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ABSTRACT 

AUTOMATIC SIGNAL AND IMAGE-BASED ASSESSMENTS OF SPINAL CORD 

INJURY AND TREATMENTS 

Samineh Mesbah 

April 23rd, 2019 

Spinal cord injury (SCI) is one of the most common sources of motor disabilities 

in humans with estimated annual global incidence of 40 to 80 cases per million 

population. The quality of life in individuals with severe and chronic SCI is often deeply 

impacted by the hardships of living with paralysis and high medical and living costs. 

Depending on the level and severity of the injury, these individuals can experience a wide 

range of secondary complications including muscle atrophy as a result of disuse and fat 

infiltration in skeletal muscles in paralyzed limbs that can lead to diabetes, cardiovascular 

diseases and metabolic syndrome and limit the motor function even if the neural recovery 

is sufficient. In recent years, spinal cord epidural stimulation (scES) along with activity-

based training has shown astonishing results for re-enabling independent standing, 

walking over ground and voluntary movements of the paralyzed limbs in individuals with 

severe SCI even several years after the injury. The combination of proper parameter 

selection for epidural stimulation, i.e. frequency, intensity and electrode configuration, is 

one of the key factors in successful facilitation of the full weight-bearing standing, 

stepping and volitional control of lower limbs. Finding the most optimum scES 
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parameters selection for a given lower limb motor function in each SCI individual 

requires extensive assessments of muscle recruitment patterns below the injury level and 

their connections with the scES parameters. Furthermore, the physiological mechanism 

involved in performing motor tasks with scES in individuals with motor complete 

paralysis has remained vastly unknown.  

In this dissertation, we have developed advanced engineering tools to address 

three distinct problems that researchers, clinicians and patients are facing in SCI research 

realm. Particularly, we have proposed a fully automated stochastic framework to quantify 

the effects of SCI on muscle size and adipose tissue distribution in skeletal muscles by 

volumetric segmentation of 3-D MRI scans in individuals with chronic SCI as well as 

non-disabled individuals. In this framework, subcutaneous adipose tissue, inter-muscular 

adipose tissue and total muscle tissue are segmented using linear combination of discrete 

Gaussians algorithm. Also, three thigh muscle groups were segmented utilizing the 

proposed 3-D Joint Markov Gibbs Random Field model that integrates first order 

appearance model, spatial information, and shape model to localize the muscle groups. 

The accuracy of the automatic segmentation method was tested on both SCI (N=16) and 

on non-disabled (N=14) individuals, showing an overall 93% accuracy for adipose tissue 

and muscle compartments segmentation based on Dice Similarity Coefficient. The 

proposed framework for muscle compartment segmentation showed an overall higher 

accuracy compared to ANTs and STAPLE, two previously validated atlas-based 

segmentation methods. Also, the framework proposed in this study showed similar Dice 

accuracy and better Hausdorff distance measure to that obtained using DeepMedic 
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Convolutional Neural Network structure, a well-known deep learning network for 3-D 

multi-modal MRI image segmentation.  

In the second part of this research, we developed a novel framework for robust 

and automatic activation detection, feature extraction and visualization of the scES 

effects across a high number of scES parameters to build individualized-maps of muscle 

recruitment patterns of scES. This new method is designed to automate the current 

process for performing this task, which has been accomplished manually by data analysts 

through observation of raw EMG signals, a process that is laborious, time-consuming and 

prone to human errors. The proposed method provides a fast and accurate five-step 

algorithms framework including: conversion of the EMG signal into its 2-D 

representation by overlaying the located signal building blocks; de-noising the 2-D image 

by applying the Generalized Gaussian Markov Random Field technique; detection of the 

occurrence of evoked potentials using a statistically optimal decision method through 

comparison of the probability density functions of each segment to the background noise 

utilizing log-likelihood ratio; feature extraction of detected motor units such as peak-to-

peak amplitude, latency, integrated EMG and Min-max time intervals; and finally 

visualization of the outputs as Colormap images. In comparing the automatic method vs. 

manual detection on 700 EMG signals from five individuals, the new approach 

demonstrated an average accuracy of 98.28% based on the combined false positive and 

false negative error rates. The sensitivity of this method to the signal-to-noise ratio (SNR) 

was tested using simulated EMG signals and compared to two existing methods, where 

the novel technique showed much lower sensitivity to SNR. 
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Finally, in the last part of this dissertation, we introduced an EMG time-frequency 

analysis framework that implements EMG spectral analysis and machine learning tools to 

characterize EMG patterns resulting in independent or assisted standing enabled by spinal 

cord epidural stimulation, and identify the stimulation parameters that promote muscle 

activation patterns more effective for standing. We initially compared three frequency 

transformations, fast Fourier (FFT), short-time Fourier (STFT) and continues wavelet 

transform (CWT) and determined that CWT represent the power distribution of the EMG 

activities in time and frequency domains more effectively than FFT and STFT. The time-

frequency features that we extracted from EMG signals have revealed that during 

independent standing condition, the coefficient of variation of the signal envelope, the 

median frequency and its standard deviation show a significant drop while the total 

power and mean peak power show significant increase compared to assisted standing in 

11 individuals with motor complete paraplegia and 16 muscles. We then used the 

extracted feature vectors to classify the standing performances after performing non-

negative matrix factorization for dimension reduction. Between the 4 classification 

methods that have been tested, K-nearest neighbor (KNN) performed better than Naïve 

Bayes, binary Support Vector Machine, and ensemble decision tree. We also 

demonstrated that the inclusion of wavelet-derived EMG frequency variables in the 

classification model results in an accurate classification (94.4%) of independent versus 

assisted standing, which is much higher than the classification accuracy that was obtained 

using only EMG time domain variables (83.7%). We finally applied the proposed 

analysis framework on EMG data collected from six research participants while they 

were testing the effectiveness of different stimulation parameters for standing. Although 
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the stimulation parameters applied did not lead to independent standing, the proposed 

prediction method scored effectiveness of each set of stimulation parameters tested for 

each muscle, based on the comparison between the EMG pattern characteristics promoted 

by each set of stimulation parameters and those resulting in independent standing.  

The neurotechnological advancements proposed in this dissertation have greatly 

benefited SCI research by accelerating the efforts to quantify the effects of SCI on muscle 

size and functionality, expanding the knowledge regarding the neurophysiological 

mechanisms involved in re-enabling motor function with epidural stimulation, fast-

tracking the selection of optimum stimulation parameters for performing motor tasks and 

consequently considerably reducing costs and labor work while helping the patients with 

complete paralysis to achieve faster motor recovery. 
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CHAPTER I 

INTRODUCTION 

 

This dissertation is focused on proposing neurotechnological advancements in the 

spinal cord injury (SCI) research domain by designing and implementing engineering 

tools that can facilitate and therefore accelerate the efforts towards assessment of SCI 

effects on size and functionality of skeletal muscles in humans with severe and chronic 

SCI. These tools can also help in expanding the knowledge regarding the 

neurophysiological mechanism involved in using electrical stimulation of the spinal cord 

for motor recovery in individuals with chronic complete SCI. This chapter of the 

dissertation is dedicated to address the motivations and the three distinct objectives of 

this dissertation followed by an overview of the SCI research and epidural stimulation of 

the spinal cord as the potential treatment for individuals with chronic SCI and the 

importance of advancing signal and image-based machine learning techniques to 

facilitate the rehabilitation process in this population. The previous studies that have been 

done in the medical image segmentation literature and electromyogram (EMG) signal 

processing techniques in machine learning domain and their limitations will be presented 

and our proposed approach to overcome them will be offered. The structure of the rest of 

this dissertation will be presented at last. By the end of this chapter, the reader will be 

familiarized with the purpose and objectives of this research and will have basic 
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understanding about the SCI research and the signal and image-based tools that are 

proposed to address some of the problems that researchers in this field are facing. 

A. Problem Statement 

In this dissertation, as a collaborative work with Kentucky Spinal Cord Research 

Center, we are targeting three distinct problems in the area of SCI research. The 

following subsections are presenting the motivation behind each problem and the specific 

objective that is going to be addressed in this dissertation. 

I) Effects of SCI on Skeletal Muscle Size and Functionality 

Motivation 

Spinal cord injury is one of the leading causes of paralysis in the United States 

responsible for 27.3% of the population living with paralysis [1]. The prolonged disuse of 

the paralyzed limbs often leads to skeletal muscle deterioration and adipose tissue 

infiltration in individuals with chronic SCI. These negative adaptations can cause 

secondary complications such as diabetes, cardiovascular diseases and metabolic 

syndrome as well as limiting motor functions even if the neural recovery is sufficient. 

Therefore, it is crucial to quantify the effects of SCI on the size of the skeletal muscles 

and adipose tissue volumes and assess the efficacy of interventions that can help prevent 

or reverse these adaptations. The 3-D magnetic resonance images (MRIs) of the human 

thighs has been used traditionally for qualitative assessments of skeletal muscle and fat 

volumes. These images can be segmented into desired compartments to quantify the size 

of each muscle or muscle group volumes and the fat distribution in between the muscles. 

Although manual segmentation of muscle MRI volumes can be performed with high 
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accuracy, this method is laborious and lacks scalability as the number of subjects, image 

slices and regions of interest grow. 

Objective 

Automatic methods for medical image segmentation are the solution to 

quantitative imaging scalability problem. Therefore, the objective here is to develop a 

fully automated system that can segment each slice into extensor, flexor and medial 

muscle groups, bone, inter-muscular and subcutaneous adipose tissues and measure the 

volumes of each compartment and their ratio. Specifically, the challenges of shape-based 

segmentation of MRI scans when there exists limiting or no intensity differences between 

the shapes of interest, as well as high level of shape variability between subjects in SCI 

population will be addressed. 

II) Neurophysiological Mapping of Spinal Cord Epidural Stimulation 

Motivation 

Although there is currently no cure for SCI, in recent years, spinal cord epidural 

stimulation (scES) along with activity-based training has shown promising results for 

regaining non-assisted standing, walking over ground and voluntary movements of the 

paralyzed limbs in individuals with severe SCI even several years after the injury. It has 

been shown that proper selection of stimulation parameters, i.e. electrode configuration, 

intensity and frequency, plays a significant role in successful facilitation of volitional 

movements and performing independent motor tasks. To achieve optimum parameter 

selection, the first step is the mapping of the muscle recruitment patterns using motor 

evoked potentials induced by scES. The detection of the evoked potentials inside the 
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recorded EMG signals and visualize the connections between the characteristics of the 

muscle response and the stimulation parameters is a challenging task and designing a tool 

that addresses this problem can significantly accelerate the process of searching for 

proper parameter selection. 

Objective 

The objective here is to develop a signal processing framework that can detect 

motor evoked potentials accurately from recorded EMG signals and visualize the process 

of mapping the motor pathways below the injury level and their connections with scES 

parameters. The challenge in accurately detecting evoked potentials in EMG signals is 

that the signal to noise ratio of the recorded EMG is unknown and varies between 

different muscles and experiments and the developed activation detection method has to 

be robust to the variation of the noise level in the signals. 

III) Neurophysiological Markers Predicting Independent Standing with scES 

Motivation 

The ability to stand with independent lower limb extension is a key achievement 

towards the recovery of functional mobility in individuals with motor complete SCI and 

can subsequently lead to recovering over ground stepping and walking. It is known that 

the appropriate selection of individual-specific scES parameters is crucial to promote 

standing with independent lower limb extension in this population. However, to date 

there are no available algorithms or procedures that suggest the exact set of parameters to 

be applied for facilitating standing using tonic scES. Moreover, the characteristics of 
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muscle activation patterns leading to independent standing has remained poorly 

understood. 

Objective 

Finding the scES parameters that would lead to independent standing requires: 1) 

Extracting physiologically meaningful features from the recorded EMG signals and 

understanding what are the physiological characteristics of the lower limb muscle 

responses that lead to independent standing; 2) Designing computational models that can 

accurately discriminate between assisted and independent standing conditions for each 

muscle based on the extracted features; and 3) Using these models to predict if a set of 

scES parameters can lead to independent standing based on the muscle responses 

generated. One challenge here is to define the best neurophysiological features that can 

provide high level of differentiability between the two standing conditions while 

advancing the researchers knowledge of which neurophysiological conditions are 

responsible for independent standing in SCI population. The second challenge is to 

design the best classification and prediction framework that can classify the feature 

vectors with high accuracy and therefore provide accurate predictions regarding the 

stimulation parameters that can lead to independent extension in targeted muscles. 

B. Spinal Cord Injury Overview 

The human spinal cord is a collection of 31 pairs of nerves that are extended from 

the base of the brain down to the back. These nerves carry the signals from the brain that 

control the limbs, chest, and abdomen muscle functions and the function of organs such 

as heart, lungs, bowel and bladder. Spinal cord is very sensitive to injury and it does not 

have the ability to repair itself if damaged. Although protected by the bone structure of 
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vertebrae, spinal cord can be injured if the vertebrae are broken or dislocated due to 

trauma (the most common cause of SCI), compression from tumor or infection, or lack of 

blood supply. Injuries to the spinal cord can disrupt the communication between brain 

and the organs and body parts and lead to paralysis below the level of injury.  

There are approximately 285,000 individuals currently in the United States living with 

SCI and about 17,700 new cases of SCI each year [2]. The average lifetime costs of each 

SCI patient can vary between 1,130,000 to 4,800,000 USD depending on the age at the 

time of injury, neurological level of injury, education and pre-injury employment [2]. 

Given the high costs and the hardships of living with disabilities caused by SCI, any 

potential treatment that can fully or partially offers recovery of motor abilities in the 

paralyzed limbs and/or improves cardiovascular and bladder functions is of great interest 

and importance. 

Depending on the neurological level of the injury, SCI patients can also suffer from a 

wide range of acute and chronic secondary health-related complications. These secondary 

complications include respiratory, cardiovascular, urinary and bowel complications, 

spasticity, pain syndromes, pressure ulcers, osteoporosis and bone fractures [3]. Many 

patients experience severe muscle atrophy, bone loss and adipose tissue infiltration in the 

paralyzed limbs after SCI as a result of muscle disuse. Muscle atrophy can result in 

reduced metabolic rate and increase the risk of cardiovascular diseases and metabolic 

disorders such as type-2 diabetes [4, 5]. Figure 1.1 shows the effects of muscle atrophy 

on the thigh muscle and fat distributions using 3-D MRI images. 
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Fig 1.1 Exemplary MRI thigh images from axial, coronal and sagittal views of Non-

disabled (left) and an individual with motor complete spinal cord injury (right) that shows 

the effects of muscle atrophy on the muscle size and adipose tissue distribution in the 

thighs after spinal cord injury.  

 

Muscle atrophy can also severely limit motor function even if the recovery of neural 

control is sufficient to activate the muscle. Therefore, after the patient with SCI is 

stabilized, most of the rehabilitation efforts are focused on improving the functional level 

by physical and occupational therapies.  

One of the potentially promising treatments for SCI that has offered promising results in 

recent years is the electrical stimulation of the lumbosacral spinal cord followed by 

extensive activity-based training, which has shown progressively re-enabling full weight-

bear standing and stepping [6, 7] [8-12] and volitional control of lower limbs in 

individuals with chronic motor complete paralysis [13, 14]. In this method, a 16-electrode 
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array was surgically implanted at the T11–L1 vertebral levels over the spinal-cord 

segments L1–S2 (Fig 1.2 A). The electrode array is connected to a pulse generator unit 

that is implanted in a subcutaneous abdominal pouch and sends stimulation pulses to the 

spinal cord [10]. Figure 1.2 B shows some of the positions in which participants have 

performed various motor tasks with spinal cord epidural stimulation (scES) after 

implantation. The EMG signals are recorded from 16 leg muscles (8 on each side) during 

the performance of motor tasks with scES (Fig 1.2 C and D). This study has been 

pioneered and led by Prof. Susan Harkema, the director of the Kentucky Spinal Cord 

Research Center at University of Louisville. 

 

 

Fig 1.2 (A) Schematic of the implanted 16-electrode array and its position on the spinal 

cord; (B) Activity based training positions that participants have performed after scES 
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implant; (C) Typical recorded EMG signals from left leg muscles; and (D) Schematic of 

16 leg muscles that EMG signals have been recorded from. 

 

C. Quantitative Analysis of Medical Images  

Developments of medical imaging techniques such as Computer Tomography and 

Magnetic Resonance Imaging (MRI) have offered great assistance in clinical diagnosis 

and monitoring treatments progress for various medical conditions. The automated 

quantitative analysis of medical images has provided effective tools for reliable 

assessment of medical conditions while reducing the analysis time and labor work and 

improving the accuracy and scalability in numerous medical applications [15]. 

a. Medical Image Segmentation Methods 

The segmentation of various regions of interest in medical images is one of the crucial 

steps in quantitative analysis of medical images. The algorithms for performing automatic 

and semi-automatic segmentation tasks are classified into 4 main sub-categories 

according to their principal methodologies, namely the ones based on thresholding, 

classification or clustering techniques, deformable models and deep learning methods. 

These categories indicate progressive efforts towards more accurate and fully-automated 

medical image segmentation and the wide variety of methods that have been proposed in 

the literature can fit into these 4 categories.  

Thresholding Methods 

The first category is comprised of the simplest forms of image analysis based on intensity 

thresholds. Most of the algorithms that belong to this category make the assumption that 

the interested structures can be distinguished by image intensity or gradient magnitude 
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[16]. These methods look for pixels that satisfy the rules defined by the thresholds that 

have been selected manually using expert’s knowledge or automatically through 

statistical modeling of the intensity distribution of images. The algorithms in this 

category use edge detection [17] or region detection [18] or a hybrid of both [16, 19]. 

Region growing algorithms use initial seeding and expand the region of interest based on 

the intensity of the neighboring pixels and homogeneity criteria until the total region is 

segmented [16, 20]. Post-processing steps such as morphological operations to connect 

the breaks in the detected edges or eliminate the holes in the segmented regions are often 

required for the outputs of these algorithms in the presence of noise and intensity 

inhomogeneity [16].  

Pattern Recognition-based Methods  

Supervised classification and unsupervised clustering methods based on pattern 

recognition techniques have also been used widely for segmentation in medical image 

applications. Main supervised classification algorithms include active appearance models 

support vector machines (SVM) and artificial neural networks (ANN) [21-23].  

A training dataset, which includes the original and segmented images, is required for the 

algorithm to derive and learn nonlinear and complex patterns exist in the data. The 

extracted patterns from the training set provides important cues about the structures of the 

region(s) of interest such as intensity, position and shape, which can be then be used for 

the segmentation of test images. Algorithms based on classifiers have been widely 

applied to segment organs in medical images like cardiac and brain images. These 

methods are often sensitive to initial conditions and the number of training images and 

can be prone to overfitting [16].  
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Fuzzy C-means (FCM) and K-means algorithms [24], Iterative self-organizing data 

analysis technique algorithm [25] and unsupervised neural networks [26] are some of the 

popular unsupervised clustering algorithms. Instead of using a training dataset, these 

algorithms extract structural features from the classified points. The FCM algorithm is an 

iterative method that minimizes the intra-cluster variation while labelled pixels are 

assigned to the nearest clusters and the cluster centroid will then be updated and the 

labels are reassigned [24]. Unsupervised neural networks are based on unsupervised 

learning where the targets are the same as the inputs [16].  

Deformable Models 

The algorithms in the third category are based on deformable models which can be 

further categorized into parametric and geometric models. The parametric deformable 

models are made of initial contours and by using a moving equation, the contours would 

be driven to the boundaries of the object of interest while the external energy aims to 

drive the contour to the right direction based on prior image information. It can be proven 

that the balancing equilibrium of the moving contour under external and internal forces is 

the position of object’s boundary. Compared to pattern recognition methods, deformable 

models are more flexible and can be used for complex segmentation tasks [16]. The 

Snake method is the first deformable model applied to the medical image segmentation 

[27]. Later developments aimed at minimizing the sensitivity of this algorithm to initial 

conditions and noise effects [28, 29].  

The geometric deformable models are based on the level set method. The level set 

method is based on moving the contour implicitly into a higher dimensional level set 

function and view the contour as its zero-level set. Therefore, we can track the zero-level 
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set of the level set, instead of tracking the contour points. In the medical image 

segmentation, choosing parametric or geometric model depends on the applications: if 

structures have large shape variety or complicated topology, geometric deformable 

models are preferred; on the other hand, if the interested regions have open boundaries or 

the structures are thin or real-time processing is required, parametric models are 

preferred. Deformable models usually contain certain number of parameters and proper 

parameter selection is crucial to find the best performance but the task of finding 

optimum parameters for deformable models is usually time-consuming [16].  

Deep Learning 

The field of quantitative assessments of medical images and particularly the segmentation 

task has been significantly impacted in recent years by the emergence of deep learning 

neural networks. The increased access to large amounts of data, known as big data, 

availability of software and algorithms, and an explosion of compute power have enabled 

the use of deep neural networks [30]. The deep learning networks, and particularly the 

convolutional neural networks (CNNs), have started to outperform most of the other 

machine learning methods on several image analysis benchmarks [31]. Being able to 

extract complex features from the raw data, CNNs have also bypassed the tedious task of 

feature engineering [30]. The outperformance of deep neural networks however, comes 

with several costs and limitations such as an increased number of adjustable network 

parameters, substantial memory and computational costs and the black box nature of deep 

networks that make the debugging task and understanding the networks computational 

limitations very difficult [32-35]. Moreover, deep learning networks require substantial 

amount of training data in order to be properly trained. This can be a limitation in 
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medical applications in which the medical condition is not common and collecting large 

amount of data is not an easy task. Furthermore, in most medical applications, the 

manually selected features often provide researchers insights about the physiological and 

anatomical properties of a given condition which is critical for designing the next steps in 

the research or treatment. Therefore, having a network that can learn its own features, 

however powerful, would not always be an attractive choice for clinicians and 

researchers and might be a drawback in using deep neural networks in medical 

applications.  

b. Applications of Image Segmentation in SCI Research 

Magnetic resonance imaging (MRI) has been used by clinicians for examining the 

effects of SCI on skeletal muscle and adipose tissue distribution and determining the 

effectiveness of subsequent rehabilitative interventions for preventing or reversing 

muscle atrophy and adipose tissue expansion. Segmenting key muscle groups, such as 

knee extensors and flexors, and evaluating their volumes and ratios at different stages 

post SCI and during the progress of a given intervention in MR images is an important 

and delicate task that requires the expertise of a trained examiner in order to be done as 

accurately as possible. The regions of interest in a typical 3-D MRI volume are depicted 

in Fig 1.3. In addition to manual segmentation, different automatic and semi-automatic 

segmentation methods for MR images have been proposed in the literature. A concise 

background review of the automatic methods that are developed for the thigh MRI scans 

segmentation tasks in various medical applications has been presented in Chapter 2 of 

this dissertation.  
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Fig 1.3 Exemplary MRI volumes of thigh muscle in coronal, sagittal and axial views. The 

regions of interest are depicted with colors: Yellow: Extensor Muscles, Pink: Flexor 

Muscles, Red: Medial Muscles, Green: Subcutaneous adipose tissue (SAT), Dark blue: 

Extensors intermuscular adipose tissue (IMAT), Light blue: Flexors IMAT, and Orange: 

Medial IMAT.  

 
c. Limitations of Current Methods 

Although the manual segmentation of the thigh muscles and adipose tissue is known to be 

the gold standard, it presents limitations such as being laborious, time consuming, prone 

to inter-examiner variability and finally lacking scalability to high numbers of MRI slices 

and longitudinal studies. Despite the relevant developments reported in the literature for 

automatic and semi-automatic segmentation methods, there has been no explicit 

segmentation framework proposed for the SCI population that can accurately segment 
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muscle groups like knee extensors and flexors, which play a key functional role, and 

quantify the distribution of adipose tissues around and within the thigh muscle volumes.  

d. Proposed Approach for MRI Segmentation 

For automatic segmentation of thigh muscles and adipose tissue in SCI 

population, we have proposed a novel step-wise stochastic framework for volumetric 

thigh segmentation of subcutaneous adipose tissue, inter-muscular adipose tissue and 

muscle compartment tissues utilizing an intensity-based algorithm and our proposed Joint 

Markov Gibbs Random Field model that integrates first order appearance model, spatial 

information, and shape model to localize the muscle groups. This methodology addresses 

the challenges in automatic segmentation of structures in the absence of intensity 

differences and the high level of variability in the prior shape information. The details of 

the methodology and applications of the proposed framework has been discussed in 

Chapter 2. 

D. EMG Signal Processing 

The EMG signal is a recording of a series of electrical activities that originate 

from skeletal muscles. These electrical activities are the sum of electrophysiological 

variations in the state of muscle fiber membranes as a result of the excitability through 

neural control that lead to depolarization and repolarization which results in generation of 

an action potential [36]. EMG signals are often recorded during isotonic and isometric 

muscle contractions. In isotonic contraction, the length of the muscle changes during 

resistance and can be further sub categorized into concentric (shortening) and eccentric 

(lengthening) contractions. On the contrary, isometric contraction creates no change in 

muscle length but causes muscles to produce force while the posture is in static position. 
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Analysis of EMG during isometric contractions is more commonly used for physical 

rehabilitation, whilst isotonic contractions are more common for strength and athletic 

studies. EMG signals are used extensively in SCI research in order to characterize muscle 

activation during the performance of various tasks as well as evaluating the effects of 

epidural stimulation on the muscles. Although recorded EMG signals carry useful 

information about the state of the muscles and their neural drives, these signals require 

advanced processing in time and frequency domains to locate and extract proper features. 

a. Time-domain Analysis 

Time-domain features for EMG signal analysis include the analysis of the signal 

amplitude (mean, standard deviation and coefficient of variation of the envelope), the 

total power of the signal (or root mean square value), entropy, number of zero-crossings, 

integrated EMG, and the onset and offset of increase in the muscle activity (bursts) 

during performing various motor tasks [37]. In the content of epidural stimulation, a 

challenging task in EMG analysis in the time domain is the precise detection of each 

epidurally evoked potential. This task is crucial in order to determine the effective 

threshold for epidural stimulation intensity that triggered the occurrence of the first 

visible evoked potential for each muscle. The motor evoked potential detection is usually 

performed manually by a trained observer visually inspecting the raw EMG signals, 

which is considered to be the gold standard for activation detection.  

Change Detection Methods  

There have been several computer-based methods proposed in the literature for change 

detection in EMG signals, such as the single or double threshold detector [38], Teager–

Kaiser Energy Operation [39-41], wavelet template matching [42], supervised and 
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unsupervised learning algorithms [43] or statistical criterion determination methods like 

hidden Markov models [44] and Gaussian mixture models [45, 46]. The main goal of all 

these methods is to convert the original raw signals into a set of estimated sequences that 

make the highest distinction between before and after change as well as detect the 

occurrence of the change and the corresponding time instant, t0, as early as possible [45]. 

These methods can be divided into four main stages: pre-processing, conditioning, 

decision thresholding, and post processing. The type of test function; the decision rule, 

which involves the selection of constant or dynamic thresholds; and the heuristic 

constraints for the final detected onset, which varies based on the application and the 

characteristics of the EMG signals, vary between different methods.  

b. Frequency-domain Analysis 

Transforming the EMG signal to frequency domain provides information about the 

frequency content of the signal. Fast Fourier transform (FFT) has been traditionally used 

to analyze EMG signals in frequency domain. Mean, median and peak frequencies are 

some of the well-known features that can be extracted from FFT output, known as power 

spectral density (PSD). However, FFT has issues such as assuming stationarity for the 

EMG signal, not being localized in time and having poor time resolution, so that it is not 

suited for representing efficiently abrupt changes in the signal. The short-time Fourier 

transform (STFT) was designed to increase the time resolution of FFT by selecting a 

fixed-size moving window and take the FFT for each segment; however, STFT may have 

poor resolution in time and/or frequency domains, depending on the window size. On the 

other hand, wavelet transform (WT) guarantees high time and frequency resolutions by 

decomposing the signal using numerous multi-resolution wavelets [47, 48]. WT can 
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accurately characterize the short time component within non-stationary signals, providing 

information regarding the power distribution of the signal in time and frequency domains 

[49]. These advantages have made WT an attractive choice for analyzing the frequency 

content of the muscle response during performance of a task. The wavelet transform has 

been used in numerous studies to detect localized muscle fatigues during muscle 

contractions [49-51]. Particularly Karlsson et al. [52] had compared CWT with other 

time-frequency transformation, including STFT, and found that CWT is the most reliable 

method for analysis of non-stationary biological signals. Other studies had discussed the 

effectiveness of using the Wavelet transform to identify muscle fatigue as an automated 

process [50-53]. The instantaneous mean and median frequencies, peak power and peak 

frequency are examples of useful features that can be extracted from continues WT 

outputs.  

EMG Classification and Prediction Methods  

The EMG signal-based control systems are an ongoing research especially in the area of 

rehabilitation [37]. While analysis of EMG signals has been used widely for classification 

of neuromuscular diseases [54] and muscles fatigue [55], a growing body of work is 

dedicated to analyzing EMG for controlling assistive robotic devices such as 

exoskeletons and lower-limb orthoses [56, 57]. The task of classification of the recorded 

EMG signals with high accuracy has been the main goal of these studies. Attaining better 

classification performance often comes hand in hand with selecting best features from the 

EMG signals. The feature extraction process involves the transformation of raw EMG 

signals into a feature vector that best describes the information that can be used for 

discriminating between different conditions or finding new patterns. Studies have 
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reported that an ensemble of time- and frequency domain features result in better 

classification performance [58]. Using high number of features or time varying features 

often result in high dimensionality of feature vectors and redundancy problem. Therefore, 

dimension reduction methods are required to reduce the dimensionality of the data while 

maintaining discrimination capability of the feature vectors. Dimension reduction 

methods can be divided into two main categories: feature projection and feature selection. 

Feature projection attempts to determine the best combination of the original features to 

form a new feature set that do not present redundant information; and feature selection 

selects best subset of the original feature vector based on a certain criteria [56, 59]. The 

feature vectors extracted from the EMG signals will be then fed into classifier to discover 

the underlying patterns. The classifier then assigns a certain class or category to the test 

data and measure the score (likelihood) of the new data points belonging to a given class, 

which is known as the prediction step. Several techniques are used to classify EMG data 

such as artificial neural networks (ANN), Bayesian classifier, fuzzy logic, multilayer 

perceptron (MLP), support vector machines (SVM), linear discriminant analysis (LDA), 

hidden Markov models, K-nearest neighbor (KNN) method, decision tree, random forests 

and ensemble methods [37]. In a study done in 2013 by Phinyomark et al. the 

performance of LDA, random forests, decision tree, KNN, SVM and MLP neural 

networks was compared for the classification task of ten upper limb motions in which 

LDA method had presented the best performance with 98.87% accuracy. Another study 

has shown near 99% classification accuracy by using MLP to classify human forearm 

motions based on time-frequency domain features [60]. It has been argued by Xie et al. 
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that the training time of ANN classifiers is quite long and determining the proper size and 

structure of the network is arduous and time-consuming [36]. 

c. Limitations of Current Methods 

In the change detection task, manual detection of muscle activation is a laborious 

task when facing a large stack of data recorded from several muscles during various 

experiments. It can also be prone to human errors and inter/intra-observer variation and 

would also limit the ability to allow scalability to a high number of patients. Therefore, 

accurate computer-based method for activation detection process is crucial. Moreover, in 

every activation detection method, sensitivity to the noise level in the signal is a great 

challenge. Selection of proper pre- and post-processing methods usually helps to 

minimize the effect of noise on the accuracy of the method. It is also notable that some of 

the proposed methods in the literature are highly dependent on prior information of the 

signal, i.e. supervised methods, which makes those methods semi-automatic and their 

accuracy application-dependent. 

In the frequency domain, finding a transform that can best represent the frequency 

content of the muscle response to epidural stimulation is challenging. Furthermore, 

finding relevant neurophysiological features that can provide insights regarding the 

epidural stimulation mechanism of activating the motor units is a significant task that has 

not been addressed before in SCI research. 

Moreover, the analysis of EMG signals in the epidural stimulation context involves 

combining the neurological (muscle response to stimulation) and kinesiological (muscle 

response to performance of a motor task) characteristics of EMG. Developing the best 

classification and prediction approach that would assess the motor performance and 



21 

 

suggest stimulation parameter adjustments that can improve the performance, is of great 

interest and importance in this field and has not been addressed in prior studies. 

d. Proposed Approach for Time-domain EMG Processing and Visualization 

In this dissertation, we proposed a novel automatic framework for building 

individualized maps of scES induced muscle activation patterns while addressing the two 

main challenges that a fully automated activation detection method faces, by proposing 

an unsupervised and on-line approach that deals with the stochastic characteristics of the 

EMG signals in the scES application. Our generalized framework: 1) effectively de-

noises, detects, and extracts key features from EMG signal; 2) visualizes the occurrence 

of the muscle evoked potentials induced by scES; and, 3) increases the accuracy and 

efficiency of the physiological mapping process in order to determine the underlying 

relationships between the scES parameters and muscle activations. Consequently, this 

framework will offer a unique visualization tool that suggests stimulating which part of 

the stimulation array will lead to selective activation of lower limb muscles. This 

technique assists experimentalists to prompt decisions on further adjustments or 

improvements in designing future experiments. 

e. Proposed Framework for Spectral Analysis, Classification and Prediction 

To discover neurophysiological patterns in the motor responses to the epidural 

stimulation that lead to independent motor performance in individuals with complete SCI, 

we have compared three frequency transforms (FFT, STFT and CWT) of EMG signals 

recorded from lower limb muscles to extract time- and frequency domain features that 

best characterize muscle response to the stimulation. Furthermore, we have developed a 
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machine learning framework that can classify the performance of the standing task 

(assisted versus independent) using the extracted features. The algorithm is further 

advanced to predict the performance of each individual muscle during stimulation 

parameter testing and therefore predict which stimulation parameters has the potential to 

result in independent standing for each individual.  

Finally, we suggest that integrating the information provided by our individualized 

maps of motor activation patterns promoted by scES and the prediction outputs of the 

second framework provides a powerful tool for finding optimum stimulation parameters 

selection. 

E. Dissertation Organization 

The structure of this dissertation is depicted as a flowchart in Fig 1.4. In this 

dissertation, we are targeting three problems in the SCI research domain: 1) Evaluation of 

muscle size and the adipose tissue distribution prior to epidural stimulation intervention; 

2) Quantification and visualization of muscle recruitment patterns of epidural stimulation; 

and 3) Determining the characteristics of EMG signals that lead to independent standing 

with scES and predicting the standing performance given a set of stimulation parameters. 
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Fig 1.4 Flowchart depicting the structure of this dissertation. 

In this flowchart, the three areas that are the focus of our research are divided into four 

main stages: defining the problem, the data that has been collected to address the 

problem, the automation process that is the main focus of this dissertation and finally the 

applications of the developed methodology for each problem. The flowchart also shows 

that the three problems addressed in the area of SCI research are interconnected. 

Particularly, the evaluation of muscle size and adipose tissue distribution is one of the 
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factors that need to be assessed during the patient recruitment process for epidural 

stimulation implant. Furthermore, the mapping of scES muscle recruitment patterns is 

needed for finding the proper stimulation parameters adjustments during the performance 

of various motor tasks. 

In Chapter 2 of this dissertation, the details of the proposed framework for automatic 

segmentation of muscle groups and adipose tissue in MRI thigh volumes are presented. 

The application of using this framework to track the effects of activity-based training on 

the muscle volumes of a case study is also discussed in this chapter. Chapter 3 is 

dedicated to present the details of our work in time-domain EMG signal analysis 

including the novel framework for de-noising, activation detection and visualization of 

motor evoked potentials in order to determine muscle recruitment patterns of scES; the 

clinical application of using the outputs of our framework to find the optimum electrode 

configuration for performing voluntary knee flexion in a SCI subject, and finally 

measuring the amount of the inter-trial variability of recorded motor evoked potentials 

induced by epidural stimulation. The details of the time-frequency analysis of the 

recorded EMG signals using Wavelet transform and its applications in classification and 

prediction of standing performance with scES are presented in Chapter 4. Finally, the last 

chapter of this proposal is dedicated to conclusion and future directions both in the signal 

processing and the image processing parts of the SCI project.
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CHAPTER II 

NOVEL STOCHASTIC FRAMEWORK FOR AUTOMATIC SEGMENTATION OF 

HUMAN THIGH MRI VOLUMES AND ITS APPLICATIONS IN SPINAL CORD 

INJURED INDIVIDUALS 

 

A. Introduction 

Spinal cord injury (SCI) is one of the primary causes of motor disabilities in humans, 

with an annual incidence of approximately 17700 new cases only in the United States [2]. 

Skeletal muscles experience deleterious physiological changes after SCI. Animal studies 

showed that spinal cord transection reduced muscle mass of hind-limb extensors between 

20% and 40% in one month [61-63]. Individuals with chronic SCI also showed cross-

sectional area of the whole thigh, knee extensors and plantar flexors that were about 30% 

smaller compared to non-disabled individuals [64, 65]. In addition, SCI leads to fat 

infiltration within the muscle (intramuscular adipose tissue) and between muscles 

(intermuscular adipose tissue, IMAT) [65, 66]. The consequences of severe SCI-induced 

adaptations on skeletal muscle are two-fold: on one side, the muscle mechanical output is 

compromised, both in terms of force exertion and fatigue resistance [67, 68], which could 

limit motor function even if the recovery of neural control was sufficient. Additionally, 

the concurrent loss of muscle tissue and gain of ectopic (i.e. non-subcutaneous) adipose 

tissue can favor health-related complications such as pressure ulcer, glucose intolerance, 

insulin resistance and therefore type II diabetes, metabolic syndrome and cardiovascular 
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disease [65, 66]. However, these negative muscle adaptations can be mitigated by proper 

interventions that include neuromuscular electrical stimulation, dietary programs and 

assisted movement trainings [69, 70].  

a. Muscle Atrophy Assessment  

Magnetic resonance imaging (MRI) is a suitable method for examining the effects of 

SCI and determining the effectiveness of subsequent rehabilitative interventions on 

skeletal muscle and adipose tissue distribution, because of its multiple forms of contrast 

weighting and its sensitivity to diffusion, perfusion, and chemical composition of tissues 

[71]. In particular, determining the SCI- and intervention-induced adaptations in 

functional key muscle groups, such as knee extensors and flexors, is important for 

understanding if appropriate muscle volume and ratio between key muscle groups are 

present at different stages post SCI, as this can affect motor function. Also, MRI can 

provide useful information for understanding ectopic adipose tissue-related adaptations 

after SCI and different interventions in order to optimize prevention of SCI-induced 

health complications. For example, individual characteristics of SCI such as the level of 

spasticity may influence ectopic adipose tissue distribution as well as skeletal muscle size 

[72]. Similarly, it is important to evaluate the effects of different interventions (i.e. 

dietary planning; activity-based training) in order to understand their efficacy and select 

the most appropriate ones for reducing ectopic adipose tissue and thus contributing to 

prevent SCI-induced health complications. 

b. Current Methods 
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It is important to recognize that manually assessing these parameters from MR 

images presents some relevant limitations, as manual segmentation is laborious, time-

consuming, impractical for large studies, and can make the estimated indices subjective 

to the inter-rater variability to some extent. To overcome these issues, different automatic 

segmentation methods of MRI images were proposed in the literature. Automatic 

segmentation of the MR thigh images started with the work of Barra et al. [73, 74] by 

using intensity differences between tissues to segment the total muscle and fat areas in 

elderly population and it was further advanced by others to segment subcutaneous 

adipose tissue (SAT), IMAT and bone areas in obese populations [16, 75]. More recently, 

various algorithms were proposed to use prior shape information to segment individual 

thigh muscles in healthy population and individuals with chronic obstructive pulmonary 

disease [76-78]. Automatic and semi-automatic atlas-based methods using image 

registration algorithms for muscle segmentation have gained more attention recently to 

segment quadriceps individual muscles and muscle group in healthy individuals [79, 80]. 

There have also been longitudinal studies on the human thigh muscles using the semi-

automatic segmentation methods in individuals with osteoarthritis and those with 

muscular dystrophy [81, 82].  

The field of segmentation and quantitative assessments of medical images has been 

considerably impacted in recent years by the emergence of deep learning neural 

networks.  In particular, two and three-dimensional Convolutional Neural Networks 

(CNNs) have shown promising results in various medical imaging fields including 

several recent studies on segmentation of bone and cartilage in MRI thigh and knee scans 

[32, 83-86]. However, there are several limitations and additional requirements needed 



28 

 

for the application of CNNs on 3-D medical images segmentation, such as an increased 

number of adjustable network parameters, substantial memory and computational costs, 

and the need of high-level engineering expertise to properly perform training and testing 

steps for pre-designed networks [32-35]. 

Despite the relevant developments regarding the automatic segmentation and quantitative 

assessments of medical images that have been reported in the literature, there has been no 

explicit automatic segmentation framework proposed for the SCI population that can 

accurately and efficiently segment muscle groups like knee extensors and flexors, which 

play a key functional role, and quantify different types of adipose tissue such as SAT and 

IMAT. In the present study, we propose a novel stochastic method that integrates 

intensity, spatial information and shape model to separate fat volumes from the muscle 

tissue and segment the muscle tissue into three compartments (knee extensors, knee 

flexors and a medial compartment including the adductor muscles), utilizing the Joint 

Markov Gibbs Random Field (MGRF) model.  In order to test the accuracy of this 

method, we have applied the proposed framework on both a group of individuals with 

chronic SCI and a group of non-disabled (ND) individuals, comparing the automatic 

segmentation outcomes to those obtained from manual segmentation. Moreover, we have 

also compared the outcomes generated from our novel three-fold stochastic method with 

those obtained from two other well-known atlas-based techniques in order to highlight 

the potential improvements brought about by our approach. Finally, the thigh muscle and 

fat segmentation task was also performed using a well-known CNN architecture to 

evaluate the advantages and limitations of deep learning approach for this application. 

B. Materials and Methods 



29 

 

a. MRI Scan Specifications and Characteristics of the Research Participants  

In this work, the 3-D MRI scans were acquired using Siemens 3T Magnetom Skyra 

with pulse sequence – t1 vibe (for 3-D VIBE images) for in phase, opposite phase, water, 

and fat imaging. The volume dimensions (X, Y, Z) are 320 by 208 by 320 and the series 

length is 1. Voxel dimensions (X, Y, Z) are 1.5 x 1.5 x 1.5 mm, size of series point is 

0.006 seconds and the slice gap is equal to zero. The thigh MRI scans analyzed in this 

study were collected from a total of 30 participants including 16 individuals with chronic 

SCI and 14 ND subjects. The characteristics of the 16 individuals with severe chronic  

SCI were the following: age (year): 32.4 ± 9.1; time since injury (year): 6.7 ± 7.7; 13 

males and 3 females; 10 individuals classified as American Spinal Injury Association 

(ASIA) impairment scale (AIS) A, 5 individuals as AIS B, and 1 individual as C as for 

the International Standards for Neurological Classification of Spinal Cord Injury [87]; 

height (m): 1.78 ± 0.09; weight (kg): 77.19 ± 12.48; body mass index (BMI) (kg/m2): 

24.36 ± 3.99. The 14 ND subjects included in this study presented were 11 males and 3 

females with age (year): 28.47 ± 3.8; height (m): 1.80 ± 0.10; weight (kg): 92.56 ± 15.30; 

BMI (kg/m2): 28.54 ± 4.27. All participants were fully informed about the aims of the 

study and written consent was provided from all individuals, which was approved by the 

University of Louisville Institutional Review Board. All research activities were 

performed in accordance with the guidelines and regulations of this Institutional Review 

Board. 

b. Automatic Segmentation Framework 

A 3-D stochastic framework for fat suppressed (FS) and water suppressed (WS) MRI 

muscles and fat segmentation is proposed in Fig 1. The proposed system consists of a 
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preprocessing step to prepare the data for automatic segmentation, which includes bias-

field correction, extraction of the central 50 slices between greater trochanter and lateral 

epicondyle of the femur, and cropping and resizing the MRI images to include only one 

thigh for further processing steps. The automatic segmentation part is divided to 4 steps. 

In the first step, which is devoted to fat and muscle area segmentation, the sum of WS 

and FS volumetric MRI is utilized to get the mask of the whole thigh volume and the 

bone marrow area utilizing Linear Combination of Discrete Gaussians (LCDG) algorithm 

[88]. The same method was used on each FS-MRI volume to initially extract muscle 

volume and WS-MRI volume to segment the total adipose tissue. Moreover, SAT was 

separated from IMAT by overlaying the muscle tissue mask, obtained from the FS 

volume, on the total fat segments from the WS volume. In the second step, each greyscale 

muscle volume and its manually segmented muscle groups (training dataset) are co-

aligned to a reference dataset using a 3-D cubic B-splines-based approach (described in 

[89]) to account for the anatomical differences of each patient’s extracted muscle 

volumes. The third step consisted in implementing a joint Markov model that 

simultaneously maximizes the likelihood estimation of three components: Appearance-

based shape (muscles anatomy), spatial (second order appearance) and intensity (first 

order appearance) models by using iterated conditional modes to localize and segment 

three muscle groups (knee extensors, knee flexors and the medial compartment, which 

includes Sartorius, adductor longus, gracilis, adductor brevus, and adductor magnus 

muscles) for the test subjects. The fourth and last step consisted in quantifying the effects 

of SCI on human thigh muscles by calculating the volume of the segmented tissues. More 

details about the joint Markov model will be discussed in the following sections. 
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Fig 2.1 The proposed framework. The Block diagram of the proposed framework for 

muscles/fat segmentation and quantification based on MRI 3-D volumes. 

 

I. Linear Combination of Discrete Gaussians (LCDG) 

The main objective of LCDG is to find the threshold for each gray volume that 

extracts the 2 classes (corresponding to the dark tissues, and light tissues) from their 

background. In case of FS-MRI scans (Fig 2a), the dark tissues represent the fat and the 

light tissues represent the muscles area (vice versa for WS-MRI scans). At the end of the 

LCDG step, we get two probabilities for each voxel of the input volumes: P1 which is the 

probability of belonging to class 1 (dark tissue) and P2 which is the probability of 

belonging to class 2 (light tissue). The voxel-wise LCDG probability, will be combined 
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to obtain the muscle, SAT and IMAT areas from FS, WS and FS+WS MRI scans. For 

example, Fig 2 illustrates the steps of the muscle area segmentation using LCDG 

algorithm for FS-MRI volumes. Figure 2b shows the initial approximation of the bi-

modal empirical distribution of Q = 256 grey levels over a typical FS-MRI volume of 

human thigh. The dominant modes represent the brighter muscles area and its darker 

background (fat area). After the additive and subtractive parts of the absolute deviation 

are approximated with the DG mixtures, the initial mixed LCDG-model consists of the 2 

dominant, 4 additive and 4 subtractive DGs (brown curves), as shown in Fig 2c and d). 

Finally, the estimated LCDG as well as conditional LCDG models of the two classes (i.e. 

muscles and fat tissues) are illustrated in Fig 2e and f. This algorithm is also used for 

WS-MRI scans to segment the fat tissue and FS+WS to segment the whole thigh mask 

and the bone. 

 

 

Fig 2.2 An Example for applying LCDG algorithm MRI 3-D volumes. LCDG algorithm 

output on (a) depicts exemplary 3D FS-MRI image data; (b) probability density functions 
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of the image voxels in Fig 2a, as determined empirically, and as approximated via LCDG 

using two dominant DGs; (c) the deviation (standard and absolute) between the empirical 

and estimated marginal probability density functions in Fig 2b; (d) LCDG algorithm 

output on the dominant and subordinate DGs in the image data in Fig 2a; (e) the final 

estimated LCDG model of the empirical density function; and (f) the final LCDG output 

of the conditional probability density functions of light tissue (muscle) and dark tissue 

(fat) intensities and the empirical density function. 

 

II. Joint Markov Gibbs Random Field Model 

In order to divide the extracted muscles area into various groups, a registered-to-

reference database of grayscale volume, g, of the muscle groups area and its map, m, are 

described with a joint probability model: P(g,m) = P(g|m)P(m), which combines a 

conditional probability distribution of the input volume given the map P(g|m), and an 

unconditional probability distribution of maps P(m) = Psp(m)PV(m), where, Psp(m) 

represents an adaptive shape prior and PV(m) is a Gibbs probability distribution with 

potentials V, which denotes a sample of a 3D MGRF model of m [90]. 

Appearance-based Shape Model 

In order to reduce the variability across subjects and enhance the segmentation 

accuracy, an adaptive shape model of each muscle group is employed. To create the 

shape database, a selected training set of volumes, collected from manually segmented 

subjects, are registered to a reference dataset using a 3-D B-splines-based transformation 

that is previously developed [89]. The selection for training dataset has been done based 

on the 2-D correlation coefficient (number between 0 and 1) between the grayscale 

images of the manually segmented volumes and the test slices. If the average correlation 
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coefficient for the whole volume is more than or equal to 0.5, that dataset will be selected 

for training otherwise it will be rejected. After selection, the training volumes are 

registered to the reference volume. Therefore, for each new test subject, an individual 

training set is built to help with variability reduction for muscle group segmentation. 

In summary, each source volume f (i.e., each of the training subjects) is aligned to the 

reference template g on a domain Ω ⊂ R3 by using a non-rigid registration. Given a 

certain source f, the registration estimates the deformation field T for all x ∈ Ω, by 

displacing a sparse grid, Ω’ ⊂ Ω of control points, 𝜁: 

𝑻(𝑥) = 𝑥 + ∑ 𝜁(‖𝑥 − 𝜁‖)Δ𝜁𝜁𝜁Ω,     (2.1) 

where Δ𝜁 is the displacement vector of the control point 𝜁 and the weighting function 𝜁 

(.) measures the contribution of any control point in Ω’ to the displacement of a point in 

Ω. The goal is that the deformation field minimizes the point-wise dissimilarity between 

the target g and the deformed source f: 

𝐸(𝑻) = 1
|Ω’|

+ ∑ 𝜙(𝑔(𝑥),𝑓(𝑇(𝑥))
𝜁(‖𝑥−𝜁‖)𝜁𝜁Ω, 𝑑𝑥   (2.2) 

where 𝜙 is the dissimilarity function (we used the sum of absolute differences). The 

objective function in Eq. (2.2) is minimized using a Markov random field model of 

displacements of the control points 𝜁 [90]. The dense displacement field is then 

determined from the control point displacements through representing free form 

deformations via cubic B-splines. We have selected this method because it is fully 

automated (no manual initialization or hand-picked landmarks) and has low 

computational time. More details can be found in [89, 90]. 
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The probabilistic shape priors are spatially variant independent random fields of region 

labels, as follows: 

𝑃𝑠𝑠(𝒎)  =  ∏ 𝑝𝑠𝑠:𝑥,𝑦,𝑧(𝑚𝑥,𝑦,𝑧)   (2.3) 

where psp:x,y,z(l) is the voxel-wise empirical probabilities for each label l ∈ L. To segment 

each input MRI data, an adaptive process guided by the visual appearance features of the 

input MRI data is used to construct the shape prior. This shape prior consists of four 

labels: the 3 muscle groups and the background. In the training phase, we use N-1 (N 

number of subjects) manually segmented data sets by an MRI expert to create the 

probabilistic maps for the four labels. For the testing phase, each test MRI volume is 

registered using the same approach in [89], to the training sets used to create the 

discussed shape prior. 

Spatial Interaction (Second-Order Appearance Model) 

In order to overcome noise effects and to ensure segmentation homogeneity, 

spatially homogeneous 3D pair-wise interactions between the region labels are 

additionally incorporated in the proposed segmentation model. These interactions are 

estimated using the Potts model, i.e., an MGRF with the nearest 26-neighbors of the 

voxels (also known as cliques), and analytic bi-valued Gibbs potentials, that depend only 

on whether the nearest pairs of labels are equal or not. The utilized second-order 3D 

MGRF model of the region map m is defined as: 

𝑃𝑉(𝐦) = 1
𝑍𝑣𝑠

exp∑ ∑ V(𝐦𝑥,𝑦,𝑧 ,𝐦𝑥+𝑥′,𝑦+𝑦′,𝑧+𝑧′) (𝑥′,𝑦′,𝑧′)∈𝑣𝑠(𝑥,𝑦,𝑧)∈𝑹 , 

 (2.4) 
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where  𝑍𝑣𝑠 is the normalization factor. Let feq(m) denote the relative frequency of equal 

labels in the neighboring voxel pairs. The initial region map results in an approximation 

with the following analytical maximum likelihood estimates of the potentials [91]: 

veq = −vne ≈ 2feq(m) – 1,    (2.5) 

which allows for computing the voxel-wise probabilities 𝑝𝐕:𝑥,𝑦,𝑧(𝑙) of each label; l ∈ L. 

More details are in [88]. 

Intensity (First-Order Appearance) Model  

Our approach also accounts for the visual appearance of the muscles besides the 

learned shape model and the spatial interactions.  Therefore, an intensity-based model 

using LCDG with positive and negative DG sub-components is applied to improve the 

initially obtained segmentation accuracy. The role of LCDG is to accurately approximate 

the empirical gray level distribution of FS-MRI voxel intensities with combination of 

dominant and subordinate DGs for each label (muscle group). This approximation adapts 

the segmentation to the changes in appearance, such as non-linear intensity variations 

caused by different IMAT distributions between muscle groups. At the end of this stage, 

each grayscale voxel existing in the target volume was mapped to a class with the highest 

occurrence probability. 

Algorithm I: The proposed muscles group segmentation approach 

For each input FS and WS MRI volumes with grayscale volume g: 

a) Use LCDG to initially extract muscle volume from adipose tissue and 
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bone. 

b) Select atlas volumes using 2-D correlation coefficient measure between 

the training database and the target volume. 

c) Use non-linear registration to transpose selected atlas volumes' voxels 

to the reference volume space. 

d) Form an initial region map m using the marginal estimated density and 

prior shape of each muscle group label. 

e) Find the Gibbs potentials for the MGRF model from the initial map. 

f) Approximate the marginal intensity distribution P(g|m) of each muscle 

group using LCDG.  

g) Improve the region map m by assigning each voxels to a class with the 

highest probability density based on its gray value. 

 

c. Segmentation Accuracy Metrics 

To evaluate the results, we calculated the segmentation accuracy compared to the 

ground truth (obtained from manual segmentation) using Dice similarity coefficient (DC) 

[92], Recall (R = 𝑇𝑇
𝑇𝑇+𝐹𝐹

 ), Precision (P = 𝑇𝑇
𝑇𝑇+𝐹𝑇

 ) and the Hausdorff distance (HD) [93]. 

The DC measures the concordance between two enclosed volumes as follows 

𝐷𝐷 = 2 𝑇𝑇
𝐹𝑇+2𝑇𝑇+𝐹𝐹

 ,     (2.6) 

where FP represents the number of false positive (i.e. the total number of the 

misclassified voxels of the background), FN is the number of false negative (i.e. the total 

number of the misclassified voxels of the object), and TP is the true positive (i.e. total 

number of the correctly classified pixels), as shown in Fig 2.3 a and b. On the other hand, 

The HD is defined as: 
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𝐻𝐷(𝑋,𝑌) = max�𝑠𝑠𝑝𝑥∈𝑋 𝑖𝑖𝑖𝑦∈𝑌𝑑(𝑥,𝑦), 𝑠𝑠𝑝𝑦∈𝑌 𝑖𝑖𝑖𝑥∈𝑋𝑑(𝑥,𝑦)�                          (2.7) 

where X and Y are the boundaries of two different volumes. It measures how far two 

subsets of a metric space are from each other, as shown in Fig 3b. High DC, R, P and a 

low HD are desirable for good segmentation. 

 

 
Fig 2.3 Segmentation accuracy measures. (a) In the segmentation quality measurements, 

there are 4 regions to be considered as: True positive (TP), false positive (FP), true 

negative (TN), and false negative (FN). (b) The calculation of the HD between the red 

line X and the blue line Y.  

 

d. Manual Segmentation, ANTs, STAPLE and DeepMedic algorithms 

Manual segmentation of MR images were performed by one expert operator using 

MANGO software (Research Imaging Institute, UTHSCSA) for determining SAT, 

IMAT, whole muscle, and the 3 muscle compartments considered in this study.  

To compare the proposed method (A1) with other automatic segmentation alternatives, 

MRI volumes are subsequently segmented using: (A2) an atlas based segmentation 
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approach using ANTs registration algorithm [94]. In this technique, to estimate accurate 

mapping between the same structures/tissues of each atlas subject and the test one, the 

nonlinear Symmetric Normalization (diffeomorphic metric mapping algorithm) has been 

used to obtain such a 3D deformation fields that will be applied for the corresponding 

labeled subject. Finally, a majority voting classifier is used to fuse the aligned atlas 

subjects into the final automatic segmentation. The second method (A3) is known as 

simultaneous truth and performance level estimation (STAPLE) described in [95, 96]. 

This algorithm considers a collection of segmentations (atlas subjects) and computes a 

probabilistic estimate of the final segmentation. All atlas MRI scans are aligned to the 

target scan and the obtained deformation fields are applied to the counterpart 

segmentation. The fused final segmentation is formed by estimating an optimal 

combination of the aligned atlas subjects incorporating a prior model for the spatial 

distribution of structures being segmented as well as spatial homogeneity constrains.  

The total thigh MRI segmentation framework was also performed with a pre-designed 

CNN architecture known as DeepMedic network [32], which was initially designed for 

segmentation of brain lesions in 3-D multi-modal MRI images. This network structure 

won the SISS-ISLES 2015 segmentation challenge [97]. We followed the implementation 

steps as recommended by the developers in order to achieve the network’s best 

segmentation performance for segmenting SAT, IMAT, bone and three muscle 

compartments. To calculate the total accuracy of the DeepMedic network, we used three-

fold validation method by training the network with 20 3-D MRI scans, including both 

SCI and ND thigh scans, and testing on the remaining 10 scans and then swapping 
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between training and testing groups to assess the automatic segmentation results for all 

scans. 

The manual segmentation and the proposed framework were run on a PC with 3.60 

GHz, Core i7 CPU and 16.0 GB RAM. The ANTs and STAPLE algorithms were run 

with 3.0 GHz Core i7 Quad CPU processor and 64GB RAM. Both computers had 

Windows 10 OS, MATLAB R2015b and C++ programs. The CNN code was run on both 

3.50 GHz, 12 Core CPU with 256.0 GB RAM and NVIDIA 1070 Ti GPU with Linux OS 

and Python and TensorFlow programs.  

C. Results 

a. Segmentation of SAT, IMAT and bone 

Figure 4 shows examples of the LCDG results on the sum of WS- and FS-MRI 

volumes, WS-MRI volumes and FS-MRI volumes (Fig 4a) for extraction of the whole 

thigh, whole fat, whole muscle mask (Fig 4b) as well as bone area (Fig 4c). Also, an 

example of 3D visualization of the final thigh segmentation results for SCI and ND is 

reported in Fig 4d. As explained in the methodology section, the SAT and IMAT areas 

were separated by using the whole muscle area as a mask on the whole fat area.  

The average accuracy of the initial segmentation of fat tissue was tested by comparison of 

the automatic results with the manual segmentation of SAT, IMAT and thigh muscle. The 

comparison was made based on calculating the DC, R and P as accuracy measures. The 

average values of these three accuracy measures are presented in Table 1. 
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Fig 2.4 Examples for the utilization of LCDG to segment the soft tissue volumes. (a) 

From left to right: gray scale MR images for FS+WS, WS and FS; (b) From left to right: 

binary mask of total thigh area, total fat and total muscle area; (c) From left to right: steps 

for segmenting the bone and bone marrow; (d) 3-D representations of the segmentation 

results for SCI (left) and ND (right) thigh; Grey: Muscle area, Yellow: SAT, Blue: 

IMAT, Red: bone.  
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Table 2.1 The average (± SD) accuracy measures (Dice’s coefficient (DC), Recall (R), 
and Precision (P) of the proposed fat segmentation approach for SCI (N=16) and ND 
(N=14) individuals. 

SCI  ND  
Avg. 
Metrics SAT IMAT 

Thigh 
Muscle 

Avg. 
Metrics SAT IMAT 

Thigh 
Muscle 

DC 0.91±0.06 0.85±0.06 0.97±0.02 DC 0.97±0.01 0.86±0.07 0.98±0.01 

P 0.94±0.03 0.86±0.09 0.98±0.02 P 0.96±0.02 0.82±0.11 1.00±0.00 

R 0.89±0.09 0.86±0.10 0.96±0.03 R 0.98±0.01 0.91±0.06 0.97±0.03 

 

b. Muscles Group Segmentation 

To obtain the accuracy of the three automatic muscle group segmentations, we 

used the common technique of leave-one-subject-out, where N-1 subjects are used to 

build the atlas and one subject was left out for testing, and we repeated this for all 

subjects in the SCI and ND groups separately. Fig 2.5 reports examples of the cross-

sectional area of the original grayscale MRIs (Fig 2.5a), the results of the automatic 

segmentation of the muscle groups (Fig 2.5b), manually segmented muscle groups 

overlaid on automatic segmentation (Fig 2.5c), and 3-D representation of automatic 

segmentation of muscle groups (Fig 2.5d).  



43 

 

 

Fig 2.5 Examples of muscle group segmentation algorithm for four SCI subjects. (a) 

original cross sectional MR image; (b) automatic segmentation of muscle groups: blue 

area is extensor, red is flexor and yellow presents the medial compartment; (c) manually 

segmented muscle groups (cyan lines) overlaid on automatic segmentation for 

comparison; and (d) 3-D representation of automatic segmentation of muscle groups: 

blue volume is extensor, red is flexor and yellow presents the medial muscle group.  

 

c. Comparison with ANTs and STAPLE 
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The average accuracy results for different methods (A1: proposed joint MGRF algorithm, 

A2: ANTs, and A3: STAPLE) are presented in Table 2. The proposed method (A1) 

reaches 90.79% overall DC, 91.08% of precision, 91.19% of recall, and 16.83 mm of HD 

compared to DC = 84.39%, P = 90.72%, R = 81.96%, and HD = 19.64 mm for A2, and 

DC = 86.03%, P = 91.12%, R = 86.16%, and HD = 18.29 mm for A3. In summary, these 

data show that our approach leads to more accurate results compared to the other two 

methods that were tested in this study. 

Table 2.2 The average (± SD) accuracy measures (Dice’s coefficient (DC), Recall (R), 

Precision (P), and the Hausdorff distance (HD) for three methods (A1: proposed 

algorithm, A2: ANTs, and A3: STAPLE) for SCI and ND groups. 
 SCI Group ND Group 

Method Metric 
Group 1 

extensor 

Group 2 

flexor 

Group 3 

medial 
Metric 

Group 1 

extensor 

Group 2 

flexor 

Group 3 

medial 

 

A1 

DC 0.94±0.03* 0.88±0.06* 0.89±0.05* DC 0.95±0.03  0.90±0.03* 0.89±0.06* 

P 0.95±0.03 0.91±0.08* 0.87±0.10 P 0.92±0.06  0.91±0.04* 0.89±0.07 

R 0.94±0.05* 0.86±0.08* 0.91±0.04* R 0.97±0.03  0.90±0.07* 0.90±0.11* 

HD(mm) 
12.98±6.44* 12.84±6.96* 20.47±10.24 

HD(mm) 
10.51±6.3

* 

12.67±3.13  31.53±14.24 

 

A2 

DC 0.84±0.12 0.79±0.10 0.84±0.10 DC 0.89±0.08 0.85±0.09 0.85±0.09 

P 0.95±0.03 0.89±0.09 0.89±0.07 P 0.92±0.05 0.89±0.08 0.90±0.09 

R 0.80±0.20 0.77±0.16 0.79±0.17 R 0.88±0.14 0.84±0.13 0.83±0.15 

HD(mm) 20.22±6.07 14.75±5.90 19.80±9.29 HD(mm) 16.70±6.48 14.94±5.91 31.45±9.93 

 

A3 

DC 0.86±0.10 0.83±0.10 0.85±0.07 DC 0.89±0.08 0.87±0.07 0.86±0.07 

P 0.96±0.03 0.90±0.09 0.89±0.08 P 0.92±0.05 0.90±0.07 0.91±0.07 

R 0.82±0.18 0.82±0.14 0.86±0.12 R 0.91±0.12 0.90±0.06 0.87±0.14 

HD(mm) 15.60±6.71 13.42±7.27 22.41±9.48 HD(mm) 12.85±6.79 14.12±4.58 32.35±12.31 

* Our proposed algorithm showed equal or higher accuracy than the other two methods. 
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d. Comparison with CNN 

In order to examine advantages and limitations of the deep learning approach for thigh 

MRI segmentation task, we have implemented the DeepMedic CNN network structure to 

perform the segmentation task on our entire dataset. Based on the DC similarity measure 

for segmentation of the three muscle groups without the IMAT, and segmentation of bone 

and SAT volumes, the performance of the trained CNN network was 0.93±0.03 when all 

30 subjects included in the present study were considered; this value was slightly higher 

than that obtained using the framework proposed in this study (0.92±0.05).  On the other 

hand, the precision measure of our framework (0.94±0.06) was slightly higher than the 

CNN (0.93±0.05) and the total HD calculated for our framework is only 11.82±6.72 mm 

which is considerably higher than the HD value calculated for the CNN network, 

20.48±16.43 mm, suggesting that CNN network tended to be less accurate than the 

framework proposed in the present based on this accuracy measure.  

 

e. Comparison Between SCI and ND volumes 

The volumes of SAT, IMAT, thigh muscle, extensor muscles, flexor muscles, and medial 

compartment muscles were calculated based on both manual and automatic segmentation 

for all subjects, and presented for the SCI and ND groups separately (Fig 6). In order to 

determine any statistically significant difference between SCI and ND groups for each of 

these parameters, we used the non-parametric two-tailed Wilcoxon rank sum test with 

alpha level set at 0.05. This test can be used for two populations with unequal sample 

sizes and independent samples. The SAT and IMAT volumes were significantly greater 

in ND compared to SCI when the results from automatic segmentation were considered 
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(Fig 6a and b), and the same trend (p = 0.058) was observed also for manual 

segmentation. Similarly, all muscle-related volumes were significantly greater in the ND 

group (p<0.0001) when both manual and automatic segmentation were considered (Fig 6 

c to f). 

 

 

Fig 2.6 The boxplot representation of the calculated volumes and ratios for manual 

(black) and automatic (red) segmentation results. (a) Extensor volume; (b) Flexor 

volume; (c) Medial volume; (d) IMAT volume; (e) SAT volume; (f) Total muscle 

volume; and (g) IMAT /muscle. 
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D. Discussion 

The primary focus of this study was to design, implement and examine a fully automatic 

framework for MRI thigh muscle and adipose tissue segmentation and volume 

quantification in individuals with severe SCI. The proposed segmentation framework 

(Fig 1) consists of three main steps: total muscle and adipose tissue segmentation based 

on the intensity contrast between different tissues; three muscle compartments 

segmentation based on three-fold stochastic integrated model (shape prior, spatial 

interactions and intensity); and volume quantification of the segmented parts.  

In the early attempts for automatic segmentation of fat and muscle areas in MRI scans, 

most methods were initially designed to separate muscle and adipose tissues based on 

their pixel signal intensity differences. Particularly in the segmentation of MRI scans of 

human thighs, Barra et al. [73, 74] proposed fuzzy clustering algorithm using gray-level 

as voxel feature with post-processing adjustments to segment muscle and fat volumes. 

Histogram thresholding methods were also utilized broadly in the literature for this task 

[98]. Imamoglu et al. [99] also used MRI thigh scans with saliency features to extract 

thigh muscle volumes using morphological operations and binary fuzzy decision-based 

fusion. In spite of their popularity, intensity-based methods have a major setback as, for 

example, they cannot distinguish between different types of fat (SAT/IMAT). Therefore, 

the automatic segmentation methods have evolved to more advanced techniques to make 

these separations possible. For instance, Positano et al. [75] in 2009 added the active 

contour algorithm to the fuzzy clustering method to segment SAT and bone area and 

expectation maximization (EM) algorithm to separate IMAT from muscle area when 

investigating obese individuals. Similarly, Kovacs et al. [100] used the contouring 
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method to segment fascia lata to separate SAT and IMAT in severe muscular dystrophy 

cases. In a recent study, Irmakci et al. [101] proposed an extended version of fuzzy 

connectivity method to segment the fat and whole muscle areas of thighs as well as brain 

and whole body tissue using multi-modal MRI images. However, segmenting the 

challenging task of segmenting different muscles or muscle groups in the absence of 

substantial intensity differences between muscles is not addressed in this study. In the 

present study, we also used LCDG intensity-based method for assessing thigh muscle and 

adipose tissue using FS and WS MRI scans of thigh. The multi-modal MRI scans of thigh 

muscles have been rarely used in previous automatic thigh segmentation studies. This 

alternative modality of MRI is particularly advantageous for thigh segmentation since it 

uses opposite contrasts for fat and muscle tissues in FS and WS images, and therefore by 

utilizing intensity-based method (LCDG) only, we could segment the whole adipose 

tissue in WS slices and the whole muscle area in FS images and use it as a mask to 

separate SAT and IMAT. Utilizing the sum of WS and FS was also used to segment the 

bone and bone marrow areas (Fig 4). This approach allowed us to avoid the use of a 

priori shape information or iterative contouring algorithm for this part of the 

segmentation.  

The segmentation of different muscles and/or muscle groups is also a task that intensity-

based segmentation methods cannot accomplish. This type of segmentation started with 

Andrews et al. [76], who proposed a framework for using principal component analysis 

(PCA)-based shape prior from the training dataset to segment the knee flexor and 

extensor individual muscles in MR 3-D volumes. Similarly, Baudin et al. [77, 78] 

introduced the iterative random walk (RW) segmentation framework for segmenting 
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individual muscles by starting from a priori shape information and utilizing the support 

vector machine (SVM) method to estimate the RW parameters. A hybrid method was 

proposed by Andrews and Hamarneh [76] by combining the generalized log-ratio 

probabilistic shape model and random forest binary detector to segment each individual 

muscle of the human thigh. Utilizing the atlas-based methods has been gained more 

attention in recent years with Ahmad et al. [79] framework of atlas construction and 

image registration to segment the quadriceps muscle group. Another atlas-based 

segmentation method was proposed by Troter et al. [80] to segment four individual 

muscle volumes inside the quadriceps group by using semi-automated single-atlas and 

fully automated multiple-atlas approaches and suggesting that the single-atlas method 

was more robust for individual muscle segmentation and has a better accuracy. In 2017, 

Orgier et al. [102] have proposed a new semi-automatic technique for segmenting the 

same four quadriceps muscles by manually segmenting the top and bottom slices and 

using the propagating non-linear registration approach to segment the middle slices. In 

the thigh volumes segmentation application, we were particularly interested in 

segmenting knee extensors and knee flexors muscle groups because of their important 

functional role in human movement generation. Unlike previous studies that only used 

prior shape information for muscle segmentation, our proposed method uses all three 

components of shape, spatial (MGRF) and intensity (LCDG) to determine if a given 

voxel belongs to any of the three muscle groups considered (knee extensors, knee flexors, 

or medial compartment) (Fig 5). The segmentation method proposed in this study was 

applied on a group of individuals with severe SCI and on a group of ND individuals. In 

order to build a generic thigh segmentation atlas for ND group, we recruited individuals 
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considered as normal (N = 3), overweight (N = 5) and obese (N = 6) as for their BMI 

[103]. The DC accuracy values (Table 1) suggest that the fat and thigh muscle area, 

which were segmented using the LCDG intensity-based approach showed overall high 

accuracy values, which were equal to 90.97 ± 6.74% for the SCI group and 93.91 ± 

7.02% for the ND group. For the muscle compartment segmentation, the proposed 

method showed on average 90.41 ± 5.59% accuracy for SCI group and 91.18 ± 5.02% for 

ND (breakdown numbers are presented in Table 2). The very similar accuracy for the 

muscle compartment segmentation between SCI and ND is noteworthy, seen as the SCI 

group showed substantial inter-individual differences, as exemplified in Fig 5 (see subject 

4 compared to the other three subjects).  

In order to further evaluate our segmentation method, we also compared the accuracy 

results related to muscle compartment segmentation with those obtained from two other 

well-known segmentation methods (ANTs and STAPLE). The three-fold integrated 

model proposed in this study showed an overall greater accuracy compared to ANTs and 

STAPLE, as for the accuracy measures that were calculated (DC, R, P and HD; Table 2). 

This may be due to the positive effect of integrating both the appearance and spatial 

models with the prior shape information from the atlas into a three joint MGRF model. In 

particular, the prior atlas enables the proposed approach to use known muscle anatomy to 

distinguish and correctly classify different muscle compartments that have the same 

appearance, while the spatial models handle any inhomogeneity that may exist within a 

muscle compartment. 

We also performed the entire thigh muscle and fat segmentation task with the well-

known DeepMedic 3-D CNN structure to compare its performance with the stochastic-
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based algorithm proposed in this study. The different trends observed for DC and HD 

indexes may be due to the fact that the falsely segmented voxels of the CNN method 

were mostly happened far from the boundary of the targeted areas which have longer 

distances from the actual borders (greater HD) whereas for the joint MGRF method, the 

falsely segmented voxels mostly happened near the borders of the muscle groups which 

lead to smaller HD values. While the CNN performance was comparable to the proposed 

method for muscle MRI segmentation task, implementing the CNN code required 

extensive memory and computations as well as expertise in programming in Linux OS, 

Python and TensorFlow. The total executive run-time for segmenting the entire database 

using 3-D CNN was 52.0 hours on GPU while the total run-time for the proposed method 

was only 5.3 hours on CPU (S7 Table). We also attempted to run the DeepMedic 

software multiple times over 4 weeks for the training step using a regular CPU, but we 

were unable to properly train the network. The CNN training duration is still dramatically 

longer than the processing time of the proposed framework. However, once the CNN 

algorithm is trained, the processing time for segmenting the testing subjects was 

relatively low. We have shown that the 3-D CNN-based method can be quickly adjusted 

to thigh MRI segmentation task without any changes to the network structure. Also the 

CNN can be trained on part of the dataset and segment the other part (test scans) with 

acceptable accuracy and relatively fast using GPU; however, as the number of test 

subjects grows over time in a clinical setting, it would be desirable to re-train the network 

or use transfer learning [104] to improve the segmentation accuracy. Conversely, in the 

proposed framework, all the previously segmented and reviewed scans can be utilized in 
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the future atlases to guide the segmentation of a new thigh MRI scan without substantial 

additional computational cost.   

Finally, we compared the volumes of SAT, IMAT, thigh muscle, knee extensors, knee 

flexors, and medial compartment between SCI and ND groups using the results obtained 

from both automatic and manual segmentation (Fig 6). The main goal of this comparison 

was to examine whether the same conclusion in terms of physiological differences 

between the two groups could be achieved using both segmentation methods. SAT and 

IMAT volumes were significantly greater (p = 0.023 and p = 0.009, respectively) in ND 

using automatic segmentation outcomes; a similar trend (p = 0.058) was also observed 

using the volumes calculated from manual segmentation (Fig 6 a and b). The greater 

adipose tissue volumes found in ND is an unexpected finding, as most of the data 

reported in the literature show that after SCI there is an increase in body fat mass as well 

as IMAT in the thigh [65, 105]. The ratio between IMAT and thigh muscle volume 

calculated in the SCI group of the present study (19.8%) is within the range observed in 

other SCI individuals [65, 105]. On the other hand, most of the ND individuals enrolled 

in the present study were either overweight or obese, and these conditions can result in 

increased SAT and IMAT volumes [106].  

Thigh muscle volume and the volumes of the three investigated muscle compartments 

were significantly greater in ND individuals compared to the SCI group when outcomes 

from both automatic and manual segmentation were considered (Fig 6c to f).These 

findings are in agreements with previous studies that showed marked SCI-induced 

muscle atrophy [64, 65] . 
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In conclusion, we developed a novel and accurate MRI-based segmentation framework 

that can automatically segment thigh subcutaneous and intermuscular adipose tissue as 

well as muscle tissue related to knee extensors and knee flexors in individuals with SCI. 

These parameters have important health and functional implications in the SCI 

population and the proposed segmentation method can facilitate the use of MRI to assess 

individual characteristics and possibly the effects of different interventions. This 

framework could be further improved by increasing the MRI resolution, which would 

allow an accurate segmentation of intra-muscular adipose tissue and individual muscles, 

and by increasing the number of thigh MRI slices from the 50 central to the whole thigh 

in order to make a more comprehensive assessment of the different volumes. 

 

E. Application: SCI Case study 

In this study, we have utilized the proposed segmentation framework to quantify the 

effects of an activity-based training on the volumes of fat and muscle compartments in an 

individual with a motor incomplete SCI. We want to evaluate the accuracy of the 

automatic framework and its ability to find meaningful trends in different training time 

intervals. 

Characteristics of research participant and training protocol 

Subject: Gender: female; Time since injury: 4 yrs; Age: 22 yrs; Weight: 102 lb; AIS D; 

neurological level of injury: T12, that affected the motor function of the right lower limb 

only.  

Interventions: Activity-based rehabilitation was performed for about 9 months and 

predominantly consisted of neuromuscular electrical stimulation of the affected leg 
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during standing and slow walking as well as walking over-ground without stimulation. 

During the 3.5-month follow up she performed stand training with stimulation.  

 
Fig 2.7 Steps for muscle and adipose tissue segmentation of MR thigh images: (a) Top: 

original left and right MR thigh images, bottom: corresponding registered images; (b) 

Top: segmented subcutaneous fat, bottom: segmented intermuscular fat; (c) Top: bone 

segmentation, bottom: segmented muscle area; (d) Top: manual muscle group 

segmentation, bottom: automatic muscle group segmentation of left and right thigh 

images. 
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Fig 2.8 Comparison of the segmented volumes and volume ratios of manual (purple and 

orange lines) and automatic (blue and red lines) outputs for right and left thighs, 

respectively, at four different time points during the activity-based interventions. 

 

We compared the output of both automatic and manual segmentation of thigh MRI 

volumes for both left and right thighs at four different time points during the activity-

based interventions. As it is shown in Fig 2.7, the right leg, which was affected by SCI, 

showed severe muscle atrophy and fat infiltration compared to the unaffected leg (left). 

Moreover, Fig 2.8 shows the automatic segmentation of muscle groups follows closely 

the manual results. In this figure, we calculated the volumes of Muscle Tissue, 

Subcutaneous Fat, Intermuscular Fat, Quadriceps, Hamstrings and Adductors muscles 

based on the manual and automatic segmentations respectively. The ratios of Muscle 

Tissue to Subcutaneous Fat, Muscle Tissue to Intermuscular Fat and Knee Extensors to 

Flexors were also calculated for these two methods. Using statistical analysis, we 
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calculated the significance of differences between manual and automatic values. The 

results suggest that there are no significant differences for muscle tissue volume, three 

muscle compartments and muscle tissue to subcutaneous fat and knee extensors to flexors 

ratios. However, there are significant differences between manual and automatic methods 

for intermuscular fat volumes (p = 0.01) and muscle tissue to intermuscular fat ratio (p = 

0.007). Furthermore, it can be interestingly observed from these graphs (Fig 4) that 

training promoted an important decrement of inter-muscular and subcutaneous fat in both 

left and right thighs and these trends are visible from both automatic and manual 

segmentation results. 

F. Study Outcomes 

The preliminary outcomes of this study have been published as two full-papers in 

prestigious conferences MICCAI and ICIP (2017). The final results for applying the 

proposed framework on 30 MRI thigh volumes with comparison to other well-known 

segmentation methods is currently under review for publication at PLOSONE journal. 

The results of the proposed segmentation framework and its application in the 

longitudinal case study have been presented as posters in KSCHIRT Symposium 2017, 

BMES Conference 2017 and University of Louisville Speed School Exposition 2018. The 

developed automatic MRI segmentation method has also been filed as a patent disclosure 

by the University of Louisville Technology Transfer office. 
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CHAPTER III 

ACTIVATION DETECTION AND COLORMAP REPRESENTATION OF EPIDURAL 

STIMULATION MAPPING OF SPINAL CORD 

A. Introduction 

 Previously, it has been shown that epidural electrical stimulation in combination 

with locomotor training and/or pharmacological interventions in animal models were able 

to highly promote spinal circuits functionality after complete spinal cord transections in 

rats[107, 108]. Subsequently, in the past several years, clinical studies have also reported 

that lumbosacral spinal cord epidural stimulation (scES) combined with activity-based 

training progressively re-enabled full weight bearing standing [6] [7] and volitional 

control of lower limbs in individuals with chronic complete paralysis [13, 14]. 

Remarkably, the appropriate selection of stimulation parameters (amplitude, pulse width, 

frequency and anode/cathode assignment) was shown to be critical to promote the 

generation of effective motor patterns [6]. Mapping experiments were initially performed 

with participants in supine position, recording motor evoked potentials from different 

lower limb muscles using surface electromyography (EMG) during scES with different 

sets of electrode configurations. The purpose of these experiments was to study the 

topographical features of recruiting leg muscles by scES [109] and also to provide useful 

information for the selection of electrode configurations applied for promoting lower 
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limb motor function. The task of determining the links between scES parameters and the 

characteristics of the evoked potentials is referred to as the “mapping” task in this study. 

To study the characteristics of the scES induced evoked potentials, the first step is to 

localize them inside raw EMG signals that are recorded from several leg muscles by 

segmenting each EMG signal based on the stimulation onset. One of the most challenging 

tasks in EMG analysis in the scES content is the precise detection of each epidurally 

evoked potential. This task is crucial in order to determine the effective threshold for 

scES intensity that triggered the occurrence of the first visible evoked potential for each 

muscle. The evoked potential (activation) detection is usually performed manually by a 

trained observer visually inspecting the raw EMG signals, which is considered to be the 

most accurate method for activation detection. However, it is a laborious task when 

facing a large stack of data recorded from several muscles during various experiments. 

Moreover, manual method can be prone to human errors and inter/intra-observer 

variation and would also limit the ability to allow scalability to a high number of patients. 

Therefore, to facilitate the activation detection process, an accurate computer-based 

method is proposed in this work. 

Signal Change Detection Methods 

There have been several methods proposed for computer-based change detection for 

EMG signals in the literature, such as the single or double threshold detector[38], 

Teager–Kaiser Energy Operation[39-41], wavelet template matching[42], supervised and 

unsupervised learning algorithms [43] or statistical criterion determination methods like 

hidden Markov models [44] and Gaussian mixture models[45, 46]. The main goal of all 

these methods is to convert the original raw signals into a set of estimated sequences that 



59 

 

make the highest distinction between before and after change as well as detect the 

occurrence of the change and the corresponding time instant, t0, as early as possible[45].  

Most of the automatic onset detection methods can be divided into four main stages: pre-

processing, conditioning, decision thresholding, and post processing. Most methods have 

a pre-processing stage for filtering the raw signal with a band-pass filter in order to 

remove artifacts and reduce the noise level in the signal. In the conditioning stage, the 

EMG signal passes through a test function, i.e. a type of event indicator. In the third 

stage, the algorithm will set a threshold that indicates the first point of the signal change. 

Finally, the last stage deals with the false alarms by setting certain constraints on the 

detected onset values [45, 110]. Most of the methods differ based on the type of test 

function; the decision rule, which involves the selection of constant or dynamic 

thresholds; and the heuristic constraints for the final detected onset, which varies based 

on the application and the characteristics of the EMG signals. There are several 

categories of event indicator functions, such as on-line vs. off-line, or supervised versus 

unsupervised learning algorithms. If an algorithm has been executing the task in a 

sequential fashion for each incoming data point, the method is called on-line; otherwise it 

is considered off-line[45]. Also, if the training input data for a learning method is already 

labeled using a priori information, the method is supervised, and if the algorithm 

estimates a model for the input data using specific parameter estimation techniques, it is 

an unsupervised technique.  

In every activation detection method, sensitivity to the noise level in the signal is a great 

challenge. Selection of proper pre- and post-processing methods usually helps to 

minimize the effect of noise on the accuracy of the method. It is also notable that some of 
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the proposed methods are highly dependent on prior information of the signal, i.e. 

supervised methods, which makes those methods semi-automatic and their accuracy 

application-dependent. In this study, we suggest a novel method to address these two 

main challenges that a fully automatic activation detection method faces, by proposing an 

unsupervised and on-line approach that deals with the stochastic characteristics of the 

EMG signals in the scES application. 

The main purpose of this work is to develop a novel method for automatic detection of 

the epidurally evoked potentials using a generalized framework to perform the scES-

EMG mapping task. The generalized framework will: 1) effectively de-noise, detect, and 

extract the key features of the signal; 2) visualize the occurrence of the muscle evoked 

potentials induced by scES; and, 3) increase the accuracy and efficiency of the 

physiological mapping process in order to determine the underlying relationships 

between the scES parameters and muscle activations. Consequently, this framework will 

assist the data analysts to promptly decide on further adjustments or improvements in 

designing future experiments. 

B. Materials and Methods 

a. Participants, Stimulation and Data Acquisition 

Participants 

 In this study, five male individuals with motor complete spinal cord injury (SCI) have 

participated. Two of these participants have American Spinal Injury Association 

Impairment Scale (AIS) grade B and three of them have AIS grade A. The average age of 

these five individuals at the time of the experiments was 29.8 ± 4.5 years old and the 

average time since injury was 4.2 ± 1.6 years. All five participants have provided 
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written, informed consent for the experimental procedures, which have been approved by 

the University of Louisville Institutional Review Board.  

Spinal Cord Epidural Stimulation: A stimulation unit (RestoreAdvanced 

Neurostimulator, Medtronic, Inc., Minneapolis, MN) in combination with a chronic, 16-

electrode array (39565 paddle electrode array, Medtronics, Inc., Minneapolis, MN) is 

surgically implanted at the T11–L1 vertebral levels over the spinal-cord segments L1–S2. 

It is used to deliver electrical stimulation to the lumbosacral spinal cord of each SCI 

individual. The electrode array was connected to the IPG unit that was implanted in a 

subcutaneous abdominal pouch[13]. 

EMG recording system: National Instrument Data Acquisition system (National 

Instruments, Austin, TX) was built to collect both EMG signal and the signal from the 

communication signal detector. EMG signals were recorded and filtered (band-pass filter 

of 10 Hz–2 kHz (−3 dB)) with differential surface electrodes (Motion Lab Systems, 

Baton Rouge, LA) from Motion Lab MA300 EMG system. Two surface electrodes were 

placed symmetrically lateral to the electrode array incision site over the paraspinal (PS) 

muscles in order to record the stimulation artifacts. Other electrodes are placed to record 

14 thigh and leg muscles signal. A communication signal detector was developed to 

capture the communications signal (stimulation parameters) between the Clinician 

Programmer and IPG. The communication signal detector sends detected stimulation 

parameter change to the data acquisition system. Using the PS EMG artifact signal and 

the captured communication signal to mark the onset of each stimulation pulse[109]. Fig 

3.1 illustrates the connections between the epidural stimulation unit and the EMG 

recording system. 
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Fig 3.1 scES and EMG connections. Schematic representation of the epidural stimulation 

unit (16-electrode array, IPG unit and wireless programmer) and its connections to the 

EMG recording system1. 

 

EMG data acquisition 

The scES lower limbs mapping experiments start 2–3 weeks after the surgical 

implantation [13, 109]. The supine experiments are performed in accordance with the 

procedures previously described by [13] with the participants relaxed in a supine 

position. The electrical stimulation waveforms are comprised of a rectangular, biphasic 

shape with pulse duration of 450 µs. In the supine experiments, specific combinations of 
                                                 

1 Permission to use the illustrations of the Motion Lab EMG System and EMG electrodes was granted from 

Motion Lab System Inc. 
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electrodes are selected for activation, which is referred to as stimulation configuration. A 

total of 12 different stimulation configurations are examined for each individual. For each 

configuration, stimulation intensity or frequency will be increased whilst the other 

parameters are fixed. The stimulation voltage (intensity) ramp-up experiments are 

performed with the scES intensity (in volts) gradually increased and the frequency is set 

at 2 Hz. During each intensity ramp-up, the scES intensity starts at a pre-activation value 

(V) and increases at either 0.1 or 0.5 V increments up to 10 V with time interval between 

each ramp-up at least 2-3 seconds, which in this time interval scES delivers a minimum 

of five stimulus pulses for each intensity level (at 2 Hz). In the frequency ramp-up 

experiments on the other hands, after the intensity is set at the value where all the 

muscles are activated (f = 2Hz), the frequency is increased from 2 to 5 Hz and from 5 to 

60 Hz with the step 5 Hz.  

During the performance of each experiment, the surface EMG signals are recorded from 

14 leg muscles, using bipolar surface electrodes that are placed on the left (L) and right 

(R) soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis 

(VL), rectus femoris (RF), medial hamstrings (MH), and gluteus maximus (GL). The 

recorded EMG signals are digitized at a sampling rate of 2000 samples per second. The 

heart rate and blood pressure data of each participant are also recorded during the 

experiments. 

b.  Methodology 

In this study, a set of five algorithms is proposed to perform the mapping task in an 

automated fashion to convert the raw recorded EMG signal into its significant building 

blocks, i.e. the evoked potentials induced by scES. Additionally, the algorithms extract 
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several key features of these evoked potentials, such as peak-to-peak amplitude, latency, 

integrated EMG and Min-max time intervals, and enable visualization of these features to 

effectively represent the desired hidden information in the EMG recordings to the data 

analysts. Fig 3.2 illustrates the block diagram of the general framework. 
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Fig. 3.2 B
lock diagram

 of the proposed fram
ew

ork for visualization and activation detection of evoked potentials induced by scES. 
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2-D representation of EMG Signal  

From a computational point of view, each single record of the EMG (𝑥𝑘,𝑘 ≥ 1) is a set 

of sample observations from a discrete random process (𝑋𝑘,𝑘 ≥ 1). The EMG signals, 

which are recorded from all 14 leg muscles, consist of evoked potentials 

(𝑤1,𝑤2, … ,𝑤𝐹 ∈ 𝑊) that are induced by ES. Utilizing the onsets of the stimulation 

pulses, the whole EMG signal is segmented into its building blocks (W set) where each 

segment consists of the time interval between two consecutive stimulation pulsations (Fig 

3.3A, 3B). Subsequently, the first algorithm converts the EMG signal, 𝑋𝑘, to a 3-D 

image, 𝛿𝑘(𝑥,𝑦, 𝑧), by overlaying all the EMG signal segments and then displaying their 

value in 3-D graphs (Fig 3.3C). These 3-D graphs are converted to 2-D images using 

Colormap algorithm where the amplitude values are represented as colors (Fig 3.3D). 

Each row in the Colormap image illustrates one segment of the whole EMG signal. Fig 

3.2 demonstrates all the steps for this conversion process for a sample EMG signal. 
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Fig 3.3 The steps for converting raw EMG signals into 2-D and 3-D images. (A) Raw 

EMG signal, (B) Signal segmentation using stimulation time intervals, (C) Overlaying all 

the segments and building the 3-D graph where X-axis is the evoked potentials duration 

(ms), the Y-axis is the stimulation voltage (V), and the Z-axis is the amplitude of the 

signals (μV) and (D) Converting the 3-D graphs into 2-D images using Colormap. 

 
Noise Reduction 

After signal to image conversion, it is possible to use image-processing techniques for 

smoothing the images and consequently de-noising the signals. In this study, a 2-D 

generalized Gaussian Markov Random Field (GGMRF) model is applied to the 

constructed 2-D images so as to reduce the noise level from the EMG signal[111]. This 

particular smoothing method preserves continuity and removes inhomogeneity in the 

image, which in this context is caused by background noise in the original EMG signals. 



68 

 

This is achieved by comparing each pixel’s value, which is the evoked potential 

amplitude in μV, to the n-neighborhood pixel set and recalculating the respective pixel 

value based on Eq. 3.1. 

𝜹�𝒔 = 𝒂𝒂𝒂𝒎𝒂𝒂𝜹𝒔��𝜹𝒔 − 𝜹�𝒔�
𝒒

+ 𝝈𝒒𝝀𝒑  ∑ 𝒃𝒔,𝒂�𝜹�𝒔 − 𝜹𝒂�
𝒑

𝒂∈𝝊𝒔 �   Eq. 3.1 

Where 𝜹𝒔, 𝜹�𝒔 and 𝜹�𝒔 are the original pixel value, its recalculated value, and expected 

estimate, respectively. 𝝊𝒔 is the 8-neighborhood pixel set; 𝒃𝒔,𝒂 is the GGMRF potential; 

and 𝝈 and 𝝀 are scaling factors. The parameter 𝒑 ∈ [1.01, 2.0] controls the smoothing 

level (e.g., 𝒑 = 2 for smooth versus 𝒑 = 1.01 for relatively abrupt edges). The parameter 

𝒒 ∈[112] determines the Gaussian (𝒒 = 2) or Laplacian (q = 1) prior distribution of the 

estimator[113]. Our simulations are conducted with 𝝈 = 1, 𝝀 = 5, 𝒑 = 1.01, 𝒒 = 2, and 

𝒃𝒔,𝒂 = √𝟐 (see [111] for more details on GGMRF). The size of the neighborhood, n, has 

a great impact on the level of smoothing and needs to be adjusted for each application. 

An example of the input and output of the GGMRF method and their corresponding 

muscle activation segments is demonstrated in Fig 3.4.  
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Fig 3.4 EMG Denoising Using GGMRF. (A) Applying GGMRF method to 2D image (B) 

and an example of evoked potential before (black) and after (red) applying GGMRF 

method. 

Advantages of spatial smoothing of the EMG signals compared to the traditional band-

pass filtering techniques, is that this method reduces EMG signal variability by offering 

the option of comparing each evoked potential with the previous and next one. Unlike the 

filtering methods, this image smoothing method offers a de-noised signal without any 

significant changes in the position or original shape of muscle activations.  
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Activation Detection 

The activation detection algorithm is designed to determine the presence or absence of 

scES induced evoked potentials in each segment of the EMG signals and, consequently, 

the corresponding stimulation intensity threshold. The pre-assumptions for this task are: 

1) the intensity threshold Vs0, which causes the emergence of the earliest evoked 

potentials, is an unknown random value with unknown distribution; and, 2) the amplitude 

of the first visible evoked potential is also an unknown value. These are valid 

assumptions because of the non-stationary nature of EMG signals and the fact that no a 

priori information regarding the distribution of the varying parameters is present. It is 

notable that these onset values alter based on the choice of the stimulation configuration, 

frequency and muscle type, and also subject to the day-to-day and pre-post training 

variability. As mentioned in section 2.1, scES delivers the minimum of five stimulation 

pulses per stimulus voltage referred to as an event, (𝑤𝑗 , 𝐿𝑛−1 ≤ 𝑗 ≤ 𝐿𝑛) where min(𝐿𝑛 −

𝐿𝑛−1) = 5. It is defined by clinical analysts that if 50 percent or more of the stimulation 

pulses corresponding to the same intensity (event) trigger evoked potentials, that intensity 

will be considered as the activation threshold voltage (Vs0). 

The general technique implemented in this step is known as the statistically optimal 

decision (SOD) method. One of the well-known derivations of SOD is named 

approximated generalized likelihood-ratio (AGLR) detector that is developed by Staude 

and Wolf (1999). In this study, this method is modified and adapted to our activation 

detection application. There are three main phases to this activation detection method: in 

the first phase, each segment of the de-noised signal (𝑤𝑖 ∈ 𝑊) is modeled by a Gaussian 

probability density function (pdf) and the model parameters 𝜇𝑖 and 𝜎𝑖 are estimated using 
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the maximum likelihood estimation (MLE) method (𝑝𝜃(𝑤𝑖)). Fig 3.5B shows the 

histograms for one segment of an EMG and its estimated Gaussian distribution. From a 

statistical point of view, the activation detection method represents a binary selection 

between the null hypothesis H0 that states “there is no significant change in the pdf 

𝑝𝜃0(𝑤𝑖) of the ith segment of the signal” and the alternate hypothesis that states “there is a 

significant change in the parameters of pdf 𝑝𝜃1(𝑤𝑖)”[45]. Therefore, in the second phase, 

the Gaussian model of all the EMG segments will be compared to the Gaussian model of 

the background noise by the log-likelihood ratio (LLR) measure. Eq. 3.2 shows the 

general formulation of the LLR. 

𝒔𝒌 = 𝒍𝒂 �
𝒑𝜽𝟏�𝒚𝒂𝒌�

𝒑𝜽𝟎�𝒚𝒂𝒌�
�    Eq. 3.2 

Where 𝑦𝑖𝑘 is the kth sampled-value of 𝑤𝑖 segment after smoothing step. In order to reduce 

the high computational cost of this equation, it is assumed that the occurrence of the scES 

induced muscle activation does not change the mean 𝜇 of the Gaussian pdf and the most 

significant changes happen in the standard deviation 𝜎𝑖 of the pdf as shown in Fig 3.5C. 

Therefore, the Eq. 3.2 can be simplified to Eq. 3.3. 

𝒔𝒌 = 𝒍𝒂 �𝝈𝟎
𝝈𝒂
� + 𝟏

𝟐
(𝒚𝒂𝒌 − 𝝁)𝟐( 𝟏

𝝈𝟎𝟐
− 𝟏

𝝈𝒂𝟐
) Eq. 3.3 

The sum of all the 𝑠𝑘 values over one segment is referred to as CUSUM value Si and is 

calculated based on Eq. 3.4. 

 𝑺𝒂 = � 𝒔𝒌

𝑵𝒂

𝒌=𝑵𝒂−𝟏

 

= (𝑵𝒂 − 𝑵𝒂−𝟏 + 𝟏)𝒍𝒂 �𝝈𝟎
𝝈𝒂
�+ (𝑵𝒂−𝑵𝒂−𝟏)

𝟐 ( 𝝈𝒂𝟐

𝝈𝟎𝟐
− 𝟏) Eq. 3.4 
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Using Eq. 2.4, for each segment of the signal one value is calculated, which represents 

the highest statistical difference between that specific segment and the background noise 

(Fig 5D). 

Finally, in the third phase of the algorithm, a dynamic threshold h is calculated for each 

EMG signal in order to find the first segment of the signal that includes the evoked 

potential and its corresponding stimulation intensity Vs0. Based on experimental 

observations, the first event corresponding to the lowest stimulation voltage does not 

usually trigger muscle activation; thus, this event can be considered as the baseline. 

Consequently, the threshold value h can be computed as the summation of the maximum 

and standard deviation of the set of 𝑆𝑖 that belongs to the baseline (Eq. 3.5). 

𝒉 = 𝑺𝒎𝒂𝒎 + 𝝈𝑺𝒂   Eq. 3.5 

All the steps of the activation detection method are demonstrated in Fig 5. This step of 

the framework has been applied only to the voltage ramp-up experiments (at 2 Hz) where 

there is a single evoked potential in response to each stimulation pulse (after the muscle 

is activated) and the accurate detection of the muscle activation and its onset is desired.  
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Fig 3.5 Activation Detection. Calculation steps for activation detection algorithm. (A) A 

sample evoked potential (one segment of the EMG signal), (B) Histogram of the sample 

evoked potential (black) and its estimated Gaussian distribution (red), (C) Comparing the 

Gaussian pdf of evoked potential signal (red) to pdf of background noise (black), (D) 

Plotting the calculated LLR for all segments of the EMG signal and detect the activation 

threshold (arrow). 

 
Feature Extraction 

The objective of the feature extraction algorithm is to represent each epidurally evoked 

potential with a set of key features. With this algorithm, the user has the flexibility to 

calculate these parameters automatically or observe visually using the 2-D representation 

of the EMG signal (Fig 3.6A). The automatically calculated parameters in this framework 
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are: peak-to-peak amplitude (Vpp), which is the absolute value of the difference between 

the highest and the lowest peaks (Tpp) in the evoked potentials and its normalized value 

based on the highest peak between left and right muscle; activation latency, the time 

interval between the stimulus onset and the onset of muscle activation, the time interval 

between the highest and lowest peak; integrated EMG value, the area under the motor 

unit curve after rectifying the EMG signal; and, finally, binary 0/1 values: an indication 

of the absence or presence of evoked potentials in each segment of the signal. The 

aforementioned features are illustrated in Fig 3.6B.  
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Fig 3.6 Feature Extraction. Selected feature parameters for EMG activation signal. (A) 

Visual inspection: Number of peaks of the evoked potential, Activation onset and 

Latency, (B) Computer-based feature extraction of peak-to-peak amplitude (Vpp), 

Activation latency, Time interval between minimum and maximum values (Tpp) and 

Integrated EMG (summation of absolute values of all gray areas). 

 

Visualization 

The last step of the framework is to represent the data processing results in an optimum 

and informative way to illustrate the connection between stimulation parameters and 
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results generated from the computer-based method for each muscle. This will create a 

valuable, efficient and convenient presentation of the data for the examiner to enhance 

interpretation and modify the experiments accordingly. Fig 3.7 shows examples of the 

transformation of 14 raw EMG signals into a single Colormap image for intensity ramp-

up (Fig 3.7A and 3.7C) and frequency ramp-up experiments with the same stimulation 

configuration (Fig 3.7B and 3.7D). The Colormap values represent the peak-to-peak 

amplitudes for intensity ramp-up, after the automatic detection of scES-induced 

activation, and integrated EMG values for frequency ramp-up experiments. 

 
Fig 3.7 Colormap Visualization. Examples of converting 14 EMG signals into Colormap 

images for a voltage ramp-up and a frequency ramp-up experiment. (A) Raw EMG 

signals of 14 ploximal and distal left and right leg muscles during voltage ramp-up from 

0.1 to 10 V. (B) Raw EMG signals of same muscles during frequency ramp-up from 2 to 

60 Hz. (C) Colormap image shows the corresponding peak-to-peak amplitudes (𝜇𝜇) with 
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respect to each muscle and stimulation voltage after stimulation threshold detection. The 

gray area is presenting the pre-threshold part of the experiment where no activation was 

induced. (D) Colormap image shows the corresponding integrated EMG values with 

respect to 14 muscles and stimulation frequencies. 

 

The colormap visualization technique can be expanded for several ramp-up experiments 

where different configurations are tested for each subject. This is particularly helpful for 

the experimental analysts since it gives them the option for instantly comparing the 

results of several experiments together and deside on the optimum stimulation parameters 

selection. Examples of this form of colormap representation are demonstrated in the 

results section.  

C. Results 

In this section, the accuracy and speed of automating the mapping task is presented 

followed by a few examples of the clinical applications of the proposed framework. The 

performance of the computer-based activation detection algorithm has been evaluated by 

comparing the output of the algorithm with the output of the manually detected evoked 

potentials in intensity ramp-up experiments performed by trained data analysts, which is 

considered as the gold standard. The activation detection method presented is also 

compared with two other existing methods, Teager-Kaiser Energy Operation (TKEO) 

[39]and the AGLR method without the GGMRF smoothing step. The comparison is 

based on both recorded EMG signals and simulated signals. Finally, the runtimes of all 

the algorithms are presented. 

a. Performance Evaluation Using Manual Activation Detection  
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This evaluation is based on calculating sensitivity, specificity, Dice similarity and 

accuracy as the performance metrics. These parameters are calculated based on true 

positive (TP), true negative (TN), false positive (FP), and false negative (FN) values. The 

boxplots of the four performance measurements on 700 EMG signals separated for each 

individual are shown in Fig 3.8. 

 
Fig 3.8 Performance Measures. Boxplot representation of performace measurements for 

comparing automated activation detection method with the manual ground truth. (A) 

Accuracy, (B) Sensitivity, (C) Specificity, (D) Dice Similarity 

 

Looking at these values in Fig 3.8, it is immediately noticeable that the selected 

comparison measures (i.e. sensitivity, specificity, Dice similarity and accuracy) have 
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distributed in different ranges. For instance, the percentage of sensitivity values are 

densely distributed in [99.9994, 99.9999] interval whereas the specificity data points are 

distributed in [79.59, 99.99] or accuracy values are spread out between [94.33, 100.00]. 

These differences can be addressed based on the experimental design and the original 

definitions of these measures. For example, the sensitivity is the ratio of true positives 

over all the positive (activated) segments of the signal, and since during the intensity 

ramp-up usually most segments of the EMG signals contain evoked potentials, the true 

positive ratio is almost always close to 100%. On the other hand, the specificity values 

show the ratio of true negatives and since a few segments usually fall into the not-

activated category, the accuracy of the program for detecting these segments can drop in 

some cases and cause in lower true negative ratio. The Dice similarity measure is usually 

used to quantify the amount of agreements between two sets of binary results and in this 

application these values are distributed in [96.29, 99.99]. 

b. Comparison with Other Activation Detection Methods 

The performance of the automated method is compared to two other methods: TKEO and 

AGLR without smoothing. In this study, we slightly modified these algorithms to be 

adapted to the activation detection problem in order to make a fair comparison between 

their outputs and our proposed method. The TKEO method utilizes a conditioning 

function as shown in Eq. 3.6.  

 

Ψ�𝑥𝑖𝑘� = 𝑥𝑖𝑘
2 − 𝑥𝑖𝑘−1𝑥𝑖𝑘+1   Eq. 3.6 
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Where 𝑥𝑖𝑘is the observation k in segment i. After applying the conditioning function, the 

maximum value of each segment is compared to the dynamic threshold (Eq. 2.5) and 

activation will be detected if the maximum value is greater than the threshold. 

The comparison results are based on recorded EMG signals as well as simulated EMG 

signals.  

The results of comparing the proposed method with AGLR and TKEO based on the total 

accuracy in the recorded EMG signals from five patients are presented in Table 3.1 in the 

five-number-summary format. It is noticeable that AGLR and TKEO showed a lower 

accuracy compared to the new automated framework. Particularly there is approximately 

1.05% increase in the median value of accuracy that shows the effect of adding the 

GGMRF smoothing technique to the pre-processing step, which makes the automated 

method more robust where there is higher noise level in the signal. It is notable here that 

although other signal filtering techniques might show the same robustness to noise, these 

methods cause distortion to the shape of the evoked potential or activation latency in the 

signal which are unfavorable in this application. 

 

Table 3.1 Comparison with other activation detection methods. Comparison of the 

total accuracy for the new automated activation detection method with the TKEO and 

SODM methods based on five-number-summary  

 SODM+GGMRF SODM TKEO 

Maximum 100.00 100.00 100.00 

Upper quartile 100.00 100.00 100.00 

Median 100.00 98.95 98.42 
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Fig 3.9 demonstrates examples of recorded EMG signals with different SNR levels and 

performance comparison of the three methods for each signal. The three signals were 

recorded from right MH (Fig 3.9A), right GL (Fig 3.9B) and left GL (Fig 3.9C) during an 

intensity ramp-up experiment and they have high, medium and low SNR (10.63 dB, 4.37 

dB and -0.14 dB), respectively2. The performances of the three methods are shown as 

activation windows in black lines (from left to right: AGLR with GGMRF, AGLR and 

TKEO). The activation window is a time interval in which the algorithm was able to 

detect every single evoked potential induced by scES pulsations. The manually detected 

activation windows are shown in red dashed lines as the ground truth. 

 

 
                                                 

2 SNR values are approximated by using the smoothed signals as the original signal without noise and the 

subtraction of recorded and smoothed signal as the noise signal (assuming that the noise is additive). 

Lower quartile 97.72 97.43 97.22 

Minimum 94.33 93.65 93.18 
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Fig 3.9 Examples of recorded EMG signals with high, medium and low SNRs and the 

performance comparison between three activation detection methods. (A) high SNR 

signal from right MH; (B) medium SNR signal from right GL and (C) low SNR signal 

from L GL. Detected activation windows for AGLR + MMGRF, AGLR and TKEO from 

left to right are shown as continues and dashed black lines. De-noised signal is shown in 

light red and manually detected activation window as dashed red line. 

 

As this figure shows, for the high SNR signal all three methods can detect 100% of the 

evoked potentials in the signal. In the medium SNR, only AGLR with GGMRF can 

detect the activations as early as the ground truth. The AGLR without de-noising had 

near 15 seconds delay in detecting the first activation (accuracy of 94.11%). TKEO didn’t 

show a long delay but it was unable to consistently detect all the activations throughout 

the signal (accuracy of 95.58%). In the last row, the left GL signal has low SNR and it 

causes a long delays and inconsistencies in detecting the activations for AGLR (69.11%) 

and TKEO (38.23%), however our algorithm is robust in detecting the earliest activations 

that are overwhelmed with the high noise level. 

In order to measure the extent to which the proposed method keeps its robustness in the 

noisy environment, and compare it with other methods, the performances of the three 

methods were tested using the simulated signals with different SNR values. The 

simulated EMG signal is designed using an activation shape signal as the evoked 

potential, X(k), that is convolved with a train of Dirac delta impulses ∑ 0.01𝑖 𝛿(𝑡 −𝑘
𝑛=1

𝑖), where the amplitudes linearly increase. The additive white Gaussian noise, n(t), is 

then added to the signal based on the desired SNR to generate the final simulated signal. 

This signal consists of 50 segments, where the first 20 segments do not include any 
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evoked potential; thus, 10 segments of the first portion of the signal are utilized as the 

baseline. The SNR of the simulated signal is increased from -10 to 10 dB. Fig 3.10 

demonstrates the plot of the accuracy measurement values versus SNR for three methods. 

As it is shown in this figure, all three methods are performing well at higher SNR values. 

However, as the noise level in the signal started to increase, TKEO and AGLR accuracy 

rates suddenly dropped to below 50% but the proposed method kept its accuracy near 

80% at lower SNRs. Therefore, it is clear from this plot that the AGLR with GGMRF 

significantly outperforms the other methods for EMG signals containing lower SNR 

values.  

 
Fig 3.10 Comparison of the proposed activation detection algorithm with two other 

methods. Comparison of three activation detection methods, TKEO, SODM, and SODM 

with GGMRF on simulated signals as a function of SNR (dB). 

 

c.  Calculating Total Runtime of The Algorithms 
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 The hardware and software that were employed to process the EMG signals and 

calculate the runtime of the algorithms are Dell computer with Optiplex 9020, Intel® 

Core™i7-4790 CPU @ 3.60 GHz, 16.0 GB RAM, 64-bit Operating System, and 

MATLAB R2011a, respectively. The runtime of this framework is directly dependent on 

the length of the experiments. Table 3,2 presents the average runtime of each of the five 

algorithms. The average and standard deviation of total execution time for processing 

each set of data recorded during one ramp-up experiment through all five algorithms is 

approximately 12.7 ± 2.3 seconds. Comparing to the previous manual method that could 

take up to several days, the automated method clearly demonstrates superior efficiency 

with respect to time and human resources. 

Table 3.2 Runtime measurements. The runtime mean and RMSE of each steps of the 

proposed framework 

  Converting 

signal to 

image 

Noise 

reduction 

Activation 

detection 

Feature 

extraction Visualization Total 

Runtime 

(s)  

Mean 

3.93 6.61 1.54 0.05 0.40 12.71 

 RMSE 1.33 1.18 0.24 0.01 0.01 2.33 

 

D. Discussions 

There are several points that need to be addressed in the process of developing the 

proposed automated framework for EMG signal processing. First, it is important to note 

that the presented method does not need any a priori information for the statistical model, 
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which makes it a fully automatic method that uses only the current and previous EMG 

signal values to build the statistical model. Also, there is no need to label the input data 

manually before running the program. 

Comparing the results from recorded EMG signals and simulated signals with 

controllable SNR shows that in most cases surface EMG signals have fairly high SNR, 

which makes the performance of all the methods fairly accurate. However, there are some 

instances where the EMG signals can be disturbed with unpredictable sources of noise 

and artifacts like displacement of the recording electrodes or random occurrence of 

internal muscle activations that can interfere with the epidurally induced activations. As it 

was shown in the results section, adding the image-smoothing step to the framework 

helps to reduce the chance of false alarms (outliers) in the presence of these sources of 

noise. Since both TKEO and AGLR show rather accurate results without GGMRF, we 

predict that adding this pre-processing step to TKEO and probably other methods will 

also increase their accuracy significantly. It should also be mentioned that the GGMRF 

method itself is sensitive to the size of the neighborhood pixels and this parameter should 

be adjusted based on the application; therefore, adding this step can be a tradeoff between 

accuracy and the need for parameter adjustment. 

In addition to internal activations there are some instances where there is a secondary 

(late) response to the scES stimulation that can overgrow the primary evoked potential 

and cause false alarms. In order to minimize the effects of these secondary responses on 

the program’s accuracy, only the first one eighth of each signal segments are used to 

build the statistical model because this is the time interval where primary activations, that 
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are directly linked to the order of muscle recruitment of the scES, are most likely to 

happen.  

As it was explained in the methodology section the program is designed to detect both the 

occurrence of evoked potentials and the latency (onset) of each detected evoked potential 

as one of the key features that has been extracted. Same statistical methodology with 

minor modifications has been applied for the onset detection algorithm. In order to 

increase the resolution of the detected onsets, the program increases the sampling rate to 

10,000 samples per second in the recorded EMG signals using linear interpolation 

technique. 

It should also be noted that while the manual activation detection has been considered as 

the gold standard in this study, the manual method itself has weaknesses such as 

disagreements between different observers in low SNRs or intra-observer variability in 

detecting the true onset that can be caused by exhaustion specially when facing large 

stack of data. 

By reducing the noise level in the signal, while minimally affecting the evoked potential 

signal using the GGMRF technique and considerably increasing the signal-to-noise ratio 

(Fig 3.9), this framework increases the detection accuracy of the earliest muscle response 

in the EMG signal and the corresponding stimulation voltage (intensity) as the muscle 

activation threshold. In other words, this algorithm detects the exact intensity threshold 

that is needed for the muscle to get activated (for a given electrode configuration). 

Determining this threshold value has two main advantages for the experimentalist: 1) To 

find the configuration (or combination of several configurations) that offers the lowest 

intensity threshold for activating all the muscles; and 2) To set the intensity at the pre-
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threshold value during the performance of specific voluntary tasks for the selected 

optimum configuration. Therefore, the automatic process of linking scES parameters to 

the muscle recruitment order that is presented in this study improves the speed and 

precision of the operator’s decision for selecting both the optimum configuration and the 

corresponding pre-threshold intensity. 

Finally, our framework has the flexibility to be applied to any other experimental 

protocols or signals, by simply updating certain parameters (e.g. intensity or frequency) 

and attributes (e.g. peak-to-peak amplitude or integrated EMG) of the signals. Spinal cord 

epidural stimulation research has current applications in small and large animal models as 

well as human models. In all models, understanding the effect of scES on the spinal cord 

networks following injury is a critical component that will lead to more successful 

selection of stimulation parameters targeted for functional improvements. As we have 

shown in our previous works (3-6) stimulation configurations are different across 

individuals, species and tasks, emphasizing the need to map motor evoked responses 

relative to stimulation site for each research participant. Transcutaneous stimulation has 

also been used as a technique to access the capabilities of the spinal cord networks 

following injury. Thus, the methodology presented in this paper can also be used to 

visualize the motor evoked responses relative to stimulation site and stimulation voltage 

across multiple muscles. Applications in which understanding detailed responses of 

multiple muscles to a stimulus with varying intensity and location could benefit from the 

analysis technique explained in this paper. 

E. Application I: Finding optimized electrode configuration 



88 

 

Functional application of scES mapping and colormap visualization technique is 

presented here to show the practical convenience and effectiveness of the proposed 

framework. Here we present the results of performing 12 voltage ramp-up experiments 

with different stimulation configurations for one of the participants. Fig 3.11A illustrates 

the peak-to-peak amplitudes of left and right RF and VL muscles with respect to 12 

middle column configurations and the stimulation voltage. These graphs help the 

examiner to determine which configuration showed the best performance for a given 

muscle. At the same time the data from the systolic blood pressure (SBP) was also 

recorded during all 12 experiments and using similar methodology to EMG we were able 

to generate similar colormap with respect to configuration and intensity (Fig 3.11B). The 

SBP colormap was further divided into two colormaps: one before a certain muscle (R 

VL in this example) gets activated (Fig 3.11B left) and one after the muscle starts to 

show activations (Fig 3.11B right). This way the examiners can observe the effects of 

muscle activation on SBP data. Before the mapping experiments had been done, during 

the voluntary movement experiments[14], the individual was asked to try to extend their 

knee (Fig 3.11C) by setting the stimulation parameters to 1-/6-/12-//7+/8+, 3.3 V and 25 

Hz for configuration, intensity and frequency, respectively (Fig 3.11D). However, the 

selected configuration was not optimum and did not result in a proper movement. The 

experimental analysts then used the mapping colormap images for this subject to 

determine that the electrode selection for this subject should be moved upward on the 

stimulation array according to the EMG colormaps for RF and VL which show that 

middle column configurations near the top of the array (7-//6+;7-//8+) caused the earliest 

activations with low SBP. Therefore, the stimulation parameters were adjusted to (0-/1-
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/5-/8-/11-/12-/13-//6+/7+, 3.1 V and 25 Hz (Fig 3.11E) for voluntary movement 

experiment and resulted in proper knee extension. 

 
Fig 3.11 Functional application of scES mapping and visualization technique. (A) 

Colormap figures for middle column configurations for 2 selected muscles (left and right 

RF and VL) used to identify optimal configurations for voluntary activity (knee 

extension) in a research participant. The white area in the images shows that at which 

stimulation voltage the experiment started and the gray area shows the pre-threshold part 

of the experiments. (B) SBP data with respect to stimulation configurations when the R 

VL muscle is off (left) and when it is on (right) (C) stick figure representing movement. 

(D) Successful but not optimal configuration designed for knee extension (E) Optimized 

configuration for knee extension. In the graphical representation cathodes are black, 

anodes are graph and assigned electrodes are white. 
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F. Application II: Repeatability Measures of Epidurally Induced Motor 

Evoked Potentials in Individuals with Spinal Cord Injury 

This application of the developed framework aims at quantifying the variability of 

the recorded Spinal cord evoked potentials (scEPs) caused by controlled and uncontrolled 

experimental factors during Spinal cord epidural stimulation (scES). It has been shown 

previously that scES along with activity-based training can promote the recovery of 

motor functions after chronic motor complete spinal cord injuries (SCI). The appropriate 

selection of scES parameters, which are most often task- and individual-specific, is 

crucial for promoting motor recovery. In order to facilitate the selection of proper 

stimulation parameters, an individualized map of motor pools activation is defined by 

combining the scEPs induced by various stimulation parameters recorded over multiple 

experimental trials with the research participants in supine position. However, to date, the 

reliability of these scEP recordings used in building the map has not been investigated 

and the effects of changing the stimulation parameters on the variability of scEPs have 

not been quantified. In this study, the experimental procedures were performed on 10 

individuals with motor complete SCI in supine position using various scES parameters, 

i.e. intensity, electrode combinations and their polarity. The EMG signals were recorded 

from 16 leg muscles in repeated experiments performed one to seven days apart. The 

scEPs were detected from the recorded EMG signals and the peak-to-peak amplitude and 

activation threshold of each scEP were extracted. Linear mixed-effects models were used 

to quantify the amount of variability in amplitude and threshold measurements that is 

caused by each controlled and uncontrolled experimental factor. Figure 3.12 

demonstrates the recruitment curves of 4 selected muscles (left VL, MH, TA and SOL) 
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corresponding to 4 electrode configurations for subject A59. The selected configurations 

stimulate different parts of the electrode array. For instance, the 5-//6+ configuration in 

Fig 3.12 A is stimulating the top part of the array, 8-//7+ (Fig 3.12 B) stimulates the 

middle part, 10-//9+ (Fig 3.12 C) stimulates the bottom part of the array and in Fig 3.12 

D the 4-/10-/15-//0+/5+/11+ configuration targets a wide field and non-location specific 

stimulation. This figure shows that the threshold values (red circle and X markers) occur 

very closely on the two subsequent trials for most of the muscles and configurations; 

whereas the amplitude criterion tends to grow further apart between the two trials as the 

stimulation intensity increases but this trend is subjective to the muscle and 

configuration. On the other hand, the curvature of the activation patterns remains rather 

unchanged between the two trials in all the muscles and electrode configurations depicted 

in these plots. It is also notable from Fig 3.12 D that the wide-field configuration 

activates the muscles almost simultaneously at very low intensities (0.5~0.6V) but the 

narrow-filed configurations, located at the top and middle part of the electrode array (Fig 

3.12 A and B), need higher stimulation intensities to activate the muscles. 
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Fig 3.12 The recruitment curves of left VL, MH, TA and SOL muscles of Trial #1 and 

Trial #2 amplitude and threshold values with stimulation configuration (A) 5-//6+ rostral 

part of the electrode array; (B) 8-//7+ middle part of the electrode array; (C) 10-//9+ 

caudal part of the electrode array; (D) 4-/10-/15-//0+/5+/11+ wide-field configuration. 

 

a. Linear Mixed-effects Models 

The reliability analysis of the scEP amplitude and threshold measurements using 

linear mixed effects multi regression models are summarized in Tables 3.3 and 3.4, 
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respectively. The standard deviation values estimated for each experimental factor and 

factor interactions are presented separately for surface and indwelling electrode 

measurements. 

 

Table 3.3. Estimated components of the total variation in log A, σ, (approximate 

components of relative variation in A) and their 95% confidence intervals (CI) for surface 

and indwelling electrodes measurements. 

Surface Electrodes  

Measurements 

Indwelling Electrodes 

Measurements (IL 

Muscles) 

Factor σ CI σ CI 

Lower Upper 
 

Lower Upper 

 Research 

Participant 

0.590 0.331 1.046 0.927 0.508 1.603 

Experimental Pair 0.761 0.656 0.889 0.944 0.597 1.244 

Muscle 0.673 0.470 1.026 0.016 0.000 0.761 

Intensity 1.556 1.350 1.810 1.074 0.896 1.289 

Muscle | Exp. Pair 1.012 0.976 1.050 0.923 0.740 1.165 

Intensity | Exp. 

Pair 

0.393 0.381 0.405 —a — — 

Muscle | Intensity 0.234 0.220 0.249 —a — — 

Muscle | Intensity 

| Experimental Pair 

0.084 0.061 0.102 —a — — 

Residual 0.537 0.534 0.541 0.864 0.845 0.883 

a There were insufficient data to estimate these interaction effects. 
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Table 3.4. Estimated components of the total variation in It , σ, and their 95% confidence 

intervals (CI) for surface and indwelling electrodes measurements. 

Surface Electrodes  

Measurements 

Indwelling 

Electrodes 

Measurements (IL 

Muscles) 

Factor σ CI σ CI 

Lower Upper 
 

Lower Upper 

Research 

Participant 

0.602 0.322 1.025 0.660 0.330 1.152 

Experimental Pair 0.854 0.750 0.983 0.795 0.606 0.995 

Muscle 0.118 0.075 0.193 —a — — 

Muscle | Exp. Pair 0.519 0.496 0.544 0.491 0.300 0.686 

Residual 0.385 0.372 0.399 0.664 0.441 0.664 

a There were insufficient data to estimate the effect of this factor. 

 

The residual values (Residual) presented in Tables 3.3 and 3.4 reflect the amount of 

variability caused by uncontrolled technical and physiological factors in subsequent 

trials, i.e. the inter-trial variability. It is noticeable that the residual values are lower than 

most of the independent factors for both amplitude and threshold criteria. The stimulation 

intensity shows the highest variation in the amplitude measurements, while the 

experimental pair factor, which includes research participant and electrode configuration, 

presents the highest variability in threshold measurements for both surface and 

indwelling recordings. 
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Table 3.3 and 3.4 also report the factor interactions that were included in the 

linear mixed effects models.  Amongst the factor interactions that were considered in the 

models, only “muscle | experimental pair” showed higher variability than residuals for 

both scEP amplitude and threshold. This means that a given muscle responded differently 

across different subjects and electrode configurations. 

b. Comparison between Inter-Trial Variability of the Amplitude and Threshold 

Criteria 

In order to compare the residual values for the amplitude and threshold measurements, 

we fitted the same MLE model to the log (𝐼𝑡) measurements. The residual standard 

deviation and its 95% confidence interval of this model are 0.186, [0.180, 0.193] for the 

surface measurements and 0.274, [0.245, 0.309] for indwelling measurements. In this 

form, the residuals of the two models for the logarithmically transformed measurements 

are approximately equal to the coefficient of variation of the original (non-transformed) 

measurements [114]. Therefore, the coefficient of variation value of the threshold 

measurements is 33% of the coefficient of variation for the amplitude (Table 3.4) 

recorded by surface electrodes, and 31% for the amplitude measurements recorded by 

indwelling electrodes. Seen as the 95% confidence intervals of the residuals for the two 

models do not overlap, they are considered significantly different. In other words, the 

inter-trial variability of the amplitude criterion is significantly higher than the inter-trial 

variability of the threshold criterion. 

c. Bootstrapping and Intra-class Correlation Coefficient 

Using the bootstrapping method, the null hypothesis of equal measurements in 

subsequent trials was tested. Based on this analysis, with p=0.100 the equal assumption 
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for peak-to-peak amplitude values obtained from surface electrodes cannot not be 

rejected. Moreover, for threshold measurements obtained from surface electrodes, the 

hypothesis of equal values between trial #1 and #2 is not rejected with p-value = 0.854. 

Also for the indwelling electrode measurements, with p-values equal to 0.327 and 0.430 

for amplitude and threshold criteria, respectively, the hypothesis of equal values between 

trial #1 and #2 cannot be rejected. The intra-class correlation coefficient, and 

corresponding level of agreements according to Indrayan and Chawla [115]) were 

calculated for the same muscle in the same participant under the same experimental 

conditions, i.e. stimulation intensity and electrode configuration, to show how closely the 

measurements recorded on the repeated trials are compared to the first trial. The intra-

class correlation coefficient numbers for the surface and indwelling measurements of the 

amplitude values are equal to 0.946 and 0.921, respectively, which both correspond to 

excellent agreements between the recorded measurements on subsequent trials. For the 

threshold measurements, the intra-class correlation coefficient values are equal to 0.903 

(Excellent) and 0.748 (Moderate) for surface and indwelling electrodes, respectively. 

The results of this study show that the recorded measurements (amplitude and threshold) 

on subsequent trials were not significantly different when all the controlled experimental 

factors remained fixed. These results also verify that changing the controlled factors 

including stimulation parameters causes higher variation in the scEP measurements than 

any uncontrolled sources of variability. The findings also show that the coefficient of 

variation of amplitude measurements recorded on repeated trials is significantly higher 

than that observed for threshold measurements. These findings suggest that scEPs 
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recorded in experiments performed within one week are reliable measurements to map 

the effects of scES parameters on muscle activation patterns. 

G. Study Outcomes 

Our EMG signal processing efforts in the time domain resulted in two journal papers: one 

is published in PLOSONE journal and the other one is under review in the journal of 

Electromyography and Kinesiology. The results of this study have also been presented as 

oral and poster presentations in 2018 Biomedical Engineering Society (BMES) 

conference and 2016 Research Louisville. Additionally, the EMG processing framework 

has been filed as a patent disclosure by the University of Louisville Technology Transfer 

office. 
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CHAPTER IV  

NEUROPHYSIOLOGICAL MARKERS PREDICTING INDEPENDENT STANDING 

ENABLED BY SPINAL CORD EPIDURAL STIMULATION 

A. Introduction 

Spinal cord epidural stimulation (scES) along with activity-based training has been 

proven to be effective in re-enabling independent standing, walking over ground and 

voluntary movements in individuals with severe spinal cord injury (SCI) [8-14, 116, 117]. 

In order to successfully facilitate motor recovery, the stimulation parameters (intensity, 

frequency, electrode configuration) need to be adjusted for each individual and each task 

[116]. The ability to stand with independent lower limb extension is a key achievement 

toward the recovery of functional mobility, and it was consistently observed in all three 

motor complete SCI individuals previously reported and subsequently they recovered over 

ground stepping and walking [8, 12]. The guidelines proposed for selecting a sub-set of 

electrode configurations to be tested for standing include adjusting cathodes (active 

electrodes) positon in order to target primarily extensors muscle groups according to the 

individualized map of motor pools activation [116, 118]. Also, the use of multiple 

interleaving programs represents an important advantage compared to the use of a single 

program, as it allows to access different locations of the spinal circuitry with different 

intensities. However, to date there are no available algorithms or procedures that suggest 

the exact set of parameters to be applied for facilitating standing using tonic scES. In 
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addition, the characteristics of muscle activation patterns leading to independent standing 

remain poorly understood. 

Characteristics of Muscle Activation Patterns 

Electromyogram (EMG) activities recorded from lower limb skeletal muscles have 

been used to characterize muscle activation patterns during the performance of various 

tasks enabled by scES [11]. These signals carry important information regarding the 

electrophysiological properties of the muscle response to epidural stimulation and sensory 

information. Spectral analysis of EMG signals and extracting key features from the time 

and frequency domains can also provide information related to characteristics of the neural 

drive, number of recruited motor units and their firing rates, and the type of engaged 

muscle fibers during various performance conditions of specific task [119]. Understanding 

the characteristics of muscle activation patterns leading to independent standing can be 

essential for developing a machine learning approach that can contribute to the selection 

of appropriate scES parameters. This is of particular interest at the early stages of spinal 

stimulation application, when it is likely that none of the tested stimulation configurations 

promote independent extension of any lower limb segment. 

Here, we introduce a novel framework for EMG data processing that implements 

spectral analysis and machine learning methods for characterizing EMG activity resulting 

in independent or assisted standing, and for identifying the stimulation parameters that 

promote muscle activation more effective for standing. We initially determined which 

spectral analysis method is more effective for identifying frequency-domain EMG 

features that characterize independent standing promoted by scES in humans with 

clinically motor complete SCI. We then integrated EMG frequency- and time-domain 
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features in the computational model and tested its ability to accurately classify 

independent and assisted standing. Also, the physiological characteristics of EMG 

activity resulting in assisted and independent standing were defined. Finally, we applied 

the proposed framework on EMG datasets collected while research participants were 

testing different scES stimulation parameters for standing, with the goal of ranking the 

effectiveness of the muscle activation patterns generated. In this study, the EMG signals 

recorded during standing with scES are analyzed using FFT, STFT and CWT in order to 

draw comparisons between the amount of useful information they provide regarding the 

spectral content of the recorded EMG. A classification method will be applied to the 

features extracted from these three methods to assess the effectiveness of these features in 

quantifying standing ability in SCI individuals using scES. 

B. Materials and Methods 

a. Research Participants 

Eleven participants (10 male and 1 female) with chronic motor complete SCI who 

have been implanted with scES (Fig 1A) were included in this study. All participants 

presented stable medical conditions with no progressive spinal cord injury and no drug 

abuse at the time of implantation followed by the experiments. The age of participants 

ranged from 23.38 to 36.19 years with mean and standard deviation of 28.78±4.5; time 

since injury in these individuals ranged from 3.12 to 8.46 (5.02±1.83) years at the time of 

standing experiments. The written informed consent for the entire experimental 

procedure and publications of research outcomes, which were approved by the University 

of Louisville Institutional Review Board, were provided by all participants. The research 

participants were recruited over 6 years (2009 to 2015), and were enrolled into an 
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interventional study focused on either the facilitation of standing and stepping or the 

recovery of cardiovascular function.  

 

Table 4.1 Clinical characteristics of the research participants. 

            AIS Score 

      

Sensory (T10 - S5, 
core out of 24) 

 

Motor 
(lower 

extremity) 

ID Age 
(yrs) Sex 

Duration 
of Injury 

(Yrs) 

Neurological 
Level 

AIS 
Grade 

L 
LT 

L 
PP 

R 
LT 

R 
PP   L  R 

B13 33 M 4.2 C7 B 10 10 10 8  0 0 
B07 24 M 3.4 T2 B 15 11 18 10  0 0 
A45 24 M 2.2 T4 A 0 0 0 0  0 0 
A53 27 M 2.3 T4 A 0 0 0 0   0 0 
B23 32 M 3.3 C5 B 8 0 10 0  0 0 
A59 26 M 2.5 T4 A 0 0 0 0  0 0 
B30 22 F 3.3 T1 B 17 5 17 9  0 0 
A60 23 M 3.1 T4 A 0 0 0 0   0 0 
A68 35 M 3.8 C4 A 0 0 0 0  0 0 
A41 24 M 7.2 C4 A 0 0 0 0  0 0 
B21 31 M 7.0 C4 B 1 1 0 0   0 0 

 

b. Surgical implantation of electrode array and stimulator 

 The epidural spinal cord stimulation unit (Medtronic, RestoreAdvanced) and the 

16-electrode array (Medtronic, 5-6-5 Specify) were surgically implanted in the eleven 

research participants (Fig 4.1 A). The electrode array was positioned over the midline of 

the exposed dura, in correspondence of spinal segments L1-S1/S2. EMG recordings from 

leg muscles were obtained intraoperatively during spinal stimulation at 2 Hz using 

midline, left and right electrode pairs in order to localize the optimal placement of the 

array. The wire leads were then internalized and tunneled subcutaneously to the abdomen 

and connected to the neurostimulator. 
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c. Experimental Procedure 

 Standing experiments were performed with participants standing over ground in a 

standing frame while the spinal cord was epidurally stimulated. If needed, participants 

received external assistance for hips and knees extension (Fig 4.1 B). Various stimulation 

parameters including the stimulation intensity, frequency and electrode array selection 

were tested for each individual to promote independent standing before and after activity-

based training. 

Selection of scES parameters for standing 

A subset of scES parameters aimed at facilitating standing were initially identified based 

on the individual-mapping of scES pattern activation from previous assessments 

performed on the same research participants in supine position as well as from the 

literature. scES was initially delivered at a near-motor threshold stimulation amplitude that 

did not elicit directly lower limb movements in sitting. scES parameters were then 

adjusted during standing, for example unbalancing anodes and cathodes between the 

lateral columns of the electrode array to compensate activation differences between left 

and right lower limb, or adding interleaving stimulation programs to facilitate the 

activation of specific muscle groups. Also, stimulation frequency and amplitude were 

modulated synergistically in order to identify the higher stimulation frequency that elicited 

a continuous (non-rhythmic) EMG pattern effective to bear body weight. 

Each research participant underwent one or two experimental sessions aimed at selecting 

appropriate scES parameters for standing prior to the beginning of stand training. 

Stimulation parameters were also adjusted throughout stand training. In particular, 

dedicated sessions were performed approximately every 2-4 weeks to monitor motor 
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behavior and lower limb EMG activity while testing different stimulation parameters to 

contribute to their selection. 

EMG Signal Acquisition 

EMG, ground reaction forces and kinematics data were recorded at 2000 Hz using a 

custom-written acquisition software (National Instruments, Austin, TX). The EMG signals 

were recorded during standing from 16 leg muscles using surface electrodes for left and 

right soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis 

(VL), rectus femoris (RF), medial hamstrings (MH), and gluteus maximus (GL) and two 

indwelling electrodes for left and right iliopsoas (IL) muscles. Figure 4.1 C and D show 

examples of the recorded EMG signals from left SOL muscle during hip and knees 

assisted and independent standing conditions, respectively.  
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Fig 4.1 (A) The spinal cord epidural stimulation and its location on the human spinal cord; 
(B) Schematic view of the standing task; (C) Example of the recorded EMG signal from 
left SOL during one minute of assisted standing and (D) Independent standing. 

 

d. EMG time and frequency domain analysis 

Each standing event considered for analysis was characterized by consistent 

external assistance and stimulation parameters and a duration ranging between 40 and 70 

seconds; the initial and final 5 seconds of each event were not considered for analysis. 

Each event was labeled as follow, based on whether hips and knees needed external 

assistance for standing or achieved independent extension: hips and knees assisted; hips 

assisted and knees independent; hips and knees independent; one knee assisted and one 

knee independent. 



105 

 

 The EMG processing framework consisted of several steps including spectral 

analysis, time- and frequency-domain features extraction, dimension reduction, 

classification and prediction, which are described here below. 

 

EMG time domain features 

The EMG pattern variability was assessed by calculating the coefficient of 

variation (standard deviation / mean) of the linear envelope EMG obtained by filtering 

the rectified EMG signal through a low-pass digital filter (cutoff frequency: 4 Hz) [11]. 

The EMG total power was calculated using the following equation: 

 

𝑃 = 1
𝑇 ∫ |𝑥(𝑡)|2𝑑𝑡𝑇

0   (4.1) 

 

Where x(t) is the recorded EMG signal and T is the length of the signal. 

For each examined muscle, the total power was then normalized by the maximum value 

detected within each participant. 

 

Spectral analysis 

In this study, we initially applied three spectral analysis methods to the scES-

promoted EMG activity, with the goal of identifying the method that better differentiate 

conditions of assisted standing and independent standing based on the spectral 

information provided. Fast Fourier Transform (FFT) is the most commonly used method 

for spectral analysis of EMG signals [120]. It is characterized by high frequency 

resolution and poor time resolution, and cannot localize the frequency content of the 
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signal in the time domain. Short-Time Fourier Transform (STFT) was designed to 

increase the time resolution of FFT by selecting a fixed-size window moving across the 

EMG signal [121]. Finally, Continuous Wavelet Transform (CWT) has been designed to 

effectively localize the frequency content of non-stationary signals in both time and 

frequency domains by using size adjustable wavelets and therefor without compromising 

time or frequency resolutions [52, 53, 119].  

EMG Frequency domain features 

Power spectral density (PSD) of FFT, STFT spectrogram (𝑠(𝑡,𝑖)) and CWT 

scalogram (𝑝(𝑖, 𝑡)) (using Morlet wavelet, 𝜓𝑓,𝑡(𝜏)) were calculated as reported in 

equations 4.2 to 4.4, respectively. 

𝐹𝐹𝐹(𝑖) = ∫𝑥(𝜏) exp(−𝑗2𝜋𝑖𝜏)𝑑𝜏, 

𝑃𝑆𝐷(𝑖) = |𝐹𝐹𝐹(𝑖)|2  (4.2) 

 

𝑆𝐹𝐹𝐹(𝑡,𝑖) = ∫𝑤∗(𝜏 − 𝑡)𝑥(𝜏) exp(−𝑗2𝜋𝑖𝜏)𝑑𝜏, 

STFT Spectrogram: 𝑠(𝑡,𝑖) = |𝑆𝐹𝐹𝐹(𝑡,𝑖)|2  (4.3) 

 

𝐷𝑊𝐹(𝑖, 𝑡) = ∫𝑥(𝜏)𝜓𝑓,𝑡
∗ (𝜏)𝑑𝜏, 

Morlet wavelet: 𝜓𝑓,𝑡(𝜏) =  1
�𝑓0 𝑓⁄

𝜓(𝜏 − 𝑡 (𝑖0 𝑖⁄ )⁄ ), 

Wavelet scalogram: 𝑝(𝑖, 𝑡) = |𝐷𝑊𝐹(𝑖, 𝑡)|2  (4.4) 

 

Where 𝑖0 is the sampling frequency (2 kHz). 
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The STFT window size was selected at 0.3 seconds to increase the time resolution of FFT 

and minimally compromising the frequency resolution.  

Mean frequency, median frequency, dominant frequency, and maximum power 

are the physiologically relevant features that were extracted from FFT outputs.  

For STFT and CWT, instantaneous values of mean frequency (IMNF), median 

frequency (IMDF), dominant frequency (Fmax(t)) and maximum power (Pmax(t)) were 

calculated (Eq. 4.5-4.8), and their average and standard deviation (SD) were considered 

as features for further analysis. In particular, EMG maximum power variability was 

assessed by calculating its coefficient of variation (SD / mean). 

 

𝐼𝐼𝐼𝐹(𝑡) =
∑ 𝑓𝑗𝑠(𝑓𝑗,𝑡)𝑀
𝑗=1

∑ 𝑠(𝑓𝑗,𝑡)𝑀
𝑗=1

    (4.5) 

 

∑ 𝑝�𝑖𝑗 , 𝑡� = ∑ 𝑝(𝑖𝑗 , 𝑡)𝑀
𝑗=𝐼𝑀𝑀𝐹(𝑡)

𝐼𝑀𝑀𝐹(𝑡)
𝑗=1   (4.6) 

 

𝐹𝑚𝑚𝑥(𝑡) = 𝑎𝑎𝑎𝑚𝑎𝑥𝑓(𝑝(𝑖, 𝑡))  (4.7) 

 

𝑃𝑚𝑚𝑥(𝑡) = 𝑚𝑎𝑥𝑓(𝑝(𝑖, 𝑡))   (4.8) 

 

where 𝐼 is the number of frequency bins. 

 

e. Classification 

 All the calculated EMG feature values (predictors) were normalized to their 

maximum to remove the effects of their units in the classification step. The non-negative 
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matrix factorization (NNMF) algorithm was applied to the normalized measurements for 

dimensionality reduction [122] and the output values were logarithmically transformed in 

order to stabilize the variance [123]. We then performed preliminary analysis to 

determine which classification method resulted in the highest accuracy for classifying 

conditions of assisted standing versus independent standing based on the EMG features 

herein considered. In particular, K-nearest neighbor (KNN) [124] performed better than 

Naïve Bayes [125], binary Support Vector Machine [126], and ensemble decision trees 

[127]; therefore, KNN was the classification method applied in the present study. 

• The KNN classifier includes several parameters that need to be adjusted in 

order to achieve its best classification performance. These parameters include number of 

neighbors, distance measures, distance weights and standardization (centering and scaling 

the predictors). In order to find the optimized parameters for the classifier, the Bayesian 

optimization algorithm was used [128]. The objective function for the optimization is log 

(1 + Cross Validation Loss). The Cross-Validation Loss is the ratio of misclassified 

observations during the cross-validation step. The classification accuracy is calculated 

using 10-fold cross validation method and calculated as a percentage value of 1- Cross 

Validation Loss [125]. The KNN classifier with the parameter optimization algorithm and 

the cross-validation step were iterated 10 times and the average accuracy values and the 

95% confidence intervals are reported. 

f. Prediction 

 All calculated EMG feature vectors (time- and CWT-derived features) that we 

included in the classification step were then used as a training dataset for the prediction 

part of the framework. A trained model is defined as a model that has captured the 
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patterns in the training dataset. Based on these learnt patterns, the trained model can 

predict the class label (i.e. assisted or independent standing) for new observations that 

were not included in the training dataset.  

 For this part of the study, we developed KNN models that are trained for each 

investigated muscle pair (i.e. left and right soleus). These models were then used to 

predict the class labels for the prediction dataset, which includes assisted standing events 

collected from 6 research participants during experimental sessions aimed at testing the 

effectiveness of different scES parameters for standing. The output of the prediction step 

is a score value ranging from 0 and 1, which is the posterior probability 𝑃(𝐷|𝑋𝑖𝑛𝑤) of 

“independent standing” class 𝐷 given a new observation 𝑋𝑛𝑛𝑛 (Eq. 4.9). 

 

𝑃(𝐷|𝑋𝑛𝑛𝑛) =  
∑ 𝑊(𝑋𝑖)1𝑋𝑖=𝐶
𝐾
𝑖=1

∑ 𝑊(𝑋𝑖)𝑘
𝑖=1

  (4.9) 

 

Where 𝐾 is the number of nearest neighbors to 𝑋𝑛𝑛𝑛, 𝑋𝑖 is the ith nearest neighbor, 

𝑊(𝑋𝑖) is the weight of 𝑋𝑖 which is the distance value from 𝑋𝑛𝑛𝑛 and normalized based 

on the class prior probability, i.e. the frequency of the number of observations in one 

class in the training dataset. The 1𝑋𝑖=𝐶 function returns 1 if observation 𝑋𝑖 belongs to 

class C and 0 otherwise [129].  

For each muscle, score values equal or less than 0.5 assign the given observation to 

the “assisted standing” class label, while values greater than 0.5 assign the observation to 

the “independent standing” class label. The number of neighbors for the prediction task is 

set to 𝐾 = 5; this keeps the classification accuracy high for all muscle pairs and allows 
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comparison of the prediction scores between KNN models. All EMG analysis steps are 

performed using MATLAB R2017b software and its Statistics and Machine Learning 

Toolbox. 

g. Statistical analysis 

Statistical analysis was performed using GraphPad Prism (version 5.00 for 

Windows, GraphPad Software, San Diego, California, USA). A P value < 0.05 was 

considered statistically significant. The distribution of quantitative EMG variables was 

tested for normality using the Kolmogorov–Smirnov test, and the parametric or non-

parametric tests reported below were applied accordingly. The effect of assisted or 

independent standing on the EMG features considered (total power, pattern variability, 

maximum power variability, median frequency, median frequency SD) was tested on all 

muscles investigated with surface EMG pooled together (left and right SOL, MG, TA, 

MH, VL, RF, GL), on primary extensor muscles (left and right SOL, MG, VL, RF, GL), 

and on primary flexor muscles (TA, MH). Additionally, we tested whether the 

stimulation frequency applied was significantly different between conditions of assisted 

or independent standing. In particular, paired comparisons between conditions of hips 

assisted – knees assisted and hips assisted – knees independent (subjects number = 8) 

were performed by Wilcoxon test. Also, comparisons among standing with hips assisted 

– knees assisted, hips assisted – knees independent, and hips independent – knees 

independent (subjects number = 5) were performed by either Repeated Measures Anova 

(and following multiple comparisons by Bonferroni’s post hoc test) or by Friedman Test 

(and following multiple comparisons by Dunn’s post hoc test). Finally, when one lower 

limb (i.e. left side) achieved independent extension while the other lower limb (i.e. right 
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side) required external assistance, paired comparisons (subjects number = 7) between the 

assisted and independent side were performed by Wilcoxon test. 

C. Results 

a. Standing motor patterns with and without scES 

Research participants required external assistance for lower limb extension when 

scES was not provided. Limited EMG activity was generally observed in response to the 

sit-to-stand transition, and negligible EMG was recorded during assisted standing (Fig 

4.2 A). 

When scES optimized for standing was applied, little activity and no movement 

was directly induced in sitting (Fig 4.2 B); On the other hand, without any change in 

stimulation parameters, sensory information related to the sit-to-stand transition and 

loading of the legs resulted in the generation of activation patterns with different 

characteristics. We have consistently observed that standing with independence of hip 

and knee extension is enabled by overall continuous (i.e. non-rhythmic) EMG activity 

(Fig 4.2 B). However, continuous EMG patterns can also be insufficient for achieving 

independent standing (Fig 4.2 C, top). On the other hand, the alternation between EMG 

bursts and negligible activity in lower limb muscles always resulted in assisted standing 

(Fig 4.2 C, bottom). 
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Fig 4.2 Electromyography (EMG), hip and knee joint angle, and ground reaction forces 

recorded form research participant A59 during: (A) sit-to-stand transition and standing 

with external assistance for hips and knees extension (assisted standing) without spinal 

cord epidural stimulation (scES); (B) sit-to-stand transition and independent standing 

using scES. The participant held the hands of a trainer for balance control; (C) assisted 

standing with scES resulting from an overall continuous activation pattern (top) and from 

an EMG pattern characterized by the alternation of EMG bursts and little activation. 
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Stimulation amplitude, frequency and electrode configuration (cathodes in black, anodes 

in red, and inactive in white) are reported for each participant. In B, the participant was 

stimulated with 3 programs delivered sequentially at 15 Hz, resulting in an ongoing 45 

Hz stimulation frequency. EMG was recorded from the following muscles of the right 

lower limb: IL, iliopsoas; GL, gluteus maximus; MH, medial hamstring; VL, vastus 

lateralis; TA, tibialis anterior; SOL, soleus. 

 

b. Time- and frequency-domain EMG features can accurately classify assisted 

versus independent standing 

 In order to identify EMG activation characteristics resulting in independent or 

assisted standing, we initially included two time-domain EMG variables (total power and 

pattern variability) in the proposed data processing framework aimed at classifying 

assisted and independent standing. This approach led to classification accuracy equal to 

83.7% for assisted and independent standing when all investigated muscles were 

considered for analysis. To improve this classification accuracy, we explored the 

inclusion of frequency-domain EMG features in the computational model. An initial step 

was devoted to the selection of an effective analysis method for EMG activity promoted 

by scES. When exemplary EMG signals recorded during assisted and independent 

standing were considered for analysis (Fig 4.3 A), Fast Fourier Transform (FFT) and, to a 

less extent, Short-Time Fourier Transform (STFT) primarily highlighted the content of 

frequencies related to epidural stimulation frequency (25 Hz) and its harmonics (Fig 4.3 

B). On the other hand, Continuous Wavelet Transform (CWT) showed relevant 

frequency content that was not related to scES frequency. Also, the power of EMG signal 

collected during independent standing tended to be shifted toward lower frequency bins 

compared to that recorded during assisted standing. 
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Fig 4.3 (A) Exemplary images of assisted standing (left) and independent standing 

(right). (B) EMG activity recorded from the left soleus (L SOL) of research participant 

A45 during assisted standing (left) and independent standing (right) with epidural 

stimulation, and related spectral power density calculated by Fast Fourier Transform 

(FFT), Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform 

A 

B 
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(CWT) are plotted. Stimulation amplitude, frequency and electrode configuration 

(cathodes in black, anodes in red, and inactive in white) are reported 

 

We then applied these three signal analysis methods on all EMG data collected during 

assisted and independent standing events from the 11 subjects that were considered in 

this study.  

 After normalization, dimension reduction and logarithmically transforming the 

EMG spectral feature values, the first three dimensions of standing data points (blue: 

independent standing; red: assisted standing) derived from the tested spectral analysis 

methods are plotted in Fig 4.4 A. It can be noted that the three analysis methods result in 

different distribution of the data points, and that CWT tends to present a clearer visual 

discrimination between assisted and independent standing data points. These feature 

values were subsequently used as input for KNN classification. As expected from the 

exemplary data analysis and from the data points presented in Fig 4.4 A, we observed 

that CWT-derived features promoted the highest classification accuracy for assisted 

versus independent standing compared to STFT- and particularly FFT-derived features 

(Fig 4.4 B).  
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Fig 4.4 (A) The first three dimensions of standing data points (blue: independent 

standing; red: assisted standing) after normalization, dimension reduction and 

logarithmically transforming the EMG spectral feature vectors extracted from CWT, 

STFT and FFT. (B) Classification accuracy for feature vectors extracted from CWT, 

STFT and FFT and (C) classification accuracy for the combination of time features and 

CWT-extracted features versus time features only, when considering all muscles, all 

muscles except IL, flexor muscles, extensor muscles, and each muscle (left and right), 

separately. 

A 

B 

C 
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Hence, CWT-derived data were integrated with time-domain EMG features (EMG total 

power and pattern variability), resulting in a classification accuracy for assisted versus 

independent standing ranging from 94.4% to 97.1%, depending on the considered 

muscle(s) (Fig 4.4 C). This classification accuracy is higher and more consistent across 

examined muscles compared to when either frequency- or particularly time-domain EMG 

features alone were considered (Fig 4.3 B and C). Based on the results reported in this 

section, CWT-derived data were also considered for further analysis aimed at describing 

the physiological characteristics of muscle activation during standing with scES. 

c. Physiological characteristics of muscle activation resulting in assisted or 

independent standing 

Higher values of EMG pattern variability can characterize the muscle activation 

pattern consisting of alternation between EMG bursts and silence periods (Fig 4.5 A and 

D, pattern variability = 0.68), which results in poor, assisted standing. On the other hand, 

this feature does not discriminate between overall continuous EMG patterns resulting in 

assisted standing (Fig 4.5 B and E; pattern variability equal to 0.23) or independent 

standing (Fig 4.5 C and F; pattern variability equal to 0.22). CWT can provide additional 

information based on instantaneous EMG time- and frequency-domain features. For 

example, in case of the alternation between EMG bursts and silence periods, the 

maximum power variability is also relevant (Fig 4.5 G, EMG maximum power variability 

= 1.35) compared to the condition of assisted standing with overall continuous EMG 

pattern (Fig 4.5 I, EMG maximum power variability = 0.35). 
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Fig 4.5 (A) EMG signal recorded from left MH muscle during assisted standing with 

alternating bursting pattern; (B) EMG signal recorded from left MH muscle during 

assisted standing with continuous pattern; (C) EMG signal recorded from left MH muscle 

during independent standing with continuous pattern; (D-F) Low frequency envelopes of 

EMG signals presented in A-B; (G-H) Contour plots of the wavelet scalogram calculated 

for EMG signals presented in A-B; (J-L) Instantaneous median frequency feature 

extracted from the scalogram of EMG signals presented in A-B. 

 

Interestingly, differences in the CWT pattern can be observed also between the 

two similar continuous raw EMG activity recorded from the same individual during 

assisted and independent standing (Fig 4.5 B and C, respectively). In particular, assisted 

standing tended to present greater EMG maximum power variability (0.48; Fig 4.5 G), 

higher median frequency (70 Hz; Fig 4.5 K) and greater variability of median frequency 

A B C 

D E F 

G H I 
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(median frequency SD = 32 Hz; Fig 4.5 K) compared to EMG activity that resulted in 

independent standing (0.35, 59 Hz, and 20 Hz, respectively; Fig 4.5 I and L). 

Paired statistical comparisons among individuals (n = 8) that achieved both 

standing with assisted and independent knees extension show that independent knees 

extension was promoted by significantly higher EMG total power, lower pattern 

variability, lower maximum power variability, lower median frequency variability, and 

lower median frequency as compared to assisted standing (Fig 4.6). These differences 

were more marked when all investigated muscles and primary extensors muscles were 

considered as compared to primary flexor muscles. It is also worth noting that the 

average stimulation frequency was similar between the two conditions (51 ± 22 Hz for 

knees assisted and 55 ± 26 Hz for knees independent; p = 0.98). 
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Fig 4.6 Paired statistical comparisons among individuals that achieved both standing with 

assisted and independent knees extension while their hip was assisted based on extracted 

total power, pattern variability, maximum power variability, average median frequency 

and median frequency standard deviation. Hip assisted (hA); knee assisted (kA); knee 

independent (kI). 

 

 We then performed a similar comparison including the 5 individuals who 

achieved standing with assistance at both hips and knees, with assistance at hips and 

independent knees extension, and with independent hips and knees extension (Fig 4.7). In 

summary, no substantial differences were observed between standing conditions of hips 

assisted – knees independent and hips independent – knees independent. On the other 

hand, these two standing conditions with independent knees extension were characterized 

by higher EMG total power, lower pattern variability, lower median frequency 

variability, and lower median frequency compared to standing with knees assisted, 

showing the same trend already reported in Fig 5. Also, the stimulation frequency was 

similar across these three standing conditions (58 ± 24 in hips and knees assisted; 61 ± 29 

Hz in hips assisted-knees independent; 62 ± 33 Hz in hips and knees independent; p = 

0.182). 
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Fig 4.7  Paired statistical comparisons among individuals that achieved standing with 

assisted and independent knees extension while hip was assisted, and independent hip 

and knees extension based on extracted total power, pattern variability, maximum power 

variability, average median frequency and median frequency standard deviation. Hip 

assisted (hA); hip independent (hI); knee assisted (kA); knee independent (kI). 

 

Also, in standing conditions during which one lower limb (i.e. left side) achieved 

independent extension while the other lower limb (i.e. right side) required external 

assistance, higher EMG total power, lower pattern variability, lower maximum power 

variability, lower median frequency variability, and lower median frequency were also 

detected from the limb with independent extension (Fig 4.8). This trend showed more 

consistent statistical significance when all investigated muscles were pooled together for 

analysis. 
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Fig 4.8 Paired statistical comparisons for standing with assisted and independent knees 

extension based on extracted total power, pattern variability, maximum power variability, 

average median frequency and median frequency standard deviation. Knee assisted (kA); 

knee independent (kI). 

 

 It is worth noting that the higher median frequency and median frequency SD 

values observed during assisted standing can be attributed, at least partially, to the 

sharper peak shape of spinal cord evoked responses (Fig 4.9, dark red arrows), which 

results in relevant increments of the instantaneous median frequency. Conversely, the 

smoother peaks of spinal cord evoked responses detected during independent standing 

contain more power at lower frequencies and result in a smaller instantaneous median 

frequency modulation. 
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Fig 4.9 Recorded EMG signals from left SOL during assisted (A) and independent (B) 

standing conditions, their 25 milliseconds zoomed-in view (C and D) and the 

corresponding instantaneous median frequency values (E and F). (G) Exemplary Morlet 

wavelet signals with high (40 Hz) and low (20 Hz) central frequencies (fc). 

 

d. Ranking the effectiveness of EMG activity for standing 

The high classification accuracy for assisted versus independent standing 

provided by our framework (Fig 4.4 C) led us to develop a further computational step 

aimed at ranking the effectiveness of muscle activation patterns generated during 
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standing. We initially trained muscle-specific KNN models based on assisted and 

independent standing data set (Fig 4.10). We then fed the prediction algorithm with a 

total of 48 standing events performed by 6 individuals while different stimulation 

parameters were tested to search for optimal stand-scES parameters (Fig 4.10). The 

prediction algorithm correctly labeled as “assisted” (i.e. score between 0 and 0.5) most of 

the standing events (95.8%). More importantly, its ranking scores varied substantially 

among stimulation parameters applied and investigated muscles. 
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Fig 4.10  Two representative features (total power and median frequency) of the 

EMG data sets used to train assisted (red) and independent (blue) standing KNN models 

are plotted against each other for each investigated muscle. Trends of assisted and 

independent standing data points are overall similar across muscles, while the distribution 

pattern shows some inter-muscle variability (i.e. between SOL and TA). EMG data 

collected from 6 individuals during a total of 48 standing events aimed at testing the 

effectiveness of different stimulation parameters (green stars) were then fed to the 

prediction algorithm. While all these attempts resulted in assisted standing, the related 

EMG data points are spread across the plots, with some of them partially overlapping 

independent standing data points. 
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For example, participant A68 tested 9 different scES parameters during the 

monitored standing session, obtaining average prediction scores ranging between 0.14 

and 0.49 (Fig 4.11 A). In particular, during the standing attempt characterized by the 

lower score, only R IL and TA muscles showed EMG activity characteristics closer to 

independent standing. On the other hand, the standing attempt with the higher score was 

characterized by independent standing-like EMG characteristics of several muscles (i.e. 

posterior thigh muscles and anterior muscles of the left lower limb). Also, EMG activity 

score of bilateral plantar flexor muscles was low in both standing conditions. 

We then exemplified that the proposed prediction algorithm may be used also for 

ranking EMG activity collected during standing with different levels of assistance. For 

instance, it correctly labeled two events as “independent”, and suggested that independent 

standing can be achieved even when activation characteristics of few muscles are ranked 

as “assisted” (Fig 4.11 B). Also, when the algorithm is trained with the proper data set, it 

can rank the effectiveness of EMG activity generated by the lower limb assisted for knee 

extension (i.e. right side) while the other leg maintained independent extension (left side) 

(Fig 4.11 C). 
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Fig 4.11 Ranking of individual muscle performances presented as colormaps (shades of 

red related to assisted standing and shades of blue related to independent standing). (A) 

Examples of two assisted standing events from subject A68 with 0.14 total prediction 

score (left) and 0.48 total prediction score (right). (B) Examples of two independent 

standing events from subject B30 with 0.81 total prediction score (left) and 0.97 total 

prediction score (right). (C) Examples of two partially assisted (one knee assisted and one 

knee independent) standing events from subject A60 with 0.28 total prediction score 

(left) and 0.50 total prediction score (right). 

 

D. Discussion 

A 

B 
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In this study, we developed a novel data processing framework for EMG activity 

promoted by spinal epidural stimulation during standing in individuals with severe SCI. 

This approach allowed us to uncover the physiological characteristics of neuromuscular 

activation resulting in independent standing. Additionally, we showed that, for each 

investigated muscle, the proposed machine learning algorithm can rank the effectiveness 

of EMG activity generated during standing. We discuss the implications of these findings 

in the context of mechanisms of motor pattern generation, and for the contribution this 

framework can provide during the selection of scES parameters, suggesting that it can 

facilitate the clinical translation of scES for standing motor rehabilitation. 

Frequency-domain EMG features have been widely considered to study central 

motor control strategies during voluntary muscle activation [130-133], and the more 

recent development of technology for decomposing surface EMG signals has resulted in 

further insights on this topic [134-136]. On the other hand, EMG spectral features have 

been substantially neglected when the generation of activation patterns is promoted by 

scES. Gerasimenko and colleagues proposed a qualitative interpretation of spectral 

analysis (by FFT) performed on EMG signals collected from flexor and extensor muscles 

during stepping with scES [137]. In particular, they suggested that the dominant spectral 

peaks related to the stimulation frequency and its harmonics observed during the 

extension phase in extensor muscles reflected a predominance of monosynaptic-evoked 

responses. Conversely, the lack of consistent dominant peaks detected from the tibialis 

anterior during the flexion phase of the gait cycle was interpreted as a predominance of 

polysynaptic-evoked responses. It is plausible that the marked dominant FFT spectral 

peaks related to the epidural stimulation frequency (i.e. Fig 4.3 A; Gerasimenko et al. 
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[137]) have been often interpreted as features without relevant physiological meaning, 

thus discouraging further efforts aimed at quantifying scES-promoted EMG spectral 

parameters. Our approach was initially focused on understanding which spectral analysis 

method is more effective for identifying frequency-domain EMG features that 

characterize standing promoted by scES. This is important because, for example, FFT 

presents some intrinsic limitations such as poor time resolution, assuming the stationarity 

of EMG signal, and being unable to localize frequency content of the signal in the time 

domain, which may result in insufficient representation of the frequency content of scES-

promoted muscle activation. Our results suggest that CWT is a spectral analysis method 

that can provide relevant frequency content not related to scES frequency (Fig 4.3) as 

well as features resulting in the most accurate classification of assisted and independent 

standing (Fig 4.4). This may be due to its high time and frequency resolution by 

decomposing the signal using numerous multi-resolution wavelets [47, 48], which leads 

to an accurate characterization of the short time component within non-stationary signals 

[49]. Conversely, the resolution of STFT in time and frequency domain depends on the 

selected window size: longer window size increases the frequency resolution but impairs 

time resolution, which is not ideal for non-stationary signals like EMG [138]. 

To date, little is known about the characteristics of scES-promoted muscle 

activation resulting in the recovery of independent standing with self-assistance for 

balance after clinically motor complete SCI. We previously observed that the alternation 

between EMG bursts and little EMG activity (i.e. Fig 4.2 C, bottom) results in poor 

standing pattern and the need of external assistance [11]. Conversely, the overall 

continuous (i.e. non-rhythmic) co-activation of several lower limb muscles was 
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demonstrated when motor complete SCI individuals were able to maintain independent 

lower limb extension using spinal cord stimulation [11, 12, 116, 139, 140]. In this study, 

we identified additional EMG features that can discriminate the effectiveness of EMG 

activity for standing beyond the mere variability of the EMG pattern over time. In 

particular, independent standing events were promoted by EMG activity characterized by 

lower median frequency, lower variability of median frequency, lower variability of 

instantaneous maximum power as well as higher total power as compared to assisted 

standing (Figs 4.6-4.8). It is worth noting that the frequency-domain features can 

differentiate assisted and independent standing also when the raw EMG signals are both 

overall continuous and demonstrate similar amplitude (Figs 4.5 and 4.9). We then 

examined the evoked responses generated during standing (Fig 4.9), and observed that 

the higher median frequency and higher variability of median frequency detected during 

assisted standing reflect, at least partially, the sharper peaks of evoked responses, which 

carry more power at higher frequencies. On the other hand, the smoother peaks of evoked 

responses detected during independent standing do not induce relevant increments in 

instantaneous median frequency. Partial desynchronization of motor units and/or greater 

involvement of polysynaptic responses, among others, may explain the smoother peaks of 

evoked responses detected during independent standing. Further studies involving the 

application of multi-channel surface EMG and dedicated signal processing may be useful 

for assessing the concurrent activity of many different motor units and investigating their 

firing pattern [141].  

Presently, the prevailing view is that scES facilitates motor pattern generation by 

recruiting primarily large myelinated fibers associated with somatosensory information, 
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and particularly with proprioceptive and cutaneous feedback circuits, at their entry into 

the spinal cord as well as along the longitudinal portions of the fiber trajectories, altering 

the excitability of lumbosacral spinal circuits [9, 142-150]. It is also important to consider 

that stimulation parameters play a crucial role in determining extent and proportion of the 

modulation of sensory-motor pathways impacted by scES [151]. For example, it is 

suggested that different stimulation frequencies may access different inhibitory and/or 

excitatory pathways within spinal circuitry [152], and that higher stimulation frequencies 

may promote a progressive integration of additional afferent inputs through the greater 

involvement of interneurons [116, 153, 154]. Hence, an effort was devoted to understand 

whether the differences in EMG features observed in the present study between assisted 

and independent standing, and particularly the frequency-domain features, were 

associated with the application of different scES frequencies. Interestingly, the average 

stimulation frequencies delivered during assisted and independent standing were very 

similar (see description of Fig 4.6). Moreover, consistent differences in EMG features 

were also observed between the one lower limb achieving independent extension and the 

contralateral lower limb requiring external assistance, while the same stimulation 

parameters were applied (Fig 4.8). Taken together, these findings suggest that the 

characteristics of EMG activity result from the complex interaction among the 

stimulation parameters applied, the characteristics of spinal circuitry, which undergoes 

extensive individual-specific reorganization after severe SCI [155, 156], the 

somatosensory information as well as residual supraspinal influence [8, 157]. 

The integration of novel CWT-derived features with EMG total power and pattern 

variability enabled the machine learning (KNN) algorithm to accurately classify assisted 
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versus independent standing (Fig 4.4). We took advantage of this high classification 

accuracy to develop a prediction algorithm capable of ranking the activation of the 

investigated muscles for standing (Fig 4.11). This approach results in a real-time 

feedback on the effectiveness of scES-promoted muscle activation for standing, which 

can support researchers and clinicians during the process of selection of stimulation 

parameters. For example, the data reported in Fig 4.11 A suggests that left and right 

plantar flexors presented poor activation with both sets of stimulation parameters, being 

one of the possible factors limiting the achievement of independent standing (Fig 4.11 A, 

right). While the present framework does not propose the specific stimulation parameters 

adjustment for optimizing muscle activation, it can substantially improve the application 

of the guidelines previously developed for adjusting scES for standing [116]. For 

instance, information on the individualized map of motor pools activation [158, 159] may 

be retrieved and used to determine the electrode field of an additional interleaving 

program aimed at targeting primarily the location of the spinal circuitry related to plantar 

flexors. Then, a much smaller cohort of cathode-anode combinations as well as amplitude 

and frequency settings can be tested, thus increasing the likelihood of achieving an 

improved activation patter in a reduced amount of time. The second important 

contribution of the proposed framework is that it can identify which of the tested set of 

stimulation parameters promotes the activation patter more effective for standing. This 

can be of particular interest when different sets of parameters result in the same level of 

external assistance (i.e. total score of Fig 4.11 A and C), and the decision on which 

parameters would be applied for stand training needs to be made. 

E. Study Outcomes 
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The preliminary results of this study have been published as a full research paper in 2018 

IEEE International Symposium on Signal Processing and Information Technology 

(ISSPIT). The journal manuscript of the complete framework and findings is submitted to 

Nature Communication journal and is under review for publication. The results of this 

study have also been presented as oral and poster presentations in 2018 ISSPIT and 2018 

BMES conferences, respectively.  
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

In this chapter, the summary and conclusion of the research that has been presented in 

this dissertation in the areas of signal and image processing, machine learning and deep 

learning, and their applications in spinal cord injury (SCI) research will be presented. The 

future directions for expanding the current work will be proposed in the last section. 

A. Conclusion 

In this dissertation, we have developed several engineering tools and offered 

neurotechnological advancements to address issues that researchers, clinicians and 

patients are facing in various aspects of spinal cord injury (SCI) research.  

In the first part of this research, the automatic framework for segmentation of muscle 

groups and adipose tissue of MRI thigh volumes is proposed to quantify the effects of 

SCI on skeletal muscle atrophy and adipose tissue infiltration that can result in 

compromised muscle mechanical output and lead to health-related complications. This 

framework can measure the effectiveness of training interventions to stop or reverse this 

process. The novel automatic approach segments the thigh volumes of subcutaneous 

adipose tissue, inter-muscular adipose tissue and muscle tissue using an intensity-based 

algorithm. Also, three muscle groups can be segmented utilizing proposed Joint Markov 

Gibbs Random Field model that integrates first order appearance, spatial information, and 
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shape model to localize the muscle groups. The accuracy of the automatic segmentation 

method was tested both on SCI (N=16) and on non-disabled (N=14) individuals, showing 

an overall 92.35±6.99% accuracy for adipose tissue and 90.79±5.32% for muscle 

compartments segmentation based on Dice Similarity Coefficient. The proposed 

framework showed an overall higher accuracy than ANTS and STAPLE, two validated 

atlas-based segmentation methods and multi-modal 3-D CNN-based segmentation 

method. The comparison with CNN shows that the stochastic methods are still powerful 

tools for segmenting medical images and their accuracy are comparable to those obtained 

by deep learning structures while their processing time is far less than CNN. The 

proposed method can provide fast and accurate quantification of adipose and muscle 

tissues that have important health and functional implications in the SCI population, thus 

facilitating the use of MRI to assess individual characteristics and possibly the effects of 

different interventions. Our results have shown that the proposed automatic framework 

shows very similar characteristics and trends to those obtained by manual segmentation 

(ground truth) in 30 individuals and therefore, it is a reliable method that substantially 

reduces labor work and processing time. 

In the second part of this dissertation, we have developed a novel EMG-based framework 

for de-noising, activation detection, feature extraction and visualization of the motor 

evoked potentials during the mapping process of the epidural stimulation in order to 

facilitate the identification of the appropriate stimulation parameters (intensity, frequency 

and anode/cathode assignment). The purpose of this work was to develop a novel 

approach to automatically detect the occurrence of evoked potentials, quantify the 

attributes of the signal and visualize the effects across a high number of scES parameters. 
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Using this framework, raw EMG signals are successfully converted into two/three 

dimensional images and de-noised using GGMRF image smoothing technique. 

Additionally, the occurrence of scES induced muscle activation is automatically detected 

along with the ability to extract key features in the EMG signal and generate the visual 

output for user interpretation. Each of these five novel algorithms has several advantages 

over conventional methodologies, which make them indispensable for the data analysis 

application. For instance, the first algorithm converts the signal into an image, which 

enables clear illustration of the latencies for all activations as well as the overall onset of 

the scES induced motor responses. By converting the raw signal into image, this 

algorithm also prepares the data for the next step that is GGMRF image smoothing 

method to get a de-noised signal without affecting the shape and latency of muscle 

activations. As it is shown in the results adding the GGMRF method to the framework is 

also noticeably advantageous for the performance of the activation detection step. In the 

activation detection algorithm, we developed a statistically optimal decision method by 

applying MLE together with comparing the probability density functions of the muscle 

activations to the background noise utilizing LLR and calculating the dynamic activation 

threshold. In comparing the automatic method for activation threshold detection vs. 

manual detection (ground truth) on 700 EMG signals, the new automated approach 

developed here demonstrated average accuracy of 98.28% based on the errors of 

combined false positive and false negative data. Finally, the combination of the modified 

AGLR method and GGMRF has proven to have minimum sensitivity to the changes in 

the signal to noise ratio compared to the other well-known EMG onset detection methods 

i.e. AGLR method without smoothing and TKEO method using both simulated EMG 
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signal and real EMG signals. Comparing the three methods on the recorded EMG signals 

indicates the robustness in the accuracy of the presented activation method in the 

situation where no information about the noise level in the signal is known. In addition, 

the feature extraction and visualization steps of the framework help us to make accurate 

and quick connections between the desired EMG features and the scES parameters like 

intensity, electrode configuration and frequency. In conclusion, this study clearly 

demonstrates the advantages of implementing a set of algorithms for improving the 

accuracy and speed in complex EMG data analysis. 

In the last part of this research, we introduced an EMG time-frequency analysis 

framework that implements EMG spectral analysis and machine learning tools to 

characterize EMG patterns resulting in independent or assisted standing enabled by spinal 

cord epidural stimulation. In this framework, the EMG signals that are recorded during 

standing task with spinal cord epidural stimulation in individuals with motor complete 

spinal cord injury were used to examine whether the spectral content of the EMG activity 

reveal beneficial information about the quality of the standing performance. We compared 

the classification performance of the three spectral transforms: FFT, STFT and CWT to 

find which method provides more information regarding the standing conditions. The 

results of this work have shown that CWT represents more in-depth details about the 

frequency content of the EMG signals recorded during standing with spinal cord epidural 

stimulation compared to FFT and STFT in SCI population. The classification step shows 

that these extra details provided by CWT helps to classify the data based on the quality of 

standing with higher accuracy than STFT and FFT or the time-domain features alone. The 

steps that were taken prior to classification including normalization of the extracted 
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features, dimension reduction, and particularly the logarithmic transform step, are crucial 

in the classification process to present the advantages of CWT over other methods. 

Finally, we have only extracted physiologically relevant features from the EMG spectral 

because these features can be helpful in gaining insights about the neurophysiological 

differences between different standing conditions which are also related to the stimulation 

parameter selection. The signal processing framework that is presented in this study can be 

helpful in facilitating the efforts of adjusting the stimulation parameters to achieve 

independent standing in individuals with severe SCI. In conclusion, we have 

demonstrated that the proposed data analysis framework can characterize time- and 

frequency-domain EMG features resulting in the recovery of independent standing with 

self-assistance for balance in individuals with motor complete SCI using spinal cord 

epidural stimulation. This allowed us to develop a machine learning algorithm capable of 

ranking the effectiveness of muscle-specific activation for standing, which can 

significantly facilitate the process of selection of stimulation parameters for standing 

motor rehabilitation. Future studies should be aimed at investigating the effects of 

stimulation parameters modulation on the EMG features related to standing ability. Also, 

the application of a similar framework on EMG activity collected during stepping with 

epidural stimulation may provide novel insights on mechanisms of motor pattern 

generation and selection of epidural stimulation parameters. 

It is also important to note that the engineering advancements proposed in this 

dissertation have greatly benefited SCI research by accelerating the efforts to quantify the 

effects of SCI on muscle size and functionality, expanding the knowledge regarding the 

neurophysiological mechanisms involved in re-enabling motor function with epidural 
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stimulation, fast-tracking the selection of optimum stimulation parameters for performing 

motor tasks and consequently considerably reducing costs and labor work while helping 

the patients with complete paralysis to achieve faster motor recovery. 

B.  Future Directions 

The proposed frameworks that have been presented in image and signal processing fields 

for assessing anatomy and functional aspects of human skeletal muscles after SCI can be 

improved and expanded further as following: 

• For the MRI image segmentation framework, in addition to segmenting relevant 

muscle groups, we can attempt to segment each muscle volume individually by 

attaining the recorded MRI slices with higher resolution than 1.5 mm in order to 

capture individual muscle borders, and improve the accuracy of the segmentation 

method by using convolutional networks. We can also expand the segmentation 

from 50 central slices to the whole thigh (approximately 300 slices) by manually 

segmenting once every six slices (total of 50 slices) and use the cylindrical shape 

information of the thigh muscles to predict the shape of the middle slices. 

• For the EMG signal processing framework in the time domain, we can automate 

the process of epidural stimulation parameter selection by applying proper 

predictive models to answer questions such as: 

o Which stimulation parameters would selectively target desired muscles 

without activating their antagonist muscles? 

o Which parameter selections cause symmetric or asymmetric outputs on 

left and right leg muscles? 
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o Which parameter selections cause consistently higher/lower/faster/slower 

response in certain muscles? 

o Which parameter selections cause no activations in the muscles and keep 

the blood pressure at normal range? 

o Which parameter selections are less variable over time during training 

sessions? 

• For the EMG signal processing in time-frequency domain, we can take advantage 

of deep neural networks for finding the underlying patterns in the data and 

classifying the EMG signals based on the quality of motor performance. 

• In addition to analyze each muscle response separately, we can find the mutual 

activation patterns between muscle pairs in order to assess synergistic patterns in 

muscle activations. To achieve this goal, the coherence of paired EMG signals can 

be calculated in the frequency domain and using dimension reduction approaches 

such as non-negative matrix factorization or deep auto encoder networks the most 

prominent frequency bands for paired muscle responses can be found.  
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