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ABSTRACT 

DESIGNING AND SAMPLE SIZE CALCULATION IN PRESENCE OF 

HETEROGENEITY IN BIOLOGICAL STUDIES INVOLVING 

HIGH-THROUGHPUT DATA 

Sudhir Srivastava 

July 17, 2019 

The designing and determination of sample size are important for conducting 

high-throughput biological experiments such as proteomics experiments and 

RNA-Seq expression studies, thus leading to better understanding of complex 

mechanisms underlying various biological processes. The variations in the 

biological data or technical approaches to data collection lead to heterogeneity 

for the samples under study. We critically worked on the issues of technical and 

biological heterogeneity. 

 The quantitative measurements based on liquid chromatography (LC) 

coupled with mass spectrometry (MS) often suffer from the problem of missing 

values (MVs) and data heterogeneity. We considered a proteomics data set 

generated from human kidney biopsy material to investigate the technical effects 

of sample preparation and the quantitative MS. We studied the effect of tissue 

storage methods (TSMs) and tissue extraction methods (TEMs) on data analysis. 

There are two TSMs: frozen (FR) and FFPE (formalin-fixed paraffin embedded); 

and three TEMs: MAX, TX followed by MAX and SDS followed by MAX. We 
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assessed the impact of different strategies to analyze the data while considering 

heterogeneity and MVs. We found that the FFPE is better than that of FR for 

tissue storage. We also found that the one-step TEM (MAX) is better than those 

of two-steps TEMs. Furthermore, we found the imputation method is a better 

approach than excluding the proteins with MVs or using unbalanced design.   

 We introduce a web application, PWST (Proteomics Workflow 

Standardization Tool) to standardize the proteomics workflow. The tool will be 

helpful in deciding the most suitable choice for each step and studying the 

variability associated with technical steps as well as the effects of continuous 

variables. We have used the special cases of general linear model - ANCOVA 

and ANOVA with fixed effects to study the effects due to various sources of 

variability. We introduce an interactive tool, “SATP: Statistical Analysis Tool for 

Proteomics”, for analyzing proteomics expression data that is scalable to large 

clinical proteomic studies. The user can perform differential expression analysis 

of proteomics data either at the protein or peptide level using multiple 

approaches. We have developed statistical approaches for calculating sample 

size for proteomics experiments under allocation and cost constraints. We have 

developed R programs and a shiny app “SSCP: Sample Size Calculator for 

Proteomics Experiment” for computing sample sizes. 

We have proposed statistical approaches for calculating sample size for 

RNA-Seq experiments considering allocation and cost. We have developed R 

programs and shiny apps to calculate sample size for conducting RNA-Seq 

experiments. 
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CHAPTER 1 

INTRODUCTION 

Design and sample size calculation for high-throughput experiments 

The designing and determination of sample size are important for conducting 

high-throughput biological experiments such as proteomics experiments and 

RNA-Seq expression studies, thus leading to better understanding of complex 

mechanisms underlying various biological processes. These experiments 

undergo various steps such as choosing appropriate experimental design, proper 

selection and collection of samples from various sources, choice of platform, data 

generation, data preprocessing, data analysis and interpretation. Various 

experiments are being conducted but there is lot of variation at each of these 

steps. There are various discrepancies observed with the result and conclusions 

obtained from these experiments. Sometimes these results cannot be 

reproduced, and this failure may be derived from one or more technical variables. 

So, we studied the data variability and developed statistical approaches for 

sample size determination for these experiments while taking various 

heterogeneity issues in account. 

This research work has focused on the development of statistical methods 

for designing and sample size calculation covering a wide range of high 

throughput biological experiments such as proteomics and RNA-Seq 
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experiments. This is an innovative work that will be helpful to researchers/ 

experimenters in the design of their study applicable to different areas such as 

proteomics and genomics. This will bring out clarity to the experimenters in 

conducting their study with a specific goal. 

Contributions 

Identification, quantification and characterization of peptides and proteins in cells, 

are necessary to understand the molecular process governing the cell 

physiology. Liquid chromatography (LC) coupled with mass spectrometry (MS) is 

generally used for identifying and quantifying proteins and peptides in complex 

mixtures. With the introduction of high throughput technologies such as MS, 

proteomics data can be reliably generated from samples that can be further 

analyzed using various statistical approaches. Sometimes, variations in the 

biological data or technical approaches to data collection lead to heterogeneity 

for the samples under study. Furthermore, the proteomics data obtained from 

proteomics experiments have a lot of missing values (MVs) and are highly 

heterogeneous. We investigated the technical effects of sample preparation and 

the quantitative MS resulting in heterogeneity for low abundant protein 

quantification (Chapter 3). We developed statistical approaches and a web-

application for standardizing proteomics experiment work flow (Chapters 3 and 

4). We discussed and developed a shiny app for differential expression analysis 

of proteomics data using multiple statistical approaches in the presence of 

heterogeneity and MVs (Chapter 5). We devised various approaches for sample 

size calculation for conducting proteomics experiments under allocation and 
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budget constraints (Chapter 6). Furthermore, we developed shiny apps for 

estimating sample size for proteomics studies based on different constraints with 

and without using pilot data (Chapter 6). We studied the impact of technical 

variability (using data from Chapter 3) on the study design and sample size 

estimation in Chapter 6. 

Next-generation sequencing (NGS) of mRNA (RNA-Seq) has become the 

standard for measuring gene expressions in biological experiments. The 

determination of sequencing depth, number of replicates and power calculation 

are important while designing an RNA-Seq experiment. Various methods exist for 

estimating sample size for differential expression analysis of RNA-Seq data 

under the assumption of different models. The RNA-seq experiments are 

complex in nature, and still there is requirement of advanced method to calculate 

sample size for differential expression analysis using RNA-Seq data. Therefore, 

we devised statistical approaches for designing and sample size calculation 

considering allocation and cost constraints required to carry out the RNA-Seq 

experiments under the assumptions of various models (Chapter 7). 

We have implemented all the methods in R [1] and used various 

Bioconductor packages [2], applicable to these experiments. We have developed 

all the apps using “shiny” R package [3]. It will be easier for the experimenters to 

calculate the sample size required for conducting the experiments according to 

the budget. These programs can be used by the researchers for writing grants 

and conducting research projects, that will save resources in terms of cost and 

time. 
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Layout of the dissertation 

The layout of the dissertation is as follows: 

Chapter 2 provides the basic background of various topics such as sample size 

calculation, heterogeneity issues, proteomics and RNA-Seq experiments. 

Chapter 3 provides the technical and statistical considerations for standardizing 

proteomics workflow for LC-MS proteomics expression data [4]. 

Chapter 4 provides the interactive web tool for standardizing proteomics workflow 

for LC-MS Data [5]. 

Chapter 5 provides the various approaches for differential expression analysis of 

proteomics expression data and an interactive tool for statistical analysis of label-

free LC-MS proteomics data considering MVs and heterogeneity. 

Chapter 6 provides the sample size estimation methods for proteomics 

experiments under various constraints. 

Chapter 7 provides the statistical methods of sample size calculation for RNA-

Seq experiments considering allocation and cost. 

Chapter 8 provides the discussion and conclusion. 
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CHAPTER 2 

PRELIMINARIES: SAMPLE SIZE CALCULATION, EXPERIMENTAL DESIGN 

AND BIOLOGICAL EXPERIMENTS 

Sample size calculation 

Sample size calculation is an important process of choosing the number of 

replicates in a study with the goal to make inferences about a population from a 

sample. The sample size used in a study depends on various constraints such as 

data availability, budget, support facilities, time requirement, etc. The basic 

principles underlying the method of sample size calculation are the same, but 

these methods are not universal. So, the methods of sample size calculation 

depend on the type of experiment. In complicated studies, there may be several 

different sample sizes involved. For example, in an experiment where a study 

may be divided into different treatment groups/ conditions, there may be different 

sample sizes for each group/ condition. 

Methods for sample size calculations begin with an understanding of the 

type of data and its distribution. In most of the experiments, the data can be 

broadly divided into quantitative (numerical) and categorical (qualitative) data. Let 

us consider there are two groups for comparison. Let the number of samples in 

each group are 𝑁1 and 𝑁2, respectively. In general, the following factors must be 

known or estimated to calculate sample size [6-8]: 
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(i) The desired fold change: It is the difference between mean responses in the 

two groups, i.e., the difference between 𝜇1 and 𝜇2 for quantitative data.  

(ii) The population standard deviations (SDs): It is the variability or spread 

associated with quantitative data. We require either common population SD (𝜎) 

for the two groups or SDs (𝜎1 and 𝜎2) for each group. The population SD of the 

variable of interest can be estimated from a pilot study or data obtained from an 

experiment or from the scientific literature. 

(iii) The level of significance: The probability that a positive finding is due to 

chance is denoted as 𝛼, the significance level. It is usually chosen to be 0.05 or 

0.01. 

(iv) The desired power of the experiment: The power of an experiment is the 

probability that the effect will be detected. It is usually set to 0.8 or 0.9. 

Experimental design and heterogeneity issues 

Experimental design: The purpose of experimental design is to plan experiment 

in an effective way so that it can answer the biological question under 

consideration. The major points to be considered while documenting 

experimental plan are as follows: 

(i) Biological aspects: Any biological experimental plan starts with a biological 

question or hypothesis generating/ hypothesis testing. The experimenter 

might have some prior knowledge of the question under study before 

conducting the experiments, e.g., expression levels of some known genes, 

proteins, etc., that may be helpful. Later, the question arises about the 

samples such as: 
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▪ whether enough samples are available for experiment;  

▪ there may be samples available before hand in some situations;  

▪ availability of enough RNA, DNA or proteins from samples;  

▪ whether pooling of samples is required or not;  

▪ biopsies collected from same part of tissue or other tissues; 

▪ whether the cell type is expressing the feature such as gene of interest; 

▪ number of replicates required; 

▪ effect size, etc. 

(ii) Technical aspects: These include the choice of platform and avoiding 

systematic errors. If the experiment has systematics errors, then the result 

obtained for comparative analysis will be biased, irrespective of the precision 

of measurement and the number of experimental units. 

For the two above aspects, biological replicates are used to answer biological 

questions and technical replicates are required to answer technical questions.  

(iii) Economic aspects: These include cost of experiment and analysis, budget 

available, time required to complete the experiment and its analysis, whether 

pilot study is required or not, etc. 

Example of a biological experiment: Let us consider an experimental study in 

which there are 𝐼 conditions/groups denoted by 𝐺𝑖(𝑖 = 1, 2, … , 𝐼) and there are 𝑁𝑖 

individuals/samples denoted by 𝑆𝑖,𝑗  (𝑗 = 1, 2, …𝑁𝑖) corresponding to group 𝐺𝑖 

(Please see Table 2.1). Therefore, there is a total 𝑁 = ∑ 𝑁𝑖
𝐼
𝑖=1  samples in the 

experimental study. Now suppose, there are 𝐾 features (e.g., transcripts, genes, 

peptides, proteins, etc.) under study (e.g., testing for differential expression, 
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testing association with trait, etc.) denoted by 𝐹𝑘  (𝑘 = 1, 2, … , 𝐾). Let 𝑦𝑖,𝑗,𝑘 is a 

response outcome corresponding to sample 𝑆𝑖,𝑗 of condition 𝐺𝑖 for feature 𝐹𝑘 as 

shown below in Table 2.1. 

Table 2.1. An example of a biological experiment showing response outcome for 

multiple features in samples across different conditions 

 𝐺1 ... 𝐺𝑖 ... 𝐺𝐼 

 𝑺𝟏,𝟏 … 𝑺𝟏,𝒋 … 𝑺𝟏,𝑵𝟏  𝑺𝒊,𝟏 … 𝑺𝒊,𝒋 … 𝑺𝒊,𝑵𝒊  𝑺𝑰,𝟏 … 𝑺𝑰,𝒋 … 𝑺𝑰,𝑵𝑰 

𝑭𝟏 𝑦1,1,1 … 𝑦1,𝑗,1 … 𝑦1,𝑁1,1  𝑦𝑖,1,1 … 𝑦𝑖,𝑗,1 … 𝑦𝑖,𝑁𝑖,1  𝑦𝐼,1,1 … 𝑦𝐼,𝑗,1 … 𝑦𝐼,𝑁𝐼,1 

..
. 

..
. 

..
. 

..
. 

..
. 

..
.  ..
. 

..
. 

..
. 

..
. 

..
.  ..
. 

..
. 

..
. 

..
. 

..
. 

𝑭𝒌 𝑦1,1,𝑘 … 𝑦1,𝑗,𝑘 … 𝑦1,𝑁1,𝑘  𝑦𝑖,1,𝑘 … 𝒚𝒊,𝒋,𝒌 … 𝑦𝑖,𝑁𝑖,𝑘  𝑦𝐼,1,𝑘 … 𝑦𝐼,𝑗,𝑘 … 𝑦𝐼,𝑁𝐼,𝑘 

..
. 

..
. 

..
. 

..
. 

..
. 

..
.  ..
. 

..
. 

..
. 

..
. 

..
.  ..
. 

..
. 

..
. 

..
. 

..
. 

𝑭𝑲 𝑦1,1,𝐾 … 𝑦1,𝑗,𝐾 … 𝑦1,𝑁1,𝐾  𝑦𝑖,1,𝐾 … 𝑦𝑖,𝑗,𝐾 … 𝑦𝑖,𝑁𝑖,𝐾  𝑦𝐼,1,𝐾 … 𝑦𝐼,𝑗,𝐾 … 𝑦𝐼,𝑁𝐼,𝐾 

There may be a variety of purposes for the experiments such as detection of 

differentially expressed features, detecting association of quantitative or 

qualitative trait associated features, etc. 

Heterogeneity: A heterogeneous sample or population means that every 

observed data has different value for the corresponding characteristic of interest. 

For example, in gene expression studies, transcriptional variation is 

characterized with respect to measured variables of interest such as different 

conditions, different treatments, different points of time, etc. The major sources of 

variations in gene expression studies are due to technical, genetic, demographic 

and environmental factors [9]. There may be various factors responsible for 

influencing expression in any feature (genes, proteins, etc.), some of which 

cannot be measured, or some may be unknown.  
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Example of heterogeneity in gene expression data: Expression in a gene can be 

influenced by interaction with other genes, presence of external stimulus or 

signal, etc. A gene may be highly expressed in one condition and it may be less 

expressed in other condition or even sometimes it may not be expressed. In 

RNA-Seq data, the biological source of RNA are tissue samples which may be 

highly heterogeneous. The accuracy of the transcript quantification will depend 

on the purity of samples [10]. Therefore, failure to detect such heterogeneity will 

lead to false data interpretation and the result will be irreproducible. 

Proteomics experiments 

Proteins are important biological macromolecules performing a wide variety of 

functions. The term “proteome” is defined as the entire set of proteins produced 

or modified by a living organism [11, 12]. Proteomics generally refers to the 

large-scale quantitative/ qualitative study of proteins for a given cell type. Now it 

has emerged as a powerful tool across various fields such as biomedicine mainly 

applied to diseases, agriculture and animal sciences [13-16]. It is becoming 

increasingly important for the study of different aspects of plant functions, such 

as identification of candidate proteins involved in the defensive response of 

plants to insects, effect of global climate changes on crop production, etc. [17-

19]. The practical application of proteomics includes expression proteomics, 

structural proteomics, biomarkers, interaction proteomics, protein networks, etc.  

Proteomic expression data are generated by using high throughput 

technologies usually involving a mass spectrometer [20-24]. Liquid 

chromatography (LC) coupled with mass spectrometry (MS) is used in 
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proteomics as a method for identification and quantification of proteins and 

peptides in complex mixtures. The intensity of the resulting LC-MS features is 

used for relative quantification of peptides and proteins. LC-MS/MS (tandem-MS) 

experiments are used to derive the sequence of peptides and deduce the protein 

underlying a subset of the features. Various software tools have been developed 

to extract and quantify LC-MS features from the acquired spectra, annotate the 

features with sequence identity, and align the features across runs [25-32]. 

Samples of mixtures can be analyzed using modern LC-MS/MS systems which 

are capable of identifying and quantifying thousands of peptides simultaneously. 

For most of these types of experiments, the raw intensity data is summarized for 

each of the replicates for each feature. Here, the feature can be either at protein 

level or peptide level. Further, the data obtained from LC-MS experiments can be 

used for differential expression analysis between sample groups (e.g., testing 

peptides/proteins for differential abundance between subjects in a case-control 

study), or to analyze protein abundance of individual biological subjects (e.g., 

unsupervised clustering or supervised classification of individuals, based on their 

quantitative protein profiles). 

RNA-Sequencing experiments 

RNA-Sequencing, also called whole transcriptome shotgun sequencing, uses 

NGS technology to reveal the presence and quantity of RNA in a biological 

sample at a given moment. It has been the most productive research area from 

the computational and statistical point of view that can provide an insight into the 

roles of genes at transcriptomic level. It allows transcript quantification and 
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differential gene expression analysis, including identification of alternative 

splicing events and post-transcriptional RNA editing events. Several machines/ 

protocols are available for generating RNA-Seq data, namely, Illumina (MiSeq, 

NextSeq, HiSeq, NovaSeq), Ion Torrent (Proton, Personal Genome Machine), 

etc. The basic steps for summarizing a typical RNA-Seq experiment are as 

follows: 

▪ Purified RNA is converted to cDNA, sequencing library is prepared, and 

sequencing is done on an NGS platform. 

▪ Millions of short read sequences are generated from one end (single-end) 

or both ends (paired-end) of the cDNA fragments.  

▪ These sequences are aligned to a reference genome. 

▪ The number of reads mapped to known features are recorded and 

summarized in a table. The features can be either genes, transcripts 

(alternative transcripts), allele specific expression or exon level 

expression. For example, if there are F features and N samples, then a 

table of read counts is a F × N matrix of non-negative integers 

In RNA-Seq experiments, the samples are sequenced and resulting reads are 

aligned with a reference genome. The numbers of reads mapped to each of the 

reference gene are calculated. Then, normalization techniques are used to 

account for the within library and between library variability. For differential 

expression analysis in RNA-Seq data, the number of reads mapped to a 

reference genome (read counts) are generally modelled by assuming Poisson 

distribution or negative binomial distribution. 
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The challenges associated with application of RNA-Seq experiments are 

the problems in library construction, bioinformatics problems (storage, retrieval 

and processing of large data sets, mapping and assembly problem), 

sequence/transcriptome coverage versus cost, transcriptomic analysis (mapping 

gene for identifying introns and exon boundaries as well as discovery of novel 

transcribed genes, detection of splicing events, quantification of 

transcriptome/RNA expression levels to study gene expression in complex 

experiments) [33]. 
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CHAPTER 3 

STANDARDIZING PROTEOMICS WORKFLOW FOR LIQUID 

CHROMATOGRAPHY-MASS SPECTROMETRY: TECHNICAL AND 

STATISTICAL CONSIDERATIONS 

Introduction 

Proteins are important biological macromolecules performing a wide variety of 

functions. The proteome can be defined as the entire set of proteins translated 

and/or modified within a living organism [11, 12]. Proteomics more generally 

refers to large-scale LC-MS based discovery studies designed to address both 

quantitative and qualitative aspects of the proteome in question. Now proteomics 

has emerged as a powerful tool across various fields such as biomedicine mainly 

applied to diseases, agriculture and animal sciences [13-16, 34-38]. The practical 

application of proteomics includes expression proteomics, structural proteomics, 

biomarker discovery, interaction proteomics, protein networks, etc. [39, 40]. Here, 

we are dealing with proteomic expression data that are generated by using high 

throughput technologies usually involving MS [20-24, 41]. 

 LC-MS is used in proteomics as a method for identification and 

quantification of peptides and proteins in complex mixtures [42, 43]. There are 

two basic proteomics approaches, namely bottom-up and top-down [38, 44]. The 

most common proteomics approach is the bottom-up in which proteins in a 
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sample are enzymatically digested into peptides and subjected to 

chromatographic separation, ionization and mass analysis. In the top-down 

approach, intact proteins are introduced into MS where they are subjected to 

fragmentation. Further, the quantification of peptides/proteins may be either 

label-free or labelled (metabolic, enzymatic, or chemical) to detect differences in 

protein abundances among different conditions [45-48]. In label-free 

quantification, MS ion intensity (peak area) and spectral counting of features are 

the major approaches. Conversely, top-down proteomics addresses the study of 

intact proteins and consequently is most often used to address purified or 

partially purified proteins [49].  Here, we are dealing with the bottom-up approach 

in which peak area values have been used in label-free quantification of proteins.  

 Various approaches exist for proteomics data analysis in which the first 

step is to summarize the intensities of all features using a quantitative summary 

followed by some transformation such as log transformation to approximate it to 

normal distribution. However, each of these methods has several drawbacks 

which can be studied by examining the statistical properties of these methods 

[50-52]. When a data set contains an equal number of subjects in each group, 

and when features have no missing observations, the data set is called balanced. 

It is not always the condition; sometimes the data can be unbalanced, having an 

unequal number of subjects, or missing observations, or both. Missing values 

(MVs) in proteomics data can occur due to biological and/or technical issues. 

These are of three types: (i) missing completely at random (MCAR) in which MVs 

are independent of both unobserved and observed data; (ii) missing at random 
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(MAR) if conditional on the observed data, the MVs are independent of the 

missing measurements; and (iii) missing not at random (MNAR) when data is 

neither MCAR nor MAR [53]. The data with missing observations can be 

analyzed either by excluding the features having missing observations, by using 

statistical methods that can handle unbalanced data, or by using imputation 

methods. If the features having missing observations are excluded, then there is 

loss of information from the experiment. Therefore, the use of methods that can 

handle MVs, such as imputation methods, are generally preferred. However, the 

use of imputation methods may lead to wrong interpretation and still these 

methods are questionable in statistical terms [54, 55].  

 The data set usually consists of biological replicates only or both biological 

and technical replicates. Biological variability arises from genetic and 

environmental factors; it is intrinsic to all organisms. The technical approaches 

include sample collection and storage, sample preparation, extraction, LC 

separation and MS detection [43]. Sometimes, variations in the biological data or 

technical approaches to data collection lead to heterogeneity for the samples 

under study [56, 57]. We performed analysis of laser capture microdissection 

(LCMD)-LCMS high-resolution proteomics dataset using multifactor ANOVA 

model. We studied the variability in the data based on different tissue storage 

methods (TSMs) and tissue extraction methods (TEMs). We estimated the 

contribution of various sources of variation to the overall variability. The study of 

data variability was done using various analysis methods and transformation 

and/or normalization techniques.  
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 We investigated the technical effects of sample preparation and the 

quantitative MS resulting in heterogeneity for low abundant protein quantification. 

This will improve the biomarker discovery studies utilizing limited bioreposited 

tissue resources. 

Methods 

Proteomics experiment 

Data for the methods used in the collection, extraction, and proteomic analysis 

have previously been published under Hobeika L., et al. [58]. Individual data files 

for MS data (.RAW), peak lists (.mgf), and compressed search results 

(.mzIdentML) files can be downloaded from the MassIVE data repository 

(http://massive.ucsd.edu/; MassIVE ID: MSV000079914) and ProteomeXchange 

data repository [59] (http://www.proteomexchange.org/; ID: PXD004601). For 

consideration of variability of the feature detection and MVs, the abbreviated 

methods for these studies are provided below. 

Tissue collection: Frozen (FR) and formalin-fixed paraffin embedded (FFPE) 

tissue from the same human kidney unsuitable for transplant were cut into 10 μm 

sections on polyethylene terephthalate membrane frame slides, stained with 

Mayer’s hematoxylin and glomerular tissue compartments isolated using a Leica 

LMD6500 Laser Microdissection System. 

Protein extraction: Experiments were conducted to compare a single tissue 

solubilization step using an acid labile surfactant to approaches for tissue 

decellularization. The single step method used the acid-labile surfactant Protease 

MAX surfactant with heating (MAX). Two tissue decellularization methods 
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incorporated sequential decellularization with solubilization of the residual pellet 

with MAX. First tissue decellularization approach used 0.4% SDS + HALT 

protease/phosphatase inhibitor cocktail (Thermo Fisher) followed by 

solubilization of residual extracellular matrix (ECM) pellet using MAX (SDS.MAX). 

Second tissue decellularization approach used sequential decellularization with 

25mM NH4OH/ 0.5%TritonX-100 (TX) followed by solubilization of residual ECM 

pellet using MAX (TX.MAX).  

Liquid Chromatography: Peptide separation was achieved using a Dionex 

Acclaim PepMap 100 75µm x 2cm, nanoViper (C18, 3µm, 100Å) trap, and a 

Dionex Acclaim PepMap RSLC 50µm x 15cm, nanoViper (C18, 2µm, 100Å) 

separating column.  An EASY n-LC (Thermo) UHPLC system was used to 

resolve peptide separation using a 140min linear gradient from 2% v/v 

acetonitrile / 0.1% v/v formic acid to 40% v/v acetonitrile / 0.1% v/v formic acid. 

Peptides were introduced into the Orbitrap ELITE MS using a 40mm stainless 

steel emitter (Thermo P/N ES542) and a Nanospray Flex source (Thermo) was 

used to position the end of the emitter near the ion transfer capillary of the mass 

spectrometer.  

Mass Spectrometry Data Acquisition: MS data was collected using an Nth 

Order Double Play with or Electron-transfer dissociation (ETD) Decision Tree 

method created in Xcalibur v2.2. Scan event one of the method obtained a 

Fourier transform MS MS1 scan (normal mass range; 60,000 resolution, full scan 

type, positive polarity, profile data type) for the range 300-2000m/z. Scan event 

two obtained ion trap MS MS2 scans (normal mass range, rapid scan rate, 
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centroid data type) on up to twenty peaks that had a minimum signal threshold of 

5,000 counts from scan event one. A decision tree was used to determine 

whether collision-induced dissociation (CID) ETD activation was used. An ETD 

scan was triggered if any of the following held: an ion had charge state 3 and m/z 

less than 650, an ion had charge state 4 and m/z less than 900, an ion had 

charge state 5 and m/z less than 950, or an ion had charge state greater than 5; 

a CID scan was triggered in all other cases. The lock mass option was enabled 

(0% lock mass abundance) using the 371.101236m/z polysiloxane peak as an 

internal calibrant. 

Data Analysis with Proteome Discoverer v1.4.1.14 and Scaffold Q+S v4.4.3: 

Proteome Discoverer v1.4.1.114 was used to analyze the data collected by the 

mass spectrometer. The database used in Mascot v2.5.1 and SequestHT 

searches was a 4/7/2015 version of the UniprotKB Homo sapiens reference 

proteome canonical and isoform sequences with the 1/1/2012 version of the 

common Repository of Adventitious Proteins (cRAP) database (thegpm.org) 

appended to it (the cRAP database contains common contaminant proteins 

observed in MS experiments). To estimate the false discovery rate (FDR), a 

Target Decoy Peptide-Spectrum Match Validator node was included in the 

Proteome Discoverer workflow.  

The Proteome Discover was used for extraction of MS2 scan data from 

the Xcalibur RAW file, separate searches of CID and ETD MS2 scans in Mascot 

and Sequest, and collection of the results into a single file (.msf extension) prior 

to loading into Scaffold Q+S v4.4.3. The FDR for peptides was calculated using 
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the Scaffold Local FDR algorithm. Protein probabilities were calculated using the 

Protein Prophet algorithm. Proteins were grouped by the Scaffold protein cluster 

analysis to satisfy the parsimony principle. Label-free quantification of identified 

proteins were exported as total precursor ion area values to an excel sheet for 

analysis of proteomics data (Please see the file “ProteomicsData_Kidney.xlsx”). 

We analyzed the data for comparing statistical methods with MVs in the 

presence of heterogeneity. 

Proteomics data analysis 

The purpose of this study is to (1) compare variability between (a) tissue storage 

methods and (b) tissue extraction methods; (2) compare various statistical 

approaches of analysis and normalization methods. 

 We have two TSMs (FR and FFPE) and three TEMs (MAX, TX.MAX, 

SDS.MAX) with three replicates and two MS runs leading to 36 samples (total 

number of samples = 2 × 3 × 3 × 2 = 36). A flow chart of the experiment is given 

below in Figure 3.1.  

 

Figure 3.1. Flowchart of the proteomics experiment 
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In the flowchart, we have shown the basic steps of carrying out the experiment 

involving TSMs and TEMs. The MS was repeated twice to get more reliable 

results for estimating experimental variability. We obtained the following six 

groups as given below in the Table 3.1. 

Table 3.1. Table showing different groups under study 

                    TSM 

    TEM                FR FFPE 

Direct MAX 1 (FR_MAX) 4 (FFPE_MAX) 

Sequential 
Extraction 

TX.MAX 2 (FR_TX.MAX) 5 (FFPE_TX.MAX) 

SDS.MAX 3 (FR_SDS.MAX) 6 (FFPE_SDS.MAX) 

There are three replicates for each of the six groups thus leading to 18 samples. 

Then, we have repeated the MS two times for the 18 samples and we obtained 

six samples for each of the six groups. 

Data preprocessing 

Initially, there were 728 proteins identified in both runs, 380 proteins identified in 

run 1 only and 342 proteins identified in run 2 only. There was a total of 1450 

identified proteins out of which 1376 proteins were unique, and 37 proteins were 

redundant and duplicate entries were removed from the data. Furthermore, there 

were 111 proteins for which all the samples have MVs (NA values). Therefore, 

we are left with protein data with 1302 proteins that correspond to 1178 gene 

symbols. The percentage of NA values within each sample (36 samples) ranges 

from 41.3%-78.3% with a median value of 49.5%. 

As we have a greater number of groups, therefore it is difficult to perform 

analysis with this data having MVs. If we discard the proteins having any MVs in 
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any of the samples in a group, then there will be only 26 proteins available. 

Another way is to retain the proteins having at least one or two observations in 

each group. A summary of number of proteins available in each group is given 

below in Table 3.2. 

Table 3.2. Summary of number of proteins and missing values in different groups 

Groups 
No. of 

proteins with 
no MVs 

No. of proteins 
with MVs in all 

samples 

No. of proteins 
with at least one 

observation 

No. of proteins 
with at least two 

observations 

FR_MAX 448 205 1097 995 

FR_TX.MAX 357 324 978 881 

FR_SDS.MAX 170 678 624 454 

FFPE_MAX 373 295 1007 874 

FFPE_TX.MAX 353 261 1041 890 

FFPE_SDS.MAX 381 237 1065 920 

 If we use the number of proteins having at least one observation in a 

group, then we can assess a greater number of proteins. However, we need at 

least two observations in each group to calculate the coefficient of variation (CV) 

for a protein in each group. Therefore, we used 372 proteins which have at least 

two observations in each of the six groups for further analysis. 

Statistical approaches 

The analysis of proteomics data becomes more complex due to non-normality 

behavior of the data, and greater proportion of MVs within and across the 

samples. To get a better insight of proteomics data analysis while dealing with 

these problems, we have performed the analysis using three methods which are 

as follows: 
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A1. Method for data excluding missing values: Proteins having complete 

observations for all the samples, i.e., no MVs, were used for comparison. 

Proteins having MVs were discarded from the analysis. 

A2. Method for data including missing values: The proteins with MVs across the 

samples were analyzed using unbalanced ANOVA method [60]. 

A3. Method for data using imputation: The MVs were imputed after applying the 

normalization methods to the data [61] as given in next section. We have used 

the “impute.MAR” function of the R package “imputeLCMD” [62] for imputing the 

MVs. Three different types of imputation under the assumption of MAR or MCAR, 

namely, MLE [63], SVD [64] and KNN [65, 66] are available in this package. We 

have used only the SVD method (A3) for imputation. 

We applied three different data transformation and/or normalization methods: 

N1. Logarithmic transformation: The raw data is transformed by using logarithmic 

base 2. 

N2. Quantile normalization (QN): It is done by using log base 2 transformation of 

raw data followed by “normalize.quantiles” method [67] available in R package 

“preprocessCore” [68]. 

N3. Variance stabilizing normalization (VSN): It is done by applying “justvsn” 

function available in R package “vsn” [69] to the raw data. 

 Therefore, by using three methods of analysis (A1, A2 and A3) based on 

three transformation and/or normalization methods (N1, N2 and N3), we have 9 

different combinations (statistical approaches): excluding MVs (A1.N1, A1.N2, 

A1.N3); including MVs (A2.N1, A2.N2, A2.N3); imputing MVs (A3.N1, A3.N2, 
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A3.N3). We preprocessed the data using these methods to get 9 different 

datasets (preprocessed data) for 6 groups having 6 samples in each group. 

We calculated the CV for each protein in the groups: TSM (FR vs. FFPE), 

TEM (MAX vs. TX.MAX vs. SDS.MAX) and TSM×TEM (FR_MAX, FR_TX.MAX, 

FR_SDS.MAX, FFPE_MAX, FFPE_TX.MAX, FFPE_SDS.MAX). It has two 

purposes: (i) Which TSM/ TEM/ TSM×TEM have the minimum CV based on 

different statistical approaches; (ii) Which statistical approach leads to the 

minimum CV. We have used ANOVA model as given below for studying the 

contribution of variability due of TSM, TEM and the interaction term TSM×TEM: 

                                 𝑦𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝜀𝑖𝑗𝑘                                     (3.1) 

where, 𝑦𝑖𝑗𝑘 is the transformed and/or normalized data for a protein, 𝛼𝑖 (𝑖 = 1, 2) is 

the ith TSM effect, 𝛽𝑗 (𝑗 = 1, 2, 3) is the jth TEM effect and (𝛼𝛽)𝑖𝑗 is the interaction 

effect, TSM×TEM. The term 𝜀𝑖𝑗𝑘 is the normally distributed error component and 

𝜀𝑖𝑗𝑘~𝑁(0, 𝜎
2). The mapping of the above model to the experimental design 

allows us to estimate the contribution due to each source of variation for each 

protein.  

Results and discussion 

Comparison of CV among various groups 

We have 141, 372 and 372 proteins obtained by using the analysis methods A1, 

A2 and A3, respectively. The summary of CV (in %) using 9 different statistical 

approaches for comparisons among TSMs and TEMs is shown in Table 3.3. 
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Table 3.3. Summary of CV (in %) using 9 statistical approaches among TSM and TEM 

  TSM TEM 

  FR FFPE MAX TX.MAX SDS.MAX 

 M
V

 E
x

c
lu

d
e
d

 
A1.N1 

6.92 
 

(2.23, 12.77) 

2.76 
 

(2.00, 9.49) 

3.25 
 

(1.93, 9.64) 

3.26 
 

(2.05, 15.90) 

7.40 
 

(2.38, 15.24) 

A1.N2 
6.29 

 
(0.52, 12.50) 

1.30 
 

(0.55, 5.10) 

1.94 
 

(0.34, 9.02) 

1.91 
 

(0.32, 12.67) 

6.74 
 

(0.59, 14.99) 

A1.N3 
6.25 

 
(0.95, 12.51) 

1.28 
 

(0.48, 8.31) 

2.03 
 

(0.28, 9.33) 

1.95 
 

(0.26, 15.21) 

6.81 
 

(1.05, 15.01) 

M
V

 I
n

c
lu

d
e
d

 

A2.N1 
7.08 

 
(1.23, 12.77) 

2.92 
 

(0.83, 11) 

3.50 
 

(0.65, 12.21) 

3.49 
 

(0.73, 15.90) 

7.53 
 

(0.23, 16.95) 

A2.N2 
6.62 

 
(0.39, 12.51) 

1.75 
 

(0.52, 9.13) 

2.71 
 

(0.16, 12.16) 

2.49 
 

(0.32, 14.42) 

7.17 
 

(0.42, 16.48) 

A2.N3 
6.68 

 
(0.80, 12.49) 

1.73 
 

(0.47, 11.16) 

2.71 
 

(0.28, 11.61) 

2.55 
 

(0.20, 15.22) 

7.21 
 

(0.76, 15.54) 

 M
V

 I
m

p
u

te
d

 

A3.N1 
7.72 

 
(2.23, 17.47) 

3.29 
 

(1.70, 15.28) 

4.03 
 

(1.79, 15.49) 

3.87 
 

(1.72, 15.90) 

8.03 
 

(2.38, 18.01) 

A3.N2 
7.10 

 
(0.39, 15.96) 

2.15 
 

(0.52, 13.60) 

3.10 
 

(0.45, 14.64) 

2.98 
 

(0.38, 14.42) 

7.35 
 

(0.56, 19.25) 

A3.N3 
7.07 

 
(1.01, 18.34) 

2.13 
 

(0.47, 13.64) 

3.10 
 

(0.33, 16.02) 

3.04 
 

(0.28, 15.22) 

7.35 
 

(1.08, 18.68) 

Note: The first figure is the median value and the figures inside the parenthesis are respectively, 
minimum and maximum value. 

The summary of CV (in %) using 9 different statistical approaches for 

comparisons among six groups of TSM×TEM is shown in Table 3.4. 
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Table 3.4. Summary of CV (in %) using 9 statistical approaches among six groups of 

TSM×TEM 

  FR_ FR_ FR_ FFPE_ FFPE_ FFPE_ 

  MAX TX.MAX SDS.MAX MAX TX.MAX SDS.MAX 

M
V

 E
x
c

lu
d

e
d

 

A1.N1 
2.64 

 
(1.34, 8.62) 

2.71 
 

(0.83, 9.95) 

4.73 
 

(2.25, 12.90) 

3.00 
 

(1.96, 7.14) 

2.87 
 

(2.08, 13.80) 

2.34 
 

(0.75, 8.34) 

A1.N2 
0.87 

 
(0.12, 6.26) 

1.05 
 

(0.18, 9.09) 

2.32 
 

(0.22, 10.55) 

0.87 
 

(0, 5.12) 

0.96 
 

(0, 7.28) 

0.85 
 

(0, 8.13) 

A1.N3 
0.77 

 
(0.17, 7.53) 

1.01 
 

(0.13, 9.87) 

2.37 
 

(0.32, 11.92) 

0.84 
 

(0.12, 6.14) 

0.95 
 

(0.18, 11.75) 

0.83 
 

(0.10, 8.10) 

 M
V

 I
n

c
lu

d
e
d

 

A2.N1 
2.64 

 
(0.05, 11.71) 

2.81 
 

(0.14, 10.93) 

4.49 
 

(0.03, 19.81) 

2.97 
 

(0.09, 13.33) 

3.01 
 

(0.15, 13.8) 

2.41 
 

(0.17, 17.14) 

A2.N2 
1.08 

 
(0, 10.62) 

1.47 
 

(0, 9.33) 

2.88 
 

(0.07, 16.32) 

1.28 
 

(0, 10.50) 

1.32 
 

(0, 12.62) 

1.14 
 

(0, 13.32) 

A2.N3 
1.09 

 
(0.04, 9.67) 

1.39 
 

(0.04, 9.87) 

2.44 
 

(0.02, 17.52) 

1.28 
 

(0.01, 9.55) 

1.41 
 

(0.12, 12.45) 

1.19 
 

(0.07, 17.72) 

M
V

 I
m

p
u

te
d

 

A3.N1 
2.94 

 
(0.95, 16.56) 

3.26 
 

(0.83, 15.27) 

5.06 
 

(2.25, 17.75) 

3.40 
 

(1.34, 16.87) 

3.33 
 

(0.62, 15.62) 

2.86 
 

(0.69, 16.21) 

A3.N2 
1.59 

 
(0.24, 17.06) 

1.83 
 

(0.06, 14.28) 

2.77 
 

(0.20, 19.86) 

1.78 
 

(0.02, 15.03) 

1.70 
 

(0.02, 14.08) 

1.75 
 

(0.03, 14.23) 

A3.N3 
1.57 

 
(0.14, 19.00) 

1.82 
 

(0.19, 15.69) 

2.48 
 

(0.32, 17.28) 

1.74 
 

(0.07, 14.88) 

1.7 
 

(0.21, 14.28) 

1.63 
 

(0.16, 15.38) 

Note: The first figure is the median value and the figures inside the parenthesis are respectively, 
minimum and maximum value. 

TSM: We found that median value of CV is lowest in FFPE using all the statistical 

approaches. Furthermore, within FFPE, the normalization method N3 has the 

minimum value of median CV for each analysis method. Overall, the minimum 

median CV is for A1.N3 in FFPE. 
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TEM: We have the minimum median value of CV in TX.MAX. We found A1.N2 

has the minimum value of median CV. 

TSM×TEM: We have the minimum median value of CV in FR_MAX followed by 

FFPE_SDS.MAX using all the approaches. We found A1.N3 has the minimum 

value of median CV in all the groups except for A1.N2 in FR_SDS.MAX. Overall, 

the minimum median CV is for A1.N3 in group FR_MAX. 

Based on median CV, FFPE is a better choice than FR using all the 

statistical approaches. Similarly, among TEMs, TX.MAX has the least CV and 

can be a better choice. However, based on the maximum value of CV, MAX is a 

better choice for TEM. If we consider approaches (A2 & A3) having greater 

number of proteins and TEM within FFPE, we see that A3.N3 in 

FFPE_SDS.MAX is having the least median CV (1.63).  

Contribution of Sum of Squares (SS) due to each component 

The percent contribution of SS due to each variable to the total SS was 

computed for each protein. A summary of contribution of each variable to the 

total variability is given below in Table 3.5. 

Table 3.5. Summary of the contribution of % SS due to TSM, TEM and TSM×TEM 

  SSTSM SSTEM SSTSM×TEM 

M
V

 E
x
c

lu
d

e
d

 

A1.N1 
9.86 

 
(0, 68.98) 

20.9 
 

(0.47, 36.32) 

32.87 
 

(0.29, 54.41) 

A1.N2 
14.71 

 
(0, 78.88) 

27.49 
 

(1.35, 48.44) 

43.21 
 

(0.92, 64.54) 

A1.N3 
15.05 

 
(0, 73.78) 

26.7 
 

(2.31, 44.92) 

41.88 
 

(0.59, 65.23) 
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M
V

 I
n

c
lu

d
e
d

 

A2.N1 
10.84 

 
(0, 83.65) 

20.97 
 

(0.08, 49.47) 

33.46 
 

(0.29, 78.05) 

A2.N2 
12.59 

 
(0, 85) 

25.56 
 

(0.06, 54.68) 

39.37 
 

(0.08, 80.29) 

A2.N3 
12.84 

 
(0, 88.18) 

25.72 
 

(0.04, 53.37) 

40.32 
 

(0.06, 77.54) 

M
V

 I
m

p
u

te
d

 

A3.N1 
8.52 

 
(0, 73.76) 

18.83 
 

(0, 40.46) 

29.86 
 

(0.09, 57.77) 

A3.N2 
11.07 

 
(0, 85.67) 

23.53 
 

(0.03, 50.93) 

37.33 
 

(0.05, 65.75) 

A3.N3 
11.18 

 
(0, 85.31) 

23.32 
 

(0, 49.68) 

37.26 
 

(0.14, 65.32) 

Note: The first figure is the median value and the figures inside the parenthesis are respectively, 
minimum and maximum value. 

We found that the TSM has the least contribution to the total variability whereas 

interaction term has the maximum contribution (SSTSM < SSTEM < SSTSM×TEM). 

The imputation method leads to decrease in the SS contribution due to each 

variable. 

The proportion of proteins showing significant effects due to TSM, TEM 

and TSM×TEM using 9 different approaches are given in Table 3.6. 

Table 3.6. The summary of proportion of proteins showing effects due to the variables: 

TSM, TEM and TSM×TEM 

  NTSM NTEM NTSM×TEM 

M
V

 E
x
c

lu
d

e
d

 

A1.N1 0.65/ 0.62/ 0.33 0.77/ 0.76/ 0.5 0.77/ 0.77/ 0.65 

A1.N2 0.84/ 0.84/ 0.72 0.91/ 0.91/ 0.77 0.89/ 0.88/ 0.78 

A1.N3 0.82/ 0.82/ 0.71 0.87/ 0.87/ 0.72 0.87/ 0.85/ 0.77 
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M
V

 I
n

c
lu

d
e
d

 

A2.N1 0.61/ 0.57/ 0.25 0.72/ 0.72/ 0.28 0.79/ 0.79/ 0.49 

A2.N2 0.75/ 0.73/ 0.48 0.83/ 0.82/ 0.58 0.87/ 0.87/ 0.68 

A2.N3 0.74/ 0.74/ 0.52 0.81/ 0.81/ 0.6 0.85/ 0.84/ 0.67 

M
V

 I
m

p
u

te
d

 

A3.N1 0.58/ 0.53/ 0.24 0.69/ 0.67/ 0.35 0.78/ 0.77/ 0.52 

A3.N2 0.71/ 0.68/ 0.48 0.81/ 0.8/ 0.58 0.86/ 0.85/ 0.69 

A3.N3 0.7/ 0.69/ 0.49 0.8/ 0.78/ 0.58 0.84/ 0.83/ 0.67 

Note: The result obtained using p-values corresponding to without adjustment, BH adjusted and 
Bonferroni adjusted are separated serially by slash “/” in the table. 

The proportion of proteins showing significant effects due to TSM and TEM and 

their interaction vary with each statistical approach. The TSM has the least 

proportion of significant proteins as compared to those of TEM and TSM×TEM. 

This shows that TSM has the least influence. Furthermore, the imputation 

approach has the least proportion of significant proteins. This shows that 

imputation of MVs is a better approach for analysis as it leads to reduction in 

variability and increase in the number of proteins assessed for analysis. 

Analysis for imputed data using VSN 

We used ANOVA to test the significance of proteins based on TSM and TEM. 

The plot of CV (in %) of the proteins in increasing order of p-values based on 

A3.N3  for TSM and TEM are respectively given in Figures 3.2 and 3.3. 
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Figure 3.2. Plot of CV (in %) versus the proteins with increasing order of p-values for 

TSM (FR and FFPE) 

 

Figure 3.3. Plot of CV (in %) versus the proteins with increasing order of p-values for 

TSM (MAX, TX.MAX and SDS.MAX) 

There are respectively 261 and 296 proteins showing significant effects 

due to TSM and TEM. From Figure 3.2, we see that FR has more CV as 

compared to that of FFPE for most of the proteins. From Figure 3.3, we found 
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SDS.MAX has more CV as compared to those of MAX and TX.MAX. We applied 

chi-square test for the proteins having significant effects due to TSM and TEM. 

We found that there is association between the TSM and the CV (p-value < 

0.001). Similarly, in case of TSM, we found that there is association between the 

variables, TEM and CV (p-value < 0.001).  

We found that the FFPE is a better method than that of the FR for tissue 

storage. Further, we found that MAX, the single step approach is better than 

those of two-step approach for tissue extraction. The maximum contribution to 

the total variability is due to the interaction effect TSM×TEM and TEM. The TSMs 

and TEMs have significant effects on the protein expression. However, the effect 

due to TSM is the least. In the present article, we have used different analysis 

and normalization methods for the proteomics data. The number of proteins for 

testing can be increased by either by including the MVs (A2) or by using imputed 

data (A3). The imputation method (A3) has the least SS contribution than those 

of A1 (complete data) and A2 (unbalanced data). We found the least proportion 

of significant proteins when using the imputation method (A3). The normalization 

method N1, i.e., only logarithmic transformation is not suited for analyzing the 

proteomics data. The other normalization methods N2 and N3 having lesser CV 

can be a better approach.  

Conclusion 

Our study discussed the technical issues with a focus on the statistical analysis. 

It will provide better insight to the researchers while designing and executing 

experiments. There may be small changes caused during sample handling and 
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storage, different batches of buffer, electrospray, instrument components, 

calibration and tuning, etc. While designing any proteomics experiment, we must 

identify the variability associated with technical steps. The researchers involved 

in proteomics research area can use this data for further study. The data can 

further be used for planning new proteomics experiments. In the future, we will 

come up with a rigorous statistical approach using different proteomics dataset 

that could overcome the heterogeneity problem caused due to technical reasons 

in the proteomics data with MVs. We found that the CVs obtained using all the 

approaches is lesser for FFPE as compared to those of FR. Among the TEMs, 

we found that TX.MAX has the least value based on median CV and MAX has 

the least value based on maximum CV. The normalization methods N2 and N3 

have lesser CV as compared to that of logarithmic transformation. Based on SS, 

we found that the TSM has the least contribution to the total variability. The 

imputation of MVs leads to reduction in variability and increase in the number of 

proteins assessed for analysis. Therefore, we can recommend: (i) FFPE is the 

better choice than FR for tissue storage, (ii) one-step TEM is better than the two-

step TEM, (iii) Imputation method (A3) is the best approach, (iv) N2 or N3 

method of normalization should be the preferred choice.  
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CHAPTER 4 

INTERACTIVE WEB TOOL FOR STANDARDIZING PROTEOMICS 

WORKFLOW FOR LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY 

DATA 

Introduction 

Standardization of experimental workflow is an essential task for carrying out 

proteomics experiments [4, 70]. There are various technical steps involved in 

proteomics experiments such as sample collection, sample storage, sample 

preparation, extraction, liquid chromatography (LC) - mass spectrometry (MS) 

detection. The experimenters have various choices available for each step in the 

proteomics workflow. Therefore, it becomes necessary to find the most suitable 

choice for each step in the proteomics workflow. LC-MS is used in proteomics as 

a method for identification and quantification of features (peptides/proteins) in 

complex mixtures [42, 43]. There are several challenges associated with the 

proteomics data such as data heterogeneity due to technical reasons, MVs and 

low-abundant features. Furthermore, the proteomics data can be the balanced 

(equal number of observations in each group) or unbalanced (unequal number of 

observations in each group). The data can be unbalanced due to unequal 

number of subjects, or missing observations, or both. The missing values (MVs) 

in proteomics data can occur due to biological and/or technical issues. 
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The missing observations are broadly categorized as missing completely at 

random (MCAR), missing at random (MAR) and missing not at random (MNAR) 

[53].  

 Various studies have been done for studying the data variability, 

standardization and quality control of proteomics expression data [56, 71-73]. 

However, only a few tools exist for the standardization and quality control of 

proteomics expression data based on different approaches [74-76]. Therefore, 

we have developed a user-friendly tool for standardizing the proteomics workflow 

and studying the variability in proteomic expression data generated by high 

throughput technologies involving MS [20, 22, 24, 41]. We use the special cases 

of general linear model (GLM), analysis of covariance (ANCOVA) and analysis of 

variance (ANOVA) to study the data variability. The user can estimate the 

contribution of various sources of variation to the overall variability. The study of 

data variability can be done using various analysis methods and normalization 

techniques. The user can analyze the data either by excluding the features 

having missing observations or by imputing the MVs. Excluding the features 

having missing observations leads to loss of information from the experiment. 

Therefore, we have provided two imputation methods to include more features in 

the analysis. We have demonstrated the tool using simulated proteomics data 

comprising of 1000 peptides corresponding to 200 proteins. We implemented all 

the steps in R [1] and used “shiny” package [3] for developing the web 

application. The PWST tool can be accessed freely by the users from 

https://ulbbf.shinyapps.io/pwst/. 
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Methods 

The steps and various options available under each step are described below. 

More details about all the steps are given in the next section.  

1. Upload the proteomics expression data 

2. Feature type: The analysis can be done either at protein level or peptide level. 

After uploading the expression data file, the user has to select the feature type.  

3. Aggregation method: We have provided four options for data aggregation: (i) 

Mean, (ii) Median, (iii) Sum, (iv) Maximum. Data aggregation is required if the 

user has provided the peptide data and wants analysis at protein level. It is also 

applicable to other situations, such as when the features (proteins or peptides) 

are redundant. For example, if the user uses more than one database for 

searching features, there may be many redundant features. 

4. Upload the additional information: The user has to upload the additional 

information about the data. This file contains the information of the samples and 

the variables under study. The variables may be categorical and/or continuous 

(numeric).  

5. Choose the categorical variables: The user has to select the categorical 

variables which will automatically pop out after the file containing additional 

information has been uploaded. Categorical variables contain a finite number of 

categories/groups. Examples of the categorical variables in proteomics workflow 

are: storage methods, extraction methods, etc. 

6. Choosing the numeric variables: After selecting the categorical variables, the 

user can now select the numeric (continuous) variable from the remaining 



35 
 

variables, if available. The variable may contain any value within some range. 

Examples of numeric variables are age, weight, height, etc. of the individuals. 

7. Analysis method: We have provided two options for the analysis: 

(i) Excluding missing values: Features having MVs in any of the samples are 

discarded from the analysis. The features having observations in all the samples 

are retained for analysis. This approach may not be appropriate as it will exclude 

many features. Therefore, we have provided the imputation methods. 

(ii) Imputing missing values: The MVs are imputed after applying the 

normalization methods to the data [61] as given in next section. We have 

provided two imputation methods under the assumption of MAR or MCAR, 

namely, SVD [64] and KNN [65, 66] available from the “impute.MAR” function of 

the R package “imputeLCMD” [62]. We impute the data at protein level if the data 

is available at protein level. Otherwise, we impute the data at peptide level. In 

case, if the analysis is to be done at protein level for the peptide data, then we 

first impute the data at peptide level and then aggregate the data. By default, the 

imputation is done globally. However, the user can apply the imputation methods 

group wise by specifying additional column “Norm_Imp_Group” and the group 

numbers in the file containing additional information. 

8. Transformation/Normalization method: There are four options available for 

data transformation and/or normalization: 

(i)  Logarithmic transformation: The raw data is transformed by taking log base 2. 
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(ii) Quantile normalization (QN): This method is applied on log base 2 

transformed data using the “normalize.quantiles” method [67] available in R 

package “preprocessCore” [68]. 

(iii) Variance stabilizing normalization (VSN): This method is applied on the raw 

data using “justvsn” function available in R package “vsn” [69]. 

(iv) None: In some situations, if the user wants to use his own normalized data, 

then he can use the “None” option. 

By default, the normalization methods (QN and VSN) are applied globally. The 

user can apply the normalization methods (QN and VSN) group wise by 

specifying additional column “Norm_Imp_Group” and the group numbers in the 

file containing additional information.  

9. Level of significance: The user can specify the level of significance (𝛼). By 

default, the level of significance is 0.05.  

10. Method of adjustment: The user must adjust the p-values for multiple testing 

of features for which we have provided the following options: “BH”, “bonferroni”, 

“holm”, “Hochberg”, “hommel” and “BY”. The method “BH” is the default 

adjustment method. 

The user has to hit the “Submit” button after specifying the above-

mentioned inputs. The user will get the following results under different tabs:  

1. Inputs selected: It shows the various inputs defined by the user for the 

analysis. 

2. Visual plots of the preprocessed data: We provide exploratory plots of the 

preprocessed data such as box plot, density plot, correlation heatmap. 
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3. The sum of squares (SS) results: We fit the ANOVA/ ANCOVA model with 

fixed effects for each feature. The results are comprised of: (i) A table showing 

the contribution of SS due to each variable, the p-values and the adjusted p-

values corresponding to each variable, (ii) summary of % contribution of SS and 

(iii) box plot showing % contribution of SS due to each variable. 

4. The coefficient of variation (CV) analysis: We calculate the CV (in %) 

corresponding to the groups within each categorical variable. The results consist 

of: (i) A table showing the CV of different groups of each categorical variable for 

all the features, (ii) summary of CV and (iii) box plot showing CV under the 

various groups of categorical variables. 

5. Number of significant features: We provided a table showing the number of 

features without and with adjustment which have significant effect due to each 

variable. 

All these results can be viewed and downloaded. The complete demonstration of 

the tool is discussed in next section. 

Demonstration and discussion 

We used a simulated dataset generated with the aid of the kidney proteomics 

expression data (used in Chapter 3) for demonstrating our tool. We  generated a 

proteomics expression data set that consists of 200 proteins with 1000 peptides. 

Suppose there are two steps (M1 and M2), e.g., tissue storage method and 

tissue extraction method, involved in an experiment. Our purpose is to study the 

variability associated with the two steps/ variables/ methods. Furthermore, 

suppose we have respectively two approaches of M1 (A1 & A2) and three 
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approaches of M2 (B1, B2 & B3). Now our purpose is to select the most suitable 

approach for M1 and M2. In the example dataset, we have respectively two 

levels of M1 and three levels of M2 each with three biological replicates. The MS 

is repeated two times so that we have total 36 samples. We have included “Age” 

of the subjects (biological replicates) as a numeric (continuous) variable. The 

screenshot of the PWST tool is shown below in Figure 4.1. 

 

Figure 4.1. Webpage of the tool “PWST” 
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Inputs to be specified by the user 

1. Upload the expression data: The user has to upload the proteomics 

expression data either in csv, tsv, txt, xls or xlsx format. The first two columns are 

reserved for proteins and peptides. Even if the data is available at protein level 

only and there is no peptide data, then the user must leave the second column 

blank. The expression data must start from the third column and onwards. The 

first row must contain the labels such as “Protein”, “Peptide” and the sample 

names (from third column). After the first row, we have the name of proteins and 

peptides in the first and second column respectively. In the remaining portion, we 

have the expression values of corresponding features (proteins/ peptides) and 

samples. A portion of input expression data is shown below. 

 

Figure 4.2. A portion of proteomics expression data 

The user has to click on the “Browse…” button and select the file to upload the 

expression data as given below in Figures 4.3: 

 

Figure 4.3. Upload the proteomics expression data 
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2. Feature type: After uploading the expression data file, the user has to select 

the feature type. The feature type available will automatically be detected. In the 

given example, we have the peptide data. So, there are two options available: 

“Protein” or “Peptide”. We selected the analysis to be done at “Protein” level as 

given below: 

 

Figure 4.4. Choose the feature type – “Protein” or “Peptide” 

3. Aggregation method: There are four options available for data aggregation: (i) 

Mean, (ii) Median, (iii) Sum, (iv) Maximum. We selected “Mean” for aggregating 

the peptide data at protein level as given below: 

 

Figure 4.5. Choose the aggregation method (Mean/Median/Sum/Max) 

4. Upload the additional information: Now the user has to upload the additional 

information about the data either in csv, tsv, txt, xls or xlsx format. This file 

contains the information of the samples and the variables under study. The 
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variables may be categorical and/or numeric (continuous). A portion of additional 

data is shown below. 

 

Figure 4.6. A portion of additional information of data  

The user has to click on the “Browse…” button and select the file to upload the 

additional data as given below: 

 

Figure 4.7. Upload the additional information of data 

5. Choose the categorical variables: The user has to select the categorical 

variables one by one which will automatically pop out after the file containing 

additional information has been uploaded. We have selected “M1” and “M2” as 

the categorical variables under study as shown in Figure 4.8. 



42 
 

 

Figure 4.8. Selection of categorical variables 

6. Choosing the numeric variables: After selecting the categorical variables, the 

user can now select the continuous variable from the remaining variables, if 

available. In this example, we have selected “Age” as given below. 

 

Figure 4.9. Selection of numeric variables 

7. Analysis method: We have provided two options for the analysis: (i) Excluding 

missing values and (ii) Imputing missing values. Further, there are two methods 

of data imputation available: (a) SVD and (b) KNN. We selected the radio button 

“Imputing missing values” and “SVD” method for data imputation. The 

screenshots are given below. 

 

Figure 4.10. Selection of analysis method 
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8. Transformation/Normalization method: There are four options available for 

data transformation and/or normalization. We selected “Variance Stabilizing 

Normalization” for data normalization as given below. 

 

Figure 4.11. Selection of normalization method 

9. Level of significance: The user has to specify the level of significance. We 

have selected the default value 0.05 as the level of significance.  

 

Figure 4.12. Specify the level of significance 

10. Method of adjustment: The user has to select the method of adjusting the p-

values for multiple testing of features. We have provided six adjustment methods. 

We selected “BH” adjustment method. 

 

Figure 4.13. Specify the adjustment method 

After specifying all the inputs, the user has to hit the “Submit” button and wait for 

the results. 
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Results obtained 

1. Inputs selected: The various inputs defined by the user for the analysis can be 

viewed as given below. 

 

Figure 4.14. Inputs selected 

2. Visual plots of the preprocessed data: The various exploratory plots of the 

preprocessed data such as box plot, density plot, correlation heatmap can be 

viewed under each tab as shown in Figures 4.15-4.17. 

 

Figure 4.15. Box plot of preprocessed expression data 
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Figure 4.16. Density plot of preprocessed expression data 

 

Figure 4.17. Interactive correlation heatmap of preprocessed expression data 

From the box plot and density plot, we find that the data normalized using the 

“VSN” normalization method and analysis using “SVD” imputation method are 

normally distributed for all the samples. Here, we have normalized and imputed 

the data group wise. 

The correlation heatmap shows correlation between the samples and the 

corresponding p-values. 

3. The SS results: (i) The results showing the contribution of SS squares due to 

each variable, the p-values and the adjusted p-values corresponding to each 

variable are shown below. If the input is peptide data and analysis is at “Protein” 

level, the table will also show the number of peptides corresponding to each 
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protein. The complete SS result can be downloaded by clicking on the 

“Download_Result_SS_Features” link. 

 

Figure 4.18. Contribution of SS due to each variable, the p-values and the adjusted p-values 

corresponding to each variable for each protein 

(ii) The result summary of % SS contribution due to each variable is shown below 

in Figure 4.19. 

 

Figure 4.19. Summary of % SS contribution due to each variable 

(iii) The box plot showing % contribution of SS due to each variable is given in 

Figure 4.20.  
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Figure 4.20. The box plot showing % contribution of SS due to each variable 

From the summary and box plots, we found that the SS contribution due to the 

variable M2 is more than that of variable M1. The variable “Age” has the least SS 

contribution. 

4. The CV analysis: We calculate the CV corresponding to the groups within 

each categorical variable. We obtained the following results: (i) CV of different 

groups of each categorical variable for all the proteins, (ii) Summary of CV (%) 

for all the proteins, and (iii) Box plot showing CV under the various groups of 

categorical variables. These results are shown in Figures 4.21-4.23. 

 

Figure 4.21. The CV (in %) of different groups of each categorical variable for all the proteins 
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Figure 4.22. Summary of CV (in %) for all the proteins 

 

Figure 4.23. Box plot showing CV (in %) under the various groups of categorical variables 

The summary and box plots of CV show that (i) within variable M1, A2 has lesser 

variability that of A1 and (ii) within variable M2, B2 has the least variability among 

the three approaches of M2. 

5. Number of significant features: A table showing the total number of proteins 

assessed and the number of proteins which have significant effect due to each 

variable, “M1”, “M2” and “Age”, without and with adjustment is shown below. 

 

Figure 4.24. Summary of significant proteins 
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We found greater number of proteins showing significant effects due to M2 than 

that of M1. This further shows that variable M2 has more significant effect than 

that of M1. The variable “Age” has very less effect, i.e., only two protein showed 

significant effect due to “Age”. 

The user can download the results under each tab by clicking on the 

download links provided under each tab. The tables will be downloaded in “xlsx” 

format and the plots will be download in “png” format. 

We analyzed the data at the protein level using VSN normalization and the 

SVD imputation method. By providing various inputs to the tool, the user gets 

various results. Based on the summary and box plots of SS, we found that the 

SS contribution due to the variable M2 is more than that of variable M1. We 

found that the variable “Age” has the least SS contribution. Furthermore, the 

summary and box plots of CV show that (i) within variable M1, A2 has lesser 

variability that of A1 and (ii) within variable M2, B2 has the least variability among 

the three approaches of M2. Therefore, we can conclude that (i) approach A2 is 

better that that of A1 for the method M1, (ii) approach B2 is better than those of 

B1 and B3 for the method M2. 

Conclusion 

Our tool  provides a user-friendly approach to standardize proteomics workflow 

using multiple statistical approaches. The user can identify the variable with 

greater variability based on SS as well as the best approach for the steps 

involved in the proteomics workflow based on the CV. The tool will be helpful to 

the researchers for designing and executing experiments. 
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CHAPTER 5 

INTERACTIVE TOOL FOR STATISTICAL ANALYSIS OF LABEL-FREE LC-MS 

PROTEOMICS DATA CONSIDERING MISSING VALUES AND 

HETEROGENEITY 

Introduction 

Identification, quantification, and characterization of peptides and proteins from 

biological samples are important for understanding the molecular processes 

governing the cell physiology and pathophysiology [11]. With the introduction of 

high throughput technologies such as ultra-high-performance liquid 

chromatography coupled to high resolution mass spectrometers [24, 41], the high 

mass accuracy proteomics data can be reliably generated from samples and 

further processed and modeled using various statistical approaches. However, 

the heterogeneity in the LC-MS data due to variations in the biological samples 

or technical approaches can be problematic for accurate biological modeling [56]. 

Here, we are dealing with expression proteomics including the analysis of 

features (peptides and/or proteins) at large scale. Differential expression (DE) 

analysis of features is carried out to detect significant features in two or more 

conditions, such as healthy versus different disease conditions. Despite the 

availability of tools for analyzing proteomics data [57, 77-79], there are various 

statistical challenges in analyzing proteomics data, such as data heterogeneity 
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and missing values (MVs)  [52, 55]. The biological variability among the samples 

and technical approaches of data generation lead to heterogeneity. Biological 

variability arises from genetic and environmental factors. The technical 

approaches such as sample extraction, storage, different batches of buffer, 

repeating mass spectrometer runs, etc., lead to changes in the expression data. 

Therefore, biological and technical variability along with other covariates such as 

race, gender, age, height, etc., should also be taken in account in the analysis. 

Furthermore, there is problem of MVs in the proteomics data that can occur due 

to biological and/or technical issues. There are three broad categories of MVs, 

namely, MCAR, MAR and MNAR [53].  

 Here, we introduce a user-friendly shiny tool to analyze and compare 

proteomics expression data scalable from small cell-culture based studies to 

large clinical proteomic studies using various statistical approaches. We have 

enabled the use of various input parameters to perform DE analysis by various 

approaches. Our tool will be helpful to detect differentially expressed features 

while considering the variability due to biological and technical replicates as well 

as missing observations. We have provided options to adjust the effect due to 

additional covariates such as age, race, etc. We have implemented the methods 

in R [1]. The tool has been made using “shiny” package [3]. The interactive plots 

were implemented using “plotly” [80].  

Methods  

We have provided various options at each step to perform the data analysis. The 

two main pipeline inputs required for our platform are label-free proteomics 
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expression data and the additional pre-clinical or clinical information, such as 

patient demographic covariates. The various steps in the workflow of DE analysis 

of proteomics data are given below.  

1. Upload the proteomics expression data 

2. Select the type of feature for the analysis: The analysis can be done either at 

the protein or peptide level. So, the user then selects either “Protein” or “Peptide” 

for the analysis. 

3. Select the aggregation method (Mean/Median/Sum/Max): Data aggregation is 

required if the user has provided the peptide data and wants analysis at the 

protein level. It is also applicable to other situations, such as when the features 

are redundant. 

4. Upload the additional information of the data: The additional information of the 

data such as samples, groups, biological samples, etc., is required for the 

analysis. In complex experiments, there can be other independent variables 

present such as run, biological replicate, gender, age, etc. We have provided the 

user a method to include these variables in such situation. After the file is 

uploaded, the user must specify the nature of variables. 

5. Select the categorical fixed effect: The fixed effects are the effects that remain 

constant across individuals. Here, the user has to select the categorical fixed 

effects such as groups, genotype, race, gender, etc. 

6. Select the numeric (continuous) fixed effect: The user has to select the 

numeric (continuous) fixed effects such as age, height, etc. 
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7. Select the random effects: The random effects are the effects that are random 

and unpredictable. The random effects cannot be controlled by the experimenter, 

e.g., MS run, biological replicates, technical replicates, etc. 

8. Select the categorical fixed effect of interest: The user has to specify the 

variable of interest which is considered to have a fixed effect. 

9. Select a comparison of interest: After selecting the categorical fixed effect of 

interest, all the available pairwise comparisons will appear in the drop-down 

menu. The user can select one comparison at a time. 

10. Choose the method of analysis:  

(i) Excluding MVs: We retain the features having complete observations for all 

the samples. The features with MV in any of the samples are discarded from the 

analysis. However, this approach is generally not preferred as it leads to 

exclusion and loss of various features. Therefore, we have provided the option of 

imputing MVs. 

(ii) Imputing MVs: We provide a hybrid imputation method of the R package 

“imputeLCMD” [62] that assumes the MVs are both MAR and MNAR. We have 

given the users two different options for data imputation under the assumption of 

MAR or MCAR, (a) Singular value decomposition [64]  and (b) K-nearest 

neighbor [65, 66]. The MNAR assumption uses a quantile regression method for 

the imputation of left-censored missing data in quantitative proteomics. The MVs 

are imputed for each group separately after normalizing the data [61]. 

11. Choose the transformation and/or normalization methods: Data 

transformation and/or normalization is required to achieve consistency across the 
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samples. The normalization is done group-wise, based on the variable of interest. 

We have provided the following options: 

(i) Logarithmic transformation: The raw data are transformed to log base 2. 

(ii) Quantile normalization: The raw data are  transformed to log base 2 followed 

by QN using the function “normalize.quantiles” [67] of the R package 

“preprocessCore” [68].  

(iii) Variance stabilizing normalization: The raw data are normalized by using the 

“justvsn” function of the R package “vsn” [69], separately for each group. 

(iv) None: The users can use their own normalized data in place of raw intensity 

data. 

12. Method of DE analysis: We have provided various options to detect 

differentially expressed features. It is assumed that the data follow normal 

distribution after applying the data transformation and/or normalization method. 

The user must select the appropriate test, depending on the experimental design, 

which are discussed below. 

(i) LIMMA/Moderated t-test: We have used “limma” R package [81]. This is the 

most robust statistical analysis method. We fit the linear model using “lmFit” 

function for each feature. The moderated t-statistics and the coefficient estimates 

are computed by using empirical Bayes (eBayes) method [82, 83]. The feature-

wise residual variances are squeezed toward a common value using eBayes 

method. However, this method can handle only a single random effect. 

(ii) Linear fixed or mixed model approach: A general linear approach with fixed 

and random effects is a much more flexible and powerful technique that can be 
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applied to more complex designs. If random effects have been specified by the 

user, then we fit the linear mixed-effects models using R package “lme4” [84]. 

We have used R package “afex” for estimating the mixed models and calculating 

the p-values of fixed effects [85]. This option can also handle more than one 

variable having random effects. In the absence of any random effect, we fit a 

linear model using the “lm” function [1]. The contrasts of the estimated marginal 

means for linear and mixed models are computed using R package “emmeans” 

[86]. 

(iii) Pairwise t-tests: On clicking the radio button “T-test”, a dropdown menu 

showing three different types of t-test will appear. The three types of t-test are 

given below: 

(a) Two sample t-test assuming equal variances: This option performs t-test with 

the assumption that the two populations have equal variances with equal and 

unequal samples sizes. 

(b) Two sample Welch’s t-test assuming unequal variances: The Welch’s t-test is 

used when the population variances are assumed to be unequal. The sample 

sizes may be equal or unequal.  

(c) Paired t-test: This option performs the paired t-test. This test is used to 

compare two population means from the same population at two different times 

(repeated measures) or to compare two population means from different 

populations in which the observations have been matched or “paired”. 

If the user chooses options, t-test or Welch’s t-test, the test will consider only the 

fixed effect of interest. The analysis will not control the effects of other variables. 
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If the user wants to control the effects due to other variables, then the user must 

choose the options (i) LIMMA/moderated t-test or (ii) linear fixed/mixed model 

approach. If there is only one fixed effect and no other covariates, then the first 

option gives the result based on moderated t-test, whereas the second option 

gives the result equivalent to Welch’s t-test. 

13. Select the significance level: By default, it is 0.05. However, the user can 

specify any cut-off between 0 and 1. 

14. Desired log2 fold change (FC) cut-off: We have assumed the data is 

approximately on log 2 scale for easier interpretation of the results. The user can 

specify a desired log2 FC cut-off. By default, the value of log2 FC is 1, which 

means a doubling in intensity (abundance values). 

15. Method of adjustment: We have provided several methods of adjusting p-

values for testing multiple features available in R [1]. These are Benjamini-

Hochberg (BH), Bonferroni, Holm, Hochberg, Hommel, and Benjamini-Yekutieli 

(BY). The BH method is the default adjustment method. 

After specifying all the input parameters, the user has to hit the “Submit” 

button to get the results. The results are displayed under each tab. The tab 

“Inputs selected” contains the various input parameters provided by the user. We 

provide various exploratory plots such as box plot, density plot, correlation 

heatmap and multidimensional scaling (MDS) plot. The summary of differentially 

expressed features can be viewed under “Summary” tab. The user can view the 

result of DE analysis under the tab “Table of differentially expressed features”. 

We provide interactive volcano plots for both with and without adjustment. All the 
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results can be download by clicking on the download links provided under each 

tab. The summary and table of differentially expressed features are downloaded 

in “xlsx” format. By clicking on the download link under “Table of differentially 

expressed features”, the user will obtain the DE analysis result, complete results 

having the overall F-statistic, p-value and other values for different contrast or 

comparison, and the preprocessed data. All the plots are downloaded in “png” 

format. 

Demonstration and results 

To demonstrate our web-based application, we generated a test proteomics 

expression data set abstracted from locally available clinical proteomics data sets 

consisting of 200 proteins corresponding to 1000 peptides. The additional data 

information file contains the information with headings, “Samples”, “Group”, 

“Race”, “Bio”, “Run” and “Age”. The “Group” is the fixed effect of interest. There 

are three groups, namely, control, case1 and case2, each having three biological 

replicates with two MS runs. Thus, there are six samples in each group leading to 

total 18 samples. After specifying the input parameters and submitting the job, 

we obtained various results such as results summary, result showing 

differentially expressed features, graphical plots (box plots, density plots, 

correlation heatmap, MDS plot, volcano plots). The steps involved in the analysis 

with screenshots are as follows.  
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Figure 5.1. Webpage of the tool “SATP” 

Input specifications 

We have demonstrated the webtool using a test proteomics dataset. The inputs 

to be provided by the user are as follows: 
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1. Upload the proteomics expression data: The first step is to upload the 

proteomics expression data either in csv, txt, tsv, xls or xlsx format. The first two 

columns are reserved for proteins and peptides. If the data are available at the 

protein level only and there are no peptide data, then user must leave the second 

column blank. The expression data must start from the third column and 

onwards. The first row must contain the labels such as “Protein”, “Peptide” 

followed by the sample names (starting from third column). A portion of input 

expression data is shown below. 

 

Figure 5.2. A portion of proteomics expression data 

The user has to click on the “Browse…” button for selecting the expression data 

file as given below in Figure 5.3. 

 

Figure 5.3. Upload the proteomics expression data 
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2. Select the type of feature for the analysis: The feature type available will 

automatically be detected after uploading the expression data file. There are two 

options available: “Protein” or “Peptide”. We selected the analysis to be done at 

“Protein” level as given below. 

 

Figure 5.4. Choose the type of feature– “Protein” or “Peptide” 

3. Select the aggregation method: There are four options available for data 

aggregation (Mean/Median/Sum/Maximum). We selected “Mean” for aggregating 

the peptide data at protein level as given below. 

 

Figure 5.5. Choose the aggregation method 

4. Upload the additional information: Now the user has to upload the additional 

information about the data either in csv, txt, tsv, xls or xlsx format. The first row 
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must contain the labels of various information. The first column contains the 

sample names. The screen shot of the additional data is shown below.  

 

Figure 5.6. Additional information of data  

In the given example, labels in the first row are: “Samples”, “Group”, 

“Gender”, “Race”, “Bio”, “Run”, “Age”. There are three groups (column with label 

“Groups”), namely, “Control”, “Case1” and “Case2”, each having three biological 

replicates (column with label “Bio”) with two MS runs (column with label “Run”). 

There are six samples in each group leading to total 18 samples (column with 

label “Samples”). There are three additional covariates (gender, race and age) in 

the data. The covariates gender (column with label “Gender”) and race (column 

with label “Race”) are categorical fixed effects, each having two levels. Gender 

has two levels: “Male” and “Female”. Race has two levels: “White” and “Black”. 

The covariate age (column with label “Age”) is continuous/numeric fixed effect. 

The file can be uploaded by first by clicking on the “Browse…” button and 

then selecting the file as given in Figure 5.7. 
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Figure 5.7. Upload the file with additional information of data 

5. Select the categorical fixed effect: The user has to select the categorical fixed 

effects one by one which will automatically pop out after uploading the file 

containing additional information. We have selected “Group” and “Race” as the 

categorical fixed effects as given below in Figure 5.8. 

 

Figure 5.8. Selection of categorical fixed effects 

6. Select the continuous fixed effect: After selecting the categorical fixed effects, 

the user can now select the continuous variable from the remaining variables, if 

available. We have selected “Age” in the given example (Figure 5.9). 
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Figure 5.9. Selection of continuous variables 

7. Select the random effects: After selecting the fixed effects, the user has to 

select the random effects, if available. We have selected “Run” as random effect 

as given below in Figure 5.10. 

 

Figure 5.10. Selection of random effects 

8. Select the categorical fixed effect of interest: The user has to specify the 

variable of interest which is considered to be having a fixed effect. We have 

selected “Group” as the variable under study (Figure 5.11).  
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Figure 5.11. Selection of categorical fixed effect of interest 

9. Select a comparison of interest: We selected “Control vs. Case1” from the list 

of all available pairwise comparisons in the drop-down menu (Figure 5.12). 

“Control vs. Case1” means “Case1” is compared to “Control”. 

 

Figure 5.12. Selection comparison of interest 

10. Choose method of analysis: We have provided two options for the analysis: 

(i) Excluding missing values, and (ii) Imputing missing values (default option). 

There are two methods of data imputation available: (a) SVD, and (b) KNN. We 

selected the radio button “Imputing missing values” and “SVD” method for data 

imputation. The screenshots are given below in Figure 5.13. 

 

Figure 5.13. Select analysis method 
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11. Choose the transformation and/or normalization methods : There are four 

options available for data transformation and/or normalization 

(log2/QN/VSN/None). We selected “Quantile Normalization” for data 

normalization as given below. 

 

Figure 5.14. Selection of normalization method 

12. Method of DE analysis: We provide: (i) LIMMA/ Moderated t-test, (ii) linear 

fixed or mixed model approach, and (iii)  various forms of t-test: The LIMMA 

method provides the most reliable and robust statistical test. Therefore, we have 

made this option as the default method. On clicking the radio button “T-test”, a 

dropdown menu showing three different types of t-test will appear as given below 

in Figure 5.15. 

 

Figure 5.15. Selection of statistical testing method 

We have selected the default method (LIMMA/Moderated t-test) for the 

demonstration. 
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13. Select the significance level: The user has to specify the level of significance. 

We have selected the default value 0.05 as the significance level (Figure 5.16). 

 

Figure 5.16. Specify the level of significance 

14. Desired log2 fold change (FC) cut-off: The user can specify a desired log2 FC 

cut-off. We have specified the default value of log2 FC as 1 (Figure 5.17). 

 

Figure 5.17. Specify the desired log fold change 

15. Method of adjustment: The user has to select the method of adjusting the p-

values for multiple testing of features. We have provided six adjustment methods. 

We selected “BH” adjustment method (Figure 5.18). 

 

Figure 5.18. Specify the adjustment method 

Output specifications 

After specifying all the inputs, the user has to hit the “Submit” button and wait for 

the results. The results are displayed by clicking on the respective tabs. The 

screenshots for all the results are as follows. 

1. Inputs selected: The various inputs defined by the user for the analysis can be 

viewed under the tab “Inputs selected” as given in Figure 5.19. 
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Figure 5.19. Inputs selected 

2. Visual plots of the preprocessed data: Various exploratory plots of the 

preprocessed data such as box plots, density plots, correlation heatmap and 

MDS plot can be viewed under their respective tabs as shown in Figures 5.20-

5.23. 

 

Figure 5.20. Box plots of preprocessed expression data for different groups 
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Figure 5.21. Density plots of preprocessed expression data for different groups 

 

Figure 5.22. Interactive correlation heatmap of preprocessed expression data 

 

Figure 5.23. Interactive MDS plot 
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3. Differential expression analysis results: Summary of results showing the total 

number of features (proteins or peptides) analyzed, number of differentially 

expressed features, number of differentially expressed features between desired 

log FC cutoffs, number of upregulated and downregulated features will be 

obtained under “Summary” tab. The summary will be for both adjusted and not 

adjusted. An example is shown below in Figure 5.24. 

 

Figure 5.24. Summary of result 

The result of DE analysis of the features can be viewed under the tab 

“Table of DE features” (Figure 5.25). It will show the result for each feature 

analyzed. We have analyzed the data at “Protein” level using the SVD imputation 

method. Therefore, the table shows the names of proteins in first column and the 

number of peptides belonging to a protein in second column. If the data are 

analyzed at the “Peptide” level, then the first column contains the protein names 

and the second column contains the peptide sequence. The table also shows the 

percent of MVs in each group, e.g., “MV (%) Control” and “MV (%) Case1”’. If the 

user chooses the method excluding MVs, then the percent of MVs will not 

appear. The table also shows the estimate (equivalent to log2 FC), t-value, 

degree of freedom (df), p-values without adjustment and adjusted p-values for 

each feature. The user can download the results by clicking on the download link 
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button. The table of differentially expressed features, complete results and 

preprocessed data will be downloaded in zip format. If more than two groups are 

present, then the complete results will have overall F-value, F statistic (without 

and with adjustment), DE analysis results based on all pairwise contrast or 

comparison. 

 

Figure 5.25. Result of differential expression analysis 

The interactive volcano plots without adjustment and with adjustment can be 

viewed respectively under the tabs “Volcano plot (Not adjusted)” and “Volcano 

plot (Adjusted)” (Figures 5.26 and 5.27). 

 

Figure 5.26. Volcano plot without adjustment 
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Figure 5.27. Volcano plot with adjustment 

All the results can be downloaded by clicking on the download link button 

provided under each tab. The table results will be download in xlsx format. The 

visual plots will be download in png format. Some results will be download in zip 

format. The user has to unzip the files and the individual files in xlsx or png 

format can be viewed separately. 

Here, we analyzed the data at protein level. We used the mean of 

expression values of peptides corresponding to a protein. We compared the 

groups “Control vs. Case1” for differential expression analysis. We adjusted the 

effect due to race (categorical) and age (continuous). The run effect is 

considered as the variable having random effect. We normalize the data using 

QN and imputed the data using “SVD” method. We used the LIMMA method with 

desired log2 FC 1 at the significance level 0.05. We used the “BH” method for 

adjusting multiple testing of proteins. The distribution of the expression data of 

different samples in each group can be examined by exploratory plots such as 

box plots (Figure 5.20) and density plots (Figure 5.21). The interactive correlation 

heatmap (Figure 5.22) shows the correlation coefficients and p-values of 



72 
 

correlation for all possible pair of samples. The MDS plot allows the user to find 

the relationship among the samples based on the group. In Figure 5.23, the 

samples are clustered well together in each group except for one sample in 

“Case1” group. The summary of DE analysis is given in Figure 5.24. The number 

of differentially expressed proteins without adjustment is 67 out of total 200 

proteins. Without adjustment, there are 16 upregulated and 20 downregulated 

proteins at log2 FC cut-off of ±1; and 31 significant proteins between the log2 FC 

cut-offs. However, the p-values need to be adjusted for testing the multiple 

proteins. Therefore, with adjustment, we found only 39 proteins to be significant 

(14 upregulated, 15 downregulated and 10 significant between the log2 FC cut-

offs). The result of DE analysis for each protein can be viewed and a portion of 

the result is given in Figure 5.25. The volcano plot is generally used to display 

the result of DE analysis. The interactive volcano plots without and with 

adjustment are given in Figure 5.26 and 5.27 respectively. The most upregulated 

proteins are towards the right (red color) and the most downregulated proteins 

are towards the left (blue color) with the most statistically significant proteins are 

towards the top (above the dotted horizontal line). The non-significant proteins 

are towards the down (black color). The plot also displays the significant proteins 

between the log FC cut-offs (green color). All the results can be viewed and 

downloaded. 

Discussion 

Our tool is a valuable source for analyzing proteomics expression data even in 

the presence of MVs and accommodating complex experimental design. We 
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have fully tested our tool for proper function. The user can perform the analysis 

interactively and can download the results for each comparison. In case of more 

than two groups, the user can download the complete results with DE analysis 

results for all possible pairwise comparisons. We compared our tool “SATP” with 

the existing tools, RepExplore [57] and MSqRob [79] for the DE analysis of 

proteomics expression data. A brief comparison among the tools is given below: 

Table 5.1. Comparison among the tools: SATP, RepExplore and MSqRob 

 SATP RepExplore MSqRob 

Ability to handle MVs Yes No No 

Ability to compare more than two groups Yes No Yes 

Ability to adjust additional covariates  Yes No No 

 

As compared to the existing tools, our tool has several advantages. The first 

advantage is that the tool can analyze data having missing observations while 

considering the heterogeneity due to biological and technical replicates. We also 

provide the percentage of MVs for each feature for various groups under 

comparison in the results obtained using imputation method. This will be helpful 

for deciding whether the feature is significant or not. The second advantage is 

that we have provided robust statistical methods such as LIMMA and linear 

fixed/mixed models that can accommodate complex experimental design. The 

user can also control the effects of additional covariates such as gender, age, 

height, etc. Our tool can analyze the data for two or more than two groups. The 

third advantage is the user can analyze the data both at the protein and peptide 

levels. 
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Conclusion 

Our tool will be a useful resource for the researches working in the field of 

proteomics and bioinformatics. We have provided different ways to analyze 

proteomics abundance data. Furthermore, this can be used to analyze data from 

similar experiments with expression values (e.g., microarray and metabolomics 

data).
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CHAPTER 6 

SAMPLE SIZE ESTIMATION FOR HETEROGENEOUS PROTEOMICS 

EXPERIMENTS USING STATISTICAL AND COMPUTATIONAL APPROACHES 

Introduction 

Proteomics studies are carried out on large scale and designed to address both 

qualitative and quantitative aspects of the proteome [11, 12]. The proteomics 

experiment can lead to identification of novel biomarkers which are measurable 

indicator of some biological state or condition [87]. The biomarker discovery will 

lead to better understanding of the biological or physiological process such as 

mechanism of disease. Despite the major advances in proteomics and 

bioinformatics approaches, still there are limitations and challenges in the 

experimental design.  

Design and sample size estimation are important for carrying out 

proteomics experiments. Various studies have been done with respect to the 

design, power analysis and sample size calculation for proteomics experiments 

[51, 88-91]. The sample size required in a study depends on various constraints 

such as data availability, budget, support facilities, time requirement, etc. Sample 

size can be estimated by either using simulation methods or using pilot data or 

using similar data sets. However, the proteomics data obtained from proteomics 

experiments have a lot of missing values (MVs) and are highly heterogeneous. In 

previous chapters, we have suggested the use of the imputation methods for 
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better analysis of proteomics experiments. In this chapter, we have provided 

various statistical approaches for sample size calculation. 

In Chapter 5, we have developed a tool for differential expression analysis 

of proteomics experiment. In this chapter, we developed sample size calculation 

methods to test the significance of features for quantitative proteomics 

expression data. Sample size calculation for testing the significance of features 

between two groups is based on Welch’s t-test [92, 93]. We have implemented 

all the methods in R [1] and we have developed user-friendly shiny apps [3] for 

estimating sample size for proteomics experiment under allocation and cost 

constraints. 

In Chapters 3 and 4, we studied and implemented various approaches of 

standardizing proteomics workflow for LC-MS data. In the last section of this 

chapter, we studied the impact of technical variability on the study design for 

proteomics experiment. The sample size calculation is based on the coefficient of 

variation (CV) [94]. 

Sample size calculation for detecting differentially expressed features 

between two classes 

The sample size and cost estimation are important for carrying out the 

experiments successfully. Our method of sample size calculation is based on 

Welch’s t-test for comparing means between two groups (or classes) [92]. We 

have used the general methods of optimal sample sizes for Welch’s test given by 

Jan and Shieh [93]. The methods were modified and extended to estimate 
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sample size for proteomics experiment involving multiple features. These 

methods are discussed below: 

A. Sample size calculation for comparing means between two groups for a 

single feature 

The study aims at class comparison, that is, detecting features which significantly 

differ in abundance between two groups. We construct the hypothesis setting for 

testing group effect, i.e., whether a feature is differentially expressed between 

two groups, as given below: 

𝐻0: 𝜇1 = 𝜇2 vs. 𝐻1: 𝜇1 ≠ 𝜇2 

where, 𝜇1 and 𝜇2 are the population means corresponding to group 1 and group 

2 respectively.  

Alternatively, the above setting can be written as 

𝐻0: 𝜇𝑑 = 0 vs. 𝐻1: 𝜇𝑑 ≠ 0 

where, 𝜇𝑑 = 𝜇1 − 𝜇2 = 0. 

The outcomes of testing the null hypothesis belong to one of the four scenarios 

as given below in Table 6.1. 

Table 6.1. The outcomes of testing null hypothesis vs. alternative hypothesis 

  Null hypothesis (equal abundance) 

  True equal abundance False equal abundance  
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Fail to reject 

(abundances are equal) 

Correct decision (1 − 𝛼) 

True Negative 

Type II error (𝛽) 

False Negative 

Reject (abundances are 

unequal) 

Type I error (𝛼) 

False Positive 

Correct decision (1 − 𝛽) 

True Positive 
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The significance level of test 𝛼 is the probability of making type I error. The 

probability of type II error is denoted as 𝛽. The power  of the test, (1 − 𝛽), is 

defined as the probability of correctly rejecting the false null hypothesis. We need 

to fix the significance level and power of the test at desired levels in advance. 

Furthermore, we must specify the desired fold change (FC) or difference 

between population means to be detected. 

Two-sample t-test is derived under the assumptions that the populations 

are normally distributed and have equal variance. The Welch’s t-test is an 

adaptation of Student’s t-test and is more robust when the populations have 

unequal variance, and/or the sample sizes are unequal. Let us consider 

independent random samples from two normal populations, 𝑋𝑖𝑗~𝑁(𝜇𝑖, 𝜎𝑖
2), 

(𝑖 = 1, 2;  𝑗 = 1, 2, … , 𝑁𝑖) where 𝜇1, 𝜇2, 𝜎1
2 and 𝜎2

2 are unknown parameters. The 

Welch’s test statistic is defined as 

𝑡𝑊 =
𝑋̅1−𝑋̅2

√
𝑆1
2

𝑁1
+
𝑆2
2

𝑁2

      (6.1) 

where 𝑋̅𝑖 =
∑ 𝑋𝑖𝑗
𝑁𝑖
𝑗=1

𝑁𝑖
 and 𝑆𝑖

2 =
∑ (𝑋𝑖𝑗−𝑋̅𝑖)

2𝑁𝑖
𝑗=1

(𝑁𝑖−1)
. 

Under null hypothesis 𝐻0, the approximate distribution of 𝑡𝑊 given by Welch [92] 

is 𝑡𝑊~𝑡(𝑛̂), i.e., t with 𝑛̂ degrees of freedom given by 

𝑛̂ =
(
𝑆1
2

𝑁1
+
𝑆2
2

𝑁2
)

2

𝑆1
4

𝑁1
2(𝑁1−1)

+
𝑆2
4

𝑁2
2(𝑁2−1)

                                                           (6.2) 

The null hypothesis is rejected if |𝑡𝑊| > 𝑡𝑛̂,𝛼 2⁄ , where 𝑡𝑛̂,𝛼 2⁄  is the upper  100(𝛼/

2)th percentile of the t-distribution 𝑡(𝑛̂). The same concept was also suggested 
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by Smith [95] and Satterthwaite [96]. Therefore, the test is also sometimes 

referred to as the Smith-Welch-Satterthwaite test. The test is an approximate 

solution of Behrens-Fisher problem. The exact distribution of Welch’s t-test is 

complicated, and it can be expressed in different forms. We use the following 

notations for the alternate expression of Welch’s t-test [93]. 

𝑍 =
𝑋̅1 − 𝑋̅2
𝜎

~𝑁(𝛿, 1) 

𝛿 =
𝜇1 − 𝜇2
𝜎

 

𝜎2 =
𝜎1
2

𝑁1
+
𝜎2
2

𝑁2
 

𝑊 =
(𝑁1 − 1)𝑆1

2

𝜎1
2 +

(𝑁2 − 1)𝑆2
2

𝜎2
2 ~𝜒2(𝑁1 + 𝑁2 − 2) 

𝐵 =

(𝑁1 − 1)𝑆1
2

𝜎1
2

𝑊
~𝐵𝑒𝑡𝑎 (

(𝑁1 − 1)

2
,
(𝑁2 − 1)

2
) 

The alternate expression of Welch’s test statistic is given by 

𝑡𝑊 =
𝑇

√𝐻
        (6.3) 

where 𝑇 =
𝑍

√
𝑊

𝑁1+𝑁2−2

~𝑡(𝑁1 + 𝑁2 − 2, 𝛿), which is the non-central t-distribution with 

degrees of freedom 𝑁1 + 𝑁2 − 2 and non-centrality parameter 𝛿; 𝐻 =
𝜎1
2

𝑁1

𝐵

𝑝
+

𝜎2
2

𝑁2

(1−𝐵)

(1−𝑝)
 with 𝑝 =

𝑁1−1

𝑁1+𝑁2−2
. The random variables, Z, W and B are mutually 

independent. Here, the variables T and B are also independent. The alternate 

expression of degrees of freedom can be written as 

𝑛̂ =
1

𝐵1
2

(𝑁1−1)
+

𝐵2
2

(𝑁2−1)

                           (6.4) 
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where, 𝐵1 =

𝜎1
2

𝑁1

𝐵

𝑝

𝜎1
2

𝑁1

𝐵

𝑝
+
𝜎2
2

𝑁2

(1−𝐵)

(1−𝑝)

 and 𝐵2 = 1 − 𝐵1. The power function of 𝑡𝑊 is given by 

𝜋(𝜇𝑑, 𝜎1
2, 𝜎2

2, 𝑁1, 𝑁2) = 𝑃{|𝑡𝑊| > 𝑡𝑛̂,𝛼 2⁄ } = 𝑃{|𝑇| > 𝑡𝑛̂,𝛼 2⁄ √𝐻}  (6.5) 

The exact power can be calculated by using Simpson’s rule. 

A1. Allocation of samples between two groups 

Let the sample size ratio (
𝑁2

𝑁1
= 𝑟 ≥ 1) between two groups be fixed in advance. 

Then the power function becomes a strictly monotone function of 𝑁1 with other 

parameters held constant. A simple incremental search can be used to find out 

the minimum sample size 𝑁1 required to achieve the given power at a 

significance level 𝛼. The large sample normal approximation can be used as the 

starting values for the iteration. According to Jan and Shieh [93], the starting 

sample size 𝑁1𝑍 would be the smallest integer satisfying the inequality 

𝑁1𝑍 = (𝜎1
2 + 𝜎2

2 𝑟⁄ )(𝑧𝛼/2 + 𝑧𝛽)
2
𝜇𝑑
2⁄    (6.6) 

However, for large values of 𝜇𝑑, the program sometimes return error as the 

starting value of 𝑁1𝑍 is less than 1. Therefore, we are using max(𝑁1𝑍 − 1, 1) as 

the starting value. For example, if we use the original program with 𝜇𝑑 = 4, it will 

not return any result. With the input parameters given below, we found the 

following sample sizes with the actual power achieved. The original program was 

unable to calculate the sample sizes with parameters 𝜇𝑑 = 4, 𝛼 = 0.05, 1 − 𝛽 =

0.90 for different values of r and 𝜎1: 𝜎2. The sample sizes and the exact power 

obtained with these parameters are shown in Table 6.2. 
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Table 6.2. Sample sizes (𝑁1, 𝑁2) and power computed when r is fixed with parameters 

𝜇𝑑 = 4, 𝛼 = 0.05, 1 − 𝛽 = 0.90 for different combinations of r and 𝜎1: 𝜎2. 

 𝝈𝟏: 𝝈𝟐 

 1/3:1 1/2:1 1:1 2:1 3:1 

r 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 

1 3 3 0.9245 3 3 0.9330 4 4 0.9926 6 6 0.9590 9 9 0.9235 

2 2 4 0.9876 2 4 0.9313 3 6 0.9479 5 10 0.9077 9 18 0.9307 

3 2 6 0.9907 2 6 0.9307 3 9 0.9443 5 15 0.909 9 27 0.9328 

 

A2. Allocation of samples between two groups under a budget constraint 

The various costs incurred for conducting a proteomics experiment such as 

quantitative LC-MS/MS are as follows: 

(i) Sample procurement cost: It depends on the number biological and/ or 

technical replicates for each condition. For a case-control study, with 𝑁1 and 𝑁2 

replicates respectively, in control and case groups, the cost will be 𝑐1 = 𝑎11𝑁1 +

𝑎12𝑁2, where 𝑎11 and 𝑎12 are respectively the sample procurement cost per 

sample in control and case. 

(ii) Sample preparation cost: It involves the methods such as digestion (e.g. 

trypsin), alkylation, µ-Solid Phase Extraction and sample cleaning. The cost will 

be 𝑐2 = 𝑎2(𝑁1 + 𝑁2), where 𝑎2 is the sample preparation cost per sample. 

(iii) LC-MS/ MS analysis: The cost of LC-MS/MS analysis will depend on the type 

of sample (e.g., simple or complex) and duration. The cost for LC-MS/MS 

analysis will be 𝑐3 = 𝑎3(𝑁1 + 𝑁2), where 𝑎3 is per sample LC-MS/MS analysis 

cost. 

(iv) Database search and protein identification: 𝑐4 = 𝑎4(𝑁1 + 𝑁2), where 𝑎4 is the 

cost for database search and identification. 
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(v) Analysis: 𝑐5 = 𝑎5(𝑁1 + 𝑁2), where 𝑎5 is the average cost of analysis per 

sample. 

The total cost for conducting the experiment is given by 

𝐶 = 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 + 𝑐5 

= (𝑎11 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5)𝑁1 + (𝑎12 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5)𝑁2 

Therefore, the total cost can be written as 𝐶 =  𝐶1𝑁1 + 𝐶2𝑁2, where 𝐶1 and 𝐶2 are 

the average cost per sample in control and case, respectively. The list of prices 

for each step are available at various online sources. A hypothetical example of 

cost calculation per sample in a quantitative proteomics experiment is given 

below in Table 6.3. 

Table 6.3. A hypothetical example of various costs involved in quantitative proteomics 

experiment 

Services Price per sample (in USD) 

Sample procurement cost 50 

Sample preparation: digestion, extraction and 
cleanup 

60 

LC-MS/MS 100 

Data base search and protein identification  50 

Analysis 40 

Total cost per sample 300 

 

Let the total cost 𝐶 is fixed in advance as given below: 

𝐶 = 𝐶1𝑁1 + 𝐶2𝑁2                (6.7) 
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The optimal sample size ratio is proportional to the ratio of standard deviations 

divided by the square root of ratio of costs [97]. Therefore, the optimal allocation 

is obtained when the ratio of sample sizes assumes the equality 

𝑁2

𝑁1
=
𝜎2𝐶1

1/2

𝜎1𝐶2
1/2 = 𝜃         (6.8) 

A2.1. Sample allocation with maximum power under a fixed cost 

When the total cost is fixed, then the maximum power is obtained using the 

sample size combination given below: 

𝑁1𝑍 =
𝐶(𝜎1𝐶2

1/2
)

𝐶1(𝜎1𝐶2
1/2
)+𝑐2(𝜎2𝐶1

1/2
)
        (6.9) 

𝑁2𝑍 =
𝐶(𝜎2𝐶1

1/2
)

𝐶1(𝜎1𝐶2
1/2
)+𝐶2(𝜎2𝐶1

1/2
)
       (6.10) 

We calculate the power for various combinations of 𝑁1 and 𝑁2 and find the 

optimal allocation, that is, the combination giving the maximum power. We vary 

the value of 𝑁1 from 𝑁1𝑀𝑖𝑛 to 𝑁1𝑀𝑎𝑥, where 𝑁1𝑀𝑖𝑛 = 𝑓𝑙𝑜𝑜𝑟(𝑁1𝑍) − 1 and 𝑁1𝑀𝑎𝑥 =

𝑐𝑒𝑖𝑙𝑖𝑛𝑔 [
𝐶−𝐶2{𝑓𝑙𝑜𝑜𝑟(𝑁2𝑍)−1}

𝑐1
]. The function floor(x) in R rounds to the nearest integer 

that is smaller than x. The function ceiling(x) in R rounds to the nearest integer 

that is larger than x. In their work, the value of 𝑁1𝑀𝑎𝑥 was rounded using floor 

function. However, we found the maximum power is achieved on using ceiling 

function. Also, we found that the number of samples required is less when the 

ceiling function is used instead of floor function. For example, we estimate 

sample sizes for a fixed cost 𝐶 as given below in Table 6.4. We found that our 

method has more power for a given fixed cost with less number of samples as 

compared to the original method. 
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Table 6.4. Sample sizes (𝑁1, 𝑁2), total number of samples  

(𝑁1 +𝑁2) and the power obtained for fixed cost C with parameters 𝜇𝑑 = 4,𝛼 = 0.05,

𝐶1: 𝐶2 = 1: 1/3 and different values of 𝜎1: 𝜎2 using our method and the original method. 

  𝝈𝟏: 𝝈𝟐 

  1/3:1 1/2:1 

 𝑪𝟏: 𝑪𝟐 C 𝑵𝟏 𝑵𝟐 𝑵𝟏 + 𝑵𝟐 Power C 𝑵𝟏 𝑵𝟐 𝑵𝟏 + 𝑵𝟐 Power 

Our method 1:1/3 25 10 45 55 0.999646 30 15 45 60 0.998665 

Original 

method 
1:1/3 25 9 48 57 0.999626 30 14 48 62 0.998663 

 

A2.2. Sample allocation with minimum cost for a fixed power 

When the power is fixed, then the minimum total cost can be obtained using the 

sample size combination given below: 

𝑁1𝑍 =
(𝜃𝜎1

2+𝜎2
2)(𝑧𝛼/2+𝑧𝛽)

2

𝜃𝜇𝑑
2      (6.11) 

𝑁2𝑍 =
(𝜃𝜎1

2+𝜎2
2)(𝑧𝛼/2+𝑧𝛽)

2

𝜇𝑑
2      (6.12) 

The optimal allocation is found by screening the different sample size 

combinations and finding the combination that gives the minimum cost at the 

desired power. We vary the value of 𝑁1 from 𝑁1𝑀𝑖𝑛 to 𝑁1𝑀𝑎𝑥, where 𝑁1𝑀𝑖𝑛 =

𝑚𝑎𝑥 {𝑓𝑙𝑜𝑜𝑟(𝑁1𝑍), 2} and 𝑁1𝑀𝑎𝑥 = 𝑚𝑎𝑥 {𝑐𝑒𝑖𝑙𝑖𝑛𝑔 [
𝜎1
2

𝜇𝑑
2

(𝑧𝛼/2+𝑧𝛽)
2−

𝜎2
2

(𝑓𝑙𝑜𝑜𝑟(𝑁2𝑍)−1)

] , 2}. We use 

different form of 𝑁1𝑀𝑖𝑛 and 𝑁1𝑀𝑎𝑥 that differs from the original work. The minimum 

and maximum value of 𝑁1 must be at least 2. 
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B. Sample size calculation for comparing means between two groups for 

multiple features 

In proteomics experiments, the experimenter is interested in comparing the group 

means for many features. Several multivariate generalizations of type I error and 

power of the test exist along with several statistical techniques of their control. 

Suppose we simultaneously test m null hypotheses (or compare the abundance 

of m features) (H1, H2, ..., Hm). We reject the null hypothesis if the test is declared 

significant. We do not reject the null hypothesis if the test is non-significant. Let 

m0 features do not differ significantly between the two populations (number of 

true null hypothesis). The various possible outcomes for testing multiple null 

hypotheses are shown below in Table 6.5. 

Table 6.5. The possible outcomes of testing multiple null hypotheses 

  True state  

  
Null/ Non-

significant 

Alternative/ 

Significant 

Total 

D
e
c
is

io
n

 a
b

o
u

t 

n
u

ll
 

h
y
p

o
th

e
s
is

 

Failed to reject null/ 

Declared non-

significant 

U 

(TN) 

T 

(FN) 

 

m - R 

Rejected null/ 

Declared 

significant 

V 

(FP) 

S 

(TP) 

 

R 

 Total m0 m1 = m - m0 

 

m 

 
We define the following terms based on Table 6.5: 

m is the number of features/hypotheses tested. 

m0 is the number of true null hypothesis (unknown parameter).  

V is the number of false positives (type I error)/ false discoveries. 

U is the number of true negatives. 
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T is the number of false negatives (type II error) 

S is the number of true positives/ true discoveries. 

R = V+S, the number of rejected null hypotheses/ discoveries. 

S, T, U and V are unobservable random variables. 

R is observable random variable. 

False discovery rate (FDR) is considered as one of the most powerful 

multivariate generalization of type I error. FDR-controlling procedures are 

designed to control the expected proportion of false discoveries (incorrectly 

rejected null hypotheses). Mathematically, FDR is defined as 

𝐹𝐷𝑅 = 𝐸 [
𝑉

max (𝑅,1)
]      (6.13) 

where 𝐸[. ] denotes the expected value. The Benjamini-Hochberg (BH) procedure 

[98] can be used to calculate the number of replicates required for future 

experiments with multiple features while controlling the FDR. In BH procedure, 

we first arrange the p-values of the m comparisons from largest (least significant) 

to smallest (most significant) values. Then, we compare p(j) with (j/m)*q. We 

reject the null hypotheses if p(j) ≤ (j/m)*q. Let Rave be the average number of 

rejections and (1 − 𝛽𝑎𝑣𝑒) be the average power. Then it follows that 

𝑚𝛼𝑎𝑣𝑒 ≤ 𝑅𝑎𝑣𝑒𝑞 ≅ [𝑚0𝛼𝑎𝑣𝑒 +𝑚1(1 − 𝛽𝑎𝑣𝑒)]𝑞    (6.14) 

Thus, the BH procedure controls the average type I error over all the features at 

𝛼𝑎𝑣𝑒 ≤
(1−𝛽𝑎𝑣𝑒)𝑞

1+(1−𝑞)
𝑚0
𝑚1

     (6.15) 

The procedure provides less stringent control of type I errors compared to 

familywise error rate controlling procedures such as the Bonferroni correction. 



87 
 

The sample size calculation methods for comparing group means using 

Welch’s t-test were extended for multiple features. The users have to specify 

extra input parameters, namely, FDR, average power (1 − 𝛽𝑎𝑣𝑒), number of 

features (m) and expected number of differentially expressed features (m1). 

Based on these extra input parameters, we compute the average type I error 

(𝛼𝑎𝑣𝑒) for overall features. Then we replace the significance level 𝛼 and power 

(1 − 𝛽) by 𝛼𝑎𝑣𝑒 and (1 − 𝛽𝑎𝑣𝑒), respectively in the formulae given in Section A. 

The three options available for estimating sample size without using pilot data by 

specifying only the input parameters are given below: 

B1.1. Sample allocation with no cost constraint: Please see Section A1.1. 

B2.1. Sample allocation with maximum power for a fixed cost: Please see 

Section A2.1. 

B2.2. Sample allocation with minimum cost for a fixed power: Please see Section 

A2.2. 

We have developed a shiny application for computing sample size under various 

constraints as discussed in Sections A and B. 

Sample size calculation using pilot data 

We studied various ways to calculate sample size for detecting differentially 

expressed features between two groups based on pilot data for conducting future 

experiments. We used the data corresponding to first two groups as given in 

previous chapter and estimated the sample sizes for detecting differentially 

expressed proteins between two groups. We normalized the data first by taking 

logarithmic base 2 followed by quantile normalization (QN). We used the singular 
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value decomposition (SVD) method to impute the data. There are total 200 

proteins (m = 200). We assumed the expected proportion of differentially 

expressed proteins to be 0.10. We computed 𝛼𝑎𝑣𝑒 (= 0.0042) by assuming the 

average power to be 0.80 and FDR (q) to be 0.05 . We estimated the standard 

deviations (SDs),  𝜎̂1 and 𝜎̂2 in two groups for each feature from the data. Then, 

we used the mean, median, 90th percentile value and maximum value of 

estimated SDs for sample size calculation for each of the three options. Please 

see Table 6.6 for summary of estimates of SDs for two groups. 

Table 6.6. Summary of estimated standard deviations for two groups 

 𝝈̂𝟏 𝝈̂𝟐 

Mean 0.52 0.59 

Median 0.41 0.36 

90th percentile 1.09 1.30 

Maximum 2.27 3.64 

 
The sample size calculation for each of the three options under various scenarios 

are given below. 

(i) Sample allocation with no cost constraint: We computed the sample size for 

experiment with equal samples (𝑟 =
𝑁2

𝑁1
= 1) and unequal samples (𝑟 =

𝑁2

𝑁1
= 2). 

The results are given in Table 6.7. For equal sample sizes, we found that it 

requires minimum number of samples with maximum power using median values 

of SDs. For unequal sample sizes, we found that it requires minimum number of 

samples using median values of SDs whereas the maximum power is obtained 

using mean values of SDs. 
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Table 6.7. Sample sizes (𝑁1, 𝑁2), total number of samples  

(𝑁1 +𝑁2) and the exact power obtained with log2 FC 1 for fixed sample size ratio (1 and 

2). 

  𝑵𝟏 𝑵𝟐 𝑵𝟏 + 𝑵𝟐 Exact power 

𝑟 =
𝑁2
𝑁1
= 1 

Mean 11 11 22 0.8160 

Median 7 7 14 0.8463 

90th percentile 42 42 84 0.8061 

Maximum 256 256 512 0.8020 

𝑟 =
𝑁2
𝑁1
= 2 

Mean 9 18 27 0.8622 

Median 6 12 18 0.8187 

90th percentile 30 60 90 0.8072 

Maximum 163 326 489 0.8002 

 

(ii) Sample allocation with maximum power for a fixed cost: We assumed the cost 

(in USD) per sample in group 1 and 2 are 300 and 325, respectively. Then, we 

estimated the sample sizes giving maximum power for conducting experiments 

with the total budget of 5000, 10000 and 15000, respectively. The results are 

shown below in Table 6.8. We found that maximum power with minimum number 

of samples are obtained using median values of SDs for all the three fixed costs. 

Table 6.8. Sample sizes (𝑁1, 𝑁2), total number of samples  

(𝑁1 +𝑁2) and the maximum power obtained with log2 FC 1 for fixed cost (5000, 10000 

and 15000) 

  𝑵𝟏 𝑵𝟐 𝑵𝟏 + 𝑵𝟐 Exact power 

𝑪 = 5000 

Mean 8 8 16 0.562 

Median 8 8 16 0.9258 

90th percentile 8 8 16 0.0697 

Maximum 8 8 16 0.0106 
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𝑪 = 10000 

Mean 16 16 32 0.9698 

Median 17 15 32 1 

90th percentile 16 16 32 0.2492 

Maximum 12 19 31 0.0229 

𝑪 = 15000 

Mean 24 24 48 0.9991 

Median 25 23 48 1 

90th percentile 24 24 48 0.4571 

Maximum 18 29 47 0.0391 

 

(iii) Sample allocation with minimum cost for a fixed power: We assumed the cost 

(in USD) per sample in group 1 and 2 are 300 and 325, respectively. We 

calculated the minimum cost for conducting the experiment to achieve a 

desirable power of 0.80. The results are shown below in Table 6.9 

Table 6.9. Sample sizes (𝑁1, 𝑁2), total number of samples  

(𝑁1 +𝑁2) and exact power obtained for a minimum cost of experiment with log2 FC 1 

 𝑵𝟏 𝑵𝟐 𝑵𝟏 + 𝑵𝟐 Power Minimum cost 

Mean 11 11 22 0.8160 6875 

Median 8 6 14 0.8376 4350 

90th percentile 39 44 83 0.8040 26000 

Maximum 191 293 484 0.8006 152525 

 

Web app for calculating sample size using pilot data 

We have developed a tool/app for calculating sample size for detecting 

differentially expressed features between two groups based on pilot data for 

conducting future experiments. We have provided various options of estimating 
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sample size using pilot data. A screen shot of the app “SSCP: Sample Size 

Calculator for Proteomics Experiment” is given below: 

 

Figure 6.1. Screenshot of the tool “SSCP” 

Various inputs to be provided by the user are as follows: 

(1) Choose file to upload pilot data: A pilot dataset in matrix form with N 

(N=N1+N2) subjects in columns and m features in rows. In proteomics 

experiment, the proteomics expression data may have MVs. We normalize the 

data first by taking logarithmic base 2 followed by quantile normalization. We use 

SVD method to impute the data in case of data with missing values. 

(2) Select feature type (“Protein” or “Peptide”): The calculation will be based on 

detection of differentially expressed features either at protein or peptide level. We 
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summarize/aggregate the expression data by taking mean of common or 

redundant features. 

(3) Choose file to upload additional information: The file contains the sample 

names and the group/class names under comparison. 

(4) The expected proportion of significant features (𝜋1): The user has to specify 

the expected proportion of differentially expressed features. The default value is 

0.10. 

(5) The desired FDR (q): We use the procedure given in Equations 6.13-6.15 for 

controlling the FDR. The default value of FDR is 0.05. 

(6) The desired average power (1 − 𝛽𝑎𝑣𝑒): The average power is specified to 

calculate the 𝛼𝑎𝑣𝑒 using Equation 6.15. 

(7) Desirable log2 FC: We assumed that the normalized data (log2 transformation 

followed by QN) is normally distributed. 

(8) Choose the method of sample size calculation: We have provided three 

options for calculating sample size: (i) Sample allocation with no cost constraint, 

(ii) Sample allocation with maximum power for a fixed cost and (iii) Sample 

allocation with minimum cost for a fixed power. The user has to define other input 

parameters for selected method of sample size calculation. The user has to 

specify the sample size ratio after selecting the first method. If the user selects 

second method, then he has to specify cost per sample in group 1 and 2 as well 

as the total cost of the experiment. On selecting the third method, the user has to 

specify the cost per sample in group 1 and 2. 
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Based on the various input parameters, the user will get two tables (inputs 

selected and outputs obtained). Example of inputs provided by the user from 

steps 1 to 3 is given below. 

 

Figure 6.2. Uploading the two input files and selecting feature type and class name under 

comparison 

Now the user has to specify other input parameters (steps 4-7) as given below. 

 

Figure 6.3. Specifying expected proportion of significant features, false discovery rate, average 

power and log2 fold change 

Now the user has to choose any one method of sample size calculation (Step 8). 

The screenshot of example under each constraint are given in Figure 6.4. 
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Figure 6.4. The input parameters under each method of sample size calculation 

An example of inputs and outputs after submitting the job for sample allocation 

with maximum power for a fixed cost of 5000 assuming the cost per sample in 

group 1 and 2 to be 300 and 325, respectively is given below: 

 

Figure 6.5. Example of inputs and output obtained for sample allocation with maximum power for 

a fixed cost 
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The results obtained are same as given in Table 6.6 (estimates of standard 

deivations) and Table 6.8 (sample sizes for fixed cost of 5000). The user can use 

the app for sample size calculation under various contraints using pilot data. 

However, in some situations, it may take more time to compute the sample sizes. 

In such situations, the user can run the R programs on high performance 

computing facility to get the result. 

Impact of technical components on the study design and sample size 

estimation of LC-MS proteomics workflow 

The purpose of the approaches given in Chapters 3 and 4 was to standardize 

proteomics workflow and to study variability in proteomics expression data. This 

will help in designing and conducting proteomics experiments. As discussed in 

Chapter 3, we have two tissue storage methods (FFPE and FR) and three tissue 

extraction methods (MAX, TX.MAX and SDS.MAX). We studied the technical 

variability associated with proteomics expression data. In this section, we studied 

the impact of technical variability on the study design using real dataset given in 

Chapter 3. We estimated the sample size based on CV and % effect sizes [94].  

Sample size formulation 

Let us consider two normal populations with means 𝜇1, 𝜇2 and variances 𝜎1
2, 𝜎2

2. 

When the variances are known, then the sample size per group with significance 

level α and power (1 − 𝛽) is given by 

𝑁 =
(𝑧1−𝛼/2 + 𝑧1−𝛽)

2
𝑣2(𝜇𝑟

2 + 1)

(𝜇𝑟 − 1)2
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where, 𝜇𝑟 =
𝜇1

𝜇2
, 
𝜇1

𝜎1
=
𝜇2

𝜎2
= 𝑣, 𝑧1−𝑝 is the 100(1-p)th percentile of standard normal 

distribution. The above formula can be adjusted by FDR-controlling procedures 

for testing the significance of multiple features.  

Sample size estimation 

We studied the effect of tissue storage methods (FFPE and FR) and tissue 

extraction methods (MAX, TX.MAX and SDS.MAX) on sample size estimation. 

For example, suppose the experimenter has used the FR method for tissue 

storage and he wants to estimate sample size for two-class comparison. Then, 

the formula given in previous section can be used to estimate sample size based 

on CV and the percentage change in means.  

We used variance stabilizing normalization (VSN) method for data 

normalization and SVD method for data imputation. We estimated the sample 

size using the median and maximum value of CV for two TSMs and three TEMs 

as given in Table 3.3. of Chapter 3. We have provided the sample sizes 

computed for all the technical approaches at different percent change between 

means (𝜇𝑟 - fold difference in means) in Table 6.10. The sample sizes 

corresponding to without adjustment and FDR-adjusted are separated by “/”. 
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Table 6.10. Computed sample sizes for different technical approaches 

 Using median value of CV Using maximum value of CV 

 TSM TEM TSM TEM 

 FR FFPE MAX TX.MAX SDS.MAX FR FFPE MAX TX.MAX SDS.MAX 

1.05 66/ 78 6/ 8 13/ 15 13/ 15 72/ 85 445/ 524 246/ 290 339/ 400 306/ 361 461/ 543 

1.1 18/ 21 2/ 2 4/ 4 4/ 4 19/ 23 117/ 138 65/ 77 90/ 105 81/ 95 122/ 143 

1.15 9/ 10 1/ 1 2/ 2 2/ 2 9/ 11 55/ 65 31/ 36 42/ 49 38/ 45 57/ 67 

1.2 5/ 6 1/ 1 1/ 2 1/ 2 6/ 7 33/ 38 18/ 21 25/ 29 23/ 27 34/ 40 

1.25 4/ 4 1/ 1 1/ 1 1/ 1 4/ 5 22/ 26 12/ 15 17/ 20 15/ 18 23/ 27 

1.3 3/ 3 1/ 1 1/ 1 1/ 1 3/ 3 16/ 19 9/ 11 13/ 15 11/ 13 17/ 20 

1.35 2/ 3 1/ 1 1/ 1 1/ 1 2/ 3 13/ 15 7/ 8 10/ 11 9/ 10 13/ 15 

1.4 2/ 2 1/ 1 1/ 1 1/ 1 2/ 2 10/ 12 6/ 7 8/ 9 7/ 8 11/ 12 

1.45 2/ 2 1/ 1 1/ 1 1/ 1 2/ 2 9/ 10 5/ 6 7/ 8 6/ 7 9/ 10 

1.5 2/ 2 1/ 1 1/ 1 1/ 1 2/ 2 7/ 9 4/ 5 6/ 7 5/ 6 8/ 9 

1.75 1/ 1 1/ 1 1/ 1 1/ 1 1/ 1 4/ 5 3/ 3 3/ 4 3/ 4 4/ 5 

2 1/ 1 1/ 1 1/ 1 1/ 1 1/ 1 3/ 4 2/ 2 3/ 3 2/ 3 3/ 4 

2.5 1/ 1 1/ 1 1/ 1 1/ 1 1/ 1 2/ 3 1/ 2 2/ 2 2/ 2 2/ 3 

3 1/ 1 1/ 1 1/ 1 1/ 1 1/ 1 2/ 2 1/ 1 2/ 2 1/ 2 2/ 2 

 

The FR TSM requires more sample as compared to FFPE TSM. In TEM, the 

SDS.MAX method requires more number of samples as compared to those of 

MAX and TX.MAX. The sample size estimated is more when adjusting for 

multiple proteins. The sample size with value 1 should be ignored. Here, we have 

considered only the technical variability for sample size estimation. We have not 

considered the biological variability. The sample size estimated will be much 

more on inclusion of biological variability. 
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CHAPTER 7 

SAMPLE SIZE CALCULATION FOR RNA-SEQ EXPERIMENTS CONSIDERING 

HETEROGENEITY 

Introduction 

RNA-Seq has become the standard for measuring gene expression levels in 

biological experiments. It differs from the microarray technology in various 

aspects such as nature of data, normalization methods, differential expression 

analysis methods, sensitivity, accuracy, etc. [99-101]. The RNA-Seq method is 

developing rapidly and the cost of sequencing is declining. So, in the coming 

future, more samples will be sequenced, and more experiments will be 

performed. But still the cost per sample is the limiting factor in most of the 

laboratories. There are two important points to be considered while designing 

RNA-Seq experiments which are namely, the sequencing depth and the number 

of replicates (biological and technical) required to observe significant changes in 

expression. The other points should also be considered such as length of 

transcripts, GC content and sequencing bias (influencing counts of transcripts 

within a sample). The cost can be reduced by optimizing the designing process 

of these experiments.  

Various tools and software have been developed to address the problem 

of sample size estimation and power analysis. Some of the examples are 

RNASeqPowerCalculator [102], RNASeqPower [103], Scotty [104], PROPER 
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[105], etc. The RNA-seq experiments are complex in nature, and still there is 

requirement of advanced method to calculate sample size for differential 

expression analysis using RNA-Seq data. In spite of various developments, this 

field still lacks a general approach to estimate optimal sample size and power for 

complex RNA-Seq experiments under the assumptions of various distributions. 

There are various issues with the read counts for sample size and power 

calculation such as over dispersion parameter estimation, excess zeros, 

complexity of model, etc. The results obtained using the various methods for 

differential expression analysis of RNA-Seq data from single organism or from 

various sources of RNA-Seq data, do not lead to a common conclusion and 

sometimes the results are not meaningful [106]. The misleading results are 

caused due to heterogeneity issues at each step of RNA-Seq experiments. 

Therefore, it is imperative to devise a statistical procedure for optimizing the 

sample size calculation with reasonable statistical power and cost required for 

conducting the experiments in the presence of heterogeneity. Therefore, we have 

developed the statistical approaches for designing and sample size calculation 

required to carry out the RNA-Seq experiments in the presence of heterogeneity 

under the assumptions of various models. 

Modeling the count data in RNA-Seq experiments 

The RNA-Seq data is comprised mainly of the mapped read counts. The 

counting of feature can be done at various levels such as gene level, transcript 

level, exon level, etc. Instead of raw counts, normalized read counts such as 

RPKM (reads aligned per kilobase of exon per million reads mapped) [107], 
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FPKM (fragments per kilobase of exon per million fragments mapped), TPM 

(transcripts per kilobase million), etc. are also used. However, from the statistical 

point of view, actual counts are used as input for differential expression analysis 

in many cases [108, 109]. As the raw count data are discrete in nature, therefore, 

cannot be necessarily approximated well by normal (Gaussian) distributions, 

therefore, the use of standard linear models like t-tests, ANOVA, regression 

should not be preferred as the modeling framework. There are two popular 

distributions for modelling the read counts which are given below: 

(i) Poisson distribution [99, 110-113]: Let Y ~ Poisson (𝜆) be a random variable 

representing the read counts for a gene in a sample, then its probability mass 

function is given by 

𝑝(𝑌 = 𝑦) =
𝑒−𝜆𝜆𝑦

𝑦!
,      𝑦 = 0, 1, 2, …    (7.1) 

where 𝜆  is the rate parameter, i.e., expected number of reads per sample. The 

mean and variance are equal to 𝜆. When 𝜆 is small, the data is over-dispersed, 

i.e., there is more variation that expected under Poisson (𝜆). Similarly, when 𝜆 is 

large, there is less variation than expected under Poisson (𝜆). Therefore, in most 

of the cases, the RNA-Seq data is not modeled well by Poisson distribution as 

the relationships between means and variances tend to be far more complicated 

among (and within) biological replicates. The Poisson distribution accounts only 

for the technical replicates. It is not well suited to account for the biological 

replicates due to the problem of over dispersion caused by biological variations. 

Various other forms of Poisson distribution such as Quasi-Poisson have been 

developed to account for it with count data. 
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(ii) Negative Binomial (NB) distribution [108, 109, 114-116]: The NB distribution is 

assumed to be the natural distribution for modelling the read counts. If a random 

variable Y has NB distribution with mean parameter 𝜇 and dispersion parameter 

𝜙, then its probability mass function is given by 

𝑝(𝑌 = 𝑦) =
𝛤(𝑦+

1

𝜙
)

𝛤(
1

𝜙
)𝛤(𝑦+1)

(𝜇𝜙)𝑦

(1+𝜇𝜙)
𝑦+

1
𝜙

 ; 𝑦 = 0, 1, 2, …    (7.2) 

with expected number of counts = 𝐸(𝑌) = 𝜇 and 𝑉𝑎𝑟(𝑌) = 𝜇 + 𝜙𝜇2. Here, the 

dispersion parameter, 𝜙 is a measure of extra variance of Y that the Poisson 

distribution does not account.  

The regulation of gene expression can be studied across different 

conditions such as levels of different factors, genotypes, environmental 

conditions, developmental stages, etc. The major goal of RNA-Seq experiments 

is to determine which features (e.g., genes, transcripts) show significant changes 

in abundance across different condition or treatment. For differential expression 

analysis, Y can be considered as the number of reads mapped to a reference 

genome (read counts) that is generally modelled by assuming Poisson 

distribution or NB distribution. Let us consider an RNA-Seq experiment including 

a total of N samples. The samples are sequenced and resulting reads are 

aligned with a reference genome. The numbers of reads mapped to each of the 

reference gene are calculated. 

Let us consider a study in which there are 𝐼 conditions/groups denoted by 

𝐺𝑖(𝑖 = 1, 2, … , 𝐼) and there are 𝑁𝑖 samples denoted by 𝑆𝑖,𝑗 (𝑗 = 1, 2, …𝑁𝑖) 

corresponding to group 𝐺𝑖. Now suppose, there are 𝐾 genes/features denoted by 
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𝐹𝑘(𝑘 = 1, 2, … , 𝐾) (Please see Table 2.1 in Chapter 2). Let 𝑦𝑖,𝑗,𝑘 be the number of 

read counts corresponding to sample 𝑆𝑖,𝑗 (𝑖 = 1, 2, … , 𝐼;  𝑗 = 1, 2, …𝑁𝑖) of group 

𝐺𝑖 (𝑖 = 1, 2, … , 𝐼) for gene/feature 𝐹𝑘(𝑘 = 1, 2, … , 𝐾). Total number of samples in 

the study is 𝑁 = ∑ 𝑁𝑖
𝐼
𝑖=1 . The library size/sequencing depth for the jth sample of 

group 𝐺𝑖 is denoted by 𝐿𝑖𝑗 = ∑ 𝑦𝑖𝑗𝑘
𝐾
𝑘=1  which varies for each sample. 

Normalization techniques are used to account for the within library and between 

library variability. The normalized count data can be modelled by Poisson 

distribution or NB distribution.  

Estimation of parameters based on negative binomial distribution 

Let for any feature 𝐹𝑘, the observations 𝑌𝑖𝑗𝑘 are independently and identically 

distributed as  

𝑌𝑖𝑗𝑘~ 𝑁𝐵(𝑠𝑖𝑗𝑘𝜇𝑖𝑘, 𝜙𝑖𝑘) 

where 𝜇𝑖𝑘 and 𝜙𝑖𝑘 are the true expression level and dispersion parameter, 

respectively for the feature 𝐹𝑘 in group 𝐺𝑖, respectively; 𝑠𝑖𝑗 is the scaling/size 

factor to normalize the raw read counts corresponding to the jth sample in ith 

group. There are 𝑁𝑖 observations in group 𝐺𝑖 for each feature. The total number 

of reads in the ith group for feature 𝐹𝑘 is 𝑌𝑖𝑘 = ∑ 𝑌𝑖𝑗𝑘
𝑁𝑖
𝑗=1 . For simplicity, we 

suppressed the notation for feature 𝐹𝑘 in the subscript of previous terms.  

The estimation of parameters is an essential step for design and sample 

size calculation. The parameter estimation can be done by using various 

methods such as method of moments estimation (MME) [117], maximum 

likelihood estimation (MLE) [118-120], maximum quasi-likelihood estimation 
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(MQLE) [121]. The MME has certain limitations (when variance equals mean, 

dispersion parameter equals infinity; when variance is less than mean, dispersion 

parameter is negative; when variance-mean is small, dispersion parameter is 

very large). The MLE methods tend to underestimate the dispersion parameters. 

Besides these methods, there are various methods/models for estimation of 

parameters such as pseudo-likelihood [122, 123], quasi-likelihood [124], 

conditional maximum likelihood (CML) [125], conditional inference [126], 

quantile-adjusted CML [114], conditional weighted likelihood [109]. 

Estimation of parameters without scaling factor: Let 𝑌𝑖𝑗 be a NB random 

variable with mean 𝜇𝑖 and dispersion parameter 𝜙𝑖, i.e., 𝑌𝑖𝑗~𝑁𝐵(𝜇𝑖,  𝜙𝑖), then its 

probability mass function is given by 

𝑝(𝑌𝑖𝑗 = 𝑦𝑖𝑗) =
𝛤(𝑦𝑖𝑗+

1

𝜙𝑖
)

𝛤(
1

𝜙𝑖
)𝛤(𝑦𝑖𝑗+1)

(𝜇𝑖𝜙𝑖)
𝑦𝑖𝑗

(1+𝜇𝑖𝜙𝑖)
𝑦𝑖𝑗+

1
𝜙𝑖

; 𝑦𝑖𝑗 = 0, 1, 2, …  (7.3) 

Then, the likelihood function is given by 

𝐿(𝜇𝑖 , 𝜙𝑖|𝑦𝑖𝑗;  𝑗 = 1, 2, … ,𝑁𝑖) = ∏
𝛤(𝑦𝑖𝑗+

1

𝜙𝑖
)

𝛤(
1

𝜙𝑖
)𝛤(𝑦𝑖𝑗+1)

(𝜇𝑖𝜙𝑖)
𝑦𝑖𝑗

(1+𝜇𝑖𝜙𝑖)
𝑦𝑖𝑗+

1
𝜙𝑖

𝑁𝑖
𝑗=1  (7.4) 

The log-likelihood function is given by 

 𝑙(𝜇𝑖, 𝜙𝑖|𝑦𝑖𝑗;  𝑗 = 1, 2, … ,𝑁𝑖) =∑ln𝛤 (𝑦𝑖𝑗 +
1

𝜙𝑖
)−∑𝛤(

1

𝜙𝑖
)

𝑁𝑖

𝑗=1

−∑ln𝛤(𝑦𝑖𝑗 + 1)

𝑁𝑖

𝑗=1

𝑁𝑖

𝑗=1

 

+∑ 𝑦𝑖𝑗 ln(𝜇𝑖𝜙𝑖) − ∑ (𝑦𝑖𝑗 +
1

𝜙𝑖
) ln(1 + 𝜇𝑖𝜙𝑖)

𝑁𝑖
𝑗=1

𝑁𝑖
𝑗=1       (7.5) 

Differentiating with respect to 𝜇𝑖 and equating to zero, we get 
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𝜕𝑙

𝜕𝜇𝑖
=
∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

𝜇𝑖
−
∑ (𝑦𝑖𝑗 +

1
𝜙𝑖
)𝜙𝑖

𝑁𝑖
𝑗=1

(1 + 𝜇𝑖𝜙𝑖)
= 0 

⇒ 𝜇̂𝑖 =
∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

𝑁𝑖
                (7.6) 

Differentiating with respect to 𝜙𝑖 and equating to zero, we get 

𝜕𝑙

𝜕𝜙𝑖
=
𝜕∑ ln 𝛤 (𝑦𝑖𝑗 +

1
𝜙𝑖
)

𝑁𝑖
𝑗=1

𝜕𝜙𝑖
−
𝜕∑ ln 𝛤 (

1
𝜙𝑖
)

𝑁𝑖
𝑗=1

𝜕𝜙𝑖
+
∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

𝜙𝑖
−
∑ (𝑦𝑖𝑗 +

1
𝜙𝑖
) 𝜇𝑖

𝑁𝑖
𝑗=1

(1 + 𝜇𝑖𝜙𝑖)

+
𝑁𝑖

𝜙𝑖
2 ln(1 + 𝜇𝑖𝜙𝑖) 

Putting 𝜇̂𝑖 =
∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

𝑁𝑖
 in the above equation, we get 

𝜕𝑙

𝜕𝜙𝑖
=

𝜕∑ ln(
𝛤 (𝑦𝑖𝑗 +

1
𝜙𝑖
)

𝛤 (
1
𝜙𝑖
)

)
𝑁𝑖
𝑗=1

𝜕𝜙𝑖
+
𝑁𝑖

𝜙𝑖
2 ln (1 + 𝜙𝑖

∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

𝑁𝑖
) = 0 

Further simplification leads to 

𝜕𝑙

𝜕𝜙𝑖
=

1

𝜙𝑖
2 {𝑁𝑖 ln (1 + 𝜙𝑖

∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

𝑁𝑖
) − ∑ ∑

1

(𝑚+
1

𝜙𝑖
)

𝑦𝑖𝑗−1

𝑚=0
𝑁𝑖
𝑗=1 } = 0     (7.7) 

Since, the above equation is not in closed from, therefore, we have used 

Newton’s method to estimate the dispersion parameter 𝜙. The second derivative 

of log-likelihood function with respect to 𝜙𝑖 is given by 
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𝜕2𝑙

𝜕𝜙𝑖
2 = −

2𝑁𝑖

𝜙𝑖
3 ln (1 + 𝜙𝑖

∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

𝑁𝑖
) +

∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

𝜙𝑖
2(1+𝜙𝑖

∑ 𝑦𝑗
𝑁𝑖
𝑗=1

𝑁𝑖
)

2

𝜙𝑖
3∑ ∑

1

(𝑚+
1

𝜙𝑖
)

𝑦𝑖𝑗−1

𝑚=0
𝑁𝑖
𝑗=1 −

1

𝜙𝑖
4∑ ∑

1

(𝑚+
1

𝜙𝑖
)
2

𝑦𝑗−1

𝑚=0
𝑁𝑖
𝑗=1             (7.8) 

Estimation of parameters with scaling factor: Let 𝑌𝑖𝑗 be a NB random variable 

with mean 𝜇𝑖 and dispersion parameter 𝜙𝑖, i.e., 𝑌𝑖𝑗~𝑁𝐵(𝑠𝑖𝑗𝜇𝑖,  𝜙𝑖), then its 

probability mass function is given by 

𝑝(𝑌𝑖𝑗 = 𝑦𝑖𝑗) =
𝛤(𝑦𝑖𝑗+

1

𝜙𝑖
)

𝛤(
1

𝜙𝑖
)𝛤(𝑦𝑖𝑗+1)

(𝑠𝑖𝑗𝜇𝑖𝜙𝑖)
𝑦𝑖𝑗

(1+𝑠𝑖𝑗𝜇𝑖𝜙𝑖)
𝑦𝑖𝑗+

1
𝜙𝑖

; 𝑦𝑖𝑗 = 0, 1, 2, … (7.9) 

where, 𝑠𝑖𝑗 is the scaling factor to normalize raw read counts in the jth sample of 

group 𝐺𝑖. Then, the likelihood function 𝐿 and the log-likelihood function 𝑙 are 

given below: 

𝐿(𝜇𝑖, 𝜙𝑖|𝑦𝑖𝑗;  𝑗 = 1, 2, … ,𝑁𝑖) = ∏
𝛤(𝑦𝑖𝑗+

1

𝜙𝑖
)

𝛤(
1

𝜙𝑖
)𝛤(𝑦𝑖𝑗+1)

(𝑠𝑖𝑗𝜇𝑖𝜙𝑖)
𝑦𝑖𝑗

(1+𝑠𝑖𝑗𝜇𝑖𝜙𝑖)
𝑦𝑖𝑗+

1
𝜙𝑖

𝑁𝑖
𝑗=1    (7.10) 

𝑙(𝜇𝑖, 𝜙𝑖|𝑦𝑖𝑗;  𝑗 = 1, 2, … ,𝑁𝑖) =∑ln𝛤 (𝑦𝑖𝑗 +
1

𝜙𝑖
)−∑𝛤(

1

𝜙𝑖
)

𝑁𝑖

𝑗=1

−∑ln𝛤(𝑦𝑖𝑗 + 1)

𝑁𝑖

𝑗=1

𝑁𝑖

𝑗=1

 

+∑ 𝑦𝑖𝑗 ln(𝑠𝑖𝑗𝜇𝑖𝜙𝑖) − ∑ (𝑦𝑖𝑗 +
1

𝜙𝑖
) ln(1 + 𝑠𝑖𝑗𝜇𝑖𝜙𝑖)

𝑁𝑖
𝑗=1

𝑁𝑖
𝑗=1     (7.11) 

Differentiating with respect to 𝜇𝑖 and equating to zero, we get 

𝜕𝑙

𝜕𝜇𝑖
=
∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

𝜇𝑖
−∑

(𝑦𝑖𝑗 +
1
𝜙𝑖
) 𝑠𝑖𝑗𝜙𝑖

(1 + 𝑠𝑖𝑗𝜇𝑖𝜙𝑖)

𝑁𝑖

𝑗=1

= 0 
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⇒ 𝜇̂𝑖 =
∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

∑ 𝑠𝑖𝑗
𝑁𝑖
𝑗=1

     (7.12) 

Differentiating with respect to 𝜙𝑖 and equating to zero, we get 

𝜕𝑙

𝜕𝜙𝑖
=
𝜕∑ ln𝛤 (𝑦𝑖𝑗 +

1
𝜙𝑖
)

𝑁𝑖
𝑗=1

𝜕𝜙𝑖
−
𝜕∑ ln𝛤 (

1
𝜙𝑖
)

𝑁𝑖
𝑗=1

𝜕𝜙𝑖
+
∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

𝜙𝑖
−∑(

𝑦𝑖𝑗 +
1
𝜙𝑖

1 + 𝑠𝑖𝑗𝜇𝑖𝜙𝑖
)𝑠𝑖𝑗𝜇𝑖

𝑁𝑖

𝑗=1

+∑
ln(1 + 𝑠𝑖𝑗𝜇𝑖𝜙𝑖)

𝜙𝑖
2

𝑁𝑖

𝑗=1

 

⇒
𝜕𝑙

𝜕𝜙𝑖
=

𝜕∑ ln(
𝛤 (𝑦𝑖𝑗 +

1
𝜙𝑖
)

𝛤 (
1
𝜙𝑖
)

)
𝑁𝑖
𝑗=1

𝜕𝜙𝑖
+∑

ln(1 + 𝑠𝑖𝑗𝜇𝑖𝜙𝑖)

𝜙𝑖
2

𝑁𝑖

𝑗=1

= 0 

Putting 𝜇̂𝑖 =
∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

∑ 𝑠𝑖𝑗
𝑁𝑖
𝑗=1

 in the above equation, we obtain 

𝜕𝑙

𝜕𝜙𝑖
=

1

𝜙𝑖
2 {∑ ln (1 +

𝑠𝑖𝑗∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

∑ 𝑠𝑖𝑗
𝑁𝑖
𝑗=1

𝜙𝑖)
𝑁𝑖
𝑗=1 −∑ ∑

1

(𝑚+
1

𝜙𝑖
)

𝑦𝑗−1

𝑚=0
𝑁𝑖
𝑗=1 } = 0   (7.13) 

The second derivative with respect to 𝜙𝑖 obtained is given by 

𝜕2𝑙

𝜕𝜙𝑖
2 = −

2

𝜙𝑖
3∑ ln (1 +

𝑠𝑖𝑗∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

∑ 𝑠𝑖𝑗
𝑁𝑖
𝑗=1

𝜙𝑖)
𝑁𝑖
𝑗=1 +

1

𝜙𝑖
2∑

(

 
 

𝑠𝑖𝑗 ∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

∑ 𝑠𝑖𝑗
𝑁𝑖
𝑗=1

1+
𝑠𝑖𝑗 ∑ 𝑦𝑖𝑗

𝑁𝑖
𝑗=1

∑ 𝑠𝑖𝑗
𝑁𝑖
𝑗=1

𝜙𝑖

)

 
 𝑁𝑖

𝑗=1 +

2

𝜙𝑖
3∑ ∑

1

(𝑚+
1

𝜙𝑖
)

𝑦𝑗−1

𝑚=0
𝑁𝑖
𝑗=1 −

1

𝜙𝑖
4∑ ∑

1

(𝑚+
1

𝜙𝑖
)
2

𝑦𝑗−1

𝑚=0
𝑁𝑖
𝑗=1      (7.14) 
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We used Newton’s method to estimate the dispersion parameter 𝜙𝑖. If the  

scaling factor is 1 for all the samples in the group, i.e., 𝑠𝑖𝑗 = 1, then the estimates 

of parameters, 𝜇̂𝑖 and 𝜙̂𝑖, obtained are same as those of the previous method of 

estimating parameters without scaling factor. We developed R programs to 

estimate the dispersion parameter for both cases, i.e., without scaling factor and 

with scaling factor. For example, the estimated dispersion parameter for y = 14, 

5, 12, 2, 9, 19 was found to be 0.2747. For same y and scaling factor, s = 1.1, 

1.3, 0.9, 1.4, 1.2, 0.85, the value of estimated dispersion parameter is 0.2390. 

Power and sample size calculation based on negative binomial distribution 

The differential expression analysis in RNA-Seq data involves the calculation of 

fold change (FC = δ =
𝜇2

𝜇1
) for each feature such as gene. Therefore, for testing 

whether a feature is differentially expressed between two groups, we construct 

the hypothesis setting as given below: 

𝐻0: 𝜇1 = 𝜇2 vs. 𝐻1: 𝜇1 ≠ 𝜇2 

This can be alternatively written as 

𝐻0: Δ = ∆0 vs. 𝐻1: Δ ≠ ∆0 

where Δ =  𝜇2 − 𝜇1. If we have the null hypothesis that the population means are 

equal, then ∆0= 0.  

The above settings of the hypothesis can be alternatively written as 

𝐻0 : ln(𝛿) = ln(𝛿0)  vs. 𝐻1 : ln(𝛿) ≠ ln(𝛿0) 

where δ =
𝜇2

𝜇1
. Here, 𝛿0 = 1 means the population means are equal in two groups. 



108 
 

The methods based on Wald test and log transformed Wald test have been done 

previously based on Poisson distribution and NB distribution [127, 128]. We used 

Wald test, log transformed Wald test and score test based on generalized linear 

model (GLiM) to estimate power and sample size calculation based on different 

constraints. These methods are discussed below. 

1. Power and sample size calculation using Wald test based on negative 

binomial distribution 

A. Method using Wald test statistic: 

Given 𝑠𝑖 = ∑ 𝑠𝑖𝑗
𝑁𝑖
𝑗=1  and 𝑌𝑖 = ∑ 𝑦𝑖𝑗

𝑁𝑖
𝑗=1  for 𝑖 = 1, 2, the estimate of Wald test statistic 

(Wald 1943) [129] has been derived below. The statistical inference is based on 

the quantity  

𝑇 = 𝜇̂2 − 𝜇̂1 =
𝑌2
𝑠2
−
𝑌1
𝑠1

 

The variance of 𝑇 is given by 

𝜎𝑇
2 = 𝑣𝑎𝑟(𝑇) =

𝜇2
𝑠2
+
𝜇1
𝑠1
+
𝜇2
2𝜙2
𝑁2

+
𝜇1
2𝜙1
𝑁1

 

The estimate of 𝜎𝑇
2 (standard error under 𝐻1) is given by 

𝑆𝑇
2 =

𝜇̂2
𝑠2
+
𝜇̂1
𝑠1
+
𝜇̂2
2𝜙̂2
𝑁2

+
𝜇̂1
2𝜙̂1
𝑁1

=
𝑌2

𝑠2
2 +

𝑌1

𝑠1
2 +

𝑌2
2𝜙̂2

𝑠2
2𝑁2

+
𝑌1
2𝜙̂1

𝑠1
2𝑁1

 

Let 𝑤 =
𝑠2

𝑠1
. The Wald test statistic with unequal sample sizes and dispersion 

parameters is given by 

𝑧𝑤1 =
𝑇

𝑆𝑇
=

𝑌2
𝑠2
−
𝑌1
𝑠1

√
𝑌2

𝑠2
2+

𝑌1

𝑠1
2+

𝑌2
2𝜙̂2

𝑠2
2𝑁2

+
𝑌1
2𝜙̂1

𝑠1
2𝑁1

=
𝑌2−𝑤𝑌1

√𝑌2+𝑤2𝑌1+
𝑌2
2𝜙̂2
𝑁2

+
𝑤2𝑌1

2𝜙̂1
𝑁1

   (7.15) 
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We reject null hypothesis when |𝑧𝑤1| > 𝑧1−𝛼/2. The power of the two-sided test is 

given by 

Pr[|𝑧𝑤1| > 𝑧𝛼 2⁄ |𝐻1 𝑖𝑠 𝑡𝑟𝑢𝑒] = 1 − 𝛽 

Pr[𝑧𝑤1 > 𝑧𝛼 2⁄ |𝐻1 𝑖𝑠 𝑡𝑟𝑢𝑒] + Pr[𝑧𝑤1 < 𝑧−𝛼 2⁄ |𝐻1 𝑖𝑠 𝑡𝑟𝑢𝑒] = 1 − 𝛽 

1 − Φ [𝑧𝛼 2⁄ −
∆0 − ∆

𝑆𝑇
] + Φ [−𝑧𝛼 2⁄ −

∆0 − ∆

𝑆𝑇
] = 1 − 𝛽 

1 − Φ [𝑧𝛼 2⁄ +
∆ − ∆0
𝑆𝑇

] + Φ [−𝑧𝛼 2⁄ +
∆ − ∆0
𝑆𝑇

] = 1 − 𝛽 

Alternatively, it can be written as 

1 − Φ [𝑧𝛼 2⁄ +
∆0 − ∆

𝑆𝑇
] + Φ [−𝑧𝛼 2⁄ +

∆0 − ∆

𝑆𝑇
] = 1 − 𝛽 

The term Φ[−𝑧𝛼 2⁄ +
∆0−∆

𝑆𝑇
] has very little contribution to the power. Therefore, we 

can ignore this term. 

Φ[−𝑧𝛼 2⁄ +
∆0 − ∆

𝑆𝑇
] = 𝛽 

−𝑧𝛼 2⁄ +
∆0 − ∆

𝑆𝑇
= 𝑧𝛽 

(
∆0 − ∆

𝑆𝑇
)
2

= (𝑧𝛼 2⁄ + 𝑧𝛽)
2
 

(∆0 − ∆)
2 = (𝑧𝛼 2⁄ + 𝑧𝛽)

2
𝑆𝑇
2 

(∆0 − ∆)
2 = (𝑧𝛼 2⁄ + 𝑧𝛽)

2
(
𝜇̂2

𝑠2
+
𝜇̂1

𝑠1
+
𝜇̂2
2𝜙̂2

𝑁2
+
𝜇̂1
2𝜙̂1

𝑁1
)   (7.16) 

(B) Method using logarithmic transformation of Wald test statistic: 

The logarithmic transformation is usually applied for skewness correction and 

variance stabilization. The estimate of log transformed Wald test statistic [129] is 

based on the quantity  



110 
 

𝑈 = ln (
𝜇̂2
𝜇̂1
) = ln(𝜇̂2) − ln(𝜇̂1) = ln (

𝑌2
𝑠2
) − ln (

𝑌1
𝑠1
) 

𝑌1

𝑠1
 and 

𝑌2

𝑠2
 have asymptotic normal distributions, 𝑁 (𝜇1,

𝜇1

𝑠1
+
𝜇1
2𝜙1

𝑁1
) and 𝑁 (𝜇2,

𝜇2

𝑠2
+

𝜇2
2𝜙2

𝑁2
), respectively. Therefore, by using Delta method, ln (

𝑌1

𝑠1
) and ln (

𝑌2

𝑠2
) have 

respectively asymptotic normal distributions, 𝑁 (ln(𝜇1) ,
1

𝑠1𝜇1
+
𝜙1

𝑁1
) and 

𝑁 (ln(𝜇2) ,
1

𝑠2𝜇2
+
𝜙2

𝑁2
). The variance of 𝑈 is given by 

𝜎𝑈
2 = 𝑣𝑎𝑟(𝑈) =

1

𝑠2𝜇2
+

1

𝑠1𝜇1
+
𝜙2
𝑁2
+
𝜙1
𝑁1

 

The estimate of 𝜎𝑈
2 (standard error under 𝐻1) is given by 

𝑆𝑈
2 =

1

𝑠2𝜇̂2
+

1

𝑠1𝜇̂1
+
𝜙̂2
𝑁2
+
𝜙̂1
𝑁1
=
1

𝑌2
+
1

𝑌1
+
𝜙̂2
𝑁2
+
𝜙̂1
𝑁1

 

Then, the log transformed Wald test with unequal sample sizes and dispersion 

parameters is given by 

𝑧𝑤2 =
𝑈

𝑆𝑈
=

ln(
𝑌2
𝑌1
)−ln(𝑤)

√
1

𝑌2
+
1

𝑌1
+
𝜙̂2
𝑁2
+
𝜙̂1
𝑁1

     (7.17) 

We reject null hypothesis when |𝑧𝑤2| > 𝑧1−𝛼/2. The power of the two-sided test is 

given by 1 − 𝛽 =  Pr[|𝑧𝑤2| > 𝑧𝛼 2⁄ |𝐻1 𝑖𝑠 𝑡𝑟𝑢𝑒].  

[ln(𝛿0) − ln(𝛿)]
2 = (𝑧𝛼 2⁄ + 𝑧𝛽)

2
(
1

𝑠2𝜇̂2
+

1

𝑠1𝜇̂1
+
𝜙̂2

𝑁2
+
𝜙̂1

𝑁1
)  (7.18) 

The above equation can be used to estimate power for the different input 

parameters. For example, if 𝜇1 = 𝜇2 = 20,  𝜙1 = 𝜙2 = 0.4, 𝑠1 = 18.5, 𝑠2 =

21.5, 𝑁1 = 𝑁2 = 20, then power achieved is 0.9043. To find the optimal allocation 

of samples, the method may not be appropriate. However, if 𝑠𝑖𝑗 = 1, then 𝑠𝑖 = 𝑁𝑖, 

and the above equation can be written as  
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[ln(𝛿0) − ln(𝛿)]
2 = (𝑧𝛼 2⁄ + 𝑧𝛽)

2
(

1

𝑁2𝜇̂2
+

1

𝑁1𝜇̂1
+
𝜙̂2

𝑁2
+
𝜙̂1

𝑁1
)  (7.19) 

In this case, the above equation can be used to find optimal sample allocation 

with sample size ratio fixed as well as optimal sample allocation for fixed cost to 

get maximum power and minimum cost for a fixed power. The method using log-

transformed Wald test will be equivalent to the method discussed in next section. 

The methods using Wald test and log-transformed Wald test have been used for 

testing the significance of single feature. These methods can be extended for 

testing the significance of multiple features. 

2. Sample size calculation using generalized linear model based on negative 

binomial distribution 

A. Sample size calculation for testing a single feature 

The generalized linear model [130, 131] theory has been used to estimate 

sample size using negative binomial distribution [132, 133]. The derivation of 

sample size formula has been discussed previously in many works. For example, 

score test has been used for power and sample size calculation in Hart et al. 

[103]. The statistical properties of the test satisfy the following formula 

[ln(𝛿)]2 = (𝑧𝛼/2 + 𝑧𝛽)
2
[
(
1

𝜇1
+𝜙1)

𝑁1
+
(
1

𝜇2
+𝜙2)

𝑁2
]  (7.20) 

where ln(𝛿) is the desired log fold change; 𝜇1 and 𝜇2 are the average expected 

count in groups 𝐺1 and 𝐺2, respectively; 𝜙1 and 𝜙2 are the dispersion parameters 

in groups 𝐺1 and 𝐺2, respectively; 𝑁1 and 𝑁2 are the number of samples in 

groups 𝐺1 and 𝐺2, respectively; 𝑧𝑝 is the upper 100(p)th percentile of standard 

normal distribution. Biological coefficient of variation is the square root of 

dispersion parameter.  
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We followed similar approaches as discussed in Chapter 6. We considered the 

following two aspects for calculating sample size: 

A1. Sample size allocation without cost constraint 

Let the sample size ratio (
𝑁2

𝑁1
= 𝑟 ≥ 1) between two groups is fixed in advance. 

Then, we use the starting sample size N1 that would be the smallest integer 

satisfying the inequality 

𝑁1𝑍 = [(
1

𝜇1
+ 𝜙1) + (

1

𝜇2
+ 𝜙2) 𝑟⁄ ] (𝑧𝛼/2 + 𝑧𝛽)

2
(log∆)2⁄   (7.21) 

Then, an incremental search can be done to obtain the target power. An example 

of sample sizes and exact power obtained for different sample size ratio (1, 2 and 

3) and different fold change (1.5, 2, 2.5 and 3) are shown in Table 7.1. We 

assumed that the expected read counts (𝜇1 = 𝜇2 = 20) and dispersion parameter 

(𝜙1 = 𝜙2 = 0.4) for both the groups are same. The value of 𝛼 chosen is 0.05 and 

target power is 0.9. 

Table 7.1. Sample sizes (𝑁1, 𝑁2) and power computed with parameters 𝜇1 = 𝜇2 = 20,

𝜙1 = 𝜙2 = 0.4, 𝛼 = 0.05, 1 − 𝛽 = 0.90 for different combinations of r and Δ 

 Δ 

 1.5 2 2.5 3 

r 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 

1 58 58 0.9023 20 20 0.9045 12 12 0.9171 8 8 0.9058 

2 44 88 0.9055 15 30 0.9045 9 18 0.9171 6 12 0.9058 

3 39 117 0.9047 14 42 0.9175 8 24 0.9171 6 18 0.9350 

A2. Sample allocation with maximum power for a fixed cost 

A hypothetical example of cost model for case-control study has been illustrated. 

Suppose there are 𝑁1 controls (group 1) and 𝑁2 cases (group 2). The overall cost 

of the study comprises of the following components:  
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(i) The sample procurement cost: 𝑐1 = 𝑎11𝑁1 + 𝑎12𝑁2 

where 𝑎11 is the sample procurement cost per control sample and 𝑎12 is the 

sample procurement cost per case sample. 

(ii) Cost for library preparation and quality control: 𝑐2 = 𝑎2(𝑁1 + 𝑁2) 

(Assuming equal costs for both cases and controls, 𝑎2 is the cost for library and 

quality control per sample) 

(iii) Sequencing cost: 𝑐3 = 𝑎3(𝑁1 + 𝑁2)/𝑚 

(Given the alignment rate is m and average cost per million reads mapped to the 

genes for one sample is 𝑎3) 

(iv) Cost of analysis: 𝑐4 = 𝑎4(𝑁1 + 𝑁2)  assuming 𝑎4 is the average cost per 

sample for data analysis. 

The total cost can be written in the form of 𝐶 = 𝐶1𝑁1 + 𝐶2𝑁2, where 𝐶1 and 𝐶2 are 

the average cost per sample in control and case, respectively. A hypothetical 

example to show various costs involved in conducting RNA-Seq experiments is 

shown below in Table 7.2. 

Table 7.2. A hypothetical example of various costs involved in RNA-Seq experiment 

Services Price per sample (in USD) 

RNA isolation from tissue 50 

Library preparation 400 

Sample and Library QC 50 

Sequencing cost 250 

Bioinformatics Analysis 250 

Cost per sample 1000 

We followed the same procedure as given in previous chapter (A2.1 of Chapter 

6). We used √
1

𝜇1
+ 𝜙1 and √

1

𝜇2
+ 𝜙2 in place of 𝜎1 and 𝜎2, respectively. We find 

the optimal allocation giving the maximum power. A hypothetical example of 
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sample sizes and power obtained for a fixed cost C (30000, 40000 and 50000) 

with different input parameters is given in Table 7.3.  

Table 7.3. Sample sizes (𝑁1, 𝑁2) and the power obtained with parameters 𝜇1 = 𝜇2 = 20,

𝜙1 = 𝜙2 = 0.4, 𝛼 = 0.05, 𝐶1 = 1000, 𝐶2 = 1100 for different values of fixed cost C and 

fold change 

 Δ 

 1.5 2 2.5 3 

C 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 

30000 14 14 0.3591 14 14 0.7805 14 14 0.9509 14 14 0.9912 

40000 19 19 0.4614 19 19 0.8897 19 19 0.9878 19 19 0.9990 

50000 23 24 0.5444 23 24 0.9431 23 24 0.9967 23 24 0.9999 

B. Sample size calculation for testing multiple features 

The sample size formula given in previous section is applicable to testing the 

significance of single feature such as gene. However, the experimenters are 

usually interested in testing the significance of multiple genes. The possible 

outcomes for testing multiple hypotheses has been given in Table 6.5. The 

sample size calculation method for testing single feature has been extended for 

the multiple features. We have used a different method for controlling FDR [128, 

134]. The marginal type I error over all the genes is given by 

𝛼∗ =
𝑚1𝑞

𝑚0(1−𝑞)
      (7.22) 

where, 𝑚1 is the expected number of significant features, 𝑚0 is the number of 

true null hypotheses (unknown) and q is the FDR. We use 𝛼∗ in place of 𝛼 in the 

sample size formula for multiple feature testing. Therefore, we need extra input 

parameters, namely, FDR, number of features (m) and expected number of DE 

features (m1). The above equation can be rewritten as  
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𝛼∗ =
𝜋1𝑞

𝜋0(1−𝑞)
      (7.23) 

where 𝜋1 is the expected proportion of significant features, 𝜋0 is the proportion of 

true null hypotheses. 

B1. Sample size allocation without cost constraint 

We have calculated sample sizes and exact power obtained with different sample 

size ratio (1, 2 and 3) and fold change (1.5, 2, 2.5 and 3) for RNA-Seq 

experiment (Table 7.4). We have assumed that there are 10000 features  and the 

expected number of significant features is 100. Further, we assumed that the 

expected read counts (𝜇1 = 𝜇2 = 20) and dispersion parameter (𝜙1 = 𝜙2 = 0.4) 

for both the groups are same. The value of 𝛼 and power are respectively 0.05 

and 0.9. After controlling the FDR, we obtained the value of  𝛼∗  (𝛼∗ = 0.00053). 

Table 7.4. Sample sizes (𝑁1, 𝑁2) and power computed with parameters 𝑚1 = 100,𝑚 =

10000, 𝜇1 = 𝜇2 = 20, 𝜙1 = 𝜙2 = 0.4, 𝛼 = 0.05, 𝑞 = 0.05, 1 − 𝛽 = 0.90 for different 

combinations of r and Δ 

 Δ 

 1.5 2 2.5 3 

r 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 

1 124 124 0.9023 43 43 0.9077 25 25 0.9139 17 17 0.9050 

2 93 186 0.9023 32 64 0.9046 19 38 0.9188 13 26 0.9126 

3 83 249 0.9040 29 87 0.9122 17 51 0.9212 12 36 0.9263 

B2. Sample allocation with maximum power for a fixed cost 

A hypothetical example of sample sizes and power obtained for a fixed cost C for 

multiple features is given in Table 7.5.  
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Table 7.5. Sample sizes (𝑁1, 𝑁2) and the power obtained with parameters 𝑚1 =

100,𝑚 = 10000, 𝜇1 = 𝜇2 = 20, 𝜙1 = 𝜙2 = 0.4, 𝛼 = 0.05, 𝑞 = 0.05, 𝐶1 = 1000, 𝐶2 = 1100 

for different values of fixed cost C and fold change 

 Δ 

 1.5 2 2.5 3 

C 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 𝑵𝟏 𝑵𝟐 Power 

30000 14 14 0.031083 14 14 0.232548 14 14 0.559463 14 14 0.807493 

40000 19 19 0.054654 19 19 0.389931 19 19 0.772098 19 19 0.943344 

50000 23 24 0.081829 23 24 0.530618 23 24 0.888161 23 24 0.984153 

 

We have developed shiny apps for calculating sample size and power based on 

the above discussed methods. The apps will be useful to the experimenters in 

the designing of their experiments. 

A shiny app for sample size estimation based on Poisson-log normal 

distribution 

There are many tools and applications available for sample size calculations for 

RNA-Seq experiments. One of the examples is Scotty [104],  that performs 

sample size calculation and power analysis under cost constraint for RNA-Seq 

experiments. In this method, the read counts are assumed to follow Poisson-Log 

normal distribution. The original programs were written in MATLAB. However, 

MATLAB is a proprietary software. Therefore, on a similar line, we have made an 

improved user defined shiny application using R which is a freely available 

software. We have implemented the method in R and C++ and, used shiny for 

making the application. The program is more efficient in terms of computational 

time. It will be easier for the experimenters to calculate the sample size required 

for conducting the experiments according to the budget. The researchers can 
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use the app for writing grants and conducting research projects, that will save 

resources in terms of cost and time. 

The experimenter can design the RNA-Seq experiment based on the pilot 

experimental data. In this method, we assume the count data is modelled by 

Poisson-log normal distribution. The data is normalized to the median value of all 

samples. Then, the estimates of the sequencing depth parameters are obtained 

by fitting Poisson log normal model. There are two sources of variation: biological 

and technical (Non-Poisson and Poisson variance). It optimizes the read depth 

and number of replicates. A screenshot of the app is shown below: 

 

Figure 7.1. Shiny application to calculate sample size for RNA-Seq experiments using pilot data 

The inputs to be provided by the user are as follows: 

(i) Pilot data: The user must upload the data in a prescribed format as discussed 

in the supplementary section. We have also provided some datasets that can be 

used as pilot data. We encourage the user to provide the case-control data. If the 
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data consists of either only control or only case, there must be at least two 

replicates. After the data is uploaded, please specify the other inputs. 

(ii) Additional information of data: The user has to upload the additional 

information of the data containing the names of samples and group variables.  

(iii) After the file is uploaded, the user has to select the name of variable for 

comparison. 

(iv) Cost per control sample 

(v) Cost per case sample 

(vi) Cost per million reads 

(vii) Total budget: Please specify the budget constraint. We will calculate the 

power achieved under the given budget constraint. The default value in “Inf” 

meaning no budget constraint. 

(viii) Desired fold change 

(ix) The significance level (the default value is 0.05) 

 (x) Minimum number of genes to be detected 

(xi) Maximum replication 

(xii) Minimum reads per replication 

(xiii) Maximum reads per replication 

(xiv) Minimum percent unbiased genes 

(xv) Power bias cut off 

(xvi) Alignment rate 

After specifying all the input parameters, we obtain the results showing the 

experimental design with maximum power as well as cheapest experiment to 
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achieve a desirable power. We obtain various exploratory plots such as 

multidimensional scaling plot, rarefaction plot, power analysis curves, power and 

cost plots for different experimental designs. 

We used RNA-Seq data “HumanLiverBleckman” [104, 135] obtained from 

http://scotty.genetics.utah.edu/scottyDatasets.php. This data has three control 

(female) and three test (male) samples. Each sample was run in two technical 

replicates. The count data of the technical replicates for each sample were 

added. We used the following inputs for sample size and power calculation: 

Table 7.6. The inputs provided for sample size and power calculation 

Cost per control replicate 500 

Cost per test replicate 600 

Significance level 0.05 

FC 2 

Cost Per Million Reads 1000 

Total budget Inf 

Minimum % detected 50 

Max number of replicates 10 

Minimum reads per replicate 10000000 

Maximum reads per replicate 100000000 

Minimum % unbiased genes 50 

Power bias cutoff (%) 50 

 Alignment rate (%) 50 

The estimates of dispersion parameters in control and test condition are  0.2454 

and 0.2539 respectively. Total  90 experimental designs were tested. The least 

expensive experiment is having 5 replicates with sequencing depth of 10 million 

reads per replicate (power = 0.55). The most powerful experiment is having 10 

replicates with sequencing depth of 100 million reads aligned per replicate 

(power = 0.94). 
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CHAPTER 8 

DISCUSSION AND CONCLUSION 

We investigated the design, analysis and sample size estimation methods for 

high-throughput proteomics and RNA-Seq experiments. We developed various 

approaches to analyze the kidney proteomics data and studied the heterogeneity 

issues due to the technical steps in the presence of missing values. Furthermore, 

we developed an application to standardize proteomics workflow for LC-MS data 

that will aid in choosing the most appropriate technical methods. We studied the 

impact of the technical variability on the study design of proteomics experiments. 

We developed an interactive application for differential expression analysis of 

label-free LC-MS proteomics data. The application can analyze the data at 

protein as well as peptide level using various statistical tests. It can also handle 

the missing values and adjust the effects of additional covariates. Furthermore, 

we proposed sample size calculation methods under allocation and budget 

constraints for detecting differentially expressed features in proteomics 

experiments. We developed apps to compute sample sizes based on various 

input parameters provided. In future, we will come up with more methods of 

sample size calculation methods applicable to more than two class comparison 

including additional covariates. We studied various methods of sample size 

calculations in RNA-Seq experiments based on different models. We investigated 
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the estimation of dispersion parameter and sample size methods. We developed 

different apps to compute sample sizes for conducting future RNA-Seq 

experiments under different constraints. In future, we will develop the design, 

analysis and sample size calculation methods for other biological studies such as 

single-cell sequencing experiments. 
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APPENDIX A 

ACRONYMS USED 

LC: Liquid chromatography 

MS: Mass spectrometry 

MCAR: Missing completely at random 

MAR: Missing at random 

MNAR: Missing not at random 

MVs: Missing values 

TSM: Tissue storage method 

FFPE: Formalin-fixed paraffin embedded 

FR: Frozen 

TEM: Tissue extraction method 

MAX: Protease MAX 

TX: Triton X-100 

SDS: Sodium dodecylsulfate 

LCMD: Laser capture microdissection 

ETD: Electron-transfer dissociation 

CID: Collision-induced dissociation 

cRAP: Common Repository of Adventitious Proteins 

FDR: False discovery rate 

CV: Coefficient of variation 
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GLM: General linear model 

ANOVA: Analysis of variance 

ANCOVA: Analysis of covariance 

SS: Sum of squares 

SD: Standard deviation 

PWST: Proteomics Workflow Standardization Tool 

DE: Differential expression/ Differentially expressed 

SSCP: Sample Size Calculator for Proteomics Experiment 

SATP: Statistical Analysis Tool for Proteomics 

NGS: Next-generation sequencing 

ECM: Extracellular matrix 

BH: Benjamini-Hochberg 

BY: Bejamini-Yekutieli 

MDS: Multidimensional scaling 

SVD: Singular value decomposition 

NB: Negative binomial 

MME: Method of moments estimation 

MLE: Maximum likelihood estimation 

MQLE: Maximum quasi-likelihood estimation 

CML: Conditional maximum likelihood  

RPKM: Reads aligned per kilobase of exon per million reads mapped 

FPKM: Fragments per kilobase of exon per million fragments mapped 

TPM: Transcripts per kilobase million 

FC: Fold change 

GLiM: Generalized linear model 
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