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ABSTRACT 
 

 

Leukemias are the most common form of childhood cancer making up 30% of 

total pediatric oncological cases, and Acute Lymphoblastic Leukemia (ALL) makes up a 

significant portion (12%) of the total pediatric cancer diagnoses. In 2017, the FDA 

approved a successful immunotherapy called CAR-T therapy for the treatment of 

pediatric B-cell ALL. This therapy includes a CAR (chimeric antigen receptor) that is 

loaded into the T-cell and expressed. Currently, the loading of the CAR utilizes viral 

transduction, but consistency issues lead to adverse symptoms in the patients. Better 

methods of transduction/transfection are being studied in order to improve these 

consistency concerns. In this thesis, the efficiency of sonoporation as a non-viral method 

of transfection was assessed. Fluorescein was loaded as a fluorescent model molecule for 

beginning understanding of the sonoporation efficiency. It was found that by using 

sonoporation over electroporation for the uptake of fluorescein, the efficiency is 

improved by 34%. When sonoporation was used for the transfection of GFP plasmid, the 

same increase was not proven. This leads to the conclusion that without further 

optimization, sonoporation is successful at loading small molecule such as fluorescein but 

not those as large as plasmids. With optimization, sonoporation could eventually be used 

as a non-viral method to transfect T-cells with CARs for CAR-T therapy and the 

treatment of ALL in both children and adults.   
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I. INTRODUCTION 

 

Objective 

  

The objective of this thesis is to assess the efficiency of sonoporation to transfect 

primary T-cells with plasmid for its potential use as a non-viral method of transfection for 

CAR-T therapy for patients battling Acute Lymphoblastic Leukemia.  

 

Overview of Acute Lymphoblastic Leukemia  

 Acute Lymphoblastic Leukemia (ALL) is a malignant bone marrow disease where 

early lymphoid precursors proliferate and replace normal cells. It can arise from several 

genetic mutations in either B- or T-progenitor cells that result in the overproduction of 

these immune cells. If mistreated or left untreated, the genetic mutation can lead to a lethal 

buildup of leukemic cells in the body [1, 2].  

Leukemias are the most common form of childhood cancer making up 30% of total 

pediatric oncological cases, and ALL makes up a significant portion (12%) of the total 

pediatric cancer diagnoses. Its population distribution is bimodal, however, with one 

population centered around age 4-5 and another age 50+. Children 5 years and younger are 

at the highest risk of developing this disease and this thesis focuses mainly on pediatric 

ALL [3]. Fortunately, the patient response to current treatments has allowed for an 98% 

remission rate in children and an 85% five-year survival rate where patients are considered 

cancer-free.  
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The steps of hemopoiesis begins with a blood stem cell, referred to as a hemopoietic 

stem cell. This stem cell differentiates into either a myeloid stem cell or a lymphoid stem 

cell. On the myeloid side, the stem cell further differentiates into red blood cells, platelets, 

or a myeloblast. The differentiation then terminates after myeloblasts develop into 

granulocytes (eosinophils, basophils, or neutrophils). Going back to the lymphoid stem cell 

line, these stem cells differentiate into lymphoblasts first, followed by B lymphocytes, T 

lymphocytes, or Natural Killer (NK) cells. The three granulocytes in addition to the 

lymphoblasts make up what is considered white blood cells which are vital cells in the 

immune system and this is where the problems originate in ALL [4]. Many sub-

classifications of ALL exist, however only three differ therapeutically: B-cell precursor, T-

Cell precursor, and mature B-Cell [1, 2]. Knowing the cell lineage is important as proper 

diagnosis is crucial for an oncologist to determine an effective treatment regimen. 

 

Pathobiology 

Although it is rare for an adult to develop ALL, B-cell precursor ALL is the most 

common type of the adult form of the disease [1, 2]. The TEL-AML1 fusion gene is the 

distinguishing mutation in B-cell precursor ALL. This gene is generated by the 

Figure 1A (left): A schematic representation of the translocation process during the TEL-AML1 fusion. This 
translocation occurs between chromosome 12 and 21 [5]. 
Figure 1B (right): Microscopic representation of the TEL-AML1 gene fusion. Red = AML1 gene, Green = TEL gene, 
Blue = CD10 (leukemic antibody), Yellow = colocalization of the genes [5].  
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t(12;21)(p13;q22) chromosomal translocation (Figure 1) [5]. The TEL gene is significant 

in the natural development of hematopoietic cells during hemopoiesis. The AML1 gene is 

significant in embryonic hemopoiesis. The fusion of these two genes creates problems in 

the development of B-lineage lymphocytes [5]. 

Another type of ALL is T-cell precursor which can be defined in 50% of its cases 

by mutations involving the NOTCH1 gene. This gene mutation is generated by the 

t(7;9)(q34;q34.3) translocation. NOTCH regulates normal T-cell development through the 

creation of a transmembrane receptor. The mutation causes an overexpression of an active 

form of NOTCH that inhibits cell differentiation [6]. 

 In 20-30% of ALL cases occurs what is called the Philadelphia chromosome, or the 

t(9;22) chromosomal translocation, meaning a fragment of chromosome 9 switches places 

with a fragment of chromosome 22. In these cases, the B-cell antigen receptor (BCR) 

signaling protein binds to the Abelson (ABL) non-receptor tyrosine kinase. This takes place 

on chromosome 22 where the broken off piece of chromosome 9 has attached. This results 

in tyrosine kinase activity overdrive and the interaction of this fused protein with other 

elements such as the signaling protein for RAS (renin-angiotensin system). Fortunately, it 

has been discovered that Imatinib Mesylate, a chemotherapeutic drug, selectively targets 

this gene fusion and has proven effective in Philadelphia chromosome-specific cases. 

Imatinib mesylate works by inhibiting tyrosine kinase activity by binding to an intracellular 

pocket in the tyrosine kinase. This binding inhibits ATP binding and prevents 

phosphorylation that allows for cell growth [1, 2, 7, 8]. 
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Symptoms 

 The symptom list of ALL is broad, however it can be broken down into smaller 

categories to help discuss the multitude of symptoms. Symptoms caused by low numbers 

of blood cells in the patient can include fatigue, weakness, dizziness or lightheadedness, 

shortness of breath, pale skin, infections that are difficult to get rid of, bruising, and 

abnormal bleeding such as reoccurring nose bleeds or bleeding gums. The overcrowding 

of leukemic cells in the bone marrow make it difficult for the marrow to produce sufficient 

amounts of other blood cell types, such as red blood cells. Red blood cells are responsible 

for the delivery of oxygen to tissues in the body; therefore, a lack of red blood cells can 

cause anemia-like symptoms such as fatigue, weakness, dizziness and shortness of breath 

[4, 9, 10]. 

General symptoms that are harder to link to ALL include weight loss, fever, night 

sweats, and loss of appetite. These symptoms are considered non-specific and are most 

likely caused by something other than leukemia in the patient. However, these symptoms 

are indicative of the immune system working to rid the body of something unnatural. 

Abnormal or excess T-cells in the body stimulates the immune system, which is why these 

occurrences can be considered non-specific symptoms of ALL.   

Symptoms caused by a buildup of cells include swelling in the abdomen, enlarged 

lymph nodes, bone or joint pain, and an enlarged thymus. Leukemia cells can build up in 

the liver or spleen, causing swelling and fullness in the abdomen of the patient. Feeling full 

after ingesting a small amount of food can indicate this swelling due to decreased room for 

expansion by the stomach. The pressure of the liver and spleen on other abdominal organs 

would also cause this sensation. Even though these organs are covered by the lower ribs, a 
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swollen liver and spleen are detectable by a palpation exam. If ALL spreads to the lymph 

nodes, the buildup of excess cells can cause swelling. This may be more obvious in the 

neck, groin, or underarm areas, however swelling of lymph nodes in the chest and abdomen 

can also occur. CT or MRI scans would be necessary to determine swelling in these areas. 

If there is a buildup of cells around bones or inside the joint, pain can also occur in these 

areas [4, 9, 10]. 

 

Diagnosis 

 If symptoms discussed above occur in a patient, an oncologist will initiate what will 

become a lengthy diagnosis process. Blood tests, bone marrow biopsy and aspiration, 

lumbar puncture, immunophenotyping/genotyping all might be necessary in order to 

diagnose ALL [2]. During a blood smear, the oncologist will look for increased levels of 

lymphoblasts and lymphocytes which is proof of the overproduction of immune cells that 

Figure 2: Blood smears (images A and B) and bone 
marrow aspiration smears (images C and D) are a normal 
part of the diagnosis process for ALL. In diseased states, 
an increase in lymphoblasts and lymphocytes will be 
present in the blood and bone marrow (images B and D). 
These immune cells are dyed purple in the above 
microscopy [11]. 

A B 

C D 
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defines ALL [11] (Figure 2). A CBC (complete blood count) and differential blood count 

will also be conducted to evaluate the ratio of white blood cells in the blood. Elevated 

levels of lymphoblasts will also be measured in the bone marrow through bone marrow 

aspiration. A large needle will be inserted into either the hip bone or breast bone of the 

patient and bone marrow will be removed for evaluation. This process normally includes a 

bone/bone marrow biopsy simultaneous to the aspiration. In some cases, the leukemia will 

spread to the central nervous system and a lumbar puncture is required. Furthermore, 

immunophenotyping and genotyping is conducted to get a thorough diagnosis. Flow 

cytometry, RT-PCR, and fluorescent in-situ hybridization (FISH) are all utilized for this 

process. Flow cytometry can detect the presence of leukemic antibodies on the T-cells 

while RT-PCR and FISH can detect changes in the DNA and genetic makeup [2]. 

 

Treatment (leading up to CAR-T) 

 As discussed previously, the current treatments for ALL tend to be successful with 

a child remission rate of 98% and child five-year survival rate of 85% [1-3]. Current 

treatment methods include chemotherapy in three stages based on the patients’ risk 

assessment and an allogeneic hemopoietic stem cell transplantation if necessary. In patients 

that express the Philadelphia Chromosome, tyrosine kinase inhibitors are instilled in 

addition to the chemotherapeutics.  

 The first stage of chemotherapy is called the remission-induction phase. Its goal is 

to eradicate 99% of the leukemic cells present in these patients and reinstate normal 

hemopoiesis. This stage commonly includes a three-drug cocktail consisting of a 

glucocorticoid (prednisone or dexamethasone), vincristine, and asparaginase or 
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anthracycline. This three-drug combination is usually sufficient for patients that are 

considered standard-risk. In high- to very high-risk patients, asparagine and anthracycline 

can both be administered, resulting in a four or more drug treatment [1, 2].  

 Following the remission-induction phase is the consolidation, or intensification, 

treatment phase. Once the patient shows signs of normal hemopoiesis the intensification 

process is meant to eliminate the drug-resistant leukemic cells. This elimination reduces 

the risk of relapse. Although currently there is not a consensus on the best treatment 

regimen, oncologists will often use high doses of methotrexate, mercaptopurine, frequent 

vincristine and corticosteroid dosages and high-dose asparaginase for 20-30 weeks. 

Reinduction treatment of the same drugs used during the induction-remission stages for the 

patient are often used during the intensification stages as well to further enhance treatment 

outcome. One study conducted in Philadelphia concluded that double reinduction treatment 

was vital to patient success while additional administration of vincristine and prednisone 

after one reinduction round was not useful [1, 2, 12]. 

 Allogenic hemopoiesis stem-cell transplantation is conducted in patients when 

necessary. It is the most rigorous form of treatment for ALL and only utilized when 

necessary. The benefit in patients with high-risk ALL, Philadelphia Chromosome-positive 

patients, and adults with the t(4;11) translocation gene mutation has been proven, however 

the necessity in infant regimens is controversial. Finding a stem-cell match for patients can 

be difficult, as 7/10 patients do not have a human leukocyte antigen (HLA) match in their 

family and must rely on outside donors. Finding matches has become more common since 

the 1990s with the establishment of bone marrow registries such as Be the Match [13].  
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 Continuation treatment takes place in most patients following their previous 

chemotherapy and possible stem cell transplantations. Although 2/3 of patients can be 

successfully treated within the first 12 months of treatment, often oncologists will continue 

their treatment for 2-2.5 years to decrease the chance of relapse. This continuation 

treatment includes daily mercaptopurine and mexotrexate, often in pill or liquid form to be 

taken orally. Side effects of these medications include liver damage, high blood pressure, 

hair loss, and swelling of the body [14]. As with most treatment regimens, there are areas 

that still need to be improved. As our medical world advances, individualized treatments 

that utilize immunoengineering has become more common [1, 2]. 

 

CAR-T Therapy, an Engineering Solution 

 The earliest attempt at engineering T-cells for the treatment of ALL included 

expression of cloned T-cell receptors (TCR). These receptors can recognize intracellular 

and extracellular antigens in the context of the major histocompatibility complex (MHC) 

which is the all-encompassing term used for the surface proteins essential for the immune 

system to recognize and destroy foreign particles. The problem with this method is that 

many tumors downregulate MHC expression, making the detection by TCRs difficult. In 

2017, the FDA approved a successful immunotherapy called CAR-T therapy for the 

treatment of pediatric B-cell ALL. In this therapy, an artificial receptor called a CAR 

(chimeric antigen receptor) is loaded into a patient’s T-cells [15]. The expression of the 

CAR allows for detection of leukemic cells that express specific CD (cluster of 

differentiation) markers. The idea of CAR loading was first described in 1990 as a way to 

add specificity to tumor targeting methods. It was not until 2010, however, that the first 
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clinical trial took place [16, 17]. The CAR method of T-cell engineering is MHC-

independent and has proven more successful than the TCR attempt [18]. 

 The ideal antigen to target on cancer cells would be on the surface and a result of 

gene translocation or mutations occurring in these cells. This type of antigen is difficult to 

find, so the next best thing is CD19, the most common and successfully targeted antigen 

[19]. This is the antigen targeted in the FDA-approved treatment, tisagenlecleucel [8]. 

CD19 is expressed on the surface of B-cells and have a single cell lineage. Its function is 

replaceable, making it an ideal target for CAR-T treatment. It is not only expressed in ALL, 

but also chronic lymphocytic leukemia (CLL) and non-Hodgkin’s lymphomas, meaning 

CAR-T targeting CD19 could treat multiple cancers types [16, 17].  

 One of the areas for improvement in current CAR-T therapy is the inconsistency of 

CAR-loading. Viral transduction causes random insertion into the genome. Variability in 

insertion can cause inconsistent levels of receptor expression. This is thought to be the 

cause for some adverse symptoms including cytokine release syndrome and neurotoxicity, 

in addition to high fever, delirium, seizures, and even coma in rare yet severe cases [20, 

21]. One trigger of cytokine release syndrome is tumor lysis syndrome. If T-cells are 

overactive, too many cancer cells are killed at once. This causes an increased release of 

potassium, phosphorus, and nucleic acids from the cancer cells which can cause 

hyperuricemia, hyperkalemia, hyperphosphatemia, and hypocalcemia, and their related 

side effects [22]. In some retroviral reports, this random insertion approach has resulted in 

the creation of an oncogene [16, 17]. Guided gene editing, such as CRISPR-Cas9, or a 

change in the transfection/transduction method could potentially add consistency to the 

CAR expression.  
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Transfection Overview 

 Artificial gene delivery into cells, a technique referred to as transfection, has 

become a large focus for the treatment of diseases. Cancer, heart failure, and hemophilia 

are just a few of the areas where transfection has proven significant for the discovery of 

new treatments. For many years viral transfection, a technique referred to as transduction, 

has been the primary technique for gene delivery. As problems with this method arose 

(such as safety and limitations in targeting and plasmid size) the search for non-viral 

methods began to take place. It was soon understood that non-viral methods have similar, 

if not better, success with penetrating the cell membrane. The areas in which improvements 

still exist for non-viral methods are the transfection efficiency, unwanted degradation of 

DNA, and limitations with nucleus translocation [23]. In this section we will explore the 

different forms of transfection along with the benefits and drawbacks of each (Table 1). 

 

Transfection 
Technique Pros Cons 

Viral Transfection 
(Transduction) 

• Inherent ability to transfect 
DNA 

• High transfection efficiency 
• Ability to translocate to the 

nucleus 

• Gene randomly 
inserted 

• Safety – insertion 
mutagenesis 

• Manufacturing 
difficulties 

• Limitations of 
plasmid size 

• Limitations of 
targeting 

Electroporation 

• Pores stay open for minutes 
• Low toxicity 
• Low immunogenicity 
• Ease of manufacturing 

• Microscale setups – 
throughput 

• Macroscale setups – 
transfection 
efficiency 

• Passive process 
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• Optimization for 
different cell types 
(voltage, capacitance, 
temperature, etc.) 

• Lower transfection 
efficiency than viral 
methods 

• Pores stay open for 
minutes 

Cationic Transfection 
Reagents 

• Low toxicity 
• Low immunogenicity 
• Ease of manufacturing 

• Lower transfection 
efficiency than viral 
methods 

Sonoporation 

• Active process – 
microjetting/microstreaming 

• Possible at low 
temperatures (4C), 
increasing cell viability 

• Spatiotemporal control 
• Noninvasive 
• Delivers to cytoplasm (in 

comparison to endosomal 
entrapment by other lipid 
based/nanoparticle 
endocytosis methods) 

• Low toxicity 
• Low immunogenicity 
• Ease of manufacturing 

• Microscale setups – 
throughput 

• Lower transfection 
efficiency than viral 
method 

• Optimization 
necessary (bubble 
dose, flow rate, 
ultrasound settings, 
etc.) 

Table 1: A summary of the pros and cons of transfection methods. 

Viral Transduction 

Transduction is the primary method used in gene therapy and CAR-T specifically 

(i.e. using viruses (viral vectors) to deliver DNA to a cell for gene insertion/modification.) 

The virus that is used as a vehicle for insertion does not contain enough of its DNA to 

replicate and is termed “replication-deficient.”  Despite the fact that these viruses cannot 

replicate, transduction is not free of problems as safety is a major concern with viral 

transduction. Controlling the final destination of the sequence transferred by the virus is 

still difficult and can lead to insertional mutagenesis [23, 24]. Until sufficient assays arise 
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to predict these mutations, this problem surrounding random insertion will continue to 

exist. As more clinical trials are approved using these techniques, appropriate assays will 

become more necessary [24].  

 

Electroporation 

 In electrical terms, a cell membrane can be compared to a capacitor - storing 

electrical energy but not passing current without the assistance of ion channels. 

Considering this concept, one method of non-viral transfection is by administering 

electrical pulses to the membrane which allows for a temporary membrane breakdown; a 

process termed electroporation. Pores that can last a couple minutes are formed in the cell 

membrane which allows molecules such as nucleic acids to pass through via diffusion and 

potentially reach the nucleus [25, 26]. This technique has proven successful for both stable 

and transient transfection on many different cell types. However, optimizing the pulse 

duration, voltage intensity, and electroporation buffer being used is crucial for each cell 

type. Both high voltage with low capacitance (short pulse duration) and low voltage with 

high capacitance (long pulse duration) have transfected cell lines but the optimal 

parameters are different for each cell type. For example, primary cells are more sensitive 

and experience toxicity under high voltage, so short pulse durations would not be safe for 

the transfection of these cells. The optimal temperature at which the cells are electroporated 

can also vary, as keeping the cells on ice can improve viability but some long pulse duration 

treatments are most effective at room temperature. Commercial electroporation products 

have been made available, with programmable pulse duration and voltage to help ease the 

optimization process of different cell lines. This helped make electroporation a popular 
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non-viral technique for loading desired molecules into cells [26]. Challenges surrounding 

this technique remain - specifically how quickly large amounts of cells can be processed. 

In macro-scale setups, both transfection efficiency and cell viability may suffer. Meanwhile 

in micro-scale experimental setups, throughput and processing time for large cell amounts 

becomes a problem. When transfection is necessary, large amounts of cells are needed for 

the treatment to work effectively [27].   

 

Cationic Transfection Reagents 

 Another form of transfection involves cationic liposomes, polymers, proteins or 

peptides to permeate the cell membrane. Companies have released commercialized 

products to aid this technique, such as Lipofectamine by Thermo Fisher Scientific and 

Fugene by Promega. The cationic vehicles loaded with plasmid bind to surface proteins 

and activate signaling pathways that cue for endocytosis [23]. This form of non-viral 

transfection has not been shown to have higher transfection efficiency than viral methods, 

however it is less toxic and induces fewer immune responses. 

 

Sonoporation/Ultrasound-mediated Delivery 

 The process of exposing tissue to ultrasound waves to increase the permeability of 

the cell membrane is another form of non-viral transfection called sonoporation [28]. This 

process can be improved by the addition of lipid-shelled, gas-cored microbubbles. When 

the exposure to ultrasound pulses causes the microbubbles to oscillate, at sufficiently high 

amplitudes they can collapse (inertial cavitation) and create temporary pores in the cell 

membrane in addition to a microjet that can force the nearby liquid into the cells [29, 30]. 



 14 

In this way, sonoporation can be both an active and passive process in comparison to 

electroporation which relies more so on passive diffusion [29]. These transient pores can 

reseal as quickly as a minute after their creation, allowing the cell to swiftly recover and 

return to normal function. This process allows for spatiotemporal control, allowing for a 

vast array of possible therapeutic uses, including mammalian cell transfection [31]. 

 

Ultrasonic Flow System 

 One proposed method to add consistency to the loading of a CAR is through an 

ultrasonic flow system that utilizes sonoporation as a method of transfection. The 

sonoporation allows for a mechanical process to load the T-cells with the CAR (Figure 3) 

[28].  A device to test this method was created in Dr. Jonathan Kopechek’s laboratory at 

the University of Louisville prior to the beginning of this thesis. Previous to the fabrication 

of the device, this sonoporation process was conducted in a bulk setup. A clinical 

ultrasound probe was aimed at a conical tube in a water tank (for coupling purposes) and 

the cells were treated with ultrasound waves. This set up resulted in inconsistent ultrasound 

exposure and shielding of a portion of the cells caused by the microbubbles closer to the 

ultrasound source attenuating ultrasound waves before reaching cells further away from 

the source. To fix this issue and add consistency to the treatment, a microfluidics device 

T

Ultrasound 

Figure 3: A combination flow/sonoporation system could 
be used as a transfection method for loading CARs into T-
cells. This process is non-viral and shows potential 
consistency benefits. 
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was implemented into the sonoporation process. After testing a multitude of designs, a 

concentric circle was decided upon for the microfluidic channels (Figure 4-5). This design 

prolongs the exposure the cells receive to the ultrasound waves. To avoid using a clinical 

probe to treat the cells, a PZT ultrasound transducer was attached directly to the 

microfluidics device (Figure 5). The ultrasound transducer is microcontroller-driven, 

which has been set up next to the microfluidics device. The Arduino, circuit board, and 

microfluidics device were then encased in a 3D-printed container that included holes for 

the tubing, power cords, and power button. When using this device to process, the cells are 

pumped using a syringe pump (not shown in Figure 5) into the tubing. The cells, 

microbubbles, and desired loading molecule flow through the entrance tubing (Figure 5), 

into the microfluidics device where they are exposed to the ultrasound waves, and out the 

exit tubing to be collected in a vial for post-treatment assessment.  

PDMS-based microfluidic 
device 

Single-element PZT 
transducers 

Arduino 

microcontroller 

On/Off push 
button 

Tubing to/from 
syringe pumps 

Figure 4: (A) Microfluidics device design that is in ultrasonic flow system. The channel width is 500 
microns. (B) Ultrasonic flow device created in Dr. Jonathan Kopechek's laboratory. The device includes 
an integrated PZT transducer that applies ultrasound directly to the cells flowing through the 
microfluidics setup within the device. 

A B 
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 This device allows for versatility as the microfluidics design can be adjusted along 

with the ultrasound and flow parameters. With some additional effort, the device can be 

optimized to load a multitude of cell types with many different small molecules [28]. To 

date, cancer cells, red blood cells, and immune cells have been processed in this specific 

device. With effort to optimize the necessary parameters, this ultrasonic flow system could 

be a non-viral alternative for transfection of T-cells for CAR-T therapy.  

 

CAR-T Shortcomings and Room for Improvement 

 The current pipeline for CAR-T treatment is lengthy and has opportunity for 

improvement. As is, blood collection from the patient takes place which includes all blood 

cell types. T-cell isolation and activation occurs in order to separate out the T-cells for 

further engineering. This process includes the introduction of magnetic beads with CD3 

and CD28 antibodies onto the T-cells. The now-isolated cells are then engineered through 

viral transduction so that they will express the sought-after CAR. The T-cells must then be 

multiplied ex-vivo for 10-14 days to reach the therapeutically necessary number of cells. 

Often 109 to 1010 T-cells are required for the transfusion to work. After expansion, the 

Figure 5: Microscopy image of red blood cells flowing through a 
microfluidics device. The arrows point to the stream of red blood 
cells. 
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magnetic beads are removed from the cell solution and prepared for transfusion. To 

precondition the patient for receiving the treatment, they must receive conditional 

chemotherapy drugs shortly before transfusion [32].  

Most medical centers do not have the GMP-compliant facilities to conduct this 

process. Therefore, cells needing to be processed must be stored through refrigeration or 

freezing and shipped to processing facilities, processed, stored again, and shipped back to 

the hospital. This lengthy process can cause unwanted phenotypical changes in the T-cells 

and can take several weeks for the patient to receive their treatment [33, 34].  

Several severe challenges also limit the safety and availability of this treatment in 

patients. Some adverse symptoms seen include cytokine release syndrome and 

neurotoxicity [20, 21]. This random retroviral approach has resulted in the creation of an 

oncogene in some studies [16, 17]. It is thought that these symptoms are a result of the 

variability in CAR expression. Currently, lentiviral or retroviral vectors are primarily used 

for CAR expression. Although this creates a permanent modification to the gene, this 

approach has its drawbacks as the CAR-expressing gene is randomly inserted into the 

genome [20, 21]. A more consistent and direct method of loading the CAR into T-cells 

would be beneficial to patient success. Therefore, we hypothesized that the use of 

microfluidic sonoporation will increase the efficiency and consistency of T-cell 

transfection. 
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II. PROCEDURE 

 

Fabrication/Setup of Device 

 A 3-inch silicon wafer coated with SU-8 was produced in a clean room by a 

standard photolithography process to generate the master design. PDMS (SylGard 184 

Silicone Elastomer Kit (Dow Corning - 184 SIL ELAST KIT 0.5KG) was mixed and 

poured over the wafer in a petri dish. The PDMS was baked in a laboratory oven to cure, 

cut to size, and hole punched. The PDMS devices were then plasma-bonded on glass 

slides (MilliporeSigma, Burlington, MA, USA) and tubing was added. The PZT transducer 

(StemInc, Millbrae, CA, USA) was attached directly to the bottom of the microfluidics device 

and positioned in the 3D printed case. An Arduino Uno microcontroller (Arduino, Somerville, 

MA, USA) was programmed and wired in the case to drive the transducer. The Arduino was 

plugged in and a syringe with cell solution was connected to the input side of the tubing and 

controlled by air pressure from an empty 60 mL syringe using an Aladdin syringe pump (Aladdin 

Single-Syringe infusion Pump, World Precision Instruments, LLC, Sarasota, FL, USA). The 

output was connected into a collection vial and the device was ready for cell processing.  

 

A549 Cell Culture and Harvesting 

 A549 cells were cultured in complete DMEM media (10% fetal bovine serum, 1% 

penicillin/streptomycin) (VWR, Radnor, PA, USA) at 37 oC and 5% CO2. Before harvesting, the 

cells were washed once with PBS. Trypsin (0.25%) EDTA (VWR, Radnor, PA, USA) was added 

to release the adherent cells and incubated for 5 minutes. The solution was neutralized with 

complete media, collected in a conical tube, and centrifuged at 1500g for 5 minutes at 4 oC. The 

cells were resuspended at a concentration appropriate for the experiment.  
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Primary T-Cell Isolation 

 The peripheral blood mononuclear cell (PBMC) samples were kept at -150 oC for storage. 

After retrieval, the frozen vials were quickly thawed in a water bath at 37 oC. The cells were 

diluted 1:10 in PBS, transferred to a 15-mL conical, and centrifuged at 580g at 4 oC for 11 

minutes. The supernatant was aspirated, and 13 mL of autoMACS running buffer was added 

(MACS Miltenyi Biotec, Bergisch Gladbach, Germany). The cells were counted using an 

automated cell counter. The cells were centrifuged again, and the supernatant was aspirated. 

While keeping the solutions cold, the cells were resuspended in 40 μL of running buffer per 10 

million cells. 10 μL of Pan T-Cell Biotin Antibody Cocktail was added per 10 million cells 

(MACS Miltenyi Biotec, Bergisch Gladbach, Germany) for isolation of T-cells. The cells were 

mixed well and incubated at 4 oC for 5 minutes per 10 million cells. 30 μL of buffer and 20 μL of 

Pan T-Cell MicroBead Cocktail was added per 10 million cells (MACS Miltenyi Biotec, Bergisch 

Gladbach, Germany). The cells and beads were mixed well and incubated for an additional 15 

minutes at 4 oC. Rinsing buffer was added to make the total volume 500 μL. The cells were 

separated using an autoMACS Pro Separator (MACS Miltenyi Biotec, Bergisch Gladbach, 

Germany) using the “depletes separation” setting. The cells were counted again using an 

automated cell counter. The cells were diluted in 10 mL PBS and centrifuged. The supernatant 

was aspirated, and the cells were resuspended in 1 mL PBS and counted again. The cells were 

then aliquoted into the appropriate amount of microcentrifuge tubes, the plasmid or fluorescein 

was added, and experiments were conducted.  

 

Microbubble synthesis 

Microbubbles were synthesized as previously described in Kopechek, et al., 2015 for 

studies involving ultrasound treatment [30]. The microbubbles were composed of a gas 

perfluorocarbon core surrounded by a lipid shell. Cationic microbubble lipid solution was 
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composed of 100:43:1:4.5 molar ratio (DSPC:DSEPC:DSPG:PEG-40). Neutral microbubble lipid 

solution was composed of 96:4 molar ratio of DPPC:DSPE-PEG2000. All phospholipids were 

obtained from Avanti Polar Lipids (Alabaster, AL, USA) except for polyethylene glycol-40 

stearate (Sigma-Aldrich, St. Louis, MO, USA). Lipids were dissolved in chloroform and the 

solvent was evaporated under argon. The dry lipid film was rehydrated in phosphate buffered 

saline (PBS) to a concentration of 10 mg/mL and sonicated with a probe sonicator to disperse the 

lipids.  

To produce microbubbles, the prepared lipid solution was diluted 4x in PBS in a clear 

11mm glass crimp vial and sealed with a 10mm target septa and 11mm tapones crimp (VWR, 

Radnor, PA, USA). The remaining air in the vial was replaced with decafluorobutane 

(Fluoromed, Round Rock, TX, USA) via a 20G hypodermic needle (Becton Dickinson, Franklin 

Lakes, NJ, USA) and a second needle to vent. The vial was then mixed by a high-speed 

amalgamator for 30 s at 4350 CPM (Pelican). 

 

Bacteria Growth and GFP Plasmid Isolation 

 Luria broth (LB) was prepared by combining NaCl, Tryptone, and Yeast Extract in a 

2:2:1 ratio in distilled water. Ampicillin was added right before culture growth began. Using a 

sterile pipette tip, a single colony (CMV promoter, ampicillin resistant, cat. no. 11153 from 

Addgene, Watertown, MA, USA) was selected from the LB agar plate and dipped into the LB 

plus antibiotics mixture and swirled. The culture was covered and allowed to incubate at 37 °C 

for 12-18 hours in a shaking incubator. The bacteria were then harvested by centrifugation at 

1500g for 5 minutes. The supernatant was removed, and the bacteria were resuspended, lysed, 

and neutralized. The supernatant was then transferred to a Thermo Scientific GeneJET Spin 

Column and centrifuged for 1 minute and then washed twice, centrifuging for 30-60 s each time. 

The column was transferred to a new tube and Elution Buffer was added. The DNA was 
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incubated and centrifuged for at 1500g for 2 minutes and the flow-through was collected 

(protocol from Thermo Scientific GeneJET Plasmid Miniprep Kit, Thermo Fisher Scientific, 

Waltham, MA, USA). Plasmid concentrations were quantified with a NanoDrop 2000C (Thermo 

Fisher Scientific).  

 

Lipofectamine-3000 Experiments 

 Adherent cells were plated in advance and 70-90% confluent at the time of transfection. 

Primary suspension cells were isolated prior to transfection. Transfection by Lipofectamine-3000 

was completed according to Thermo Fisher Scientific’s supplied protocol (Waltham, MA, USA) 

using serum-free medium. GFP plasmid (Addgene, Watertown, MA, USA) dosages ranged 

between 250 ng to 1 μg per sample and incubated for 48 hours before analysis. Flow cytometry 

analysis was then performed. 

 

Electroporation 

 A Neon Transfection System and kit was used for electroporation (Thermo Fisher 

Scientific). Cells were washed, trypsinized, neutralized, and counted prior to electroporation 

process. Cells were centrifuged (1500g for 5 minutes at 4 oC for A549 cells; 580g for 10 minutes 

at 4 oC for T-cells), supernatant was aspirated, and cells were resuspended in 100 μL 

recommended resuspension buffer (buffer R for A549 cells, buffer T for T-cells) at a density of 

1.0 x 107 cells/mL. GFP plasmid (Addgene, Watertown, MA, USA) was added to the cells at a 

concentration of 25 ng/μL. Fluorescein was added at 0.1 mg/mL concentration.  Electroporation 

was conducted following the supplied protocol (Thermo Fisher Scientific). A549 cells and T-cells 

were transfected using the following parameters, respectively: 1230V, 30ms, 2 pulses and 500V, 

20ms, 1 pulse. The transfected cells were allowed 48 hours for expression after plasmid 

transfection and analyzed by flow cytometry. Cells exposed to fluorescein were washed in flow 

tubes immediately after electroporation and analyzed by flow cytometry. 



 22 

Sonoporation 

The cells were collected and washed. The prepared microbubbles were added at 

cells:microbubble ratios (199:1, 99:1, 65.7:1, 49:1, 39:1, 19:1) and incubated 1-2 minutes. The 

GFP plasmid (1 μg/mL) (Addgene, Watertown, MA, USA) or fluorescein (0.1 mg/mL) 

(MilliporeSigma, Burlington, MA, USA) was then added to the samples and passed through a 

microfluidic device with a channel diameter of 550 μm at a rate of 30-60 mL/h. Ultrasound was 

applied through an integrated transducer at a pressure of 0.1-0.5 MPa.  If fluorescein was used, 

the samples were kept in fluorescein during the processing for 10 minutes (both control and 

sonoporated samples) and washed in flow cytometry tubes directly after. If transfected, the cells 

were collected and plated for 24-72 hours to allow time for the GFP plasmid to be internalized 

and expressed. The primary T-cells were activated during this time (Dynabeads™ Human T-

Activator CD3/CD28 for T Cell Expansion and Activation, Thermo Fisher Scientific, Waltham, 

MA, USA). Flow cytometry analysis was then performed. 

 

Flow Cytometry Analysis 

 Transfection and loading efficiency were determined through the detection of GFP 

plasmid (Addgene, Watertown, MA, USA) expression or fluorescein uptake via a flow cytometer 

(MACSquant, Miltenyi Biotec, Germany; BD FACSCANTO II, BD FACSCalibur, Franklin 

Lakes, NJ, USA). Data was analyzed using flow cytometry software (FlowJo, Ashland, OR, 

USA). The live cells were gated out by the distribution by forward and side scattering. From 

there, the FITC fluorescence intensity was graphed in a histogram (x-axis displaying the 

logarithmic fluorescence intensity value and y-axis displaying the cell count) and the mean 

fluorescence intensity was obtained by the histogram. These intensities were averaged if the 

sample size was larger than one and standard deviations were calculated using Microsoft Excel 

2016 (Microsoft, Redmond, WA, USA).  
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Statistical Analysis 

Statistical comparisons between experimental and control groups were determined using 

a Student's t-test, with statistical significance (p < 0.001-0.05) defined under each figure. 

Bars represent mean ± standard error. 
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III. RESULTS AND DISCUSSION 

 

Fluorescein Loading Studies   

 

Sonoporation Microbubble Dose Study 

 

 Cells were sonoporated with fluorescein in the solution to assess the uptake of small 

fluorescent molecules.  

A range of microbubble volumes were tested. Although the differences seem negligible 

based on the histogram analysis, the 2.5% v/v dose (orange histogram peak) seems to have 

the highest fluorescence value (Figure 6). When graphed, the mean fluorescence intensity 

Figure 6: Multiple cationic microbubble doses were tested for their sonoporation 
loading efficiencies on primary T-Cells. The results were assessed by flow cytometry. 
(N=1)  
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was shown to be the highest in the 1% and 2.5% microbubble doses (Figure 7). This sample 

set had N=1 but this correlates with prior results that were collected from the loading of 

fluorescein into red blood cells using sonoporation (Figure 8). This sonoporation was 

conducted using a clinical ultrasound probe and water tank but the optimal bubble dose 

remains the same. This indicates the importance of the microbubble concentration within 

the solution.  
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Other Transfection Method Assessment of Fluorescein Uptake 

 
  Uptake of fluorescein by electroporation was tested alongside the sonoporation data 

for comparison. No increase in fluorescence was detected in the first sonoporation 
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Figure 8: Multiple cationic microbubble doses were tested for their 
sonoporation loading efficiencies on red blood cells. The results 
were assessed by flow cytometry and the mean fluorescent intensity 
(normalized to no treatment control) was graphed. The cells were 
treated with a clinical ultrasound probe (Verasonics P4-1 
transducer) at 20V, 0.1 ms pulse, 20 mL/hour flow rate in a 200 μm 
width microfluidics device channel.   (N=4)  
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Figure 9: Primary T-cells were loaded with electroporation (left) and sonoporation (right) and assessed using 
flow cytometry. (N=3) 
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experiment (Figure 10). Due to the high amount of fluorescence intensity in the non-

sonoporated fluorescein control, it was hypothsized that the uptake was saturated by the 

nonspecific uptake of the fluorescien. The non-sonoporated fluorescein-only control 

samples had fluorescein in the solution while the treated samples were being sonoporated. 

This was enough time for the cells to nonspecifically take in their maximum amount of 

fluorescein.  To avoid this issue, experiments were repeated where the non-sonoporated 

fluorescein-only controls were left in the fluorescein for less time than in the initial 

experiment. The cells only remained in fluorescein for as long as it took to sonoporate one 

sample (approximately 11 minutes) and were washed immediately after.  A large increase 

could then be detected in the loaded sample when compared to the fluorescein-only sample 

(Figure 9). When the mean fluorescense was graphed, there was a 3.5-fold increase in the 

electroporated sample in comparison to the non-electroporated fluorescein-only control 

and a 5-fold increase in the sonoporated sample in comparison to its fluorescein-only 

control (Figure 11). These increases were significant with a p-value of less than 0.05. The 

Figure 10:  Primary T-Cells were loaded with sonoporation and 
assessed using flow cytometry. Fluorescein control procedure 
was adjusted to minimize nonspecific uptake of fluorescein.  
(N=3) 
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decrease in the fluorescein-only control group’s fluorescence intensity in comparison to 

Figure 10 shows that the hypothesized issue of letting the cells rest in fluorescein too long 

was accurate. An adjustment to the protocol allowed for a difference in fluorescence 

intensity to be measured while using sonoporation as a loading method for fluorescein.  

 When the electroporation and sonoporation results were compared, the 

sonoporation method was more successful at loading the primary T-cells with fluorescein. 

The sonoporated sample took in 34% more fluorescein than the electroporated sample. 

These results are trending towards signficance with a current p-value of 0.137 (Figure 11). 

Additionally, two populations can be detected in the electroporation curve but not in the 

sonoporation curve. The two populations indicate a low loading level and a high loading 

level. Ultimately, if the same populations are seen with transfection, this could cause an 

inconsitent loading of the CAR gene, leading to variability in expression levels of the CAR. 

This data indicates that sonoporation may cause more consistent loading which would help 
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avoid the unwanted side effects that come from uneven CAR expression, such as cytokine 

release syndrome and tumor lysis syndrome.  Although electropation has been considered 

the more efficient non-viral trasnfection method for primary T-cells, these results suggeset 

that sonoporation may actually cause  higher, more consistent loading for small molecules 

[35]. A higher sample size of this data set would be necessary to conclude significance.  

 

 
Immune Cell Model Investigation 
 
 
 Additional studies were performed to test loading efficiency in jurkat cells by 

means of electroporation to determine if they were an equivalent model for primary T-

cells. After electroporation with fluorescein and flow cytometry analysis, there was a 

negligible shift measured in the jurkat cells between the fluorescein only control and loaded 

samples (Figure 12). In comparison, there was a noticeable shift by the primary T-cells 

when comparing the loaded group to the fluorescein-only control group. To further 

investigate, the mean fluorescence intensities were graphed (Figure 13). There is a 2-fold 

Figure 12: Primary T-Cells and jurkat cells were loaded with electroporation and analyzed by flow cytometry. 
(N=1) 
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increase in fluorescence intensities between the electroporated primary T-cells and the 

fluorescein-only control. The difference is undetectable in the jurkat cells. This not only 

aligned with the previously discussed electroporation ex periment, but it also shows that 

jurkat cells are not an equivalent model for primary T-cells.  

 

GFP Plasmid Transfection Studies 

 

Sonoporation Microbubble Composition Study 

 

Sonoporation was then tested for its ability to transfect cells with GFP plasmid. Primary T-

cells were transfected with GFP plasmid by means of sonoporation using 2.5% 

microbubbles % v/v in each sample. At 24 hours, a slight increase in fluorescence could be 

distinguished in the cationic microbubble histogram when compared to the control and 

neutral microbubble samples (Figure 14). The mean fluorescence intensities of each sample 

Figure 13: Primary T-Cells and jurkat cells were loaded with electroporation and analyzed 
by flow cytometry. (N=1) 
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were graphed. It can again be determined that the most GFP plasmid was expressed (166% 

of neutral bubble uptake) when using cationic bubbles for sonoporation and activating the 

T-cells for 24 hours before assessment (Figure 15). Although sample sizes were low, these 

results are consistent with expected results since the cationic bubbles interact more closely 

with the cells which is expected to increase the efficiency of sonoporation. 
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Figure 14: Primary T-cells were transfected with GFP plasmid by means of sonoporation and 
activated. Flow cytometry was run 24 (left) and 48 hours (right) after treatment. N=1  
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Sonoporation T-cell Activation Timepoint Studies  

Activation times were explored to understand when the most GFP plasmid was 

expressed in the transfected T-cells. The tested time points included 14, 24, 48, and 72 

hours. An increase in fluorescence intensity was indistinguishable for the first three time 

points (Figure 16-17). It was not until the 48-hour activation time that a shift in the 

fluorescence could be detected (Figure 17). 
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Figure 16: Primary T-cells were transfected with GFP plasmid by means of sonoporation and activated. Flow 
cytometry was run 14 (left) and 24 hours (right) after treatment. Microbubbles were cationic.  N=1  
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Figure 17: Primary T-cells were transfected with GFP plasmid by means of sonoporation and activated. Flow cytometry 
was run 48 (left) and 72 hours (right) after treatment. Microbubbles were cationic.  N=1  
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The mean fluorescent intensity results from each timepoint experiment were 

normalized to the no treatment controls and combined in Figure 18. From experiment 1, it 

can be concluded that the most GFP plasmid was expressed at 24 hours (Figure 18). This 

was not replicated, however, when experiment 2 was conducted. The 72-hour timepoint 

resulted in the most consistent fluorescence intensity values. Repetitions of the timepoint 

study would be necessary for drawing stronger conclusions. As seen in the figure, the 

experiments were conducted with low sample sizes. Overall though there does not appear 

to be a significant difference at these time points. 

 

Sonoporation Transfection of A549 Cells 

 

Uptake and expression of GFP plasmid by sonoporation transfection methods was 

accessed in human lung cancer cells at 48 hours by flow cytometry. No significant 

difference was detected between the control and transfected samples (Figure 19). Although 

Figure 18: Primary T-cells were transfected with GFP plasmid by means of sonoporation and 
activated. Timepoint data was combined from four different experiments. The results were assessed 
by flow cytometry.  White number in bar represents number of replicates for each experiment.  
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sonoporation proved its success at loading smaller molecules such as fluorescein, the lack 

of success in plasmid transfection suggests that it may not be the best method of loading 

larger molecules such as plasmids.  

The lack of success in transfected A549 cells through means of sonoporation 

however, could also be explained by the lack of optimization. The ultrasound parameters, 

microbubble dose, or plasmid concentration may not have been effective for transfection 

of these cells. Sonoporation has proven success as a transfection method in other studies 

[36, 37], so future studies with optimized parameters are expected to have higher levels of 

transfection. To prove that these cells could be transfected with more standard methods of 

transfection, other approaches were tested for comparison with the sonoporation results.   

 

Lipofectamine Transfection 

 

Uptake and expression of GFP plasmid by Lipofectamine 3000 transfection 

methods was assessed in primary T-cells and A549 (lung carcinoma) cells at 24 hours by 
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flow cytometry (Figure 20). A significant 50-fold increase (p<0.001) in %FITC+ cells was 

detected in the transfected cancer cells compared to the non-transfected control group while 

no identifiable difference was presented in the T-cells (Figure 20). This indicates that 

Lipofectamine3000 may be more successful at transfecting cancer cells when compared to 

primary T-cells.  

 

Electroporation Transfection 

 

The mean FITC intensity was evaluated and displayed as histograms for both cell 

types (Figure 21). The significant right shift in fluorescence proves the successful 

transfection in the human lung cancer cells by means of electroporation. The lack of shift 

Figure 20: Lipofectamine 3000 transfection was quantified 
through percentage of FITC + cells detected in the sample by 
flow cytometry. A 50-fold increase was detected in human lung 
cancer cells while no difference was detected in human T-cell 
uptake. (*** indicates p<0.0001) (N=3). 
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in the T-cell histogram further proves the failure to transfect these cells using the described 

technique in Zhang, et. al. 2018. This paper loaded 1 μg plasmid while 2.5 μg were loaded 

here but the parameters stayed the same. The present study failed to replicate the published 

data which reported nearly 60% transfection efficiency with a 3-day post-treatment 

incubation [38]. 

 

 

Microscopy Analysis 

 

Microscopy Imaging of Electroporation Transfection 

 

Fluorescent microscopy was performed 48 hours after treatment to visualize GFP 

plasmid transfection efficiency with electroporation in human lung cancer cells and 

primary T-cells (Figure 22). There is a clear uptake and expression of the GFP plasmid by 

the cancer cells in the transfected group, shown by the green fluorescent cells detected by 

Figure 21: The FITC histograms displayed show the shift in fluorescence between the 
control (red) and transfected (blue) samples. The mean intensity of the T-cell 
fluorescence did not shift after transfection. These cells were transfected using 
electroporation. 



 37 

fluorescent microscopy (Figure 22A-B). The same results were not seen in the primary T-

cells (Figure 22C-D). This indicates that after 48 hours, transfection by electroporation was 

successful in the cancer cells and sufficient time was given for expression. This further 

proves the data discussed previously (Figure 21) that showed the same increase in 

fluorescence in the cancer cells.  

 

Microscopy Imaging of Lipofectamine 3000 Transfection 

 

Fluorescent microscopy was performed 24 hours after treatment to visualize GFP 

plasmid transfection efficiency with Lipofectamine 3000 in human lung cancer cells and 

T-cells (Figure 23). The uptake and expression of the GFP plasmid can be detected in the 

human lung cancer cells (Figure 23A-B); however, not in the human T-cells (Figure 23C-

D). This indicates that after 48 hours, transfection by Lipofectamine 3000 was successful 

in the cancer cells and sufficient time was given for expression. This also further proves 

that as discussed with Figure 20, Lipofectamine 3000 may not be the best transfection 

method for primary T-cells.  

 The lack of success in transfecting the T-cells with electroporation and 

Lipofectamine 3000 further explains how difficult these cells are to transfect. Any success 

by sonoporation could show a promising future in using it as a non-viral transfection 

method for primary T-cells. Additionally, the differences in fluorescent levels visible in 

the microscopy images (Figures 22-23) and wider FITC histogram peaks (Figure 21) 

indicates variability in plasmid uptake among individual cells. This is not uncommon for 

current methods of transfection. Theoretically, sonoporation using a microfluidics 



 38 

approach would introduce a transfection method that would decrease this variability 

present in other means of transfection. 

  

Figure 23(A,B): Lipofectamine 3000 transfection conducted in human 
lung cancer cells. Control cells (A), GFP plasmid transfected cells (B) 
dose =1ng/µL. 
Figure 23(C,D): Lipofectamine transfection conducted in human T-
cells. Control cells (C), GFP plasmid transfected cells (D) dose =1 
ng/µL.  
Scale bar represents 200 µm. 

A B 

C D 

Figure 22(A,B): Electroporation transfection conducted in human lung 
cancer cells. Control cells (A), GFP plasmid transfected cells (B) dose 
=25 ng/µL. 
Figure 22(C,D): Electroporation transfection conducted in human T-
cells. Control cells (C), GFP plasmid transfected cells (D) dose =25 
ng/µL.  
Scale bar represents 200 µm. 
 

A B 

C D 
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IV. CONCLUSION 

 

Based on the fluorescein studies, sonoporation is a promising method for loading 

primary T-cells with small molecules such as fluorescein. We also found that the 

incubation time for cells in fluorescein solutions affects the shift in fluorescence intensity 

seen on the histograms. Long incubations times can allow cells in the control groups to 

passively uptake high amounts of fluorescein which can make it difficult to detect 

differences in the treatment groups. It was also determined that jurkat cells are not an 

equivalent model for primary T-cells. It can also be concluded that sonoporation is not as 

successful at transfecting primary T-cells with larger molecules such as GFP plasmid. This 

is most likely due to the size of the loading molecule and also the multiple steps and 

pathways involved from plasmid delivery to the production of fluorescent proteins in the 

cells. 

 Optimization of the sonoporation parameters would be necessary to improve the 

transfection efficiency of the primary T-cells. These parameters would include 

microbubble dose, flow rate, and ultrasound voltage, and possibly introducing pulsed 

ultrasound. It would also be beneficial to study a range of plasmid concentrations and 

activation timepoints. It is expected that these parameters need to be optimized for each 

cell type in order to experience the highest transfection efficiencies. Even though the 

current results do not show a large increase in GFP with sonoporation transfection, it is 

likely that further research and optimization will lead to improve sonoporation transfection 

efficiencies. 
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V. RECOMMENDATIONS 
 
 
 Moving forward, more GFP plasmid loading experiments should be conducted to 

determine if sonoporation is an effective mode of transfection for T-cells. A range of 

ultrasound parameters (pressure and pulse iteration) in addition to flow rates and 

microbubble concentrations should be tested. Additionally, a range of GFP plasmid 

concentrations and activation timepoints should be studied. These experiments should be 

repeated for both technical replicates and experiment replicates to prove consistency in the 

results. While these are being run, the donor should remain the same. Once consistency is 

proven, transfection by sonoporation should be tested in a range of T-cell donors to make 

sure the results can be repeated in primary T-cells from different sources.  

 Once sonoporation and the loading of GFP plasmid is improved, the next step will 

be loading CARs into the primary T-cells and testing for their presence and ability to 

express the receptor. The specific insertion of the CAR into the genome can be improved 

by the addition of CRISPR-Cas9 into the transfection process. Ideally while this project 

advances, not only will sonoporation be established as the best method of non-viral 

transfection, but the expression consistency will be improved with the use of CRISPR-

Cas9 to decrease unwanted symptoms of the CAR-T treatment and improve outcomes in 

patients.  
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