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ABSTRACT 

THE Q RULE IN BACTERIODETES AND THE IDENTIFICATION AND 

CHARACTERIZATION OF PORPHYROMONAS GINGIVALIS GLUTAMINYL 

CYCLASE 

John Andrew Houston 

November 30th, 2018 

Background: Porphyromonas gingivalis, a major pathogen associated with chronic 

periodontitis, secretes variety of proteins, majority of which begins with glutamine. 

Several of these proteins were found with pyroglutamate (pGlu) at N-terminus 

suggesting the presence of this posttranslational modification pathway in 

P.gingivalis. The observation that N-terminal glutamine is over-represented as the 

first amino acid after signal peptide cleavage, and subsequent confirmation of pGlu 

formation on the nascent protein via mass spectrometry, led us to conclude that 

an enzyme must be present as the executor of this reaction. Hypothesis: PG2157 

is a glutaminyl cyclase and is responsible for the cyclization of N-terminal 

glutamine residues. Methods: A homology search was used to identify a gene 

(PG2157) encoding a protein homologous to human glutaminyl cyclase (QC) in the 

P. gingivalis genome.  The gene was cloned, expressed in E. coli and recombinant 

PgQC purified. The protein was crystalized, and structure determined by molecular 
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replacement.  The rPgQC activity was characterized with respect to pH, ionic 

strength, optimum substrate specificity, and sensitivity to inhibition by an array of 

non-specific and specific inhibitors.  Finally, subcellular localization of PgQC in P. 

gingivalis was determined. Results: PgQC specificity is restricted for N-terminal 

glutamine.  The enzyme converts this residue to pGlu with kcat/Km at 1.34 s-1. The 

reaction was fastest at low ionic strength and at pH around 8.0.  The activity was 

inhibited by o-phenanthroline (≥100µM) and EDTA (≥100mM EDTA).  Cu2+  and 

Zn2+ at ≥100nM exerted ≥90% inhibition.  The activity was also significantly 

affected by cysteamine, imidazole, and reduced glutathione. In bacterial cells 

PgQC was found associated with the inner membrane as a lipoprotein facing the 

periplasm.  The crystalline structure of PgQC showed strong similarity to human 

QC on the atomic level. Nevertheless, an inhibitor specific for human QC had a 

limited effect on the PgQC activity. Conclusions: PgQC is an enzyme resembling 

mammalian QC and it is responsible for pyroglutamination of proteins secreted by 

the T9SS of P. gingivalis.  This activity is likely essential for bacterium viability 

since all attempts to produce a viable PgQC knockout failed.  Taking into account 

that also T. forsythia and P. intermedia possess similar enzymes and the frequency 

of the Q value of Bacteriodetes it is likely that similar post-translatonal modification 

plays a pivotal role in protein secretion by these periodontal pathogens.  Therefore, 

inhibition of bacterial QC may represent a novel approach to treat periodontal 

diseases.
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CHAPTER I: INTRODUCTION 

Periodontal Disease 

A periodontal diagnosis is a term that serves as a crucial determination of a 

patient’s dental treatment outcome. Clinicians assign these diagnoses on patients 

as a culmination of the sum of all the clinical information, pertinent medical history, 

and dental history along with the gross findings from a completed periodontal and 

oral examination. All the clinical data along with the totality of signs and symptoms 

are aggregated together and with this sum of information the clinician may arrive 

at a diagnosis. Additionally, sometimes in more complicated cases, additional lab 

tests or supplemental information can be instrumental in coming to the correct 

conclusion. As a clinician, treatment of plaque-induced periodontal diseases 

generally results in the resolution of the periodontal infection. Also, it is vital to 

understand that periodontal treatment generally changes the pretreatment 

diagnosis to a usually more favorable post-treatment diagnosis. To demonstrate, 

effective prophylactic treatment routinely converts mild, moderate, and severe 

plaque-induced gingivitis into a state of periodontal health, when stressed with 

adequate home care instructions. To further illustrate this point, successful 

treatment of plaque-induced periodontitis, when followed up at re-evaluation 

appointment, will often be converted to a state of periodontal health with reduced 

periodontium, indicating that treatment has achieved the goal of creating shallower 

pocket depth measurements.  
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Periodontal disease is term that encompasses multiple differential modalities into 

one general disease term. Within the diagnosis of periodontal disease, there are 

more diverse classification systems that both clinicians and researchers alike use. 

The most descriptive and thorough clinical classification system was described by 

Armitage in 1999, and is still utilized by clinicians today [1].  
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Table 1 Presentation of Periodontal Diseases in Humans 

Chronic Periodontitis (localized/generalized) 

Localized Aggressive Periodontitis (LAP) 

Generalized Aggressive Periodontitis (GAP) 

Periodontitis as a Manifestation of Systemic Disease 

    Associated with Hematologic Disorders 

    Associated with Genetic Disorders 

Necrotizing Ulcerative Periodontitis 

Combined Periodontic-Endodontic Lesions 

Abscesses of the Periodontium 

Armitage [1-3] 
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Most patients who present with plaque-induced periodontitis will in fact possess 

the chronic form of the disease [4-7]. The most likely presentation of a chronic 

periodontitis patient is a patient greater than 30 years of age; gross plaque and 

calculus, substantial gingival inflammation is present, deepened periodontal 

pockets (> 3mm), and the presence of calculated periodontal attachment loss. 

Generally speaking chronic periodontal disease is a slow continuously progressing 

disease[8-10], but within this process may exist short periods of advancing rapid 

attachment loss [11, 12]. Previously chronic periodontitis was given the misnomer 

“adult periodontitis” since only the adult population was believed to be susceptible 

to the disease. However, this has been shown to be false as a result of past and 

more recent epidemiologic data clearly showing that chronic periodontal disease 

can be present in younger populations [9, 13]. Although specifically chronic 

periodontitis can be observed to occur in either localized or generalized 

distributions within patients, these specific two forms appear to be vastly similar or 

almost identical with regards to their presentation, pathogenesis, and progression. 

Aggressive periodontitis, however, is far more rare than chronic periodontitis and 

mainly affects children and adolescents. It also can occur in both localized and 

generalized presentations, but unlike chronic periodontitis, these distributions 

differ significantly with respect to their pathogenesis [4, 13]. Localized aggressive 

periodontitis (LAP) and generalized aggressive periodontitis (GAP) were 

previously called “localized and generalized juvenile periodontitis”, respectively 

[14].  
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Biofilms 

These different presentations of periodontal diseases are best described as 

multifactorial infections, which are elicited by the presence of an entire community 

of complex of bacterial species. This community of organisms referred to as a 

“biofilm” interacts with the host, specifically with connective tissue and immune 

cells, which in turn causes a release of large number of pro-inflammatory cytokines 

and chemokines. These pro-inflammatory mediators lead to the degradation and 

destruction of cellular structures of the periodontal organ, namely: bone, 

periodontal ligament, sulcular epithelium, and junction epithelium [15]. The trigger 

for the initiation of periodontal disease is the presence of dysbiotic microbial 

biofilms composed of bacteria that colonize the tooth surface in the sulcular region. 

This region lies between the tooth surface below the cement-enamel junction and 

the gingival margin and plaque formation is mediated through specific adherence 

interactions and accumulation due to architectural changes in the sulcus [16]. The 

characteristics of microbiological progression from periodontal health to gingivitis 

(e.g. chronic inflammation of the gingival tissue without tissue destruction), and 

eventually to periodontal disease are vast and complicated [17].  

Although it has been previously estimated that out of nearly 1,000 different 

microbial taxa are able to colonize, at least transiently the oral cavity of humans 

and from a complex organized biofilm [18], it is still not fully understood how the 
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multitude of different species exist and work harmoniously to begin the pathogenic 

process and progress to full blown disease state. Previous studies have shown 

that of the just under 1000 species detected in the oral cavity approximately 500 

are found to be present in periodontal plaque [19]. Some of these organisms most 

certainly are simply commensal or opportunistic species, but it is well documented 

that certain species drive the pathogenicity of the bacterial plaque into more 

virulent and destructive states [20]. Previous work has shown that even early 

colonizers and previously deemed commensals such as Streptococcus gordonii 

can have a profound effect on the pathogenicity of other organisms such as A. 

actinomycetemcomitans and Porphyromonas gingivalis [21]. It has been shown in 

several studies, and mentioned previously here that a multitude of bacterial 

species call the human mouth their home, humans overall understand very little 

about the consequences of harboring our bacterial inhabitants [22, 23]. Can the 

presence of just one of the “bad guys” turn our whole “neighborhood” into a difficult 

place to manage? Or does it take a combined effort of the community as a whole 

to corrupt our own host defenses. With regard to other dental diseases, such as 

dental caries, evidence is strong enough to allow us to point to the causative agent; 

Streptococcus mutans and Lactobacillus sp. Since these species have been 

identified, many papers have assessed the bacterial causative agents in patients 

in the varying states of periodontal health, gingivitis, and periodontitis [17, 20, 22, 

24, 25]. We are aware of a great many gram-positive bacterial species that serves 

as beneficial commensal species and serve to help maintain important oral health. 

We now also know that as the progression of the disease proceeds and heads 
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further towards gingivitis and chronic periodontitis, greater numbers of gram-

negative species begin to inhabit the sulcular epithelium and surrounding 

dentoalveolar structures. More striking though, is the simple fact that there is still 

no verifiable shown data, that one solitary species can solely cause the wide-

ranging effects that periodontal disease can elicit in the mouth. No one organism 

can account for the varied destructive processes that occur in the disease process. 

This leaves us with the thought that the disease can only progress if several 

bacterial species join forces and the signs and symptoms of periodontal disease 

are in fact the result of a group effort. It must be clear then that a specific “consort” 

or “complex” of bacterial species must trigger the transition from a state of oral 

health to periodontal disease. Innumerable studies have focused on one specific 

bacterial species responsible for signs and symptoms of periodontal disease, but 

these do not account for the whole story. This, taken as a whole, supports the 

notion that the effects from periodontal disease must be the result of consortia of 

bacterial species acting as a complex biofilm to cause, elicit, and promote the 

disease [24-27]. Recently there has been reassessment of the “roles” of several 

bacterial species that are known to be involved in the progression of periodontal 

disease. These organisms were routinely found in examinations of patients who 

presented with periodontal disease and also in healthy controls. These species are 

now even commonly referred to as periodontopathogens. Included in this group 

are P. gingivalis, A. actinomycetemcomitans, T. forsythia, and T. denticola.  

Influential studies by Socransky and Haffajee [24] used newer methodology of 

stratifying these bacteria into their respective niches based on their roles within 
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oral microbiomes in the disease process leading to change from health to disease 

states.  Researchers organized the organisms into groups or “complexes”. 

Individual complexes were based on the prevalence of the bacterial “affiliations” 

with one-another, and corresponding complexes associations with health, 

gingivitis, or periodontitis disease conditions [25-29]. These groups or complexes 

of different microbes were also stratified according to the sequence of colonization 

on the tooth surface in conjunction with periodontal disease severity. What 

Socransky et al. [20] labeled as the ‘red complex’ contained bacterial species that 

show up later in biofilm maturation phase. These bacterial species, namely, P. 

gingivalis, T. denticola, and T. forsythia (previous names Bacteroides 

forsythus or Tannerella forsythensis) were shown to be effective 

periodontopathogens [11, 20, 24, 26, 30]. In this same train of thought these 

investigators also concluded that this “red complex” represents the pinnacle of 

biofilm maturation and development and thus leading to advancing disease states. 

Multiple other researchers have made note of this cooperation between species 

within the same complex and between members of different complexes. A strong 

association has been observed between T. forsythia and P. gingivalis found in 

periodontal pockets in patients, whilst in fact P. gingivalis has not been detected in 

the absence of T. forsythia within the periodontal pocket [31]. A strong relationship 

between P. gingivalis and T. denticola was found whilst taking plaque samples 

gathered in a study looking at diverse ethnic groups [32]. Moreover, constituent 

members of the red complex were located in significantly higher percentages in 

patients with periodontitis [33, 34] and also in probing sites with deeper pockets 
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[35-40]. These separate bodies of work support the theory that no one single 

bacterial species is etiologic for periodontal disease propagation or progression, 

and periodontal disease is not a singular “bacterial infection” but instead that the 

sum total of bacterial species in the oral cavity co-existing and co-habituating the 

oral microbiome are required to initiate the onset of periodontal disease. How these 

different species and organisms, as well as virulence determinants of the individual 

bacteria, contribute to disease progression remains unclear. Another hypothesis 

in more recent years has challenged the way we typically look at the “complexes” 

of oral microbiota in the mouth. While looking at the red complex organisms one 

would beg to ask the question, would higher numbers of these organisms correlate 

with greater periodontal tissue destruction. In fact, certain pathogens, more 

specifically, some from the red complex are actually found to be present in low 

numbers. More recently, multiple analyses of the human microbiome have started 

to shift the focus on biofilms away from consideration as a true “infection” but 

instead as a dysbiotic disease. We are beginning to live in the age of the dysbiotic 

inflammatory disease. Dysbiosis is a process by which communities of normally 

healthy bacterial species become unstable and unregulated and in response drive 

the inflammatory process. This outlook has become more optimal a term to assign 

to periodontal disease than just giving few species the honor of being disease 

causing agents. In healthy individuals, oral microbiota remains in a state of 

harmony and regulation, but in susceptible individuals or compromised patients, 

dysbiosis can lead to unfavorable and harmful host-microbial interactions and 

eventually leads to periodontal inflammation and destruction of the periodontal 
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tooth supporting structures [41-43]. This in turn leads to the inflammatory reaction 

products being released into the gingival crevicular fluid (CGF) which then 

promulgates and promotes furthering the disease process [44-46]. This cycle of 

inflammation and dysbiosis could be a key factor that plays into periodontal 

disease’s main components, its lasting effects and difficulty to treat. Traditional 

therapy of scaling and root planning for periodontal disease, along with 

debridement and maintenance of the oral cavity may now be possibly augmented 

to include adjuvant therapies that target this dysbiotic shift towards more 

pathobiont species [47, 48]. In addition to this potential benefit, some of released 

host factors or molecules could have utility as disease markers in patient 

treatment. This could serve to reflect a more accurate disease state or give a 

better indication of the level of periodontal inflammation and disease progression 

than was previously available by solely clinical examination [49].  

The keystone pathogen hypothesis was posited as a result of new information 

coming to light in the field. Studies showed that conversely, relatively low level of 

the red complex species were actually present in biofilms, and in the mice bone 

loss model suspected periodontopathogens were only needed in small numbers 

to influence periodontal inflammation and bone loss [50, 51]. The small bacteria 

cell count were enough to initiate a shift in the number and makeup of the complex 

biofilm. This alteration of the biofilm composition occurred before the onset of 

significant bone loss and was closely associated with the colonization of P. 

gingivalis, indicating that the cause of the disease was the shift in bacterial species 
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composition or dysbiosis not solely the offending organisms’ presence alone [51]. 

This in conjunction with the observed fact that P. gingivalis, in the absence of other 

commensal bacteria, fails to cause periodontitis in mice. For the purposes of this 

dissertation, our discussion will focus mainly on the periodontopathogen and 

keystone pathogen, P. gingivalis, its associated virulence factors, and the methods 

by which these are manufactured and undergo post-translational modifications.  

Poprhyromonas gingivalis 

P. gingivalis, as mentioned above, has been a heavily studied pathogen in the oral 

cavity and will be mainly the subject of this dissertation. As mentioned previously 

we label this bacterium as a keystone pathogen in human periodontitis [50, 52]. By 

placing this moniker on this bacterium, we imply that this organism is capable of 

causing dysbiosis. The dysbiosis can manifest in the form of either relative number 

or abundance of pathogenic species or change in the role or stratum of the species 

within the biofilm, even at low microbial levels within the biofilm. Microbial analysis 

studies have shown that despite its known importance in oral biofilm, P. gingivalis 

is only a minor constituent of periodontal disease-associated biofilms [53-55]. This 

is further confirmed by studies showing that, in a mouse model of periodontitis, P. 

gingivalis was able to colonize in low-levels and was shown to cause an increase 

in certain populations of the periodontal microbiota followed by inflammation-

driven alveolar bone loss [51]. In addition, serving as a keystone pathogen comes 

with certain responsibilities such as serving a specialized role in the biofilm 

community. This role coordinates and modulates the activity of other organisms 

within the plaque and plays an essential role in its pathogenicity [56, 57]. In this 
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role, P. gingivalis influences the transition from mainly commensal bacteria into a 

pathogenic biofilm [52]. P. gingivalis is a Gram-negative, obligate anaerobe, and 

asaccharolytic rod which possess a number of virulence factors [58-60]. Many of 

these virulence factors are directly related to P. gingivalis’ ability to subvert the 

host immune system. The use of these virulence factors is what makes P. 

gingivalis an effective pathogen. 

Gingipains 

Some of these virulence factors alluded to previously are the proteases, 

gingipains. Included in this category are the arginine-specific gingipains [Arg-

gingipain-A (RgpA) and Arg-gingipain-B (RgpB)] and also the lysine-specific 

gingipain [Lys-gingipain (Kgp)]. These are encoded respectively by their three 

constituent genes within the P. gingivalis chromosome commonly referred here as 

rgpA, rgpB and kgp which are heavily conserved among different clinical and 

experimental strains of P. gingivalis [61]. The products of the translation of these 

genes (specifically the rgpA and rpgB), RgpA and RgpB, both contain a caspase-

like domain (that retains specificity for Arg-Xaa peptide bonds) and an 

immunoglobulin-like domain. Uniquely in the proteinase RgpA, the protease and 

Ig-like domain is subsequently followed-up with a large hemagglutinin-adhesin C-

terminal extension. Closely related to the above protein, the kgp gene-translation 

product, Kgp, contains a catalytic domain specific for Lys-Xaa peptide bonds and 

also contains a hemagglutinin-adhesion domain not too unlike the rgpA translation 

product. [62, 63], RgpB lacks the hemagglutinin-adhesin domains but the short C-

terminal domain is conserved. Gingipain translation products undergo heavy post-
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translational modification. Nascent translation products encompass a pro-

fragment, a catalytic domain, an Ig-like domain, hemagglutinin-adhesion domains 

(only in RgpA and Kgp) and the conserved C-terminal domain (CTD). During 

secretion of RgpB, the pro-fragment is proteolytically removed and subsequent 

processing of the CTD reveals the active catalytic domain followed by the Ig-like 

domain. Subsequent glycosylation and incorporation to the outer membrane 

surface occurs afterwards. In the case of RgpA and Kgp similar processing occurs 

but the hemagluttanin-adhesin domains remain non-covalently associated with the 

catalytic domain. Lastly, gingipains once processed are secreted either as a 

monomeric form specific to the case of RgpB, or as complexes of protease and 

hemagglutinin-adhesin domains in the case of RgpA and Kgp. These complexes 

are either predominantly attached to the bacterial surface or released into the 

medium in a soluble form. This is dependent on a P. gingivalis strain, for example 

the strain HG66 secretes soluble gingipains freely into the media. Gingipain 

activities serve as meditators for nutrient acquisition, serve to cleave receptors on 

the host cell surface, and moreover, avoid and subvert the host immune system 

by inactivation of cytokines and components of the complement system. One of 

the most profound changes observed in patients with clinical periodontal disease 

is the aberrant remodeling of the host periodontal tissues. Structural changes that 

are often associated and observed with advanced periodontal disease include 

alveolar bone resorption and periodontal ligament destruction. These changes in 

structure in turn lead to attachment loss and periodontal pocket formation and 

eventually tooth loss. Periodontal pockets found in patients with periodontal 
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disease are also lined with epithelial cells that have had alterations, making them 

distinctly different from healthy cells that form the junctional epithelium found in the 

healthy periodontium. To accomplish this tissue-remodeling host cells require 

proteolytic degradation of important structural elements and extracellular matrices 

such as the collagen fibers forming the periodontal ligament and proteins involved 

in cellular junctions and extracellular matrix proteins [64-67]. The mechanism by 

which gingipains play a role in this process is complex and beyond the scope of 

this introduction. But in summary gingipains are important both directly and 

indirectly involved in the pathological tissue remodeling associated progressing 

disease process of periodontitis. Nevertheless, it is most likely that gingipains are 

not solely involved as the major virulence factor in periodontal disease tissue 

destruction [59]. It is instead much more probably that these proteases synergize 

with other mechanisms and virulence factors used by P. gingivalis and other 

bacteria and disrupt the host proteolytic balance and interfere with endogenous 

host protease inhibitors. Once this balance has been disrupted, host proteases, 

namely MMPs, TIMPs, and neutrophil elastase, drive the response in the 

periodontium for accelerated remodeling and pathological destruction of the host 

tissues[64, 68]. The effects of gingipains have been studied in great details and 

the role that they play in the disease process is expanding [59]. This variable output 

of potent virulence factors gives P. gingivalis quite an arsenal with which to exert 

effects into the host organism and biofilm community. 

Protein Secretion Systems of Bacteroidetes Species 
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Apart from the Sec pathway that exports proteins into or through the inner 

membrane [69, 70], the armamentarium of well-characterized secretion pathways 

of Bacteroidetes is surprisingly limited. Bacteroidetes possess both type 1 and type 

6 secretion systems (T1SS and T6SS) that are responsible for secreting proteins 

to extracellular environment bypassing the periplasm. Recently, there has been a 

great deal of effort produced to characterize the T9SS. This system is typical for 

Bacteroidetes and rarely, if ever, found outside the phylum [71, 72]. The T9SS 

machinery transports proteins across the outer membrane, which were first 

exported into the periplasm via the Sec translocon.  All proteins secreted by T9SS 

possess a characteristic C-terminal domain (CTD) that codes for transportation 

through the outer membrane [71, 73]. The processes that are undertaken 

upstream of CTD-dependent secretion have garnered less investigation, mainly 

due to their ubiquity in other organisms and Bacteroidetes and have been 

extensively studied in gram-negative bacteria in general [70]. We report here that 

these upstream processes are unique to Bacteroidetes and do in fact merit 

attention. To put this more into perspective, some background on the Sec 

translocon is helpful.  

The Sec pathway identifies target proteins by the presence of a signal peptide [74]. 

These signal peptides contain a tripartite architecture. They consist of a positively 

charged N-terminal region, which is thought to designate proteins to the 

phospholipid membrane, a hydrophobic region, which is hypothesized to be 

inserted into the membrane, and finally a shorter region that often contains a 
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consensus motif for a signal peptidase [75, 76]. Proteins that contain signal 

peptides can escape from the Sec translocase in two different ways. If they 

manage to escape “laterally”, they will then become contained within the inner 

membrane [69]. The other way would have them reach the periplasm, but the 

signal peptide portion is not cleaved and remains in the inner membrane. This 

leaves the proteins’ C-terminal end (with a signal peptide cleavage site) exposed 

on the periplasmic surface of the inner membrane [75]. The eventual fate of 

proteins that reach this stage will depend on the type of the signal peptide 

contained within. 

Proteins that carry a type I signal peptide are released from their membrane 

anchored signal peptide by signal peptidase I (SPI) [74, 75]. They will subsequently 

remain in the periplasm, or if necessary be transported further, for example, by a 

T9SS through the outer membrane, ultimately destined for the surface of the outer 

membrane or for release into the environment [71]. Proteins which carry a type II 

signal peptide undergo processing differently. A diacylglyceryl transferase (termed 

Lgt) first attaches a diacylglycerol membrane anchor to the cysteine residue which 

resides immediately downstream of the signal peptide [77]. Secondly, signal 

peptidase II (SPII) (also known as lipoprotein signal peptidase or Lsp) can cleave 

a lipoprotein upstream of the modified cysteine residue [78, 79]. Occasionally, 

lipoproteins can remain attached to the inner membrane while others are 

transported to the outer membrane via the Lol system [80]. Thus, lipoproteins 
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found in gram-negative bacteria are generally periplasmic proteins which are 

anchored either to the inner or outer membrane of the bacteria.  

The N-terminal residue of proteins is frequently chemically modified, and these 

modifications often have a signaling role. If an N-terminal glutamine residue is 

exposed as a result of proteolysis, these glutamine residues have the capability to 

spontaneously cyclize to pyroglutamate, with concomitant release of ammonia as 

a side product. The reaction is also facilitated by inorganic catalysts such as 

phosphate ions serving as the proton shuttle, and furthermore, can be catalyzed 

enzymatically by glutaminyl cyclases (QCs) [81].  

Glutaminyl Cyclase 

As one of the enzymes for protein post-translational modifications, glutaminyl 

cyclase (QC; glutaminyl-peptide cyclotransferase (QPCT), EC 2.3.2.5) is an 

acyltransferase that catalyzes N-terminal pyroglutamate (pGlu) formation on 

proteins or peptides and the concomitant release of ammonia or water molecules 

see Figure 1 [82].  
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Fig. 1: N-terminal cyclization of glutaminyl peptides by QC. Glutaminyl containing 

peptide is cyclized in the presence of QC by formation of an intermediate state that 

culminates in the release of ammonia.  

N-terminal cyclization of glutaminyl peptides by QC.

Stephan Schilling et al. J. Biol. Chem. 
2003;278:49773-49779 

©2003 by American Society for Biochemistry and Molecular Biology 
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The cyclization of L-glutamine into pyroglutamate is considered a quasi-

irreversible intramolecular acyl transfer reaction. The N-terminal peptide amino 

group is responsible for a nucleophilic attack on the γ-carbon amide, forming a 

tetrahedral intermediate. Subsequent decomposition of this intermediate occurs 

from net 1,3-proton transfer from Nα onto a leaving ammonia, forming the pGlu 

ring. This cyclization or modification appears to be involved in the structural 

stability of secreted proteins, resistance to aminopeptidase degradation, and 

hypothetically play an important role in mediating receptor binding [83]. QC is a 

catalytically non-discriminatory enzyme; acting upon an availably N-terminal 

glutamine residue, although it does exhibit slight preference for substrates 

containing a penultimate bulky hydrophobic residue [84]. Recently it has been 

shown that phosphate ions in conjunction with QC are able to operate as a 

coordinated proton transfer system. This system is able to effectively increase the 

rate of cyclization by QCs. Possibly; phosphate acts as a dual functioning acid–

base catalyst to increase the proton transfer rate, where simultaneous protonation 

and deprotonation occur together in conjunction with a cyclic-ring transition state 

(Fig. 2 A and B). Previously phosphate ions have been hypothesized to serve as 

dual functioning catalysts during the iminolactone hydrolysis [85] or for thiamin 

enzyme tautomerization [86]. Acid–base catalysis is the primary source of 

catalysis used by QCs. The proposed role of the active-site zinc ion in QC can be 

nicely correlated to the above-described rate-limiting trapping of T ± in acyl 

transfer reactions in solution (Fig. 2 B). The active site zinc functions as a strong 

Lewis acid, and proton transfer from the attacking α-amino group to the leaving 
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ammonia is accelerated by a glutamic acid moiety in conjunction with two other 

acidic residues, as suggested by QC crystal structures [87, 88].  
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Fig. 2: Hypothetical role of phosphate (A and B) and QC (C) in acceleration of 

glutaminyl cyclization. Phosphate ions facilitate the proton transfer onto the leaving 

ammonia. The catalysis might involve facilitated proton transfer onto the oxanion 

(A) or deprotonation of the attacking α-amino group (B). The proton transfer in QC 

is facilitated by a glutamic acid residue. A significant acceleration of the reaction is 

achieved by “trapping” of the oxanion by the active site zinc ion. Possibly, the 

proton transfer from the attacking alpha-amino group to the leaving ammonia 

occurs simultaneously [89]. 

QC was originally discovered in dried latex belonging to the Carica papaya (CpQC) 

plant species [90]. Glutaminyl cyclases (QCs) have been demonstrated in multiple 

plant and bacterial species and share a common ancestry [91-94]. It has been 
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found that the known mammalian QCs are either Golgi-resident or freely secreted 

enzymes [93]. Several peptide hormones and proteins carry N-terminal 

pyroglutamyl residues. Until somewhat recently, the cyclization of L-glutamine 

peptides’ N-terminus into pyroglutamate was thought to occur spontaneously [95]. 

This cyclization was shown that the conversion occurs under physiological 

conditions but at a very slow rate, therefore necessitating the need for enzyme 

catalysis [96]. Mammalian and plant QCs, however, have been discovered to serve 

as this executor of the reaction [97-101]. In general, both mammalian and plant 

QCs appear to have similar molecular masses, ~33 and ~40 kDa, respectively, 

and both are monomeric proteins [102, 103]. The primary structures of the 

proteins, however, display no sequence similarity, and the secondary structure of 

the individual QCs are completely different. The plant CpQC and the related QC 

from bacterial plant pathogen Xanthomonas campestris (XcQC) adopt a five-

bladed beta-propeller fold [104]. As one would expect for beta-propeller proteins, 

the active site is located near the propeller axis [105].. Mammalian QCs however 

are shown to encompass an α/β-fold [106-108]. In addition, currently identified 

plant QCs do not share sequence homology to other known plant enzymes, which 

places them into a separate enzyme family or subfamily [100]. On the other hand, 

identified mammalian QCs possess clear homology toward known bacterial 

aminopeptidases, thus suggesting possible the evolutionary origin of the protein 

family [107]. The mechanism of catalysis for plant QCs is much less clear than for 

mammalian QCs. In mammalian QCs, the cyclization reaction serves its function 

during maturation of numerous cytokines and neuropeptides in the secretory 
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pathway, such as gonadotropin-releasing hormone (GnRH), thyrotropin-releasing 

hormone (TRH), and monocyte chemotactic protein-2 (MCP-2). The theoretical 

role of the pGlu residue on these peptides is believed to serve two functions; (1) 

protecting the peptides from peptidase degradation and (2) providing the proper 

conformation of the peptide to facilitate receptor binding [109, 110]. Uncontrolled 

expression of QC in humans (HsQC) has been shown to be related to certain 

pathological conditions, for example Alzheimer disease [111]. Site-directed 

mutagenesis and X-ray crystallography studies of recombinant HsQC have given 

us large amounts of information about the catalytic mechanism of QCs [112, 113]. 

Furthermore, HsQC has been used as a target for inhibitors, which have been 

synthesized and developed as drugs to treat the relevant diseases that occur from 

their overabundance [94, 114]. QCs have also been shown to be present in a 

number of snake venom isolates [115] in keeping with finding that proteins and 

toxins in snake venoms are often resistant to Edman-degradation during sequence 

analysis. Cases that have been shown include bradykinin-potentiating peptides 

[116, 117], metalloproteinase inhibitors [118], and endogenous metalloproteinases 

[119]. Based on current literature, human QC is thought to share the scaffold of 

known bacterial aminopeptidases [120]. This is in contrast to the fact that all the 

putative QCs thus far identified in bacteria share homology with plant QC. When 

analyzed by atomic absorption spectroscopy, HsQC has been shown to contain 

one zinc ion per HsQC molecule [121]. Competitive inhibitors of HsQC have been 

identified, such as heterocyclic compounds (imidazole, tetrazole, and triazole 

rings). This is most likely due to nitrogen atoms serving as good coordinators of 
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the active-site zinc ion found in QC [122, 123]. Solely the fact that HsQC could be 

inhibited/inactivated by heterocyclic inhibitors suggests that the zinc ion located 

within the QC is essential for catalytic activity [94]. In stark contrast, the same 

heterocyclic chelators display no inhibition of plant QCs [103]. Considering this 

information together, both plant and mammalian QCs are thought to belong to two 

different enzyme families with different ancestral origins [100]. While mammalian 

QCs are implicated in the maturation of numerous neuropeptides and cytokines, 

such as thyrotropin-releasing hormone (TRH) and gonadotropin-releasing 

hormone (GnRH) [102, 124, 125], the physiological function of plant QCs remains 

poorly characterized. Recently, it has been suggested that plant QCs could be 

involved in defense mechanisms [126, 127], a hypothesis that is supported by the 

observation that the quantity of plant QC expressed increases greatly as a result 

of repeated injury [127]. The role of QCs in both bacteria and parasites has not 

been studied in depth. Advances in methodology for QC activity assays [128] and 

the discovery of new HsQC inhibitors [114, 129] have rendered better tools to 

explore QCs. A new QC has been isolated from P. gingivalis and its role has been 

examined for the first time. Structural homology models of known QCs were 

generated and compared. Furthermore, we successfully cloned and sequenced 

the QC cDNAs from P. gingivalis and compared the sequence with that of human 

and other animal QCs. In addition, we also examined the optimal pH range, 

stability, and the effects of metal chelators, metal ions, and finally examined 

specific QC inhibitors on the representative bacterial QC. These QCs share similar 

catalytic activity but structurally remain distinctly different. [113, 126]  
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In studying the proteome of P. gingivalis and its novel T9SS, protein sequences 

destined for secretion via the T9SS with the conserved C-terminal domains (CTDs) 

that facilitate secretion from through the outer membrane complex [73]. 

Approximately 30 CTD-bearing proteins exist in P. gingivalis genome and these 

proteins all contain this conserved C-terminal domain [73]. Recently it has been 

demonstrated that the CTD-containing proteins are secreted and attached to the 

cell surface via the type IX secretion system (T9SS) [73, 130-132]. These CTD-

bearing proteins undergo extensive post-translational modifications before 

attachment to the surface. Belonging to this group of CTD-containing proteins are 

the gingipains (RgpB, HRgpA, Kgp), which are major virulence factors of this 

periodontopathogen [133]. Upon examination of the sequences of these T9SS 

cargo proteins it can be observed that a N-terminal Gln residue is present just after 

the N-terminal signal peptide. Mass spectrometry analysis of these secreted 

proteins revealed that after post-translational modification, a pGlu residue is 

present at the N-terminus of the mature protein. This led us to hypothesize the 

existence of a bacterial QC present in P. gingivalis, responsible for this cyclization 

of Gln to pGlu. The presence of proteins containing N-terminal pyroglutamate 

residues has been noted in previous proteomic studies on Bacteroidetes species 

[73, 134-137]. At the outset of this study, we became aware of a drastic 

overrepresentation of glutamine residues after SPI cleavage sites in P. gingivalis. 

Starting from these two observations, we aimed to (1) clarify the pathway of 

pyroglutamate formation, (2) determine the fraction of SPI substrates that could be 

cyclized, (3) estimate the fraction that is actually cyclized, (4) test a possible role 
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of pyroglutamate formation in sorting, initially for P. gingivalis only, and then for 

Bacteroidetes in general, (5) characterize the function and importance of PgQC 

within the T9SS. The function and purpose of the PgQC is hypothesized. In this 

dissertation, we attempt to verify the existence, explain the purpose and role of QC 

in P. gingivalis, and reveal its potential importance in the secretion pathway in P. 

gingivalis and other Bacteriodetes. 
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CHAPTER II: MATERIAL AND METHODS 

Proteomes and taxonomy information were taken from UNIPROT [138]. Signal 

peptides and cleavage sites were predicted using the batch version of 

SIGNALP4.1 [139]. Lipoproteins were predicted using LipoP1.0 [140]. Sequence 

logos were generated using the program Weblogo [141]. Intersections between 

proteins with predicted signal peptide and predicted lipoproteins were using the 

UNIX comm tool. Since not all UNIPROT species have been fully identified, some 

species names such as “Tannerella sp.” were encountered. 

Cloning, expression and purification of recombinant PgQC 

The QC protein was expressed as a GST-tag fusion protein. Briefly, the entire 

coding region of qc identified by BLAST search (PG_2157) was amplified from a 

P. gingivalis W83 genome template with Platinum Taq DNA Polymerase High 

Fidelity (Invitrogen) using primers F1_QC: 

ATTAGAATTCATGAAAAGACTGATAACAACAGGAG and R2_QC: 

ATTACTCGAGTCAGTGTGAAGCGGCTTTCACCTGTTCG. The 1001 bp PCR 

product was digested with EcoRI – XhoI and cloned downstream in-frame with the 

sequence encoding gluthatione S-transferase (GST), into EcoRI – XhoI digested 

pGEX-6P-1 expression vector (GE Healthcare).  Following confirmation by PCR, 

resulting expression pGEX/QC vector was transformed into E. coli Bl21 (DE3) 

expression host. Transformed E. coli cells were grown in LB media at 37° C until 
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OD600 0.6, cooled down to 24 °C and expression of recombinant protein was 

induced with 0.1 mM isopropyl-1-thio-β-galactopyranoside (IPTG). After overnight 

cultivation, cells were harvested by centrifugation (6,000 x g, 20 min), resuspended 

in PBS supplemented with lysozyme, and lysed by sonication (3 cycles of 10 x 3 s 

pulses at 17 W). Cell lysate was clarified by centrifugation (30,000 x g, 30 min) and 

loaded onto a pre-equilibrated glutathione-SepharoseTM High Performance 

column. Recombinant GST-QC fusion protein was eluted using 50 mM Tris-HCl, 

pH 8.0, supplemented with 10 mM reduced glutathione. The purified GST-QC 

protein was subsequently incubated with PreScissionTM Protease (GE Healthcare) 

and subjected again to chromatography on glutathione-SepharoseTM to remove 

the GST tag. The purity of the resulting protein was verified by SDS-PAGE 

electrophoresis (NuPAGER 4-12% Bis-Tris Gel, Invitrogen). Protein concentration 

was determined by BCA Assay (Sigma). 

PgQC activity assay 

The activity of PgQC was determined essentially as previously described (33). 

Briefly, 150 μl of the assay buffer (40 mM Tris-HCl, 400 mM KCl, pH 8.0), 10 μl of 

chromogenic substrate (200 mM H-Gln-AMC in DMSO), and 10 μl of a 

recombinant bacterial pyroglutamyl aminopeptidase (25 U/ml, Unizyme 

Laboratories, Hørsholm, Denmark) were mixed together in a microtitration plate 

and preincubated 10 min at 30°C.  The reaction was initiated by addition of 30 μl 

appropriately diluted purified rPgQC or P. gingivalis whole culture or washed 
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bacterial cells or subcellular fractions and after 1 min incubation the increase in 

fluorescence (lex = 380 nm, lem = 460 nm) was recorded for 10-20 min at 30°C. 

Unspecific cleavage of the H-Gln-AMC substrate was determined by omitting 

pyroglutamyl aminopeptidase, the auxiliary enzyme. If necessary, the unspecific 

cleavage was subtracted from PgQC activity. Metal-ion inhibition reactions were 

carried out in similar fashion with each respective inhibitor added to the reaction 

mixture prior to initiation of the assay. 

P. gingivalis culture and cell fractionation procedures 

P. gingivalis culture fractionation was performed at 4°C as described previously 

[142] starting from stationary-phase (a 2-day-old) cultures adjusted to an OD600 of 

1.5.  Briefly, cells were collected by centrifugation at 6,000 × g for 15 min, washed 

once with phosphate-buffered saline (PBS), and resuspended in 5 ml of 0.25 M 

sucrose and 30 mM Tris, pH 7.6. After mixing gently for 10 min cells were 

repelleted at 12,500 × g for 15 min. The outer membrane was disrupted by the 

rapid addition of ice-cold distilled H2O and the spheroplasts were pelleted by 

centrifugation at 12,500 × g for 15 min.  The supernatant was designated the 

periplasmic sample. The remaining spheroplast pellet was resuspended in 5 ml 

PBS and ultrasonicated in an ice-water bath. Cellular debris and membranes were 

pelleted by ultracentrifugation at 150,000 × g for 1 h, and the supernatant was 

designated the cytoplasmic sample. The remaining pellet was washed and 

resuspended in cold PBS by sonication.  This fraction was designated the 
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membrane sample. For individual membranes separation washed collected cells 

were lysed by ultrasonication as described above. The membranes were pelleted 

by ultracentrifugation (150,000 × g, 1 h) washed with PBS to remove periplasmic 

and cytoplasmic proteins and resuspended in PBS by sonication. The inner 

membrane was dissolved with Sarkosyl (lauryl sarcosine) and the residual 

Sarkosyl-resistant outer membranes (OM) were pelleted by ultracentrifugation 

(150,000 × g, 1 h).  The supernatants were designated the IM samples while 

pellets washed and suspended by sonication in PBS were designated the OM 

samples. Purity of the various fractions was checked by Western blotting for A-

LPS or gingipains and the biotin containing 15 kDa biotin carboxyl carrier protein 

(AccB alias MmdC or PG1609) as OM and IM specific markers, respectively [62, 

143] (data not shown). 

Generation of P. gingivalis ΔRgpB deletion mutant 

For subsequent analysis, generation of plasmids suitable for rgpB gene 

mutagenesis the pRgpBall master plasmid was first engineered based on the 

pURgpB-E construct [142]. A partial rgpB gene section upstream of the 

erythromycin cassette was replaced with whole rgpB coding sequence, together 

with an 817 bp fragment containing its potential promotor. The new fragment was 

amplified with primers RgpBall_F and RgpBall_R using genomic DNA of P. 

gingivalis W83 and ligated into the linearized pURgpB-E plasmid (with EcoRI and 
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SmaI restriction enzymes) by the Gibson’s method [144] resulting in pRgpBall-erm 

plasmid. All primer sequences are listed in Table 2. 

pRgpBall-erm plasmid 
RgpBall_F GACGGCCAGTGAATTCTTAACCAT

GCTGTGGTGACGAG  
RgpBall_R AGCGGAAGCTATCCCAACAGTCT

CTTGGCGTAGTGCCAA  
pRgpBdel-erm plasmid 
RgpBQ1N_Rs AACGCCATTCCTCCCAACAG 
RgpBdelFs GGGATAGCTTCCGCTATTGCT 
RgpBdelRt GGGTCTGCCGGCTGTGCAAACGC

CATTCCTCCCAACAG  
RgpBdelFt TGCACAGCCGGCAGACCCGGGAT

AGCTTCCGCTATTGCT  
RgpBQ24N mutation 
RgpBQ1N_Fs CGGTCGCAACCCACAAGTAC 
RgpBQ1N_Ft TGCAAACCCGGCAGAGCGCGGTC

GCAACCCACAAGTAC  
RgpBQ1N_Rs AACGCCATTCCTCCCAACAG 
RgpBQ1N_Rt CGCTCTGCCGGGTTTGCAAACGCC

ATTCCTCCCAACAG  
RgpBQ25A mutation 
Q25AF GGAATGGCGTTTGCAGCTCCGGC

AGAGCGCGGTC  
Q25AR GACCGCGCTCTGCCGGAGCTGCA

AACGCCATTCC  
pNRgpA-tet plasmid 
RgA_Up_F GCCAGTGAATTCGGTCAGAGAGC

CGA  
RgA_Up_R CGTTGTGGATCCTGAGCGTACCAT

ATCTTTTAACC  
RgpA_Dw_F TTGGCAGTCGACTCGAGGAGCTG

ATTGGCTT  
RgpA_Dw_R TACGCCAAGCTTGAGGAGCAGCA

ATTG  
Tet_BamHI_F TCAGGATCCACAACGAATTATCTC

CTTAAC  
Tet_SalI_R CGAGTCGACTGCCAAGTTCTAATG

CTTC  
puc_EcoRI_R ACCGAATTCACTGGCCGTCGT 
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puc_HindIII_F CTCAAGCTTGGCGTAATCATGGT 
RgpAQ25N mutation 
RgpAQ1N Fs ACGCAATCCGAATGTGAGATT 
RgpAQ1N Ft GAACCAGACAGAGTTGGGACGCA

ATCCGAATGTGAGATT  
RgpAQ1N Rs GCAAATGCCATTCCTCCTAAT 
RgpAQ1N Rt CCCAACTCTGTCTGGTTCGCAAAT

GCCATTCCTCCTAAT  
pNKgp-cep plasmid 
Kg_Up_F AGCTTGCATGCACACACCCCGAT 
Kg_Up_R ATGGAAGCTTAAGTCAGTCCAGC

ATGAGGAAG  
Kg_Dw_F ACTTGAGATCTTAACCTTGGTCTG

CTCTAC  
Kg_Dw_R CCGGGGATCCTTCTACCGTAACGT

C  
CepA_F GACTTAAGCTTCCATAGACGATGC

CACACTG  
CepA_R GTTAAGATCTCAAGTCACCGATAG

TGATAGTG  
pUC_BamHI_F TAGAAGGATCCCCGGGTACCGAG

CT  
pUC_SphI_R TGTGTGCATGCAAGCTTGGCGTAA

TCAT  
KgpQ20N mutation 
KgpQ1NFs CTTGATGCTCCGACTACTCGA 
KgpQ1NFt AATAGCGCCAAGATTAAGCTTGA

TGCTCCGACTACTCGA  
KgpQ1NRs GGCGTAAAGACCAACTCCCA 
KgpQ1NRt CTTAATCTTGGCGCTATTGGCGTA

AAGACCAACTCCCA  
Table 2: Primers used for construction of plasmids for P. gingivalis mutagenesis. 

Next, the RgpB deletional plasmid (pRgpBdel-erm) was obtained by the truncation 

of pRgpBall-erm plasmid using the PCR based Site-directed, ligase-independent 

method (SLIM) [145] with primers listed in Table 2. With this approach, only the 

small fragment of 3’ (154 bp) of rgpB CDS was preserved on the pRgpBdel-erm 

plasmid. The ΔRgpB strain was obtained in the homologous recombination event: 

the plasmid was elecroporated into the P. gingivalis W83 strain and the positive 
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recombinant clones were selected with 5 µg/ml erythromycin. Proper 

recombination was verified by sequencing. 

Generation of P. gingivalis gingipains Q mutants 

Mutagenesis of each gingipain required a dedicated master plasmid. For RgpB 

studies the pRgpBall-erm construct was used. The Q1N mutation (replacement 

CAG codon into AAC) was incorporated using the SLIM method (resulting in the 

pRgpBallQ1N-erm plasmid), the Q25A mutation (replacement of the CAG codon 

into GCT) was introduced by the QuikChange method (Stratagene) (generating 

pRgpBallQ25A-erm), all sequences of applied primers are listed in Table X in the 

RgpBQ1N section. These plasmids were introduced into the P. gingivalis W83 

RgpA-C strain lacking the whole rgpA gene [142] by the electroporation and the 

recombined clones were selected with 5 µg/ml of erythromycin. The obtained 

strains were partially sequenced and named ΔRgpA/RgpBQ25N and 

ΔRgpA/RgpBQ25A, respectively. 

For RgpA mutagenesis, a master plasmid pNRgpA-tet was engineered. Two DNA 

fragments were amplified from P. gingivalis genomic DNA. The upstream 915 bp 

fragment consisting of sequence directly adjacent to the RgpA promotor was 

amplified with primers RgpA_Up_F and RgpA_Up_R). A downstream 2835 bp 

fragment, comprising the 5’ sequence of the RgpA gene together with 388 bp of 

its proposed promotor was amplified with primers RgpA_Dw_F and RgpA_Dw_R. 
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The tetracycline (tetQ) resistance cassette was amplified from the pT-COW 

plasmid [146] with primers Tet_BamHI_F and Tet_SalI_R. The backbone, the 

pUC19 plasmid, was linearized by PCR reaction with primers puc_EcoRI_R and 

puc_HindIII_F. All four amplified fragments were combined in the single step 

reaction by the method described by Gibson [144]. The Q24N mutation 

(replacement cag codon into aac) was incorporated to the construct with the SLIM 

method. Sequences of applied primers are listed in Suppl. Table 1 (RgpAQ24N 

section). This plasmid was introduced into the P. gingivalis W83 ΔRgpB strain 

lacking the whole rgpB gene by the electroporation and the recombined clones 

were selected with 1 µg/ml of tetracycline. Obtained strain was partially sequenced 

and named RgpBdel/RgpAQ24N. The non-mutated master plasmid was also 

introduced into the ΔRgpB strain P. gingivalis W83 and the unaffected expression 

and activity of RgpA was observed. 

For Kgp mutagenesis, the pNKgp-cep master plasmid was created in a similar 

manner. First, two fragments adjacent to the start of the hypothetical Kgp promotor 

were amplified from the genomic DNA, the 809 bp upstream fragment with 

Kg_Up_F and Kg_Up_R primers, while the 3271 bp downstream fragment with 

Kg_Dw_F and Kg_Dw_R primers. The beta-lactamase gene cepA was amplified 

with primers CepA_F and CepA_R from template synthetized by the Life 

Technologies based on the sequence deposited under AAA21538.1 number 

(Gene Bank). The pUC19 plasmid was linearized with primers pUC_SphI_R and 

pUC_BamHI_F. The Q20N mutation (replacement caa codon into aat) was 
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incorporated to the construct with the SLIM method. Sequences of used primers 

are listed in Suppl. Table 1 (KgpQ20N section). This plasmid was introduced into 

the wild type P. gingivalis W83 by the electroporation and the recombined clones 

were selected with 2 µg/ml of ampicillin. Obtained strain was partially sequenced 

and named KgpQ20N. As a control, the non-mutated master plasmid was also 

electroporated into the P. gingivalis W83 strain and the unaffected expression and 

activity of Kgp was observed. 
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Fig 3: P. gingivalis mutant strains. A) schematic representing RgpBdel-erm. B) 

RgpA-tet C) Kgp-cep. Schematic representation of steps undertaken to generate 

P. gingivalis mutant strains. 

Gingipain activity assay 

The amidolytic activities of Rgp and Kgp enzymes were assessed by the hydrolysis 

of the chromogenic substrate benzoyl-L-arginine-p-nitroanilide (BApNA) and 

carboxybenzoyl-L-lysine p-nitroanilide (zKpNA; Novabiochem, Germany), 

respectively. In a 96-well format, 20-μl samples were preincubated in assay buffer 
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(200 mM Tris-HCl, 100 mM NaCl, 5 mM CaCl2 [pH 7.6][71], supplemented with 

fresh L-cysteine to 10 mM) for 2 min prior to the addition of 1 mM substrate in a 

total volume of 200 μl. For activity measurement of Sarkosyl-treated membrane 

fractionations (see Materials and Methods), a 0.125 mM concentration of a 

synthetic arginine substrate pyro-glutamyl-glycyl-L-arginine-p-nitroanilide 

(pyroEGRpNA; Pharmacia-Harper, Uppsala, Sweden) was used instead of BApNA 

due to precipitation of the BApNA substrate in the presence of the Sarkosyl 

detergent. The presence of 0.1% Sarkosyl detergent in the assay did not affect the 

rate of substrate hydrolysis as determined with purified RgpB (data not shown). 

The rate of formation of p-nitroanilide was measured at 405 nm using a 

SpectraMax Plus spectrophotometer (Molecular Devices Inc., CA). For ease of 

comparison between mutants and statistical analyses of independent repetitions, 

activity units were defined as the total activity present in the RgpB+ control mutant 

culture equaling 100 U for culture partitioning studies, the total activity in the 

RgpB+ control mutant cells equaling 100 U for cellular fractionation studies, or the 

total activity in the RgpB+ control mutant membranes equaling 100 U for 

membrane fractionation studies.  

In vivo QC specific inhibition 

Each inhibitor was dissolved in DMSO at 10mM and 100mM concentrations. Five 

ml of a stock culture of P. gingivalis was equilibrated to OD600 = 0.1 in 3 separate 

sealed tubes of 5ml of eTSB media (experiment repeated in triplicate). These tubes 
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are of the correct diameter to be read using the spectrophotometer cuvette reader. 

At inoculation either inhibitor concentration of 100µM or 1mM final concentration 

(DMSO content ≤ 1%) was added or equivalent DMSO ≤ 1% alone. Inoculated 

cultures of P. gingivalis were subsequently placed in an anaerobic chamber. 

Samples consisting of 1.0ml of bacteria were retrieved at 2, 5, and 8 hours post-

inoculation. Samples were then centrifuged, supernatant was decanted, cell 

fraction was washed twice with PBS to remove unbound excess inhibitor. Bacterial 

pellet re-suspended in 300µl PBS and lysed by sonication (3 pulses, 5 s/pulse). 

Eighty µl of lysate used for continuous spectrophotometric assay of glutaminyl 

cyclase as previously described. 

Affinity purified anti-QC Antibodies 

CNBr-activated Sepharose 4B (GE Healthcare Lot # 10039621) was prepared 

according to manufacturer’s specifications. CNBr-activated Sepharose 4B is a pre-

activated resin using the cyanogen bromide method, which couples antibodies or 

other large proteins containing -NH₂ groups to the Sepharose media, without an 

intermediate spacer arm. rPgQC was dissolved in coupling buffer (0.1 M NaHCO3 

containing NaCl 0.5 M) at 5mg/ml of CNBr gel. CNBr beads were washed and 

swelled on a sintered glass filter. rPgQC protein solution mixed with swelled gel 

suspension in an end-over-end mixer for 2 hours at room temperature or overnight 

at 4°C. Remaining active groups were blocked by addition of blocking agent 1.0 

M ethanolamine or 0.2 M glycine at approximately pH 8.0 (2 hours at room 
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temperature or overnight at 4°C). Excess protein was washed away by at least 3 

alternating washes of coupling buffer and acetate buffer (0.1 M pH 4.5 containing 

0.5 M NaCl). Blocking agent was removed with 3-4 washes of coupling buffer 

followed by storage buffer (PBS containing preservative NaN3). Serum passed 

through 0.45µm filter prior to application to the column. Serum was loaded into the 

column, column washed with PBS until A280 reached baseline. The antibody bound 

to the column is eluted with 0.1M Glycine-HCl, pH 2.8. Fractions collected into 

tubes containing 1.0M Tris pH 8.0, to neutralize the eluted antibody. Antibody 

fractions were pooled and dialyze vs. PBS and finally concentrated. ELISA was 

run on serum, flow-thru, and eluate (Fig. 4). 
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Fig 4. Specificity of anti-QC antibodies. A 2-fold serial dilution afterwards was 

continued until no detection using both Western Blot and ELISA, Western blot (left 

panel and Elisa (right panel). ELISA titration was preformed using clear bottom 96-

well plate. Affinity purified QC concentration was determined by BCA assay at 1/10 

dilution to be =8.4mg/ml. Concentration of QC was used @ 0.84mg/ml for first 

dilution (1/512). A 2-fold serial dilution afterwards was continued until absorbance 

was no longer detectable at 450nm wavelength. 

SDS-PAGE and Western Blots 

Samples were analyzed using established protocols ([133]). Samples were first 

boiled in non-reducing SDS-PAGE sample buffer containing 2mM TLCK for 5 min 

to inactivate all gingipains prior to the addition of 1% β-mercaptoethanol and boiled 

for a further 5 min for complete denaturation. Samples were centrifuged briefly at 

13,000 × g, 1 min to remove particulates and the supernatant separated on SDS-

PAGE and gels were stained with Coomassie Brilliant Blue. For Western blot 

analysis resolved proteins were subsequently electrotransferred onto 0.22-μm-



41 

pore-size nitrocellulose membranes and blocked in 2% BSA/PBS solution 

overnight. RgpB was detected using a 1:2000 dilution of anti-RgpB mouse mAb in 

TTBS (20mM Tris, 500mM NaCl, pH 7.5 supplemented with 0.1% Tween 20) for 

3 h. Membranes were washed four times with TTBS before being probed for 2 h 

with a 1:2000 dilution of an alkaline phosphatase-conjugated rabbit anti-mouse 

polyclonal secondary antibody (Dako Cytomation, Denmark). Development was 

carried out using the AP Conjugate Substrate kit as per manufacturer’s instructions 

(Bio-Rad Lab., CA, USA). The in vivo PgQC and recombinant PgQC was detected 

using a 1:100,000 dilution (1μg ml−1) of affinity purified specific (previously 

described) anti-QC rabbit polyclonal antibody in 5% (w/v) skim milk/TTBS solution. 

Membranes were washed four times with TTBS before being probed for 1 h with a 

1:40,000 dilution of an HRP-conjugated rabbit anti-mouse polyclonal secondary 

antibody (Sigma-Aldrich). Development was carried out using the 

chemiluminescent protocol according to manufacturer’s specification 
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CHAPTER III: RESULTS AND DISCUSSION 

Bacteriodetes SPI substrates typically have a Qln (Q) downstream of the SPI 

cleavage site 

The starting point for this study was the observation that many secreted P. 

gingivalis proteins with a predicted signal peptide also had a glutamine (Q) residue 

immediately downstream. The generality of this observation was confirmed on a 

genome-wide basis using the batch version of SignalP (for gram-negative 

bacteria). These species designations were pooled into “superspecies” groups, 

with particularly well-defined Q-values, and an anomalously large number of 

predicted proteins with predicted signal peptides or type I signal peptides. In none 

of the analyzed species groups, the “superspecies” exceded 15% with exception 

of Cyanobacteria, where 31% species were incompletely designated, often without 

clear signs that several species were pooled (judging from the number of proteins). 

Including the “superspecies”, 337 Bacteroidetes species, 13 Chlorobi species, 59 

Spirochaetes species, 13 Chlamydia species, and 82 Cyanobacteria species were 

analyzed. The number of proteins with predicted signal peptides was above 50 in 

all analyzed species, guaranteeing that incomplete proteomes did not have a major 

influence on Q-values. The medium number of proteins with predicted signal 

peptides was 399 for the Bacteroidetes, 125 for Chlorobi, 163 for Spirochaetes, 
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128 for Chlamydiae, and 195 for Cyanobacteria. Removal of lipoproteins from the 

set of proteins with predicted signal peptides was a relatively “small correction”. 

The median values of the number of proteins with predicted type I signal peptides 

per species were 299 for the Bacteroidetes, 104 for Chlorobi, 146 for Spirochaetes, 

112 for Chlamydiae, and 161 for Cyanobacteria. As lipoproteins have a C after the 

SPII cleavage site, their removal always increased predicted species Q-values. A 

“Q” immediately downstream of the signal peptide was predicted in about half of 

the cases. In the remaining cases, the residue after the signal peptide was 

frequently a cysteine, suggesting that these proteins were lipoproteins/SPII 

substrates. We used LipoP to identify and remove these proteins from the set. In 

the remaining set, which should only contain SPI substrates, the fraction of 

proteins with a Q after the SPI cleavage site exceeded 60%. Additional manual 

checks, including checks with earlier versions of the SignalP program, suggested 

that the true fraction of SPI substrates with a Q directly after the cleavage site may 

be even higher (Fig 5).  
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Fig. 5: Q-Value distribution in Porphyromonas - Fraction of predicated secreted 

proteins with a glutaminyl residue immediately downstream of the SPI cleavage 

site (Q-value) for different Porphyromonas species. Light gray bars indicated 

predictions on SignalP alone, while the dark bars indicate the predictions after 

removal of predicated lipoproteins (identified by LipoP) 

The enrichment of glutamine downstream of the SPI cleavage site did not appear 

to be specific for the proteins of a particular cellular compartment. CELLO [147] 

predictions identified SPI substrate proteins in the inner membrane, the periplasm, 

the outer membrane, and the extracellular space. In all compartments, the fraction 

of SPI substrate proteins with a Q immediately downstream of the SPI site was 
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48% or higher (Table 3), clearly indicating that Q enrichment was not characteristic 

for proteins of a specific compartment. Placement of some SPI client proteins in 

the cytoplasm by the CELLO server suggests that some predictions are in error. 

Even with this reservation, Q enrichment does not appear to be characteristic for 

SPI client proteins in a particular compartment. This conclusion was further 

strengthened by the inspection of protein lists. 

Table 3: CELLO Predictions -  Proteins with or without Q residue in P1’ 

downstream of a type I signal peptide according to their localization, predicted by 

CELLO program. 

Recombinant P. gingivalis PG2157 has QC activity and resides in the inner 

membrane 

The high frequency of newly exposed Q residues in SPI substrates in P. gingivalis 

and the previously reported detection of 7 P. gingivalis proteins with N-terminal 

pyroglutmate [134] suggested that glutamine cyclization might not be 
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spontaneous, but enzymatically catalyzed. A BLASTP query of the P. gingivalis 

proteome with the human QC sequence suggested that PG2157 (also called 

PG_RS09565) may have QC activity. The recombinant protein (without a signal 

peptide) did not exhibit aminopeptidase activity on any of the commercially 

available substrates of general formula NH2-L-Xaa-pNA or NH2-L-Xaa-AMC. 

However, it efficiently converted the fluorogenic substrate L-glutaminyl-AMC into 

its respective pyroglutamic acid derivative (Km = 0.473 mM, kcat = 0.356 s-1, kcat/Km 

= 1.34 mM-1s-1). We therefore refer to PG2157 (PG_RS09565) as PgQC and to 

the recombinant version of the protein as rPgQC. SDS-PAGE of purification of 

rPgQC shown in Fig. 6.  
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Fig. 6: Purification of rPgQC. SDS-Page of different stages of expression and 

purification of recombinant P. gingivalis QC in E. coli BL21. Lane 2: Initial 

bacterial lysate applied to column. Lane 3: Flow through of unbound proteins. 

Lane 4: The fraction of bound recombinant protein plus the binding domain 

containing PSP cleavage sites and HIS-tagged region. Lane 5: Processing of the 

binding domain from the mature protein. Lane 6/7: Separation of the binding 

domain from the rPgQC. Lane 7: Final sample after reapplication on Ni-

Sepharose column to further remove binding domain. Gel electrophoresis was 

completed using 10 µl of respective sample and run according to established 

protocol. (See Materials and Methods) 
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Table 4: rPgQC Enzyme Kinetics 

Michaelis/Menton kinetic parameters showing that, indeed, rPgQC is a glutaminyl 

cyclase with much lower affinity for H-Gln-Xaa-Xaa than human or murine QC 

α(Determined in our lab) β([108]) γ([94]) δ([92]) ε([83])  

Sequence analysis of PgQC revealed a canonical signal peptide with the typical 

lipobox (Leu-Ser-Ala-Cys), suggesting that PgQC is a lipoprotein. Lipoproteins are 

translocated across the inner membrane via the Sec system, and initially anchored 

to the inner membrane by covalent attachment of a lipid anchor to the cysteine 

residue, followed by signal peptide cleavage, and typically second N-acetylation. 

Some, but not all lipoproteins are subsequently transferred from the inner to the 

outer membrane. Therefore, we expected that PgQC should be anchored in the 

inner or outer membrane. 
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In order to determine QC localization experimentally, cell extract (CE) of P. 

gingivalis in late exponential/early stationary phase of growth was fractionated into 

cytoplasm and periplasm (CP), total membranes (M), outer membrane (OM), and 

inner membrane (IM). The purity of the membrane fractions was verified by the 

exclusive presence of the biotin-containing 15-kDa biotin carboxyl carrier protein 

(AccA alias MmdC or PG1609) and gingipains in the IM and OM, respectively [136] 

(data not shown).  QC activity of the fractions was then measured using the 

enzyme-coupled assay already used previously to demonstrate the activity of the 

recombinant enzyme. QC activity was found in the IM and in fractions containing 

IM (CE and M) but not CP and OM (Fig. 7A) clearly indicating that PgQC is 

anchored in the inner membrane. This localization was further confirmed by 

Western blot analysis of enriched subcellular fractions using rabbit polyclonal 

antibodies anti PgQC (Fig. 7B).   
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Fig. 7: PgQC is an Inner Membrane Protein.  P. gingivalis in the early phase of 

growth was fractionated into sub-cellular fractions including, whole lysed cell 

extract (CE), cytoplasm (CP), membranes (M), outer membrane (OM), inner 

membrane (IM), and QC activity was measured in each sample results given in 

activity FU/s/µg. The QC activity in each fraction was determined with L-Gln-AMC 

as a substrate using a coupled assay with pyroglutamyl aminopeptidase as an 

auxiliary enzyme. The activity is shown as RF/s. The presence of PgQC antigen in 

fractions was determined by western blot. 
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Porphyromonas gingivalis QC is a zinc metalloenzyme 

Previously, the metal ion content of human QC was unclear. Schilling et 

al. proposed that human QC is a metalloenzyme based on the inhibition by several 

metal ion chelators and the reactivation of apoenzyme by the subsequent addition 

of zinc ions [92]. However, Booth and co-workers reported lower than 0.3 molecule 

zinc ion per hQC molecule which was shown by mass spectrometry [120]. Because 

neither the accessory enzyme for the reaction, pyroglutamyl aminopeptidase, nor 

glutamic acid dehydrogenase, is inhibited by imidazole within the concentration 

range used, both the fluorimetric and spectrophotometric assay were well adapted 

for our purposes. The fluorimetric activity assay data (Table 5) revealed inhibition 

by imidazole. Imidazole completely blocks substrate conversion by binding in the 

active site. Inhibition of the enzyme occurs by removal and chelation of the metal 

ion required for catalytic activity, leaving an inactive apoenzyme. 1,10-

Phenanthroline has been shown to mainly target zinc metallopeptidases and the 

inhibition of QC by 1,10-phenanthroline has been previously described [99]. EDTA 

has been shown under certain conditions to have an activating effect on QC 

catalysis and our data confirms that small amounts display an activating effect. It 

has previously been suggested that inhibition by phenanthroline is not due to metal 

chelation [94]. Also, in addition to being inhibited by 1,10-phenanthroline, P. 

gingivalis QC-catalyzed substrate cyclization was abolished in presence of 

dipicolinic acid, another inhibitor of metalloenzymes. Both chelators inhibited QC 

in a concentration and time-dependent manner, i.e. initial activity that was already 
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inhibited was found to be further reduced after prolonged incubation with the 

compounds (Fig. 8). However, EDTA did not show remarkable inhibition of P. 

gingivalis QC until the concentration was increased almost to 2.0 M P. gingivalis 

QC was almost completely inactivated addition of 5 mM 1,10-phenanthroline. 

Schilling et al. have previously shown that repeated dialysis with chelator-free 

buffer, human QC activity was partially reactivated up to 50–60% but only in the 

presence of EDTA [94].  

Table 5. Attenuation of rPgQC activity by reducing agents and imidazole. 

Reactions were carried out at 30 °C in 0.06 M acetic acid, 0.06 M Mes, and 0.12 

M Tris adjusted to the respective pH by the addition of NaOH or HCl. Data shown 

as residual activity set as 100% for given reaction without inhibitor. Data points are 

averaged triplicates.  
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Fig. 8: Concentration dependent inhibition by 1,10-phenanthroline and EDTA  

Percent residual activity of QC in the presence of either compound was determined 

directly after the addition or pre-incubation of QC with each respective reagent for 

15 min at 30 °C 

To confirm effect of ionic strength on the activity of rPgQC, activity assay buffer 

was supplemented with differing concentrations of NaCl and KCl. rPgQC activity 

saw a sharp drop in activity with the addition of ion salts, but then activity tapered 

off to around 50% activity as the concentration of ion salts increased dramatically. 

(Fig. 9)  
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Fig. 9: Effect of differing concentrations of ionic salts on rPgQC activity. 

Activity using continuous fluorimetric assay displayed as percent activity of QC 

without ionic salts present in the activity assay buffer. 

Sensitivity of the QC reaction to metal ions was also probed. Using the continuous 

fluorimetric assay, a reaction mixture was pre-incubated with the respective ion 

salt. Out of tested divalent cations only Cu2+ exerted strong inhibitory activity 

(Table 6). Other metal ions had only slight effect only at 10 mM concentration in 

the reaction mixture. Interestingly but not surprisingly, increasing Zn2+ 
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concentrations within the QC assays (0.1 mM and higher) considerably reduce QC 

activity, and this has been observed in previous studies [94, 123].  

Table 6: Residual activity of rPgQC in the presence of competing metal ions. 

Given as percent activity of rPgQC standard. Performed on 96-well plate in 

triplicate, experiment repeated in triplicate. Values represent mean of the different 

results.
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Pyroglutamate is present in signal peptidase I substrates 

In order to experimentally demonstrate pyroglutamate at the amino-terminus of 

SPI substrates, previously determined mass spectrometry data was re-analyzed 

for P. gingivalis outer membrane vesicles [73, 136]. Outer membrane vesicles 

(OMVs) are continuously shed. Their vesicle lumen (VL), vesicle membrane (VM) 

and vesicle surface (VS) fractions contain proteins that are derived from the 

periplasm, the outer membrane, and extracellular proteins anchored to the outer 

membrane surface, respectively [148]. Pyroglutamate was inferred from the mass 

of the identified peptide, which is 17 Da less than what the unmodified peptide, 

and also by the fragmentation (MS/MS) pattern of the peptide. The MS/MS spectra 

of these peptides indicate that the -17 Da modification is present near the N-

terminus of each peptide, most consistent with pyroglutamate formation. 

Altogether 27 proteins, all putative SPI substrates, with N-terminal pyroglutamate 

were identified. Interestingly, no semi-tryptic peptides with N-terminal glutamine 

were found in the entire P. gingivalis dataset, suggesting widespread 

pyroglutamate formation, despite the incomplete evidence for the complete set.  

In order to further confirm this conclusion, we compared sequences around the 

cyclization site (and thus the SPI cleavage site) for proteins that were 

experimentally identified, had a glutamine after the predicted SPI cleavage site, 

and for which evidence for pyroglutamate formation was either available or not. 
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The region upstream of the SPI cleavage site, normally not expected to influence 

QC, was included in the comparison in case SPI and QC may act together and QC 

preferences may be influenced by SPI preferences.  However, we did not detect 

clear differences in the sequence logos of the two groups of proteins on either side 

of the critical Q residue, further supporting the conclusion that QC acts broadly and 

is not limited in its activity by specificity for residues adjacent to the substrate 

glutamine residue (Table 7). Also noted is the fact that proteins with experimental 

evidence for pyroglutamate formation at the N-terminus were present in all 

compartments of outer membrane vesicles, this would subsequently stand against 

a role in partitioning proteins between VL, VM or VS of OMVs or the equivalent 

periplasmic space, outer membrane and outer membrane surface that these 

proteins stem from (Table 7). 
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Table 7: Q-value. Proteins from these compartments stem from the periplasm, the 

outer membrane, and the outer membrane surface, respectively. The row “Total” 

indicates the number of localized proteins, the row “Q” the number of proteins with 

a Q exposed by SPI signal peptide cleavage (according to a prior manual 

annotation, not focused on pyroglutamate formation), the row “SIGNALP = Y the 

number of proteins with signal peptide, and the row “SIGNALP = Y&Q” the number 

of such proteins exposing a glutamine after signal peptide cleavage. The row “pGlu 

detected” identifies the number of proteins with experimentally verified 

pyroglutamate. In very few instances, a pyroglutamate was detected in a protein 

not predicted to expose a glutamine after signal peptide cleavage due an 

erroneous SIGNALP prediction. 
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Q downstream of the SPI cleavage site affects RgpA, but not RgpB and Kgp 

secretion 

In order to confirm that pyroglutamate formation does not affect secretion, we 

needed a model system in which pyroglutamate formation does not influence 

protein stability by controlling resilience against aminopeptidases. Gingipains 

RgpA, RgpB and Kgp, the major proteolytic virulence factors of P. gingivalis, are 

good model systems in this respect. The proteins are initially expressed as 

preproproteins, and their type I signal peptides are then cleaved upon import into 

the periplasm, exposing N-terminal glutamine residues. The CTD-domain 

containing proteins are then exported further by the type IX secretion system 

(T9SS). Upon secretion from the periplasm to the outer membrane surface, the 

pro-regions are rapidly degraded, leaving only the mature forms that no longer 

contain the expected pyroglutamate N-terminal residue. This is an asset for 

comparing protein activity independent of issues of protein stability, but it 

unfortunately also prevents detection of the pyroglutamylation of the pro-region in 

wild-type P. gingivalis strains. Nevertheless, we expect pyroglutamate formation 

based on its widespread occurrence (see above), and also because proRgpB is 

blocked for Edman degradation in a type IX secretion (T9SS) mutant that retains 

non-degraded proRgpB in the periplasm.  

We used homologous recombination to construct P. gingivalis W83 strains 

expressing RgpAQ24N, RgpBQ25N, RgpBQ25A and KgpQ20N, in ΔRgpB, 
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ΔRgpA and wild-type backgrounds, respectively. Due to overlapping RgpA and 

RgpB specificities (both enzymes cleave after arginine residues), RgpA activities 

had to be compared in ΔRgpB background, and vice versa, whereas Kgp activities 

could be compared in a wild-type background. Mutation of the RgpA, RgpB or Kgp 

glutamine after the SPI cleavage site did not alter P. gingivalis growth or the 

extracellular activity of prolyl tripeptidyl peptidase secreted by P. gingivalis 

independent of T9SS. Gingipain activity was assayed in full cultures and the cell-

free culture medium from cultures grown to the mid-exponential (OD600 nm = 0.6-

0.8), late exponential/early stationary (OD600 nm = 1.2-1.4) and stationary (OD600 nm 

>2.0) phase of growth. We assayed either total extracellular activity, or separately 

the activities associated with the outer membrane surface and with the culture 

medium. In all cases, activities increased strongly over time from mid-exponential 

to late stationary cultures. Mutation of the Q after the SPI cleavage site however, 

had surprisingly variable effects on the different gingipains.  

The Q24N mutation in RgpA reduced overall activity several-fold, whereas the 

equivalent substitution Q25N (and also Q25A) in RgpB and Q20N in Kgp lacked 

significant effect, irrespective of whether cells were assayed in mid-exponential, 

late exponential/early stationary or late stationary phase (Fig. 10). 

For all three gingipains, most of the activity was cell-associated, with only a minor 

contribution from protein in the medium. For RgpA, the Q24N decreased cell 
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Fig. 10:  Q downstream of the SPI affects RgpA not RgpB or Kgp. 

Porphyromonas gingivalis strains were grown in at least six independent cultures 

to mid-exponential (OD600 in the range 0.6–0.8), late exponential/early stationary 

(OD600 in the range 1.4–1.6) and late stationary phase (OD600 > 2) of growth 

then adjusted to the same OD600 of 0.6, 1.4, and 2, respectively. Gingipain activity 

was measured in whole cultures with appropriate substrates. One-way ANOVA 

tests were carried out separately for the three gingipains (degrees of freedom 

RgpA: 5,30; RgpB: 8,45; Kgp: 5,48). Significance was judged applying the 

Bonferroni correction for multiple hypotheses (conservatively assuming all against 

all comparisons, even though only comparisons between wild-types and mutants 

are of interest) for a p = 0.05 threshold. The ¨¨¨ symbol indicates p < 0.001, the 

¨¨¨¨ symbol p < 0.0001. 

associated activity several fold, in all phases of growth. Activity in the medium was 

also significantly reduced in late stationary phase, the only growth stage with more 

than a marginal contribution from protein in the medium to the overall activity. In 

contrast, for RgpB, both the Q25N (and also Q25A) mutations altered the activity 
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associated with cells and in the medium at most insignificantly. There was also no 

redistribution of activity between cells and medium. For Kgp, the Q20N substitution 

had an unexpected effect. Although the overall activity was not significantly altered, 

Q substitution in Kgp increased activity in the medium at the expense of activity 

associated with cells, especially in mid-exponential phase, and to a lesser extent 

also in late exponential/early stationary phase. 

We suspect that the diverse effects of Q substitution must be related to 

complicated posttranslational processing of Kgp and RgpA leading to an assembly 

of large multidomain complexes of the catalytic and hemagglutinin-adhesion 

domains derived from initial polyproteins anchored into the OM via A-LPS [149] 

rather than per se translocation of the OM.  

QC is Essential for P. gingivalis Survival 

Creation of non-polar QC knock-out strains in P. gingivalis was an untenable goal 

due to apparent lethality of absence of QC activity. P. gingivalis QC (PG_2157) 

lies within an operon containing genes PG_2157, PG_2156, and a HemG 

(PG_2158), and in initial attempts downstream effects were present in the gene 

replacement (Fig. 11). t. Subsequently we attempted construction of non-polar 

knock out strains, without disrupting the operon but it was evident that gene 

PG1885 is essential for survival of P. gingivalis bacteria. Partial success was 
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achieved with only one survivable mutant in which erythromycin was successfully 

inserted between PG_2157 and PG_2158. 

Fig. 11: Structural Schematic of the P. gingivalis operon containing QC. Gene 

coding sequence PG_2157 (QYT). PgQC lies just prior to PG_2156 and PG_2158 

and non-polar disruption of PG_2157 was lethal. 

Following these revelations, we shifted focus into examining and manipulating the 

possible QC targets that were identified during the SignalP QC distribution data.  

P. gingivalis growth attenuation by PgQC Inhibition 

After assessing the effects of non-specific inhibitors of QC activity both in vitro and 

in vivo, specific inhibitors were produced to experimentally determine the effects 

of reduced PgQC activity on bacterial growth. With the assistance and cooperation 

of Probiodrug in Germany, banks of specific inhibitors were screened against 

purified rPgQC. Promising candidates were then analyzed for inhibition on QC 

PG_2156 PG_2157 PG_2158
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activity. The initial inhibitor was LL29. Inhibitor LL29 was dissolved in DMSO into 

100mM concentration and incubated with fresh P. gingivalis liquid culture. 1.5ml of 

liquid culture of P. gingivalis were lysed, and remaining LL29 inhibitor was washed 

with PBS and QC activity was recorded using fluorimetric assay. In these cell 

lysates cultures that were administered 100mM LL29 showed a time-dependent 

competitive inhibition of PgQC. In addition to the in vitro effects of LL29 on PgQC, 

corresponding 1.5 mL cultures of early-log phase P. gingivalis were incubated 

overnight to examine the inhibitors’ effect on P. gingivalis growth. After 24-hour 

incubation in anaerobic chamber, the OD600 of cultures was analyzed. LL29 

inhibitor incubated cultures showed a decrease in absorbance equivalent to 33% 

cell density decrease. Initially we suspected that the cell permeability may be a 

complicating factor or extracellular inhibitor could be degraded by cell factors. To 

effectively rule out inhibitor penetration into bacteria cells, these experiments were 

repeated in triplicates but concentrations of LL29 were increased 10 fold to 1mM 

and compared to initial 100mM concentration. (Fig. 12)  
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Fig. 12: LL29 Inhibits P. gingivalis growth. 5 ml of a stock colony of P. gingivalis 

equilibrated to OD600 = 0.1 in 3 separate sealed tubes of 5 ml of eTSB media in 

triplicate. At inoculation 1mM inhibitor 084 final concentration (DMSO ≤ 1%) was 

added or equivalent DMSO ≤ 1% alone was added. Inoculated colonies of P. 

gingivalis were subsequently placed in an anaerobic chamber. Statistical difference 

(p<0.0001) shown between DMSO and 1mM LL29 are demonstrated with ****. 

What is striking is the group with 1mM LL29 showed a remarkable decrease in QC 

activity along with a 50% decrease in total liquid culture density (Fig 12). 24-hour 

growth curves were plotted to demonstrate LL29’s effect over time (Fig. 12B). 

Absorbance reading were taken at 1-hour intervals over a 28-hour period and 

plotted to display accurate growth curves. These showed that the cultures with 

1mM LL29 only reached an absorbance of less than half of the control group 

(DMSO alone). RgpA-null strain cultures were pre-incubated with LL29, pelleted, 

washed three times with PBS and then resuspended in fresh eTSB media to 
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removed trace amounts of excess LL29 not taken up by the bacteria. This 

eliminated excess inhibitor from the reaction. 100mM LL29 demonstrated time-

dependent inhibiton of W83 in vivo QC activity. This inhibition was more 

pronounced at 1mM concentration (Fig. 13).  

Fig. 13: PgQC in vivo inhibition by LL29. Analysis of QC activity in vivo W83 P. 

gingivalis. LL29 had a time-dependent inhibitory effect on QC activity at final 

concentration 100mM. Whole cell activity was measured after cell lysis. Statistical 

difference (p<0.0001) shown between DMSO and 1mM LL29 are demonstrated 

with ****. 

Samples were then taken at 2, 5, and 8-hour marks and whole cell gingipain activity 

assays were completed. Using the data stated above, further screening of potential 

specific inhibitor produced 5 additional possible candidates. Inhibitors: 019, 071, 

073, 101, and 084 were roughly screened using in vitro PgQC assays. Each 

inhibitor showed significant attenuation of PgQC activity but only 084 completely 

obliterated QC activity (Fig. 14). Previously, each respective inhibitor was 

incubated within the reaction mixture prior to initiation of the assay. In the case of 
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084, we wanted to determine if the inhibitor had a bacteriocidal or bacteriostatic 

effect, so the growth curve was repeated with addition of 1mM 084 at mid-

logarithmic bacterial growth (Fig. 14F) After addition of 084, bacterial cell density 

decreased slowly up to 24 hrs after which it remained static. This suggests some 

mixed bacteriostatic/bacteriocidal killing of P. gingivalis after addition of inhibitor 

084 at 1mM final concentration.  
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Fig. 14: 24-hour growth Inhibition of P. gingivalis W83. 5 ml of a stock colony 

of P. gingivalis equilibrated to OD600 = 0.1 in 3 separate sealed tubes of 5 ml of 

eTSB media in triplicate. At inoculation 1mM inhibitor 084 final concentration 

(DMSO ≤ 1%) was added or equivalent DMSO ≤ 1% alone was added. 

Inoculated colonies of P. gingivalis were subsequently placed in an anaerobic 

chamber. Absorbance was measure at each hour for 24 hours. Inhibitor 084 had 

the most pronounced effect of inhibition P. gingivalis growth.  
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High Q-values are typical for Bacteroidetes species, but not related phyla 

In the following, we call the fraction of signal peptidase I substrates that have a 

glutamine immediately downstream of the SPI cleavage site the Q-value. The high 

Q-value is not unique for P. gingivalis but is shared with other bacterial species. 

LipoP corrected SignalP predictions for various Porphyromonas species suggest 

Q-values between 59% (for P. somerae) and 77% (for P. macacae). Manual 

inspection of automatic prediction suggested that even the high Q enrichment 

values are still underestimated due to the mis-prediction of some signal peptide 

cleavage sites. 

Porphyromonas species belong to Bacteroidetes, which in turn are placed in the 

FCB superphylum containing the Fibrobacteres, Chlorobi, and Bacteroidetes. In 

the Bacteroidetes group, 332 of 334 species (i.e. > 99%) had predicted Q-values 

above 48%. Averaged across species, the Q-value was 71%, with a standard 

deviation for the variation between species of around 10% percent (outliers 

included). The two low Q-value outlier species (Bacteroides pectinophilus, 4% and 

Candidatus cloacimonas 24%) had a suspiciously low number of predicted 

proteins with signal peptides (21 and 83, compared to typically 300 in this group), 

suggesting a possible problem with sequencing or annotation rather than a 

genuine difference. CELLO predictions for T. forsythia confirm the conclusion for 

P. ginigivalis that the enrichment of glutamine residues directly after the SPI 
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cleavage site is not specific for proteins of a particular cellular compartment (Table 

3). Across the entire FCB superphylum, Q-values were not consistently high. For 

most sequenced Chlorobi species, the predicted Q-value was below 9%. Three 

outliers were found in this group in little characterized bacteria (annotated as 

Chloroherpeton thalassium, Q-value 55%, Chlorobi bacterium, Q-value 63% and 

Chlorobium sp., Q-value 67%). Outside the Bacteroidetes and Chlorobi, a 

continuum of Q-values was found, ranging from 2% (Chlorobaculum parvum) to 

77% (Ignavibacterium album), with no obvious pattern. 
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Fig. 15: Q-values averages and Q-value distributions for different groups of 

bacteria. The Q-value was determined separately for every species in the groups. 

(A) Average Q-values for the species groups (species are given equal weight in 

the average), and the standard deviation of Q-values. Bacteroidetes have 

significantly higher Q-values than Chlorobi, Spirochoaetes, Chlamydiae, or 

cyanobacteria (p < 1E-6 for comparisons of Bacteroidetes against any of the other 

species groups according to the Wilcoxon rank sum test). (B) Cumulative Q-value 

distributions. For identification of species groups, refer to the symbols in the right 

panel (near Q-value 1). The Q-values for Bacteroidetes species are higher than 

for the other species groups also judging from cumulative distributions (p < 1E-6 

according to the Kolmogorov–Smirnov test). Species were classified as having an 

animal- or plant-type QC according to BLASTP searches using the human and A. 

thaliana QC. 

We also determined the cumulative Q-value distribution for selected bacterial phyla 

(Fig. 15), thought to be relatively closely related to Bacteroidetes [150]. Predicted 

Q-values for Chlamydiae and Spirochaetes species were typically below 20% and 

thus much lower than in Bacteroidetes. Cyanobacterial species typically also had 
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lower Q-values. However, in a small fraction of cyanobacterial species (~5%), Q-

values were not much lower than those of Bacteroidetes. High Q-values were for 

example found for Scytonema millei (40%), Leptolyngbya valderiana (45%), 

Hassallia byssoidea (61%), and Aphanocapsa montana (67%) (Fig 15).  

Bacteroidetes have orthologues of animal and plant QCs 

We searched complete bacterial proteomes in UNIPROT for orthologues of 

animal- and plant-type QCs. In a first step, we used the prototypical human and A. 

thaliana QC sequences as queries. In a set of 1878 proteomes, we found 602 

animal-type QCs, among them 402 (67%) in Bacteroidetes. We also identified 991 

plant-type QCs, among them 401 (40%) in Bacteroidetes. As Bacteroidetes 

account for less than 10% of the proteome data (and even less in the redundant 

set), it is clear that QCs, particularly of the animal-type, are enriched in the 

Bacteroidetes. Orthologues of animal- and plant-type QCs tended to segregate 

according to phylogeny. Animal-type QCs were typically found in Bacteroidia, 

plant-type QCs in Flavobacteriia. As the number of candidate QCs was smaller 

than the number of proteomes, we attempted to enlarge the set of candidate QCs 

by carrying out BLASTP queries with representative sequences from Bacteroidia 

and Flavobacteriia, the two largest groups within the Bacteroidetes.  Starting from 

these sequences, and correcting for species duplicates, we identified 574 

Bacteroidetes species containing animal-type and 507 Bacteroidetes species 

containing plant-type QC enzymes, but only 63 species containing both types of 
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enzymes (E-value threshold 1E-4), compared to 1540 species in the duplication 

corrected proteome dataset.  

We also attempted iterated searches, using representatives of CD-HIT identified 

sequence clusters [151] to initiate additional searches. With this procedure, still 

more putative QCs were identified, but the concentration of hits in the 

Bacteroidetes phylum was reduced, likely because the set of putative QCs became 

contaminated by peptidases. Despite this complication, we can conclude from the 

simpler BLASTP searches that most and perhaps even all Bacteroidetes species 

have enzymes that could be suitable for glutamine cyclization. In the following, we 

focus on the candidate QC enzymes that can be demonstrated in a single BLASTP 

step with tight E-value threshold to be orthologous to the prototypical animal- or 

plant QC enzymes. 

The orthologues of animal and plant-like QCs in Bacteroidetes have intact 

active sites  

In order to assess the chances that the animal- and plant-type QCs in bacteria 

were active, we checked alignments for the presence of key active site residues. 

The prototypical animal QC is the human enzyme, hsQC. Its active site is built from 

E201 (involved in proton shuttling), D159, E202 (involved in binding the active site 

Zn2+ ion), and D248 (involved in both). In the Bacteroidetes orthologues of human 

QC, D159, E201 and D248 are highly conserved (>98%). In contrast, E202 is 
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conserved only in 9% of Bacteroidetes orthologues, and replaced by an aspartate 

residue almost all remaining cases (exceptions <1%). As aspartate and glutamate 

can both serve as Zn2+ ligands, we suspect that this substitution may not 

compromise activity, or may even be required to accommodate slight changes in 

the overall protein structure compared to HsQC. This conclusion is supported by 

the observation that an aspartate is also present in the 202 position in the PgQC 

enzyme, which we have already shown to be an active QC enzyme. 

The prototypical plant QC is the enzyme from C. papaya, CpQC. Its active site is 

not as well understood as the active site of hsQC, but it is thought that E69, N155 

(probably involved in proton shuttling) and N155, K225 and Q24 (probably involved 

in stabilizing the oxyanion intermediate) play a role in catalysis. Among the 

Bacteroidetes orthologues, E69, N155 and K225 are strictly conserved. In contrast, 

Q24 was conserved only in 81% of cases, and replaced by a glutamate in the 

remaining cases. The same substitution occurs in many plant enzymes, and also 

in the experimentally studied bacterial Xanthomonas campestris QC (XcQC). In 

this special case, the (natural) glutamate variant is still active, albeit an order of 

magnitude less so than the engineered glutamine variant [91], suggesting that both 

glutamine and glutamate in the active site are compatible with activity, although 

not necessarily at the same level.   

We conclude from this analysis that Bacteroidetes orthologues of animal and plant 

QCs are likely to be active enzymes. This is directly suggestive of QC activity plant 
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QC orthologues, and compatible with either QC or aminopeptidase activity for 

animal QC orthologues. Classification of the enzymes as lipoproteins (like PgQC) 

could strengthen the case for QC activity.  

Most Bacteroidetes orthologues of animal and plant QCs are predicted 

lipoproteins 

Among 401 orthologues of human QC in Bacteroidetes, 323 (~80%) were 

predicted lipoproteins, 59 (~15%) were predicted SPI substrates (~15%), and the 

remaining 19 (~5%) were predicted to be cytoplasmic. As orthologues of human 

QC are highly enriched in Bacteroidetes, relatively few were found in species not 

belonging to the Bacteroidetes. Among these, the fraction of predicted lipoproteins 

was much smaller. Only 38 (~34%) enzymes were predicted to be lipoproteins, 40 

(~36%) were classified as SPI substrates, and remaining 34 (~30%) as cytosolic 

proteins.   

Among 430 orthologues of A. thaliana QC in Bacteroidetes, 376 were (~87%) 

computationally classified as lipoproteins, 20 (~5%) as SPI substrates, and 34 

(~8%) as cytoplasmic proteins. The predominance of predicted lipoproteins among 

plant-type QCs was much less pronounced when bacterial homologues of plant 

QC in general were considered. Among the 1000 bacterial proteins most similar to 

A. thaliana QC, predictions classified 475 (~48%) as lipoproteins, 338 (34%) as 

SPI substrates, and 175 (18%) as cytosolic proteins.  
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Sensitivity (true positive rate, recall) of the LipoP algorithm for gram-negative 

bacteria has been reported to be around 90% [140]. The fraction of bacterial QCs 

predicted to be lipoproteins in non-Bacteroidetes species is much smaller, 

suggesting that not all are lipoproteins. In Bacteroidetes, the fraction of QC 

proteins predicted as lipoproteins comes close to the predicted sensitivity of the 

prediction algorithm. Thus, it appears likely that most if not all QCs in Bacteroidetes 

are lipoproteins, like the prototypical PgQC from P. gingivalis. 

Proteomic datasets confirm glutamine cyclization in several Bacteroidetes 

species 

In order to confirm widespread pyroglutamyl formation in Bacteroidetes, and not 

only P. gingivalis, we analyzed additional data from previously reported proteomic 

studies [73, 134-137]. In addition to the already discussed 27 proteins from P. 

gingivalis, the collated data identify 27 proteins in Tannerella forsythia, 13 in 

Parabacteroides distasonis, 8 in Prevotella intermedia and 7 in Cytophaga 

hutchinsonii with N-terminal pyroglutamate residue. N-terminal residues other than 

pyroglutamate were rare, as predicted from the bioinformatic studies.  

Pyroglutamate was not detected at the amino-terminus of all SPI substrates that 

are predicted to expose an N-terminal glutamine residue after SPI cleavage, most 

likely due to incomplete coverage and not due to selective pyroglutamate 
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formation. As already reported for the P. gingivalis proteins, semi-tryptic peptides 

were never found to start with glutamine, even though internal tryptic peptides 

could be identified with N-terminal glutamine in both modified and unmodified 

states. Other circumstantial evidence also supports widespread rather than 

selective glutamine cyclization. We focused in particular on the T. forsythia data, 

which contained pyroglutamate evidence for the largest number of proteins in one 

species. Experimentally detected proteins (by any peptide, not necessarily a 

semitryptic peptide) with glutamine after the SPI site were partitioned into proteins 

with and without evidence for glutamine cyclization (Figure 16). As already 

reported for P. gingivalis, amino acids around the Q were similar in the two groups, 

supporting broad QC specificity. 

Fig. 16: Sequence downstream of Q in T. forsythia SPI proteins. Comparison 

of sequence logos around Q downstream of the signal peptide for T. forsythia SPI 

proteins. Top – experimentally demonstrated or  Bottom – undetermined Q 

cyclization in OMVs. The signal peptidase motif A-X-A upstream of the SPI 

cleavage sites is marked by the arrow. Only proteins with a Q after the predicated 

SPI site have been included in the comparison panel in the bottom.  
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In addition, QC activity was detectable in T. forsythia using the previous method 

for continuous flourimetric QC activity in P. gingivalis (Fig 17).  

Fig. 17: QC activity in T. forsythia. T. forsythia in the early phase of growth was 

measured using whole cell extract, and QC activity was measured in each sample 

results given in activity FU/s/µg. QC activity was determined in each fraction 

standardized to the volume of washed cells were suspended for sonication. The 

QC activity was determined with L-Gln-AMC as a substrate using a coupled assay 

with pyroglutamyl aminopeptidase as an auxiliary enzyme. P. gingivalis W83 strain 

used here for comparison.  

Following this experimentally measured QC activity of a Bacteriodes sp. Other than 

P. gingivalis, we decided to test the specificity of LL29 against the T. forsythia QC. 
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forsythia (Fig 18). This could be easily explained by substrate preference or 

variability in the active site structural motifs.  

Fig. 18: LL29 Does not inhibit TfQC. T. forsythia in the early phase of growth 

was measured using whole cell extract, and QC activity was measured in each 

sample results given in activity FU/s/µg. QC activity was determined in each 

fraction standardized to the volume of washed cells were suspended for 

sonication. The QC activity was determined with L-Gln-AMC as a substrate using 

a coupled assay with pyroglutamyl aminopeptidase as an auxiliary enzyme. P. 

gingivalis W83 strain used here for comparison. Statistical difference according to 

one-way ANOVA (p<0.0001) shown between DMSO and 1mM LL29 are 

demonstrated with ****. 

Pyroglutamate detection is not consistent for paralogue families in a single 

species. Pyroglutamate detection for a protein of a given bacterial species is also 
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not predictive for the orthologue in another species. In a first step, we used 

BLASTP (E-value threshold 10-9) to identify orthologous proteins in T. forsythia and 

P. gingivalis with experimentally verified localization. Only unique pairs were used, 

and proteins with more than one paralogue in either species were excluded. 

Among the 41 pairs, 9 and 3 were found to have a pyroglutamate at the N-terminal 

end. Based on a random association alone, one would then expect experimental 

pyroglutamate demonstration for both proteins of a pair in (9*3)/41 ~ 0.7 cases. In 

fact, one such case was observed.  

Together, the above observations are consistent with general glutamine 

cyclization, partially masked by incomplete mass spectrometry coverage (for 

example, due to low expression of some proteins, or because semi-tryptic peptides 

are too short or too long for efficient mass spectrometry detection). As already 

seen for P. gingivalis, pyroglutamate formation was not characteristic for proteins 

of a particular compartment, as T. forsythia proteins with pyroglutamate were also 

found in the vesicle lumen, in vesicle membranes, and on the vesicle surface of 

OMVs, which represent periplasmic, integral OM and cell-surface associated 

proteins, respectively. 

A model for pyroglutamate formation in proteins destined to the periplasm, 

the outer membrane, the outer membrane surface, or the medium 

Together, this body of data suggest a model for Bacteridetes SPI substrates that 

reside in or transit through the periplasm. Their signal peptides are cleaved by SPI, 
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a lipoprotein with active site on the periplasmic face of the inner membrane. 

Because of the enrichment of glutamine immediately downstream of the SPI 

cleavage site, this reaction typically exposes an amino-terminal glutamine residue. 

QC, another lipoprotein, also with active site on the periplasmic face of the inner 

membrane, is then ideally positioned to catalyze the cyclization of the glutamine 

residue to a pyroglutamate residue. The cooperation between SPI and QC is 

apparently efficient, suggesting either direct interaction or joint anchoring in lipid 

domains, which we have not yet tested. Pyroglutamate formation occurs for 

proteins that remain in the periplasm, as well as for proteins that are transported 

further into or through the outer membrane. We suggest the term “Q-rule” to 

describe the finding that glutamines are enriched after SPI cleavage sites, and that 

these glutamine residues are cyclized to form N-terminal pyroglutamate residues 

in proteins that are destined to the periplasm or beyond (Fig. 19). 
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Fig. 19: Hypothesized Pathway for Pyroglutamate formation by QC. 

Schematic representation of the pathway for pyroglutamate formation at the amino 

terminus of proteins that transit to or through the periplasm. It is currently unclear 

whether or not SPI and QC are physically associated. Pyroglumate formation has 

not yet been tested for proteins of the inner membrane. 

Importance of the Q-rule pathway 

The Q-rule pathway seems to be biologically important, not only judging by the 

number of proteins that are subject to the rule. P. gingivalis glutaminyl cyclase is 

present in both virulent and avirulent strains [152]. According to an unbiased large 

scale transposon mutagenesis screen [153], the enzyme is essential even in 

laboratory culture conditions when P. gingivalis is not pitted against a host immune 

system. It is currently unclear why the enzyme is essential. Our data speak against 

a role of the modification in protein sorting. Given the host-associated lifestyle of 



83 

many Bacteroidetes species, it is possible that glutaminyl cyclization protects 

secreted proteins against host aminopeptidases (excluding of course the host 

pyroglutamate aminopeptidases). However, this model does not explain why the 

Q-rule applies to SPI substrates that remain in the periplasm or why the glutaminyl 

cyclase is essential for P. gingivalis in culture conditions, unless P. gingivalis has 

become unable to do without the Q-rule and now needs pyroglutamate formation 

for protection against its own periplasmic proteases as well. Further lending 

credence to this theory is the lethality of QC knock-outs. 

Future topics 

One of the lingering questions remaining is how the QC and SPI interact withing 

the periplasmic space. It was not evaluated whether these are or are not in intimate 

contact or physically linked to one another, although their function is clearly linked. 

Another point of interest is perhaps although only downstream effects of gingipain 

secretion were evaluated in this project, P. gingivalis is fully capable of surviving 

without gingipain activity. Perhaps another essential protein or proteins processed 

through this system is blocked, thereby leading to cell death. Either way this 

system poses as a possible target for future studies and continued research.  
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