:1312.6120, 2013.

[70] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification.

In Proc. of the IEEE International Conference on Computer Vision and Pattern

Recognition, pages 1026–1034, 2015.

[71] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive

field properties by learning a sparse code for natural images. Nature,

381(6583):607–609, 1996.

[72] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and

Ruslan R Salakhutdinov. Improving neural networks by preventing co-

adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[73] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifi-

cation with deep convolutional neural networks. In Advances in neural infor-

mation processing systems, pages 1097–1105, 2012.

[74] Ronan Collobert and Jason Weston. A unified architecture for natural lan-

guage processing: Deep neural networks with multitask learning. In Pro-

147

ceedings of the 25th international conference on Machine learning, pages 160–167.

ACM, 2008.

[75] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and com-

posing robust features with denoising autoencoders. In 25th International

Conference on Machine learning, pages 1096–1103. ACM, 2008.

[76] Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods for generic

object recognition with invariance to pose and lighting. In Computer Vision

and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Com-

puter Society Conference on, volume 2, pages II–97. IEEE, 2004.

[77] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow.

Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

[78] Yoshua Bengio. Learning deep architectures for ai. Foundations and trends®

in Machine Learning, 2(1):1–127, 2009.

[79] Y. Bengio and Y. LeCun. Scaling learning algorithms towards ai. Large-Scale

Kernel Machines, 34(1):1–41, 2007.

[80] L. Deng. A tutorial survey of architectures, algorithms, and applications for

deep learning. APSIPA Transactions on Signal and Information Processing, 3:e2,

2014.

[81] S. Bengio, L. Deng, H. Larochelle, H. Lee, and R. Salakhutdinov. Guest edi-

tors introduction: Special section on learning deep architectures. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 35(8):1795–1797, 2013.

[82] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review

and new perspectives. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 35(8).

148

[83] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436, 2015.

[84] Babajide O Ayinde and Jacek M Zurada. Clustering of receptive fields in

autoencoders. In Neural Networks (IJCNN), 2016 International Joint Conference

on, pages 1310–1317. IEEE, 2016.

[85] Jiquan Ngiam, Zhenghao Chen, Sonia A Bhaskar, Pang W Koh, and An-

drew Y Ng. Sparse filtering. In Advances in Neural Information Processing

Systems, pages 1125–1133, 2011.

[86] Jun Li, Heyou Chang, and Jian Yang. Sparse deep stacking network for im-

age classification. arXiv preprint arXiv:1501.00777, 2015.

[87] Yunlong He, Koray Kavukcuoglu, Yun Wang, Arthur Szlam, and Yanjun

Qi. Unsupervised feature learning by deep sparse coding. arXiv preprint

arXiv:1312.5783, 2013.

[88] Bruce Walter, Kavita Bala, Milind Kulkarni, and Keshav Pingali. Fast ag-

glomerative clustering for rendering. In IEEE Symposium on Interactive Ray

Tracing, pages 81–86. IEEE, 2008.

[89] Chris Ding and Xiaofeng He. Cluster merging and splitting in hierarchical

clustering algorithms. In Data Mining, 2002. ICDM 2003. Proceedings. 2002

IEEE International Conference on, pages 139–146. IEEE, 2002.

[90] Bastian Leibe, Ales Leonardis, and Bernt Schiele. Combined object catego-

rization and segmentation with an implicit shape model. In Workshop on

Statistical Learning in Computer Vision, ECCV, volume 2, page 7, 2004.

149

[91] Swami Manickam, Scott D Roth, and Thomas Bushman. Intelligent and opti-

mal normalized correlation for high-speed pattern matching. Datacube Tech-

nical Paper, 2000.

[92] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm

for bound constrained optimization. SIAM Journal on Scientific Computing,

16(5):1190–1208, 1995.

[93] Peter N Belhumeur, João P Hespanha, and David J Kriegman. Eigenfaces vs.

fisherfaces: Recognition using class specific linear projection. Pattern Analy-

sis and Machine Intelligence, IEEE Transactions on, 19(7):711–720, 1997.

[94] Deng Cai, Xiaofei He, Yuxiao Hu, Jiawei Han, and Thomas Huang. Learning

a spatially smooth subspace for face recognition. In Proc. IEEE Conf. Computer

Vision and Pattern Recognition Machine Learning (CVPR’07), 2007.

[95] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. ICLR, 2015.

[96] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proc. of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 770–778, 2016.

[97] Islam Reda, Mohammed Ghazal, Ahmed Shalaby, Mohammed Elmogy,

Ahmed AbouEl-Fetouh, Babajide O Ayinde, Mohamed AbouEl-Ghar, Adel

Elmaghraby, Robert Keynton, and Ayman El-Baz. A novel adcs-based cnn

classification system for precise diagnosis of prostate cancer. In 2018 24th

International Conference on Pattern Recognition (ICPR), pages 3923–3928. IEEE,

2018.

[98] Islam Reda, Babajide O Ayinde, Mohammed Elmogy, Ahmed Shalaby,

Moumen El-Melegy, Mohamed Abou El-Ghar, Ahmed Abou El-fetouh, Mo-

150

hammed Ghazal, and Ayman El-Baz. A new cnn-based system for early di-

agnosis of prostate cancer. In Biomedical Imaging (ISBI 2018), 2018 IEEE 15th

International Symposium on, pages 207–210. IEEE, 2018.

[99] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recog-

nition with deep recurrent neural networks. In IEEE International Conference

on Acoustics, Speech and Signal Processing, pages 6645–6649, 2013.

[100] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition

with recurrent neural networks. In Proc. of the 31st International Conference on

Machine Learning, pages 1764–1772, 2014.

[101] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,

Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray

Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint

arXiv:1609.03499, 2016.

[102] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and

Yonghui Wu. Exploring the limits of language modeling. arXiv preprint

arXiv:1602.02410, 2016.

[103] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc

Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks:

The sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538,

2017.

[104] Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predict-

ing parameters in deep learning. In Advances in Neural Information Processing

Systems, pages 2148–2156, 2013.

151

[105] Soravit Changpinyo, Mark Sandler, and Andrey Zhmoginov. The power of

sparsity in convolutional neural networks. arXiv preprint arXiv:1702.06257,

2017.

[106] Song Han, Huizi Mao, and William J Dally. Deep compression: Compress-

ing deep neural networks with pruning, trained quantization and huffman

coding. ICLR, 2016.

[107] Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang,

Erich Elsen, Peter Vajda, Manohar Paluri, John Tran, et al. Dsd: Dense-

sparse-dense training for deep neural networks. ICLR, 2017.

[108] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convo-

lutional networks. In European conference on computer vision, pages 818–833.

Springer, 2014.

[109] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.

Pruning filters for efficient convnets. In ICLR, pages 1–12, 2017.

[110] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbig-

niew Wojna. Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 2818–2826, 2016.

[111] Jaehong Yoon and Sung Ju Hwang. Combined group and exclusive sparsity

for deep neural networks. In International Conference on Machine Learning,

pages 3958–3966, 2017.

[112] Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry Zitnick, and Dhruv

Batra. Reducing overfitting in deep networks by decorrelating representa-

tions. ICLR, 2016.

152

[113] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of

deep convolutional neural networks. ACM Journal on Emerging Technologies

in Computing Systems (JETC), 13(3):32, 2017.

[114] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In

D. S. Touretzky, editor, Advances in Neural Information Processing Systems 2,

pages 598–605. Morgan-Kaufmann, 1990.

[115] Babak Hassibi and David G Stork. Second order derivatives for network

pruning: Optimal brain surgeon. In Advances in neural information processing

systems, pages 164–171, 1993.

[116] Zelda Mariet and Suvrit Sra. Diversity networks. ICLR, 2016.

[117] Yani Ioannou, Duncan Robertson, Jamie Shotton, Roberto Cipolla, and An-

tonio Criminisi. Training cnns with low-rank filters for efficient image clas-

sification. ICLR, 2016.

[118] Adam Polyak and Lior Wolf. Channel-level acceleration of deep face repre-

sentations. IEEE Access, 3:2163–2175, 2015.

[119] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz.

Pruning convolutional neural networks for resource efficient transfer learn-

ing. ICLR, 2017.

[120] Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convo-

lutional networks through ffts. arXiv preprint arXiv:1312.5851, 2013.

[121] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:

Efficient convolutional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

153

[122] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin

Chen. Compressing neural networks with the hashing trick. In International

Conference on Machine Learning, pages 2285–2294, 2015.

[123] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights

and connections for efficient neural network. In Advances in Neural Informa-

tion Processing Systems, pages 1135–1143, 2015.

[124] Yani Ioannou, Duncan Robertson, Roberto Cipolla, and Antonio Criminisi.

Deep roots: Improving cnn efficiency with hierarchical filter groups. arXiv

preprint arXiv:1605.06489, 2016.

[125] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very

deep convolutional networks for classification and detection. IEEE transac-

tions on pattern analysis and machine intelligence, 38(10):1943–1955, 2016.

[126] Qiangui Huang, Kevin Zhou, Suya You, and Ulrich Neumann. Learning to

prune filters in convolutional neural networks. In Applications of Computer

Vision (WACV), 2018 IEEE Winter Conference on, pages 709–718. IEEE, 2018.

[127] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating

very deep neural networks. In International Conference on Computer Vision

(ICCV), volume 2, 2017.

[128] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong

Han, Mingfei Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning net-

works using neuron importance score propagation. CVPR, 2018.

[129] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scien-

tific tools for Python. Online accessed: 01-04-2018.

154

[130] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.

com/exdb/mnist/, 1998.

[131] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[132] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features

from tiny images. Technical report, Citeseer, 2009.

[133] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. ICLR, 2015.

[134] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International Confer-

ence on Machine Learning, pages 448–456, 2015.

[135] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and

Changshui Zhang. Learning efficient convolutional networks through net-

work slimming. In Computer Vision (ICCV), 2017 IEEE International Conference

on, pages 2755–2763. IEEE, 2017.

[136] Bin Dai, Chen Zhu, and David Wipf. Compressing neural networks using

the variational information bottleneck. ICML, 2018.

[137] Pau Rodríguez, Jordi Gonzàlez, Guillem Cucurull, Josep M Gonfaus, and

Xavier Roca. Regularizing cnns with locally constrained decorrelations.

ICLR, 2017.

[138] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-

binovich. Going deeper with convolutions. In Proc. of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 1–9, 2015.

155

[139] Dmytro Mishkin and Jiri Matas. All you need is a good init. International

Conference on Learning Representations, 2016.

[140] Steven J Nowlan and Geoffrey E Hinton. Simplifying neural networks by

soft weight-sharing. Neural Computation, 4(4):473–493, 1992.

[141] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regular-

ization of neural networks using dropconnect. In Proc. of the 30th International

Conference on Machine Learning, pages 1058–1066, 2013.

[142] Yebo Bao, Hui Jiang, Lirong Dai, and Cong Liu. Incoherent training of deep

neural networks to de-correlate bottleneck features for speech recognition. In

IEEE International Conference on Acoustics, Speech and Signal Processing, pages

6980–6984, 2013.

[143] David Miller, Ajit V Rao, Kenneth Rose, and Allen Gersho. A global opti-

mization technique for statistical classifier design. IEEE Transactions on Signal

Processing, 44(12):3108–3122, 1996.

[144] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a

neural network. arXiv preprint arXiv:1503.02531, 2015.

[145] Lingxi Xie, Jingdong Wang, Zhen Wei, Meng Wang, and Qi Tian. Distur-

blabel: Regularizing cnn on the loss layer. In Proc. of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 4753–4762, 2016.

[146] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geof-

frey Hinton. Regularizing neural networks by penalizing confident output

distributions. arXiv preprint arXiv:1701.06548, 2017.

156

[147] Soufiane Belharbi, Clement Chatelain, Romain Herault, and Sebastien

Adam. Neural networks regularization through invariant features learning.

arXiv preprint arXiv:1709.01867, 2017.

[148] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Neural

photo editing with introspective adversarial networks. ICLR, 2017.

[149] Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D

Manning. A large annotated corpus for learning natural language inference.

arXiv preprint arXiv:1508.05326, 2015.

[150] Martín Abadi, Ashish Agarwal, Paul Barham, and et al. TensorFlow: Large-

scale machine learning on heterogeneous systems, 2015. Software available

from tensorflow.org.

[151] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten.

Densely connected convolutional networks. arXiv preprint arXiv:1608.06993,

2016.

[152] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger.

Deep networks with stochastic depth. In European Conference on Computer

Vision, pages 646–661. Springer, 2016.

[153] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-

stein, et al. Imagenet large scale visual recognition challenge. International

Journal of Computer Vision, 115(3):211–252, 2015.

[154] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove:

Global vectors for word representation. In Proc. of the 2014 Conference on

Empirical Methods in Natural Language Processing, pages 1532–1543, 2014.

157

[155] Tsendsuren Munkhdalai and Hong Yu. Neural semantic encoders. arXiv

preprint arXiv:1607.04315, 2016.

[156] Yang Liu, Chengjie Sun, Lei Lin, and Xiaolong Wang. Learning natural lan-

guage inference using bidirectional lstm model and inner-attention. arXiv

preprint arXiv:1605.09090, 2016.

[157] Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana

Inkpen. Recurrent neural network-based sentence encoder with gated at-

tention for natural language inference. arXiv preprint arXiv:1708.01353, 2017.

[158] Samuel R Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christo-

pher D Manning, and Christopher Potts. A fast unified model for parsing

and sentence understanding. arXiv preprint arXiv:1603.06021, 2016.

[159] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised represen-

tation learning with deep convolutional generative adversarial networks.

arXiv preprint arXiv:1511.06434, 2015.

[160] SS Vallender. Calculation of the wasserstein distance between probability

distributions on the line. Theory of Probability & Its Applications, 18(4):784–

786, 1974.

158

CURRICULUM VITAE

NAME: Babajide O. Ayinde

ADDRESS: 6703 Strawberry Ln, Apt. 216

Louisville, KY, 40214

EDUCATION
& TRAINING: B.S., Electronic and Electrical Engineering

Obafemi Awolowo University

2005 - 2010

M.S., Systems and Control Engineering

King Fahd University of Petroleum and Minerals

2013 - 2015

Ph.D., Electrical and Computer Engineering

University of Louisville

2015 - 2019

Data Science Summer Internship

State Farm, Bloomington IL

2017 (12 weeks)

Machine Learning Research Internship

Toyota InfoTechnology Center, Mountain View

2018 (13 weeks)

159

TEACHING: Computational Intelligence- Data Analysis Lab

AWARDS: Doctoral Dissertation Completion Fellowship

State Farm Hackathon Winner (2017)

State Farm Top-3 Innovation Idea Challenge Winner (2017)

University of Louisville Doctoral Fellowship

King Fahd Uni. of Pet. & Minerals Graduate Fellowship

PROFESSIONAL
SOCIETIES: Institute of Electrical and Electronic Engineers

National Society of Black Engineers

PUBLICATIONS
REFEREED JOURNALS

B.O. Ayinde and J. M. Zurada," Nonredundant Sparse Feature Extraction us-

ing Autoencoders with Receptive Fields Clustering", Neural Networks, Vol.

7, pp. 99-109, September, 2017

B.O. Ayinde and J. M. Zurada," Constrained Autoencoders for Data Repre-

sentation and Dictionary Learning", IEEE Systems, Man, and Cybernetics

Magazine, Vol. 3, Issue 3, pp. 13-24, July 2017

B.O. Ayinde and J. M. Zurada," Deep Learning of Constrained Autoencoders

for Enhanced Understanding of Data" in IEEE Trans. on Neural Networks

and Learning Systems, September 2018, Vol. 29, Issue 9, Pg. 3969 - 3979.

B.O. Ayinde, T. Inanc, and J. M. Zurada, "Regularizing Deep Neural Net-

160

works by Enhancing Diversity in Feature Extraction", in IEEE Trans. on Neu-

ral Networks and Learning Systems, January 2019, DOI: 10.1109/TNNLS.2018.2885972

B.O. Ayinde, T. Inanc, and J. M. Zurada, "Redundant Feature Pruning for

Accelerating Trained Deep Neural Networks", Neural Networks, submitted

in December, 2018 (in review)

Hashim, Hashim A., Babajide Odunitan Ayinde, and Mohamed A. Abido.

"Optimal placement of relay nodes in wireless sensor network using artificial

bee colony algorithm." Journal of Network and Computer Applications 64

(2016): 239-248.

Ayinde, Babajide O., and Hashim A. Hashim. "Energy-Efficient Deployment

of Relay Nodes in Wireless Sensor Networks Using Evolutionary Techniques"

International Journal of Wireless Information Networks, Volume 25, Issue 2,

pp. 157-172, 2018.

CONFERENCE PAPERS

B. O. Ayinde and J. M. Zurada (2016, July). Clustering of receptive fields in

autoencoders. In Neural Networks (IJCNN), 2016 International Joint Confer-

ence on (pp. 1310-1317). IEEE.

B. O. Ayinde, E. Hosseini-Asl, and J. M. Zurada (2016, June). Visualizing and

understanding nonnegativity constrained sparse autoencoder in deep learn-

ing. In International Conference on Artificial Intelligence and Soft Comput-

ing (pp. 3-14). Springer, Cham.

B.O. Ayinde, T. Inanc, and J. M. Zurada, "On Correlation of Features Ex-

tracted by Deep Neural Networks", submitted on December 25, 2018 to 2019

161

International Joint Conference on Neural Networks.

B.O. Ayinde, R. Guo, H. Sun and K. Oguchi, " Efficient Shadow Detection

and Removal using Synthetic Data with Domain Adaptation", submitted to

CVPR, June 2019, Los Alamitos, CA, USA.

R. Guo, B.O. Ayinde, H. Sun and K. Oguchi, "Monocular Depth Estimation

Using Synthetic Images with Realistic Constraint*", submitted to Interna-

tional Conference on Robotics and Automation (ICRA), 2019.

B. O. Ayinde and A. H. Desoky (2016, January). Lossless Image Compression

using Zipper Transformation. In Proceedings of the International Conference

on Image Processing, Computer Vision, and Pattern Recognition (IPCV) (p.

103). The Steering Committee of The World Congress in Computer Science,

Computer Engineering and Applied Computing (WorldComp).

B. O. Ayinde, S. El-Ferik, S. Ibrir, M. Feki, and B. A. Siddiqui (2015). "Back-

stepping control of an electro hydraulic servo system subject to disturbance

and parameter uncertainty", IEEE 8th GCC Conference and Exhibition, (pp.

1-6)

S. El Ferik, B. O. Ayinde, S. Ibrir, and M. Feki. "Backstepping-based output

feedback control of an electro-hydraulic servo system." In Systems, Signals

and Devices (SSD), 2015 12th International Multi-Conference on, pp. 1-6.

IEEE, 2015.

162

	Receptive fields optimization in deep learning for enhanced interpretability, diversity, and resource efficiency.
	Recommended Citation

	thesis.pdf

