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ABSTRACT 

 

Mathematical modeling aims to provide a theoretical framework for 

understanding tissue dynamics and for establishing treatment response for diseased 

tissues, such as tumors. Previously published continuum models have successfully 

represented idealized two-dimensional and three-dimensional tissue for short periods of 

time. A recently published continuum model of cancer increases model complexity and 

describes three-dimensional tissue that, due to the required complexity of the geometric 

multigrid solver, can only be feasibly applied to millimeter-scale simulations. 

Furthermore, the computational cost for such models has hindered their application in the 

laboratory and in the clinic. With computational demands greatly outpacing current 

openMP-based approaches on single-CPU-socket machines, higher performance solvers 

for large-scale tissue models remain a critical need. In this thesis, preliminary results of a 

CUDA and CUDA-MPI based parallelization applied to a tissue model are presented, 

with significant speedups seen in solution calculation for an initial time step. With further 

access to larger distributed computing, these parallel frameworks could potentially scale 

to simulate large-scale tissues. 
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I. INTRODUCTION 

 

A. Rationale for Cancer Mathematical Modeling 

 

Cancer remains a significant disease after centuries of treatment and medical 

study. In the US, for instance, the number of diagnoses in 2019 is projected to be over 1.7 

million, over 33% of which will die of the disease. Its effect is tantamount to heart 

disease over the same one-year period (Institute, 2019; Prevention, 2018). 

 

Cancer’s characteristics have been outlined thoroughly by the works of Hanahan 

and Weinberg as they describe mutated variants of a host cell that demands and consumes 

host resources to fuel an abnormal and continuous mitotic behavior that extends into the 

foreseeable future (Douglas Hanahan & Robert, 2011; D. Hanahan & Weinberg, 2000). 

Their works define a depth of knowledge that belays a desire to find a treatment method 

for the disease. Three overarching categories of treatment have emerged from this 

continued research: surgery, chemotherapy, and radiation (K. D. Miller et al., 2016; 

Napier, Scheerer, & Misra, 2014; Weinberg, 2013). Surgery, in the case of cancer, is a 

debulking process, in which a portion of a tumor mass is removed. In many cases, 

surgery can be combined with other treatment results with varying degrees of 

effectiveness (Felip et al., 2010; Rydzewska, Tierney, Vale, & Symonds, 2010; Sasako et 

al., 2011). However, surgery can lead to a resection of the organ in question, such as a 
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mastectomy or esophagectomy, for example (K. D. Miller et al., 2016; Napier et al., 

2014). 

 

While it can be used in conjunction with the other two, radiation, on its own, has 

benefits to the patient by causing tissue damage at the site of the injury (Weinberg, 2013). 

It is commonly used in addition to either surgery, chemotherapy, or, more recently, 

immunotherapy to improve survivability (Kang, Demaria, & Formenti, 2016; Leibovich 

et al., 2000; T. P. Miller et al., 1998; Ragaz et al., 1997; Weinberg, 2013). Additionally, 

radiation can target the cancer more locally than chemotherapy and is less intrusive than 

surgery. However, its role remains more preventative than curative, leaving clinicians to 

turn to chemotherapy as the mainstay of treatment (K. D. Miller et al., 2016). 

 

The mechanism of action for chemotherapy varies from drug-to-drug, but the 

most common pathway involves the disruption of cellular replication. For example 

vinblastine inhibits microtubule assembly, stopping mitosis at prometaphase (Weinberg, 

2013). Consequently, any cell in the patient that commonly divides will be affected, 

leading to hair loss and nausea. Even in cases where the patient braves the 

chemotherapeutic process, drug resistance may form in remaining tumors (Holohan, Van 

Schaeybroeck, Longley, & Johnston, 2013). If adjuvant therapies fail to remove the 

growth, any realized tumor resistance to previously effective drugs will complicate any 

future treatment plans. 
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It is worth noting an up and coming option for cancer patients: immunotherapy. 

Immunotherapy aspires to harness T-cells in the host body to reevaluate cancer cells 

histocompatibility by either disrupting immunoediting in tumors (i.e. disrupting CTLA-4 

or PD-1/PD-L1 pathways) or performing an adoptive cell transfer (Du, Herbst, & 

Morgensztern, 2017; Pardoll, 2012; Rosenberg, 2014; Schumacher & Schreiber, 2015; 

Topalian et al., 2015; Yang, 2015). However, few people directly benefit from 

immunotherapy in its current form since its efficacy is limited to specific patients with 

certain types of cancer, e.g. lung, lymphomas, leukemias, or melanoma (Du et al., 2017; 

Topalian et al., 2015). As an example of the negative, metastatic epithelial cancers cannot 

currently be treated using immunotherapy (Topalian et al., 2015). 

 

With an increasing number of chemotherapeutic and immunotherapeutic tools at a 

clinician’s disposal, not to mention the ability to add treatments in conjunction to one 

another, the importance of creating a treatment plan is paramount. Thus, a consistent and 

impartial testing apparatus is critical to ensure the best patient outcome. Mathematical 

modeling aims to provide the consistency necessary to test treatment plans, as well as 

make predictions to better treatment paths (Michor, Liphardt, Ferrari, & Widom, 2011). 
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B. Background to Cancer Mathematical Modeling 

 

Cancer has a rich history of mathematical modeling that extends from the middle 

of the 20th century, enlightening clinicians to better treatment regimens for tumor patients 

(Coldman & Goldie, 1986; Norton & Simon, 1977). Tumor complexity, however, makes 

creating a model that can accurately simulate tumors challenging, leaving researchers 

with room to create a swathe of cancer mathematical models (Frank, Iwasa, & Nowak, 

2003; Sanga et al., 2006). More recently, models strive to increase realism by enlarging 

the number of phenomena considered, including thermodynamics, discrete tumor types, 

and vasculature constraints (Anderson & Chaplain, 1998; Frieboes et al., 2010; Wise, 

Lowengrub, Frieboes, & Cristini, 2008). By accounting for these additional phenomena, 

newer models with these compensatory equations exchange the numerical and underlying 

simplicity of their equations with wider applicability at the cost of mathematical 

complexity (Altrock, Liu, & Michor, 2015; Michor et al., 2011). The most recent of these 

advents is the Ng-Frieboes model that supports multispecies environments, Helmholtz 

energy calculations, metabolite concentrations, and vasculature in an effort to detail 

tumor growth in a clinically relevant manner (Ng & Frieboes, 2017, 2018). Construction 

of such a model yields a promising framework upon which the efficacy of drug delivery 

can be tested in a consistent and objective manner. 
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C. Background and Simulation Description of the Ng-Frieboes Tumor Model 

 

The Ng-Frieboes tumor model as presented in Ng and Frieboes (2017) simulates 

the evolution of a single living phenotype of tumor, represented with a volume fraction 

𝜙𝑉, in a healthy environment filled with host cells and extracellular matrix (ECM), 

represented by the volume fractions 𝜙𝐻 and 𝜙𝐸, respectively. The tumor cells vie for 

resources against the healthy tumor cells while balancing their need for metabolites, 

including oxygen, carbon dioxide, lactate, bicarbonate, sodium and chloride ions, and H+ 

ions. Crowding in a limited tissue space is abstracted into solid mass pressure and 

pressure from surrounding fluids, represented as 𝑝 and 𝑞, respectively. These pressures 

create velocity in the solid tissue mass 𝑢𝛼 and create buildup of elastic energy 𝒲 on the 

surrounding ECM. Matrix degrading enzymes and myofibroblast concentrations increase 

due to remodeling of surrounding ECM to compensate for increased strain from tumor 

growth.  

 

When tumor growth factors have led to a sufficiently large tumor mass, certain 

parts of the tumor, such as cells surrounded by thick layers of tumor cells, can be 

deprived of resources. As such, the tumor use angiogenic factors to encourage 

vasculature growth from surrounding vessels towards the cells. Increased vessel leakiness 

has been well-documented from these relatively quick changes to local vasculature; the 

body compensates for the resulting edematous environment by increasing lymphatic 
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growth (Swartz & Lund, 2012). Therefore, the model simulates lymphatic growth with 

independent terms to the vasculature, although both are closely related both 

mathematically and physiologically. However, even with growth towards the tumor, the 

effectiveness of the vasculature is limited physiologically by oxygen’s diffusion rate. 

Thus, interior hypoxic regions in sufficiently large tumors will operate in varying levels 

of anerobic glycolysis, building up lactic acid in the process. In a sufficiently hypoxic 

state, the tumor cells become apoptotic/necrotic, represented as the dead cell volume 

fraction 𝜙𝐷. 

 

The model’s key equations exhibited in Ng and Frieboes (2018) and derived in 

Ng and Frieboes (2017) are presented in their nondimensionalized forms below: 

𝜕𝜙𝑉

𝜕𝑡
+ ∇ ∙ (𝜙𝑉𝑢𝛼) = 𝑀 ∙ ∇ ∙ (𝜙V∇𝜇𝑇) + 𝑆𝑉 (1) 

𝜇𝐸 =
𝜕𝐹𝑏

𝜕𝜙𝐸
+

𝜕𝒲

𝜕𝜙𝐸
− 𝜖𝐸

2 ∙ ∇2𝜙𝐸 − 𝜖𝑇𝐸
2 ∙ ∇2𝜙𝐸 (2) 

𝜕𝒲

𝜕𝜙𝐸
= 𝜖𝑒 ∙ [6 ∙ 𝜙𝐸(1 − 𝜙𝐸)] ∙ ∑ [

1

2
∙ (ℰ̃𝑇)

𝑖𝑗
∙ 𝕋𝑖𝑗

∗ − (ℰ̃𝑇
∗ )

𝑖𝑗
∙ 𝕋𝑖𝑗]

3

𝑖,𝑗=1

(3) 

�̃�𝑚𝑛 = 2 ∙ 𝐿2(ℰ̃𝑇)
𝑚𝑛

+ 𝐿1 ∙ 𝛿𝑚𝑛 ∙ ∑(ℰ̃𝑇)
𝑠𝑠

3

𝑠=1

(4) 

∇ ∙ [𝑘𝛼 ∙ (∇𝑝 −
𝛾𝑇

𝜖𝑇
𝜇𝑇∇𝜙𝑇 −

𝛾𝐸

𝜖𝐸
𝜇𝐸∇𝜙𝐸] = −(𝑆𝑉 + 𝑆𝐷 + 𝑆𝐸) (5) 

𝑢𝛼 = −𝑘𝛼 ∙ [∇𝑝 −
𝛾𝑇

𝜖𝑇
𝜇𝑇∇𝜙𝑇 −

𝛾𝐸

𝜖𝐸
𝜇𝐸∇𝜙𝐸] (6) 
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∇ ∙ (𝐷𝑛∇𝑛) + 𝑘𝑛1𝑛𝐶 − (𝑘𝑛1 + 𝑘𝑛2) ∙ 𝑛 = 0 (7) 

∇ ∙ (𝐷𝑡𝑔𝑓∇(𝑡𝑔𝑓)) + 𝜆𝑡𝑔𝑓 − (𝜆𝑡𝑔𝑓 + 𝜆𝑑𝑒,𝑡𝑔𝑓 + 𝜆𝑈,𝑡𝑔𝑓 ) ∙ 𝑡𝑔𝑓 = 0 (8) 

𝜕𝐵𝑛
𝐸

𝜕𝑡
+ ∇ ∙ (𝐵𝑛

𝐸𝑢𝐸) = −∇ ∙ 𝑱𝐵𝑛𝐸 + 𝑆𝐵𝑛𝐸 (9) 

 

where term values in equations 1 through 9 are given in Table I and 𝛿𝑚𝑛 = {
0, 𝑚 ≠ 𝑛
1, 𝑚 = 𝑛

. 
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TABLE I 

PARTIAL LIST OF NG FRIEBOES MODEL VARIABLES & PARAMETERS 

Variable Biological Representation Term Definition 

𝜙𝑉 Viable Tumor cell volume fraction 

(Ng & Frieboes, 2017) 

𝜙𝐸 Extracellular matrix volume fraction 

𝜙𝐻 Healthy host cells volume fraction 

𝑢𝛼 Solid Cell velocity 

𝑢𝐸 Extracellular Matrix velocity 

𝑀 Mobility of cell species 

𝜇𝑇 Tumor cell potential 

𝜇𝐸 Extracellular Matrix Potential 

𝑆𝑉 Viable Tumor Cell Source 

𝑆𝐷 Dead/Necrotic Tumor Cell Source Term 

𝑆𝐸 Extracellular Matrix Source Term 

𝑆𝐵𝑛𝐸 Blood cell Source Term 

𝒲 Elastic Energy 

ℰ𝑇 Elastic stiffness of tumor component 

ℰ̃𝑇
∗  Eigenstrain 

𝕋 & 𝕋∗ Extracellular matrix stresses (Ng & Frieboes, 2018) 

𝐿1 & 𝐿2 Lamé constants for cell components 

(Ng & Frieboes, 2017) 

𝜖𝐸 Interaction strength of the Extracellular Matrix 

𝜖𝑇 Interaction strength for Tumor Cells 

𝜖𝑒 Strain energy coefficient 

𝑘𝑎 Motility of the solid phase 

𝑝 Solid phase tumor cell Pressure 

𝛾𝑇 Tumor cell adhesion parameter 

𝛾𝐸 Extracellular matrix adhesion parameter 

𝑛 Concentration of oxygen 

𝐷𝑛 Diffusivity of oxygen in Tumor 

𝑘𝑛1 
Rate constants (Ng & Frieboes, 2018) 

𝑘𝑛2 

𝑡𝑔𝑓 Tumor growth factor concentration (Ng & Frieboes, 2017) 
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𝐷𝑡𝑔𝑓 Diffusivity of tumor growth factor in tumor 

𝜆𝑡𝑔𝑓 Tumor growth factor rate constant 

𝜆𝑑𝑒,𝑡𝑔𝑓 Degradation rate constant for Tumor growth factor 

𝜆𝑈,𝑡𝑔𝑓 Total uptake rate constant for tumor growth factor 

𝐵𝑛
𝐸 New blood vessels 

𝑱𝐵𝑛𝐸 Blood vessel diffusive flux 

 

In its current form, the Ng-Frieboes model can simulate a globular tumor, such as 

lung cancer or carcinoma along with surrounding tissue. With additional functionality 

and future work, this model could generate tumor volumes from The Cancer Genome 

Atlas (TCGA) project and predict treatment method effects. 

 

D. Multigrid Model 

 

The coupled nature of the Ng-Frieboes model and previous models has led to 

numerical solution methods (Frieboes et al., 2010; Ng & Frieboes, 2018). The numerical 

solution for the model stems from Multigrid based on previous work by Lowengrub and 

coworkers (Lowengrub et al., 2010). The algorithm is given in Ng and Frieboes (2018): 
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For each level ℓ = ℓ𝑚𝑖𝑛  𝑡𝑜 ℓ𝑚𝑎𝑥  

  If ℓ = ℓ𝑚𝑖𝑛 

   ψ̅ℓ𝑚𝑖𝑛

𝑡,0,𝑣0 = SMOOTH(𝑣0, ψℓ𝑚𝑖𝑛

𝑡,𝑟=0, 𝐿ℓ, 𝑅ℓ) 

  Else 

   If ℓ < ℓ𝑔𝑙𝑜𝑏𝑎𝑙  

r = r + 1 

ψℓ
𝑡,𝑟 =

ADAPTFAS(ℓ, 𝛾ℓ, 𝜏ℓ, 𝑣0, 𝑣1, 𝑣2, ψℓ
𝑡,𝑟−1, ψℓ−1

𝑡,𝑟−1, 𝐿ℓ, 𝑅ℓ)  

   Else 

    Do 

r = r + 1 

ψℓ
𝑡,𝑟 =

ADAPTFAS(ℓ, 𝛾ℓ, 𝜏ℓ, 𝑣0, 𝑣1, 𝑣2, ψℓ
𝑡,𝑟−1, ψℓ−1

𝑡,𝑟−1, 𝐿ℓ, 𝑅ℓ)  

    While (‖𝑅ℓ − 𝐿ℓ(ψℓ
𝑡,𝑟)‖ > 𝜏ℓ) 

   End If 

  End If 

  If ℓ < ℓ𝑔𝑙𝑜𝑏𝑎𝑙  

   Find prolongate solution ψℓ+1
𝑡,𝑟−1 = PROLONGATE(ψℓ

𝑡,𝑟−1) 

  Else If  ℓ𝑔𝑙𝑜𝑏𝑎𝑙 ≤ ℓ < ℓ𝑚𝑎𝑥 

𝐹ℓ
𝑡,𝑟−1 =FLAG(ψℓ

𝑡,𝑟−1
) 
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If 𝐹ℓ
𝑡,𝑟−1 ≠ ∅ 

    Create block 𝐵ℓ+1 ⊆ Ωℓ+1:  

𝐵ℓ+1

= BLOCKGEN(𝐹ℓ
𝑡,𝑟−1, 𝜂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑖𝑧𝑒, 𝜂𝑚𝑖𝑛) 

    Find prolongate solution ψℓ+1
𝑡,𝑟−1 = PROLONGATE(ψℓ

𝑡,𝑟−1) 

   Else 

    Break 

   End If 

  End If 

 End For 

 

Where ADAPTFAS, PROLONGATE, BLOCKGEN, and SMOOTH are defined in Ng 

and Frieboes 2018 and the parameters are defined in table II. 

 

In each section, openMP improved algorithm performance by parallelizing operations 

performed on Ωℓ. 
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TABLE II 

DEFINITIONS OF NG FRIEBOES ALGORITHM PARAMETERS 

Parameter Description Term Definition 

Ωℓ Model domain at level ℓ 

(Ng & Frieboes, 

2018) 

ℓ Level index 

ℓ𝑔𝑙𝑜𝑏𝑎𝑙  Finest level that always spans Ωℓ 

𝛾ℓ Cycle Index for Level ℓ 

𝑟 Multigrid iteration number 

𝑡 Time step index 

ψ Solution on level ℓ 

ψ̅𝑡 Initial solution estimate for time step 𝑡 

𝐿ℓ Left-hand side equation terms for level ℓ 

𝑅ℓ Right-hand side equation terms for level ℓ 

𝜏ℓ Solution Tolerance for level ℓ 

𝑣0, 𝑣1, 𝑣2 Preset, arbitrary number of smoothing steps 

𝜂𝑚𝑖𝑛, 𝜂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  Minimum and threshold efficiencies, respectively 
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II. PROPOSED TUMOR MODEL NUMERICAL SOLVER 

 

A. openMP Shortcomings and Overall Contribution to the Model 

 

As noted in the in Ng and Frieboes (2018), only openMP was used to parallelize 

the implemented framework. There are three main limitations that are imposed by 

parallelizing using openMP alone: 

 

1. When tested using 1283 grids, maximum performance was obtained using only 8 

cores out of 32 on a 32-core processor on the Cardinal Research Cluster (CRC). 

Results are shown in table VI. These findings are indicative of a memory transfer 

bottleneck. Hence, openMP-only implementations will not scale well locally for 

sufficiently large grid sizes. 

 

2. openMP is a shared-memory architecture that runs on non-distributed systems, 

limiting performance gains to what a single independent computer can accomplish 

(i.e. single PC or workstation). 

 

3. Many PCs will not possess enough RAM to hold larger tumor model spaces. For 

example, a 2563 grid is expected to use over 12 GB of space; this is well out of 

reach of many PCs at the time of writing. Future grid sizes for application use 
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could reach or exceed 10243, putting total RAM usage upwards of 850 GB. Table 

III summarizes the expected RAM footprint for varying model sizes. Appendix 1 

covers how these values were obtained. 

 

TABLE III 

MEMORY REQUIREMENTS FOR VARYING TUMOR MODEL SIZES 

 
Max level size 

2563 5123 

Points on a Side 130 258 

Maximum Level size Simulated (#Points on a side) 256 512 

Upper Bound RAM Required per process with eight nodes on the 

finest level (GB) 
3.3 25.5 

RAM Required for single process on the finest level (GB) 13.6 107.6 

Maximum spherical tumor diameter to simulate (mm) 5.1 10.2 

 

 

To simulate tumors on physiologically realistic scales, the Ng-Frieboes model 

must have enough computational resources to function on at least a 5123 sized domain 

and, according to table III, over 100 GB of RAM is required for such a task. Because 

many modern computers do not contain nearly this much RAM, a new solution generator 

is required. 

 



15 

 

 

This thesis describes a scalable framework designed to alleviate the shortcomings 

found with the openMP-based implementation of the Ng Frieboes model. MPI handles 

distribution of information across multiple processes, freeing the program from the RAM 

and processing constraints of a single system. On each system, Nvidia’s GPU CUDA 

library allows for faster processing of model data. Thus, the model framework is a two-

part model: an MPI-CUDA model. 

 

Finally, other distributed computing frameworks will briefly be covered here. The 

type of simulation being done here, generally known as Big Compute, requires consistent 

communication between multiple data repositories. As such, HPC architectures 

configured for Big Data, in which repositories are assumed to contain independent pieces 

of data, are not designed for Big Compute Tasks. Additionally, these models run on Java 

whereas MPI is compatible with C thus giving MPI a small performance advantage 

(Byun et al., 2012; Taboada, Ramos, Expósito, Touriño, & Doallo, 2013). Therefore, 

Hadoop and Spark, specializing in Big Data, were not optimal for tumor simulation 

(Byun et al., 2012; Zaharia et al., 2016). 
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B. MPI DESIGN 

 

In MPI, there are two classes of processes (i.e. nodes) in the program: 

 

1. The administrative node (AdN). Its responsibilities include saving the model, 

ensuring synchronization of the model at certain points in execution, such as 

calculation of the residual, and designation of synching properties and node 

adjacency. There is only one node designated the AdN. 

2. General Computation nodes (GCN). GCNs take up a non-overlapping cubic 

region in Ω. Each one can operate on more than one level as designated by the 

AdN at the start of the model’s execution. 

 

At the beginning of the model, the single AdN is designated. It then starts to 

define node boundaries: 

 

1. Collect statistics on node characteristics. Determine the minimum amount of 

RAM possessed by a single node and by a graphics card. 

2. Determine the maximum sized domain that each GCN can handle. To agree 

with the domain Ω, the cubic domain Ω𝐷 has a side length  2𝑘  where 𝑘 ≤

ℓ0 + ℓ𝑖𝑛𝑑𝑒𝑥 . The resulting size is the fundamental size for the node. A 
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corollary to the definition is that the coarsest level ℓ𝑖𝑛𝑑𝑒𝑥  may define a 

domain Ω0 that is larger than a single node. 

3. The nodes are arranged sequentially with each node filling a single region of 

the model in a manner depicted by figure 1: 

 

FIGURE 1 – NODAL DISTRIBUTION ON ARBITRARY LEVEL L 

 

In figure 1, level L contains eight nodes, all of which are at the maximum 

capacity per node for a single level. Adapting a method of hierarchical node filling 

proposed by Reiter et al. 2013, on level L + 1 eight times the number of nodes will be 

required to fill the domain since memory occupation is maximized on level L. The light 

grey node is expanded on level L + 1, revealing seven new nodes. One-eighth of the 
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domain covered by the star node on level L is retained locally while the other 7 parts of 

the domain are sent to 7 other GCNs. Thus, the amount of work increases linearly with 

the number of levels, since nodes on each level after and including level L would have 

the same domain size (Reiter, Vogel, Heppner, Rupp, & Wittum, 2013). This also means 

that every node on a previous level must operate on the final level Lmax. Overall, then, the 

total amount of nodes required is described in equation 10: 

𝑁𝑜𝑑𝑒𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 8𝑛0−𝑚0+𝐿 (10) 

Where 𝑛0, 𝑚 ∈ ℤ , 𝑛0 < 𝑚0, the coarsest level L0 has 2𝑚0 points on a side, each 

node holds 2𝑛0 points per side per level with maximum RAM usage, and L is equal to the 

number of levels in the model. Thus, in figure 1 𝐿 = 2 & 𝑛0 = 𝑚 − 1 ⇒ #𝑁𝑜𝑑𝑒𝑠 =

82−1 = 8 nodes. RAM usage is explored in greater detail in Appendix I. Because a 

portion of the computational work remains on every finer level after a node is first 

introduced, nodes are utilized to a greater degree over a non-hierarchical filling method 

with lowered node-to-node communication. 
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C. OVERALL ALGORITHM 

 

The overall algorithm in the MPI-CUDA tumor model is identical to that of the 

Ng-Frieboes Model, save that the conditions for block generation have changed. In the 

old model, efficiency was defined as 𝜂 =
#𝐹𝑙𝑎𝑔𝑔𝑒𝑑 𝑃𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝐵ℓ+1

𝑇𝑜𝑡𝑎𝑙 #𝑃𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝐵ℓ+1
 where the set of all 

flagged points 𝐹ℓ
𝑡,𝑟−1 ⊆ Ωℓ+1. Also, the block 𝐵ℓ+1 ⊆ Ωℓ+1. To prolongate to a new 

level, 𝜂 had to be lower than a pre-defined cutoff efficiency. In the new model, the 

decision process is simplified to an all-or-nothing behavior: 𝐹ℓ
𝑡,𝑟−1 ≠ ∅ ⇒ 𝐵ℓ+1 =

Ρℓ+1
ℓ (𝐵ℓ) = Ωℓ+1. By doing so, memory management is greatly simplified, since a level 

is either processed or ignored for a given time step. However, this decision also increases 

workload on levels where only a subset of Ωℓ requires smoothing. 

 

Other than the key difference outlined above, the Multigrid algorithm remains 

identical to the Ng-Frieboes model outlined in Ng-Frieboes 2018. However, the flow of 

information during execution greatly differs from the Ng-Frieboes method. Figure 2 

summarizes the process for any computation function X that is neither restriction nor 

prolongation. 
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FIGURE 2 – EXECUTION OF ARBITRARY FUNCTION X   
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D. FUNCTION X CALLED ON LEVEL ℓ 

 

For node 𝑛 operating over a subset of Ωℓ, denoted Ωℓ
𝑛, GPUs on node 𝑛 are 

selected in round-robin fashion to process Ωℓ
𝑛. Ωℓ

𝑛 is subdivided into subdomains 𝜔𝑗
ℓ that 

are sufficiently reduced to fit in GPU RAM. The subdomains have the following 

properties for 𝑚 subdomains on level ℓ: 

 

1.  𝜔𝑗
ℓ ⊆ Ωℓ

𝑛 , 𝑗 ∈ {1, … , 𝑚} 

2. 𝜔1
ℓ ∩ ω2

ℓ ∩ … ∩ 𝜔𝑚
ℓ = ∅ 

3. 𝜔1
ℓ ∪ 𝜔2

ℓ ∪ … ∪ 𝜔𝑚
ℓ = Ωℓ

𝑛 

4. 𝜔𝑗
ℓ ≠ ∅, 𝑗 ∈ {1, … , 𝑚} 

 

If a single GPU has enough RAM to hold the entire domain, then 𝑚 = 1. To 

prevent GPUs from mixing old and new data, each function call is preceded with an 

unloading of processed function data and a reloading of new function data. Before 

running the next function, the nodes synchronize level ℓ data. Next, the GPUs receive 

relevant constant terms from the model including vasculature parameters and the 

dimensions of their respective domains. Finally, function X is called on all GPUs. 
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E. FUNCTION PROCESSING USING PARALLEL ARCHITECTURES 

 

To improve CUDA performance, stencil formation was updated significantly. 

Because the original openMP architecture used host memory, no formal stencil variables 

were required. However, the CUDA architecture requires further optimization to 

minimize use of slower request to so-called global memory. The solution was to use a 

smaller programmer-controllable cache known as shared memory. The algorithm is laid 

out below: 

 

Input: thread t positioned at point (i,j,k) on 𝜔𝑗
ℓ 

 (i,j,k) is loaded into register memory on t from global memory. 

 Shared memory 𝑠 is created for all threads in a thread block 𝐵𝑡. 

 (i,j,k) is copied into 𝑠. 

 Synchronize all threads on 𝐵. 

 For each adjacent point 𝑃: 

  If 𝑃 ∈ 𝑠: 

   Copy 𝑃 from shared memory to register memory on t. 

  Else 

   Copy 𝑃 from global memory to register memory on t. 

  End If 

 End For 
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The above process is done on a per-block basis on the CUDA GPU. Each thread 

on the block runs the above function simultaneously, thus the block 𝐵𝑡 becomes a 

repository for point data for all threads in the block. Threads within each block are 

organized geometrically on Ωℓ
𝑛 in a cube. If a thread looks up a given point value (i,j,k) 

and it resides in shared memory, the thread will avoid a more time-consuming global 

memory retrieval. Since CUDA does not permit information exchange between shared 

memory blocks, if a given block does not contain the information requested by t, t must 

defer to global memory. 

 

Stencils in this model do not exceed a 3x3x3, thus most stencils formed by 

threads in the cubical block 𝐵𝑡 will avoid duplicating global memory searches. The only 

drawback to this approach is that in cases where GPU functions require more than one 

stencil simultaneously register pressure can occur, a phenomenon where insufficient 

registers exist to handle the number of variables requested. In such a scenario, the GPU 

defers resources to a repository of slower global memory denoted as local memory. After 

using a Nvidia profiler, it was confirmed that registers were not overloaded for almost all 

GPU-based functions. The effect of removing any other register pressure has not been 

tested and is a subject for future study. 
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When establishing GCN communication, a variety of methods were used: 

1. A 2x2x2 node domain was constructed with each node corresponding to one 

octant of the nodal lattice. Each node communicates with 7 other adjacent nodes. 

2. Each node has a specific variable index set to the MPI rank of the node. This 

value, by nature of the MPI initialization process, is unique to each node.  

3. At the end of the syncing process, the number of ghost points with a given MPI 

rank is determined. That value, given a correct syncing operation, corresponds to 

the number of points that are adjacent to each other in the tumor domain. 

 

When syncing data across GCNs, there are three operating directions to consider relative 

to the node GCN in question. These directions can be represented with three separate 

vectors: 

1. A unit syncing vector, 𝑆. 

2. A nodal vector for the data �⃗⃗⃗�. 

3. The unit storage vector for data, �⃗⃗⃗�. 

 

Because nodes are arranged in a Cartesian grid, rules are easily established for points not 

on the boundary of the tumor domain Ωℓ. First, relative to each node, in graph theory 

terms, each GCN forms a star graph S26 with its neighbors. Any MPI send and receive 

operation is a one-step process, in which any link (𝑢, 𝑣𝑚) for 𝑚 ∈ {1,2, … ,26} must be 

traversed. For maximum performance, perfect matching is desirable, meaning that on 
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level ℓ, half of the GCNs are sending data and half of the GCNs are receiving data during 

the synchronization command. Finally, any subgraph created by tracing the 

synchronization path comprising consecutive syncing vectors on the overall graph 𝐺𝑆 

must be acyclic to prevent the program from halting. 

 

Ensuring synchronization between points is a multistep process accomplished through 

three steps: 

 

1. Establishment of a residing map on each GCN that informs it of adjacent point 

data. 

2. Development of the synchronization matrix. Every value in a 3x3x3 nodal grid, 

representing 𝐺𝑆, is filled with a value corresponding to how synchronization 

should take place, including send or receive and sides to select in border 

operations. 

3. Derivation of the storage vector �⃗⃗⃗� for a given syncing vector 𝑆.  

 

Every value in the 3x3x3 nodal grid is cycled through in a preset order.  With the center 

node of the nodal grid as the origin, any point selected, excluding the origin, will form a 

unit vector 𝑆 starting from the origin and moving away towards the selected point. MPI 

does not resume execution until the package is successfully sent and received. Thus, for 

any MPI send/receive event, all subgraphs must be acyclic. Put another way, the vector 
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sum formed by consecutive vectors 𝑆 cannot equal the zero vector. Although sufficient 

but not necessary, a guideline for ensuring that no cycles form is by looking at the vector 

field of 𝑆. If ∇ × 𝑆 = 0 for all vectors 𝑆 then the resulting syncing cycle will not form a 

cycle. By cycling through all possible 𝑆 values in a known order on all GCNs and with 

the implicit synchronization required for a successful MPI send/receive operation, the 

summation of any number of 𝑆 vectors will be non-zero. In addition, the curl of the 

resulting vector space is also zero. Figure 3 describes one possible 𝑆 field that qualifies as 

a field. Each arrow in the figure represents a pair of nodes, one sending and the other 

receiving. 

 

FIGURE 3 – A ZERO CURL VECTOR FIELD CANDIDATE FOR THE SYNC 

VECTOR 
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For the MPI model, a syncing vector field with zero curl was found for each 

syncing direction, thus ensuring no unresolvable communication errors could form during 

function execution. 

 

For the node vector, each node creates a stencil containing the node IDs of adjacent 

nodes. With a given sync vector and data stored locally on each GCN, a node vector can 

be correctly defined. Finally, the node can use the sync vector to derive the node vector. 

Figure 4 depicts the vectors for two nodes in communication at the border.  

 

 

FIGURE 4 – MPI SYNCING VECTORS AT DOMAIN BORDERS 
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In figure 4, the red point is a corner points required on all four nodes for computation. 

The sync vectors 𝑆 (orange) are parallel thus ensuring there will be no communication 

hanging. The tan node, represented at the border as a tan square, is sending the red point 

to the light blue node. Thus, the node vector �⃗⃗⃗� (green) is pointing west towards the tan 

sending node. The point data obtained by the tan node will be placed in a corner of the 

light blue node’s domain, thus the storage vector �⃗⃗⃗� (red) points towards red corner point.   

 

 

F. RESTRICTION & PROLONGATION/ERROR CORRECTION 

 

Restriction and prolongation/error correction require additional steps, since 

multiple levels and, therefore, multiple node groups, must interact. Restriction in the 

MPI-CUDA model is a three-step process: 

 

1. For nodes on level ℓ Restrict approximate numerical solution 𝑢ℓ using the 

restriction function, denoted as Γ 

Γ(𝑢ℓ) = 𝑢ℓ−1 (10) 

2. Sync 𝑢ℓ−1 values across all nodes on level 𝑢ℓ using the system laid out in part 

A. 

3. Restrict approximate right-hand-side (RHS) solution 𝑓ℓ using Γ 
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𝑓ℓ−1 = Γ(𝑓ℓ) = Γ(fℓ − 𝑁ℓ[𝑢ℓ]) + 𝑁ℓ−1[Γ(𝑢ℓ)] (11) 

Where the analytical solution takes the form 𝑁ℓ[𝑣ℓ] = 𝑔ℓ after complete 

convergence of 𝑢ℓ → 𝑣ℓ and 𝑓ℓ → 𝑔ℓ. 

4. Sync 𝑓ℓ−1 across all nodes on level 𝑢ℓ using the system laid out in part A. 

5. Send 𝑢ℓ−1 and 𝑓ℓ−1 to nodes containing level ℓ − 1 data. 

 

For the highest performance gain, minimizing the number of transfers between 

external nodal communication and internal GPU communication is ideal. Thus, in step 1, 

𝑢ℓ−1 and 𝑓ℓ−1 are produced on nodes on ℓ. After syncing 𝑢ℓ−1 across all nodes on ℓ, 𝑓ℓ−1 

is computed. After unloading both 𝑢ℓ−1 and 𝑓ℓ−1, the solution is sent to level ℓ − 1 by 

collapsing a 23 worth of 𝑢ℓ−1 & 𝑓ℓ−1 node data into a single node on ℓ − 1. Sequential 

collapse along each axis distributes the work across all nodes on level ℓ. Because of 

standard coursing depicted in figure 1, every restriction operation results in seven nodes 

sending restricted information to a single node. 

 

For error correction, from level ℓ to ℓ + 1 the process requires little adaption from 

the Ng-Frieboes method: 

 

1. Transfer level 𝑢ℓ−1 to nodes on 𝑢ℓ. 

2. Determine error on each point on level ℓ. 

𝑒ℓ−1 = 𝑢ℓ−1 − Γ(uℓ) (12) 
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3. Sync error 𝑒ℓ across all nodes on 𝑢ℓ. 

4. Apply correction to obtain corrected solution 𝑣ℓ. 

𝑣ℓ = 𝑢ℓ + 𝑃(𝑒ℓ) 
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III. MATERIALS AND METHODS 

 

A. OVERALL METHODS 

Model accuracy was ensured by comparing model input to the Ng-Frieboes 

openMP numerical solutions. However, the flux of metabolites was changed from the 

original openMP code because its logic was found to inaccurately represent the 

underlying model. As such, old and new mathematical model inputs do not output 

equivalent model values. However, there are two reasons why this discrepancy does not 

dissuade using the openMP model as a guide for verifying the new model’s physiological 

relevance: 

 

1. Model consistency. Due to the effects of floating-point arithmetic 

evaluation on results, the compilation process, such as optimization of debug 

code, can affect the final values outputted by the model (Collingbourne, Cadar, & 

Kelly, 2014). This was observed on early CUDA builds when comparing CRC 

solutions compiled using the Linux-based g++ compiler verses Windows 

compiled code. Consecutive runs with consistent results ensured that solution 

variance was not due to race conditions. 

 

2. MPI-CUDA solution error reached the tolerance in fewer solver 

iterations than the older model, supporting the conclusion that the original 
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openMP code incorrectly calculated flux values and, therefore, slowed down the 

convergence process. Because metabolite variables are affected by the flux 

function, the solution difference between the two models is more significant than 

the MPI-CUDA framework, as documented in table VII. The effects of this 

change are explored in greater detail in the discussion section. 

 

Once the model had been debugged and tested, consistency was ensured from the 

original completed CUDA-only code to the present MPI-CUDA build by printing out all 

volume fractions, pressures, metabolites, growth factors, and other miscellaneous tumor 

variable data from the first-time step. Those values were compared to archived output 

from the older build using a SHA-256 hash. Matching hashes implied that the integrity of 

the solving process was not impacted by the code. 

 

All timing results were obtained using time.h clock statements and used the test 

scenario described in Ng and Frieboes (2017). The computer used for testing has an 

AMD 2990WX processor with one Titan RTX GPU. A CUDA only simulation is 

emulated using two MPI instances of the program: one AdN and one GCN. Because of 

the minimal communication between these processes and only the GCN operates on the 

domain, the two MPI instance program will behave similarly to a single process. MPI-

CUDA was performed using nine processes, one AdN and eight GCNs. One GCN 

operated on all coarser levels as a single node, then MPI was used to divide the finest 
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level into octants, with each GCN operating exclusively in one of eight octants. For both 

CUDA and MPI-CUDA, the program was tested using a coarsest grid of 83. Standard 

coursing was used to reach one of two different finest grids: 1283 and 2563. Two 

iterations of the CUDA and CUDA-MPI models were performed to ensure consistent 

model results. All run data are given in table VIII in appendix II.  Finally, execution 

times were also obtained from the CRC for the openMP model with varying thread 

counts. 

 

 

B. EXAMPLE TESTING METHODOLOGY 

 

When testing the prolongation routine outlined in part 2.C, four tests were 

performed on the MPI process that transferred 𝑢ℓ−1 to eight nodes on level ℓ, with each 

node sitting in its own octant: 

 

1. At each point (𝑖, 𝑗, 𝑘) on level ℓ, manually set each point to a value equal to the 

unique MPI ID for the expected destination node. After 𝑢ℓ−1 is transferred, each 

node reports the total number of each possible node ID it finds on its subdomain 

on level ℓ. For a passed test, a node on level ℓ will only find its MPI ID on its 

subdomain. 
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2. Because each node’s domain is cubic, there can be at most 8 destination nodes for 

a single point of data on level ℓ − 1. The second test sets one of the eight possible 

corner points and ensures that each node (a) receives the point and (b) places it in 

the correct position in memory. Each node reports if the point value is found in its 

subdomain and, if so, where that value resides. To pass, each node finds the value 

only once and displays the correct location. 

3.  The first memory value and final memory value are marked on level ℓ − 1. For a 

passed test, only the first and eighth node find the first and final value, 

respectively on their subdomains. 

4. A few random points were selected and marked on level ℓ − 1 by the programmer 

before function execution to test different cases during the syncing process. Each 

node reports if it received the marked point and, if so, where it resides on the grid. 

To pass, node output will match the predictions made by the programmer. 
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IV. RESULTS 
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TABLE IV 

TIMING RESULTS FOR OPEN-MP MODEL ON 2990WX 

Finest Interior Level 

Size (#points) 

Number of 

Threads Enabled 

Data Export Time 

(seconds) 

Total Execution 

Time (seconds) 

Total time for single 

time step (seconds) 

1283 

4 45.7 651.6 697.3 

8 46.7 335.7 382.0 

16 49.1 327.2 376.3 

32 45.4 259.7 305.1 

 

 

 

 

TABLE V 

TIMING RESULTS FOR FIRST TIME STEP USING OPEN-MP 

 # Threads 

 Computer Type 1 2 4 6 8 16 32 

Desktop Time (seconds) - - 697.3 - 382.0 376.3 305.1 

CRC Cluster Node (seconds) 1571.7 927.1 521.8 414.7 337.4 369.0 426.3 
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FIGURE 6 – OPEN-MP PARALLELIZATION CLUSTER VS DESKTOP 

 

 

TABLE VI 

TIMING RESULTS FOR MPI-CUDA MODEL 

   AMD 2990WX 

 

 

 

Total Execution Time for First Time Step 

(seconds) 

Finest Level Size 

(#points) 

Tumor Domain 

Side Length (mm) 
Framework Type Trial #1 Trial #2 Average 

128 2.56 
CUDA 

37.1 37.6 37.3 

256 5.12 295.4 291.1 293.2 

128 2.56 
MPI-CUDA 

35.2 35.4 35.3 

256 5.12 257.4 259.2 258.3 
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FIGURE 7 – INITIAL TUMOR VOLUME IN 5.1 MILLIMETER DOMAIN AT THE 

END OF TIME STEP 1 & 2 

 

FIGURE 8 – TIME STEP 2 CORNER 
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FIGURE 9 – FIRST TIME STEP CUBIC TUMOR DIMENSIONS 
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FIGURE 10 – OPENMP OUTPUT FROM NG-FRIEBOES 2017 AFTER 500 TIME 

STEPS 

 

 

TABLE VII 

OPENMP VS. CUDA BICARBONATE AND PRESSURE SOLUTION COMPARISON 

 Level 2 – Same cycle volumes Level 4 – Different cycle volumes 

openMP vs. CUDA Property P-Alpha Bicarbonate  P-Alpha  Bicarbonate 

Absolute Mean Difference 3.0E-04 4.8E-03 3.5E-03 1.0E-02 

Variance of Model Difference 3.7E-07 3.3E-05 1.5E-05 1.1E-04 

Relative Error Difference (%) -0.6% -9.6% -15.4% -30.3% 

Relative Error Standard Deviation (%) 0.2% 1.0% 21.5% 18.6% 
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V. DISCUSSION 

 

Figure 5 reveals the performance differences for a 2990WX vs a single node of 

the CRC. While both systems possess equal core counts, there is a decrease in 

performance on the CRC node with greater than eight CPU cores in parallel use. 

Interestingly, the 2990WX shows improved performance, even to 32 cores. This 

difference in results is believed to be caused by memory bandwidth limitations on the 

CRC node. In figure 6 we see that increasing the number of cores using open-MP gave 

diminished gains for program instances with more than 8 threads, a find consistent with 

model performance on the CRC. However, performance continued to improve as more 

cores were added in the case of the 2990WX. With desktop performance of open-MP 

being the lowest recorded time, it is used as the baseline for testing the MPI-CUDA 

implementation. 

 

For the CUDA only run on 1283, a sizeable performance increase is observed, 

from 4.31 minutes on openMP to 0.622 minutes. The CUDA version, therefore, is 6.96x 

faster than the openMP version it replaces on the same grid size. When increased to 2563 

on a side, the time to process the first-time step increased 7.86x, indicating that time is 

scaling linearly with problem size. However, it will be difficult for many current GPUs to 

exceed the RAM and computing of a Titan RTX solution, making these numbers a best-

case scenario. 
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MPI-CUDA appears more promising than either option. While its 1283 time was 

akin to the CUDA model, its processing time increased 7.37x for an 8x increase in 

problem size. The most likely explanation for the performance increase comes from 

optimized memory movement from CPU to GPU under MPI loads. For an equivalently 

sized dataset, the MPI processes can parallelize memory manipulation on the CPU, thus 

increasing memory bandwidth usage. Another implication of this result is that MPI 

communication operations on the AMD 2990WX were more than offset by the increased 

memory bandwidth usage. With multiple independent nodes of equivalent power to the 

test desktop, it is conceivable that larger tumors than this could be simulated. 

 

Because of changes in flux terms made in the MPI-CUDA code, the MPI-CUDA 

code converges in one Multigrid cycle, whereas the openMP model requires 12 iterations. 

It is possible that convergence would also be improved in openMP implementations were 

applied. Because the openMP code remains unpatched, this scenario can be simulated by 

timing the first iteration of the Multigrid solver. The results are given in table IX  in 

Appendix II and are comparable to the results obtained for CUDA and MPI-CUDA 

implementations. However, because of adaptive grid technologies built into the openMP 

model version, only a small portion of the final 1283 grid is solved over, thus openMP 

performs computationally less work than the CUDA model but taking more time to do so. 

Finally, because both the cluster node and the AMD 2990WX possess 32 cores, well 



43 

 

 

above most current CPUs, it will be difficult to increase openMP performance beyond the 

numbers presented in Table V and VI, whereas the MPI-CUDA will potentially scale to 

many more machines for similar results. 

 

Figure 7 depicts the initial cubic tumor at the initial time step and the second time 

step. While the domain could contain a tumor with a radius of 5 millimeters, the model 

begins with a 1.6 mm tumor situated in the center of the domain. The tumor is more 

closely visualized in figure 9. While this simulated tumor is not realistic in shape, it is 

optimized to verify model integrity, as the observations in Ng and Frieboes 2017 

demonstrate. Like the openMP model they documented, the cubic tumor evolved by 

smoothing the corners of the cube into expanding bulbs. Although extremely early in the 

tumor model’s execution, evolution of corner behavior is visible as early as the second 

time step in the CUDA model, as shown in figure 8. The phenomenon is more easily seen 

in figure 10 taken from Ng and Frieboes 2017, after the tumor model had executed for 

500 timesteps. Future CUDA modeling with more timesteps will give greater insight into 

how these corners evolve over time and ensure consistency between the two frameworks. 

 

Finally, the two methods solution differences are categorized in table VII. 

Because the final solution for a given timestep resides on level ℓ𝑚𝑎𝑥, the openMP 

framework must prolongate all data from coarser levels at the end of a timestep. Since the 

CUDA model processes all data points on ℓ𝑚𝑎𝑥, solution accuracy is increased on 
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regions that the openMP model would exclude from its 𝐵ℓ+1 ⊆ Ωℓ+1. The openMP 

framework would decrease local error relative to the MPI-CUDA framework within its 

𝐵ℓ+1 due to repeated smoothing efforts, although erroneous flux terms may have 

increased the number of smoothing cycles required to reach convergence. Nevertheless, 

in the case of MPI-CUDA, the inclusion of more low-error points decrease the 

normalized mean error, thereby reaching the tolerance on level ℓ + 1 in fewer iterations 

than the openMP counterpart. In table VII, both models process the entirety of level 2. In 

the case of level 4, openMP only processes a subset of the domain Ω4, leading to an 

increase in the magnitude of the relative solution difference. 
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VI. FUTURE WORK 

 

While the parallelization performed on the tumor model is significant, more 

development is required before being clinically relevant. First, this node structure has no 

fault tolerance. That is, if a single GCN were to fail to respond, the program, as it stands, 

would exit without completing the model. Possible solutions include redundant data on 

different nodes and time-step backups. Many of these features have made their way onto 

Big Data cluster libraries, such as Hadoop or Apache Spark, with recent advancements 

being set in stencil processing (Jie et al., 2014; Yuan et al., 2016). Thus, a future 

implementation may draw from one of these cluster libraries. Second, while the focus of 

this thesis has been model performance, ensuring solution stability over multiple time 

steps remains a development goal. 

 

In terms of program readability, significant improvement could be made with 

memory management on the GPU. In order to be usable on the CRC, the program was 

built to run on a minimum compute capability of 2.0 (Nvidia). Thus, many CUDA 

advents were passed over in the program’s creation, such as a unified memory 

architecture. Dropping support for older CUDA standards could streamline programming. 

General performance improvements for memory transfer could also be implemented. 

With the addition of increased Multigrid technologies such as adaptive grid meshes 

would reduce computational workload and further increase model performance. For some 
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problem sizes, a CUDA-MPI framework may not be optimal due to overhead of passing 

data to GPUs for processing. Indeed, an openMP/MPI framework has outperformed 

CUDA-MPI tasks when testing a smaller mathematical model with greater efficiency 

(Lončar et al., 2016). Future evaluation of openMP-MPI vs. CUDA-MPI may lead to 

further optimizations of the Ng-Frieboes model for mixed grid sizes. 

 

Currently, the model inputs a hard-coded scenario ideal for testing, however, a 

real tumor is globular and would require input imaging data. For testing purposes, 

possible input could come from The Cancer Imaging Archive (TCIA) created by TCGA. 

Using patient imaging data, real tumor evolution could be simulated to compare to known 

samples, thereby validating these equations’ versatility and physiological accuracy. 

Because of the adaptability of the Multigrid method, the MPI-CUDA framework could be 

modified to run mathematical models on more general tissue ailments, such as drug 

delivery for microbial infection in certain organs. The capability to model sufficiently 

large tissues would permit accurate simulations of tissue-scale proportions. 

 

From the standpoint of the model, additional equations and/or terms will be 

required to describe present and future treatment methods. For example, 

immunotherapy’s reliance on T-cells restricts its efficacy to cancers with the correct 

antigens on their cellular membrane; future mathematical modeling would need to 

account for this phenomenon (Hall, 2016). 
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Finally, the burgeoning field of -omics data analysis, in which tissues are 

categorized using tissue profiling, provides a unique opportunity for model validation and 

application. For example in the case of transcriptomics, from a single instant in time, the 

change in gene expression in time, denoted as “pseudotime,” can be generated by 

simultaneously sampling different cells in different stages of development from the same 

tissue source to reconstruct the tissue’s overall gene expression (Reid & Wernisch, 2016). 

Elucidating drug effects using this method could spur the creation of mathematical 

models that accurately describe cellular models and aggregate behavior in cell cultures 

and, consequently, increase model realism. With sufficient accuracy, future mathematical 

models with increased predictive power may even return to benefit the underlying 

biological analyses by informing molecular expression research. 
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APPENDIX I 

 

A. DERIVATION OF MODEL MEMORY FOOTPRINT 

 

If the length between points on the Multigrid model is 20 µm per point on the 

finest level, then for a domain of 2 cm: 

 

 
#𝑝𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝑠𝑖𝑑𝑒 =

𝑙𝑒𝑛𝑔𝑡ℎ

𝑙𝑒𝑛𝑔𝑡ℎ
𝑝𝑜𝑖𝑛𝑡

=
2 ∙ 10−2

20 ∙ 10−6
=

1

10
∙ 104

= 1000 points per side 

 

 

Rounding up to the nearest power of two, we obtain 1024 points per side. Using 

an approach where each process resides on a single domain (i.e. no process operates on 

more than one level), if a process can run 2𝑛 points on a side and the domain contains 2𝑚 

points on a side (where 𝑛, 𝑚 ∈ ℤ & 𝑛 ≤ 𝑚), then the number of processes will be: 

 

 
#𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 𝑇𝑜𝑡𝑎𝑙 = 𝑃 =

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐷𝑜𝑚𝑎𝑖𝑛

𝑉𝑜𝑙𝑢𝑚𝑒 𝑃𝑒𝑟 𝑃𝑟𝑜𝑐𝑒𝑠𝑠
=

(2𝑚)3

(2𝑛)3
= 8𝑚−𝑛 

(A.1) 
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For the above example: 

 

 𝑃 = 810−7 = 83 = 512 Processes 

 

 

If each computer can perform 256 points per side rather than 128 in the previous 

example, then: 

 

 𝑃 = 810−8 = 82 = 64 Processes 

 

 

For this example, we will use 4096 points on a side: 

 

 4096 ∙ 20 ∙ 10−6 ∙ 102 = 8192 ∙ 10−3 = 8.192 cm 

 

 

Thus, we could comfortably simulate an eight cm tumor with a 40963 simulation. 

Also, we consider how many independent process (i.e. 1 process per node) would be 

required for a 2563 computation volume per nodes: 

 

 𝑃 = 812−8 = 84 = 4096 nodes  
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If we want there to be 𝐿 levels total along with the finest level, then the following 

formula can be used to determine how much memory will be required: 

 

 𝑀𝑒𝑚𝑜𝑟𝑦 𝑁𝑒𝑒𝑑𝑒𝑑 = 𝑀 = (𝑀𝑒𝑚𝑜𝑟𝑦 𝑃𝑒𝑟 𝑃𝑜𝑖𝑛𝑡) ∙ (#𝑃𝑜𝑖𝑛𝑡𝑠) 

= 𝑘 ∙ (∑(2𝑐−𝑗+1)
3

𝐿

𝑗=1

) = 𝑘 ∙ (∑ 8𝑐−𝑗+1

𝐿

𝑗=1

) 

 

(A.2) 

Where the number of points per side on finest level is 2𝑐, 𝑐 − 𝐿 + 1 > 1 ⇒ 𝐿 <

𝑐, and 𝑘 is the memory per point. For this model, 𝑘 = 692 
𝐵𝑦𝑡𝑒𝑠

𝑃𝑜𝑖𝑛𝑡
. To be viable 

computationally, the model should run on at least an 83 grid, thus 𝐿 < 𝑐 − 1. 

 

Assuming five levels (𝐿 = 5) are required and the finest level has 4096 points on 

a side (thus 𝑐 = 12), then 

 

𝑀 = 692 ∙ (∑ 812−𝑗+1

5

𝑗=1

) = 54.3 TB 
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Border points can be added easily by adding two to the side length at each level: 

 

 

𝑀𝑇 = 692 ∙ ∑(2𝑐−𝑗+1 + 2)
3

𝐿

𝑗=1

 

(A.3) 

𝐿 = 5, 𝑐 = 12 ⇒ 𝑀𝑇 = 692 ∙ ∑(212−𝑗+1 + 2)
3

𝐿

𝑗=1

= 54.4 TB 

 

Clearly, by the ratio test, the effect of border points diminishes as 𝑐 → ∞, thus for 

subsequent calculations, they will be assumed negligible. 

 

According to the naïve process filling approach, where processes cannot span 

more than one level: 

 

 

𝑃 = ∑ 𝑝𝑗

𝐿

𝑗=1

 where  𝑝𝑗 = {
1, 𝑗 ≥ 𝑐 − 𝑛 + 1

8𝑐−𝑛−𝑗 , 𝑗 < 𝑐 − 𝑛 + 1
 

 

(A.3) 

When each node occupies 256 points per process, 𝑛 = 8. Thus, for L = 5 and c = 

12: 

 

 𝑝𝑗 = 812−8−𝑗+1 = 85−𝑗 (A.4) 
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 ⇒ 𝑃 = 84 + 83 + 82 + 8 + 1 = 4681 Nodes 

 

 

Under this system, the memory use per process is 
54.34

4681
= 11.6 GB, not including 

boundary/ghost points on each node. 

 

The MPI setup uses an approach that attempts to remove some of the memory 

transfers and reduce idling by having nodes span more than one level. Overall, this leads 

to the following formula: 

 

 #Total Processes Total =  𝑃𝑇𝑜𝑡𝑎𝑙 = 8𝑛0−𝑚0 ∙ 8𝐿 = 8𝑛0−𝑚0+𝐿 , 𝑚0 > 𝑛0 

 

(A.5) 

Where each node can process a cubic region containing 8𝑛0 points, the coarsest 

cubic domain contains 8𝑚0 points, and the total number of levels is 𝐿. In cases where the 

node can process a larger domain than the coarsest level, one node will handle all 

domains from 𝐿0 to 𝐿𝑡 where 𝐿𝑡 is the #levels where the domain volume is less than or 

equal to than the node’s processing volume (i.e. 2𝑚 ≤ 2𝑛). In that case, formula A.5 can 

be adapted to a more general form: 

 

 #Total Processes Total = 8𝑛0−𝑚0+𝐿−𝐿𝑡   (A.6) 



53 

 

 

 

For the preceding example 𝐿𝑡 = 1, 𝑛0 = 8, 𝑚0 = 8, and 𝐿 = 5, thus: 

 

88−8+5−1 = 84 = 4096 nodes 

 

The maximum amount of RAM per process will be the first node allocated, since 

it will span all five levels, starting at 2563 and ending at 40963, using a constant 2583 

points per level. In this scenario, the total RAM usage would be equal to: 

 

692 ∙ (28 + 2)3 ∙ 5 = 59.4 GB 

 

In this design the number of nodes is constant with a constant RAM requirement 

per node. Overall efficiency also increases relative to naïve grid filling, since multigrid 

runs on a single level at any given time, meaning nodes that span a single level will idle 

while computations are performed elsewhere. 

 

Because one node will occupy all the levels whose side length is less than 𝑚 and 

the computational work decreases exponentially with decrementing levels, there is little 

reason to use fewer levels. 
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As an example, we can calculate how much RAM is required for a single node 

existing on 5 levels with the coarsest level being 8 points on a side and the finest level 

being 128 on a side: 

 

692 ∙ (∑(27−𝑗+1 + 2)
3

5

𝑗=1

) = 1.8 𝐺𝐵 

 

In practice, the MPI framework requires more RAM than this amount due to 

temporary storage between certain computation steps, but that amount is not significant 

for this example. Because many computers used in either personal or cluster settings 

possess more than eight GB of RAM at the time of writing, there is no reason to remove 

coarser levels from a RAM usage perspective. For instance, removing the two coarsest 

level barely decreases the RAM requirement for a single node model: 

 

692 ∙ (∑(27−𝑗+1 + 2)
3

3

𝑗=1

) = 1.7 𝐺𝐵  

 

Finally, because Multigrid relies on multiple levels to converge to a solution, excluding 

these levels could, for some cases where error is sufficiently close to the solution 

tolerance, spell the difference between a successful convergence and another costly 
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Multigrid cycle. Therefore, it is reasonable to keep smaller coarser grids, even with ever-

increasing grid sizes.  
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B. FULL DATA OUTPUT 

 

TABLE VIII 

FULL MPI-CUDA & CUDA DATA TIMING 

TRIAL 1 

Final 

Level Size 
Model Type 

Data Saving Time 

(seconds) 

Processing Time 

(seconds) 

Total Execution 

Time (seconds) 

128 
CUDA 

34.1 37.1 71.2 

256 265.7 295.4 561.1 

128 
MPI-CUDA 

5.4 35.2 40.6 

256 40.0 257.4 297.3 

TRIAL 2 

Final 

Level Size 

Single or Multiple 

Processes 

Data Saving Time 

(seconds) 

Processing Time 

(seconds) 

Total Execution 

Time (seconds) 

128 
CUDA 

34.7 37.6 72.2 

256 274.0 291.1 565.1 

128 
MPI-CUDA 

5.4 35.4 40.9 

256 40.2 259.2 299.4 

 

 

TABLE IX 

OPEN-MP SINGLE ITERATION 1283 FINEST GRID LEVEL 

Number of Threads 

Enabled 

Data Export 

Time (seconds) 

Total Execution 

Time (seconds) 

Total time for single 

time step (seconds) 

32 49.3 51.8 101.2 
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