
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

7-2019

Simulation of a continuum tumor model using distributed Simulation of a continuum tumor model using distributed

computing. computing.

Dylan A Goodin
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Other Biomedical Engineering and Bioengineering Commons

Recommended Citation Recommended Citation
Goodin, Dylan A, "Simulation of a continuum tumor model using distributed computing." (2019). Electronic
Theses and Dissertations. Paper 3250.
https://doi.org/10.18297/etd/3250

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/239?utm_source=ir.library.louisville.edu%2Fetd%2F3250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3250
mailto:thinkir@louisville.edu

Simulation of a Continuum Tumor Model using Distributed Computing

by

Dylan Goodin

B.S., University of Louisville, July 2019

A Thesis

Submitted to the Faculty of the

University of Louisville

J.B. Speed School of Engineering

as Partial Fulfillment of the Requirements

for the Professional Degree

MASTER OF ENGINEERING

Department of Bioengineering

July 2019

ii

SIMULATION OF A CONTINUUM TUMOR MODEL USING DISTRIBUTED

COMPUTING

 Submitted by:

Dylan Goodin

A Thesis Approved on

 07/15/2019

By the Following Reading and Examination Committee

 Dr. Hermann Frieboes, Thesis Director

 Dr. Jill Steinbach-Rankins

 Dr. Eric Rouchka

iii

ACKNOWLEDGEMENTS

I thank Dr. Frieboes for his patience and the opportunity to work with this model

and improve it as much as I have. His confidence in me to do this work has made a world

of a difference.

Special thanks to Dr. Jill Steinbach-Rankins and Dr. Eric Rouchka for taking the

time to focus on this work, as it has been an intense focus of mine for a couple of years

now. Thanks also to the University of Louisville’s Cardinal Research Cluster team who

helped me learn how the cluster operates and for maintaining the cluster for use for all

researches at the University of Louisville.

I also thank the BE department of the University of Louisville for the education

they have given to me over my bachelor’s and master’s degrees. They are fortunate to

have a strong roster of knowledgeable, accessible, and friendly faculty.

iv

ABSTRACT

Mathematical modeling aims to provide a theoretical framework for

understanding tissue dynamics and for establishing treatment response for diseased

tissues, such as tumors. Previously published continuum models have successfully

represented idealized two-dimensional and three-dimensional tissue for short periods of

time. A recently published continuum model of cancer increases model complexity and

describes three-dimensional tissue that, due to the required complexity of the geometric

multigrid solver, can only be feasibly applied to millimeter-scale simulations.

Furthermore, the computational cost for such models has hindered their application in the

laboratory and in the clinic. With computational demands greatly outpacing current

openMP-based approaches on single-CPU-socket machines, higher performance solvers

for large-scale tissue models remain a critical need. In this thesis, preliminary results of a

CUDA and CUDA-MPI based parallelization applied to a tissue model are presented,

with significant speedups seen in solution calculation for an initial time step. With further

access to larger distributed computing, these parallel frameworks could potentially scale

to simulate large-scale tissues.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT .. iv

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

I. INTRODUCTION ..1

A. Rationale for Cancer Mathematical Modeling ...1

B. Background to Cancer Mathematical Modeling ...4

C. Background and Simulation Description of the Ng-Frieboes Tumor Model5

D. Multigrid Model ..9

II. PROPOSED TUMOR MODEL NUMERICAL SOLVER ... 13

A. openMP Shortcomings and Overall Contribution to the Model 13

B. MPI DESIGN .. 16

C. OVERALL ALGORITHM .. 19

D. FUNCTION X CALLED ON LEVEL ℓ ... 21

E. FUNCTION PROCESSING USING PARALLEL ARCHITECTURES 22

F. RESTRICTION & PROLONGATION/ERROR CORRECTION........................... 28

III. MATERIALS AND METHODS ... 31

A. OVERALL METHODS .. 31

vi

B. EXAMPLE TESTING METHODOLOGY .. 33

IV. RESULTS ... 35

V. DISCUSSION... 41

VI. FUTURE WORK .. 45

APPENDIX I ... 48

A. DERIVATION OF MODEL MEMORY FOOTPRINT ... 48

B. FULL DATA OUTPUT .. 56

REFERENCES .. 57

vii

LIST OF TABLES

Table Page

TABLE I ...8

TABLE II .. 12

TABLE III ... 14

TABLE IV... 36

TABLE V .. 36

TABLE VI... 37

TABLE VII ... 40

TABLE VIII .. 56

TABLE IX... 56

viii

LIST OF FIGURES

Figure Page

FIGURE 1 – NODAL DISTRIBUTION ON ARBITRARY LEVEL L 17

FIGURE 2 – EXECUTION OF ARBITRARY FUNCTION X 20

FIGURE 3 – A ZERO CURL VECTOR FIELD CANDIDATE FOR THE SYNC

VECTOR... 26

FIGURE 4 – MPI SYNCING VECTORS AT DOMAIN BORDERS 27

FIGURE 5 – OPEN-MP VS MPI-CUDA PROCESSES AND PERFORMANCE 35

FIGURE 6 – OPEN-MP PARALLELIZATION CLUSTER VS DESKTOP 37

FIGURE 7 – INITIAL TUMOR VOLUME IN 5.1 MILLIMETER DOMAIN AT THE

END OF TIME STEP 1 & 2 .. 38

FIGURE 8 – TIME STEP 2 CORNER... 38

FIGURE 9 – FIRST TIME STEP CUBIC TUMOR DIMENSIONS 39

FIGURE 10 – OPENMP OUTPUT FROM NG-FRIEBOES 2017 AFTER 500 TIME

STEPS ... 40

https://cardmaillouisville-my.sharepoint.com/personal/dagood05_louisville_edu/Documents/Masters/Thesis/Dylan%20Goodin%20Thesis.docx#_Toc14810159
https://cardmaillouisville-my.sharepoint.com/personal/dagood05_louisville_edu/Documents/Masters/Thesis/Dylan%20Goodin%20Thesis.docx#_Toc14810162

1

I. INTRODUCTION

A. Rationale for Cancer Mathematical Modeling

Cancer remains a significant disease after centuries of treatment and medical

study. In the US, for instance, the number of diagnoses in 2019 is projected to be over 1.7

million, over 33% of which will die of the disease. Its effect is tantamount to heart

disease over the same one-year period (Institute, 2019; Prevention, 2018).

Cancer’s characteristics have been outlined thoroughly by the works of Hanahan

and Weinberg as they describe mutated variants of a host cell that demands and consumes

host resources to fuel an abnormal and continuous mitotic behavior that extends into the

foreseeable future (Douglas Hanahan & Robert, 2011; D. Hanahan & Weinberg, 2000).

Their works define a depth of knowledge that belays a desire to find a treatment method

for the disease. Three overarching categories of treatment have emerged from this

continued research: surgery, chemotherapy, and radiation (K. D. Miller et al., 2016;

Napier, Scheerer, & Misra, 2014; Weinberg, 2013). Surgery, in the case of cancer, is a

debulking process, in which a portion of a tumor mass is removed. In many cases,

surgery can be combined with other treatment results with varying degrees of

effectiveness (Felip et al., 2010; Rydzewska, Tierney, Vale, & Symonds, 2010; Sasako et

al., 2011). However, surgery can lead to a resection of the organ in question, such as a

2

mastectomy or esophagectomy, for example (K. D. Miller et al., 2016; Napier et al.,

2014).

While it can be used in conjunction with the other two, radiation, on its own, has

benefits to the patient by causing tissue damage at the site of the injury (Weinberg, 2013).

It is commonly used in addition to either surgery, chemotherapy, or, more recently,

immunotherapy to improve survivability (Kang, Demaria, & Formenti, 2016; Leibovich

et al., 2000; T. P. Miller et al., 1998; Ragaz et al., 1997; Weinberg, 2013). Additionally,

radiation can target the cancer more locally than chemotherapy and is less intrusive than

surgery. However, its role remains more preventative than curative, leaving clinicians to

turn to chemotherapy as the mainstay of treatment (K. D. Miller et al., 2016).

The mechanism of action for chemotherapy varies from drug-to-drug, but the

most common pathway involves the disruption of cellular replication. For example

vinblastine inhibits microtubule assembly, stopping mitosis at prometaphase (Weinberg,

2013). Consequently, any cell in the patient that commonly divides will be affected,

leading to hair loss and nausea. Even in cases where the patient braves the

chemotherapeutic process, drug resistance may form in remaining tumors (Holohan, Van

Schaeybroeck, Longley, & Johnston, 2013). If adjuvant therapies fail to remove the

growth, any realized tumor resistance to previously effective drugs will complicate any

future treatment plans.

3

It is worth noting an up and coming option for cancer patients: immunotherapy.

Immunotherapy aspires to harness T-cells in the host body to reevaluate cancer cells

histocompatibility by either disrupting immunoediting in tumors (i.e. disrupting CTLA-4

or PD-1/PD-L1 pathways) or performing an adoptive cell transfer (Du, Herbst, &

Morgensztern, 2017; Pardoll, 2012; Rosenberg, 2014; Schumacher & Schreiber, 2015;

Topalian et al., 2015; Yang, 2015). However, few people directly benefit from

immunotherapy in its current form since its efficacy is limited to specific patients with

certain types of cancer, e.g. lung, lymphomas, leukemias, or melanoma (Du et al., 2017;

Topalian et al., 2015). As an example of the negative, metastatic epithelial cancers cannot

currently be treated using immunotherapy (Topalian et al., 2015).

With an increasing number of chemotherapeutic and immunotherapeutic tools at a

clinician’s disposal, not to mention the ability to add treatments in conjunction to one

another, the importance of creating a treatment plan is paramount. Thus, a consistent and

impartial testing apparatus is critical to ensure the best patient outcome. Mathematical

modeling aims to provide the consistency necessary to test treatment plans, as well as

make predictions to better treatment paths (Michor, Liphardt, Ferrari, & Widom, 2011).

4

B. Background to Cancer Mathematical Modeling

Cancer has a rich history of mathematical modeling that extends from the middle

of the 20th century, enlightening clinicians to better treatment regimens for tumor patients

(Coldman & Goldie, 1986; Norton & Simon, 1977). Tumor complexity, however, makes

creating a model that can accurately simulate tumors challenging, leaving researchers

with room to create a swathe of cancer mathematical models (Frank, Iwasa, & Nowak,

2003; Sanga et al., 2006). More recently, models strive to increase realism by enlarging

the number of phenomena considered, including thermodynamics, discrete tumor types,

and vasculature constraints (Anderson & Chaplain, 1998; Frieboes et al., 2010; Wise,

Lowengrub, Frieboes, & Cristini, 2008). By accounting for these additional phenomena,

newer models with these compensatory equations exchange the numerical and underlying

simplicity of their equations with wider applicability at the cost of mathematical

complexity (Altrock, Liu, & Michor, 2015; Michor et al., 2011). The most recent of these

advents is the Ng-Frieboes model that supports multispecies environments, Helmholtz

energy calculations, metabolite concentrations, and vasculature in an effort to detail

tumor growth in a clinically relevant manner (Ng & Frieboes, 2017, 2018). Construction

of such a model yields a promising framework upon which the efficacy of drug delivery

can be tested in a consistent and objective manner.

5

C. Background and Simulation Description of the Ng-Frieboes Tumor Model

The Ng-Frieboes tumor model as presented in Ng and Frieboes (2017) simulates

the evolution of a single living phenotype of tumor, represented with a volume fraction

𝜙𝑉, in a healthy environment filled with host cells and extracellular matrix (ECM),

represented by the volume fractions 𝜙𝐻 and 𝜙𝐸, respectively. The tumor cells vie for

resources against the healthy tumor cells while balancing their need for metabolites,

including oxygen, carbon dioxide, lactate, bicarbonate, sodium and chloride ions, and H+

ions. Crowding in a limited tissue space is abstracted into solid mass pressure and

pressure from surrounding fluids, represented as 𝑝 and 𝑞, respectively. These pressures

create velocity in the solid tissue mass 𝑢𝛼 and create buildup of elastic energy 𝒲 on the

surrounding ECM. Matrix degrading enzymes and myofibroblast concentrations increase

due to remodeling of surrounding ECM to compensate for increased strain from tumor

growth.

When tumor growth factors have led to a sufficiently large tumor mass, certain

parts of the tumor, such as cells surrounded by thick layers of tumor cells, can be

deprived of resources. As such, the tumor use angiogenic factors to encourage

vasculature growth from surrounding vessels towards the cells. Increased vessel leakiness

has been well-documented from these relatively quick changes to local vasculature; the

body compensates for the resulting edematous environment by increasing lymphatic

6

growth (Swartz & Lund, 2012). Therefore, the model simulates lymphatic growth with

independent terms to the vasculature, although both are closely related both

mathematically and physiologically. However, even with growth towards the tumor, the

effectiveness of the vasculature is limited physiologically by oxygen’s diffusion rate.

Thus, interior hypoxic regions in sufficiently large tumors will operate in varying levels

of anerobic glycolysis, building up lactic acid in the process. In a sufficiently hypoxic

state, the tumor cells become apoptotic/necrotic, represented as the dead cell volume

fraction 𝜙𝐷.

The model’s key equations exhibited in Ng and Frieboes (2018) and derived in

Ng and Frieboes (2017) are presented in their nondimensionalized forms below:

𝜕𝜙𝑉

𝜕𝑡
+ ∇ ∙ (𝜙𝑉𝑢𝛼) = 𝑀 ∙ ∇ ∙ (𝜙V∇𝜇𝑇) + 𝑆𝑉 (1)

𝜇𝐸 =
𝜕𝐹𝑏

𝜕𝜙𝐸
+

𝜕𝒲

𝜕𝜙𝐸
− 𝜖𝐸

2 ∙ ∇2𝜙𝐸 − 𝜖𝑇𝐸
2 ∙ ∇2𝜙𝐸 (2)

𝜕𝒲

𝜕𝜙𝐸
= 𝜖𝑒 ∙ [6 ∙ 𝜙𝐸(1 − 𝜙𝐸)] ∙ ∑ [

1

2
∙ (ℰ̃𝑇)

𝑖𝑗
∙ 𝕋𝑖𝑗

∗ − (ℰ̃𝑇
∗)

𝑖𝑗
∙ 𝕋𝑖𝑗]

3

𝑖,𝑗=1

(3)

�̃�𝑚𝑛 = 2 ∙ 𝐿2(ℰ̃𝑇)
𝑚𝑛

+ 𝐿1 ∙ 𝛿𝑚𝑛 ∙ ∑(ℰ̃𝑇)
𝑠𝑠

3

𝑠=1

(4)

∇ ∙ [𝑘𝛼 ∙ (∇𝑝 −
𝛾𝑇

𝜖𝑇
𝜇𝑇∇𝜙𝑇 −

𝛾𝐸

𝜖𝐸
𝜇𝐸∇𝜙𝐸] = −(𝑆𝑉 + 𝑆𝐷 + 𝑆𝐸) (5)

𝑢𝛼 = −𝑘𝛼 ∙ [∇𝑝 −
𝛾𝑇

𝜖𝑇
𝜇𝑇∇𝜙𝑇 −

𝛾𝐸

𝜖𝐸
𝜇𝐸∇𝜙𝐸] (6)

7

∇ ∙ (𝐷𝑛∇𝑛) + 𝑘𝑛1𝑛𝐶 − (𝑘𝑛1 + 𝑘𝑛2) ∙ 𝑛 = 0 (7)

∇ ∙ (𝐷𝑡𝑔𝑓∇(𝑡𝑔𝑓)) + 𝜆𝑡𝑔𝑓 − (𝜆𝑡𝑔𝑓 + 𝜆𝑑𝑒,𝑡𝑔𝑓 + 𝜆𝑈,𝑡𝑔𝑓) ∙ 𝑡𝑔𝑓 = 0 (8)

𝜕𝐵𝑛
𝐸

𝜕𝑡
+ ∇ ∙ (𝐵𝑛

𝐸𝑢𝐸) = −∇ ∙ 𝑱𝐵𝑛𝐸 + 𝑆𝐵𝑛𝐸 (9)

where term values in equations 1 through 9 are given in Table I and 𝛿𝑚𝑛 = {
0, 𝑚 ≠ 𝑛
1, 𝑚 = 𝑛

.

8

TABLE I

PARTIAL LIST OF NG FRIEBOES MODEL VARIABLES & PARAMETERS

Variable Biological Representation Term Definition

𝜙𝑉 Viable Tumor cell volume fraction

(Ng & Frieboes, 2017)

𝜙𝐸 Extracellular matrix volume fraction

𝜙𝐻 Healthy host cells volume fraction

𝑢𝛼 Solid Cell velocity

𝑢𝐸 Extracellular Matrix velocity

𝑀 Mobility of cell species

𝜇𝑇 Tumor cell potential

𝜇𝐸 Extracellular Matrix Potential

𝑆𝑉 Viable Tumor Cell Source

𝑆𝐷 Dead/Necrotic Tumor Cell Source Term

𝑆𝐸 Extracellular Matrix Source Term

𝑆𝐵𝑛𝐸 Blood cell Source Term

𝒲 Elastic Energy

ℰ𝑇 Elastic stiffness of tumor component

ℰ̃𝑇
∗ Eigenstrain

𝕋 & 𝕋∗ Extracellular matrix stresses (Ng & Frieboes, 2018)

𝐿1 & 𝐿2 Lamé constants for cell components

(Ng & Frieboes, 2017)

𝜖𝐸 Interaction strength of the Extracellular Matrix

𝜖𝑇 Interaction strength for Tumor Cells

𝜖𝑒 Strain energy coefficient

𝑘𝑎 Motility of the solid phase

𝑝 Solid phase tumor cell Pressure

𝛾𝑇 Tumor cell adhesion parameter

𝛾𝐸 Extracellular matrix adhesion parameter

𝑛 Concentration of oxygen

𝐷𝑛 Diffusivity of oxygen in Tumor

𝑘𝑛1
Rate constants (Ng & Frieboes, 2018)

𝑘𝑛2

𝑡𝑔𝑓 Tumor growth factor concentration (Ng & Frieboes, 2017)

9

𝐷𝑡𝑔𝑓 Diffusivity of tumor growth factor in tumor

𝜆𝑡𝑔𝑓 Tumor growth factor rate constant

𝜆𝑑𝑒,𝑡𝑔𝑓 Degradation rate constant for Tumor growth factor

𝜆𝑈,𝑡𝑔𝑓 Total uptake rate constant for tumor growth factor

𝐵𝑛
𝐸 New blood vessels

𝑱𝐵𝑛𝐸 Blood vessel diffusive flux

In its current form, the Ng-Frieboes model can simulate a globular tumor, such as

lung cancer or carcinoma along with surrounding tissue. With additional functionality

and future work, this model could generate tumor volumes from The Cancer Genome

Atlas (TCGA) project and predict treatment method effects.

D. Multigrid Model

The coupled nature of the Ng-Frieboes model and previous models has led to

numerical solution methods (Frieboes et al., 2010; Ng & Frieboes, 2018). The numerical

solution for the model stems from Multigrid based on previous work by Lowengrub and

coworkers (Lowengrub et al., 2010). The algorithm is given in Ng and Frieboes (2018):

10

For each level ℓ = ℓ𝑚𝑖𝑛 𝑡𝑜 ℓ𝑚𝑎𝑥

 If ℓ = ℓ𝑚𝑖𝑛

 ψ̅ℓ𝑚𝑖𝑛

𝑡,0,𝑣0 = SMOOTH(𝑣0, ψℓ𝑚𝑖𝑛

𝑡,𝑟=0, 𝐿ℓ, 𝑅ℓ)

 Else

 If ℓ < ℓ𝑔𝑙𝑜𝑏𝑎𝑙

r = r + 1

ψℓ
𝑡,𝑟 =

ADAPTFAS(ℓ, 𝛾ℓ, 𝜏ℓ, 𝑣0, 𝑣1, 𝑣2, ψℓ
𝑡,𝑟−1, ψℓ−1

𝑡,𝑟−1, 𝐿ℓ, 𝑅ℓ)

 Else

 Do

r = r + 1

ψℓ
𝑡,𝑟 =

ADAPTFAS(ℓ, 𝛾ℓ, 𝜏ℓ, 𝑣0, 𝑣1, 𝑣2, ψℓ
𝑡,𝑟−1, ψℓ−1

𝑡,𝑟−1, 𝐿ℓ, 𝑅ℓ)

 While (‖𝑅ℓ − 𝐿ℓ(ψℓ
𝑡,𝑟)‖ > 𝜏ℓ)

 End If

 End If

 If ℓ < ℓ𝑔𝑙𝑜𝑏𝑎𝑙

 Find prolongate solution ψℓ+1
𝑡,𝑟−1 = PROLONGATE(ψℓ

𝑡,𝑟−1)

 Else If ℓ𝑔𝑙𝑜𝑏𝑎𝑙 ≤ ℓ < ℓ𝑚𝑎𝑥

𝐹ℓ
𝑡,𝑟−1 =FLAG(ψℓ

𝑡,𝑟−1
)

11

If 𝐹ℓ
𝑡,𝑟−1 ≠ ∅

 Create block 𝐵ℓ+1 ⊆ Ωℓ+1:

𝐵ℓ+1

= BLOCKGEN(𝐹ℓ
𝑡,𝑟−1, 𝜂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑖𝑧𝑒, 𝜂𝑚𝑖𝑛)

 Find prolongate solution ψℓ+1
𝑡,𝑟−1 = PROLONGATE(ψℓ

𝑡,𝑟−1)

 Else

 Break

 End If

 End If

 End For

Where ADAPTFAS, PROLONGATE, BLOCKGEN, and SMOOTH are defined in Ng

and Frieboes 2018 and the parameters are defined in table II.

In each section, openMP improved algorithm performance by parallelizing operations

performed on Ωℓ.

12

TABLE II

DEFINITIONS OF NG FRIEBOES ALGORITHM PARAMETERS

Parameter Description Term Definition

Ωℓ Model domain at level ℓ

(Ng & Frieboes,

2018)

ℓ Level index

ℓ𝑔𝑙𝑜𝑏𝑎𝑙 Finest level that always spans Ωℓ

𝛾ℓ Cycle Index for Level ℓ

𝑟 Multigrid iteration number

𝑡 Time step index

ψ Solution on level ℓ

ψ̅𝑡 Initial solution estimate for time step 𝑡

𝐿ℓ Left-hand side equation terms for level ℓ

𝑅ℓ Right-hand side equation terms for level ℓ

𝜏ℓ Solution Tolerance for level ℓ

𝑣0, 𝑣1, 𝑣2 Preset, arbitrary number of smoothing steps

𝜂𝑚𝑖𝑛, 𝜂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 Minimum and threshold efficiencies, respectively

13

II. PROPOSED TUMOR MODEL NUMERICAL SOLVER

A. openMP Shortcomings and Overall Contribution to the Model

As noted in the in Ng and Frieboes (2018), only openMP was used to parallelize

the implemented framework. There are three main limitations that are imposed by

parallelizing using openMP alone:

1. When tested using 1283 grids, maximum performance was obtained using only 8

cores out of 32 on a 32-core processor on the Cardinal Research Cluster (CRC).

Results are shown in table VI. These findings are indicative of a memory transfer

bottleneck. Hence, openMP-only implementations will not scale well locally for

sufficiently large grid sizes.

2. openMP is a shared-memory architecture that runs on non-distributed systems,

limiting performance gains to what a single independent computer can accomplish

(i.e. single PC or workstation).

3. Many PCs will not possess enough RAM to hold larger tumor model spaces. For

example, a 2563 grid is expected to use over 12 GB of space; this is well out of

reach of many PCs at the time of writing. Future grid sizes for application use

14

could reach or exceed 10243, putting total RAM usage upwards of 850 GB. Table

III summarizes the expected RAM footprint for varying model sizes. Appendix 1

covers how these values were obtained.

TABLE III

MEMORY REQUIREMENTS FOR VARYING TUMOR MODEL SIZES

Max level size

2563 5123

Points on a Side 130 258

Maximum Level size Simulated (#Points on a side) 256 512

Upper Bound RAM Required per process with eight nodes on the

finest level (GB)
3.3 25.5

RAM Required for single process on the finest level (GB) 13.6 107.6

Maximum spherical tumor diameter to simulate (mm) 5.1 10.2

To simulate tumors on physiologically realistic scales, the Ng-Frieboes model

must have enough computational resources to function on at least a 5123 sized domain

and, according to table III, over 100 GB of RAM is required for such a task. Because

many modern computers do not contain nearly this much RAM, a new solution generator

is required.

15

This thesis describes a scalable framework designed to alleviate the shortcomings

found with the openMP-based implementation of the Ng Frieboes model. MPI handles

distribution of information across multiple processes, freeing the program from the RAM

and processing constraints of a single system. On each system, Nvidia’s GPU CUDA

library allows for faster processing of model data. Thus, the model framework is a two-

part model: an MPI-CUDA model.

Finally, other distributed computing frameworks will briefly be covered here. The

type of simulation being done here, generally known as Big Compute, requires consistent

communication between multiple data repositories. As such, HPC architectures

configured for Big Data, in which repositories are assumed to contain independent pieces

of data, are not designed for Big Compute Tasks. Additionally, these models run on Java

whereas MPI is compatible with C thus giving MPI a small performance advantage

(Byun et al., 2012; Taboada, Ramos, Expósito, Touriño, & Doallo, 2013). Therefore,

Hadoop and Spark, specializing in Big Data, were not optimal for tumor simulation

(Byun et al., 2012; Zaharia et al., 2016).

16

B. MPI DESIGN

In MPI, there are two classes of processes (i.e. nodes) in the program:

1. The administrative node (AdN). Its responsibilities include saving the model,

ensuring synchronization of the model at certain points in execution, such as

calculation of the residual, and designation of synching properties and node

adjacency. There is only one node designated the AdN.

2. General Computation nodes (GCN). GCNs take up a non-overlapping cubic

region in Ω. Each one can operate on more than one level as designated by the

AdN at the start of the model’s execution.

At the beginning of the model, the single AdN is designated. It then starts to

define node boundaries:

1. Collect statistics on node characteristics. Determine the minimum amount of

RAM possessed by a single node and by a graphics card.

2. Determine the maximum sized domain that each GCN can handle. To agree

with the domain Ω, the cubic domain Ω𝐷 has a side length 2𝑘 where 𝑘 ≤

ℓ0 + ℓ𝑖𝑛𝑑𝑒𝑥 . The resulting size is the fundamental size for the node. A

17

corollary to the definition is that the coarsest level ℓ𝑖𝑛𝑑𝑒𝑥 may define a

domain Ω0 that is larger than a single node.

3. The nodes are arranged sequentially with each node filling a single region of

the model in a manner depicted by figure 1:

FIGURE 1 – NODAL DISTRIBUTION ON ARBITRARY LEVEL L

In figure 1, level L contains eight nodes, all of which are at the maximum

capacity per node for a single level. Adapting a method of hierarchical node filling

proposed by Reiter et al. 2013, on level L + 1 eight times the number of nodes will be

required to fill the domain since memory occupation is maximized on level L. The light

grey node is expanded on level L + 1, revealing seven new nodes. One-eighth of the

18

domain covered by the star node on level L is retained locally while the other 7 parts of

the domain are sent to 7 other GCNs. Thus, the amount of work increases linearly with

the number of levels, since nodes on each level after and including level L would have

the same domain size (Reiter, Vogel, Heppner, Rupp, & Wittum, 2013). This also means

that every node on a previous level must operate on the final level Lmax. Overall, then, the

total amount of nodes required is described in equation 10:

𝑁𝑜𝑑𝑒𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 8𝑛0−𝑚0+𝐿 (10)

Where 𝑛0, 𝑚 ∈ ℤ , 𝑛0 < 𝑚0, the coarsest level L0 has 2𝑚0 points on a side, each

node holds 2𝑛0 points per side per level with maximum RAM usage, and L is equal to the

number of levels in the model. Thus, in figure 1 𝐿 = 2 & 𝑛0 = 𝑚 − 1 ⇒ #𝑁𝑜𝑑𝑒𝑠 =

82−1 = 8 nodes. RAM usage is explored in greater detail in Appendix I. Because a

portion of the computational work remains on every finer level after a node is first

introduced, nodes are utilized to a greater degree over a non-hierarchical filling method

with lowered node-to-node communication.

19

C. OVERALL ALGORITHM

The overall algorithm in the MPI-CUDA tumor model is identical to that of the

Ng-Frieboes Model, save that the conditions for block generation have changed. In the

old model, efficiency was defined as 𝜂 =
#𝐹𝑙𝑎𝑔𝑔𝑒𝑑 𝑃𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝐵ℓ+1

𝑇𝑜𝑡𝑎𝑙 #𝑃𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝐵ℓ+1
 where the set of all

flagged points 𝐹ℓ
𝑡,𝑟−1 ⊆ Ωℓ+1. Also, the block 𝐵ℓ+1 ⊆ Ωℓ+1. To prolongate to a new

level, 𝜂 had to be lower than a pre-defined cutoff efficiency. In the new model, the

decision process is simplified to an all-or-nothing behavior: 𝐹ℓ
𝑡,𝑟−1 ≠ ∅ ⇒ 𝐵ℓ+1 =

Ρℓ+1
ℓ (𝐵ℓ) = Ωℓ+1. By doing so, memory management is greatly simplified, since a level

is either processed or ignored for a given time step. However, this decision also increases

workload on levels where only a subset of Ωℓ requires smoothing.

Other than the key difference outlined above, the Multigrid algorithm remains

identical to the Ng-Frieboes model outlined in Ng-Frieboes 2018. However, the flow of

information during execution greatly differs from the Ng-Frieboes method. Figure 2

summarizes the process for any computation function X that is neither restriction nor

prolongation.

20

FIGURE 2 – EXECUTION OF ARBITRARY FUNCTION X

21

D. FUNCTION X CALLED ON LEVEL ℓ

For node 𝑛 operating over a subset of Ωℓ, denoted Ωℓ
𝑛, GPUs on node 𝑛 are

selected in round-robin fashion to process Ωℓ
𝑛. Ωℓ

𝑛 is subdivided into subdomains 𝜔𝑗
ℓ that

are sufficiently reduced to fit in GPU RAM. The subdomains have the following

properties for 𝑚 subdomains on level ℓ:

1. 𝜔𝑗
ℓ ⊆ Ωℓ

𝑛 , 𝑗 ∈ {1, … , 𝑚}

2. 𝜔1
ℓ ∩ ω2

ℓ ∩ … ∩ 𝜔𝑚
ℓ = ∅

3. 𝜔1
ℓ ∪ 𝜔2

ℓ ∪ … ∪ 𝜔𝑚
ℓ = Ωℓ

𝑛

4. 𝜔𝑗
ℓ ≠ ∅, 𝑗 ∈ {1, … , 𝑚}

If a single GPU has enough RAM to hold the entire domain, then 𝑚 = 1. To

prevent GPUs from mixing old and new data, each function call is preceded with an

unloading of processed function data and a reloading of new function data. Before

running the next function, the nodes synchronize level ℓ data. Next, the GPUs receive

relevant constant terms from the model including vasculature parameters and the

dimensions of their respective domains. Finally, function X is called on all GPUs.

22

E. FUNCTION PROCESSING USING PARALLEL ARCHITECTURES

To improve CUDA performance, stencil formation was updated significantly.

Because the original openMP architecture used host memory, no formal stencil variables

were required. However, the CUDA architecture requires further optimization to

minimize use of slower request to so-called global memory. The solution was to use a

smaller programmer-controllable cache known as shared memory. The algorithm is laid

out below:

Input: thread t positioned at point (i,j,k) on 𝜔𝑗
ℓ

 (i,j,k) is loaded into register memory on t from global memory.

 Shared memory 𝑠 is created for all threads in a thread block 𝐵𝑡.

 (i,j,k) is copied into 𝑠.

 Synchronize all threads on 𝐵.

 For each adjacent point 𝑃:

 If 𝑃 ∈ 𝑠:

 Copy 𝑃 from shared memory to register memory on t.

 Else

 Copy 𝑃 from global memory to register memory on t.

 End If

 End For

23

The above process is done on a per-block basis on the CUDA GPU. Each thread

on the block runs the above function simultaneously, thus the block 𝐵𝑡 becomes a

repository for point data for all threads in the block. Threads within each block are

organized geometrically on Ωℓ
𝑛 in a cube. If a thread looks up a given point value (i,j,k)

and it resides in shared memory, the thread will avoid a more time-consuming global

memory retrieval. Since CUDA does not permit information exchange between shared

memory blocks, if a given block does not contain the information requested by t, t must

defer to global memory.

Stencils in this model do not exceed a 3x3x3, thus most stencils formed by

threads in the cubical block 𝐵𝑡 will avoid duplicating global memory searches. The only

drawback to this approach is that in cases where GPU functions require more than one

stencil simultaneously register pressure can occur, a phenomenon where insufficient

registers exist to handle the number of variables requested. In such a scenario, the GPU

defers resources to a repository of slower global memory denoted as local memory. After

using a Nvidia profiler, it was confirmed that registers were not overloaded for almost all

GPU-based functions. The effect of removing any other register pressure has not been

tested and is a subject for future study.

24

When establishing GCN communication, a variety of methods were used:

1. A 2x2x2 node domain was constructed with each node corresponding to one

octant of the nodal lattice. Each node communicates with 7 other adjacent nodes.

2. Each node has a specific variable index set to the MPI rank of the node. This

value, by nature of the MPI initialization process, is unique to each node.

3. At the end of the syncing process, the number of ghost points with a given MPI

rank is determined. That value, given a correct syncing operation, corresponds to

the number of points that are adjacent to each other in the tumor domain.

When syncing data across GCNs, there are three operating directions to consider relative

to the node GCN in question. These directions can be represented with three separate

vectors:

1. A unit syncing vector, 𝑆.

2. A nodal vector for the data �⃗⃗⃗�.

3. The unit storage vector for data, �⃗⃗⃗�.

Because nodes are arranged in a Cartesian grid, rules are easily established for points not

on the boundary of the tumor domain Ωℓ. First, relative to each node, in graph theory

terms, each GCN forms a star graph S26 with its neighbors. Any MPI send and receive

operation is a one-step process, in which any link (𝑢, 𝑣𝑚) for 𝑚 ∈ {1,2, … ,26} must be

traversed. For maximum performance, perfect matching is desirable, meaning that on

25

level ℓ, half of the GCNs are sending data and half of the GCNs are receiving data during

the synchronization command. Finally, any subgraph created by tracing the

synchronization path comprising consecutive syncing vectors on the overall graph 𝐺𝑆

must be acyclic to prevent the program from halting.

Ensuring synchronization between points is a multistep process accomplished through

three steps:

1. Establishment of a residing map on each GCN that informs it of adjacent point

data.

2. Development of the synchronization matrix. Every value in a 3x3x3 nodal grid,

representing 𝐺𝑆, is filled with a value corresponding to how synchronization

should take place, including send or receive and sides to select in border

operations.

3. Derivation of the storage vector �⃗⃗⃗� for a given syncing vector 𝑆.

Every value in the 3x3x3 nodal grid is cycled through in a preset order. With the center

node of the nodal grid as the origin, any point selected, excluding the origin, will form a

unit vector 𝑆 starting from the origin and moving away towards the selected point. MPI

does not resume execution until the package is successfully sent and received. Thus, for

any MPI send/receive event, all subgraphs must be acyclic. Put another way, the vector

26

sum formed by consecutive vectors 𝑆 cannot equal the zero vector. Although sufficient

but not necessary, a guideline for ensuring that no cycles form is by looking at the vector

field of 𝑆. If ∇ × 𝑆 = 0 for all vectors 𝑆 then the resulting syncing cycle will not form a

cycle. By cycling through all possible 𝑆 values in a known order on all GCNs and with

the implicit synchronization required for a successful MPI send/receive operation, the

summation of any number of 𝑆 vectors will be non-zero. In addition, the curl of the

resulting vector space is also zero. Figure 3 describes one possible 𝑆 field that qualifies as

a field. Each arrow in the figure represents a pair of nodes, one sending and the other

receiving.

FIGURE 3 – A ZERO CURL VECTOR FIELD CANDIDATE FOR THE SYNC

VECTOR

27

For the MPI model, a syncing vector field with zero curl was found for each

syncing direction, thus ensuring no unresolvable communication errors could form during

function execution.

For the node vector, each node creates a stencil containing the node IDs of adjacent

nodes. With a given sync vector and data stored locally on each GCN, a node vector can

be correctly defined. Finally, the node can use the sync vector to derive the node vector.

Figure 4 depicts the vectors for two nodes in communication at the border.

FIGURE 4 – MPI SYNCING VECTORS AT DOMAIN BORDERS

28

In figure 4, the red point is a corner points required on all four nodes for computation.

The sync vectors 𝑆 (orange) are parallel thus ensuring there will be no communication

hanging. The tan node, represented at the border as a tan square, is sending the red point

to the light blue node. Thus, the node vector �⃗⃗⃗� (green) is pointing west towards the tan

sending node. The point data obtained by the tan node will be placed in a corner of the

light blue node’s domain, thus the storage vector �⃗⃗⃗� (red) points towards red corner point.

F. RESTRICTION & PROLONGATION/ERROR CORRECTION

Restriction and prolongation/error correction require additional steps, since

multiple levels and, therefore, multiple node groups, must interact. Restriction in the

MPI-CUDA model is a three-step process:

1. For nodes on level ℓ Restrict approximate numerical solution 𝑢ℓ using the

restriction function, denoted as Γ

Γ(𝑢ℓ) = 𝑢ℓ−1 (10)

2. Sync 𝑢ℓ−1 values across all nodes on level 𝑢ℓ using the system laid out in part

A.

3. Restrict approximate right-hand-side (RHS) solution 𝑓ℓ using Γ

29

𝑓ℓ−1 = Γ(𝑓ℓ) = Γ(fℓ − 𝑁ℓ[𝑢ℓ]) + 𝑁ℓ−1[Γ(𝑢ℓ)] (11)

Where the analytical solution takes the form 𝑁ℓ[𝑣ℓ] = 𝑔ℓ after complete

convergence of 𝑢ℓ → 𝑣ℓ and 𝑓ℓ → 𝑔ℓ.

4. Sync 𝑓ℓ−1 across all nodes on level 𝑢ℓ using the system laid out in part A.

5. Send 𝑢ℓ−1 and 𝑓ℓ−1 to nodes containing level ℓ − 1 data.

For the highest performance gain, minimizing the number of transfers between

external nodal communication and internal GPU communication is ideal. Thus, in step 1,

𝑢ℓ−1 and 𝑓ℓ−1 are produced on nodes on ℓ. After syncing 𝑢ℓ−1 across all nodes on ℓ, 𝑓ℓ−1

is computed. After unloading both 𝑢ℓ−1 and 𝑓ℓ−1, the solution is sent to level ℓ − 1 by

collapsing a 23 worth of 𝑢ℓ−1 & 𝑓ℓ−1 node data into a single node on ℓ − 1. Sequential

collapse along each axis distributes the work across all nodes on level ℓ. Because of

standard coursing depicted in figure 1, every restriction operation results in seven nodes

sending restricted information to a single node.

For error correction, from level ℓ to ℓ + 1 the process requires little adaption from

the Ng-Frieboes method:

1. Transfer level 𝑢ℓ−1 to nodes on 𝑢ℓ.

2. Determine error on each point on level ℓ.

𝑒ℓ−1 = 𝑢ℓ−1 − Γ(uℓ) (12)

30

3. Sync error 𝑒ℓ across all nodes on 𝑢ℓ.

4. Apply correction to obtain corrected solution 𝑣ℓ.

𝑣ℓ = 𝑢ℓ + 𝑃(𝑒ℓ)

31

III. MATERIALS AND METHODS

A. OVERALL METHODS

Model accuracy was ensured by comparing model input to the Ng-Frieboes

openMP numerical solutions. However, the flux of metabolites was changed from the

original openMP code because its logic was found to inaccurately represent the

underlying model. As such, old and new mathematical model inputs do not output

equivalent model values. However, there are two reasons why this discrepancy does not

dissuade using the openMP model as a guide for verifying the new model’s physiological

relevance:

1. Model consistency. Due to the effects of floating-point arithmetic

evaluation on results, the compilation process, such as optimization of debug

code, can affect the final values outputted by the model (Collingbourne, Cadar, &

Kelly, 2014). This was observed on early CUDA builds when comparing CRC

solutions compiled using the Linux-based g++ compiler verses Windows

compiled code. Consecutive runs with consistent results ensured that solution

variance was not due to race conditions.

2. MPI-CUDA solution error reached the tolerance in fewer solver

iterations than the older model, supporting the conclusion that the original

32

openMP code incorrectly calculated flux values and, therefore, slowed down the

convergence process. Because metabolite variables are affected by the flux

function, the solution difference between the two models is more significant than

the MPI-CUDA framework, as documented in table VII. The effects of this

change are explored in greater detail in the discussion section.

Once the model had been debugged and tested, consistency was ensured from the

original completed CUDA-only code to the present MPI-CUDA build by printing out all

volume fractions, pressures, metabolites, growth factors, and other miscellaneous tumor

variable data from the first-time step. Those values were compared to archived output

from the older build using a SHA-256 hash. Matching hashes implied that the integrity of

the solving process was not impacted by the code.

All timing results were obtained using time.h clock statements and used the test

scenario described in Ng and Frieboes (2017). The computer used for testing has an

AMD 2990WX processor with one Titan RTX GPU. A CUDA only simulation is

emulated using two MPI instances of the program: one AdN and one GCN. Because of

the minimal communication between these processes and only the GCN operates on the

domain, the two MPI instance program will behave similarly to a single process. MPI-

CUDA was performed using nine processes, one AdN and eight GCNs. One GCN

operated on all coarser levels as a single node, then MPI was used to divide the finest

33

level into octants, with each GCN operating exclusively in one of eight octants. For both

CUDA and MPI-CUDA, the program was tested using a coarsest grid of 83. Standard

coursing was used to reach one of two different finest grids: 1283 and 2563. Two

iterations of the CUDA and CUDA-MPI models were performed to ensure consistent

model results. All run data are given in table VIII in appendix II. Finally, execution

times were also obtained from the CRC for the openMP model with varying thread

counts.

B. EXAMPLE TESTING METHODOLOGY

When testing the prolongation routine outlined in part 2.C, four tests were

performed on the MPI process that transferred 𝑢ℓ−1 to eight nodes on level ℓ, with each

node sitting in its own octant:

1. At each point (𝑖, 𝑗, 𝑘) on level ℓ, manually set each point to a value equal to the

unique MPI ID for the expected destination node. After 𝑢ℓ−1 is transferred, each

node reports the total number of each possible node ID it finds on its subdomain

on level ℓ. For a passed test, a node on level ℓ will only find its MPI ID on its

subdomain.

34

2. Because each node’s domain is cubic, there can be at most 8 destination nodes for

a single point of data on level ℓ − 1. The second test sets one of the eight possible

corner points and ensures that each node (a) receives the point and (b) places it in

the correct position in memory. Each node reports if the point value is found in its

subdomain and, if so, where that value resides. To pass, each node finds the value

only once and displays the correct location.

3. The first memory value and final memory value are marked on level ℓ − 1. For a

passed test, only the first and eighth node find the first and final value,

respectively on their subdomains.

4. A few random points were selected and marked on level ℓ − 1 by the programmer

before function execution to test different cases during the syncing process. Each

node reports if it received the marked point and, if so, where it resides on the grid.

To pass, node output will match the predictions made by the programmer.

35

IV. RESULTS

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

0 5 10 15 20 25 30 35

F
ir

st
 T

im
e

S
te

p
 T

o
ta

l
(s

eo
cn

d
s)

#openMP Threads

1283 Final Grid Level

2990 WX

Cluster Node

FIGURE 5 – OPEN-MP VS MPI-CUDA PROCESSES AND PERFORMANCE

36

TABLE IV

TIMING RESULTS FOR OPEN-MP MODEL ON 2990WX

Finest Interior Level

Size (#points)

Number of

Threads Enabled

Data Export Time

(seconds)

Total Execution

Time (seconds)

Total time for single

time step (seconds)

1283

4 45.7 651.6 697.3

8 46.7 335.7 382.0

16 49.1 327.2 376.3

32 45.4 259.7 305.1

TABLE V

TIMING RESULTS FOR FIRST TIME STEP USING OPEN-MP

 # Threads

 Computer Type 1 2 4 6 8 16 32

Desktop Time (seconds) - - 697.3 - 382.0 376.3 305.1

CRC Cluster Node (seconds) 1571.7 927.1 521.8 414.7 337.4 369.0 426.3

37

FIGURE 6 – OPEN-MP PARALLELIZATION CLUSTER VS DESKTOP

TABLE VI

TIMING RESULTS FOR MPI-CUDA MODEL

 AMD 2990WX

Total Execution Time for First Time Step

(seconds)

Finest Level Size

(#points)

Tumor Domain

Side Length (mm)
Framework Type Trial #1 Trial #2 Average

128 2.56
CUDA

37.1 37.6 37.3

256 5.12 295.4 291.1 293.2

128 2.56
MPI-CUDA

35.2 35.4 35.3

256 5.12 257.4 259.2 258.3

651.6

335.3

327.2
259.7

37.3 35.3

0.000

100.000

200.000

300.000

400.000

500.000

600.000

700.000

0 5 10 15 20 25 30 35

F
ir

st
 T

im
e

S
te

p
 P

ro
ce

ss
in

g
 T

im
e

(s
ec

o
n
d
s)

#Processes

1283 Finest Grid - Desktop

openMP

MPI-CUDA

38

FIGURE 7 – INITIAL TUMOR VOLUME IN 5.1 MILLIMETER DOMAIN AT THE

END OF TIME STEP 1 & 2

FIGURE 8 – TIME STEP 2 CORNER

39

FIGURE 9 – FIRST TIME STEP CUBIC TUMOR DIMENSIONS

40

FIGURE 10 – OPENMP OUTPUT FROM NG-FRIEBOES 2017 AFTER 500 TIME

STEPS

TABLE VII

OPENMP VS. CUDA BICARBONATE AND PRESSURE SOLUTION COMPARISON

 Level 2 – Same cycle volumes Level 4 – Different cycle volumes

openMP vs. CUDA Property P-Alpha Bicarbonate P-Alpha Bicarbonate

Absolute Mean Difference 3.0E-04 4.8E-03 3.5E-03 1.0E-02

Variance of Model Difference 3.7E-07 3.3E-05 1.5E-05 1.1E-04

Relative Error Difference (%) -0.6% -9.6% -15.4% -30.3%

Relative Error Standard Deviation (%) 0.2% 1.0% 21.5% 18.6%

41

V. DISCUSSION

Figure 5 reveals the performance differences for a 2990WX vs a single node of

the CRC. While both systems possess equal core counts, there is a decrease in

performance on the CRC node with greater than eight CPU cores in parallel use.

Interestingly, the 2990WX shows improved performance, even to 32 cores. This

difference in results is believed to be caused by memory bandwidth limitations on the

CRC node. In figure 6 we see that increasing the number of cores using open-MP gave

diminished gains for program instances with more than 8 threads, a find consistent with

model performance on the CRC. However, performance continued to improve as more

cores were added in the case of the 2990WX. With desktop performance of open-MP

being the lowest recorded time, it is used as the baseline for testing the MPI-CUDA

implementation.

For the CUDA only run on 1283, a sizeable performance increase is observed,

from 4.31 minutes on openMP to 0.622 minutes. The CUDA version, therefore, is 6.96x

faster than the openMP version it replaces on the same grid size. When increased to 2563

on a side, the time to process the first-time step increased 7.86x, indicating that time is

scaling linearly with problem size. However, it will be difficult for many current GPUs to

exceed the RAM and computing of a Titan RTX solution, making these numbers a best-

case scenario.

42

MPI-CUDA appears more promising than either option. While its 1283 time was

akin to the CUDA model, its processing time increased 7.37x for an 8x increase in

problem size. The most likely explanation for the performance increase comes from

optimized memory movement from CPU to GPU under MPI loads. For an equivalently

sized dataset, the MPI processes can parallelize memory manipulation on the CPU, thus

increasing memory bandwidth usage. Another implication of this result is that MPI

communication operations on the AMD 2990WX were more than offset by the increased

memory bandwidth usage. With multiple independent nodes of equivalent power to the

test desktop, it is conceivable that larger tumors than this could be simulated.

Because of changes in flux terms made in the MPI-CUDA code, the MPI-CUDA

code converges in one Multigrid cycle, whereas the openMP model requires 12 iterations.

It is possible that convergence would also be improved in openMP implementations were

applied. Because the openMP code remains unpatched, this scenario can be simulated by

timing the first iteration of the Multigrid solver. The results are given in table IX in

Appendix II and are comparable to the results obtained for CUDA and MPI-CUDA

implementations. However, because of adaptive grid technologies built into the openMP

model version, only a small portion of the final 1283 grid is solved over, thus openMP

performs computationally less work than the CUDA model but taking more time to do so.

Finally, because both the cluster node and the AMD 2990WX possess 32 cores, well

43

above most current CPUs, it will be difficult to increase openMP performance beyond the

numbers presented in Table V and VI, whereas the MPI-CUDA will potentially scale to

many more machines for similar results.

Figure 7 depicts the initial cubic tumor at the initial time step and the second time

step. While the domain could contain a tumor with a radius of 5 millimeters, the model

begins with a 1.6 mm tumor situated in the center of the domain. The tumor is more

closely visualized in figure 9. While this simulated tumor is not realistic in shape, it is

optimized to verify model integrity, as the observations in Ng and Frieboes 2017

demonstrate. Like the openMP model they documented, the cubic tumor evolved by

smoothing the corners of the cube into expanding bulbs. Although extremely early in the

tumor model’s execution, evolution of corner behavior is visible as early as the second

time step in the CUDA model, as shown in figure 8. The phenomenon is more easily seen

in figure 10 taken from Ng and Frieboes 2017, after the tumor model had executed for

500 timesteps. Future CUDA modeling with more timesteps will give greater insight into

how these corners evolve over time and ensure consistency between the two frameworks.

Finally, the two methods solution differences are categorized in table VII.

Because the final solution for a given timestep resides on level ℓ𝑚𝑎𝑥, the openMP

framework must prolongate all data from coarser levels at the end of a timestep. Since the

CUDA model processes all data points on ℓ𝑚𝑎𝑥, solution accuracy is increased on

44

regions that the openMP model would exclude from its 𝐵ℓ+1 ⊆ Ωℓ+1. The openMP

framework would decrease local error relative to the MPI-CUDA framework within its

𝐵ℓ+1 due to repeated smoothing efforts, although erroneous flux terms may have

increased the number of smoothing cycles required to reach convergence. Nevertheless,

in the case of MPI-CUDA, the inclusion of more low-error points decrease the

normalized mean error, thereby reaching the tolerance on level ℓ + 1 in fewer iterations

than the openMP counterpart. In table VII, both models process the entirety of level 2. In

the case of level 4, openMP only processes a subset of the domain Ω4, leading to an

increase in the magnitude of the relative solution difference.

45

VI. FUTURE WORK

While the parallelization performed on the tumor model is significant, more

development is required before being clinically relevant. First, this node structure has no

fault tolerance. That is, if a single GCN were to fail to respond, the program, as it stands,

would exit without completing the model. Possible solutions include redundant data on

different nodes and time-step backups. Many of these features have made their way onto

Big Data cluster libraries, such as Hadoop or Apache Spark, with recent advancements

being set in stencil processing (Jie et al., 2014; Yuan et al., 2016). Thus, a future

implementation may draw from one of these cluster libraries. Second, while the focus of

this thesis has been model performance, ensuring solution stability over multiple time

steps remains a development goal.

In terms of program readability, significant improvement could be made with

memory management on the GPU. In order to be usable on the CRC, the program was

built to run on a minimum compute capability of 2.0 (Nvidia). Thus, many CUDA

advents were passed over in the program’s creation, such as a unified memory

architecture. Dropping support for older CUDA standards could streamline programming.

General performance improvements for memory transfer could also be implemented.

With the addition of increased Multigrid technologies such as adaptive grid meshes

would reduce computational workload and further increase model performance. For some

46

problem sizes, a CUDA-MPI framework may not be optimal due to overhead of passing

data to GPUs for processing. Indeed, an openMP/MPI framework has outperformed

CUDA-MPI tasks when testing a smaller mathematical model with greater efficiency

(Lončar et al., 2016). Future evaluation of openMP-MPI vs. CUDA-MPI may lead to

further optimizations of the Ng-Frieboes model for mixed grid sizes.

Currently, the model inputs a hard-coded scenario ideal for testing, however, a

real tumor is globular and would require input imaging data. For testing purposes,

possible input could come from The Cancer Imaging Archive (TCIA) created by TCGA.

Using patient imaging data, real tumor evolution could be simulated to compare to known

samples, thereby validating these equations’ versatility and physiological accuracy.

Because of the adaptability of the Multigrid method, the MPI-CUDA framework could be

modified to run mathematical models on more general tissue ailments, such as drug

delivery for microbial infection in certain organs. The capability to model sufficiently

large tissues would permit accurate simulations of tissue-scale proportions.

From the standpoint of the model, additional equations and/or terms will be

required to describe present and future treatment methods. For example,

immunotherapy’s reliance on T-cells restricts its efficacy to cancers with the correct

antigens on their cellular membrane; future mathematical modeling would need to

account for this phenomenon (Hall, 2016).

47

Finally, the burgeoning field of -omics data analysis, in which tissues are

categorized using tissue profiling, provides a unique opportunity for model validation and

application. For example in the case of transcriptomics, from a single instant in time, the

change in gene expression in time, denoted as “pseudotime,” can be generated by

simultaneously sampling different cells in different stages of development from the same

tissue source to reconstruct the tissue’s overall gene expression (Reid & Wernisch, 2016).

Elucidating drug effects using this method could spur the creation of mathematical

models that accurately describe cellular models and aggregate behavior in cell cultures

and, consequently, increase model realism. With sufficient accuracy, future mathematical

models with increased predictive power may even return to benefit the underlying

biological analyses by informing molecular expression research.

48

APPENDIX I

A. DERIVATION OF MODEL MEMORY FOOTPRINT

If the length between points on the Multigrid model is 20 µm per point on the

finest level, then for a domain of 2 cm:

#𝑝𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝑠𝑖𝑑𝑒 =

𝑙𝑒𝑛𝑔𝑡ℎ

𝑙𝑒𝑛𝑔𝑡ℎ
𝑝𝑜𝑖𝑛𝑡

=
2 ∙ 10−2

20 ∙ 10−6
=

1

10
∙ 104

= 1000 points per side

Rounding up to the nearest power of two, we obtain 1024 points per side. Using

an approach where each process resides on a single domain (i.e. no process operates on

more than one level), if a process can run 2𝑛 points on a side and the domain contains 2𝑚

points on a side (where 𝑛, 𝑚 ∈ ℤ & 𝑛 ≤ 𝑚), then the number of processes will be:

#𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 𝑇𝑜𝑡𝑎𝑙 = 𝑃 =

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐷𝑜𝑚𝑎𝑖𝑛

𝑉𝑜𝑙𝑢𝑚𝑒 𝑃𝑒𝑟 𝑃𝑟𝑜𝑐𝑒𝑠𝑠
=

(2𝑚)3

(2𝑛)3
= 8𝑚−𝑛

(A.1)

49

For the above example:

 𝑃 = 810−7 = 83 = 512 Processes

If each computer can perform 256 points per side rather than 128 in the previous

example, then:

 𝑃 = 810−8 = 82 = 64 Processes

For this example, we will use 4096 points on a side:

 4096 ∙ 20 ∙ 10−6 ∙ 102 = 8192 ∙ 10−3 = 8.192 cm

Thus, we could comfortably simulate an eight cm tumor with a 40963 simulation.

Also, we consider how many independent process (i.e. 1 process per node) would be

required for a 2563 computation volume per nodes:

 𝑃 = 812−8 = 84 = 4096 nodes

50

If we want there to be 𝐿 levels total along with the finest level, then the following

formula can be used to determine how much memory will be required:

 𝑀𝑒𝑚𝑜𝑟𝑦 𝑁𝑒𝑒𝑑𝑒𝑑 = 𝑀 = (𝑀𝑒𝑚𝑜𝑟𝑦 𝑃𝑒𝑟 𝑃𝑜𝑖𝑛𝑡) ∙ (#𝑃𝑜𝑖𝑛𝑡𝑠)

= 𝑘 ∙ (∑(2𝑐−𝑗+1)
3

𝐿

𝑗=1

) = 𝑘 ∙ (∑ 8𝑐−𝑗+1

𝐿

𝑗=1

)

(A.2)

Where the number of points per side on finest level is 2𝑐, 𝑐 − 𝐿 + 1 > 1 ⇒ 𝐿 <

𝑐, and 𝑘 is the memory per point. For this model, 𝑘 = 692
𝐵𝑦𝑡𝑒𝑠

𝑃𝑜𝑖𝑛𝑡
. To be viable

computationally, the model should run on at least an 83 grid, thus 𝐿 < 𝑐 − 1.

Assuming five levels (𝐿 = 5) are required and the finest level has 4096 points on

a side (thus 𝑐 = 12), then

𝑀 = 692 ∙ (∑ 812−𝑗+1

5

𝑗=1

) = 54.3 TB

51

Border points can be added easily by adding two to the side length at each level:

𝑀𝑇 = 692 ∙ ∑(2𝑐−𝑗+1 + 2)
3

𝐿

𝑗=1

(A.3)

𝐿 = 5, 𝑐 = 12 ⇒ 𝑀𝑇 = 692 ∙ ∑(212−𝑗+1 + 2)
3

𝐿

𝑗=1

= 54.4 TB

Clearly, by the ratio test, the effect of border points diminishes as 𝑐 → ∞, thus for

subsequent calculations, they will be assumed negligible.

According to the naïve process filling approach, where processes cannot span

more than one level:

𝑃 = ∑ 𝑝𝑗

𝐿

𝑗=1

 where 𝑝𝑗 = {
1, 𝑗 ≥ 𝑐 − 𝑛 + 1

8𝑐−𝑛−𝑗 , 𝑗 < 𝑐 − 𝑛 + 1

(A.3)

When each node occupies 256 points per process, 𝑛 = 8. Thus, for L = 5 and c =

12:

 𝑝𝑗 = 812−8−𝑗+1 = 85−𝑗 (A.4)

52

 ⇒ 𝑃 = 84 + 83 + 82 + 8 + 1 = 4681 Nodes

Under this system, the memory use per process is
54.34

4681
= 11.6 GB, not including

boundary/ghost points on each node.

The MPI setup uses an approach that attempts to remove some of the memory

transfers and reduce idling by having nodes span more than one level. Overall, this leads

to the following formula:

 #Total Processes Total = 𝑃𝑇𝑜𝑡𝑎𝑙 = 8𝑛0−𝑚0 ∙ 8𝐿 = 8𝑛0−𝑚0+𝐿 , 𝑚0 > 𝑛0

(A.5)

Where each node can process a cubic region containing 8𝑛0 points, the coarsest

cubic domain contains 8𝑚0 points, and the total number of levels is 𝐿. In cases where the

node can process a larger domain than the coarsest level, one node will handle all

domains from 𝐿0 to 𝐿𝑡 where 𝐿𝑡 is the #levels where the domain volume is less than or

equal to than the node’s processing volume (i.e. 2𝑚 ≤ 2𝑛). In that case, formula A.5 can

be adapted to a more general form:

 #Total Processes Total = 8𝑛0−𝑚0+𝐿−𝐿𝑡 (A.6)

53

For the preceding example 𝐿𝑡 = 1, 𝑛0 = 8, 𝑚0 = 8, and 𝐿 = 5, thus:

88−8+5−1 = 84 = 4096 nodes

The maximum amount of RAM per process will be the first node allocated, since

it will span all five levels, starting at 2563 and ending at 40963, using a constant 2583

points per level. In this scenario, the total RAM usage would be equal to:

692 ∙ (28 + 2)3 ∙ 5 = 59.4 GB

In this design the number of nodes is constant with a constant RAM requirement

per node. Overall efficiency also increases relative to naïve grid filling, since multigrid

runs on a single level at any given time, meaning nodes that span a single level will idle

while computations are performed elsewhere.

Because one node will occupy all the levels whose side length is less than 𝑚 and

the computational work decreases exponentially with decrementing levels, there is little

reason to use fewer levels.

54

As an example, we can calculate how much RAM is required for a single node

existing on 5 levels with the coarsest level being 8 points on a side and the finest level

being 128 on a side:

692 ∙ (∑(27−𝑗+1 + 2)
3

5

𝑗=1

) = 1.8 𝐺𝐵

In practice, the MPI framework requires more RAM than this amount due to

temporary storage between certain computation steps, but that amount is not significant

for this example. Because many computers used in either personal or cluster settings

possess more than eight GB of RAM at the time of writing, there is no reason to remove

coarser levels from a RAM usage perspective. For instance, removing the two coarsest

level barely decreases the RAM requirement for a single node model:

692 ∙ (∑(27−𝑗+1 + 2)
3

3

𝑗=1

) = 1.7 𝐺𝐵

Finally, because Multigrid relies on multiple levels to converge to a solution, excluding

these levels could, for some cases where error is sufficiently close to the solution

tolerance, spell the difference between a successful convergence and another costly

55

Multigrid cycle. Therefore, it is reasonable to keep smaller coarser grids, even with ever-

increasing grid sizes.

56

B. FULL DATA OUTPUT

TABLE VIII

FULL MPI-CUDA & CUDA DATA TIMING

TRIAL 1

Final

Level Size
Model Type

Data Saving Time

(seconds)

Processing Time

(seconds)

Total Execution

Time (seconds)

128
CUDA

34.1 37.1 71.2

256 265.7 295.4 561.1

128
MPI-CUDA

5.4 35.2 40.6

256 40.0 257.4 297.3

TRIAL 2

Final

Level Size

Single or Multiple

Processes

Data Saving Time

(seconds)

Processing Time

(seconds)

Total Execution

Time (seconds)

128
CUDA

34.7 37.6 72.2

256 274.0 291.1 565.1

128
MPI-CUDA

5.4 35.4 40.9

256 40.2 259.2 299.4

TABLE IX

OPEN-MP SINGLE ITERATION 1283 FINEST GRID LEVEL

Number of Threads

Enabled

Data Export

Time (seconds)

Total Execution

Time (seconds)

Total time for single

time step (seconds)

32 49.3 51.8 101.2

57

REFERENCES

Altrock, P. M., Liu, L. L., & Michor, F. (2015). The Mathematics of Cancer: Integrating

Quantitative Models. Nature reviews. Cancer, 15(12), 730-745.

doi:10.1038/nrc4029

Anderson, A. R., & Chaplain, M. (1998). Continuous and discrete mathematical models

of tumor-induced angiogenesis. Bulletin of mathematical biology, 60(5), 857-899.

Byun, C., Arcand, W., Bestor, D., Bergeron, B., Hubbell, M., Kepner, J., . . . O'Gwynn,

D. (2012). Driving big data with big compute. Paper presented at the 2012 IEEE

Conference on High Performance Extreme Computing.

Coldman, A. J., & Goldie, J. H. (1986). A stochastic model for the origin and treatment

of tumors containing drug-resistant cells. Bulletin of mathematical biology, 48(3-

4), 279-292. doi:10.1007/BF02459682

Collingbourne, P., Cadar, C., & Kelly, P. H. J. (2014). Symbolic Crosschecking of Data-

Parallel Floating-Point Code. IEEE Transactions on Software Engineering, 40(7).

doi:10.1109/TSE.2013.2297120

Du, L., Herbst, R. S., & Morgensztern, D. T. O. R. P. Y. C. C. C. Y. S. o. M. C. S. W. W.

W. N. H. C. T. U. S. A. (2017). Immunotherapy in Lung Cancer.

Hematology/Oncology Clinics of North America, 31(1), 131-141.

doi:10.1016/j.hoc.2016.08.004

Felip, E., Rosell, R., Maestre, J. A., Rodríguez-Paniagua, J. M., Morán, T., Astudillo, J., .

. . Spanish Lung Cancer, G. (2010). Preoperative chemotherapy plus surgery

versus surgery plus adjuvant chemotherapy versus surgery alone in early-stage

non-small-cell lung cancer. Journal of clinical oncology : official journal of the

American Society of Clinical Oncology, 28(19), 3138-3145.

doi:10.1200/JCO.2009.27.6204

Frank, S. A., Iwasa, Y., & Nowak, M. A. (2003). Patterns of cell division and the risk of

cancer. Genetics, 163(4), 1527-1532.

Frieboes, H. B., Jin, F., Chuang, Y.-L., Wise, S. M., Lowengrub, J. S., & Cristini, V.

(2010). Three-dimensional multispecies nonlinear tumor growth—II: tumor

invasion and angiogenesis. Journal of Theoretical Biology, 264(4), 1254-1278.

Hall, J. E. (2016). Guyton and Hall textbook of medical physiology [1 online resource :

illustrations (some color)](13th edition. ed.). Retrieved from

https://www.clinicalkey.com/dura/browse/bookChapter/3-s2.0-C20120065131

https://elsevierelibrary.co.uk/product/guyton-hall-textbook-medical-physiology70313

https://www.clinicalkey.com.au/dura/browse/bookChapter/3-s2.0-C20120065131

http://ezsecureaccess.balamand.edu.lb/login?url=https://www.clinicalkey.com/dura/brow

se/bookChapter/3-s2.0-C20120065131

https://www.clinicalkey.com/dura/browse/bookChapter/3-s2.0-C20120065131
https://elsevierelibrary.co.uk/product/guyton-hall-textbook-medical-physiology70313
https://www.clinicalkey.com.au/dura/browse/bookChapter/3-s2.0-C20120065131
http://ezsecureaccess.balamand.edu.lb/login?url=https://www.clinicalkey.com/dura/browse/bookChapter/3-s2.0-C20120065131
http://ezsecureaccess.balamand.edu.lb/login?url=https://www.clinicalkey.com/dura/browse/bookChapter/3-s2.0-C20120065131

58

https://nls.ldls.org.uk/welcome.html?ark:/81055/vdc_100034764868.0x000001

http://liverpool.idm.oclc.org/login?url=https://www.clinicalkey.com/meded/content/toc/3

-s2.0-C20120065131

http://libanswers.liverpool.ac.uk/faq/182775

Hanahan, D., & Robert. (2011). Hallmarks of Cancer: The Next Generation. Cell, 144(5),

646-674. doi:10.1016/j.cell.2011.02.013

Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57-70.

Holohan, C., Van Schaeybroeck, S., Longley, D. B., & Johnston, P. G. (2013). Cancer

drug resistance: an evolving paradigm. Nature Reviews Cancer, 13(10), 714-726.

doi:10.1038/nrc3599

Institute, N. C. (2019). Cancer of Any Site - Cancer Stat Facts. Retrieved from

https://seer.cancer.gov/statfacts/html/all.html

Jie, Z., Juanjuan, L., Hardesty, E., Hai, J., Kuan-Ching, L., Computer, I. A. t. I. C. o., &

Information Science Taiyuan, C. J. J. (2014). GPU-in-Hadoop: Enabling

MapReduce across distributed heterogeneous platforms. In 2014 IEEE/ACIS 13th

International Conference on Computer and Information Science (ICIS) (pp. 321-

326): IEEE.

Kang, J., Demaria, S., & Formenti, S. (2016). Current clinical trials testing the

combination of immunotherapy with radiotherapy. Journal for ImmunoTherapy of

Cancer, 4(1). doi:10.1186/s40425-016-0156-7

Leibovich, B. C., Engen, D. E., Patterson, D. E., Pisansky, T. M., Alexander, E. E., Blute,

M. L., . . . Zincke, H. (2000). Benefit Of Adjuvant Radiation Therapy for

Localized Prostate cancer with a Positive Surgical Margin. The Journal of

Urology, 163(4), 1178-1182. doi:10.1016/S0022-5347(05)67717-8

Lončar, V., Young-S, L. E., Škrbić, S., Muruganandam, P., Adhikari, S. K., & Balaž, A.

(2016). OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving the

time-dependent dipolar Gross-Pitaevskii equation. Computer physics

communications, 209, 190-196.

Lowengrub, J. S., Frieboes, H. B., Jin, F., Chuang, Y. L., Li, X., Macklin, P., . . . Cristini,

V. (2010). Nonlinear modelling of cancer: bridging the gap between cells and

tumours. Nonlinearity, 23(1), R1-R91. doi:10.1088/0951-7715/23/1/R01

Michor, F., Liphardt, J., Ferrari, M., & Widom, J. (2011). What does physics have to do

with cancer? Nature Reviews Cancer, 11(9), 657-670. doi:10.1038/nrc3092

Miller, K. D., Siegel, R. L., Lin, C. C., Mariotto, A. B., Kramer, J. L., Rowland, J. H., . . .

Jemal, A. (2016). Cancer treatment and survivorship statistics, 2016. CA: A

Cancer Journal for Clinicians, 66(4), 271-289. doi:10.3322/caac.21349

Miller, T. P., Dahlberg, S., Cassady, J. R., Adelstein, D. J., Spier, C. M., Grogan, T. M., .

. . Fisher, R. I. (1998). Chemotherapy alone compared with chemotherapy plus

radiotherapy for localized intermediate- and high-grade non-Hodgkin's

lymphoma. The New England journal of medicine, 339(1), 21-26.

https://nls.ldls.org.uk/welcome.html?ark:/81055/vdc_100034764868.0x000001
http://liverpool.idm.oclc.org/login?url=https://www.clinicalkey.com/meded/content/toc/3-s2.0-C20120065131
http://liverpool.idm.oclc.org/login?url=https://www.clinicalkey.com/meded/content/toc/3-s2.0-C20120065131
http://libanswers.liverpool.ac.uk/faq/182775
https://seer.cancer.gov/statfacts/html/all.html

59

Napier, K. J., Scheerer, M., & Misra, S. (2014). Esophageal cancer: A Review of

epidemiology, pathogenesis, staging workup and treatment modalities. World

journal of gastrointestinal oncology, 6(5), 112.

Ng, C. F., & Frieboes, H. B. (2017). Model of vascular desmoplastic multispecies tumor

growth. Journal of Theoretical Biology, 430, 245-282.

doi:10.1016/j.jtbi.2017.05.013

Ng, C. F., & Frieboes, H. B. (2018). Simulation of Multispecies Desmoplastic Cancer

Growth via a Fully Adaptive Non-linear Full Multigrid Algorithm. Frontiers in

Physiology, 9. doi:10.3389/fphys.2018.00821

Norton, L., & Simon, R. (1977). Tumor size, sensitivity to therapy, and design of

treatment schedules. Cancer treatment reports, 61(7), 1307-1317.

Nvidia. (2010). Tesla C2050/C2070 GPU Computing Processor Supercomputing at

1/10th the Cost. Retrieved from

https://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lore

s.pdf

Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy.

Nature reviews. Cancer, 12(4), 252-264. doi:10.1038/nrc3239

Prevention, C. f. D. C. a. (2018). Heart Disease Facts. Retrieved from

https://www.cdc.gov/heartdisease/facts.htm

Ragaz, J., Jackson, S. M., Le, N., Plenderleith, I. H., Spinelli, J. J., Basco, V. E., . . .

Olivotto, I. A. (1997). Adjuvant radiotherapy and chemotherapy in node-positive

premenopausal women with breast cancer. The New England journal of medicine,

337(14), 956-962.

Reid, J. E., & Wernisch, L. (2016). Pseudotime estimation: deconfounding single cell

time series. Bioinformatics (Oxford, England), 32(19), 2973-2980.

doi:10.1093/bioinformatics/btw372

Reiter, S., Vogel, A., Heppner, I., Rupp, M., & Wittum, G. (2013). A massively parallel

geometric multigrid solver on hierarchically distributed grids. Computing and

Visualization in Science, 16(4), 151-164. doi:10.1007/s00791-014-0231-x

Rosenberg, S. A. (2014). Decade in review-cancer immunotherapy: entering the

mainstream of cancer treatment. Nature reviews. Clinical oncology, 11(11), 630-

632. doi:10.1038/nrclinonc.2014.174

Rydzewska, L., Tierney, J., Vale, C. L., & Symonds, P. R. (2010). Neoadjuvant

chemotherapy plus surgery versus surgery for cervical cancer. The Cochrane

database of systematic reviews(1), CD007406.

doi:10.1002/14651858.CD007406.pub2

Sanga, S., Sinek, J. P., Frieboes, H. B., Ferrari, M., Fruehauf, J. P., & Cristini, V. (2006).

Mathematical modeling of cancer progression and response to chemotherapy.

Expert Review of Anticancer Therapy, 6(10), 1361-1376.

doi:10.1586/14737140.6.10.1361

https://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf
https://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf
https://www.cdc.gov/heartdisease/facts.htm

60

Sasako, M., Sakuramoto, S., Katai, H., Kinoshita, T., Furukawa, H., Yamaguchi, T., . . .

Ohashi, Y. (2011). Five-year outcomes of a randomized phase III trial comparing

adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric

cancer. Journal of clinical oncology : official journal of the American Society of

Clinical Oncology, 29(33), 4387-4393. doi:10.1200/JCO.2011.36.5908

Schumacher, T. N., & Schreiber, R. D. (2015). Neoantigens in cancer immunotherapy.

Science, 348(6230), 69-74. doi:10.1126/science.aaa4971

Swartz, M. A., & Lund, A. W. (2012). Lymphatic and interstitial flow in the tumour

microenvironment: linking mechanobiology with immunity. Nature reviews.

Cancer, 12(3), 210-219. doi:10.1038/nrc3186

Taboada, G. L., Ramos, S., Expósito, R. R., Touriño, J., & Doallo, R. (2013). Java in the

High Performance Computing arena: Research, practice and experience. Science

of Computer Programming, 78(5), 425-444.

Topalian, S. L., Wolchok, J. D., Chan, T. A., Mellman, I., Palucka, K., Banchereau, J., . .

. Wittrup, K. D. (2015). Immunotherapy: the path to win the war on cancer? Cell,

161(2), 185.

Weinberg, R. A. (2013). The Biology of Cancer. New York, NY: W. W. Norton &

Company.

Wise, S. M., Lowengrub, J. S., Frieboes, H. B., & Cristini, V. (2008). Three-dimensional

multispecies nonlinear tumor growth—I: model and numerical method. Journal of

Theoretical Biology, 253(3), 524-543.

Yang, Y. (2015). Cancer immunotherapy: harnessing the immune system to battle cancer.

Journal of Clinical Investigation, 125(9), 3335-3337. doi:10.1172/jci83871

Yuan, Y., Salmi, M. F., Huai, Y., Wang, K., Lee, R., Zhang, X., & Ieee International

Conference on Big Data Washington Dc, U. S. A. D. D. (2016). Spark-GPU: An

accelerated in-memory data processing engine on clusters. In 2016 IEEE

International Conference on Big Data (Big Data) (pp. 273-283): IEEE.

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., . . . Franklin, M. J.

(2016). Apache spark: a unified engine for big data processing. Communications

of the ACM, 59(11), 56-65.

	Simulation of a continuum tumor model using distributed computing.
	Recommended Citation

	tmp.1563932288.pdf.muVZy

