
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

8-2019 

Predictors of empirically-supported interventions following Predictors of empirically-supported interventions following 

structured functional assessment. structured functional assessment. 

Alton Nathaniel Verbist 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

 Part of the Social Work Commons 

Recommended Citation Recommended Citation 
Verbist, Alton Nathaniel, "Predictors of empirically-supported interventions following structured functional 
assessment." (2019). Electronic Theses and Dissertations. Paper 3289. 
https://doi.org/10.18297/etd/3289 

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of 
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/713?utm_source=ir.library.louisville.edu%2Fetd%2F3289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3289
mailto:thinkir@louisville.edu


 

 

 

 

 

PREDICTORS OF EMPIRICALLY-SUPPORTED INTERVENTIONS FOLLOWING 

STRUCTURED FUNCTIONAL ASSESSMENT 

 

 

By 

 

 

Alton Nathaniel Verbist 

B.A., Union University, 2003 

M.S.S.W., University of Louisville, 2014 

 

 

 

 

A Dissertation 

Submitted to the Faculty of the 

Raymond A. Kent School of Social Work of the University of Louisville 

in Partial Fulfillment of the Requirements 

for the Degree of 

 

 

 

 

Doctor of Philosophy 

in Social Work 

 

 

 

 

Raymond A. Kent School of Social Work 

University of Louisville 

Louisville, Kentucky 

 

And 

 

College of Social Work 

University of Kentucky 

Lexington, KY 

 

 

August 2019



 

  



 ii 

 

 

 

 

PREDICTORS OF EMPIRICALLY-SUPPORTED INTERVENTIONS FOLLOWING 

STRUCTURED FUNCTIONAL ASSESSMENT 

 

By 

 

Alton Nathaniel Verbist 

B.A., Union University, 2003 

M.S.S.W., University of Louisville, 2014 

 

 

A Dissertation Approved on 

 

 

 

June 14, 2019 

 

 

 

by the following Dissertation Committee: 

 

 

 

______________________________ 

Dr. Crystal Collins-Camargo 

 

 

______________________________ 

Dr. Becky Antle 

 

 

______________________________ 

Dr. Emma Sterrett-Hong 

 

 

______________________________ 

Dr. Heehyul Moon 

 

 

______________________________ 

Dr. Christopher Flaherty 

 

  



 iii 

 

 

 

 

ACKNOWLEDGEMENTS 

 

I extend my deepest gratitude to my wife, Bobbie, for her patience and sacrifice during 

this long process. I would like to thank Dr. Crystal Collins-Camargo for her continual 

support, guidance, and encouragement. I would also like to thank all of my other 

committee members for their insight and assistance. 

  



 iv 

 

 

ABSTRACT 

PREDICTORS OF EMPIRICALLY-SUPPORTED INTERVENTIONS FOLLOWING 

STRUCTURED FUNCTIONAL ASSESSMENT 

Alton Nathanial Verbist 

June 14, 2019 

Assessment is foundational to the process of evidence-based practice yet has 

received little research attention. Project SAFESPACE has recently initiated screening 

and assessment for all children entering out of home care in Kentucky with the goal of 

providing assessment-driven, evidence-based treatment. The Child and Adolescent Needs 

and Strengths (CANS) assessment—the instrument adopted in this service system—is 

designed to link the assessment process with the selection of appropriate interventions. 

Informed by naturalistic decision making, this dissertation sought to investigate the 

relationship between responses on the CANS assessment and the empirically supported 

interventions subsequently prescribed by the assessing clinician.  

Using secondary data maintained in the statewide automated child welfare 

information system, a number of descriptive analyses were conducted in order to better 

understand this redesigned service system including the frequency of specific treatment 

prescriptions at the case, clinician, and agency levels as well as population-level CANS 

findings. Building upon these initial inquiries, four multilevel logistic models were 

developed to examine the relationship between assessment-derived predictors and the 
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prescribed treatment modality along four dimensions: trauma exposure, 

emotional/behavioral problems, family functioning, and substance use. 

 Descriptive findings reveal an out of home care population with prevalent trauma-

related symptoms and extensive emotional/behavioral needs. Considerable variation was 

observed in the treatment prescription patterns of assessing clinicians. Likewise, there is 

variation in the degree to which assessment findings align with prescribed treatment 

modalities. Findings suggest that assessment-derived information may be an important 

consideration in the prescription of a trauma-focused treatment and a minor, but still 

possibly salient, factor in treatment decision making related to emotional/behavioral 

needs and substance use. There appears to be no meaningful relationship between 

assessment responses and recommendations for family-focused treatment. 

 As interpreted through the lens of naturalistic decision making, the results suggest 

that while assessment responses may one source of information utilized by clinicians in 

the field when making treatment decisions, there is likely a differential degree of 

influence depending on the specific dimension of treatment. Findings provide a 

foundation for future research into the situation-action matching decision rules employed 

by clinicians within this service system, particularly those with established expertise.  
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CHAPTER 1: 

INTRODUCTION 

Evidence-Based Practice 

Evidence-based practice (EBP) is “a process for making practice decisions in 

which practitioners integrate the best research evidence available with their professional 

expertise and with client attributes, values, preference and circumstances” (Rubin, 2008, 

p. 7). EBP has been described as “the most challenging and critical practice area of health 

care and human services” (Roberts & Yeager, 2004, p. v). Within the field of social work, 

the emphasis on EBP has steadily gained momentum over the past two decades (Tuten, 

Morris-Compton, Abrefa-Gyan, Hwang, & Harrington, 2016).  

Many practitioners and academics alike are unclear about what, precisely, 

evidence-based practice entails (Drisko & Grady, 2015). As Shlonsky & Gibbs (2004) 

have observed, there is danger that the term evidence-based practice will become little 

more than “a catchphrase for anything that is done with clients that can somehow be 

linked to an empirical study” (p. 137). As used in the present work EBP refers to an 

approach to practice intended to assist practitioners in making informed decisions about 

treatment; as Thyer and Myers (2011) note, “EBP is a process, a verb, not a noun” (p. 8).  

The EBP process consists of a series of logically connected steps. While there is 

some variation in the precise delineation of these steps among different scholars (Grady 

& Drisko, 2014), the fundamental EBP process can be conceptualized as follows: (1) 

convert information needs into an answerable question, (2) locate the best evidence with 
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which to answer the question, (3) critically appraise the located evidence, (4) apply the 

results of the appraisal to policy and practice decisions, and (5) evaluate outcomes (Gibbs 

& Gambrill, 2002; Sackett, Richardson, Rosenberg, & Haynes, 1997; Thyer, 2004). 

Despite its emphasis on locating and appraising the best available research, EBP 

is not driven solely by empirical evidence. Rather, Gilgun (2005) has identified four 

cornerstones underlying EBP in social work: (1) research and theory, (2) practice 

wisdom, (3) the person of the practitioner (i.e., assumptions, values, biases, and 

worldviews), and (4) what the client brings to the practice situation. The first three of 

these cornerstones are brought into the practice environment independent from the client; 

as such, practitioners must be prepared to integrate information communicated from the 

client and modify their clinical responses accordingly (Gilgun, 2005). 

Whereas EBP is a process, empirically supported interventions (ESIs) or 

empirically supported treatments (ESTs) are products—specifically, therapeutic 

interventions that have been scientifically validated (Drisko & Grady, 2015; McBeath, 

Briggs, & Aisenberg, 2010; Thyer & Pignotti, 2011). The two terms (EBP & ESIs) are 

conceptually distinct (Thyer & Pignotti, 2011) though there is still much confusion 

regarding their respective definitions (Rubin & Parrish, 2007) and they are often used 

interchangeably in the scholarly literature (Tuten et al., 2016). The search process 

inherent to EBP may in fact culminate in the identification of an appropriate ESI (when 

one exists) but merely selecting a treatment from a list of ESIs is not sufficiently 

indicative of, or even necessarily consistent with, EBP (Mullen, Bledsoe, & Bellamy 

2008). Rather, the evidence-based practitioner must appraise the scientific evidence 

underlying particular ESIs, integrate this evidence with other sources of information (e.g. 
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practice wisdom), and determine the most appropriate course of action (Thyer & Pignotti, 

2011). 

 

The Role of Assessment in the EBP Process 

The first step in the process of EBP requires one to identify particular information 

needs such that they may inform the formulation of an answerable question (Gibbs & 

Gambrill, 2002). In a practice context, these information needs are recognized through 

the process of assessment. Simmons (2011) has described thorough assessment as the 

“necessary first step in the process of EBP” (p. 265). Likewise, Grady and Drisko (2014) 

describe assessment as the very “foundation” of the entire EBP process (p. 5). A 

practitioner completing an assessment is engaging in the same general process as the 

scientific researcher—namely, the systematic gathering of data to answer a question 

(Sexton & Kelley, 2010). Indeed, even the act of conducting an assessment provides the 

clinician with the necessary information from which to develop an answerable question, 

locate the best research evidence, and appraise the evidence’s relevance to the particular 

client or case. 

 Standardized assessments in particular can serve as an effective starting point for 

the evidence-based practice process (Grady & Drisko, 2014). Research suggests that 

structured assessments are associated with greater diagnostic accuracy than unstructured 

approaches (Ponniah et al., 2011). Likewise, research indicates that standardized 

assessments are perceived as being of a higher quality and more useful for treatment 

planning compared to unstructured assessment techniques (Andershed & Andershed, 

2016). As such, the importance of an accurate, thorough, and structured assessment can 
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hardly be overstated. With a more accurate understanding of the client’s unique needs, 

diagnoses, and circumstances, the clinician is better informed to engage in informed 

treatment decision making in a manner consistent with the principles of EBP. 

 Certainly, evidence collected during structured assessment is not the only 

consideration that influences the selection of a treatment approach. Research indicates 

that practitioners are influenced by a wide range of factors when deciding on a clinical 

course of action including ease of implementation, flexibility, peer recommendation, 

accessibility to training and supervision, approval for insurance reimbursement, length of 

treatment, and personal experience (Nelson, Steele, & Mize, 2006; Nelson & Steele, 

2008). EBP models recognize that practitioners’ decisions are informed by variables 

beyond empirical evidence such as that collected during a structured assessment (Haynes, 

Devereaux, & Guyatt, 2002; Regehr, Stern, Shlonsky, 2007). Indeed, EBP explicitly calls 

for evidence to be balanced with other sources of knowledge such as clinical expertise 

and client values (Gilgun, 2005). The pressing question is whether this balance is 

occurring at all—that is, is evidence collected during structured assessment being 

integrated into treatment decision making in a manner consistent with the EBP 

framework? The scant evidence base suggests that it may not be (Garland, Kruse, & 

Aarons, 2003; Miller & Maloney, 2013). 

Despite the centrality of standardized assessment to EBP and its critical role in 

helping the practitioner identify relevant ESIs, the subject has received minimal attention 

in the scholarly and professional literature. Mash and Hunsely (2005) recognized and 

acknowledged this oversight far earlier than most; their observation is worth reproducing 

verbatim:  
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It seems self-evident that assessments should be ‘useful’ in designing and 

evaluating effective and efficient services for children and families. … 

Nevertheless, although their importance is widely acknowledged, the nature and 

strengths of the links between assessment and intervention remain tenuous at best, 

and the role of assessment in EBT [evidence-based treatment] is virtually 

unexplored. (p. 363) 

Surprisingly, little has changed in the span since Mash and Hunsely (2005) voiced this 

assertion. Writing almost a decade later, Grady & Drisko (2014) echoed an identical 

concern, noting that assessment is “neglected or very minimally addressed in the 

teachings, writings, and explanations of EBP (p. 5). In social work (Ponniah et al., 2011), 

as well as other behavioral health disciplines (e.g., clinical psychology—Barlow, 2005), 

the vast majority of EBP scholarship has focused on intervention rather than assessment. 

That is to say, research attention has been almost exclusively focused on identifying and 

testing effective interventions with very little exploration of the process wherein client 

needs are systematically identified and linked with appropriate treatments or services. 

The purpose of the proposed study is to explore this neglected line of inquiry as 

manifested in one practice context—child welfare. 

 

Assessment in the child welfare context. 

 In 2015, child protective services conducted an investigation or provided an 

alternative response for more than 3.4 million children in the United States; more than 

600,000 of these children were identified as victims of maltreatment and almost 150,000 

of them entered foster care (U.S. Department of Health & Human Services, 2017a). 



 6 

There are approximately 400,000 children in out of home care on any given day (U.S. 

Department of Health & Human Services, 2017b). In Kentucky—the site of the present 

study—more than 8,500 children are currently residing in an out of home placement 

(Kentucky Cabinet for Health & Family Services, 2018). Children involved with the child 

welfare system often have extensive trauma histories (Greeson et al., 2011; Kisiel, 

Fehrenbach, Small, & Lyons, 2009). It has long been recognized that these traumatic 

experiences and their associated effects on emotional and behavioral wellbeing may be 

unrecognized, overlooked, or untreated (Ko et al., 2008). 

 In the past two decades there has been increased pressure on health care and 

human service systems—including child welfare—to improve services by adopting 

empirically-evaluated and evidence-based models and practices (Lang, Randall, Delaney, 

& Vanderploeg, 2017). Concurrently, the critical importance of improving child welfare 

screening and assessment practices has been increasingly accepted (Conradi, Wherry & 

Kisiel, 2011; Kisiel, Conradi, Fehrenbach, Torgersen, & Briggs, 2014; Romanelli et al., 

2009). It is now being recognized that these two initiatives can be merged to improve 

services for children and families involved with the child welfare system. For example, 

Saunders (2015) has called for evidence-based service planning: conducting sound 

assessments, identifying measurable intervention goals from these assessments, using 

critical thinking skills to select the most effective interventions, and then monitoring 

progress toward such goals.  
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Assessment in Project SAFESPACE. 

 Kentucky has recently adopted a process to improve service planning and delivery 

akin to that described by Saunders (2015).  Initiated in 2013, Project SAFESPACE is a 

collaborative initiative among the University of Louisville, the Kentucky Cabinet for 

Health and Family Services (CHFS), Eastern Kentucky University Training Resource 

Center, and the Kentucky Partnership for Children and Families. The project is intended 

to improve the early identification and effective treatment of trauma and behavioral 

health needs of child welfare involved youth. 

 Project SAFESPACE initiated systematic screening and assessment for all 

children entering out of home care in Kentucky. Upon entry into care or other qualifying 

event (e.g., placement disruption) a child is assessed for trauma exposure and behavioral 

health needs using age-appropriate standardized screening instruments. The screening is 

conducted by a Department of Community Based Services (DCBS) social services 

worker within 10 days of the qualifying event. If the screening instruments indicate that a 

more thorough assessment is warranted (i.e., the child “screens in”), the child is referred 

to a service provider who is tasked with completing an initial functional assessment 

within 30 days of placement as well as a reassessment every 90 days in care. 

 Project SAFESPACE selected the Child and Adolescent Needs and Strengths 

(CANS) as its statewide functional assessment instrument. The CANS assessment does 

not generate a clinical diagnosis or specific treatment prescriptions. Rather, the 

instrument is intended to “facilitate the linkage between the assessment process and the 

design of individualized service plans including the application of evidence-based 

practices” (Praed Foundation, 2016, p. 4). The CANS assessment’s intended usage 
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directly reflects the role of structured assessment in the broader EBP process as outlined 

above. Moreover, it aligns with one of the primary goals of Project SAFESPACE: to 

promote the use of assessment-driven, evidence-based treatment for children in out-of-

home care. This study explores the degree to which treatment practices are indeed 

assessment-driven and consistent with EBP by investigating the relationship between 

responses on the CANS functional assessment and the treatment modality subsequently 

prescribed by the assessing clinician.  

 

Theoretical Framework 

 As previously explicated, the evidence-based practice process is predicated upon 

certain assumptions about the practitioner’s epistemic process. That is, EBP assumes that 

practitioners will evaluate, sort, and prioritize relevant information (e.g., research 

evidence, assessment data) and then use this information to optimize their decisions and 

practices (Webb, 2001).  As such, one’s understanding of EBP is grounded in 

presuppositions about decision making. Writing from a medical perspective, Spring 

(2008) has described decision making as the “lynchpin” of evidence-based practice. 

Given the centrality of decision making to the EBP process, decision making theories can 

provide a useful framework for investigating the clinical decision making processes of 

mental health professionals (Baker-Ericzen, Jenkins, Park, & Garland, 2015). 

 Historically, EBP has been most directly associated with the classical or rational 

choice decision making tradition (van de Luitgaarden, 2009; Webb, 2001; White & 

Stancombe, 2003). As envisioned by rational choice theory, a decision is rational if it 

meets four criteria: (1) based on the decision maker’s current assets (e.g., resources, 
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physiological state, psychological capacities), (2) based on possible consequences of the 

choice, (3) based on evaluated likelihood (as governed by probability theory) when 

consequences are uncertain, and (4) adaptive within the constraints of probabilities and 

the values associated with each possible consequence of the choice (Hastie & Dawes, 

2010). As implied by these criteria, rational decision making theories are focused on 

decision events—the point at which a decision maker “surveys a known and fixed set of 

alternatives, weighs the likely consequences of choosing each, and makes a choice” 

(Orasanu & Connolly, 1993). Moreover, decision events are grounded in demanding 

informational requirements. That is to say, before making a choice the decision maker 

must engage in a deliberate and analytic process (i.e., appraising current assets, weighing 

alternative choices, evaluating contingencies) that necessitates a relatively comprehensive 

information search (Lipshitz, Klein, Orasanu, & Salas, 2001). 

 One can readily recognize the implicit connection of rational decision making 

principles to the EBP process; van de Luitgaarden (2009) has gone so far as to describe 

EBP as “an operationalization of a rational choice approach to judgment and decision 

making” (p. 244). Conceptualized thusly, the clinician—facing client problem A—draws 

upon the best available evidence to consider the relative probability that intervention B 

compared to intervention C or intervention D will lead to desired outcome E. In effect, 

the clinician is assumed to operate in a quantitatively-oriented, statistically-minded mode 

of clinical decision making (van de Luitgaarden, 2009). 

 The degree to which clinicians’ decision making actually reflects this notional 

process of rational choice has been challenged in the scholarly literature. For example, 

Webb (2001) has argued that “the evidential-based model is a mechanistic approach 
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which regards social workers largely as ‘information processors’ operating within closed 

systems of decision making” when, in fact, social workers operate within the bounds of 

changing legal and organizational requirements and “will tend to fall back on 

inclinations, values and common sense when making decisions” (p. 67). Proponents of 

the EBP model have countered such arguments by noting that EBP arose from the 

recognition that “professionals are not rational agents and that in spite of intentions of 

professionals to provide competent, ethical services informed by practice-related 

research, they do not do so” (Gibbs & Gambrill, 2002, p. 463). Because professionals are 

not guaranteed to make the rational choice, the EBP framework acknowledges the 

uncertainty and bias that might impact practitioner decision making and thus encourages 

rigorous evaluation criteria when appraising the available evidence (Gibbs & Gambrill, 

2002). 

 It would seem that both sides of the debate acknowledge that—despite the 

similarities and shared intellectual lineage—EBP is not dependent upon a rational choice 

conceptualization of decision making. The question thus arises, “can the basic 

propositions and processes of EBP be supported by an alternative understanding of 

practitioner decision making?” The theory of naturalistic decision making (NDM) has 

been proposed as a viable alternative to the rational choice theory for conceptualizing, 

implementing, and evaluating evidence based practice (Baker-Ericzen, Jenkins, Park, & 

Garland, 2015; Falzer, 2004).  
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Naturalistic Decision Making 

The naturalistic decision making approach emerged in response to the realization 

that “researchers were not likely to find out how people actually made decisions by 

conducting experiments to test hypotheses derived from statistical and mathematical 

models of ideal choice strategies” (Klein, 2008, p. 456). In contrast to the classical 

rational decision making researchers, NDM researchers were not only interested in the 

decision event itself but also in the human decision maker within the natural decision 

making setting (Lipshitz et al., 2001; Orasanu & Connolly, 1993). They sought to explore 

the strategies that individuals used to make difficult decisions in complex situations. For 

example, Klein, Calderwood, and Clinton-Cirocco (1986) investigated the decision 

making processes of firefighters and O’Hare (1992) examined those of aircraft pilots. 

Early NDM research provided compelling evidence that individuals, when faced with 

decisions in “real world” settings, were not identifying and comparing a set of options but 

rather were drawing on an experience-based schema to rapidly assess, categorize, and 

select a course of action (Klein, 2008).  

In 1997, Zsambok offered the following concise definition of NDM: “the way 

people use their experience to make decisions in field settings” (p. 7). As opposed to 

decisions made within the laboratory conditions traditionally favored by rational decision 

making researchers, decisions made in a naturalistic setting are complicated by a number 

of factors including ill-structured problems, dynamic environments, shifting or competing 

goals, action/feedback loops, time stress, high stakes, multiple players, and organizational 

goals and norms (Orasanu & Connolly, 1993). As such, field settings “establish the 
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eliciting conditions for making decisions and shape decisions through their constraints 

and affordances” (Lipshitz et al., 2001, p. 334). 

The human (and thus rationally-bounded) decision maker is of central importance 

in the NDM framework. The ideal, omniscient, logically-consistent decision maker 

posited by classical decision theory has little relevance in the real world (Beach & 

Lipshitz, 1993). By contrast, NDM presupposes that decision makers are shaped by prior 

experience and content knowledge and seeks to identify those who are proficient and 

demonstrate expertise (Lipshitz et al., 2001). Within the NDM framework, the quality of 

the decision making process is judged not by its procedural rationality or logical 

consistency but rather by the quality of the decisions produced by the process (Bordley, 

2001).   

 Lipshitz and colleagues (2001) have distilled four essential characteristics of the 

NDM framework: 

(1) Process orientation – NDM models describe what information decision-

makers seek, how they interpret this information, and which decision rules they 

actually use.  

(2) Situation-action matching decision rules – NDM theories conceptualize 

decision making as a matter of matching rather than of choice. 

(3) Context-bound informal modeling – Within the NDM framework there is little 

use for formal, abstract models; rather decision maker knowledge is recognized as 

context-specific and sensitive to both semantic and syntactic content. 

(4) Empirical-based prescription – NDM theorists recognize that “prescriptions 

which are optimal in some formal sense but which cannot be implemented are 
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worthless” (p. 335). Rather, decision making prescriptions are derived from 

descriptive models of expert performance. 

 

 Application of naturalistic decision making theory to the present study. 

 Clearly, treatment decision making within the CW service environment does not 

happen in a vacuum; if the decision event itself (i.e., the assessing clinician’s prescription 

of a treatment modality) is considered in isolation, one cannot account for the potential 

impact of contextual factors (e.g., time stress, organizational goals and norms) on the 

decision making process. Naturalistic decision making theory provides a compelling 

conceptual framework for the investigation of treatment decision making within a 

complex and dynamic service system. 

 Each of the four NDM essential characteristics has implications for the present 

study’s line of inquiry. The first characteristic—process orientation—reinforces the 

study’s purpose. NDM recognizes that just because a source of information is available it 

does not necessarily follow that this information is incorporated in the decision making 

process. Thus, NDM-based models “have to describe what information decision makers 

actually seek” (Lipshitz et al., 2001). At the broadest level, this study seeks to investigate 

the degree to which the evidence suggests that assessment-derived information is 

incorporated in the clinician’s treatment decision making process.  

The second characteristic—situation-action matching rules—is particularly 

salient to the present inquiry’s methodological approach. The term matching suggests that 

“decisions are made by sequential evaluation of alternatives in terms of appropriateness 

to the situation” (Lipshitz, 1994, p. 49). Instead of decisions framed by choosing among 
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alternatives (as in classical decision making frameworks), matching relies on situational 

assessment; potential options are selected or rejected not in relation to one another but 

based on their perceived compatibility to the situational context. NDM proposes, 

bolstered by research evidence (e.g., Beach, 1993), that decision makers rarely consider 

every possible choice. Rather, as soon as mental simulation identifies one “good enough” 

option it is likely to be selected without an exhaustive consideration of other alternatives 

(van de Luitgaarden, 2009). This mental matching process may be deliberate or non-

deliberate, explicitly analytic or reliant upon pattern matching and informal reasoning 

(Klein, 1998; Lipshitz, 1994; Lipshitz et al., 2001). 

  Applied to the treatment decision making process, the NDM framework suggests 

that clinicians may be less concerned with weighing all possible interventions against one 

another in light of the available evidence, but rather ask themselves, “Given situation A, 

is intervention B appropriate?” If intervention B is deemed sufficient given the available 

information, interventions C and D may never even be mentally appraised. Reflecting this 

theoretical proposition, the analytic approach employed in the present study examines the 

extent of the “match” (e.g., predictive strength and explained variance) between the 

structured assessment and the subsequently prescribed intervention. 

 The third characteristic—context-bound informal modeling—frames the study’s 

modeling process. NDM has shifted the conception of decision making away from 

domain-independent, abstract general models to domain-specific, knowledge-based 

applied models (Klein, 2008; Lipshitz et al., 2001). As such, this is not a theory-testing 

study. That is to say, while NDM theory serves as a conceptual framework, this study 

does not derive testable research hypotheses from a formal decision making model. 
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Rather, the proposed models are assumed to reflect the applied decision making process 

of clinicians within a particular context and in relation to particular information. 

Finally, the fourth characteristic of the NDM framework—empirical-based 

prescription—informs the interpretation and implication of study findings. Whereas 

rational choice theory entails normative prescription, description precedes prescription in 

the NDM framework (van de Luitgaarden, 2009). That is to say, NDM theorists accept 

“that ‘ought’ cannot be divorced from ‘is’” (Lipshitz et al., 2001, p. 335). As such, 

descriptive findings regarding decision making behavior within a given context are not 

only recognized as useful but are indeed a necessary first step in any effort to enhance 

decision makers’ performance. Thus, this novel study can be seen as an exploration of 

clinical decision making as it currently is; from this, one can better gauge what 

improvements are feasible and ground them in concrete demonstrations of performance.  

 

Importance of the Present Study 

The present study has important implications for social work research, education, 

and practice. As noted, the role of assessment in evidence-based practice has been largely 

neglected in the scholarly literature (Grady & Drisko, 2014). As such, this study provides 

new empirical data about an issue that has received little research attention. Findings 

establish a foundation for an ongoing research program by indicating the degree to which 

treatment planning reflects client needs as identified through structured assessment. 

Moreover, by invoking an NDM framework, this study offers a conceptual mechanism 

whereby the empirical data can be meaningfully (albeit tentatively) contextualized within 

an understanding of EBP that is not limited by classical decision making assumptions. 
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In terms of social work education, the study findings provide valuable insight 

regarding the educational needs of clinical social work students.  The persistent “chasm” 

between research and practice in social work has been well documented (Bledsoe-

Mansori et al., 2017) and evidence suggests that many clinicians entering the workforce 

are not sufficiently prepared to engage in evidence-based practice (e.g., Barwick, 2011). 

A decade ago Walker and colleagues (2007) observed: “social work education needs to 

make sure that all social workers… understand how to use EBP to select an EST” (p. 

368); this study will explore the degree to which this educational imperative has been 

satisfied. Emerging research suggests that practitioner knowledge is among the most 

important predictors of engagement in EBP or the use of ESIs (Tuten et al., 2016). Given 

the conceptual confusion and definitional ambiguity regarding the EBP process, there is 

little wonder that social work students may not feel confident in their capacity to integrate 

structured assessment into such a framework. This study will help social work educators 

gauge current strengths or shortcomings in the professional development of social work 

clinicians so as to develop innovative and targeted educational strategies. 

In the child welfare practice environment, an accurate and comprehensive 

assessment is critical for the identification of a child’s existing strengths and treatment 

needs (Rosanbalm et al., 2016). After years of being “overlooked and understudied,” 

structured assessments are increasingly being recognized as an essential component in the 

treatment of children in out of home care (Igelman et al., 2007, p. 17). However, the 

effort to incorporate structured assessment into professional practice in such a way as to 

inform evidence-based service delivery is fragmented and incomplete (Milne & Collin-

Vezina, 2015). This study explores the use of structured assessment to inform evidence-
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based treatment planning within a redesigned system of care. Findings provide insight 

into whether systematic assessment is influencing treatment planning in a manner 

consistent with what would be expected in an EBP framework. The findings have direct 

practice implications in terms of ongoing training, supervision, and evaluation objectives. 
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CHAPTER 2: 

REVIEW OF THE LITERATURE 

The present study is situated at the intersection of several distinct areas of 

scientific inquiry including treatment decision making, clinical assessment, and evidence-

based practice. Consequently, there is a diverse array of relevant literature to consider. 

The following literature review is structured into two primary sections. In the first 

section, treatment decision making publications are discussed. Coupled with EBP (as 

discussed in the first chapter), treatment decision making provides a conceptual 

grounding for the investigation of ESI selection. A review of the literature will help 

contextualize the present study within the broader field of research that has sought to 

understand how clinicians engage in treatment planning. In the second section, focus 

shifts from the conceptual to the concrete; the studies reviewed in this section are directly 

related to one more elements of the present study’s research method (e.g., the CANS 

functional assessment).   

 

Conceptually-Relevant Literature: Treatment Decision Making 

 Understanding the processes whereby practitioners identify, select, and employ 

specific therapeutic interventions must be a central concern in efforts to improve the 

dissemination and sustainability of effective treatment practices (Cook, Schnurr, 

Biyanova, & Coyne, 2009). As Eells and Lombart (2003) note: “It is axiomatic that how 

a psychotherapist thinks and makes decisions about patients will affect the treatment 
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process and outcome” (p. 187). While this observation may be axiomatic, it belies a 

complex and poorly understood web of influences, mechanisms, and decision events. The 

simple question “how do therapists select the best intervention for their clients?” has 

proven exceedingly difficult to answer despite decades of research attention. 

In 1997, Witteman and Kunst observed that the process of treatment planning had not yet 

been adequately analyzed and no formal models of treatment decision making had been 

developed. The slow growth of academic knowledge in this area is evidenced by the 

declaration ten years later that clinician decision making research was “in its infancy” 

(Schottenbauer, Glass, & Arnkoff, 2007, p. 225) and again more than a decade after that 

(Gutierrez, Fox, Jones, & Fallon, 2018, p. 95). Nevertheless, some progress has been 

realized. While a comprehensive treatment decision making model is still lacking, a 

diverse body of research that spans national and disciplinary borders has identified a 

number of factors that influence treatment planning. These studies can be categorized by 

the design employed to examine treatment decision making: (1) survey or questionnaire, 

(2) case study or vignette, and (3) naturalistic setting with actual clients.  

 

Treatment decision making studies using a survey or questionnaire design. 

 The studies reviewed in this category are methodologically unsophisticated but 

straightforward. They approach the question of treatment planning by directly asking 

clinicians—via survey or questionnaire—about the factors that influence their decision 

making when considering an intervention. While this type of design is poorly suited for 

the development of a process model, it has been effective in identifying the salient factors 

that practitioners consider before selecting a treatment strategy 
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 Lucock, Hall, and Noble (2006) surveyed qualified psychotherapists (n = 95) and 

psychologists in clinical training (n = 69) to identify the primary influences on their 

clinical practices. Data was collected using the Questionnaire of Influencing Factors on 

Clinical Practice in Psychotherapies (QuIF-CliPP) consisting of 39 items structured into 

four categories: training, literature, practice, and personal factors. Responses indicated 

that qualified psychotherapists were most influenced by psychological formulation, 

current supervision, post-qualification training, and client characteristics. Clinical 

psychologist trainees were most influenced by current supervision, professional training, 

psychological formulation, and client characteristics. Neither group rated any literature-

related factors (i.e., treatment manuals, evidence-based practice guidelines, journal 

articles) as highly influential. 

However, when responses were analyzed by therapeutic orientation, it was found 

that practitioners with a cognitive-behavioral background reported being more influenced 

by evidence-based practice guidelines and research-based journal articles than other 

orientations. By contrast, therapists with a psychodynamic, person-centered, integrative, 

or elective orientation were most influenced by intuition or judgment when making 

treatment determinations. Altogether, Lucock and colleagues’ (2006) findings indicate 

that while the surveyed practitioners are not greatly influenced by research evidence, 

their treatment decision making is heavily influenced by client-level factors (i.e., 

psychological formulation, client characteristics, client feedback). 

As part of a larger publication discussing the need for improved theory and 

research regarding to the decision making processes of integrative psychotherapists, 

Schottenbauer, Glass, and Arnkoff (2007) conducted a preliminary study exploring one 
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dimension of treatment decision making among 171 practicing psychotherapists 

(including psychologists, social workers, psychiatrists, and counselors). Using an online 

questionnaire to collect data, the researchers asked participating clinicians how they 

would adjust their treatment planning in the case of a client who was not experiencing 

noticeable improvement or treatment gains. The most common responses among 

participants included reassessment of the client, reassessment of the client’s environment 

or motivation, or reconceptualization of the client’s problems. Interestingly—even among 

practitioners identifying as integrative or eclectic—substantially fewer respondents 

indicated that they would make a change to the current treatment plan or endorsed a 

specific treatment modality (e.g., cognitive-behavioral) that could be employed in a 

renewed attempt to elicit client growth. 

Nelson and Steele’s (2008) study examining the relative importance of various 

factors influencing treatment selection is among the most heavily cited publications in the 

treatment decision making literature. Via an online survey, 206 mental health 

practitioners—including psychologists and social workers—were ask to rate 29 potential 

considerations in terms of their likelihood to influence treatment selection. They were 

also asked to rank (in order of relative importance) ten broader characteristics that might 

influence treatment planning.  

Practitioners reported that their decisions to employ a particular treatment were 

most heavily influenced by empirical support, flexibility, colleague recommendation, and 

appeal to clients. In terms of relative rankings, flexibility emerged as the most important 

characteristic in considering the use of a treatment. The second most important 

characteristic was that the treatment was supported by evidence. Interestingly, while 
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practitioners rated empirical support as the most influential factor in treatment selection 

and ranked research support second only to flexibility in terms of relative importance, a 

treatment’s inclusion on a list of “empirically-supported” or “evidence-based” treatments 

was among the lowest rated decision making considerations. 

Cook and colleagues (2009) conducted an internet-based survey of 2,607 

psychotherapists to identify the factors with the greatest influence on practice behaviors. 

Respondents indicated that decisions to adopt a new treatment approach were most 

heavily influenced by ease of integration with existing practice, endorsement by 

respected therapists, and accessible training opportunities. By contrast, positive findings 

reported in research journals, endorsement by a professional organization as being 

evidence-based, and client testimonials regarding effectiveness were the least influential 

factors.  

As is evident, findings from questionnaire or survey research have been mixed. 

For example, based on the work of Lucock et al. (2006) and Cook et al. (2009) one might 

conclude that research evidence or empirical support is not a significant consideration for 

clinicians selecting a treatment approach. However, Nelson and Steele’s (2008) findings 

challenge this conclusion, indicating that evidentiary support is among the practitioner’s 

most important concerns. Nonetheless, there are points of agreement. For instance, three 

of the studies identified colleagues and/or supervisors as important factors influencing 

treatment decision making (Cook et al., 2009; Lucock et al., 2006; Nelson & Steele, 

2008). Perhaps most relevant to the present study, the available evidence does 

consistently suggest that client-level factors (such as might be identified by a functional 

assessment) are influential factors in the initial treatment planning process (e.g., Lucock 
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et al., 2006; Nelson & Steele, 2008) as well as when confronted with stagnated clinical 

growth (Schottenbauer et al., 2007).  

 

Treatment decision making studies using a vignette or case study design. 

Most of the treatment planning research to date has made use of case studies or 

vignettes to investigate clinical decision making. Rather than simply asking practitioners 

about potentially influential factors (as in the survey-based research described above), 

these studies present the clinician with a notional case or cases and then analyze the 

process of selecting an appropriate treatment.  

Recognizing that little was known regarding the cognitive processes of clinicians 

engaged in treatment planning, Witteman and Kunst (1997) conducted a process-tracing 

study to gain insight into the “nature and sequence of the considerations that 

psychotherapists have when they are asked to propose a treatment for a depressed 

patient” (p. 157). The researchers tested the hypothesis that “therapists reach their 

treatment decisions by interpreting the case, by associating a therapy option with this 

interpretation and by substantiating this option to their satisfaction through a focus on 

confirming information” (p. 159) To test this hypothesis, eleven clinical psychologists of 

different therapeutic orientations were presented with a case study of a depressed client 

and asked to think aloud about how they would construct a treatment plan. 

After coding and analyzing the transcripts of the proposed treatment plans, 

Witteman and Kunst (1997) concluded that their hypothesis was supported. That is to 

say, all participants offered an interpretation of the case, proposed a treatment, and then 

selectively identified information to confirm this treatment option without considering 
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alternatives or potentially disconfirming information. Given their findings, the 

researchers posited that rather than considering “what would be the most suitable 

treatment plan for this patient?”, the therapists were actually most concerned with “could 

I treat this patient with the methods I usually apply?” (p. 168). Surprisingly, when the 

researchers shared their findings with study participants and other practicing clinicians, 

the therapists agreed that their treatment decisions were often quite unstructured and 

subjective. 

Witteman and Koele (1999) later expanded on Witteman and Kunst’s (1997) 

exploratory findings by investigating the explicit and implicit explanations of clinical 

treatment recommendations among a larger sample (n = 56) of registered 

psychotherapists. The participating psychotherapists were asked to read four case 

descriptions and answer questions regarding their proposed course of treatment. This 

process was repeated twice over the course of one month—once with the therapists 

answering open-ended questions about treatment and once using a structured 

questionnaire that listed potential symptoms and treatment options. These two sets of 

responses were then coded and compared. 

 Findings indicated that the best (although weak) predictor of treatment decisions 

was the therapist’s theoretical background (i.e., psychodynamic). When compared, 

responses from the unstructured and structured case questionnaires were only marginally 

related to one another and only four participants proposed the same treatment on their 

first (unstructured) and second (structured) responses. Moreover, there was little 

agreement among the participants as to which symptoms were most relevant for each 

case. Witteman and Koele (1999) concluded that treatment proposals were not based 
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directly on client data or case information but instead on “a schema or schemas that go 

with certain theoretical orientations, refined by practical experience” (p. 110). The 

researchers acknowledged that their findings lead to additional questions: “Do 

psychotherapists in practice actually actively decide upon a specific treatment method 

after substantive processing, before they start treatment? Or is it maybe more a matter of 

deciding by recognition, an almost automatic process?” (p. 111). 

Eells and Lombart (2003) explored case conceptualization and treatment planning 

among a sample (n = 56) of cognitive-behavioral and psychodynamic therapists. The 

researchers recruited clinicians of three types: novice, expert, and experienced. Each 

therapist was presented with six vignettes representing three common psychiatric 

disorders; after reviewing the vignettes, the participants completed a questionnaire 

describing their understanding of the cases and proposed treatment strategies. The 

researchers sought to explore differences in case formulation and treatment prediction 

among the three experience categories as well as between the two therapeutic 

orientations. 

 In terms of case formulation, Eells and Lombart (2003) found that cognitive-

behavioral therapists focused most heavily on symptoms and problems while those with a 

psychodynamic orientation placed more emphasis on childhood history, coping 

mechanisms, strengths, and treatment obstacles. When asked about the effectiveness of 

treatment, cognitive-behavioral therapists anticipated greater improvement than did 

psychodynamic therapists. In terms of initial treatment planning, psychodynamic 

therapists in general and expert clinicians within either orientation predicted a need for 

longer treatment with more frequent sessions.  
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Falvey, Bray, and Hebert (2005) investigated the process of treatment planning 

among a small sample (n = 25) of mental health professionals including psychologists, 

social workers, and counselors. Participants were administered the Clinical Treatment 

Planning Simulation: Case 1-B (CTPS)—a notional case representing a client with 

ADHD. After reviewing the case materials (e.g., psychosocial history, client interview, 

parent interview), the clinicians were instructed write a case conceptualization and 

develop a treatment plan. Upon completing these clinical tasks, the participants 

completed a structured follow-up interview with the research team. The researchers then 

used a process-tracing strategy to identify the problem-solving styles and clinical 

judgment strategies employed by the clinicians. This was followed by the development of 

a classification scheme to predict case conceptualization and treatment planning 

performance. 

Falvey and colleagues (2005) identified four treatment-planning clusters. The first 

cluster was representative of a template approach; these clinicians relied on direct 

diagnostic matching to inform their treatment planning. The second cluster was 

representative of a novice approach as evidenced by a lack of any noticeable cognitive 

schema for case evaluation or planning. Clinicians using the novice approach relied on 

heuristic strategies to plan treatment. The third cluster was representative of a mastery 

approach; these clinicians produced thorough case reviews in which supporting and 

disconfirming evidence was carefully weighed against initial hypotheses. Clinicians 

employing a mastery approach ultimately produced comprehensive, client-based 

treatment plans. Finally, the fourth cluster was representative of an efficient approach. 
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The efficient approach was characterized by rapid assessment and seeking direction from 

others involved in the case (e.g., parents, teachers). 

Kwaadsteniet and colleagues (2010) used a cognitive mapping approach to 

examine intervention selection among a sample (n = 40) of Dutch clinical psychologists. 

Study participants were presented with two case studies (including the results of a 

number of psychological tests) involving two depressed children. After reviewing the 

case materials, the clinicians were asked to complete two tasks. One task entailed the 

construction of a causal map in four steps: (1) identification of problems and 

hypothesized causal factors, (2) rating of problems in terms of potential harm or distress, 

(3) arrangement of problems and causal factors into causal pathways, and (4) rating of the 

modifiability of each causal factor or problem. The other task involved selecting the five 

most effective treatments for each case from a list of ten possible interventions (e.g., 

individual cognitive therapy, family therapy, social skills training) and ranking these 

interventions in terms of expected effectiveness. Half of the sample completed the causal 

mapping task first, while the other half completed the intervention selection task first.  

 When the psychologists’ causal maps were compared, Kwaadsteniet and 

colleagues (2010) observed low levels of agreement about the causal factors and 

relationships underlying the two case studies. However, individual clinician’s ratings of 

intervention effectiveness could be significantly predicted from his or her own causal 

model. As Kwaadsteniet and colleagues (2010) effectively summarized, these findings 

indicate “that different causal models lead to different ratings of intervention 

effectiveness, and as a consequence may lead to different intervention choices by 

different clinicians for the same client” (p. 588). 
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 Groenier, Pieters, Witteman, & Lehmann (2014) investigated the degree to which 

problem complexity influences case formulation and subsequent treatment decision 

making. A sample (n = 211) of Dutch psychologists was presented with two case 

vignettes—one with a simple problem presentation and one of greater clinical 

complexity. After reviewing each vignette, the participants were asked to: (1) select the 

most likely DSM-IV classification, (2) describe in their own words the etiology of the 

client’s problems, and (3) select one or two interventions from a list of 18 specific 

treatment methods. 

 Results indicated that the study participants formulated higher quality case 

formulations for the less complex case than for the more complex case. Interestingly, the 

treatment methods selected by the psychologists were neither associated with the DSM-

IV classifications they identified nor related to the hypothesized cause of the clients’ 

problems. Rather, treatment decisions were most highly associated (although still weakly) 

with clients’ pattern of complaints as described in the case materials. These findings were 

interpreted as consistent with Witteman’s (Witteman & Koele, 1999; Witteman & Kunst, 

1997) earlier research suggesting that treatment selection is primarily schema-driven. 

 Baker-Ericzen and colleagues (2015) used case vignettes to investigate 

assessment and treatment formulations among a sample (n = 48) of pediatric clinicians 

including psychiatrists, psychologists, social workers, and marriage and family therapists. 

This research is particularly relevant to the present inquiry as it is the only treatment 

decision making study to date to draw explicitly upon NDM theory. Participating 

clinicians were grouped based on prior training in a specific evidence based treatment. 

Using a “think aloud” technique, clinicians verbalized their case conceptualization and 
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offered a treatment decision in response to a randomly presented vignette. Researchers 

coded responses by applying five primary decision making processes identified in the 

NDM literature: (1) type of reasoning, (2) organization of information, (3) attention to 

information and level of abstraction, (4) finding solutions, and (5) incorporating actuarial 

information and flexibility in application. 

 Baker-Ericzen and colleagues’ (2015) results indicate that clinicians with prior 

training in one or more EBTs demonstrated clinical decision making skills consistent 

with NDM’s conceptualization of expert performance (e.g., forward reasoning, 

comprehensive treatment planning). The researchers posited that training in an EBT 

might in and of itself improve treatment decision making skills: “The process of EBT 

training may also teach meta-cognitive skills such as attention to relevant cues, 

organizational skills, and gist formulation so that the experience of EBT training may 

generalize to improved decision making skills which can be applied to ne, complex 

cases” (p. 150). Importantly, this study demonstrates the viability of using NDM theory 

to investigate treatment decision making within an EBT/EBP context. 

Most recently, Gutierrez, Fox, Jones, and Fallon (2018) explored the treatment 

planning process of a small sample (n = 9) of experienced counselors. The researchers 

presented each participant with a ten-minute video vignette of a client discussing her 

clinical concern (family conflict and stress). While watching the vignette, the counselors 

were asked to think aloud concerning their initial impressions and treatment strategy. 

Upon completion of the video, the researchers conducted a semi-structured interview 

with each counselor to elicit additional information. The clinician’s verbalized thoughts 

and interview responses were then transcribed, coded, and qualitatively analyzed. 
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Gutierrez and colleagues (2018) did not attempt to appraise the relevance or 

adequacy of the treatment selections. Rather, they focused solely on the process whereby 

such decisions were reached. The researchers identified four subsequent domains through 

which the treatment planning process progressed. The first domain, assessment steps, 

involved the exploration of information that the counselor needed to determine which 

treatment would work best (e.g., identifying unhealthy behaviors). The second domain, 

clinical impressions, consisted of those facets of the client’s presentation that the 

counselor found to be clinically significant (e.g., client strengths). The third domain, 

treatment factors, entailed the consideration of factors that might influence the final 

treatment determination (e.g., family dynamics, client readiness). Finally, the domain of 

treatment strategies referred to the identification and selection of specific treatment 

techniques deemed most appropriate for use with the client.  

 Four of the vignette-based studies reviewed above have involved the Dutch 

scholar Celia Witteman, who was among the first to investigate the subject of treatment 

decision making and remains the most prolific author in the field. (Groenier, Pieters, 

Witteman, & Lehmann, 2014; Kwaadsteniet, Hagmayer, Krol, & Witteman, 2010; 

Witteman & Koele, 1999; Witteman & Kunst, 1997). These studies evidence a systematic 

and progressive research program that has produced compelling empirical evidence that 

the process of treatment selection cannot be explained by any particular factor or 

combination of factors—clinician’s theoretical background, client characteristics, 

suspected etiology of the problem, hypothesized causal mechanisms—but rather are 

mediated by an underlying schema. This schema is shaped by clinical orientation and 

tempered by practice experience; it does not appear to be altogether logical (Witteman & 
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Kunst, 1997) and almost certainly involves some degree of subjectivity and bias 

(Kwaadsteniet et al., 2010). Applying this proposition to the current study suggests that 

the observed relationship between assessment responses and ESI prescriptions may not 

be as direct or strong as one would expect based on the traditional rational choice theory 

of EBP. However, EBP—as viewed through the lens of NDM—does not necessitate such 

a unidimensional treatment decision making mechanism.   

 

Treatment decision making studies in a naturalistic setting.  

Only two treatment decision making studies have made use of actual clients in a 

naturalistic setting to examine clinician treatment selection. Zuber (2000) investigated the 

relationship between a client’s own problem formulation and subsequent 

psychotherapeutic treatment recommendations. Zuber’s (2000) sample consisted of 159 

Swedish patients receiving public financial support for psychotherapy; all had undergone 

an extensive clinical interview and assessment process which included an opportunity for 

the client to describe clinical concerns in his or her own words. These were coded into 

three broad categories: (1) problems related to relationships, (2) problems related to 

symptoms, or (3) mixed problems. Upon completion of the clinical interview and review 

of the client’s diagnoses and problem formulation, a psychologist (as part of a 

qualification team) would recommend the patient to a specific psychotherapist. The 

orientation of the psychotherapist to which the client was referred was used to classify 

treatment recommendations. 

 Zuber (2000) found that clients who formulated their problem as relational in 

nature were most frequently recommended to insight-oriented psychotherapies (e.g., 
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psychodynamic therapies, expressive therapies) while those whose problem formulations 

focused on symptoms were more likely to be recommended to directive-oriented 

psychotherapies (e.g., cognitive-behavioral therapies). Furthermore, with the sole 

exception of anxiety disorders, clients’ problem formulations were found to have more 

influence on treatment recommendation than did formal psychiatric diagnoses. Zuber’s 

(2000) findings suggest that a client’s own problem formulation may have a substantial 

effect on the clinician’s treatment planning process. 

Scheidt and colleagues (2003) investigated the treatment selections of a sample of 

24 German private-practice psychotherapists who assessed a total of 238 potential clients 

during the study period. After completing one or more clinical interviews, the 

psychotherapist would determine whether or not to accept the individual as a client. The 

researchers also recorded the type (i.e., psychodynamic or psychoanalytic) and duration 

(i.e., long-term or short-term) of psychotherapy that was prescribed.  

Scheidt and colleagues (2003) findings indicate that client motivation was the 

most important factor in determining whether a client was accepted for treatment and the 

therapist’s personal response to the client (e.g., client aroused therapist’s interests, 

therapist was emotionally touched by client) contributed the most to treatment decisions. 

Though the therapists had access to information regarding client diagnosis, symptom 

severity, and areas of clinical concern, these factors contributed very little to the process 

of treatment selection. Given this unexpected finding, Scheidt and colleagues (2003) 

called for more research linking standardized assessment with treatment planning among 

psychotherapists—importantly, this is precisely the aim of the present study.  
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 Summary of the conceptually-relevant literature. 

 While there is a modest body of scholarly literature regarding treatment decision 

making, synthesizing this research is particularly challenging. Samples have been 

comprised of a variety of professional disciplines, including psychotherapists, 

psychiatrists, psychologists, counselors, and clinical social workers. Some samples have 

been homogenous in terms of professional background (e.g., counselors—Gutierrez et al., 

2018) while others have included a mixture of disciplines (e.g., Falvey et al., 2005).  The 

settings from which these samples were drawn are just as varied: German private practice 

(Scheidt et al., 2003), United Kingdom National Health Service clinics (Lucock et al., 

2006), Dutch psychotherapy institutes (Witteman & Kunst, 1997), American community 

mental health centers (Falvey et al., 2005). Without exception, each sample was selected 

using a nonprobablistic strategy—typically purposive or convenience sampling. 

 Likewise, the operationalization of the concept treatment decision is not 

consistent among all studies. For example, Kwaadsteniet and colleagues (2010) examined 

participants’ selections from a list of specific interventions (e.g., individual cognitive 

therapy) while Scheidt and colleagues (2003) focused on a binary choice between long- 

or short-term psychotherapy. In the case of Zuber (2000), the theoretical orientation of 

the psychotherapist (e.g., psychodynamic) served as a proxy for treatment selection. 

Some researchers (e.g., Gutierrez et al., 2018) were not interested in the appropriateness 

of a treatment selection but only the process whereby it was reached; others (e.g., 

Witteman & Koele, 1999) employed complex designs to analyze the congruence between 

the case information and the clinician’s selected treatment plan. 
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 Given these substantial limitations, one must exercise great caution in drawing 

any overarching conclusions about treatment decision making other than those of the 

most general nature. The current best evidence does suggest that clinicians’ treatment 

decisions are influenced by a number of factors—both internal (e.g., theoretical 

orientation) and external (e.g., client characteristics) and that a (possibly subjective) 

schema mediates the interaction between these two realms. It is important to note that this 

conjecture is entirely consistent with the EBP model, which also recognizes that practice 

in informed by factors other than empirical evidence (e.g., clinical expertise). Moreover, 

the findings that suggest that clinical decision making is derived from an experienced-

based schema rather than a deliberate weighing of potential choices are directly reflective 

of the NDM framework even if they do not explicitly draw upon the theory. Whether 

viewed through the lens of EBP or through the nascent understanding of treatment 

decision making grounded in the research reviewed above, one would have little 

justification for hypothesizing that functional assessment responses can account for all of 

the observed variation in treatment planning (i.e., ESI selection). Rather, the more 

important question may be whether it accounts for any and, if so, how much?  

 

Concretely-Relevant Literature: Assessment and Empirically-Supported 

Intervention 

The empirical research reviewed in this section relates to the study directly and 

concretely. They can be grouped into three general categories: (1) studies investigating 

structured assessments in general, (2) studies in which the CANS functional assessment 

is used to predict treatment decisions, and (3) studies that have identified factors in or 
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predictors of ESI use. Each study is thoroughly summarized and its relevance to the 

current inquiry is discussed. 

 

Structured assessments. 

 Assessment is an integral component of evidence-based clinical practice and is 

critical for case conceptualization and treatment decision making (Ponniah et al., 2011). 

However, few empirical studies have evaluated how assessments influence decision 

making in the human services (Schwalbe, 2004). Even less is known regarding the 

effective integration of assessment information into clinician’s treatment formulation, 

planning, or monitoring (Mash & Hunsely, 2005).   

Limited evidence from the field of criminal justice suggests that risk assessments 

conducted using a structured instrument are more accurate and less biased than those that 

follow an unstructured format (i.e., “clinical judgments”) (Hoge, 2002). Andershed and 

Andershed (2016) posited that a similar outcome would be observed among social 

workers. More specifically, they hypothesized that assessments using a structured 

instrument would be perceived by experienced management-level social workers as of a 

higher quality than those conducted without an instrument. 

Sixty social workers were provided with an identical case vignette involving a 14-

year old youth exhibiting conduct problems. Half of the participants used a structured 

instrument (ESTER) to assess the case while the other half did not employ a structured, 

instrument-based assessment process. Upon completion of the assessment process 

(structured or otherwise), the social workers were asked to identify the areas “important 
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to address to prevent long-lasting psychosocial and behavioral problems” (p. 889) and to 

suggest concrete interventions.  

After the assessments were completed, they were independently reviewed by four 

experienced social services managers and rated in terms of quality and potential treatment 

effectiveness. As hypothesized by the researchers, the social workers that used a 

structured assessment instrument identified a significantly greater number of risk and 

protective factors than did those who did not use the tool. Notably, 100% of the social 

workers using a structured approach identified five or more risk factors presented in the 

vignette while only 47% of those not using an instrument identified an equivalent number 

of risk factors. Likewise, the majority (67%) of those social workers who used the 

structured assessment identified at least one protective factor while only two social 

workers (6%) using an unstructured approach identified one or more protective factors.  

Senior social worker ratings of the assessments indicated that those employing a 

structured approach were of a significantly higher quality, overlooked significantly fewer 

important factors, and were potentially more effective in informing treatment decisions. 

To date, this is the only published study directly comparing the content and perceived 

quality of assessments completed with and without structured instruments. Based on their 

findings the authors observed that “social workers’ assessments of a youth become more 

evidence-based, adequate and potentially more treatment effective when a structured 

assessment instrument is used as compared to when it is not” (p. 897). Additionally, the 

authors note that their results “can and should be applied to research-based structured 

assessment instruments in general and not only to the instrument used in this study” (p. 

897). 
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Andershed and Andershed’s (2016) sample was comprised of Swedish social 

workers that were not randomly selected, a nonequivalent structured assessment 

instrument, and relied on subjective judgment to determine assessment quality and 

effectiveness. As such, there are substantial limitations in the extent to which their 

findings can be generalized to the current project. However, their work provides 

empirical support to one of the a priori assumptions of the proposed study: structured 

assessments can be effective in informing treatment decisions. As Mash & Hunsley 

(2005) observed in the related field of child psychology, the value of assessment is 

typically assumed despite very little solid supporting evidence; Andershed & 

Andershed’s (2016) findings, while far from conclusive, provide at least a provisional 

foundation from which the proposed study’s rationale can be constructed. 

Miller and Maloney (2013) used latent class analysis to create a compliance 

typology among a subsample (n = 1,087) of frontline community corrections staff. The 

subsample was comprised only of participants who reported completing structured 

assessment tools as part of their job and using the information from these tools to make 

decisions or recommendations. Based on responses to an anonymous electronic 

questionnaire, Miller and Maloney (2013) identified three distinct classes of assessment 

users: (1) substantive compliers (47.7%) – high compliance with instrument completion 

and moderate use of the instrument to make decisions; (2) bureaucratic compliers 

(39.8%) – high compliance with instrument completion and moderately low use of the 

instrument to make decisions; and (3) cynical compliers (12.4%) – high compliance with 

instrument completion though with admitted carelessness, minimal effort, or intentional 

manipulation and low use of the instrument to make decisions. 
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Miller and Maloney’s (2013) research focused on criminal justice practitioners 

and, as such, cannot be accepted as representative of other disciplines or service systems 

(i.e., social workers in child welfare). The precise findings cannot be generalized to the 

present study’s sample or setting and are not of particular interest to the present context. 

Nevertheless, the compliance typology established by their analysis provides empirical 

support for another a priori assumption of the proposed inquiry: simple counts or rates of 

assessment completion are not sufficient to determine if the goal of assessment-driven, 

evidence-based treatment for children in OOHC is being realized.  

Notably, all three of Miller and Maloney’s (2013) identified classes reported high 

compliance with assessment instrument completion. The defining difference between 

groups was not whether they completed assessments but rather how well they completed 

them and how they used this information to inform professional decision making. Though 

the methodological approach is markedly different, the present study has sought to 

provide similar insight into the nuance of assessment tool usage beyond completion 

compliance. 

 

The CANS functional assessment as predictor. 

 Whereas the research reviewed in the prior section pertained to structured 

assessment instruments in general, the body of research described at present is specific to 

the CANS functional assessment. More precisely, these empirical studies have 

investigated the degree to which responses on the CANS assessment predict various 

treatment-related decisions. There is a related literature regarding the CANS’ use as a 
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predictor for outcomes (e.g., resolution of antisocial behavior – Dunleavy & Leon, 2011) 

but these are not reviewed at this time. 

Anderson and Estle (2001) were the first to publish peer-reviewed research 

detailing the use of the CANS to identify predictors of treatment-related decisions. The 

researchers sought to identify factors associated with the selection of mental health 

service type among a sample of children (n = 150) being served by a rural comprehensive 

treatment facility. Of particular interest to the researchers were factors influencing the 

decision between the utilization of inpatient or community-based services for children 

exhibiting reactive attachment disorder symptoms. 

The mental health version of the CANS assessment (CANS-MH) was used to 

assess the clinical status at intake of all study participants. The assessment was completed 

via retrospective case review. Assessed domains included mental health symptoms, risk 

behaviors, functioning, caregiver capacity, and strengths. Additionally, the researchers 

collected other relevant demographic (e.g., age, race) and clinical (e.g., maltreatment 

history, medication use) variables. 

Using a logistic regression model, Anderson and Estle (2001) then examined 

which factors significantly predicted inpatient admission versus the use of community-

based care for children involved in the study. The logistic regression model resulted in a 

statistically significant prediction of inpatient admission with an overall prediction 

accuracy of 93%. Significant predictors of inpatient service utilization included a history 

of inpatient care, a history of sexual abuse, and limited strengths identified on the CANS-

MH assessment. Additionally, children currently being served in an inpatient setting 
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exhibited a significantly greater number of risk behaviors as indicated by the CANS than 

did their counterparts receiving community-based services. 

Anderson and Estle’s (2001) work has some substantial limitations including the 

use of a retrospective case review to complete the CANS functional assessment and a 

single site design. Additionally, the setting (i.e., exclusively rural), sample (i.e., only 

children exhibiting RAD symptoms), and measurement instrument (i.e., CANS-MH) do 

not perfectly align with the design of the study described in this proposal. Nonetheless, 

Anderson and Estle’s (2001) early work using the CANS assessment to identify 

predictors of service- or treatment-related decisions established a methodological 

precedent with direct relevance to the proposed research. 

Kisiel has used the CANS extensively in her ongoing research into complex 

trauma exposure among child-welfare involved youth. Two of Kisiel’s (2009; 2014) 

studies are directly relevant to the present inquiry. Kisiel and colleagues (2009) used 

response patterns on the CANS assessment instrument to examine complex trauma 

exposure and subsequent service utilization among a large sample of children (n = 4272) 

who entered the Illinois child welfare system between July 2005 and December 2007. 

Like the current initiative in Kentucky, Illinois instituted an integrated assessment 

process centered around the CANS assessment in order to identify child and caregiver 

strengths and needs to inform the provision of trauma-informed treatment and services 

(Kisiel et al., 2009).  

The researchers first used the CANS instrument to classify two groups based on 

trauma-exposure type: (1) children who had been exposed to complex trauma (i.e., 

“multiple and chronic caregiver trauma”), and (2) children who had been exposed to 
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trauma that was not chronic or not caregiver-related. These groups were then compared 

and contrasted in relation to trauma symptoms and service utilization need. Based on 

CANS response patterns, more than one-third (34.5%) of the sample met the researcher’s 

definition of having been exposed to complex trauma.  Children in the complex trauma 

group exhibited more trauma-related symptoms across all domains on the CANS 

assessment instrument. Additionally, children with chronic caregiver trauma had 

significantly more difficulties across functional areas (i.e., family functioning, social 

functioning, educational functioning) indicating a need for more intensive and extensive 

treatment services. 

The authors note that their findings highlight the benefit of conducting a trauma-

focused comprehensive assessment of children entering the child welfare system in order 

to identify their broad range of treatment needs and match these with appropriate 

services. Though the researchers did not investigate the mechanism whereby these 

treatment and service needs are actually made, their work suggests that the CANS can be 

effectively used in this manner. 

Kisiel later expanded on this work (Kisiel et al., 2014) to more closely examine 

specific patterns of trauma exposure among a large sample of child-welfare involved 

youth (n = 16,212). Following the precedent established in the earlier study, Kisiel and 

colleagues (2014) first used response patterns on the CANS assessment to identify 

distinct trauma experiences and categorize study participants into groups based on similar 

trauma exposure patterns (e.g., violent trauma, attachment trauma). These trauma groups 

were then compared in terms of symptom manifestation and severity. Interestingly, this 

stage of the analysis also employed the CANS assessment by mapping specific CANS 
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items onto trauma symptom domains (e.g., affective and physiological dysregulation). 

Finally, the identified trauma groups’ level of child welfare service need were compared. 

Of greatest relevance to the present inquiry, Kisiel and colleagues (2014) found 

that youth with different trauma exposure types—as determined by CANS assessment 

response patterns—experienced different trajectories through the child welfare system. 

For example, youth who had experienced both violent and non-violent trauma were 25% 

more likely to experience a placement disruption than youth with other types of trauma. 

Likewise, youth who had been exposed to violent trauma were 37% more likely to be 

placed in a psychiatric hospital.  

Though the researchers did not directly investigate the CANS assessment’s role in 

informing service delivery or treatment planning (as was the objective of the present 

study), their use of the CANS to identify specific client groups with unique child welfare 

related trajectories implies that such an investigation is warranted. Perhaps even more 

importantly, Kisiels’ (2009; 2014) research program illustrates a novel and well-executed 

approach for using state gathered and maintained CANS assessment data to identify and 

answer compelling questions regarding a state’s child welfare practice landscape.  

Lardner (2015) examined the relationship between scores on the CANS 

assessment and level of restrictiveness decisions for a large sample (n = 5,230) of child 

welfare involved youth. He aimed to assess the amount of variation in identified level of 

need at the time of intake (as identified by the CANS) that could be accounted for by the 

placement setting. 

Using the CANS assessment administered at intake, Lardner (2015) first 

calculated a mean domain score by summing the scores of all items in the section and 
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then diving this sum by the total number of items. To aid in interpretation, this quotient 

was then multiplied by 10 to create a range of possible scores between 0 and 30. These 

five domain scores were then summed to calculate a total CANS score. The five domains 

included in the analysis were (1) life domain functioning, (2) child behavioral/emotional 

needs, (3) child risk behaviors, (4) caregiver needs and strengths, and (5) child strengths. 

Basic demographic variables (gender, race, and age) were collected and used to control 

for intake CANS scores. Program restrictiveness was based upon a level of intensity 

rating applied to each child serving agency in the state; scores ranged from 5 to 15 with 

higher scores reflecting greater intensity.  

Lardner (2015) then used a multilevel regression analysis to assess the 

relationship between calculated CANS scores and placement level. Initial model 

estimates indicated that approximately 35% of variation in total CANS scores at intake 

could be attributed to program assignment. When all other variables were held constant, 

each one-unit increase in program restrictiveness was associated with a 35.48 point 

increase in total CANS score.  

Lardner’s (2015) work is significant to the proposed study in two primary 

regards—one methodological and the other conceptual. Methodologically, Lardner’s 

(2015) treatment of CANS domain scores and total score within a multilevel regression 

model provides an example of predictor identification and calculation that has informed 

the present author’s analytic strategy. On a more conceptual level, Lardner (2015) has 

concluded that his findings support the utility of functional assessments, like the CANS, 

to inform treatment decision making for youth in out of home care. As such, replicating 
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this line of inquiry with a focus on intervention decision making (as opposed to 

placement decision making) is a logical extension. 

Taken together, these empirical studies clearly establish a well-tested precedent 

for using CANS domain scores or response patterns as predictors for modeling case-level 

treatment planning or decision making. While the present author is not aware of any 

published research evaluating CANS responses as predictors of ESI selection, their use in 

informing other aspects of case planning (e.g., intensity of treatment, placement 

restrictiveness) suggests that such an inquiry is viable. 

 Researchers have also explored novel approaches to using the CANS to inform 

treatment decision making beyond individual, case-level factors. For instance, Cordell, 

Snowden, and Hosier (2016) used recursive partitioning to identify particular CANS 

items associated with the most elevated levels of clinical need and Chor and colleagues 

(2012; 2013) have explored the use of the CANS assessment as part of an algorithm to 

automatically generate placement recommendations for child welfare administrative 

teams to consider. While these research programs are not as directly relevant to the 

present study as those reviewed in greater detail above, they further illustrate the 

methodological breadth with which the CANS role in treatment decision making can be 

examined. 

 

Predicting the use of ESIs.  

 While a relatively extensive body of research literature has investigated factors 

associated with practitioner attitudes toward or knowledge of EBP in general (e.g., 

Aarons, 2004; Abrefa-Gyan, 2016; Beidas et al., 2016; Gray, Elhai, & Schmidt, 2007; 
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Nelson & Steele, 2007), a much more limited number of empirical studies have 

investigated factors predicting the use of specific interventions or practices (i.e., ESIs). 

(Tuten et al p. 260). Similar to the present study, the empirical studies reviewed in this 

section used an EBP conceptual framework to investigate factors associated with or 

predicting the adoption of one or more specific ESIs.  

Gioia & Dziadosz (2008) conducted a mixed methods study examining a small 

sample (n = 14) of mental health practitioners as they adopted four evidence-based 

practices. The selected EBPs—reflecting specific practices consistent with the term ESI 

as used in this proposal—included integrated dual disorders treatment, cognitive therapy, 

dialectical behavior therapy, and McFarlane’s Multi-Family Therapy. These practices 

were selected because they are manualized treatments with documented effectiveness for 

individuals with severe mental illness.  

The researchers conducted a longitudinal series of semi-structured interviews to 

explore the participants’ experiences learning and integrating the EBPs into their practice 

over the course of twenty-four months; in addition to the qualitative data, participants 

completed the Evidence-Based Practice Attitudes Scale (EBPAS) after each interview 

session. Consistent with the mixed methods nature of the study, the analytic strategy 

consisted of both thematic analysis of interview transcripts and longitudinal comparison 

of EBPAS scores over the course of the two-year study. 

A number of conditions were identified that facilitated the adoption of the four 

EBPs including consistent supervision, use of outside experts, and observing positive 

client growth as a direct result of EBP training. Impeding conditions included a shifting 

practice landscape (e.g., newly introduced state regulations, changing certification 
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requirements), lack of fidelity measures, and supervisor/administrator turnover. Scores on 

the EBPAS suggested that as practitioners developed increased competency in the 

adopted EBPs, their attitudes and perceptions of evidence-based practice in general 

became more positive. 

Of key interest to the present study is the researchers’ conclusion—supported 

with both quantitative and qualitative data—that with appropriate supervisory and 

administrative support, practitioners can adopt new EBPs and that this process tends to be 

self-reinforcing. However, the process of learning to deliver new EBPs is lengthy and 

implementation timeframes may underestimate the amount of time practitioners require 

to feel competent. This observation will be particular important to remain cognizant of 

when interpreting the present study’s findings. 

Craig and Sprang (2010) examined the self-reported trauma practices of a national 

sample (n = 671) of clinical social workers and psychologists. Study participants 

completed the Trauma Practices Questionnaire (TPQ). The 19 items of the TPQ were 

mapped onto six trauma therapies: (1) cognitive therapy, (2) behavioral therapy, (3) eye 

movement desensitization reprocessing, (4) eclectic therapy, (5) psychodynamic therapy, 

and (6) solution-focused therapy. Scores in each of these six domains served as the 

study’s dependent variables. Additionally, scores from the first three modalities were 

summed to create an “evidence-based practice” variable while the cumulative scores of 

the last two modalities formed an aggregate “non evidence-based practice” variable. 

Using stepwise regression, the researchers then sought to identify significant 

predictors of evidence-based practice using ten predictor variables: gender, age, 

disciplinary licensure, highest degree obtained, years of experience, type of work setting, 
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special trauma training, percentage of caseload with PTSD, percentage of caseload below 

18, and percentage of caseload over 60. The final regression equation indicated that 

specialized trauma training, older age, and percentage of PTSD on the caseload 

significantly predicted the use of evidence-based practices. A similar model was then 

tested to determine predictors of non evidence-based practice. Interestingly, specialized 

trauma training, older age, and percentage of PTSD on the caseload also significantly 

predicted the use of non evidence-based practices. Additionally, the final regression 

model indicated that clinical social workers were more likely to employ non evidence-

based practices than clinical psychologists. It should also be noted that the non evidence-

based equation accounted for less variance (6%) than the evidence-based equation (12%). 

Craig and Sprang (2010) posit that the similar predictors for both evidence-based 

and non evidence-based practice may reflect a basic assumption that “working through 

the trauma” can be achieved in different ways. Noting that the amount of variance 

accounted for by both equations was small despite an adequate predictor to sample size 

ratio, the researchers concluded that “a number of other variables must be significant 

predictors of use of therapy practices beyond the demographic, work setting, and 

caseload characteristics explored in this study” (p. 505). This observation is significant to 

the current inquiry, as it represents a novel approach to the prediction of treatment 

selection drawing upon factors largely neglected in the current research literature. 

Beidas and colleagues (2015) investigated the relative contribution of individual 

and organizational factors on therapist self-reported use of three treatment modalities: (1) 

cognitive behavioral therapy, (2) family therapy, and (3) psychodynamic therapy. As 

conceptualized by the researchers, CBT and family therapy represented the selection of 
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an EBP while psychodynamic therapy represented the selection of a non-EBP. (It is 

important to note that the researcher’s use of the term EBP in this study reflects specific 

treatments rather than a process and thus is more consistent with the term ESI as used in 

the present proposal.) The study’s sample (n = 130) included therapists working in 19 

mental health care agencies serving children and youth.  

Individual factors included demographic characteristics (e.g., age, sex, ethnicity), 

attitudes (e.g., openness to new practices, Evidence-Based Practice Attitude scale), and 

knowledge (as measured by the Knowledge of Evidence-Based Services Questionnaire). 

Organizational factors included agency characteristics (e.g., program size, percentage of 

fee-for-service staff), culture and climate (as measured using the Organizational Social 

Context Measurement System), implementation climate (as measured using the 

Implementation Climate Scale), and implementation leadership (as measured using the 

Implementation Leadership Scale).  

Using linear mixed-effects regression models with random intercepts due to the 

nesting of therapists within organizations, Beidas and colleagues (2015) analyzed the 

strength of the associations of the individual and organizational factors with use of each 

of the three modalities. Their findings indicated that organizational factors accounted for 

23% of the variance in therapists’ use of CBT while individual factors accounted for 

16%. For family therapy, organization factors explained 19% of the variance with just 

7% accounted for by individual factors. By contrast, individual factors accounted for 

more variance (20%) in the use of psychodynamic therapy than did organizational factors 

(7%). Based on their findings, the researchers concluded that organizational factors were 
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more likely to drive the use of EBPs while individual factors were more likely to drive 

the use of non-EBPs. 

Tuten and colleagues (2016) sought to identify individual and organizational 

predictors of self-reported evidence-based intervention (EBI) use among a sample (n = 

180) of National Association of Social Workers (NASW) members. Using mail and 

internet surveys, the researchers asked practicing social workers if they currently used 

EBIs in their place of work. The researchers’ definition of EBI—“specific interventions 

that have been empirically tested and validated” (p. 254)—is consistent with term ESI as 

used in the present work. Additionally, participants completed portions of the Evidence-

Based Practice Questionnaire and the Organizational Climate Measure and provided 

basic demographic and practice characteristics. 

Using logistic regression, the researchers examined which individual or 

organizational factors significantly predicted current use of EBIs. The majority of 

respondents (68.7%) reported using EBIs in their work. Findings indicated that more 

knowledgeable practitioners and those who worked in organizations that valued 

innovation and flexibility were significantly more likely to employ EBIs in their practice.  

Although Tuten and colleagues (2016) relied only on self-reported EBI use and 

did not analyze specific interventions, their research was explicitly practice-oriented. As 

such, their work differs from much of the existing research that focuses on “the more 

elusive term EBP” (p. 259) and associated process-oriented activities (e.g., looking up 

research evidence). The researchers concede that it is impossible to know to what degree 

reported EBI use among study participants reflects actual EBI use and note that future 
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research attention should explore actual EBI usage. Importantly, this study has focused 

exclusively on actual practices. 

These empirical studies investigating factors associated with or significant 

predictors of ESI use have informed the present study at the methodological level. For 

example, Beidas and colleagues’ (2015) multilevel investigation of ESI usage highlights 

the importance of accounting for nested data structures. However, perhaps even more 

importantly than what these studies have addressed is the substantial gap that has yet 

been unaddressed. 

Of the empirical studies investigating the adoption of specific interventions or 

practices within an evidence-based framework (already a fractional subset of the broader 

EBP literature) only two—Craig and Sprang (2010) and Beidas et al. (2015)—have 

sought to identify factors that may influence the selection of specific treatment 

approaches or ESIs. Even so, they have done so with little consideration of the client’s 

needs, strengths, conditions, etc. In the evidence-based medicine model developed by 

Haynes and colleagues (2002) and adapted for social work by Regehr and colleagues 

(2007), such factors are described as the clinical state and circumstances and are 

recognized as “key and often dominant factors in clinical decisions” (Haynes et al., 2002, 

p. 384). It is unfortunate that such “dominant factors” have been neglected in efforts to 

understand practitioner ESI selection; the intent of the present research is to help close 

this gap. 
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Summary of the concretely-relevant literature. 

 As described in the next chapter, the analytic strategy of the present study 

involved the development of a multilevel model to investigate the relationship between 

response patterns on the CANS functional assessment and the prescription of empirically 

supported interventions. As such, it is fitting to envision the literature reviewed in this 

section in such terms. Even when exploratory in nature, multilevel model building 

involves “a wide range of theoretical assumptions” (Hox, 1995, p. 7); the first studies 

reviewed in this section (Andershed & Andershed, 2013; Miller & Maloney, 2016) 

provide at least some empirical support undergirding the foundational assumptions of this 

study’s design. Specifically, they suggest that structured assessments can be used to 

generate high-quality treatment recommendations, that completion compliance tends to 

be high, but that there is variability in how accurately they are completed or how they are 

integrated into the decision making process. 

 The next set of studies (Anderson & Estle, 2001; Chor et al., 2012; Chor et al., 

2013; Cordell et al., 2016; Kisiel, 2009; Kisiel, 2014; Lardner, 2015) relate to the 

predictor side of the model equation. These studies illustrate diverse ways that CANS 

scores and response patterns have been used to predict various treatment decisions. 

Studies in this section have been most influential in the development of the present 

study’s methodology and analytic plan. 

 Finally, the last set of studies (Beidas et al., 2015; Craig & Sprang, 2010; Gioia & 

Dziadosz, 2008; Tuten et al., 2016) reflect the dependent variable or outcome of interest. 

To varying degrees of specificity, these studies have investigated the factors that 
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influence the use of ESIs. As important as the factors that these studies have identified as 

salient to ESI adoption are the client-level factors that remain unexplored.  
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CHAPTER 3:  

RESEARCH METHODS 

Research Context and Design 

 Project SAFESPACE seeks to promote the use of assessment-driven, evidence-

based treatment for children in out-of-home care. As part of this initiative, all children 

entering out of home care are administered a functional assessment. This study explores 

the degree to which responses on the functional assessment predict the prescribed 

treatment modality. The research design is a cross-sectional secondary data analysis. 

 

Sample 

 The population of interest for the proposed study is children in out of home care 

who have been administered a standardized functional assessment. The sampling frame 

consists of all children who (1) entered out of home care after Project SAFESPACE 

implementation in their county of origin, (2) screened in and were administered a 

functional assessment and for whom complete assessment data is available, and (3) were 

five years of age or older on the date of their initial functional assessment.  

  

Instrumentation 

 The secondary data used in this study originates from two practitioner-completed 

forms: (1) the Child and Adolescent Needs and Strengths (CANS) functional assessment, 

and (2) the CANS assessment report. Both forms are completed digitally on an internet-
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based information system hosted by a contracted third party. Data are then transmitted to 

the statewide automated child welfare information system (SACWIS). Only the initial 

assessment for each case is included in the analysis.  

  

Child and Adolescent Needs and Strengths assessment. 

 The CANS is a “multiple purpose information integration tool” designed to be the 

output of an assessment process (Praed Foundation, 2016). Developed using a 

communimetric (as opposed to a psychometric) approach, the CANS is interpretable at 

the item level, with each individual instrument item having direct implications for 

differential action (Lyons, 2009). In other words, every item in the instrument serves “to 

inform choices among possible interventions or approaches” by not only identifying the 

presence/absence of a concern but also describing the level of action required in a directly 

interpretable manner (Lyons, 2009, p. 31). 

 The CANS is widely used throughout the United States across a broad range of 

service settings, including extensive use in child welfare systems (Rosanbalm et al., 

2016). Service systems adopting the CANS instrument frequently develop versions 

tailored to fit their specific informational and cultural needs (Praed Foundation, 2015). 

Two versions of the CANS assessment have been developed for use with child welfare 

populations in Kentucky—one intended for use with children younger than five years of 

age and one for use with children five years old or older. The present study will use the 

latter version only (KY CANS 5+). 

 Only individuals who have been trained and certified can complete the KY CANS 

5+. Training consists of approximately seven hours of face-to-face instruction followed 
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by a series of online video modules (L. Minton, personal communication, September 15, 

2017). Upon completion of the training, the individual must take a certification exam 

wherein he or she completes a CANS assessment using a case vignette. A reliability of 

.70 or higher is required for successful completion at the practitioner level while trainers 

must score above an .80 (D. Hickerson, personal communication, September 15, 2017). 

 The KY CANS 5+ consists of six primary domains: (1) life domain functioning, 

(2) acculturation, (3) child strengths, (4) child emotional/behavioral needs, (5) child risk 

behaviors, and (6) caregiver needs/strengths. Responses to specific items within these 

domains may trigger additional modules (e.g., trauma module). Domains and modules 

consist of a varying number of individual items all of which are rated from zero to three. 

Individual items rated with a two or a three are considered “actionable” and thus must be 

addressed in the child’s service or treatment plan (Praed Foundation, 2016). In addition to 

individual item ratings, dimension scores can be calculated by summing items within 

each domain (Praed Foundation, 2016).  

A large body of research has investigated the measurement properties of the 

CANS. Anderson, Lyons, Giles, Price, and Estle (2003) obtained an inter-rater reliability 

of 0.85 between researchers conducting a retrospective case reviews and of 0.81 between 

researchers’ case review assessments and those completed prospectively by caseworkers 

at the time of client admission. More recently, Anderson (2008) reported an inter-rater 

reliability of .80 between a certified CANS trainer and three trained data collectors.  

These reported findings are generally consistent with the Praed Foundation’s (2016) 

claim that the average reliability of the CANS is 0.75 with vignettes, 0.84 with case 

records, and 0.90 with live cases. 
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The CANS has demonstrated an adequate degree of concurrent validity with the 

Child and Adolescent Functional Assessment Scale (CAFAS; Dilley, Weiner, Lyons, & 

Martinovich, 2007). Studies conducting factor analyses using the CANS have produced a 

similar three-factor solution (caregiver problems, internalizing behaviors, externalizing 

behaviors) suggesting a consistent underlying structure and some degree of construct 

validity (Rosanbalm et al., 2016). As discussed in greater depth in the literature review 

section, the predictive validity of the CANS has also been supported by a number of peer-

reviewed studies (e.g., Kisiel et al., 2009; Yampolskaya, Armstrong, & Vargo, 2007). 

  

CANS assessment report. 

 Upon completion of the actual CANS instrument, a CANS assessment report is 

generated. Actionable items from the CANS instrument (i.e., items rated 2 or 3) are 

automatically populated on this digital document providing a summary of the most salient 

clinical concerns. If applicable, the report also indicates if the items have improved, 

worsened, or remained stable since the previous assessment.  

 Using this information (at least in theory), the clinician then identifies the primary 

focus of treatment and prescribes one or more treatment modalities (i.e., ESIs). The 

CANS assessment report offers 18 ESI options: (1) adolescent community reinforcement, 

(2) brief strategic family therapy, (3) child-parent psychotherapy, (4) cognitive therapy, 

(5) cognitive behavioral therapy, (6) dialectical behavior therapy, (7) eye movement 

desensitization and reprocessing, (8) family therapy, (9) parent-child interaction therapy, 

(10) prolonged exposure therapy, (11) restorative approach, (12) sanctuary model, (13) 

seven challenges, (14) structural family therapy, (15) trauma recovery and empowerment 
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model, (16) trauma-focused cognitive behavioral therapy, (17) wraparound, and (18) 

other. Working collaboratively, Project SAFESPACE representatives selected these 

modalities based on the following considerations: (a) focused on child welfare and/or 

trauma, (b) inclusive of practices already in use by providers, and (c) cognizant of 

sustainability concerns (e.g., availability and cost of training opportunities) (B. Jordan, 

personal communication, January 17, 2018). Clinicians who select the “other” option are 

prompted to input the name of the prescribed intervention or treatment.  

After selecting the appropriate ESIs, the practitioner selects the intensity at which 

each modality will be delivered (e.g., more than once a week). The CANS assessment 

report will also serve as the source document for important demographic data including 

the child’s age, gender, and race; the name of the clinician completing the assessment; 

and the agency providing behavioral health services. 

 

Research Variables 

 Dependent variables: ESI selection. 

 The outcome of primary interest in the present study is the treatment modality 

prescribed by the clinician after completing the CANS and reviewing the CANS 

assessment report. Each of the 18 possible ESIs will be coded as a unique dichotomous 

variable (0 = not prescribed / 1 = prescribed). Such a coding scheme is necessary to 

permit the analysis of cases in which multiple modalities are identified. Treatment 

intensity will not be a focus of the present analysis. 

 A challenge inherent in this data is substantial variation of specificity and scope 

within the set of potential ESI recommendations as listed on the CANS Assessment 
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Report. For example, parent-child interaction therapy (PCIT) is a manualized intervention 

with concrete training and certification requirements (www.pcit.org) whereas family 

therapy is a term that may be applied to any psychotherapeutic approach that involves a 

family unit. Additionally, many of the modalities within this list are nested within a 

vertical hierarchy. For example, the more specialized modalities of dialectical behavior 

therapy (DBT) and cognitive therapy (CT) are both subsets of the broader cognitive-

behavioral therapy (CBT) family of interventions.   

 This challenge can be mitigated, at least in part, by expanding the focus of inquiry 

to broader treatment categories. To accommodate this, a second set of four dichotomous 

variables (0 = not prescribed / 1 = prescribed) will be computed from the original 

individual ESI variables: (1) trauma-focused treatment, (2) behavioral-focused treatment, 

(3) family-focused treatment, and (4) substance use-focused treatment. While individual 

ESI prescriptions will still be analyzed at a descriptive-level of analysis (e.g., counts), the 

composite focus-of-treatment variables will serve as the dependent variables for more 

advanced modeling. The process and rationale for identifying the proper alignment of 

individual ESIs to categorical groupings is described below. 

 Information regarding the target population and focus of treatment for each of the 

potential ESI selections was obtained from the California Evidence-Based Clearinghouse 

for Child Welfare (CEBC; www.cebc4cw.org). The CEBC was selected because (1) it is 

open access, (2) it summarizes peer-reviewed outcome studies in a concise format, and 

(3) it focuses exclusively on child welfare. As the present study focuses on the EBP 

decision making of practitioners, it was deemed important to draw ESI characteristics 

from a resource that is conducive to a typical practice environment (see Thyer, Babcock, 
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and Tutweiler, 2017). Only interventions that had received a CEBC scientific rating of 

promising research evidence (i.e., at least one study utilizing some form of control), 

supported by research evidence (i.e., at least one rigorous randomized controlled trial), or 

well supported by research evidence (i.e., multiple RCTs and follow-up) were included. 

 Though listed in the CEBC database, the Restorative Approach and the Sanctuary 

Model were not included in any of the focus-of-treatment composite variables. The 

Restorative Approach is targeted toward staff members (Child Welfare League of 

America, 2008) and the Sanctuary Model focuses on organizational-level change (Bloom, 

2013). As such, their prescription is assumed to be primarily a function of a child’s 

placement setting rather than his or her individual assessment responses. 

 Twelve of the ESI options listed on the CANS assessment report will be included 

in the focus-of-treatment composite variables. Table 3.1 identifies the composite variable 

to which ESI is assigned as well as the CEBC scientific rating and child welfare system 

relevancy rating. Note that some ESIs may be included in more than one focus-of-

treatment variable as determined by their target population and goals of treatment.  
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Table 3.1. ESIs & Focus-of-Treatment Composite Variable Inclusion 
 

ESI 
Target 

Population 

CEBC 

Scientific 

Rating 

CEBC CWS 

Relevance 

Focus-Of-Treatment Variable Inclusion 

Trauma Behavior Family 
Sub 

Abuse 
 

Adolescent 

Community 
Reinforcement 

Approach  

(A-ACR) 

Youth (12-22) 

with substance 

abuse issues 

Supported Medium    Y 

Brief Strategic 

Family Therapy 
(BSFT) 

Youth (12-18) 

with substance 

abuse & behavior 
problems & their 

caregivers 

Supported Medium  Y Y Y 

Child-Parent 

Psychotherapy 

(CPP) 

Children (0-5) 
who have 

experienced 

trauma and their 
caregivers 

Supported High Y  Y  

Cognitive 

Therapy 
(CT) & 

Cognitive 

Behavioral 
Therapy  (CBT) 

& Dialectical 
Behavior 

Therapy (DBT) 

Individuals with 
mental health 

disorders and their 

family members 

Well-Supported High  Y   

Eye Movement 
Desensitization 

& Reprocessing 

(EMDR) 

Children and 
youth (2-17) who 

have experienced 

trauma. 

Well-Supported Medium Y    

Parent-Child 

Interaction 
Therapy (PCIT) 

Children (2-7) 

with behavior and 

parent-child 
relationship 

problems 

Well-Supported Medium  Y Y  

Prolonged 
Exposure 

Therapy for 

Adolescents 
(PE-A) 

Children and 

youth (6-18) who 
have experienced 

trauma. 

Well-Supported Medium Y    

Seven 

Challenges (SC) 

Youth (13-25) 

with substance 
abuse issues 

Promising Medium    Y 

Trauma 

Recovery and 
Empowerment 

Model (TREM) 

Women who have 

been exposed to 
trauma co-

occurring with 

substance-use 
and/or mental 

health conditions 

Promising Medium Y   Y 

Trauma-Focused 
Cognitive-

Behavioral 

Therapy  (TF-
CBT) 

Children and 

youth (3-18) who 
have experienced 

trauma. 

Well-Supported High Y Y   

Wraparound 

Children and 

youth (0-17) with 
severe emotional, 

behavioral, or 

mental health 
difficulties and 

their families 

Promising High  Y Y  
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Predictor variables: Assessment-identified needs. 

 To examine the relationship between response patterns on the CANS functional 

assessment and ESI prescription, four dimension scores will be calculated—each of 

which is conceptually associated with one of the focus-of-treatment composite variables.  

Using dimension scores calculated from specific CANS domain items is recognized as a 

valid interpretive method by the CANS developers (Praed Foundation, 2016) and has 

been a methodological technique employed in prior research using the CANS (e.g., 

Lardner, 2015; Kisiel, 2014). Table 3.2 presents the dimension name, its source domain 

or module in the KY CANS 5+, the number of items comprising the dimension, and the 

possible value range for the calculated dimension score. As indicated by these ranges, all 

predictor variables will be treated as scalar measurements. 

 

Table 3.2. Predictor Variables and Associated CANS Domain Items 
 

Dimension KYCANS5+ Source Domain 
Number of 

Items 

Possible 

Values 

Cronbach’s 

α 
 

Trauma 

Exposure 

Trauma Experiences Module & Adjustment Sub 

Module (excluding time before treatment item) 
17 0 - 51 .86 

 

Emotional / 

Behavioral 

Problems 

Child Emotional/Behavioral Needs Domain 

(excluding trauma & substance use items) & 

Child Risk Behaviors Domain 

24 0 - 72 .84 

 

Family / 

Caregiver 

Functioning 

Life Functioning Domain (first two items only) & 

Child Strengths (first two items only) & 

Caregiver Needs/Strengths 

24 0 - 72 .93 

 

Substance 

Use 

Child Emotional/Behavioral Needs Substance 

Use Item & Substance Use Module 
7 0 - 21 .94 
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Analytic Strategy 

 Prior to testing the study’s research hypotheses, an extensive descriptive analysis 

of the data was conducted. This descriptive information provided insight into the data’s 

structure and helped identify contextual factors that informed the subsequent model 

building process(e.g., sample characteristics, potentially salient covariates). Moreover, as 

the universal trauma screening and assessment initiated by Project SAFESPACE 

represents a substantial change to the child welfare and behavioral health practice 

environment, descriptive information about the service landscape immediately post-

intervention is valuable not only from a research perspective but also for practitioners, 

administrators, and policymakers. A number of secondary research questions were 

explored in this initial analytic phase including: 

 

1. Which ESIs are most frequently prescribed by clinicians completing the CANS 

functional assessment? Which ESIs are most frequently prescribed at an agency 

level? 

Conducting a frequency distribution of the prescribed ESIs will identify those 

treatment modalities that are the most/least frequently selected for treatment in the 

practice environment. The counts of ESIs prescribed can also provide insight 

regarding the approach to therapeutic treatment (i.e., eclectic vs. homogenous) by 

case, clinician, or agency. As the CANS assessment report permits the 

identification of an “other” option when selecting a treatment modality, this 

analysis will determine if additional ESIs need to be considered for addition to the 

composite focus-of-treatment variables. 
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2. What do CANS domain scores and item responses indicate about the treatment 

needs of the Project SAFESPACE population?  

Because of its roots in communimetric theory, the CANS is not intended for 

norm-based decision making and normative data are not available (Rosanbalm et 

al., 2016). However, a closer examination of CANS responses can provide 

valuable descriptive information about the study’s sample and the Project 

SAFESPACE population. For example, using responses to selected CANS items 

one can gauge the prevalence of maltreatment experiences or describe particular 

constellations of trauma exposure (see Kisiel, 2014 for a methodologically 

sophisticated example of this approach). For the present study, descriptive 

statistics related to the dimensions of interest (i.e., predictor variables) will 

provide context for model interpretation. 

 

3. Do assessed clinical needs vary by child demographic (age, gender, or race) 

variables? 

Mean scores across the four predictor variable scales will be examined by age, 

gender, and race. This information will be used to inform the inclusion of factors 

or covariates during the model building stage to control for extraneous variability. 

Additionally, these findings may illuminate differential experiences for particular 

population subgroups (e.g., minority children, young children) that warrant 

additional exploration in future research projects. 
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Building upon these initial analyses, the primary line of inquiry was explored: Is 

there a predictable relationship between particular CANS functional assessment 

response patterns and the type of ESI prescribed? If so, how much variance in treatment 

prescription is accounted for by associated CANS assessment items?  Implicit to this 

inquiry are four testable hypotheses: 

 

H1:  Trauma-related CANS functional assessment items will predict the 

prescription of a trauma-focused ESI. 

 

H2:  Emotional/behavioral-related CANS functional assessment items will 

predict the prescription of a behavior-focused ESI, 

 

H3:  Family functioning-related CANS functional assessment items will predict 

the prescription of a family-focused ESI. 

 

H4:  Substance use-related CANS functional assessment items will predict the 

prescription of a substance abuse-focused ESI. 

  

Multilevel modeling. 

 Regression models are tools for predicting and/or describing the relationship 

between variables (Kreft & DeLeeuw, 1998) and, as such, are an appropriate analytic 

technique for exploring the research question and hypotheses noted above. However, if 

regression is used to analyze hierarchically structured data without accounting for 
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different levels, problems of both statistical assumption (e.g., independence of errors) and 

practical interpretation (e.g., ecological fallacy) arise (Meyers, Gamst, & Guarino, 2013; 

Tabachnick & Fidell, 2013). Data are hierarchically structured when smaller units of 

analysis (e.g., students) are contained, or “nested” within larger grouping units (e.g., 

classrooms) (Robson & Pevalin, 2016); this nesting may occur at two or more levels. 

Multilevel modeling (MLM) is specialized type of regression model that accommodates 

for hierarchically structured data by permitting intercepts and slopes to vary among 

higher level units (Tabachnick & Fidell, 2013). 

 The hypothesized model consists of two levels: (1) clients nested within (2) 

clinicians. Table 3.3 summarizes the model data components including their structural 

level, values, and level of measurement. 

Table 3.3. Model Data Components  
 

Variable Level Description Values Measurement 

     

Trauma Exposure Level 1 - Client Predictor (Covariate) 0 - 51 Scale 

Behavioral 

Problems 
Level 1 - Client Predictor (Covariate) 0 - 72 Scale 

Family Functioning Level 1 - Client Predictor (Covariate) 0 - 72 Scale 

Substance Abuse Level 1 - Client Predictor (Covariate) 0 - 21 Scale 

Age Level 1 – Client Potential Predictor (Covariate) 5 - 19 Scale 

Gender Level 1 – Client Potential Predictor (Factor) 
0 = male  

1 = female 
Nominal 

Trauma-Focused 

Treatment 
Level 1 – Client DV – Outcome Variable 1 

0 = not prescribed 

1 = prescribed 
Nominal 

Behavior-Focused 

Treatment 
Level 1 – Client DV – Outcome Variable 2 

0 = not prescribed 

1 = prescribed 
Nominal 

Family-Focused 

Treatment 
Level 1 – Client DV – Outcome Variable 3 

0 = not prescribed 

1 = prescribed 
Nominal 

Substance Abuse-

Focused Treatment 
Level 1 – Client DV – Outcome Variable 4 

0 = not prescribed 

1 = prescribed 
Nominal 

Clinician Level 2 – Clinician Level 2 Grouping Unit 1 - 381 Nominal 
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Among the numerous techniques for and approaches to multilevel analysis, 

models examining categorical data are “relatively recent additions to the methodological 

toolbox” (Powers, 2012, p. 57). These nonnormally distributed outcome variables are 

modeled using generalized linear models (GLM). The GLM consists of three 

fundamental components: (1) an outcome variable Y with a specific error distribution 

(i.e., random distribution) that has mean μi and variance σ2; (2) a link function that 

connects the expected values (μ) of Y to the transformed predicted values for η, and (3) a 

linear structural model that produces a latent predictor η of the outcome variable Y (Heck 

et al., 2012; Hox et al., 2018). 

 Because the dependent variables in the present analysis are dichotomous, the 

probability distribution is binomial (μ, n) with n representing the number of trials (Hox et 

al., 2018). The mean (μ) can be interpreted as the probability of success (π) (i.e., the 

event coded 1) (Heck et al., 2012). With only one trial (n = 1) there are only two possible 

outcomes—0 or 1. This scenario is a special case of the binomial distribution called the 

Bernoulli distribution (Hox et al., 2018). 

 The logit link function is the canonical link function for the binomial distribution. 

The logit link function assumes a binary outcome variable (Y) with probability π. The 

probability π for individual i is then transformed into the logit: 

𝜂𝑖 =  log(
𝜋𝑖

1 −  𝜋𝑖
) 

Thus, the logit coefficient (η) represents the log odds of Y = 1 as opposed to Y = 0. 
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Sample size. 

 The estimation methods employed in multilevel analysis are asymptotic and thus 

assume a large sample size (Hox et al., 2018). The most cited sample size guideline for 

linear multilevel models calls for at least 30 first-level units nested within 10 or more 

second-level clusters if the interest is on fixed effects; at least 50 second-level clusters are 

recommended if random effects are of interest (Schoeneberger, 2016). However, the 

analysis of binomial data (i.e., multilevel logistic models) requires larger sample sizes 

than multilevel linear models (Hox et al., 2018). In the case of these generalized 

multilevel models, a general 50/50 rule has been suggested: 50 groups with a membership 

of 50 first-level units (Moineddin, Matheson, & Glazier, 2007). 

 Preliminary estimates of the available data suggested an adequate number of 

level-two grouping units (i.e., clinicians), though most of these groups were expected to 

be comprised of fewer than 50 level-one units (i.e., cases). Receipt of the data confirmed 

ample level-two grouping units (381) with an average group membership below the 

recommended level (~7). This data structure was deemed adequate for the proposed 

multilevel logistic analysis. While the second-level clusters ranged in size from 1 to 64; 

unequal sample sizes among each level are expected and pose no computational problems 

(Tabachnick & Fidell, 2013). Moreover, smaller than recommended group sizes—

particularly when the number of level-two clusters is great and the model is not 

complex—will still result in adequate statistical power and produce robust fixed effect 

estimates. In such cases, it is primarily the group-level random effect variances that may 

be overestimated (Schoeneberger, 2016). Importantly, only first-level fixed effects were 

of interpretive interest in the present analysis.  
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 Variable centering. 

Predictor variables are often centered prior to conducting MLM. Centering entails 

subtracting the mean from each score (Meyers et al., 2013); in effect centering transforms 

raw scores into deviation scores. The two most common centering techniques are grand 

mean centering—each score is centered against the mean of the entire sample—and 

group mean centering—scores are centered against the mean of other cases in their group 

or cluster.  

Centering predictor variables often aids in the interpretation of the fixed intercept. 

Prior to centering, the intercept is the value of the dependent variable when all predictor 

variables are zero (Tabachnick & Fidell, 2013). This makes interpretation difficult when 

the value of zero is not meaningful. By centering the predictors, the intercept becomes the 

value of the DV when the predictors are equal to the mean of the sample (grand mean 

centering) or the group/cluster (group mean centering).  

Decisions regarding the centering strategy should always reflect the research 

questions (Sommet & Morselli, 2017). In the present analysis, the approach that was most 

conducive to intercept interpretation was to not center the predictor variables (i.e., 

maintain raw scores). This is because the predictor variables—composites of assessment 

items—do have a meaningful zero values and, in fact, the zero values represent the most 

readily interpretable reference point. For example, in the model examining the 

prescription of a trauma-focused treatment, the intercept represents the probability of 

being assigned a trauma-focused treatment when the assessment reflects no indication of 

trauma-, behavior-, family-, or substance use-related problems (i.e., all relevant items are 

rated as zero on the CANS assessment).  
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 Model estimation. 

Multilevel modeling typically employs maximum likelihood (ML) estimation 

techniques (Tabachnick & Fidell, 2013). The ML estimation method “produces estimates 

for the population parameters that maximize the probability (produce the ‘maximum 

likelihood’) of observing the data that are actually observed” (Hox et al., 2018, p. 27). 

For MLM with categorical outcomes, ML estimation seeks to produce the maximum 

quasi-likelihood—an approach that approximates the nonlinear link by a nearly linear 

transformation (Heck et al., 2012, Hox et al., 2018). The most efficient ML estimation 

methods for categorical outcomes use the Newton-Raphson and Fisher scoring methods 

(Heck et al., 2012). The Newton-Raphson technique is the default estimation method for 

generalized linear models in SPSS and was the ML estimation method used in the 

following analyses. 

 

Model comparison and evaluation. 

Maximum likelihood estimation techniques produce a model deviance statistic. 

The model deviance statistic is equivalent to –2*log likelihood (2LL), where log is the 

natural logarithm and likelihood is the value of the likelihood function at the point of 

convergence (Heck et al., 2012). This deviance statistic can be used as an indicator of 

model fit; lower deviance suggests better fit than higher deviance. A number of tests and 

indices derived from the deviance statistic are used to compare competing models, 

including the χ2 likelihood ratio test [χ2 = (–2*log likelihoodsimpler model) - (–2*log 

likelihoodmore complex model)], Akaike’s information criterion (AIC), and the Bayesian 

information criterion (BIC) (Heck et al., 2012, Tabachnick & Fidell, 2013). 
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 However, because multilevel models with dichotomous outcomes employ an 

estimation procedure that maximizes an approximate likelihood function (i.e., quasi-

likelihood) rather than a precise likelihood, tests and indices relying on the deviance 

statistic are not accurate (Hox et al., 2018). The SPSS GENLIN output does provide an 

estimate of the –2 log pseudo likelihood for model comparison but warns: “When 

comparing models using pseudo likelihood values, caution should be used because 

different data transformations may be used across models” (IBM SPSS v25, 2018). Given 

the inaccuracy of the deviance statistic across substantially different models, procedural 

guidelines for multilevel logistic regression modeling often do not include a fit 

comparison between the unconditional (null) model and subsequent iterations involving 

level-one predictors (e.g., Heck et al., 2012; Sommet & Morselli, 2017) although some 

do advocate for a fit comparison between models with identical predictors but differing 

random effects (e.g., Sommet & Morselli, 2017). In fact, some authors have even 

suggested that “substantive sensibility”—as opposed to statistical examination—should 

be the analyst’s primary concern when evaluating multilevel models with categorical 

outcomes (Heck et al., 2012, p. 162). 

Given the impossibility of reliable interpretation, the deviance statistic, and any 

indices or tests derived from it, were not employed for model comparison in the present 

analysis. On the other hand, the lack of theoretical or analytical precedent for this inquiry 

demands caution in relying solely on substantive evaluation.  As such, two empirical 

measures not derived from calculated model deviance were used in model comparison. 

The first evaluative strategy involved the examination of the model’s classification 



 71 

accuracy while the second involved the calculation of a pseudo-R2 and the comparison of 

explained variance across models. 

To compare classification accuracy across models, predicted and observed 

outcome group membership (i.e., prescribed / not prescribed) were cross-tabulated after 

each subsequent model iteration and the phi coefficient calculated. This provides the 

ability to (1) examine the significance and strength of the correlation between predicted 

and observed outcome classification and (2) assess the impact of introduced predictors on 

this correlation.  

In multiple regression, the squared multiple correlation (R2) can be interpreted as 

the “proportion of variance in the DV that is predictable from the best linear combination 

of the IVs” (Tabachnick & Fidell, 2013, p. 130). When multiple levels are involved, the 

concept of “explained variance” becomes more complex. Hox and colleagues (2018) 

have outlined an approach that entails examining the proportion of explained variance by 

examining the residual error variances at each level in a sequence of models. However, 

this approach is less straightforward for multilevel binary logistic regression models 

because (1) most analogues to the squared multiple correlation in logistic regression are 

calculated using the deviance statistic of the null model and a comparison model, and (2) 

the underlying latent variable is rescaled to the same standard distribution (π2 – 3) for 

each model so the lowest-level residual variance is always ~3.29 (Hox et al., 2018). 

To overcome the first obstacle. McKelvey and Zavoina’s (1975) method was 

employed to estimate the explained variance associated with the latent outcome (η) using 

the formula: 

𝑅𝑀𝑍
2 =  

𝜎𝐹
2

𝜎𝐹
2 + 𝜎𝑢0

2 + 𝜎𝑅
2 



 72 

In effect, the variance of η is segmented into the lowest level residual variance (𝜎𝑅
2), the 

second-level intercept variance (𝜎𝑢0
2 ), and the variance associated with the linear 

predictor in the fixed portion of the model (𝜎𝐹
2). The variances of the four linear 

predictors were calculated in the raw data file from the modeled regression equation. The 

systematic variance can then be divided by the total variance to estimate the proportion of 

variance attributable to the linear predictor.  

 The second obstacle—the rescaling of the underlying latent variable—renders it 

useless to compare the explained first-level variance across models as the variance will 

always be ~3.29. However, using the total variance of the latent variable (the 

denominator of the McKelvey and Zavoina R2), a scale correction factor can be 

calculated using the formulas 𝜎𝑜
2 𝜎𝑚

2⁄  for the variance components and 𝜎0 𝜎𝑚⁄  for the 

regression coefficients. Having been rescaled, the explained first-level variance can then 

be compared across subsequent model iterations (Hox et al., 2018). 

  

Model building process. 

The sequence of steps described below (adapted from Gamst et al., 2013; Heck et al., 

2012; Tabachnick & Fidell, 2013) summarizes the model-building process for predicting 

a trauma-focused treatment prescription; other outcome variables followed the same 

modeling procedure. All analyses were conducted in IBM SPSS Version 25 using the 

generalized linear mixed modeling (GLMM) procedure.  

1. Data screening, cleaning, and assumption checking.  

2. Creation of an “unconditional” or null model to examine the intraclass 

correlation (ICC).  
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3. Estimation of a model with level-one, CANS-derived predictors fixed.  

4. Estimation of models in which the slope for each level-one, CANS-derived 

predictor is permitted to vary randomly across level two units.  

5. Estimation of a model with level-one, CANS-derived and demographic predictors 

fixed.  

6. Model interpretation. 

 

The unconditional model (Model 0). 

The initial phase of the exploratory modeling process entails the fitting of an 

unconditional—or intercept-only—model. The unconditional model for client i of 

clinician j can be expressed as: 

𝜂𝑖𝑗 = log (
𝜋𝑖𝑗

1 − 𝜋𝑖𝑗  
) =  𝛽0𝑗 

where β0j is the intercept for the jth clinician. At the second level, the intercepts (β0j) vary 

across clinicians: 

𝛽0𝑗 =  𝛾00 + 𝑢0𝑗 

where γ00 is the clinician-level intercept and u0j is the random parameter capturing 

clinician-level variability. Through algebraic substitution, the single-equation 

unconditional two-level model can be expressed as: 

𝜂𝑖𝑗 =  𝛾00 +  𝑢0𝑗 

As this equation indicates, the unconditional model estimates one fixed effect—the 

clinician-level intercept—and one random effect—the clinician-level variance for the 

intercept. 
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The unconditional model permits the calculation of the intraclass correlation 

coefficient (ICC). The ICC (ρ) is a ratio of the between-group variance to the within-

group variance at the second level (i.e., clinician): 

𝜌 =  
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2  

The ICC indicates the proportion of the total variance that is explained by the nested 

structure of the data; it can also be interpreted as “the expected correlation between two 

randomly drawn units that are in the same group” (Hox, Moerbeek, & Schoot, 2018, p. 

13). Higher ICC values indicate that the assumption of independence of errors is violated 

(Tabachnick & Fidell, 2013) and, thus, that MLM is an appropriate analytic strategy. 

Guidelines regarding the precise ICC value that can be regarded as indicative of 

violating the assumption of independence of errors are rare in the statistical literature. For 

example, Meyers and colleagues (2013) only go so far as to note that “to the extent that 

the ICC is greater than zero, membership in a Level 2 unit contributes to prediction and 

thus indicates that the independence assumption is violated” (p. 470). Likewise, Hox and 

colleagues (2018) provide no concrete values on the matter apart from noting in one 

example that an ICC of 0.10 is “rather low” (p. 5). Tabachnick and Fidell (2013) suggest 

that if the ICC is “trivial” single-level analysis may appropriate but do not offer a more 

precise definition; they do note that a practical strategy “when the need for hierarchical 

analysis is ambiguous” is to conduct both a single-level and a multilevel analysis and see 

if the results differ substantively (p. 826). 

Simulation studies have shown that even relatively small ICC values can increase 

the probability of Type 1 errors depending on the size of the level-two grouping units. 

For example, Barcikowski (1981) notes that with an ICC of only 0.05 and a group size of 
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10 a nominal α level of 0.05 is, in fact, closer to 0.11; with a group size of 100, the actual 

α level balloons to 0.43. Perhaps this is why Hox and colleagues (2018) observed the 

assumption of independence is “almost always” violated with nested data (p. 4). To 

reduce the likelihood of type 1 errors, and to adopt a conservative approach to ICC 

interpretation, it was determined a priori that any ICC greater than 0.05 (i.e., 5% of total 

variance is attributable to the data’s nested structure) would be considered grounds for 

multilevel analysis.  

 

The fixed CANS-derived predictors model (Model 1). 

As the ICC calculated from the unconditional model indicated sufficient clinician-

level variability in the likelihood for a client to be prescribed a trauma-focused treatment 

to warrant further multilevel analysis, the next phase in the model building process 

entailed the addition of all CANS-derived predictors as fixed effects. As there are four 

predictors (X) of interest in the present analysis—trauma experiences, 

behavioral/emotional problems, family functioning, and substance abuse—the fixed 

predictor level-one model can be expressed as: 

𝜂𝑖𝑗𝑘 = log (
𝜋𝑖𝑗

1 − 𝜋𝑖𝑗  
) 𝛽0𝑗 + 𝛽1𝑋1𝑖𝑗 + 𝛽2𝑋2𝑖𝑗 +  𝛽3𝑋3𝑖𝑗 + 𝛽4𝑋4𝑖𝑗 

or 

𝜂𝑖𝑗𝑘 = log (
𝜋𝑖𝑗

1 − 𝜋𝑖𝑗  
) 𝛽0𝑗 + 𝛽1𝑡𝑟𝑎𝑢𝑚𝑎𝑖𝑗 + 𝛽2𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑖𝑗 +  𝛽3𝑓𝑎𝑚𝑖𝑙𝑦𝑖𝑗

+ 𝛽4𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗 

where β0j is the intercept for the jth clinician. As with the unconditional model, the 

intercepts vary across clinicians: 
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𝛽0𝑗 =  𝛾00 + 𝑢0𝑗 

However, the level-one within-group slopes for the four predictor variables are fixed with 

no corresponding random components. In other words, the slope is not free to vary across 

clinicians: 

𝛽1𝑗𝑘 =  𝛾10 

𝛽2𝑗𝑘 =  𝛾20 

𝛽3𝑗𝑘 =  𝛾30 

𝛽4𝑗𝑘 =  𝛾40 

 

Through substitution, the two-level fixed predictor model can be expressed as the single 

equation: 

𝜂𝑖𝑗 =  𝛾00 +  𝛾10𝑡𝑟𝑎𝑢𝑚𝑎𝑖𝑗 +  𝛾20𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑖𝑗 + 𝛾30𝑓𝑎𝑚𝑖𝑙𝑦𝑖𝑗 + 𝛾40𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗 +  𝑢0𝑗 

 

As indicated, the fixed predictor model has five fixed effects (the intercept and four slope 

coefficients) and one random effect capturing clinician-level variation (u0j). 

 In this step the contribution of each level-one, CANS-derived predictor was 

assessed. The model produced in this step was compared with the model from step one to 

see if the inclusion of the level-one predictors improved the model. 

 

The CANS-derived predictors models with random slopes (Model 2). 

Whereas level-one predictors were fixed in the previous step, in this series of 

models the level-one predictors were permitted to be random one at a time. Of analytic 

interest was the presence of any significant random effects of the CANS-derived 

predictors, which would indicate that the relationship between CANS responses patterns 

and the prescription of a trauma-focused ESI varies across clinicians. 
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This step involved the systematic analysis of 16 different models. In contrast to 

the fixed predictor model, the within-cluster slope was defined as randomly varying 

across clinicians: 

𝛽1𝑗𝑘 =  𝛾10 + 𝑢1𝑗 

 

where 𝛾10 is the clinician-level mean intercept coefficient for the first predictor (trauma 

experiences) and 𝑢1𝑗 is a random parameter representing the difference in individual 

clinician coefficients from this mean. This results in the combined equation: 

 

𝜂𝑖𝑗 =  𝛾00 +  𝛾10𝑡𝑟𝑎𝑢𝑚𝑎𝑖𝑗 +  𝛾20𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑖𝑗 + 𝛾30𝑓𝑎𝑚𝑖𝑙𝑦𝑖𝑗 + 𝛾40𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗

+  𝑢1𝑗𝑡𝑟𝑎𝑢𝑚𝑎 + 𝑢0𝑗 

 

 

The fixed CANS-derived and demographic predictors model (Model 3). 

 In the final phase of the model building process, child-level demographic 

predictors were included with the four CANS-derived predictors. One of the demographic 

predictors—gender—was dichotomously coded with males as the reference group. The 

full equation for model three can be expressed as: 

𝜂𝑖𝑗 =  𝛾00 +  𝛾10𝑡𝑟𝑎𝑢𝑚𝑎𝑖𝑗 +  𝛾20𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑖𝑗 + 𝛾30𝑓𝑎𝑚𝑖𝑙𝑦𝑖𝑗 + 𝛾40𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗

+ 𝛾50𝑎𝑔𝑒𝑖𝑗 + 𝛾60𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑗 + 𝑢0𝑗 

 

  

 Model interpretation. 

 Multilevel models can answer a number of different research questions 

(Tabachnick & Fidell, 2013). For the purposes of the present analysis, model 

interpretation first focused on the statistical significance and relative strength of each 
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significant predictor. Each of the aforementioned research hypotheses could be rejected if 

the focus-of-treatment outcome variable was not significantly predicted by the associated 

CANS-derived scalar measure. Likewise, the relative strength of each predictor was 

compared to determine if trauma-related CANS items were more closely associated with 

the prescription of a trauma-focused treatment than other CANS items (and so forth for 

the other three outcome variables). 

 Next, the relationships between predictors and the outcome variables were 

interpreted in terms of the log odds. Given a one-unit increase on each of the predictor 

scales, how do the odds of being prescribed an associated treatment modality change? 

Odds ratios can also serve as an indication of effect size for the individual predictors 

(Tabachnick & Fidell, 2013). Odds ratios were thus compared against the research 

hypotheses to determine if each CANS-derived predictor had the greatest effect in the 

prescription of an associated treatment outcome. 
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Conceptual Model  

Figure 3.1. Conceptual Model of the Study 

 

 

The visual conceptual model presented in Figure 3.1 is intended to provide a 

concise overview of the present study’s purpose and framework. Project SAFESPACE 

sought to achieve the goal of assessment-driven, evidence-based treatment for children in 

out of home care. This study adopts an EBP perspective to evaluate the degree to which 

this goal is being achieved.  

As detailed in the introductory chapter, assessment is an integral part of the EBP 

process. The four primary elements of the EBP model—client state and circumstances, 

research evidence, person of the practitioner, and professional expertise (see Gilgun, 
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2005; Regehr et al., 2007)—are all shaped by the assessment process. The relationship 

between assessment and the client’s state and circumstances is direct (denoted in the 

conceptual model by a solid line) as structured assessment is intended to provide a 

standardized approach for collecting and organizing information about the client and his 

or her environmental context. The relationship between assessment and the other 

elements is less direct but still interactive (denoted in the conceptual model by a dashed 

lined). For instance, assessment-derived information may frame the search for relevant 

research evidence, highlight potential areas of practitioner bias or values conflict (e.g., 

the client is assessed to have a history of sexual aggression), or provide context for 

drawing upon prior professional experiences and domains of expertise.  

Responses on the CANS functional assessment were used to calculate four 

predictor variables: (1) trauma-exposure, (2) behavior problems, (3) family functioning, 

and (4) substance use. It is hypothesized that each of these dimensions will significantly 

predict a related ESI selection (e.g., trauma exposure will be a significant predictor of 

trauma-focused treatment).  

The EBP model, NDM theory, and previous treatment decision-making research 

all suggest that client characteristics (as identified by the functional assessment) cannot 

account for all variability in treatment selection. Compelling research evidence suggests 

that an underlying schema may mediate the relationship between case conceptualization 

and subsequent treatment decisions. Similarly, the NDM framework’s concept of 

situation-action pattern matching rules posits that treatment decisions rarely entail an 

exhaustive consideration of all possible alternatives. As such, it is entirely expected that 

non-assessment related factors will influence treatment recommendations and the 
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association between assessment responses and ESI prescriptions may be weaker than 

anticipated. Keeping this in mind, multilevel modeling will be employed to examine the 

relative strength of each predictor—predicted relationship. To the extent that predictable 

relationships are observed, one may appraise the degree to which treatment prescriptions 

can be accurately described as assessment-driven and evidence-based.   
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CHAPTER 4: 

RESULTS 

Sample Description 

 A total of 10,679 children have been screened as part of Project SAFESPACE as 

of November 30th, 2018. Of these, 6,232 (58.4%) positively screened-in and thus required 

a CANS assessment. However, SACWIS records only reflect 2,841 cases with one or 

more completed CANS assessments, suggesting a compliance rate of roughly 45.6%.  

 Of the 2,841 cases with an initial CANS functional assessment, 436 (15.3%) were 

children under the age of five; these cases were excluded from the analysis as they were 

assessed using a different version of the assessment instrument. An additional 14 cases 

were excluded because the incorrect CANS version had been administered (i.e., a child 

older than four years old was administered the KY CANS 0-4). An examination of 

missing data indicated that 49 CANS records were missing all item-level data and were 

thus deleted leaving a final sample size of 2342 cases with valid initial KY CANS 5+ 

assessments. Sample demographics are presented in Table 4.1. 
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Table 4.1. Sample Demographics 
 

 

Demographic characteristic 
 

 
 

M (SD) or % 
 

(n = 2342)   
 

Age  12.4 (3.7) 
 

Gender   

 Male  50.3% 

 Female  49.7% 
 

Race/Ethnicity   

 White  74.9% 

 Biracial/Multiracial  9.3% 

 Black/African American  8.0% 

 Hispanic  5.6% 

 Other/Unknown  2.2% 
 

 

 Geographically, the sample spans the state of Kentucky with all nine DCBS 

Protection and Permanency service regions being represented. The service region with 

the greatest representation is Salt River Trail (n = 483, 20.6%). Eastern Mountain region 

has the fewest number of cases (n = 43, 1.8%) included in the sample. Note that due to 

Project SAFESPACE’s rolling implementation plan, not all service regions have been 

conducting assessments for an equivalent length of time. 

 About two-thirds of the children in the sample (n = 1538, 65.7%) were 

experiencing their first OOHC episode at the time of data extraction. Slightly more than 

one-fifth (n = 497, 21.2%) were in their second OOHC episode while less than one-tenth 

(n = 197, 8.3%) had already experienced two or more OOHC episodes prior to their 

current one. The maximum number of recorded OOHC episodes was eight (n = 2). These 

data were not available for 4.7% (n = 110) of the sample. 
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Describing the Service Landscape 

 A total of 381 unique clinicians completed the 2342 initial KY CANS 5+ 

assessments in the sample. The mean number of CANS completed per clinician is 6.15 

(SD = 8.24). More than one-quarter (n = 103, 26.5%) of clinicians completed only one 

initial CANS assessments among those cases included in the sample. Four clinicians 

completed 50 or more initial CANS assessments; the maximum number of assessments 

completed by a single clinician was 64. 

 A total of 51 unique child-serving agencies are represented in the sample. Of 

these one is a child advocacy center (CAC); 14 are community mental health centers 

(CMHC); and 36 are private child caring agencies (PCC), private child placing (PCP) 

agencies, or agencies consisting of both PCC and PCP programs. Of all initial CANS 

assessments included in the sample, 0.1% (n = 3) were completed at a CAC, 15.2% (n = 

356) were completed at a CMHC, and 84.7% (n = 1983) were completed at a PCC/PCP 

agency. The mean number of CANS completed per agency is 45.9 (SD = 90.6). Roughly 

30% (n = 15) of the agencies represented in the sample completed fewer than 10 initial 

CANS assessments. The five most heavily represented agencies account for more than 

50% (n = 1272) of the total initial CANS included in the sample. Agency five completed 

the greatest number of initial assessments (n = 517). 

 

Prescribed Treatment Modalities 

 Of the 2342 cases for which an initial CANS assessment was completed, 2160 

(92.2%) resulted in a treatment recommendation. The majority of cases were assigned 

one treatment modality (n = 1496, 63.9%) while about one quarter of the sample was 
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assigned two or more treatment modalities (n = 664, 28.4%). The maximum number of 

treatment modalities assigned to a single case was 8 (n = 1). 

The most frequently prescribed treatment modalities were cognitive-behavioral 

therapy (n = 1642, 70.1%), trauma-focused cognitive-behavioral therapy (n = 542, 

23.1%), and cognitive therapy (n = 281, 12.0%). For 125 (5.3%) cases, the clinician 

selected the “other” option and identified a treatment modality not included in the 

dropdown list. The most frequent “other” treatment recommendations were play therapy 

(n = 33, 1.4%), solution-focused brief therapy (n = 29, 1.2%), and person- (or client-) 

centered therapy (n = 22, 0.9%). 

Of the 381 clinicians who completed one or more initial CANS assessments, 

82.9% (n = 316) prescribed CBT at least one time, 52.2% (n = 199) prescribed TF-CBT 

at least one time, and 36.2% (n = 138) prescribed family therapy at least one time. About 

one-eighth (n = 47, 12.3%) of all clinicians prescribed some form of “other” treatment 

modality. Only 9 (2.4%) clinicians did not make any treatment recommendations; most of 

these (n = 7) had only completed one or two initial CANS assessments. 

 To examine the frequency of treatment prescriptions at an agency level, an agency 

was included in each modality’s frequency count if one or more cases associated with 

that agency had been prescribed the respective modality. There were four modalities that 

had been prescribed at more than half of all included child-serving agencies: CBT (n = 

47, 92.2%), TF-CBT (n = 45, 88.2%), cognitive therapy, (n = 34, 66.7%) and family 

therapy (n = 33, 64.7%). More than one-third (n = 20, 39.2%) of all agencies were 

associated with one or more cases that had been prescribed an “other” modality. Table 
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4.2 presents the complete list of all prescribed treatment modalities by cases, clinicians, 

and agencies. 

The number of unique treatment modalities prescribed across all cases associated 

with a single child-serving agency ranged from 16 to 0. As expected, there was a strong, 

positive correlation between the number of CANS completed by an agency and the total 

number of unique treatment modalities prescribed (r = .589, p < 0.001). However, there 

was an even more pronounced positive correlation between the total number of clinicians 

who completed the assessments associated with a given agency and the total number of 

unique treatment modalities prescribed (r = .790, p < 0.001). It is important to note that 

the total number of clinicians associated with an agency is not necessarily reflective of 

the size of the agency’s clinical department. Table 4.3 presents the number of completed 

assessments, total number of associated clinicians, number of unique prescribed treatment 

modalities, and a list of prescribed modalities for each of the 51 agencies represented in 

the sample. 
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Table 4.2. Frequency of Prescribed Treatment Modalities by Cases, Clinicians, 

and Agencies 
 

 
 

Cases 

(n = 2342) 

 
 

Clinicians 

(n = 381) 

 
 

Agencies 

(n = 51) 
 

Modality n %  n %  n % 
 

 

Cognitive Behavioral Therapy 1642 70.1%  316 82.9%  47 92.2% 

Trauma-Focused CBT 542 23.1%  199 52.2%  45 88.2% 

Cognitive Therapy 281 12.0%  97 25.5%  34 66.7% 

Family Therapy 260 11.1%  138 36.2%  33 64.7% 

None 182 7.8%  9 2.4%  2 3.9% 

Other (see below) 125 5.3%  47 12.3%  20 39.2% 

Dialectical Behavior Therapy 124 5.3%  50 13.1%  22 43.1% 

Seven Challenges 71 3.0%  23 6.0%  13 25.5% 

Trauma Recovery & Empowerment  44 1.9%  30 7.9%  16 31.4% 

Parent-Child Interaction Therapy 31 1.3%  20 5.2%  16 31.4% 

Structural Family Therapy 23 1.0%  15 3.9%  10 19.6% 

Child-Parent Psychotherapy 21 0.9%  20 5.2%  14 27.4% 

Restorative Approach 17 0.7%  12 3.1%  7 13.7% 

Brief Strategic Family Therapy 13 0.6%  9 2.4%  5 9.8% 

EMDR  8 0.3%  4 1.0%  3 5.9% 

Wraparound 6 0.3%  4 1.0%  4 7.8% 

Adolescent Community Reinforcement 4 0.2%  4 1.0%  3 5.9% 

Prolonged Exposure Therapy 1 < 0.1%  1 0.3%  1 2.0% 

Sanctuary Model 0 0%  0 0%  0 0% 

 

“Other” Modalities         

Play Therapy 33 1.4%  20 5.2%  10 19.6% 

Solution Focused (Brief) Therapy 29 1.2%  6 1.6%  7 13.7% 

Person (Client) Centered Therapy 22 0.9%  8 2.1%  3 5.9% 

Motivational Interviewing 21 0.9%  11 2.9%  6 11.8% 

Reality Therapy 9 0.4%  7 1.8%  6 11.8% 

Expressive Therapies 7 0.3%  5 1.3%  4 7.8% 

Interactive Psychotherapy 4 0.2%  1 0.3%  1 2.0% 

Seeking Safety 4 0.2%  4 1.0%  2 3.9% 

Narrative Therapy 3 0.1%  3 0.8%  2 3.9% 

Applied Behavior Analysis 3 0.1%  2 0.5%  2 3.9% 

Operant Conditioning 2 0.1%  1 0.3%  1 2.0% 

Behavior Modification 1 < 0.1%  1 0.3%  1 2.0% 
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Table 4.3. Completed CANS, Assessing Clinicians, and Prescribed Modalities by 

Agency 
 
 

Agency Type 

CANS 

(n) 

Clinicians 

(n) 

Prescribed 

modalities (n) Prescribed modalities 
 

 

Agency #18 
PCC/ 

PCP 
70 15 16 

BSFT, CPP, CT, CBT, DBT, FT, PCIT, RA, 

SFT, TREM, TFCBT, PLAY, SFBT, MI, ET, NT 

Agency #41 
PCC/ 

PCP 
197 30 15 

ACR, CT, CBT, DBT, EMDR, FT, PET, RA, 

SFT, TREM, TFCBT, PLAY, MI, RT, SS 

Agency #26 
PCC/ 

PCP 
65 18 14 

BSFT, CPP, CT, CBT, DBT, EMDR, FT, 

PCIT, RA, SC, SFT, TREM, TFCBT, PLAY 

Agency #27 PCP 390 37 14 
CPP, CT, CBT, DBT, FT, PCIT, SFT, TREM, 

TFCBT, PLAY, PCT, MI, RT, NT 

Agency #5 PCP 517 36 13 
CT, CBT, DBT, FT, PCIT, TREM, TFCBT, 

PLAY, PCT, RT, IP, OC, BMOD 

Agency #25 
CMHC/ 

PCP 
75 29 11 

CPP, CT, CBT, DBT, FT, PCIT, SFT, TREM, 

TFCBT, SFBT, MI 

Agency #10 CMHC 24 9 10 
CT, CBT, FT, SC, SFT, TREM, TFCBT, 

PLAY, MI, ET 

Agency #12 CMHC 18 6 9 
BSFT, CPP, CT, CBT, DBT, FT, PCIT, 

TFCBT, ET 

Agency #15 PCC 89 10 9 
CT, CBT, DBT, FT, SC, TREM, TFCBT, 

SFBT, RT 

Agency #23 PCP 11 6 9 
CPP, CT, CBT, DBT, FT, PCIT, TREM, 

TFCBT, WRAP 

Agency #28 PCP 37 11 9 
CPP, CT, CBT, FT, SC, TREM, TFCBT, 

SFBT, ET 

Agency #36 
PCC/ 

PCP 
67 12 9 

CPP, CT, CBT, FT, PCIT, SC, TFCBT, PLAY, 

PCT 

Agency #40 
PCC/ 

PCP 
32 11 9 

CT, CBT, DBT, FT, RA, SFT, TREM, TFCBT, 

PLAY 

Agency #44 
PCC/ 

PCP 
11 6 9 

ACR, CPP, CT, CBT, DBT, FT, SC, TFCBT, 

RT 

Agency #3 
PCC/ 

PCP 
42 5 8 

BSFT, CT, CBT, DBT, FT, SFT, TREM, 

TFCBT 

Agency #7 
PCC/ 

PCP 
16 5 8 CT, CBT, DBT, FT, SC, SFT, TREM, TFCBT 

Agency #14 CMHC 79 17 8 
ACR, CT, CBT, FT, PCIT, SC, TFCBT, 

WRAP 

Agency #37 
PCC/ 

PCP 
35 5 8 CT, CBT, FT, PCIT, SC, SFT, TFCBT, PLAY 

Agency #39 PCP 60 19 8 BSFT, CBT, FT, SC, TREM, TFCBT, MI, SS 

Agency #6 CMHC 36 7 7 CPP, CT, CBT, FT, PCIT, TREM, TFCBT 

Agency #34 CMHC 35 11 7 CT, CBT, FT, PCIT, SC, TFCBT, WRAP 

Agency #43 PCC 14 4 7 CT, CBT, DBT, FT, RA, TFCBT, WRAP 

Agency #46 
PCC/ 

PCP 
16 5 7 CPP, CT, CBT, DBT, FT, PCIT, TFCBT 

Agency #19 
PCC/ 

PCP 
40 8 6 CT, CBT, DBT, FT, RA, TFCBT 

Agency #29 PCP 52 2 6 CT, CBT, DBT, TFCBT, SFBT, ABA 

Agency #33 PCC 56 6 6 CT, CBT, DBT, FT, TFCBT, RT 
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Agency #45 PCC 20 2 6 CT, CBT, DBT, FT, RA, TFCBT 

Agency #1 CMHC 40 10 5 CT, CBT, PCIT, SC, TFCBT 

Agency #22 PCC 15 2 5 CT, CBT, DBT, FT, TFCBT 

Agency #30 CMHC 24 5 5 CPP, CT, CBT, DBT, TFCBT 

Agency #38 CMHC 2 2 5 CPP, CBT, FT, PCIT, TFCBT 

Agency #2 
PCC/ 

PCP 
11 3 4 CBT, TFCBT, PLAY, SFBT 

Agency #11 PCC 4 2 4 CBT, DBT, TREM, TFCBT 

Agency #13 CMHC 7 6 4 CBT, FT, PCIT, TFCBT 

Agency #24 PCC 12 2 4 CT, CBT, FT, SFBT 

Agency #31 PCP 30 3 4 CPP, CBT, FT, TFCBT 

Agency #32 PCC 1 1 4 CT, CBT, FT, TFCBT 

Agency #42 PCP 13 1 4 CT, CBT, EMDR, TFCBT 

Agency #4 PCC 5 1 3 CBT, FT, TFCBT 

Agency #16 
PCC/ 

PCP 
16 2 3 CT, CBT, TFCBT 

Agency #51 PCC 4 1 3 CT, CBT, TFCBT 

Agency #9 
PCC/ 

PCP 
2 2 2 CBT, SC 

Agency #17 PCP 27 3 2 CBT, TFCBT 

Agency #35 CMHC 2 2 2 CBT, TFCBT 

Agency #47 CMHC 8 3 2 CBT, TFCBT 

Agency #48 CAC 3 2 2 CBT, TFCBT 

Agency #8 PCP 1 1 1 TFCBT 

Agency #20 PCP 3 1 1 CBT 

Agency #21 PCC 2 1 1 ABA 

Agency #49 CMHC 5 1 0 -- 

Agency #50 CMHC 1 1 0 -- 

 

ACR=Adolescent Community Reinforcement. BSFT=Brief Strategic Family Therapy. CPP=Child-Parent Psychotherapy. 

CT=Cognitive Therapy. CBT=Cognitive Behavioral Therapy. DBT=Dialectical Behavior Therapy. EMDR=Eye Movement 
Desensitization and Reprocessing. FT=Family Therapy. PCIT=Parent-Child Interaction Therapy. PET=Prolonged Exposure 

Therapy. RA=Restorative Approach. SM=Sanctuary Model. SC=Seven Challenges. SFT=Structural Family Therapy. 

TREM=Trauma Recovery and Empowerment Model. TFCBT=Trauma-Focused Cognitive Behavioral Therapy. 
WRAP=Wraparound. PLAY=Play Therapy. SFBT=Solution Focused (Brief) Therapy. PCT=Person (or Client) Centered Therapy. 

MI=Motivational Interviewing. RT=Reality Therapy. ET=Expressive Therapy. IP=Interactive Psychotherapy. SS=Seeking Safety. 

NT=Narrative Therapy. ABA=Applied Behavior Analysis. OC=Operant Conditioning. BM=Behavior Modification. Italics denotes 
user-inputted “other” modalities. 
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 At the clinician-level, there is tremendous variability in the degree to which 

multiple types of treatment modalities are prescribed. A plurality of clinicians (n = 112, 

29.4%) had prescribed two unique treatment modalities across all the initial CANS he or 

she completed; slightly fewer had prescribed only one treatment modality (n = 107, 

28.1%). Two clinicians (0.5%) had prescribed 10 different treatment modalities—the 

maximum number in the present sample. 

 Raw frequencies of unique treatment modalities prescriptions are difficult to 

interpret given the differing number of initial CANS assessments completed among the 

clinicians associated with the sample. Clinicians who have completed a greater number of 

assessments will have had greater opportunity to assign different treatment 

recommendations than those who have completed fewer, irrespective of personal 

treatment decision making philosophies or proclivities. As such, examining the ratio of 

completed CANS to modalities assigned may provide more accurate insight. As 

illustrated in Table 4.4, the most homogenous treatment modality prescription pattern is 

that of clinician #253 who has completed 55 initial CANS assessments and prescribed 

CBT for every case. At the other extreme, the most eclectic treatment modality 

prescription patterns are seen among those clinicians who have completed only one initial 

CANS assessment but have prescribed five or more unique modalities to that single case. 

  



 91 

Table 4.4. Most Homogenous and Eclectic Modality Prescriptions by Clinician 
 
 

Clinician Agency CANS : Modalities  Prescribed Modalities 
 

 

Most Homogenous  
 

253 Agency #5 55:1 CBT 

149 Agency #5 28:1 CBT 

131 Agency #41 22:1 TFCBT 

142 Agency #5 64:3 CT, CBT, TFCBT 

61 Agency #5 19:1 CBT 
 

Most Eclectic 
 

320 Agency #36 1:5 CT, CBT, FT, SC, TFCBT 

236 Agency #41 1:6 ACR, CBT, FT, RA, SFT, TREM 

363 Agency #26 1:6 CPP, CT, CBT, FT, RA, SC 

20 Agency #10 1:6 CT, CBT, FT, SFT, TREM, TFCBT 

382 Agency #44 1:7 ACR, BSFT, CT, CBT, DBT, FT, TFCBT 
 

ACR=Adolescent Community Reinforcement. BSFT=Brief Strategic Family Therapy. CPP=Child-Parent 

Psychotherapy. CT=Cognitive Therapy. CBT=Cognitive Behavioral Therapy. DBT=Dialectical Behavior Therapy. 

FT=Family Therapy. RA=Restorative Approach. SC=Seven Challenges. SFT=Structural Family Therapy. 

TREM=Trauma Recovery and Empowerment Model. TFCBT=Trauma-Focused Cognitive Behavioral Therapy.  
 

 

 

Focus-of-Treatment Composite Variables 

 Based on the user-inputted responses when an “other” treatment modality was 

prescribed, three additional ESIs were identified as appropriate for inclusion in the focus-

of-treatment composite variables: child-centered play therapy, motivational interviewing, 

and seeking safety. The CEBC target population, scientific rating, and CWS relevance 

ratings, along with the focus-of-treatment inclusion categories are presented in Table 4.5. 

These modalities are in addition to those listed in Table 3.1. 
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Table 4.5. “Other” ESIs & Focus-of-Treatment Composite Variable Inclusion 
 

ESI 
Target 

Population 

CEBC 

Scientific 

Rating 

CEBC CWS 

Relevance 

Focus-Of-Treatment Variable Inclusion 

Trauma Behavior Family 
Sub 

Abuse 

Child-Centered 

Play Therapy 
(CCPT) 

Children (3-10) 
who are 

experiencing 

social, emotional, 
behavioral, and 

relational 

problems 

Promising Medium  Y   

Motivational 

Interviewing 

(MI) 

Caregivers of 

children referred 

to the child 
welfare system; 

has been used 

with adolescents 

Well-Supported Medium  Y  Y 

Seeking Safety 

(SS) 

Adolescents with 

a history of 

trauma and/or 
substance abuse 

Promising Medium Y   Y 

 

 

Behavior-focused ESIs were by far the most common treatment 

recommendations; almost 90% of the total sample was prescribed an ESI intended to 

address emotional or behavioral concerns. Approximately one fourth (24.8%, n = 581) of 

the total sample had been prescribed a trauma-focused ESI. About one eighth (12.7%, n = 

298) of the sample had been prescribed some form of family therapy although less than 

3% (n = 65) were specific ESIs as described in the CEBC database. Substance use-

focused ESIs were the least frequently prescribed with only 6.4% (n = 150) of the sample 

being recommended a modality aimed at addressing alcohol or drug use. 
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Findings from the Initial CANS Assessment 

 Table 4.6 presents the mean raw score for each of the six primary CANS domains. 

Because the domains are not comprised of an equal number of items, the raw scores are 

not well-suited for cross domain comparison. As such, a standardized score was also 

calculated using the following formula: [(raw score * 10) / number of items]. For each 

domain, standardized scores can range from 0 to 30, with higher values indicating a 

greater degree of problems. 

 

Table 4.6. Mean Initial CANS Assessments Scores by Domain 
 
 

CANS Domain 

Items Raw Score Raw Score Standardized Score 

n Min – Max M (SD) M (SD) 
 

 

Child Strengths 12 0 - 35 15.17 (7.14) 12.64 (5.95) 

Life Domain Functioning 15 0 - 38 9.13 (5.25) 6.09 (3.50) 

Emotional/Behavioral Needs 13 0 - 27 7.52 (5.04) 5.79 (3.88) 

Caregiver Needs/Strengths 20 0 - 60 8.54 (11.20) 4.27 (5.60) 

Child Risk Behaviors 13 0 - 26 2.47 (3.14) 1.90 (2.43) 

Acculturation 4 0 - 11 0.37 (1.09) .93 (2.72) 
 

Total Instrument 77 0 - 148 43.20 (22.87) 31.62 (16.14) 
 

 

Based on mean standardized scores, the child strengths domain was assessed to be 

the most problematic among the sample (M = 12.64, SD = 5.95). The domain with the 

second greatest mean standardized score was life domain functioning (M = 6.09, SD = 

3.50). The acculturation domain (M = 0.93, SD = 2.71) consists of only four items, and 

relatively few children were assessed to have actionable problems in this area. 

 

 CANS modules. 

 The KY CANS 5+ includes eight modules that are triggered by any non-zero 

response to a related item within one of the six primary domains. By examining the 
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proportion of the completed functional assessments that resulted in an activation of each 

module, one can ascertain the extent to which the respective problem areas associated 

with each module have been identified within the total sample. The most frequently 

triggered module was trauma experiences with more than half (58.9%, n = 1380) of the 

sample requiring additional assessment in this area. Slightly more than half (50.9%, n = 

1191) of the sample also triggered the school module, which relates to the child’s 

achievement, attendance, behavior, and interactions with teachers within their present 

academic setting. The sexually aggressive module was the least frequently triggered with 

only about 3% (n = 78) of the sample requiring additional assessment. Table 4.7 presents 

the frequencies with which each module was triggered. 

 

Table 4.7. Frequency of Triggered Modules Among Initial CANS Assessments 
 
 

CANS Module n % 
 

 

Trauma Experiences Module 1380 58.9% 

School Module 1191 50.9% 

Violence Module 701 29.9% 

Substance Use Module 615 26.3% 

Juvenile Justice (Delinquency) Module 490 20.1% 

Runaway Module 410 17.5% 

Intellectual/Developmental Needs Module 339 14.5% 

Sexually Aggressive Module 78 3.3% 
 

 

 Trauma experiences. 

 As noted, more than half of all assessed cases (58.9%, n = 1380) triggered the 

trauma experiences module. Most of the sample (55.3%, n = 1296) showed some 

evidence of problems (i.e., a non-zero item response) related to at least one type of 

trauma experience. Among those cases assessed to have any trauma experiences, a 

greater number endorsed two (n = 295) or three (n = 258) different types of experiences 



 95 

than those who endorsed only one type of trauma experience (n = 248).  More than one-

tenth (11.1%, n = 261) of the sample was assessed to have problems related to five or 

more unique types of trauma experiences. The most frequently endorsed trauma 

experiences were neglect (44.7%, n = 1048), witness to family violence (30.7%, n = 719), 

and emotional/verbal abuse (27.7%, n = 648). 

 Just under half (45.5%, n = 1065) of the total sample—and 77.1% of those cases 

that triggered the trauma module—evidenced trauma-related symptoms. Affect regulation 

(28.4%, n = 664), traumatic grief/separation (27.8%, n = 652), and intrusions (25.9%, n = 

606) affected the largest proportions of the sample per assessment responses. 

Dissociation was the least prevalent trauma-related symptom with less than one in ten 

assessments (8.7%, n = 203) suggesting any degree of dissociative experiences. More 

than 5% (n = 73) of the youth who triggered the trauma experiences module were 

assessed to have problems related to all six of the included trauma symptoms. 

 The time before treatment item in the trauma adjustment sub-module records the 

amount of elapsed time between the trauma experience and its subsequent recognition 

and treatment. Among those cases that triggered the trauma experiences module, almost 

half (49.3%, n = 680) were assessed as having had their trauma recognized and treatment 

started within one month of the initial experience. However, assessments responses 

suggest that one-fifth of the sample (19.8%, n = 273) waited more than a year after the 

traumatic experience before it was recognized and treatment was initiated. 

A composite trauma exposure score was calculated for each case using the 17 

trauma-related CANS items listed in Table 4.8. Scores for cases that did not trigger the 

trauma experiences module were set to zero by default. Calculated trauma exposure 
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scores ranged from 0 to 35 with higher scores indicating a greater prevalence and/or 

severity of trauma experiences and trauma-related symptoms. The mean trauma exposure 

score for the sample was 4.82 (SD = 5.85). 

 

Table 4.8. Trauma-Related CANS Items  
 
 

CANS Item 

Mean Response Percent of Sample Affected a 

M (SD) % n 
 

 

Trauma Experiences Module   
 

Neglect 0.84 (1.06) 44.7% (n = 1048) 

Witness to Family Violence 0.57 (0.93) 30.7% (n = 719) 

Emotional/Verbal Abuse 0.47 (0.85) 27.7% (n = 648) 

Physical Abuse 0.40 (0.74) 25.8% (n = 604) 

Sexual Abuse 0.29 (0.65) 19.3% (n = 452) 

Witness/Victim to Criminal Activity 0.19 (0.55) 12.4% (n = 291) 

Witness to Community Violence 0.10 (0.41) 6.6% (n = 154) 

Medical Trauma 0.05 (0.29) 3.2% (n = 74) 

Natural Disaster 0.02 (0.17) 1.4% (n = 33) 

War Affected < 0.01 (0.08) 0.2% (n = 5) 

Terrorism Affected < 0.01 (0.04) 0.04% (n = 1) 
 

Trauma Adjustment Sub-Module   
 

Affect Regulation 0.41 (0.71) 28.4% (n = 664) 

Traumatic Grief/Separation 0.39 (0.70) 27.8% (n = 652) 

Intrusions 0.38 (0.71) 25.9% (n = 606) 

Attachment 0.29 (0.57) 23.3% (n = 545) 

Avoidance 0.35 (0.70) 23.2% (n = 543) 

Dissociation 0.10 (0.36) 8.7% (n = 203) 
 

a. All cases with a non-zero response to the item are included in the percent of sample affected calculation. This 

includes cases rated as “watch/assess/prevent” (1), “act” (2), and “immediate or intensive” (3). 
 

 

Emotional/behavioral problems. 

The vast majority of the sample (93.5%, n = 2190) was assessed to have one or 

more emotional/behavioral needs; for well over half of the cases (60.1%, n = 1427) these 

needs were rated at an actionable level (i.e., an item score of 2 or 3). On average, more 

than four emotional/behavioral needs (M = 4.33, SD = 2.42) were identified as posing 

some degree of problems for each assessed case. The most frequently assessed 

emotional/behavioral needs included anxiety/worry (66.4%, n = 1555), 
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impulsivity/hyperactivity (61.6%, n = 1442), oppositional behavior (60.8%, n = 1423), 

anger control (60.1%, n = 1408), and depression (50.2%, n = 1176).  

Most of the sample (64.9%, n = 1521) evidenced either a history of or current 

problems related to at least one risk behavior. In terms of specific risk behaviors, the 

behaviors most frequently assessed to be historically or currently problematic were 

violence or aggression directed at others (29.9%, n = 701), intentional misbehavior 

(26.4%, n = 619), self-injurious behaviors (22.3%, n = 523), and delinquent behaviors 

(20.9%, n = 490). A significant positive correlation was observed between the number of 

emotional/behavioral needs identified and the number of specific risk behaviors assessed 

to be problematic for each case (r = .595, p < 0.001). 

A composite emotional/behavioral problems score was calculated for each case 

using the 24 applicable CANS items presented in Table 4.9. Calculated scores ranged 

from 0 to 48 with higher scores reflecting a greater prevalence and/or severity of assessed 

emotional/behavioral problems. The mean emotional/behavioral problems scale score for 

the sample was 8.68 (SD = 6.83). 
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Table 4.9. Emotional/Behavioral Problems-Related CANS Items 
 
 

CANS Item 

Mean Response Percent of Sample Affected a 

M (SD) % n 
 

 

Child Emotional/Behavioral Needs   
 

Impulsivity/Hyperactivity 0.97 (0.92) 61.6% (n = 1442) 

Oppositional 0.94 (0.92) 60.8% (n = 1423) 

Anger Control 0.91 (0.88) 60.1% (n = 1408) 

Anxiety/Worry 0.90 (0.77) 66.4% (n = 1555) 

Attention 0.69 (0.82) 48.0% (n = 1123) 

Depression 0.64 (0.73) 50.2% (n = 1176) 

Conduct 0.53 (0.79) 37.1% (n = 869) 

Attachment 0.40 (0.68) 30.1% (n = 704) 

Somatization 0.10 (0.34) 8.6% (n = 202) 

Psychosis 0.06 (0.31) 4.9% (n = 114) 

Eating Disturbances 0.06 (0.27) 5.0% (n = 118) 
 

Child Risk Behaviors     
 

Danger to Others 0.41 (0.69) 29.9% (n = 701) 

Intentional Misbehavior 0.37 (0.70) 26.4% (n = 619) 

Delinquent Behaviors 0.28 (0.60) 20.9% (n = 490) 

Self-Injurious Behaviors 0.27 (0.55) 22.3% (n = 523) 

Suicide 0.24 (0.56) 19.2% (n = 449) 

Runaway 0.24 (0.60) 17.5% (n = 410) 

Bullying 0.20 (0.53) 14.4% (n = 337) 

Other Self-Harm 0.14 (0.45) 11.0% (n = 257) 

Sexually Reactive Behavior 0.13 (0.25) 10.0% (n = 235) 

Exploited 0.09 (0.38) 6.4% (n = 149) 

Sexual Aggression 0.05 (0.28) 3.3% (n = 78) 

Fire Setting 0.03 (0.21) 2.0% (n = 49) 

Commercial Sexual Exploitation 0.02 (0.19) 1.2% (n = 27) 
 

a. All cases with a non-zero response to the item are included in the percent of sample affected calculation. This 

includes cases rated as “watch/assess/prevent” (1), “act” (2), and “immediate or intensive” (3). 
 

 

 Family functioning. 

 The CANS functional assessment provides an opportunity to assess family 

functioning in relation to both the child and the caregiver role. From the child-level 

assessment items, impaired family functioning appears almost ubiquitous with 84.8% (n 

= 1986) of cases assessed to have moderate, significant, or profound levels of family 

problems. Similarly, more than half of all cases (61.8%, n = 1448) report some degree of 

problems with functioning within the current living situation (which may include but is 

not limited to the child’s biological family). By contrast, assessments of child strengths 
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suggests that only 12.7% (n = 297) of the sample displays significant nuclear family 

strengths as indicated by mutual love, respect, and the child’s involvement in family 

activities.  Just slightly more children (14.7%, n = 344) were assessed to have well-

established, involved, and significantly supportive extended family relationships. 

 Caregiver-focused CANS items indicate that more than three-fifths (62.6%, n = 

1465) of the sample’s caregivers had at least one assessed need. An average of almost 

five (M = 4.99, SD = 5.56) different needs were assessed with a nonzero rating among all 

caregivers. More than half of those caregivers with at least one assessed need (i.e., the 

total score for the caregiver needs/strengths domain was greater than zero) evidenced 

some degree of need in eight or more different areas. The most frequently occurring 

caregiver needs included parental knowledge (47.6%, n = 1114), providing appropriate 

supervision (46.0%, n = 1078), being involved in the child’s care (45.6%, n = 1078), and 

accessing social resources (i.e., friends and family) to assist with child rearing (37.7%, n 

= 882).  

A composite family functioning score was calculated for each case using the 24 

child- and caregiver-focused CANS items presented in Table 4.10. Calculated scores 

ranged from 0 to 72 with higher scores reflecting a greater prevalence and/or severity of 

assessed problems related to family functioning. The mean family functioning scale score 

for the sample was 14.66 (SD = 12.64). 
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Table 4.10. Family Functioning-Related CANS Items 
 
 

 

CANS Item 

Mean Response Percent of Sample Affected a 

M (SD) % n 
 

 

Life Domain Functioning   
 

Family Functioning 1.76 (1.03) 84.8% (n = 1986) 

Living Situation 1.08 (1.05) 61.8% (n = 1448) 
 

Child Strengths     
 

Nuclear Family Strengths 1.66 (0.90) 87.3% (n = 2045) 

Extended Family Relationships 1.61 (0.96) 85.3% (n = 1998) 
 

Caregiver Needs/Strengths     
 

Supervision 0.83 (1.03) 46.0% (n = 1078) 

Involvement With Care 0.81 (1.01) 45.6% (n = 1068) 

Knowledge 0.74 (0.91) 47.6% (n = 1114) 

Social Resources 0.63 (0.92) 37.7% (n = 882) 

Resources 0.57 (0.91) 33.5% (n = 785) 

Financial Resources 0.57 (0.90) 34.4% (n = 806) 

Substance Use 0.51 (0.94) 26.4% (n = 618) 

Residential Stability 0.47 (0.88) 26.1% (n = 612) 

Organization 0.44 (0.83) 27.0% (n = 633) 

Safety 0.43 (0.86) 24.0% (n = 563) 

Marital/Partner Violence 0.38 (0.82) 21.2% (n = 496) 

Legal 0.35 (0.79) 19.2% (n = 450) 

Accessibility to Child Care Services 0.32 (0.71) 20.4% (n = 478) 

Transportation 0.32 (0.75) 18.2% (n = 427) 

Mental Health 0.30 (0.68) 18.7% (n = 437) 

Self-Care/Daily Living 0.23 (0.66) 12.9% (n = 302) 

Educational Attainment 0.21 (0.67) 10.7% (n = 251) 

Physical Health 0.20 (0.58) 12.6% (n = 295) 

Posttraumatic Reactions 0.18 (0.52) 13.1% (n = 306) 

Developmental 0.07 (0.07) 4.1% (n = 97) 
 

a. All cases with a non-zero response to the item are included in the percent of sample affected calculation. This 

includes cases rated as “watch/assess/prevent” (1), “act” (2), and “immediate or intensive” (3). 
 

 

 Substance use. 

 More than a quarter of all assessed cases (26.3%, n = 615) triggered the substance 

use module indicating some degree of concern regarding the child’s use of drugs and/or 

alcohol (the CANS assessment does not document the specific substance being used). 

Approximately one in every seven cases (15.3%, n = 464) had a history of substance use 

and had only been abstinent for 30 days or less; about 5% (n = 106) of the total sample 

was still actively using substances at the time of assessment. Among those cases who 
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were assessed to have substance-related problems, more than three quarters (75.4%, n = 

464) had been using substances for at least one year. Most of these cases reported being 

negatively influenced to some degree by their peers or social networks (69.8%, n = 429), 

their parents (57.4%, n = 353), and their environments (52.2%, n = 321). About one third 

(34.3%, n = 211) of youth assessed to have substance-related concerns were in the 

maintenance stage of recovery, roughly an equal proportion (34.8%, n = 214) were in the 

treatment stage, while the remaining third were either in the contemplation stage (19.5%, 

n = 120) or in a state of denial about the problem (11.4%, n = 70). 

A composite substance use score was calculated for each case using the 7 

substance use-related CANS items listed in Table 4.11. Scores for cases that did not 

trigger the substance use module were set to zero by default. Calculated substance use 

scores ranged from 0 to 21 with higher scores indicating a greater prevalence and/or 

severity of substance use-related problems. The mean substance use score for the sample 

was 2.03 (SD = 4.01). 

 

Table 4.11. Substance Use-Related CANS Items 
 
 

 

CANS Item 

Mean Response Percent of Sample Affected a 

M (SD) % n 
 

 

Child Emotional/Behavioral Needs   
 

Substance Use 0.37 (0.69) 26.3% (n = 615) 
 

Substance Use Module   
 

Duration of Use 0.35 (0.76) 19.9% (n = 466) 

Stage of Recovery 0.29 (0.70) 17.3% (n = 405) 

Peer Influences 0.28 (0.65) 18.3% (n = 429) 

Parental Influences 0.28 (0.71) 15.1% (n = 353) 

Severity of Use 0.26 (0.58) 19.8% (n = 464) 

Environmental Influences 0.21 (0.60) 13.7% (n = 321) 
 

a. All cases with a non-zero response to the item are included in the percent of sample affected calculation. This 

includes cases rated as “watch/assess/prevent” (1), “act” (2), and “immediate or intensive” (3). 
 

 



 102 

Bivariate Correlation Among Composite Predictor Variables 

Table 4.12. Correlation Matrix of CANS-Derived Predictor Variables 
 
 

 Trauma Exposure Behavioral 

Problems 

Family 

Functioning 

Substance Use 

 

 

Trauma Exposure 1.000    

Behavioral 

Problems 

0.479* 1.000   

Family 

Functioning 

0.316* 0.237* 1.000  

Substance Use 0.110* 0.341* 0.127* 1.000 
 

* p < 0.001 
 

 

 As expected, a small to moderate positive correlation was observed among all 

CANS-derived composite predictor variables; all bivariate correlations were statistically 

significant. The strongest relationship was observed between trauma exposure and 

emotional/behavioral problems (r = 0.479, p < 0.001). By contrast, trauma exposure and 

substance use had the weakest correlation (r = 0.110, p < 0.001). Though statistically 

significant correlations were observed across all bivariate relationships, all are well below 

cutoffs suggesting concerns about multicollinearity (Meyers et al., 2013; Tabachnick & 

Fidell, 2013). 

 

Normality of Composite Predictor Variable Scores 

 Graphical and statistical examination of the CANS-derived composite predictor 

variables suggested nonnormal distributions. Specifically, each distribution was 

positively skewed due to the frequency of zero values within each calculated score. 

Multilevel logistic regression is not predicated upon assumptions about the distribution of 

predictor variables (Tabachnick & Fidell, 2013). While the t test does assume a normal 

distribution of the dependent variable, it is robust to normality violations with large 

samples of approximately equal group sizes (Wright, 1997), and was thus used in the 



 103 

subsequent examination of group differences by gender. In cases where the group size 

was not approximately equal (i.e., race/ethnicity), a Mann-Whitney test was employed. 

Because an analysis of variance may not be as powerful as nonparametric tests when the 

dependent variable is highly skewed (Wright, 1997), a Kruskal-Wallis test was used to 

examine group differences in predictor variable scores among age quartiles. 

 

Child-Level Group Differences in Composite Predictor Variable Scores 

 On average, female clients scored significantly higher on the trauma exposure 

composite variable (M = 5.36, SD = 6.08) than did male clients (M = 4.29, SD = 5.57). 

Conversely, males had significantly greater mean scores on the emotional/behavioral 

scale (9.05 vs. 8.30) and substance use scale (3.70 vs. 2.19). There was not a statistically 

significant difference between genders in terms of family functioning scores. 

 To examine differences based on the child’s age, the sample was first grouped 

into quartiles based on the age (in whole years) at the time of the initial CANS 

assessment. Statistically significant differences were observed in the mean rank score on 

the trauma exposure, emotional/behavior problems, and substance use scales. For ease of 

interpretation mean scores, rather than mean ranks, are presented in Table 4.13. The 

highest mean trauma exposure score was observed in the 10 to 13 year old group (M = 

5.10, SD = 5.95). On average, children in the 14 to 15 year old group scored the highest 

on the emotional/behavioral problems scale (M = 10.2, SD = 7.61). The oldest children—

those older than 16—scored the highest on the substance use scale (M = 4.52, SD = 5.05) 

while average scores for children 9 years old or younger were negligible (M = 0.05, SD = 

0.66). 
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 Due to the demographic composition of the sample, group differences by 

race/ethnicity were examined dichotomously between those clients identified as white 

and those identified as a racial or ethnic minority. No statistically significant racial/ethnic 

group differences were observed in the mean rank score across any of the four composite 

predictor variables. 

Table 4.13. Child-Level Group Differences in CANS-Derived Predictor Variable Scores 
 
 

 Trauma Exposure Behavior Problems Family 

Functioning 

Substance Use 

 M (SD) M (SD) M (SD) M (SD) 
 

 

Gender (n)     
 

 Female (1163) 5.36 (6.08) 8.30 (6.77) 14.44 (12.49) 1.86 (3.70) 

 Male (1179) 4.29 (5.57) 9.05 (6.86) 14.87 (12.79) 2.19 (4.28) 
 

 (t = -4.43, p < 0.001)* (t = 2.66, p = 0.008) n.s. (t = 2.03, p = 0.043)* 

 

Age at CANS (n)     
 

 5 – 9 (599) 5.00 (5.75) 7.28 (6.15) 15.36 (13.30) 0.05 (0.66) 

 10 – 13 (622) 5.10 (5.95) 7.97 (6.57) 15.01 (13.06) 0.48 (1.96) 

 14 – 15 (537) 4.77 (6.03) 10.20 (7.61) 14.30 (11.93) 3.31 (4.68) 

 16 – 19 (584) 4.39 (5.67) 9.48 (6.61) 13.90 (12.11) 4.52 (5.05) 
 

  (H = 9.01, p = 0.029) (H = 71.7, p < 0.001) n.s. (H = 666.9, p < 0.001) 

 

Race/Ethnicity (n)     
 

 White (1755) 4.85 (5.92) 8.60 (6.78) 14.95 (12.96) 1.99 (4.03) 

 Minority (587) 4.73 (5.65) 8.93 (6.97) 13.77 (11.59) 2.15 (3.94) 
          

 n.s. n.s. n.s. n.s. 

 

* Equal variances not assumed 
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Differences in CANS Domain Scores by Prescribed ESI 

Before modeling the ability of selected CANS response patterns to predict 

different treatment recommendations, it is of interest to examine differences in domain 

scores among cases who have or have not been prescribed the most frequently prescribed 

ESIs. Differences were analyzed using independent samples t tests, correcting for 

violations of equal variances where necessary. It is important to note that these findings 

are merely descriptive in nature and should not be interpreted as a causal explanation for 

the prescription of different treatment modalities. 

Table 4.14. Differences in Standardized CANS Domain Scores By Cases Prescribed/Not 

Prescribed Selected Modalities 
 
 

Treatment 

Recommendation 

Child 

Strengths 

Life Domain 

Functioning 

Emotional / 

Behavioral 

Needs 

Caregiver 

Needs / 

Strengths 

Risk 

Behaviors Acculturation 
 

M     (SD) M     (SD) M     (SD) M     (SD) M     (SD) M     (SD) 
 

 

Any Treatment       

 Yes (n = 2160) 12.7 (5.9)** 6.2 (3.4)* 6.0 (3.9)* 4.3 (5.6) 2.0 (2.5)* 0.8 (2.3) 

 No (n = 182) 11.7 (6.6) 4.8 (3.9) 3.6 (3.4) 3.7 (5.5) 0.8 (1.4) 0.9 (2.8) 
 

CBT       

 Yes (n = 1642) 12.6 (6.1) 6.2 (3.4)** 5.9 (3.8) 4.0 (5.3)* 2.0 (2.4)* 1.0 (2.8) 

 No (n = 700) 12.6 (5.9) 5.8 (3.7) 5.6 (3.9) 4.9 (6.2) 1.6 (2.4) 0.8 (2.6) 
 

TF-CBT       

 Yes (n = 542) 13.5 (5.6)* 6.8 (3.6)* 7.6 (3.9)* 5.6 (6.4)* 2.6 (2.9)* 1.1 (3.0) 

 No (n = 1800) 12.4 (6.0) 5.9 (3.4) 5.2 (3.7) 3.9 (5.3) 1.7 (2.2) 0.9 (2.6) 
 

Cognitive Therapy       

 Yes (n = 281) 12.7 (6.2) 6.4 (3.8) 6.3 (4.2)** 4.4 (5.9) 2.2 (2.7) 0.9 (2.7) 

 No (n = 2061) 12.6 (5.9) 6.0 (3.5) 5.7 (3.8) 4.3 (5.6) 1.9 (2.4) 0.9 (2.7) 
 

Family Therapy       

 Yes (n = 260) 14.2 (5.4)* 7.9 (3.6)* 8.0 (3.9)* 5.3 (5.8)* 3.1 (3.0)* 0.9 (2.4) 

 No (n = 2082) 12.4 (6.0) 5.9 (3.4) 5.5 (3.8) 4.1 (5.6) 1.7 (2.3) 0.9 (2.8) 
 

DBT       

 Yes (n = 124) 14.3 (5.9)** 7.7 (3.9)* 8.2 (4.1)* 5.0 (5.5) 4.1 (3.4)* 1.1 (2.6) 

 No (n = 2218) 12.6 (5.9) 6.0 (3.5) 5.6 (3.8) 4.2 (5.6) 1.8 (2.3) 0.9 (2.7) 
 

Seven Challenges       

 Yes (n = 71) 14.8 (4.8)* 9.5 (3.2)* 9.2 (3.8)* 5.8 (5.4)** 4.8 (3.5)* 1.5 (3.4) 

 No (n = 2271) 12.6 (6.0) 6.0 (3.5) 5.7 (3.8) 4.2 (5.6) 1.8 (2.3) 0.9 (2.7) 
 

* Difference in mean standardized score between yes/no categories is statistically significant (p < 0.001) 

** Difference in mean standardized score between yes/no categories is statistically significant (p < 0.05) 
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 First, standardized mean CANS domain scores were compared between those 

cases who had been prescribed any modality and those not recommended for any form of 

treatment. Children who had been assigned any treatment modality evidenced 

significantly greater mean scores in child strengths (12.7 vs. 11.7), life domain 

functioning (6.2 vs. 4.8), emotional/behavioral needs (6.0 vs. 3.6), and risk behaviors (2.0 

vs. 0.8) domains. Similar comparisons were made for the six most frequently assigned 

treatment modalities and are presented in Table 4.14. 

 

Multilevel Logistic Regression Modeling 

 The unconditional model (Model 0) and the intraclass correlation. 

Table 4.15. Unconditional Model (Model 0) Coefficients 
 
 

 Outcome Variable 
 

 

Trauma- 

Focused 

Behavior- 

Focused 

Family- 

Focused 

Substance Use-

Focused 
 

 

Intercept -1.022 (0.106)* 2.557 (0.124)* -1.876 (0.116)* -3.116 (0.166)* 
 

Variance 2.305 (0.295)* 1.932 (0.306)* 2.305 (0.332)* 3.519 (0.508)* 
 

ICC 0.41 0.37 0.41 0.52 
 

* p < 0.001 
 

 

 The unconditional model (model 0) allows for the calculation of the ICC, which 

provides an estimate of the total variance in ESI prescription that is related to differences 

between clinicians rather than to differences in CANS response patterns. Calculated ICCs 

ranged from 0.37 for the behavior-focused treatment outcome to 0.52 for the substance 

use-focused treatment outcome. These variance proportions clearly indicate the need for 

multilevel analysis. 
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The fixed effects CANS predictors only model (Model 1). 

Table 4.16. Fixed CANS Predictors Only (Model 1) Coefficients 
 
 

 Outcome Variable 
 

 

Trauma- 

Focused 

Behavior- 

Focused 

Family- 

Focused 

Substance Use-

Focused 
 

 

Intercept (γ00) -2.325 (0.171)* 1.799 (0.197)* -2.587 (0.209)* -4.001 (0.268)* 
 

Trauma Scale (γ10) 0.155 (0.014)* 0.062 (0.015)* -0.013 (0.014) 0.045 (0.017)** 
 

Behavior Scale (γ20) 0.029 (0.012)** 0.065 (0.017)* 0.072 (0.013)* 0.028 (0.019) 
 

Family Scale (γ30) 0.009 (0.007) -0.004 (0.009) 0.005 (0.008) 0.005 (0.009) 
 

Substance Scale (γ40) -0.042 (0.018)** 0.027 (0.027) -0.016 (0.018) 0.089 (0.026)* 
 

Variance (u0j) 2.205 (0.301)* 1.993 (0.326)* 2.035 (0.310)* 3.368 (0.506)* 
 

 

* p < 0.001   ** p < 0.05 
 

 

 The four CANS-derived predictor variables are introduced in model 1 as fixed 

(i.e., no clinician-level error terms are defined). Regression coefficients and standard 

errors are presented in Table 4.16. In the trauma model, three of the four predictors were 

significantly associated with the prescription of a trauma-focused treatment: trauma scale 

(t = 10.979, p < 0.001), emotional/behavioral scale (t = 2.369, p = 0.018), and substance 

use scale (t = -2.362, p = 0.018). In the behavior model, two of the four predictors were 

significantly associated with the prescription of a behavior-focused treatment: trauma 

scale (t = 4.142, p < 0.001) and emotional/behavioral scale (t = 3.715, p < 0.001). The 

emotional/behavioral scale (t = 5.507, p < 0.001) was the only predictor significantly 

associated with the prescription of a family-focused treatment recommendation. Two 

predictors—trauma scale (t = 2.671, p = 0.008) and substance use scale (t = 3.386, p = 

0.001)—emerged as significantly predictive of a prescribed substance use-focused ESI. 
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The random effects CANS predictors only model (Model 2). 

Table 4.17. Random Effects CANS Predictors Only (Model 2) Level-2 Variance Estimates 
 
 

 Outcome Variable 
 

 

Trauma- 

Focused 

Behavior- 

Focused 

Family- 

Focused 

Substance Use-

Focused 
 

 

Trauma Scale (u1j) 0.003 (0.002) 0.000 a 0.001 (0.002) 0.000 a 
 

Behavior Scale (u2j) 0.001 (0.001) 0.005 (0.003) 0.000 (0.001) 0.000 a 
 

Family Scale (u3j) 0.001 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.001) 
 

Substance Scale (u4j) 0.000 a 0.003 (0.008) 0.000 a 0.002 (0.007) 
 

 

 

a Redundant parameter 
 

 

 A series of models (model 2) were produced in which the slopes for each 

predictor were permitted to vary randomly across level-2 units (i.e., clinicians). One at a 

time, all predictor variables were included in all four different treatment outcome 

models—both those that were identified as statistically significant in model 1 and those 

for which no significant association with the outcome variable were observed. As 

summarized in Table 4.17, there were no significant random effects of any of the 

predictors across any of the outcome variables. This suggests that while there is 

substantial variation between clinician-level groups (as indicated by the ICC), it is not 

attributable to differences in the predictor variables among level-2 units.  
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The fixed effects CANS & child demographics predictors model (Model 3). 

Table 4.18. Fixed CANS & Child Demographic Predictors Model (Model 3) Coefficients 
 
 

 Outcome Variable 
 

 

Trauma- 

Focused 

Behavior- 

Focused 

Family- 

Focused 

Substance Use-

Focused 
 

 

Intercept (γ00) -2.072 (0.289)* -0.191 (0.382) -2.442 (0.335)* -5.469 (0.575)* 
 

Trauma Scale (γ10) 0.150 (0.014)* 0.070 (0.017)* -0.013 (0.014) 0.049 (0.017)** 
 

Behavior Scale (γ20) 0.033 (0.012)** 0.063 (0.018)* 0.072 (0.013)* 0.028 (0.018) 
 

Family Scale (γ30) 0.008 (0.007) 0.004 (0.010) 0.005 (0.008) 0.008 (0.009) 
 

Substance Scale (γ40) -0.030 (0.018) -0.041 (0.029) -0.013 (0.019) 0.057 (0.029)** 
 

Age (γ50) -0.039 (0.019)** 0.167 (0.030)* -0.011 (0.021) 0.117 (0.039)** 
* 

Gender: Female (γ60) 0.379 (0.134)** 0.163 (0.160) -0.033 (0.136) -0.112 (0.234) 
 

Variance (u0j) 2.230 (0.304)* 2.134 (0.351)* 2.036 (0.311)* 3.526 (0.528)* 
 

 

* p < 0.001   ** p < 0.05 
 

 

 In model 3 (Table 4.18) two child-level demographic predictors are added: age 

and gender. The inclusion of these predictors was informed by the group differences 

identified during the earlier descriptive analysis. The reference group for gender is male. 

With the inclusion of the additional predictors, the substance scale was no longer a 

statistically significant predictor of trauma-focused ESI, though both age (t = -2.004, p = 

0.041) and gender (t = 2.831, p < 0.005) were significantly associated with a trauma-

focused treatment prescription. In relation to the behavior-focused outcome, the trauma 

scale and the emotional/behavioral scale remained significant as was the newly included 

age variable (t = 5.649, p < 0.001). Neither of the child-level demographic variables were 

significantly associated with the prescription of a family-focused treatment. In addition to 

the two significant predictors from model 1—trauma scale and substance use scale—age 

(t = 3.021, p = 0.003) was also found to be significantly associated with the prescription 

of a substance use-focused ESI. 
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Model evaluation and comparison. 

Table 4.19. Evaluation and Comparison of Models 
 
 

Model 𝜎𝑅
2 𝑅1

2
 𝑅𝑀𝑍

2
 𝜙 

 

 

Trauma    

 Model 0 3.290 -- -- 0.613* 

 Model 1 2.754 0.163 0.166 0.657* 

 Model 3 2.729 0.170 0.172 0.661* 
 

Behavior    

 Model 0 3.290 -- -- 0.308* 

 Model 1 2.995 0.090 0.089 0.387* 

 Model 3 2.815 0.144 0.140 0.437* 
 

Family    

 Model 0 3.290 -- -- 0.384* 

 Model 1 3.171 0.036 0.038 0.353* 

 Model 3 3.170 0.036 0.038 0.353* 
 

Substance Use    

 Model 0 3.290 -- -- 0.601* 

 Model 1 3.119 0.052 0.053 0.631* 

 Model 3 3.026 0.080 0.080 0.632* 
 

* p < 0.001    
 

 

To estimate the explained first-level (i.e., child-level) variance the models were 

first brought to the same scale via the calculation of a scale-correction factor. For all 

unconditional models, the first-level variance (𝜎𝑅
2) has a distributional value of 3.29. For 

each subsequent model, the first-level variance was scaled by multiplying by the square 

of the calculated scale-correction factor. The proportion of explained first-level variance 

(𝑅1
2) can then be calculated. Similarly, the McKelvey and Zavoina R2 (𝑅𝑀𝑍

2 ) was 

calculated for each outcome variable for models 1 and 3.  

In the trauma model, the unexplained level one variance was reduced by 17% 

from the unconditional model to the full model. Approximately 9% of the variance in the 

prescription of a behavior-focused ESI was predicted by the CANS-derived predictors; 

the proportion of explained variance increased to roughly 14% with the inclusion of the 
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demographic predictors. Neither the inclusion of the CANS-derived nor the demographic 

variables contribute much explanation to the family-focused treatment model with all 

predictors only explaining 3-4% of the variance in the recommendation for some form of 

family therapy. The inclusion of CANS-derived predictors reduced the unexplained 

variance related to substance use-focused treatment by about 5% with an additional 3% 

of variance explained when the demographic variables were included. 

To examine each model’s classification accuracy, the dichotomous predicted and 

observed outcome group classifications were cross-tabulated and the phi coefficient (𝜙) 

calculated. The final trauma (Φ = 0.661, p < 0.001) and substance use (Φ = 0.632, p < 

0.001) models evidenced a strong positive correlation between predicted and observed 

outcomes with modest but progressive improvement across model iterations. The 

behavioral model improves from a weak predicted/observed outcome correlation in the 

unconditional model (Φ = 0.308, p < 0.001) to a moderately strong correlation (Φ = 

0.437, p < 0.001) in the final model. The unconditional family-focused model has a 

moderately weak predicted/observed outcome correlation (Φ = 0.384, p < 0.001); the 

introduction of predictors detracts from, rather than enhances, the model’s classification 

accuracy. 
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Model interpretation. 

Table 4.20. Standardized Regression Coefficients – Model 1 & Model 3 
 
 

 Outcome Variable 
 

 Trauma- 

Focused 

Behavior- 

Focused 

Family- 

Focused 

Substance Use-

Focused 
 

 

Model 1     
 

   Trauma Scale 0.35* 0.15* -0.03 0.10* 

   Behavioral Scale 0.08* 0.18* 0.21* 0.07 

   Family Scale 0.04 -0.02 0.03 0.02 

   Substance Scale -0.07* 0.04 -0.03 0.13* 
 

Model 3     
 

   Trauma Scale 0.34* 0.16* -0.03 0.11* 

   Behavioral Scale 0.09* 0.17* 0.21* 0.07 

   Family Scale 0.04 0.02 0.03 0.04 

   Substance Scale -0.05 -0.07 -0.02 0.08* 

   Age -0.06* 0.24* -0.02 0.16* 

   Gender: Male 0.07* 0.03 -0.01 -0.02 
 

 

 To assess the relative contribution of individual predictors, regression coefficients 

were standardized to eliminate differences in the scales of the explanatory variables (see 

Table 3.2). As hypothesized, the CANS-derive trauma scale was the most powerful 

predictor of a trauma-focused treatment prescription in both model 1 and model 3. 

Likewise, the CANS-derived emotional/behavior scale was the most important predictor 

of a behavior-focused ESI in the CANS predictors only model, though age was even 

more strongly associated with a behavior-focused treatment prescription when the 

demographic variables were entered. The emotional/behavioral scale also emerged as the 

most important predictor of a family-focused treatment prescription; however, the poor 

explanatory power and classification accuracy of this model calls into question the merit 

of any additional interpretation of this model. In the CANS-derived predictor only model, 

the substance use scale was the most powerful predictor of a substance use-focused 
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treatment recommendation. After demographic variables were added to the model, the 

trauma scale’s impact became more pronounced. 

  

Table 4.21. Odds Ratios — Model 3 
 
 

 Outcome Variable 
 

 Trauma- 

Focused 

Behavior- 

Focused 

Family- 

Focused 

Substance Use-

Focused 
 

 

Model 3     
 

   Trauma Scale 1.162* 1.073* 0.878 1.050* 

   Behavioral Scale 1.034* 1.065* 1.075* 1.028 

   Family Scale 1.008 1.004 1.005 1.008 

   Substance Scale 0.970 0.066 0.987 1.058* 

   Age 0.962* 1.182* 0.989 1.124* 

   Gender: Female 1.461* 1.177 0.968 0.894 
 

 

 Unstandardized regression coefficients (i.e., estimated log odds) were converted 

to an odds ratio through exponentiation. For every one-unit increase on the trauma 

exposure scale, a child’s probability of being prescribed a trauma-focused ESI increased 

by about 16% while every one-unit increase on the emotional/behavior scale increased 

the likelihood by more than 3%. As a child’s age increased, his or her probability of 

being prescribed a trauma-focused treatment decreased slightly, with each additional year 

of age reducing the likelihood by about 4%. Finally, females were almost 1.5 times as 

likely as males to be prescribed a trauma-focused ESI when all other predictors are held 

constant. 

 The odds of being prescribed a behavior-focused treatment increased by about 7% 

with each one-unit increase in both the trauma exposure score (OR = 1.073) and the 

emotional behavioral score (OR = 1.065). When controlling for CANS responses and 

gender, older children were more likely than younger children to be prescribed a 
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behavior-focused ESI with each one year increase in age corresponding with a more than 

18% increase in probability of being recommended for behavior-focused treatment. 

 A one-unit increase on the emotional/behavioral scale corresponded with about an 

8% increase in the probability of a family-focused treatment recommendation. However, 

as noted previously, the family-focused treatment model performed extremely poorly in 

terms of both prediction and classification suggesting that none of the included predictors 

are of much practical significance. 

 The probability of being prescribed a substance-use focused ESI increased by 5% 

for each one-unit increase on the trauma exposure scale and by almost 6% for each one-

unit increase on the substance use scale. Additionally, when other predictors were held 

constant, a one-year increase in age corresponded with about a 12% increase in the 

likelihood of being recommended substance-use focused treatment. 
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CHAPTER 5: 

DISCUSSION, LIMITATIONS, AND CONCLUSIONS 

Discussion 

While prior research has clearly demonstrated that children in out of home care 

have extensive mental and behavioral health needs (Burns et al., 2004; Lehmann, Havik, 

Havik, & Heiervang, 2013; Oswald, Heil, & Goldbeck, 2010; Stahmer et al., 2005) 

considerably less is known about the service delivery environment intended to address 

these needs (Baker, Schneiderman, & Licandro, 2017). Encompassing more than 2300 

children, 9 service regions, 51 child-serving agencies, and 381 clinicians, the present 

study’s findings have provided insight of considerable breadth into a recently redesigned 

child welfare service landscape. For the first time, patterns of treatment prescription 

across an entire service system were analyzed and described. Using data derived from the 

CANS functional assessment and CANS assessment report, the author sought to 

determine if there is a predictable relationship between particular assessment responses 

and the type of ESI prescribed. In preparation for the multilevel modeling employed to 

analyze the nature of this relationship, extensive descriptive analyses were conducted and 

a number of secondary research questions were explored.  

The discussion of study findings begins by offering an overview of what has been 

learned about treatment prescription within this service system. The implication of these 

findings for practitioners, administrators, and educators are considered as well as areas in 

need of additional research attention. Next, a brief overview of descriptive CANS 
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findings are outlined before moving into a more detailed discussion centered around each 

of the four modeled assessment dimensions—trauma exposure, emotional/behavioral 

problems, family functioning, and substance use. For each dimension, the prior research, 

present implications, and future research needs are addressed. Following this discussion 

narrative, the study’s limitations are identified. The present chapter concludes by 

integrating empirical findings into the underlying theoretical framework and 

summarizing the key findings within this conceptual context. 

 

Treatment Prescription 

Dramatically different treatment prescription patterns were observed among the 

clinicians who completed one or more initial CANS assessments. At the most 

homogenous extreme, it appears that some clinicians’ therapeutic approach is driven by a 

single modality irrespective of assessed client needs and strengths. At the opposite end of 

the spectrum, a subset of clinicians seem to embrace an extremely eclectic treatment 

philosophy assigning as many as seven different modalities to a single case. It is hard to 

conceive of either of these extremes being particularly conducive to assessment-driven 

treatment decision making. However, on average, clinicians in the sample completed 

about six CANS assessments and prescribed between two and three different modalities.  

This indicates that there is a moderate degree of variation in treatment recommendation 

across the typical clinician’s assessment caseload and underscores the importance of 

research seeking to better understand the mechanisms underlying this variation. 

Frequency counts of the specific ESIs prescribed within the system offer a broad 

overview of the treatments most often recommended across all cases, clinicians, and 
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agencies. These counts evidence a service system dominated by a single treatment 

modality—cognitive-behavioral therapy. Almost three-fourths of all cases in the sample 

had been prescribed CBT and the vast majority of clinicians and agencies were associated 

with at least one case for which the modality had been prescribed. This finding is not 

altogether unexpected. More than a decade ago, it was recognized that CBT was 

becoming the “majority orientation” of practicing therapists (Gaudiano, 2008). Across 

psychiatry, psychology, and social work programs, training in CBT is offered more 

frequently than any other ESI (Weissman et al., 2006). In a national survey of licensed 

clinical social workers, 72.9% of respondents reported using CBT in their practice—more 

than any other type of therapeutic intervention (Pignotti & Thyer, 2009). Clearly, the 

preeminence of CBT is not limited to this particular service system. 

In and of itself, the over-representation of CBT may not be especially troubling; 

the modality undoubtedly has considerable merit, particularly in terms of empirical 

support. Hofmann and colleagues (2012) reviewed 106 meta-analyses examining the 

efficacy of CBT and concluded that the evidence-base of CBT is “enormous” and “very 

strong” (p. 436). Additionally, it is considered to be a cost-effective treatment for a 

number of pediatric mental health conditions (Dickerson, Lynch, Leo, DeBar, Pearson, & 

Clarke, 2018; Haby, Tonge, Littlefield, Carter, & Vos, 2004; van Steensel, Dirksen, & 

Bogels, 2014).  

 Nonetheless, CBT must not be viewed as a one-size-fits-all treatment approach. 

For example, evidence suggests that it may not be more effective than other forms of 

psychotherapy for treating violent behavior in youth (Ozabaci, 2011), adolescent 

substance use (Hofmann et al., 2012), or victims of childhood sexual abuse (Macdonald 
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et al., 2012). Moreover, while CBT’s efficacy has been evaluated in relation to pediatric 

populations, there is gap in the research knowledge regarding its use with other 

subgroups such as minorities and low-income populations (Hofmann et al., 2012). Thus, 

while the frequency of CBT prescription observed in the current analysis may not be 

intrinsically concerning, indications that it may be being prescribed indiscriminately (as 

suggested by the absence of any meaningful association between some assessed needs 

and the prescribed treatment) or at the expense of other, potentially more effective 

treatment approaches (as suggested by infrequency of some ESI prescriptions across the 

entire sample) do signal a troubling practice trend.  

 While the treatment prescription findings are limited to those children for whom a 

KY CANS 5+ functional assessment had been completed and thus may not exhaustively 

capture all services recommended by a particular clinician or agency, they do offer novel 

insight into the state’s OOHC service system. From this broad vantage point, one 

observes a system with limited treatment variation—at least in so far as what is being 

recommended at the time of the initial CANS. This finding has direct implications at the 

clinician, agency, and system level. 

In relation to clinicians, the relative homogeneity of treatment prescriptions may 

indicate a need for broadened therapeutic expertise among treatment providers within this 

service system. A number of interventions that are relevant to child welfare populations 

and supported by empirical evidence are currently only being prescribed by an extremely 

limited subset of practitioners. Of the 17 treatment modalities listed on the CANS 

assessment report, 12 were prescribed by fewer than 10% of the sampled clinicians; only 

CBT and TF-CBT were prescribed by more than half.  
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 Recent research evidence suggests that service providers themselves recognize the 

need for broadened expertise. Thompson & Colvin (2018) conducted focus groups with 

therapeutic service providers working with the Florida child welfare system to identify 

perceived gaps in knowledge and skills. Providers consistently expressed a need “to be 

competent in a range of specialized areas” and to develop “greater expertise across a 

range of therapeutic modalities” (pp. 63-64). The data suggest that providers in 

Kentucky’s service system might voice a similar sentiment. 

  While this finding has obvious implications in terms of enhancing training and 

on-the-job learning opportunities for those clinicians currently practicing in the field, it 

also speaks to graduate-level education programs. As noted previously, CBT is the 

primary intervention taught to students in psychiatry, psychology, and social work; 

increasing exposure to and training in other ESIs may provide novice clinicians with a 

broader repertoire of clinical skills.  

At an agency level, this finding may signal an opportunity for service 

specialization. Over the past several decades, private agencies have increasingly been 

contracted with to provide therapeutic services to child welfare populations (Thompson 

& Colvin, 2018). With the ongoing shift toward an EBP orientation, such contracts often 

function as “de facto policies guiding EBI [evidence-based intervention] implementation” 

and organizational administrators are still learning to navigate this new procurement and 

contracting landscape (Willging, Gunderson, Green, Jaramillo, Garrison, Ehrhart, & 

Aarons, 2018). Nationally, child welfare administrators have voiced a need for agencies 

that can provide specialized services (e.g., family therapy, school-based interventions) 

and better meet the needs of specific populations (e.g., victims of sexual abuse, children 
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with developmental disorders) (Kolko, Herschell, Costello, & Kolko, 2009). Agencies 

that are prepared to provide a range of specialized, empirically supported interventions or 

offer ESIs that are not available elsewhere in the service system may have an 

advantageous position in the competitive service landscape.  

While these findings have provided a previously unavailable overview of the 

treatments being recommended to children in this OOHC service system, they also 

highlight the need for additional research. Given its clear prominence, analyses focused 

exclusively on the prescription and use of CBT within this service system may provide 

actionable information that is directly relevant for a sizeable proportion of the OOHC 

population. While the present analysis has clearly demonstrated that CBT is the most 

frequently prescribed treatment modality at the case, clinician, and agency level, it is far 

less clear the degree to which the actual therapeutic sessions accurately reflect this almost 

ubiquitous label. Creed and colleagues (2016) found that a therapist’s self-reported 

identification as operating from a cognitive-behavioral theoretical orientation was not a 

valid predictor of demonstrated CBT skills as rated by expert observers. That is to say, 

therapists who labeled themselves as “CBT therapists” were no more competent at 

actually providing CBT than those who did not endorse such a label. It is entirely 

possible that a similar phenomenon—inaccurate treatment labeling—is producing 

inflated frequency counts that are misleading in relation to the number of cases that are 

receiving bona fide CBT therapy.  

 Fidelity assessments could provide valuable insight into this issue. For instance, 

the Cognitive Therapy Rating Scale (CTRS; Young & Beck, 1980) provides a validated 

measure of CBT fidelity and offers a cutoff score to distinguish between CBT 
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competency and non-competency. While such an undertaking would require a substantial 

research investment, even a relatively modest but random sample of service providers 

could establish estimated rates of CBT fidelity within this service system. This 

information could subsequently inform service enhancement initiatives. For instance, if 

the data suggest that the CBT labels are largely accurate (i.e., CBT is being delivered 

with fidelity), efforts could shift toward identifying those cases for whom the modality is 

most effective—and perhaps even more importantly, those cases for whom a different 

approach is indicated. By contrast, if it appears that CBT has become a generic label 

applied to a broad range of otherwise ill-defined psychotherapeutic techniques (i.e., CBT 

is not being delivered with fidelity), efforts to improve treatment decision making would 

be premature.  

 

CANS Functional Assessment 

In terms of both clinicians and agencies, there is considerable variation in the 

degree of experience administering the KY CANS 5+ assessment to children in OOHC. 

While more than a quarter of included clinicians had only completed one functional 

assessment at the time of the present analysis, some clinicians had completed fifty or 

more. Likewise, more than half of all assessments included in the sample were associated 

with just five child-serving agencies while about a third of the included agencies were 

associated with 10 or fewer completed assessments.  

 This finding is important for administrators, trainers, and evaluators to note. It 

suggests that even as functional assessment becomes more embedded in the practice 

culture and the total number of CANS completed within the service system multiplies, 
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much of the direct hands-on experience with the instrument may be concentrated in a 

limited subset of clinicians and agencies. This underscores the need to provide stratified 

training opportunities such that clinicians with extensive CANS experience can be 

challenged to continue refining their use of the instrument (e.g., incorporating assessment 

findings into case conceptualizations and treatment selection) while still offering 

introductory or fundamental training opportunities for those with less experience. 

 Descriptive findings from the CANS instrument provide insight into the prior 

experiences, clinical needs, and behavioral patterns present in the population of children 

residing in the state’s OOHC service system. Because all the assessments included in the 

analysis were the initial CANS, these findings reflect the youth’s state shortly after entry 

into care. 

 Interestingly, the child strengths domain was assessed to be the most problematic 

at the time of the initial CANS with an average standardized score more than twice that 

of the next highest domain score. This finding is particularly concerning in light of 

research indicating that child strengths can significantly buffer the negative impacts of 

trauma (Griffin, Martinovich, Gawron, & Lyons, 2009; Kisiel et al., 2017).  It possible 

that the magnitude of the child strengths domain score in relation to other domain scores 

reflects differences in the way that strengths and needs are assessed. Perhaps assessing 

clinicians—still in the initial stage of the therapeutic relationship—feel more confident 

documenting the absence of strengths than they do the presence of risk behaviors or other 

indicators of psychosocial need. Ongoing evaluation provides some empirical support to 

this speculation. Preliminary longitudinal analysis by the Project SAFESPACE 

evaluation team have demonstrated substantial reductions in the child strengths domain 
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score from the initial CANS to the first 90 day reassessment. This may indicate that 

previously overlooked child strengths are more readily identified as the clinician 

develops greater familiarity with the youth. There is limited research exploring the 

strengths of child welfare populations in general (Kisiel et al., 2017) and to the present 

author’s knowledge no studies have examined the trajectory of assessed child strengths 

over the course of treatment. As such, this is an area that warrants continued 

investigation. The data now being collected through the system-wide implementation of 

the CANS functional assessment is highly amenable to such an analysis. 

  

Trauma Exposure and Trauma-Related Symptoms 

The trauma experiences module was the most frequently triggered of the eight 

contingency assessment modules included in the KY CANS 5+. More than half (55.3%) 

of the sample was assessed to have experienced at least one type of trauma over the 

course of their lifetime. Surprisingly, this is slightly lower than the proportion of children 

in the general population who report exposure to at least one traumatic experience 

(68.2%; Copeland, Keeler, Angold, & Costello, 2007).  While a number of previous 

studies have explored trauma experiences among various child welfare-involved 

populations (e.g., Briggs, Greeson, Layne, Fairbank, Knoverek, & Pynoos, 2012; Dorsey, 

Burns, Southerland, Cox, Wagner, & Farmer, 2012; Salazar, Keller, Gowen, & Courtney, 

2013), Griffin and colleagues’ (2011) research is notable for using the same instrument to 

measure trauma (i.e., the CANS trauma experiences module) and a similar sampling 

frame (i.e., children entering OOHC in Illinois). They found that the proportion of youth 

suspected (i.e., a CANS item response greater than one) to have experienced at least one 



 124 

type of trauma was more than 95%—more than one and a half times that of the present 

study.  

Descriptive findings indicate that among those children with any assessed trauma 

history, multiple types of traumatic experiences are the norm. Less than one fifth of these 

children had been exposed to a single type of traumatic experience with the average 

number of unique trauma experiences among this subgroup being more than three. This is 

consistent with prior research examining trauma exposure among at-risk or child welfare 

involved youth (Briggs et al., 2013; Griffin et al., 2011). Likewise, the most commonly 

experienced trauma types assessed in the present sample—neglect, family violence, 

emotional/verbal abuse, and physical abuse—are also largely consistent with findings 

from other studies investigating child welfare populations (Griffin et al., 2011; Kisiel et 

al., 2009). 

Of note, a nontrivial proportion of the sample (~11%) was assessed to have 

experienced five or more types of traumatic experiences up to a maximum of 11 unique 

exposures. Given the robust research indicating a dose-response effect of increased 

adverse childhood experiences on the presence of such negative outcomes as increased 

risk behaviors (e.g., excessive drinking), early onset chronic disease (e.g., diabetes), and 

poor mental health (Chang, Jiang, Mkandawire, & Shen, 2019; Sonu, Post, & Feinglass, 

2019), it is especially important that these children receive timely, trauma-focused ESIs. 

Child welfare administrators may wish to establish formal protocols for the rapid 

identification and careful outcome monitoring for these highly trauma-exposed cases. 

Proactively providing these children with intensive trauma-related services at the outset 

of their OOHC episode may reduce the risks of poor service outcomes that are associated 
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with complex traumatization such as placement disruption (Weiner, Leon, & Stiehl, 

2011) or psychiatric hospitalizations (Kisiel et al., 2014). Likewise, additional research 

should focus specifically on the treatment trajectories of this particularly vulnerable 

subgroup to identify those placement settings wherein these youth are most successful. 

The proportion of youth endorsing at least one trauma-related symptom was 

roughly comparable across both the Griffin et al. (2011) study (~38%) and the present 

study (~45%). By comparison, only 13.4% of trauma-exposed children in a general 

population sample evidenced any signs of trauma related symptoms (Copeland et al., 

2007). The relative infrequency of dissociative symptoms compared to other traumatic 

stress symptoms is also consistent with prior research (Griffin et al., 2011; Kisiel et al., 

2009).  

In summary, present findings regarding the assessed trauma experiences and 

trauma-related symptoms are largely consistent with similar studies in all but one 

regard—the number of children assessed to have experienced at least one type of trauma 

exposure. This finding is difficult to interpret; taken at face value, it would suggest that 

Kentucky’s OOHC population has been exposed to substantially fewer trauma 

experiences than not only a comparable population from a neighboring state but also 

children in the general population yet exhibits trauma symptoms at a higher rate than 

both. An alternative explanation for this unexpected finding entails differences in the 

CANS administration process between states. Both Griffin and colleagues (2011) and 

Kisiel and colleagues (2009) analyzed CANS assessments completed by the Illinois 

Department of Children and Family Services (DCFS) while in the present study the 

assessments were completed by contracted behavioral health service providers. It is 
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plausible that child protection workers are more sensitive to and knowledgeable of the 

traumatic experiences of children entering care, including those that occurred much 

earlier in the case history, while behavioral health clinicians are better positioned to 

recognize current trauma-related symptoms than they are historical trauma exposure. 

Moreover, in the KY CANS 5+ the trauma experiences module must be triggered while 

the Illinois version of the CANS includes these items in all assessments. As such, a child 

entering OOHC in Kentucky who is not showing any indication of problems related to 

adjustment to trauma at the time of assessment will not have his or her previous trauma 

experiences assessed, even if they are in fact quite extensive. As this explanation is 

merely speculative, future research should investigate the accuracy of the KY CANS 5+ 

in capturing lifetime trauma exposure. Until such research has been conducted, CANS-

derived rates of trauma exposure should be recognized as potentially misleading. 

Even with the potentially underestimated rates of trauma exposure, there is clearly 

an extensive need for trauma-informed intervention among this population. A multilevel 

logistic regression model was developed to determine if selected CANS response patterns 

predicted the prescription of a trauma-focused ESI. It was hypothesized that the trauma-

related CANS items would be the most powerful predictor of trauma-focused treatment. 

Study findings support this hypothesis. The CANS-derived trauma and 

emotional/behavioral scales were both statistically significant predictors of a trauma-

focused treatment, with the trauma scale emerging as the most powerfully predictive. 

This is not unexpected as the emotional/behavioral problems scale and the trauma 

exposure scale were also the most strongly correlated amongst the CANS-derived 

predictors. In the final model, each one unit increase in the total emotional/behavioral 
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needs score was associated with a 3% greater likelihood in being assigned a trauma-

focused ESI while a one-unit increase on the trauma experiences scale increased the 

likelihood by more than 16%. Overall, CANS-derived predictors accounted for about 

17% of the variation in the prescription of a trauma-focused ESI.  

The use of trauma-informed assessment practices to identify those children in 

need of evidence-based, trauma-focused treatment has been described as critically 

important for the well being of children in the child welfare system (Conradi et al., 2011). 

It is encouraging to see that current practices reflect this mandate (albeit to a limited 

degree) as evidenced by the significant predictive relationship between trauma-related 

CANS items and the prescription of a trauma-focused treatment. While it is clear that 

assessment responses are not the only—and perhaps not even the primary—factor in the 

decision to prescribe an ESI intended to address trauma, the evidence does suggest that 

they are a salient factor. 

However, there is also ample room for improvement in the provision of 

assessment-driven, trauma-focused intervention. Only about one quarter of the total 

sample was prescribed a trauma-focused ESI. Note that this is a much smaller proportion 

of the total sample than that which was assessed to have a history of trauma exposure 

(~55%) or problems with trauma-related symptoms (~45%).  The implication of these 

figures is clear: there is a sizeable portion of the OOHC population with identified 

trauma-related needs who are not currently receiving an evidence-based, trauma-focused 

treatment; this finding is consistent with prior research suggesting that traumatized youth 

in OOHC are undertreated (Ai, Foster, Pecora, Delaney, & Rodriguez, 2013). 
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The exploration of group differences in assessment responses indicated that, on 

average, female youth scored significantly higher on the CANS-derived trauma scale than 

did male youth. This finding is consistent with prior research suggesting that girls may 

exhibit more trauma-related difficulties than boys (Collin-Vezina, Coleman, Milne, Sell, 

& Daigneault, 2011; Gauthier-Duchesne, Hebert, & Daspe, 2017; Wamser-Nanney & 

Cherry, 2018). However, even when assessment scores were held equal, clinicians were 

1.5 times more likely to have prescribed trauma-focused treatments to female youth than 

to male youth. While the literature has focused more on gender differences in trauma 

exposure or trauma-related symptoms than on gender differences in trauma treatment, 

there is some available insight into possible explanations for this disparity.  

Investigating trauma-related symptoms following sexual abuse, Gauthier-

Duchesne and colleagues (2017) observed higher rates of externalizing symptoms in boys 

while girls were more likely to manifest traditional PTSD symptoms (i.e., re-experiencing 

the trauma, hyperarousal, avoidance behavior). If similar behavioral patterns were 

observed among trauma-exposed youth in the present sample, it is reasonable to speculate 

that the externalizing symptoms of traumatized boys might be more likely to result in a 

treatment recommendation focused on addressing behavioral concerns rather than trauma. 

Alternatively, research by Godinet, Li, and Berg (2014) suggests that trauma-exposed 

boys may experience a more rapid decline in symptoms than trauma-exposed girls. As the 

CANS trauma experiences items pertain to lifetime trauma exposure, it is possible that 

females continue to exhibit more readily recognized symptoms at the time of assessment 

than do males with a comparable trauma history, particularly in those cases where 

significant time has transpired since the trauma occurred. 
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Much of the scholarly literature has focused on the identification of children with 

trauma-related difficulties through the use of screening and assessment (e.g., Conradi et 

al., 2011; Lang et al., 2017). While this is undoubtedly an important area of inquiry, the 

present findings suggest a need to also investigate those youth who have been assessed to 

have trauma-related needs but who have not been assigned a trauma-focused treatment. 

What child, clinician, or environmental factors influence clinical decision making in 

these cases? Present findings suggest that gender may be one salient factor, but a more 

comprehensive investigation is warranted. 

 

Emotional/Behavioral Needs  

Some degree of emotional/behavioral problems were almost ubiquitous in the 

study population with most (60.1%) being rated at an actionable level of severity. 

Descriptive findings reveal a population fraught with anxiety, impulsivity, oppositional 

behavior, and depression. Unfortunately, these results are not unexpected; it is well 

recognized that children and youth in the OOHC service system exhibit more mental 

health problems than those in the general population (Parker, Jacobson, Pullmann, & 

Kerns, 2019).  

 The prevalence of both mental health symptoms and trauma-related symptoms in 

this population implies that service providers must be prepared to address both 

psychiatric disorders and traumatization while recognizing that the two are neither 

synonymous nor mutually exclusive. As Griffin and colleagues (2011) note: “both a 

traumatized child and a child with bipolar disorder may have difficulty with regulating 

their emotions, even though the child with bipolar disorder never experienced a traumatic 
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event and the traumatized child does not suffer from bipolar disorder” (p. 71). At the 

same time, exposure to childhood trauma and adversity is a potent risk factor for the 

development of mental health problems (Navalta, McGee, & Underwood, 2018) 

suggesting a complex and intertwined symptom etiology for many of the children in this 

sample. It is precisely because of the complex constellations of mental health and trauma-

related symptoms exhibited by youth in OOHC that the use of structured assessment to 

inform treatment decision making and ESI selection is of vital importance. 

More than a quarter of the sample was associated with violent or aggressive 

behavior directed at others; just a slightly smaller proportion was associated with self-

harming behaviors. The early identification and evidence-based intervention of children 

with dangerous behavioral patterns is particularly important as evidence suggests that 

aggressive behavior is among the most persistent over time among child welfare involved 

youth (McCrea, 2009). Moreover, research investigating the characteristics of “difficult 

to place” children indicates that destructive behavior—directed at self, others, or 

property—is almost universal among this vulnerable subgroup (Armour & Schwab, 

2007). As might be expected, risk behaviors were positively correlated with assessed 

emotional/behavioral needs.  

On average, males were assessed to have more emotional/behavioral problems 

than females. This is not particularly surprising given that the CANS child risk behaviors 

domain—which contributed slightly more than half of the items in this composite scale—

is comprised primarily of externalizing problems (e.g., bullying, delinquent behaviors) 

and research indicates that boys generally exhibit more externalizing problems than girls 

(Bongers, Koot, van der Ende, & Verhulst, 2003). Future research may benefit from a 
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more nuanced exploration of emotional/behavioral problems that distinguishes between 

internalizing and externalizing symptoms. 

A multilevel logistic regression model was used to investigate the relationship 

between CANS-derived predictors and the recommendation of an ESI targeting 

emotional or behavioral problems. As hypothesized, the emotional-behavioral scale 

emerged as the most robust predictor of behavior-focused treatment, though the trauma 

exposure scale was also significantly associated with the prescription of a behavior-

focused ESI. A one-unit increase on the emotional/behavioral problems scale increased 

the likelihood of behavior-focused treatment by about 7 percent after controlling for the 

child’s age.  

Just as the vast majority of the sample (~94%) was assessed to have some degree 

of emotional/behavioral problems, the vast majority (~90%) was assigned a behavior-

focused treatment. As such, there was not a great deal of variance in the behavior-focused 

treatment outcome to be explained. Altogether, CANS-derived predictors accounted for 9 

percent of this variation in the prescription of a behavior-focused treatment. With the 

inclusion of child demographic predictors, the amount of explained child-level variance 

increased to more than 14 percent.  

Findings indicate that when all other predictors are controlled, older children are 

more likely to be prescribed a behavior-focused treatment than younger children. Each 

additional year of age increases this probability by almost 18 percent. For example, if an 

8-year-old and a 14-year-old were assessed to have identical emotional/behavioral 

concerns, the 14-year-old would be more than twice as likely to be assigned an ESI 

targeting behavior.  
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There are reasons to be concerned about this finding. It has been estimated that as 

many as 40% of children under the age of six entering OOHC exhibit significant behavior 

problems yet less than one quarter receive any behavioral intervention (Stahmer et al., 

2005). However, early childhood is likely the most opportune time to intervene. For 

example, research suggests that most children learn to regulate physically aggressive 

behavior very early in childhood and intervention should begin as early as aggressive 

tendencies are identified (Tremblay et al., 2004). Additional research should focus on the 

unique behavioral needs of young children in this service system as well as the system’s 

current capacity for providing age-appropriate services. 

 As previously noted, among the four CANS-derived composite predictor scales, 

trauma exposure and emotional/behavioral problems were the most strongly correlated. 

Relatedly, trauma exposure emerged as a significant predictor of a behavior-focused 

treatment prescription just as emotional/behavioral problems emerged as a significant 

predictor of trauma-focused treatment. This finding is consistent with a large body of 

research linking childhood trauma to a host of disruptive emotional problems and 

maladaptive behaviors (Gerrity & Folcarelli, 2008). An expanding body of research is 

investigating the impact of particular types of trauma on different behavioral outcomes. 

For example, there is compelling evidence that children who have experienced physical 

abuse engage in aggressive behaviors at a higher rate than children who have experienced 

other forms of maltreatment (Holmes, Yoon, Voith, Kobulsky, & Steigerwald, 2015; 

Yoon, Tebben, & Lee, 2017). Even more nuanced research may include child-level 

interaction effects. For instance, Kobulsky (2017) has found that physical abuse predicts 

early substance abuse in girls but not in boys.  
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 Clearly, the data now being collected through ongoing CANS assessment offers 

tremendous potential for academic researcher to conduct similar investigations across an 

entire state-level OOHC population. But perhaps even more importantly, the CANS 

assessment provides a platform for practitioners to make treatment decisions informed by 

recent research findings examining the link between specific trauma experiences and 

subsequent emotional/behavioral risks (such as those described above). While this may 

seem an overly ambitious objective given the widely acknowledged research-practice gap 

(e.g., Bledsoe-Mansori et al., 2017; Teater, 2017), there is some cause for optimism. 

Present findings suggest that practitioners’ decisions to prescribe a behavior-focused ESI 

are already predicted, in part, by assessed trauma experiences; as such, building upon and 

expanding this already-existent practice may be feasible. 

 

Family Functioning 

Interestingly, only about three-fifths of the sample’s caregivers were assessed to 

have any needs. Moreover, no single item in the CANS caregiver needs and strengths 

domain was assessed to be present in more than half the sample. That is to say, initial 

assessment data suggest that a substantial proportion (~40%) of caregivers had no 

recognized needs related to such areas as parenting knowledge, financial resources, 

mental health, substance use, partner violence, or residential stability. This finding stands 

in contrast to prior research indicating a much higher rate of need among child-welfare 

involved families. For example, in a sample of child welfare involved parents in 

Washington, Marcenko and colleagues (2009) found that 73% of parents had immediate 

financial needs and 87% reported experiencing at least one of four risk factors: domestic 
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violence, sexual abuse, substance abuse, or mental health conditions. In a more recent 

study, Lee and Logan-Greene (2017) used latent class analysis to identify different 

classes of service needs among child welfare involved families; only about 20% of the 

sample was classified as “low needs” and even these families still reported some need for 

social services. 

While it is not possible to conclusively determine that the assessment data related 

to caregiver needs is inaccurate without additional data collection and analysis, the most 

parsimonious explanation for these divergent findings suggests difficulty with the 

accurate assessment of family needs rather than their actual absence among the sample’s 

caregivers. Other child-level CANS items support this conjecture. For example, 

descriptive findings indicate that almost 85% of cases have some degree of impaired 

family functioning and less than 15% of the sample had centerpiece strengths related to 

either nuclear or extended family relationships. Responses to these items suggest a more 

extensive prevalence of family-related problems than is indicated by those items assessed 

from the caregiver perspective. 

Assuming that there is indeed some significant under-identification of caregiver 

needs, efforts to improve this aspect of the assessment process must be prioritized. 

Comprehensive family assessment has become a best practice in child welfare as they 

provide vital information about the family contexts affecting a child’s safety, 

permanency, and wellbeing (Child and Family Services Reviews, 2017; Smithgall, Jarpe-

Ratner, Gnedko-Berry, & Mason, 2015). If current assessment practices do not include an 

exhaustive attempt to accurately capture the needs of the child’s caregiver, they can 

hardly qualify as comprehensive.  
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While improving the accuracy of the caregiver needs assessment may entail an 

additional investment of clinician time and labor (e.g., contacting multiple family 

members, reviewing collateral documentation), it is a worthwhile and necessary 

investment. Federal-level child welfare policy has been growing increasingly family-

centered in recent decades based on the premise that “supporting families and meeting 

families’ needs can maximize gains for children” (Kilmer, Cook, Munsell, 2010, p. 333). 

Research evidence provides some support for this position. For example, substance 

abusing mothers who receive appropriately-matched services are more likely to reunify 

with children placed in OOHC (Choi & Ryan, 2007). Adequately meeting the needs of 

families must begin with an accurate assessment of those needs. As Ingram and 

colleagues (2015) have noted: “careful assessment is the key to identification of risk and 

protective factors affecting the family and helps determine the most appropriate services” 

(p. 144). 

Encouragingly, there is some indication that such “careful assessment” is 

occurring for many cases. Among only those cases for which any caregiver needs were 

identified, an average of eight different needs were assessed as requiring some degree of 

prevention or intervention. It would appear that when caregiver needs are assessed, they 

are assessed thoroughly. As such, efforts to improve comprehensive family assessment 

within this service system should first seek a better understanding of those cases for 

which caregiver assessment is altogether absent. Importantly, it should be determined if 

these apparently unassessed cases are primarily associated with family-level factors (e.g., 

some subset of families are particularly difficult to assess) or clinician-level factors (e.g., 

some subset of clinicians consistently do not complete caregiver assessments).  



 136 

Descriptive treatment prescription counts indicate that only about one-eighth of 

all children included in the sample were prescribed any form of family therapy. 

Moreover, the vast majority of those for whom family-focused treatment was 

recommended received a generic “family therapy” recommendation rather than a specific 

ESI (e.g., brief strategic family therapy, parent-child interaction therapy). No single 

family-focused ESI was prescribed to more than two percent of the total sample. 

Multilevel logistic modeling indicates that CANS items have little to no 

predictive relationship with the prescription of a family-focused treatment. The final 

family-focused treatment outcome model explained less than 4 percent of the variance in 

the clinician’s decision to prescribe a family-focused ESI. The hypothesis that CANS 

items related to family functioning would predict the prescription of a family-focused ESI 

was not supported. While scores on the emotional/behavioral scale were significantly 

associated with the decision to recommend family-focused treatment, the inclusion of 

CANS-related predictors actually degraded the model’s classification accuracy.  

Taken together, the descriptive findings and modeling outputs paint a troubling 

picture. Family functioning appears to be under-assessed. When it is assessed it appears 

to have little influence in the decision to recommend family-focused treatment. And 

when family-focused treatment is recommended, it is rarely an ESI.  

The challenge of providing family centered service to child welfare involved 

families has been acknowledged for many decades (Cole, 1995); this challenge is no less 

pressing today. In their study of therapeutic service providers working with child welfare 

populations, Thompson and Colvin (2019) record a particularly illustrative participant 

quotation worth including verbatim: 
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If you are not experienced in family therapy or didn’t study family therapy in 

school or anything, it is like you are just kind of thrown in there and you got 

people screaming at each other and it is like…’I don’t know what to do. I don’t 

have the proper tools. I don’t know about the proper interventions (p. 64). 

The present study’s results provide a near perfect quantitative reflection of Thompson 

and Colvin’s (2019) qualitative findings. Both imply a need to provide more extensive 

education, training, and supportive clinical supervision for clinicians tasked with 

assessing family’s needs and delivering family therapy. There are also agency level 

implications; recent research suggests that efforts to implement family centered practices 

are most successful in agencies that are outward focused (i.e., focused on clients and their 

needs), innovative, and flexible (Ahn, Keyser, & Hayward-Everson, 2016). Thus, agency 

administrators interested in improving family-focused service delivery must look not only 

to providing clinicians with additional training, skills, and support but also to establishing 

an organizational culture that is open to trying creative, consumer-minded service 

delivery strategies. The data clearly suggest that there is ample room for improvement in 

this area. 

   

Substance Use 

 More than one quarter of the sample triggered the substance use module 

indicating some degree of concern related to alcohol or drug use. The prevalence of 

substance use-related issues in the present sample is considerably lower that of prior 

studies investigating child welfare involved youth (Fettes, Aarons, & Green, 2013; 

Traube, James, Zhang, & Landsverk, 2012; Vaughn, Ollie, McMillen, Scott, & Munson, 
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2007). However, this is primarily due to differences in sampling frames. Evidence clearly 

indicates that older age is a risk factor for substance abuse (Yampolskaya, Chuang, 

Walker, 2019). Most studies that have investigated substance use among child welfare 

involved populations have sampled older youth; the present sample includes children as 

young as five. Assessed substance use rates (~45%) among those children older than 12 

in the sample are much more comparable to previous findings. 

 In addition to the aged-based differences noted above, present findings indicate 

significant gender differences with males’ substance use-related problems being assessed 

as more severe than females’. There were no significant differences in assessed substance 

use-related issues across racial/ethnicity categories. Previous findings have been mixed in 

relation to both gender and racial substance use patterns among child welfare-involved 

youth (Aarons et al., 2008; Cheng & Lo, 2011; Traube et al., 2012).  

 Descriptive findings suggest that substance use tends to be habitual rather than 

experimental among those youth who were assessed to have problems related to drugs or 

alcohol. Three quarters of these youth had been using substances for at least one year and 

most had been abstinent for less than one month at the time of assessment. Research by 

Pittenger and colleagues (2018) indicates that youth who have already initiated substance 

use by the time of their first contact with the child welfare system are at the greatest risk 

for continued usage (compared to those who initiate substance use during or after their 

first contact). As current findings drew from the initial CANS assessment (which is 

completed within 30 days of the behavioral health referral), this risk factor may be 

particularly salient to consider. Those youth entering OOHC with an established history 
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of substance use may benefit from more intensive or specialized substance abuse 

interventions.  

 The CANS functional assessment does not record the types of substances being 

used or distinguish between alcohol use and drug use. The screening instrument—

completed prior to the referral to behavioral health and thus accessible to the assessing 

clinician—does provide some insight into the type of substances being used but is limited 

to only alcohol, marijuana, or “anything else.” Moreover, the substance use portion of the 

screening instrument is only administered to children who are twelve-years-old or older. 

As such, there is presently no standardized, system-wide mechanism within the screening 

and assessment process to ascertain usage patterns related to specific substances. Given 

compelling evidence that there are different risk indicators and prevention strategies 

across substance types (Pittenger et al., 2018), administrators may wish to supplement 

existing screening/assessment measures to begin collecting this information. This would 

also facilitate a more nuanced analysis of substance-specific prevalence rates, usage 

trends, and treatment outcomes than is currently possible. For example, Pittenger and 

colleagues (2018) found that while the prevalence of marijuana use in a sample of child 

welfare involved youth was comparable to the general United States population, cocaine 

use was approximately four times more common among the child welfare sample. 

Determining whether this pattern holds true for the present sample would be challenging 

given the current absence of substance-specific measures. 

 Most youth who were assessed to have substance use related issues reported being 

negatively influenced by their peers, parents, and environments. Prior research has 

established peer, sibling, and parental substance involvement as a potent risk factor for 
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substance use or dependence (Aarons et al., 2008; Yampolskaya et al., 2019). This is 

especially important to note in light of the fact that more than one quarter of the present 

sample’s caregivers were assessed to have substance use related concerns. As such, an 

OOHC placement may provide an opportune setting for impactful intervention. Whereas 

there is some evidence that experiencing multiple out of home placements is associated 

with an increase in the severity of substance use (Aarons et al., 2008), OOHC itself may 

serve as a temporary protective factor. Both Cheng and Lo (2011) and Yampolskaya and 

colleagues (2019) observed a reduction in subsequent substance use following OOHC 

placement. Being placed in OOHC may in fact serve to “shield adolescents from unsafe 

environments and maladaptive influences” (Cheng & Lo, 2011, p. 1671). This finding 

underscores the importance of providing timely, effective, and evidence-based substance 

use treatment in what may be the most important window of opportunity in many youth’s 

life course. 

 While substance-using parents may be a recognized risk factor for youth 

substance involvement, parents and caregivers may also be valuable protective 

influences. Parental supervision and bonding/connectedness have been shown to reduce 

the likelihood of substance use (Cheng & Lo, 2011; Hoffman & Cerbone, 2002, Traube 

et al., 2012). Importantly, such positive parental influences are not limited to biological 

parents but extend to other caregivers such as foster parents (Cheng  & Lo, 2011). 

Unfortunately, descriptive results suggest that this potentially powerful protective factor 

is being underemployed in the current service environment. Those ESIs intended to 

decrease substance use in conjunction with increasing family/parental support (e.g., 

adolescent community reinforcement, brief strategic family therapy, wraparound) are 
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among the least frequently prescribed modalities at the case, clinician, and agency levels. 

Future research should explore the reasons underlying the underutilization of these 

promising treatment approaches (e.g., lack of capacity, lack of family involvement). 

 Of the four focus-of-treatment outcomes modeled, substance use-focused 

treatment was the least frequently prescribed. Only 150 youth—about six percent of the 

sample—had been recommended an ESI intended to address substance use. This finding 

is alarming given the much larger proportion of the sample that was either recently 

abstinent (~15%) or still actively using substances (~5%) at the time of assessment. 

While research is sparse, it is generally understood that many substance using youth in 

the child welfare system either never receive substance abuse treatment or receive 

treatment approaches with a weak evidence base (Traube et al., 2012). Present findings 

support this claim. 

 CANS-derived predictors only accounted for about five percent of the variance in 

the prescription of a substance use-focused treatment; when age and gender when 

included in the model, the explained first-level variance increased to eight percent. This 

suggests that while the CANS assessment may have some degree of influence in 

substance use treatment decision making, it does appear to be one of the primary factors 

considered.  

 Of the four CANS-derived predictors included in the model, the substance use 

scale was the most powerful predictor for substance use focused treatment, providing 

support to the research hypothesis. However, after controlling for age and gender in the 

final model, the trauma exposure scale emerged as a more robust predictor than the 

substance use scale, though age was more predictive than either. For each one unit 
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increase on the composite substance use scale, the likelihood of being prescribes a 

substance use-focused treatment increased by about six percent while each one year 

increase in age increased the probability by more than 12%. 

 That trauma experiences were significantly associated with the recommendation 

for substance use-focused treatment is not altogether unexpected. The connection 

between childhood adversity and subsequent drug and alcohol use is well established. For 

example, Aarons and colleagues (2008) found that maltreatment history accounted for 

more variability in the severity of substance involvement than did demographic factors 

(e.g., race/ethnicity, household income). However, that trauma-related CANS items were 

a more robust predictor of substance use-focused treatment than assessed substance use 

itself is unexpected and difficult to explain. The trauma experiences scale and the 

substance use scale were the least strongly correlated of the four composite predictor 

scales so this finding is not a statistical artifact of collinearity. 

 One possible explanation for this finding is related to the inclusion of the trauma 

recovery and empowerment model (TREM) in both the composite substance use and the 

trauma focus-of-treatment outcome variables. TREM is an intervention designed to 

address the long-term cognitive, emotional, and social consequences of trauma including 

significant substance use problems (Fallot & Harris, 2002). TREM accounted for almost 

one-third of all cases classified as receiving a substance use-focused treatment. If this 

modality is being used primarily to address trauma-related problems rather than 

substance use-related issues, the trauma experiences scale’s relative strength in the 

prediction of a substance use-focused treatment would be inflated. Consequentially, this 

would mean that an even smaller proportion of cases are receiving treatment for the 
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primary purpose of addressing substance involvement. Unfortunately, this possibility 

cannot be empirically verified given the available data. Future research exploring the 

relationship between assessment-derived predictors and specific ESIs may reduce some 

of the ambiguity arising from the use of composite outcome variables. 

 Altogether, these findings highlight considerable room for improvement in the 

treatment of substance use within the OOHC service environment. Perhaps most 

pressingly, it appears that a concerning number of youth with assessed drug and alcohol 

issues are not receiving any ESIs intended to address these problems. Improving the 

integration of assessment findings into the treatment decision making process may 

improve substance use intervention. However, the CANS assessment may also be of 

value for substance use prevention within this vulnerable population. Research has 

identified a number of specific factors that increase the probability of later substance 

involvement among OOHC populations including clinical level behavior problems, 

delinquency, dissociative symptoms, a history of sexual abuse, and exposure to domestic 

violence (Aarons et al., 2008; Goldstein et al., 2011; Traube et al., 2012; Yampolskaya et 

al., 2019). As all of these factors are assessed to some degree in the KY CANS 5+, 

clinicians can identify and proactively target those clients whose experiences and 

symptoms suggest an elevated risk for substance use, even if there is no current 

indication of substance involvement. Indeed, this primary prevention approach is likely 

the most effective. As Pittenger and colleagues (2018) have observed, “use begets use” 

(p. 93); as such, prevention efforts must be prioritized.  
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Limitations 

 At the outset of the discussion of limitations it is important to highlight one aspect 

of the sampling frame that demands attention when interpreting study findings; namely, 

this sample included all children for whom initial functional assessment data was 

available. Theoretically, this should more-or-less reflect all children in OOHC who have 

screened in and, as a result, have been referred to a behavioral health service provider 

within this system of care. However, due to an assessment compliance rate of less than 

50% thus far, the majority of children who should have been administered a CANS 

functional assessment have not. It is highly likely that there are non-random factors at the 

agency, clinician, and client level that impact CANS completion. While this limitation is 

unavoidable given the nature secondary data and is clearly noted as one of the inclusion 

criteria for this study, any generalization of these findings to this service system as a 

whole, or to other OOHC service systems, should be tempered by cognizance of this 

limitation.   

 It is important to note that this study reflects the treatment modality that children 

in OOHC were prescribed at time of assessment. It is not currently known the degree to 

which prescribed treatments align with delivered treatments in this service system 

although future analyses with these data will explore this question. Similarity, frequency 

counts of treatment modalities at the clinician or agency level reflect prescriptions as 

recorded on the CANS assessment report. These prescriptions should not be interpreted 

as necessarily indicative of any specialized training or certification in the identified 

modality or that the modality can be delivered with fidelity. As such, one should exercise 

caution in drawing firm conclusions about service capacity from these findings.   
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These analyses were based solely on the child’s initial CANS assessment. It is not 

yet known the degree to which treatment prescriptions are stable across a case’s course of 

treatment. It is possible that the treatment recommendations tend to change after 

subsequent reassessments. Planned longitudinal analyses of these data will improve our 

understanding of any changes in treatment recommendation patterns over time. Currently, 

generalizations across time should be accepted as merely tentative. 

 As confirmed by the calculated intraclass correlation values, the analytic strategy 

of the present study (i.e. multilevel logistic regression) was an appropriate—and, in fact, 

necessary—approach given the data’s clearly hierarchical structure. The multilevel 

approach was employed primarily to negate the independence of errors assumption that 

would have rendered traditional logistic regression untenable and made interpretation 

prone to error. The available secondary data did not include any second-level (i.e., 

clinician-level) variables. This was not problematic for the present study as the stated 

intent of this initial inquiry was to examine the association between CANS-derived 

predictors (which are first-level predictors) and treatment prescriptions. However, the 

lack of clinician-level variables in the data will be a substantial limitation for building 

upon these initial findings. Collecting clinician-level data and linking it to the available 

case-level data will likely require a substantial investment of time and expertise and may 

limit the ability to conduct additional system-wide analyses as recommended by the 

present author. 

As with any form of multiple regression, the identification and selection of 

predictors (i.e., independent variables) entails some degree of subjectivity. Tabachnick 

and Fidell (2013) note that this decision may be guided by a theoretical framework, astute 
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observations, or just a researcher’s hunch; in the present case, each of these has had some 

measure of influence. There are other CANS-derived predictors that may have been 

viable candidates for inclusion in model building process (e.g., child strengths). 

Similarly, there are alternative options for the arrangement and selection of assessment 

items into the composite predictor scales (e.g., separating risk behaviors and 

emotional/behavioral needs into different predictor scales). Ultimately, following the 

advice of Tabachnick and Fidell (2013), the selection of predictors was driven by 

parsimony—that is, selecting the fewest necessary to predict the dependent variables. 

Future research may opt to include additional or modified CANS-derived predictor 

scales. 

 Three conditions must be satisfied to describe a relationship as causal: (1) the 

cause must precede the effect, (2) the cause must be related to the effect, and (3) there 

must be no other plausible explanation for the effect other than the cause (Shadish, Cook, 

& Campbell, 2002). In the design of Project SAFESPACE’s service reconfiguration, the 

CANS functional assessment is intended to inform treatment planning and thus must 

precede it temporally. The online CANS Assessment Report, on which treatment 

recommendations are recorded, cannot be completed until the CANS functional 

assessment has been administered and the results entered. This study presupposes that 

this intended order is reflected in actual practice behavior—assessment first followed by 

treatment prescription. However, this cannot be confirmed by the research design and 

thus cannot satisfy the temporal condition of causal reasoning. Moreover, as a natural 

experiment using secondary data, very little manipulation or control is possible thus there 

is an inability to rule out other plausible explanations. The observed predictive 
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association between response patterns on the CANS and ESI prescription must not be 

interpreted as definitively causal and alternative causal pathways should not be ruled out. 

  

Theoretical Integration and Conclusions 

The present study analyzed the relationship between the CANS functional 

assessment and the type of ESI prescribed to determine if CANS items related to trauma 

experiences, emotional/behavioral problems, family functioning, and substance use 

predicted an associated treatment prescription. Conceptually, this inquiry was 

contextualized within the EBP framework. As the “first step” and “foundation” of the 

EBP process (Grady & Drisko, 2014; Simmons, 2011), structured assessments provide 

the clinician with information about the client’s state and circumstances that can then 

guide every subsequent step of the EBP process. Despite its centrality to this process, the 

role of assessment in EBP has been almost entirely neglected in the research literature 

(Grady & Drisko, 2014; Mash & Hunsely, 2005). As such, the present findings add novel 

insight to an overlooked line of inquiry. 

Within this broader EBP context, this study’s empirical findings reflect a specific 

activity: treatment decision making—the “lynchpin” of EBP (Spring, 2008). The EBP 

model implies that treatment decisions should be guided by a number of factors including 

the client’s state and circumstances (i.e., assessment findings), the client’s preferences, 

the person of the practitioner, theory and research evidence, and professional expertise 

(Gilgun, 2005; Regehr et al., 2007). A number of theoretical models and conceptual 

frameworks have been developed to describe the process of decision making. 

Historically, EBP has been most closely aligned with the classical (i.e., rational choice) 
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decision making tradition (van de Luitgaarden, 2009). However, the treatment decision 

making research literature provides little empirical support for this perspective. As such, 

naturalistic decision making has been suggested as an alternative framework for 

conceptualizing treatment decision making within EBP (e.g., Baker-Ericzen et al., 2015). 

The pattern of modality prescription within this service system is suggestive of an 

underlying situation-action matching decision rule as conceptualized in NDM theory. 

Such a rule would imply that CBT is the standard treatment modality and is applied to 

any case for which it is deemed a “good enough” match; only when CBT is judged to be 

clearly insufficient are alternative modalities even considered. While this is not a theory-

testing study and descriptive findings cannot confirm this conjecture, they are clearly 

more indicative of a matching rule than the concurrent choice rule posited by rational 

choice theory. Present findings in this regard are compelling enough to justify deeper 

inquiry. Future research, particularly of a qualitative nature, should explore the decision 

making processes of clinicians to provide additional insight into the decision rules 

employed in the treatment selection process. 

 The NDM approach recognizes that just because a source of information is 

available to the decision maker does not mean that this information is in fact used in the 

decision making process. As such, NDM-based models seek to identify what types of 

information actually influence decision making in the field setting. As noted above, there 

is a strong theoretical basis for concluding that assessments should inform subsequent 

treatment decisions, but is information gathered during the CANS assessment used to 

inform ESI selection in actual practice? This was the fundamental conceptual question 

underlying the present inquiry.  
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 Results of the multilevel logistic modeling suggest that clinicians in this service 

environment use assessment information to varying degrees when making treatment 

recommendations across different domains. Assessment-derived predictors accounted for 

more than 17% of the variance in the prescription of a trauma-focused treatment. While 

this falls slightly below the minimum threshold for “good” prediction (Hox et al., 2018), 

it does demonstrate a clear alignment between assessment findings and treatment 

recommendations. As the intensity of assessed trauma-related problems increased, so too 

did the probability of receiving an ESI intended to address trauma. Thus, it can be stated 

with reasonable confidence that assessment data appears influential in treatment decision 

making related to addressing traumatization. At the other extreme, none of the empirical 

findings provide any indication that assessment information plays a role in treatment 

decision making related to family functioning. In fact, the inclusion of assessment-

derived predictors reduced the model’s ability to accurately predict whether a case would 

or would not be prescribed a family-focused ESI. The other two domains of treatment 

decision making—emotional/behavioral problems and substance use—are a bit less clear. 

It should be noted that these two domains had the least variation in treatment prescription 

to explain. That is to say, the vast majority of the sample was prescribed a behavior-

focused treatment while only a fraction of the sample was prescribed a substance-focused 

treatment. Assessment-derived predictors accounted for less than ten percent of the 

limited variance in the prescription of a behavior-focused or substance use-focused ESI. 

At the same time, as assessed emotional/behavioral problems or substance use issues 

increased, so too did the probability of being prescribed a related ESI. One might 

tentatively conclude that assessment data appears to be a minor, but still salient, factor in 
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the decision making process for these two treatment domains. Certainly, additional 

investigation is warranted before more definitive conclusions can be drawn.  

In general, these conclusions are consistent with prior treatment decision making 

research suggesting that decisions are not directly attributable to any single factor (e.g., 

assessment-derived information) but are instead influenced by a number of considerations 

(Nelson & Steele, 2008; Witteman & Koele, 1999). They also acknowledge a differential 

use of assessment data that, when interpreted through the lens of NDM theory, suggest 

different process orientations across different domains of treatment decision making. 

Importantly, this implies that the question, “what factors influence treatment decision 

making?” may be too unidimensional in nature. A more viable research question may be, 

“what factors influence treatment decision making related to trauma (or substance use, or 

behavioral problems, etc.)?”.  

 Consistent with the NDM element of context-bound modeling, the primary aim of 

this study was to describe assessment patterns and associated treatment recommendations 

related to a particular population within a particular environment. Findings have direct 

and actionable implications for the practitioners, administrators, policymakers, educators, 

researchers, and other stakeholders associated with this OOHC service system. This is not 

to say that the present results do not have external relevance or advance the broader 

knowledge base. On the contrary, they contribute to the scholarly literature across a 

number of subject matters including the treatment needs and characteristics of youth in 

OOHC, the use of structured assessments, and assessment-driven treatment planning. 

Nevertheless, the practical has been prioritized and no abstract, generalizable decision 

making models have been advanced. 
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 Just as it has informed the interpretation of current findings, NDM theory also 

offers a concrete next step in terms of building upon this line of research inquiry. 

Empirical-based prescription is an essential characteristic of the NDM framework. As 

such, description must precede prescription in terms of enhancing decision making 

performance. This study provides a comprehensive baseline description of structured 

assessment and treatment prescription across all clinicians who completed a CANS 

functional assessment. Future research should seek to compare these baseline findings 

with the treatment prescription patterns of clinicians with established expertise. Do expert 

clinicians prescribe a greater or lesser number of distinct modalities? Are expert 

clinicians’ treatment recommendations more or less associated with assessment findings? 

As the treatment decision making practices and processes of expert clinicians are 

identified, they can serve as benchmarks for the system-wide enhancement of 

assessment-driven, evidence-based treatment recommendations. 

 Despite the lack of a definitive causal relationship (as detailed in the preceding 

limitations section), this study has offered valuable insight into the treatment decision 

making practices of clinicians in one OOHC service system and the degree to which these 

align with EBP. Importantly, this study has employed an underutilized approach for 

exploring EBP. Research examining the use of EBP in a practice environment tends to 

use self-report surveys (e.g., Stadnick et al., 2017), qualitative interviews and focus 

groups (e.g., Nelson et al., 2006), or knowledge and attitude scales (e.g., Aarons, 2004). 

While such investigations certainly have their merit, they also share a substantial 

limitation—if there is no professional or scholarly consensus regarding the definition of 

the term evidence-based practice (Rubin & Parrish, 2007) and there are concerns that it is 
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becoming little more than a catchphrase (Shlonsky & Gibbs, 2004), how much is gained 

by asking practitioners if they engage in it or how they feel about it? Studies of this sort 

begin with a concept (EBP) and then must speculate as to the degree to which the 

conceptual is reflected in actual practice (see, for example, Tuten et al.’s, 2016, 

discussion of study limitations). This study approaches the question from precisely the 

opposite direction; drawing upon key NDM tenets, it begins with observable practice 

behaviors and speculates toward the conceptual. Certainly both vantage points have their 

respective blind spots, but the perspective presented herein has meaningfully contributed 

to the conceptual EBP knowledge base while simultaneously offering empirical findings 

with concrete implications for child welfare research and practice.  
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