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ABSTRACT 

ELECTROSPUN FIBERS AND NANOPARTICLES FOR THE PREVENTION OF 
SEXUALLY TRANSMITTED INFECTIONS  

Kevin Michael Tyo 

September 24, 2019 

Human immunodeficiency virus-1 (HIV-1) and herpes simplex virus 2 (HSV-2) 

affect hundreds of millions of people worldwide, with women disproportionately 

impacted by these infections. Currently, only oral pre-exposure prophylaxis (PrEP) 

is approved specifically for the prevention of HIV-1, but is challenged with adverse 

side effects associated with long-term use. Topical delivery platforms, such as gels 

and films, deliver agents directly to the female reproductive tract, but are limited in 

providing transient-release. The technology of polymeric electrospun fibers may 

serve as alternative topical delivery platform to the female reproductive tract. In 

these studies, we fabricated electrospun fibers comprised of different polymers or 

polymer blends that possess different physical attributes and fiber architectures. 

The goal was to provide sustained-release of agents such as the antiretroviral 

tenofovir disoproxil fumarate (TDF) and the antiviral lectin, Griffithsin (GRFT). We 

hypothesized that these delivery platforms would prevent HIV-1 and HSV-2 

infections, while retaining the safety and biocompatibility of free agent. To 

determine the amount of GRFT loading and release from fiber formulations, ELISA
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 was conducted, whereas TDF quantification was performed using absorbance 

measurements. Next, the in vitro efficacy of composites was assessed in HIV-1 

and HSV-2 infectivity assays. From these initial results, multilayered fiber 

composites, free NPs, and hydrophilic fibers were tested for safety and antiviral 

efficacy within a murine model. Animal studies were conducted using 5-week-old 

female BALB/c mice, histology and cytokine expression were evaluated from 

mouse reproductive tracts and vaginal lavages collected 24 and 72 hr following 

platform administration. In parallel experiments, mice were administered fibers, 

followed by a single challenge 4 or 24 hr later with HSV-2 (LD90). Viral progression 

was monitored for 14 days post viral challenge to evaluate potential infection. 

Statistical significance for all studies was determined using one-way ANOVA with 

Bonferroni post hoc test (p < 0.05), while log-ranked post hoc tests were used for 

antiviral efficacy studies. Future studies will consider encapsulation of multiple 

antiviral compounds to provide synergetic protection against infection. 

Chapters included in this dissertation represent papers that have been or 

will be submitted, which may result in duplicate descriptions across chapters; 

however, these have been provided for the sake of completeness. CHAPTER 1 

contains material that has been published in Pharmaceutics.  CHAPTER 2 was 

published in the International Journal of Pharmaceutics, whereas CHAPTER 3 was 

published in the European Journal of Pharmaceutics and Biopharmaceutics. 

Finally, the appendices section contains material published in the Journal of 

Visualized Experiments. CHAPTERS 4 and 5 are undergoing preparation for 

submission.
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CHAPTER 1 

BACKGROUND, SIGNIFICANCE, AND RELATING ADVANCED 

ELECTROSPUN FIBER ARCHITECTURES TO THE TEMPORAL RELEASE OF 

ACTIVE AGENTS TO MEET THE NEEDS OF NEXT-GENERATION 

INTRAVAGINAL DELIVERY APPLICATIONS  

Background and Significance 

Sexually transmitted infections (STIs) represent a global health challenge, 

with over one million new cases reported daily. Currently, over 36 and 500 million 

people worldwide live with human immunodeficiency virus-1 (HIV-1) and herpes 

simplex virus type-2 (HSV-2) respectively1. Due to the socioeconomic conditions 

within parts of the developing world, women are disproportionately affected by 

these infections1. Furthermore, HSV-2 infection has been shown to significantly 

enhance the risk of HIV-1 acquisition by as much as 2 to 4-fold2,3. Additionally, 

studies have shown that co-infected individuals harbor higher viral loads relative 

to individuals with only one infection type3. Despite decades of research, there is 

currently no cure for either HIV-1 or HSV-2, and infection rates among specific 

demographics remain high4,5. 

The HIV-1 pandemic is a relatively recent phenomena, with the first 

confirmed cases of infections originating in the Democratic Republic of the Congo
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during the late 1950s6. Human contraction of HIV-1 is believed to have originated 

from cross-species contamination of simian immunodeficiency viruses (SIVs), 

which normally infect primates. The first known cases of HIV-1 infection in the 

United States were observed in 1981, and were followed by the designation 

Acquired Immune Deficiency Syndrome (AIDS) in 1983, with the isolation of virus 

confirming its role in causing the disease. The virus itself, can be transmitted 

through homo- and heterosexual intercourse, mucosal layer exposure, or blood-

to-blood transmission7. To date, over 36 million people worldwide live with HIV-1 

infection, with women in the developing world bearing the highest burden of 

infection (Figure 1.1).  
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Figure 1.1 Map depicting the total number of people living with HIV-1 infection 

worldwide. The developing world is more highly affected by HIV-1, with higher 

rates of infection. Furthermore, women worldwide are disproportionally more 

susceptible to infection. Image taken from online site at OurWorldInData.org8. 
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The global challenge in curing HIV-1 is hindered by the sheer genetic 

diversity observed in the viral population. Despite the recent origin of the 

pandemic, the high mutation rate of HIV-1 has created an immense array of viral 

subtype. As of now, there are two types of HIV-1 known, the more virulent and 

widespread HIV-1, and HIV-2 which is localized in central Africa9. Because of the 

large genetic variability, HIV-1 is further divided into three groups: major (M), outlier 

(O), and new (N)10. The largest HIV-1 group, M, can be further divided into 

subtypes, or viral clades. These clades, ranging from A to K, are heavily localized 

in specific locations, and show high correlation with incidence rates and 

geography. In North America, clade B is the most common form of virus, while 

clade C is predominant in Africa11.  

Despite the diversity of HIV-1 subtypes within the global population, all HIV-

1 particles share the same general structure. Each HIV-1 particle is comprised of 

two single stranded RNAs that are enclosed within a viral capsule comprised of 

p24 proteins12. In addition, the capsule is surrounded by an envelope (Env), 

comprised of glycoproteins 120 (gp120) and 41 (gp41). The viral envelope plays 

an essential role in enabling initial cell binding and virus entry. Within this viral 

capsule, reverse transcriptase and integrase proteins also exist, in addition to 

single-stranded RNAs13. These proteins are critical in “hijacking” the host cellular 

machinery for repurposing in viral replication. 

As mentioned previously, HIV-1 glycoproteins gp120 and gp41 are 

essential for host cell binding and entry. Once inside the body through intercourse, 

mucus, or blood transmission, these glycoproteins allow HIV-1 to target CD4 T-
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helper cells, dendritic cells, macrophages, as well as Langerhans cells13. These 

cells express the cluster of differentiation 4 (CD4) receptor, as well as chemokine 

receptor 5 (CCR5), or chemokine receptor type 4 (CXCR4), which are the targets 

of viral glycoprotein interactions13. When the viral envelope glycoproteins bind to 

the CD4 receptor, a conformational change occurs on the viral envelope, causing 

additional binding to either CCR5 or CXCR4 co-receptors14. This binding leads to 

viral fusion with the cell surface, resulting in virus uptake. After entry, the viral 

proteins and RNA appropriate host cell machinery for the sole purpose of new viral 

particle production, although some infected cells can act as viral reservoirs, 

delaying the production of active virus.    

Since the first confirmed isolation of HIV-1 in 1983, there has been a 

continued effort to eradicate HIV-1. The first antiviral agent to treat HIV-1 was 

Zidovudine (or azidothymidine, AZT), and was first approved by the Food and Drug 

Administration (FDA) in 1987. AZT is classified as a dideoxynucleoside reverse 

transcriptase inhibitor (NRTI), and inhibits the process of viral replication. However, 

due to high viral mutation rates and low tolerance in many patients, the sole use 

of AZT was not successful. Since the first introduction of AZT, dozens of new 

therapeutics have been introduced to combat the AIDS pandemic. Most of these 

therapeutics are used in combination to ensure complete viral inhibition. This 

course of action, called combinational highly active antiretroviral therapy (HAART) 

has shown success in treating infections14.  

Currently, there are a variety of drugs that exist to treat HIV-1, with a total 

of six main types. These types: nucleoside/nucleotide reverse transcriptase 
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inhibitors (NRTIs), non-nucleoside/nucleotide reverse transcriptase inhibitors 

(NNRTIs), protease inhibitors (PIs), fusion inhibitors, co-receptor inhibitors, and 

integrase inhibitors are categorized based on mechanism of action15. Nucleotide 

and nucleoside reverse transcriptase inhibitors (such as AZT) are agents that 

directly bind to the active site of the viral reverse transcriptase enzyme, which 

subsequently inhibits viral replication. In contrast, non-nucleotide/nucleoside 

reverse transcriptase inhibitors inhibit reverse transcriptase by binding to the active 

site of the protein. Protease inhibitors act to inhibit the formation of mature HIV-1 

proteins, preventing new particle fabrication. These three classes act against HIV-

1 after the virus has entered the cell. In contrast, fusion inhibitors bind to and 

inactivate envelope (Env) proteins such as gp41, preventing HIV-1 entry into host 

cells. The use of co-receptor inhibitors can prevent gp120 and CCR5 interactions, 

again preventing viral entry into cells. Finally, integrase inhibitors, much like 

reverse transcriptase and protease inhibitors, work after viral infection and prevent 

the virus from integrating its genetic material into the host cell DNA. 

This large array of HIV-1 therapeutics has been developed due to the highly 

mutagenic nature of HIV-1. Previous studies have shown administration of one 

agent will only inhibit infection temporarily, with viral mutations rendering the agent 

inactive16. Thus, HAART has been implemented, in which at least three drugs 

comprised of two different classes HIV-1 antiretrovirals are administered to treat 

HIV-116. These medications are taken orally daily, with several RTIs and at least 

one PI being used17. The use of drugs with different mechanism of actions reduces 

the risk of HIV-1 adaptation. Furthermore, another benefit of using a diversity of 
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agents is the reduction of toxicity and off-target effects, relative to using the same 

class of agents15. With the implementation of HAART, patient life expectancy has 

increased tremendously by the continuous suppression of HIV-1, preventing AIDS.  

In contrast to the more recent emergence of HIV-1, herpes simplex virus 

type-2 is estimated to have existed over 1 million years ago18. This virus is the root 

cause of genital herpes, of which there are two types.  HSV-2 typically results in 

genital infection, while HSV-1 predominantly results in oral manifestations, and 

very rarely infecting the genital area. To date, there are over 530 million cases of 

HSV-2 infection, representing roughly 25% of the global adult population19. This 

high incidence of HSV-2 is largely attributed to the ability of virus to infect during 

asymptomatic periods, and to infect surface epithelial cells, as well latently 

infecting neuronal cells19,20. Although HSV-2 is not life threatening, no cure exists, 

resulting in the need for life-long maintenance. 

Each HSV-2 virion is comprised of a viral capsid, or capsule containing 

double-stranded DNA21. The capsule itself is composed of proteins that form an 

icosahedral shape, surrounded by a lipid bilayer that forms the viral envelope. The 

lipid bilayer contains a variety of surface glycoproteins, five of which are essential 

for binding and entry to host cells: gB, gC, gD, gH, and gL22,23. Unlike HIV-1, the 

capsid only encodes viral DNA; whereas the cellular machinery of the host 

provides the means for producing additional viral particles. 

Initially, HSV-2 infects epithelial cells; however, following the initial infection 

the virus migrates to neuronal ganglia, providing a reservoir for latent infection. 
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Cell entry is enabled by viral glycoproteins gB and gC located on the surface of the 

lipid bilayer. These two glycoproteins non-specifically bind to a cell surface 

proteoglycan called heparan sulfate20. The initial binding results in envelope 

conformational changes stabilized by both gB and the gH-gL dimers, resulting in 

receptor-mediated cell binding and internalization via glycoprotein gD facilitation21.  

After this complex process, the virus enters the cell, resulting in the transcription 

of viral DNA via cellular machinery and subsequent viral replication.   

Due to the latent, asymptomatic and irregular recurrences exhibited by the 

virus, no cure for HSV-2 exists. Additionally, relatively few agents are available to 

treat HSV-2, relative to HIV-124. The most commonly prescribed agents for HSV-2 

treatment are: Acyclovir, Valaciclovir, and Famciclovir. Acyclovir is a guanosine 

derivative, which acts to specifically inhibit viral DNA polymerase activity after 

binding to the enzyme’s active site. Additionally, Acyclovir was one of the earliest 

therapeutics available to combat HSV-2; however, due to the relatively low 

bioavailability of Acyclovir, newer therapeutics have been developed. One of the 

successors of Acyclovir is Valaciclovir, a prodrug that provides a 3-5-fold increase 

in bioavailability compared to Acyclovir. Last, Famciclovir, a prodrug of Penciclovir, 

possesses a similar mechanism of action as Acyclovir but can be topically 

administered25.  

Despite the numerous agents available to treat HIV-1 and HSV-2 infections, 

to date there are no FDA-approved agents that prevent or completely cure these 

infections. The lack of viable prevention agents for HSV-2 further contributes to the 

challenges of managing and combating HIV-1 infections. As previously mentioned, 



    

9 
     

HSV-2 acquisition increases the risk of HIV-1 infection, by promoting inflammation, 

and more chronically causing small epithelial tears and genital lesions that 

increase the likelihood of HIV-1 transmission. Additionally, the asymptomatic 

nature of HSV-2 may result in the lack of awareness of infection, and hence 

increased risk of transmitting26. Therefore, the development of multipurpose 

regimens, active agents, or platforms that have the ability to mechanistically 

prevent both HSV-2 and HIV-1 infections are urgently needed.  

Thus far, in terms of prevention, oral pre-exposure prophylaxis (PrEP) has 

been the primary method to prevent HIV-1 infection in high-risk individuals via daily 

oral administration. Truvada, a pill containing the antiretrovirals Tenofovir 

Disoproxil Fumarate (TDF) and Emtricitabine, is the only FDA-approved oral 

PrEP27. Clinical trials such as Centers for Disease Control and Prevention CDC 

4243 and CDC 4940, and the International AIDS Vaccine Initiative IAVI E001 and 

IAVI E002 have demonstrated the efficacy of oral PrEP, with daily Truvada 

administration resulting in an HIV-1 prevention rate of 62%28. Other clinical trials 

show similar results, with oral PrEP reducing HIV-1 acquisition in heterosexual 

couples (75%), and in young adults (44-62%)28.  

 Despite the success of oral PrEP, studies have shown that the protection 

imparted by oral PrEP is wholly dependent on strict user adherence. This was 

underscored in the VOICE (MTN-003) clinical trial, in which oral PrEP (and topical 

microbicide gels) failed to provide any meaningful protection due to a lack of user 

adherence29. Additionally, there are major concerns regarding long-term use and 

off-target side effects. Studies have shown that long-term administration of 
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antiretrovirals may result in renal and bone toxicity due to the high doses required 

to overcome first-pass metabolism29. Furthermore, concerns exist over the use of 

TDF and Emtricitabine in both prevention and treatment regimens, with the risk of 

acquiring viral resistance to therapeutic agents, which would then render 

prophylactic methods, based on the same active agents, ineffective.  

The challenges of oral PrEP have prompted the development of several 

topical delivery platforms that provide localized protection as well as the 

incorporation of biologics. Additionally, intravaginal delivery platforms are being 

developed to address the disparity of infections seen in women in the developing 

world by seeking to provide a convenient, low-cost, and discreet product for self-

administration. To date, intravaginal delivery has been an effective strategy to 

improve the localization of antiviral, antibacterial, antifungal, chemotherapeutic, 

and contraceptive agents within the female reproductive tract (FRT)30,31. One of 

the key advantages of topical PrEP, relative to oral is the avoidance of first-pass 

hepatic clearance and the harsh gastrointestinal environment, due to the dose 

localization. This results in an increase in drug bioavailability within target tissue 

and corresponding functional activity by decreasing off-target effects and systemic 

exposure32. The inherent characteristics of the FRT, including its large surface 

area and low enzymatic activity, additionally make the FRT a favorable site for 

localized active agent administration and targeting33,34. Furthermore, localized 

administration provides the added benefit of decreasing potential drug toxicity. This 

results in more efficacious inhibition of HIV-1 at the site of transmission and initial 

infection35. The potential of topical PrEP was first demonstrated in the CAPRISA-
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004 clinical study, where an intravaginally administered topical gel containing TFV 

was used to effectively reduce HIV-1 transmission by 39%36,37.  

Although intravaginal delivery offers a variety of advantages to enhance the 

delivery of active agents38, challenges unique to the FRT must be overcome to 

provide efficacious prophylaxis and treatment. One of the most important 

components of the FRT is the mucus layer, which protects the epithelium and 

lamina propria from incoming pathogens (Figure 1.2). However, it can also act as 

a barrier, impeding active agent transport to underlying epithelial and immune 

cells39,40. In addition to these challenges, the frequent shedding and production of 

cervicovaginal mucus can decrease active agent retention, while bacterial flora, 

enzymes, and the acidic environment created by beneficial bacteria can contribute 

to metabolization and degradation of active agents, reducing efficaciousness. 
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Figure 1.2 Schematic depicting the structure and specific layers of the vaginal 

mucosa that can act as a barrier to active agent transport (not to scale). The mucus 

layer of the female reproductive tract (FRT) frequently sheds and can immobilize 

active agents (shown in red), leading to decreased efficacy of the administered 

agents. The bacterial flora normally present within the FRT can also metabolize 

and degrade agents, further contributing to decreased efficacy. Last, the 

squamous epithelium can hinder transport to underlying immune cells present near 

the epithelial surface and/or in the lamina propria. 
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To address these challenges, intravaginal delivery platforms have been 

formulated as solid or semi-solid dosage forms that include suppositories, tablets, 

capsules, gels, rings, and creams to enhance delivery to and retention in the 

FRT41-45. While these dosage forms have enabled high levels of active agent 

incorporation and localization, these traditionally used delivery platforms still face 

significant challenges, including difficulty of self-administration, economic 

feasibility, poor user-compliance, vaginal irritation, the need for frequent 

administration, and low residence times46. Of these platforms, intravaginal rings 

have provided the “gold standard” for long-term delivery due to their ability to 

sustain the release of one or multiple active agents for weeks to months, avoid 

leakage and loss of active agent, and improve drug stability47-51. However, some 

biological agents have difficulty withstanding the high temperature and solvent 

processes often required for fabrication, limiting their incorporation52. 

Of these topical platforms, , fast dissolving inserts (FDIs), films, and tablets 

act to provide transient (≤ 24 hr) protection, requiring use immediately prior to an 

exposure event, which may limit their utility35,53-55. Previous clinical trials assessing 

the efficacy of intravaginal gels demonstrated suboptimal results, which were 

attributed to a lack of user adherence53. Together, the current challenges of user 

adherence and the inability to provide sustained-release may limit the 

effectiveness of these delivery platforms.  

In contrast to the previous technologies, IVRs, as mentioned earlier, provide 

the gold standard for sustained-release applications. Previous studies have shown 

that IVRs are able to release antiretrovirals for up to 6 months56,57. Additionally, 
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IVRs have been developed to release hydrophilic agents, hormones, and recently 

biologics58. The recent ASPIRE (MTN-020) clinical trial, has shown the promise of 

IVRs, with the reduction of HIV-1 infections by 27% in selected participants using 

IVRs encapsulating the antiretroviral dapivirine55. However, within this trial, it was 

seen that women ages 18-21, who are most vulnerable to infection, were less likely 

to adhere to an IVR regimen. Furthermore, in the recent HOPE study, despite an 

estimated user adherence of 90%, intravaginal rings encapsulating dapivirine 

imparted only partial protection against HIV-1, by reducing infections in 39% of 

women59. These challenges have prompted the development of new dosage 

platforms that may also integrate biologics to provide alternative options for 

women. 

Concurrent with traditional antiretroviral development, the use of biologics 

in the field of STI prevention has increased within the last decade. Biologics, or 

active agents consisting of, or derived from living organisms, have shown the 

ability to provide enhanced specificity and decreased adverse off-target effects 

compared to traditional prophylactics and therapeutics60. However, many biologics 

lack oral bioavailability, preventing them from being used in oral treatment 

regimens. Given this, biologics may be incorporated into topical delivery platforms, 

which can overcome this limitation and additionally inhibit viral infection using 

different mechanisms of action, thus reducing the likelihood of acquiring antiviral 

resistance. One of the most promising biological microbicide candidates is the 

antiviral lectin, Griffithsin (GRFT). Originally derived from a species of red algae, 

GRFT has demonstrated potent antiviral activity against a variety of viruses, 
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including HIV-1 and HSV-261-66. Among the biologically-based agents studied thus 

far, GRFT is one of the most potent against HIV-1, inhibiting activity with picomolar 

concentrations. GRFT acts against HIV-1 by specifically binding to viral gp120 

glycoproteins, and inactivating the viral particle66,67. Additionally, previous studies 

using a 0.1% w/w GRFT gel protected mice from intravaginal infection with HSV-

265. This protection was attributed to the prevention of the cell-to-cell spread of 

HSV-2 and demonstrated the potential of GRFT in multipurpose (multi-virus) 

applications. Finally, GRFT has been shown to be highly stable and to have high 

resistance to denaturation, while simultaneously exhibiting biocompatibility and 

safety within human cells and murine models68,69. Despite the potential of GRFT, 

the lectin itself lacks oral bioavailability and is poorly absorbed, rendering oral 

administration of the antiviral agent unlikely, without the development of oral-

specific formulations.  

Although GRFT lacks oral bioavailability, it is an excellent candidate for 

delivery to the FRT. GRFT has demonstrated synergistic activity against viral 

infections, with antivirals such as of Tenofovir (TFV) and other biologics such as 

carrageenan70-72. FDIs encapsulating GRFT have demonstrated short-term 

protection against HSV-2 infection in vivo, with FDI-incorporated GRFT 

maintaining similar efficacy to free GRFT alone73. Additionally, GRFT stability and 

activity were demonstrated in gels, which are now under evaluation in clinical trials. 

However, despite the interest in GRFT, to date there is no delivery platform 

capable of prolonging the release of GRFT for more than 72 hr65,73,74. 

Electrospun Fibers 
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As a relatively new microbicide delivery technology, electrospun fibers 

(EFs) may provide a promising alternative for prolonged and localized agent 

delivery, with the potential to protect against multiple STIs. Some of the 

advantages of EFs include the ability to highly incorporate a diversity of active 

agents including drugs and biologics33,75, to tailor sustained-release by selecting 

different polymeric materials, and to maintain agent stability during the course of 

delivery76,77. Biodegradable polymers, such as poly(lactic-co-glycolic acid (PLGA) 

and poly(caprolactone) (PCL), are approved by the U.S. Food and Drug 

Administration (FDA) for therapeutic use, indicating their proven biocompatibility 

and potential for translation78. Together, these attributes have recently established 

polymeric EFs as an attractive platform for localized delivery against STIs. 

Electrospun fibers have recently gained attention for intravaginal delivery 

due to their ease of use, ability to be fabricated into various geometries and sizes, 

and tunable release properties79,80. They have been considered for sustained-

delivery, a characteristic that is often desirable for intravaginal applications, due to 

their high surface area-to-volume ratio, degree of interconnected porosity, tunable 

pore sizes, surface-modification potential, interchangeable polymer options, and 

diverse fiber architectures that enable finer control over the rate, duration, and site 

of agent release81. Electrospun fibers have the additional advantage that they can 

be fabricated using a variety of natural or synthetic polymers to tailor release 

properties82, and these polymer types are typically selected based on their 

biocompatibility, hydrophobicity, and related degradation properties. 
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Over the past decade, researchers have begun to incorporate antiviral 

agents into polymeric EFs to prevent HIV-1 infection. One of the first studies to 

utilize EFs to combat HIV-1 developed pH-responsive fibers that encapsulated 

cellulose acetate phthalate (CAP)83. While CAP EFs exhibited long-term stability 

in low pH environments characteristic of the female reproductive tract, the EFs 

quickly degraded with the introduction of semen, to release active CAP and 

neutralize HIV-1 particles. Later research by the same group utilized surface-

modified polystyrene and polypropylene fibers to bind to and inhibit HIV-1 with 

higher efficacy than unmodified fibers alone84. 

In addition to pH-sensitive and surface-modified fibers, researchers have 

utilized EFs to provide tunable release of one or more incorporated active agents 

for HIV-1 prevention85,86. Polymer blends of polyethylene oxide (PEO) and poly(L-

lactic acid) (PLLA) were synthesized to encapsulate and tailor the release of the 

antivirals Maraviroc (entry inhibitor) and AZT for up to several weeks86. In another 

study, PLGA and PCL fibers were loaded with various concentrations of the 

antiretroviral TFV85. These fibers demonstrated sustained-release of TFV for 30 

days, as well as efficacy against HIV-1 infection in vitro. Similarly, but less 

extensively for HSV-2, sustained-release delivery vehicles have been recently 

developed. In one study, ACV was incorporated into EFs. Release eluate collected 

up to 28 days post-release provided sustained protection against HSV-2 infection 

in vitro87.  

One of the most significant factors that contributes to active agent release 

from fibers is the relative hydrophobicity of the selected polymer material88,89. In 
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addition to polymer hydrophobicity, the medium (in vitro) or environment (in vivo) 

surrounding the fiber can impact drug release. Simulated vaginal and seminal 

fluids, often used to preliminarily assess intravaginal release, may alter the release 

of agents relative to testing in water or phosphate buffered saline (PBS) (in vitro) 

or in vivo, due to differences in viscosity, salt, and protein concentrations, as well 

as pH. Therefore, depending on the degree of polymer hydrophobicity and the 

environment release it is tested in, the same encapsulated active agent can have 

distinctly different release profiles, in some cases ranging from hours to 

months90,91. Usually, independent of these conditions, the use of hydrophilic 

polymers often results in the immediate release of both hydrophilic and 

hydrophobic active agents due to the high solubility and degradation rate of 

hydrophilic polymers in aqueous environments92. Natural polymers such as 

collagen, gelatin, chitosan, elastin, and laminin, and synthetic polymers including 

poly(ethylene oxide) (PEO), polyvinyl alcohol (PVA), and polyvinylpyrrolidone 

(PVP) are examples of hydrophilic materials that have been fabricated into fibers 

with micron- and nanometer-scaled properties. In contrast, synthetic hydrophobic 

polymers including polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), 

and polyurethane (PU) have demonstrated burst or sustained-release kinetics 

depending on the hydrophobicity of the incorporated active agent93-97. Moreover, 

synthetic hydrophobic polymers can also serve as a mechanical and structural 

basis for different fiber architectures in which the release of single or multiple 

encapsulants may be tailored by using more complex fiber designs or composites. 

Fiber release rates can also be optimized by adjusting the polymer molecular 
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weight or hydrophilicity, for example, by adding hydrophilic groups such as 

aliphatic poly(phosphoester) to the polymer structure98. Together, these features 

have enabled the incorporation and release of a variety of antiviral, antimicrobial, 

and biological agents from fiber scaffolds99-101. 

Active agent release from polymeric fibers typically occurs via diffusion, 

polymer degradation, and erosion89. When fibers are first administered, solvent or 

solution diffuses through the porous fiber matrix. Once in contact with the solvent 

or solution, the polymer matrix swells, loosening polymer chains and enabling the 

diffusion of active agents, dependent in part on molecular size. Concurrently, the 

fiber surface may undergo bulk erosion at a rate corresponding to polymer 

hydrophilicity. These features in combination with the large surface-to-volume ratio 

of the fibers allows for the increased diffusion of encapsulants relative to diffusion 

from non-porous bulk materials102. Traditionally, fibers have been electrospun as 

uniaxial fibers or fibers that comprise a single polymer or polymer blend and exhibit 

homogeneous morphology. Diffusion of active agents from more traditional 

uniaxial fibers is dependent upon the compatibility of the encapsulant, polymer, 

and surrounding eluant. In contrast with diffusion, polymer degradation is observed 

when fibers are exposed to aqueous environments, and polymer bonds are 

cleaved by either passive hydrolysis or enzymatic reaction103, resulting in slow 

degradation of the fiber scaffold. This degradation alters the distance between and 

size of interconnected pores, thereby impacting the diffusion and release of 

incorporated active agents. For most synthetic polymers, hydrolysis is the most 

common mechanism of degradation, although hydrolysis-resistant polymers have 
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been utilized104, which significantly impact active agent release. As the fibers 

degrade, they can also undergo surface or bulk erosion, which is dependent upon 

solvent diffusivity into the fiber, polymer solubility, and overall fiber matrix 

dimensions105. 

As a result of these mechanisms and the materials selected, electrospun 

fibers can tailor the release of encapsulated agents within different durations to 

achieve immediate (transient or rapid), short-term, or sustained-release. Within 

this review, we defined release as transient, when the complete release of active 

agents occurs within 24 h of administration; short-term, when the release occurs 

from one day to one week; or sustained, when the release of the active agent 

occurs over a duration of weeks to months. A schematic showing an example of 

these different potential release profiles is provided in Figure 1.3. Factors including 

the electrospinning parameters, polymer materials, fiber architecture, the resulting 

structure and morphology, and the distribution and amount of incorporated active 

agent each contribute to the resulting release kinetics and efficacy of delivery80. 
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Figure 1.3 Schematic depicting examples of transient, short-term, and sustained-

release profiles. 
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Traditional uniaxial electrospun fibers in which each individual fiber is 

composed of a single cohesive polymer layer were the first fiber architectures to 

be fabricated106 and have been utilized in a variety of drug delivery applications 

over the past decade79,80,107-109. While uniaxial fibers offer high encapsulation 

efficiencies, cost-effectiveness, and ease of use, they have suffered from burst 

release and challenges in tailoring release properties80,90,110. These challenges are 

most evident in achieving the sustained-release of hydrophilic agents, often 

necessitating hydrophilic polymers to attain high encapsulation efficacy as well as 

hydrophobic polymers for sustained-release. More complex fiber architectures 

offer alternative options to address these limitations by combining different polymer 

types in distinct layers to modulate the release. 

While the release characteristics of traditional uniaxial electrospun fibers 

have been thoroughly reviewed in literature76,111-115, to our knowledge, there has 

not yet been a review of the more advanced fiber architectures used to deliver 

active agents, nor a review that considers the impact these architectures may have 

on intravaginal delivery applications. Here, we seek to provide an overview of 

different polymer architectures including coaxial, multilayered, and nanoparticle-

fiber composites (Figure 1.4) as a function of the materials used to construct these 

architectures that have been utilized in a diversity of health applications. We seek 

to present different material combinations in these architectures to systematically 

relate material type and fiber architecture to active agent release kinetics. Last, we 

explore how lessons derived from these different architectures might be applied in 

the context of intravaginal delivery to address the needs of future topical sustained-
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release platforms for a given prophylactic or therapeutic application. The overall 

goal of this review is to provide a summary of different fiber architectures that have 

been useful for active agent delivery and to provide guidelines for the development 

of new formulations based on the knowledge obtained from previous work across 

other applications. While some of these more complex architectures have only 

recently been investigated relative to uniaxial fibers, they have demonstrated 

promise in enabling greater tunability of release and may be useful to apply as new 

dosage forms for intravaginal delivery and other similar applications. 
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Figure 1.4 Schematic of different electrospun fiber composites. Diagrams 

representing (A) traditional uniaxial fibers, (B) coaxial fibers, (C) multilayered 

fibers, and (D) nanoparticle-fiber composites. (A) Uniaxial fibers are comprised of 

a single polymer or polymer blend (shown in blue) that is distributed homogenously 

throughout the fiber structure. (B) In contrast, coaxial fibers contain both core 

(orange) and shell (blue) layers that are chemically distinct. (C) Multilayered fibers 

result from sequentially electrospinning different fiber layers together or integrating 

individual layers post-fabrication. (D) Finally, nanoparticle-fiber composites consist 

of hydrophilic or hydrophobic fibers (orange) that encapsulate nanoparticles 

(green). 
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Coaxial Electrospun Fibers 

Coaxial Architectures and Properties 

Coaxial electrospinning, adapted from uniaxial or single axial 

electrospinning, provides a multicomponent fiber scaffold that easily allows the 

tunable release of active agents116,117. Coaxial fibers are usually comprised of two 

parts, an outer protective layer or shell and an inner layer or core118, where 

encapsulants are typically localized (Figure 1.4B and Figure 1.5). Coaxial fibers 

can provide several advantages relative to uniaxially spun fibers. First, 

electrospinning the core and shell polymer solutions simultaneously through a 

coaxial spinneret allows for the design of unique fiber architectures. The thickness 

and ratios of the core and shell layers can be modulated, providing more 

reproducible fiber properties with a greater ability to alter encapsulant release 

relative to other fabrication methods. Additionally, coaxial electrospinning ensures 

that the active agent in the core phase is protected within harsh physiological 

environments, such as the female reproductive tract101. Furthermore, a variety of 

materials can be used as either the core or shell to finely regulate encapsulant 

release (Figure 1.5) 116,119. 
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Figure 1.5 Schematic of anticipated release profiles from different coaxial fiber 

architectures. Generally, the release of encapsulants from coaxial fibers is 

dependent on the core and shell hydrophobicity. The release of active agents from 

coaxial fibers with (A) hydrophilic core and shell, (B) hydrophobic core and 

hydrophilic shell, (C) hydrophilic core and hydrophobic shell, and (D) hydrophobic 

core and shell are shown. Hydrophilic polymers (shown in orange) typically 

promote transient release, while more hydrophobic polymers (blue) are typically 

used to provide short-term or sustained-release. 
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Despite these advantages, the added complexity of simultaneously 

electrospinning two or more polymer phases and the additional interactions 

between the core and shell solutions requires additional optimization relative to 

uniaxial electrospinning in terms of selecting compatible polymers and solvents. In 

addition to the core-shell architecture itself, the release profiles of active agents 

from coaxial fibers are impacted by solvent choice, polymer-solvent miscibility, the 

miscibility between core and shell solvents/solutions, solvent volatility, and layer 

thicknesses120,121. Solvent choice has been shown to alter fiber diameter and 

structure122, thereby impacting active agent release123. Additionally, miscible core 

and shell solvents/solutions may lead to the partial dissolution of core 

encapsulants in the shell, whereas, immiscible core and shell solvents may 

promote material delamination at the core-shell interface, facilitating burst release 

of the core encapsulant. Therefore, the polymers and solvents for both core and 

shell layers must be selected based on their individual properties as well as their 

anticipated interactions124,125. In addition, solvent volatility and evaporation rate 

can affect the distribution and subsequent release of active agents, while the 

thickness of the polymer shell, polymer composition, and spinning conditions 

influence encapsulant diffusion rates126. Here, we discuss coaxial fibers as a 

function of their core-shell design, composition, and incorporated active agents to 

help relate these considerations to the resulting transient, short-term, or sustained-

release characteristics. 

Release Kinetics from Coaxial Fibers 

Transient Release (within 24 h) 
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Hydrophobic Shell—Hydrophilic Core 

Electrospun fibers can be designed to release the active agent immediately 

or within 24 h of administration if a rapid onset of action is needed for a given 

application127. Moreover, multiple active agents can be incorporated into different 

layers of a coaxial fiber (core or shell) to provide transient release. 

For application to infectious diseases, coaxially spun fibers that 

demonstrate burst release followed by lower levels of short-term release may 

provide on-demand protection against incoming pathogens, increasing the 

immediate efficaciousness of agents by releasing initially high (burst) 

concentrations. This type of release can be achieved by employing coaxial fibers 

comprised of hydrophobic shells and hydrophilic cores. In one study, coaxial and 

triaxial fiber multi-drug delivery platforms that used PCL as the outermost shell 

released ~15% and ~80% of two different hydrophilic dyes, keyacid blue and 

keyacid uranine (KAB and KAU), from the PVP core and PCL shell fibers, 

respectively, within one hour116. In both the coaxial and triaxial fibers, the PVP core 

containing KAB was protected by the surrounding PCL layer containing KAU, 

which helped to extend the release of the remaining KAB to 24 h. For the triaxial 

fibers, a blank PCL layer was electrospun between the outer PCL shell and the 

inner PEO core. In both the coaxial and triaxial fibers, KAU was released from the 

shell within 3 h; however, the triaxial fibers better modulated the release of KAB 

from the core, releasing 50% less during the first hour. The burst release of the 

KAU dye, observed from both coaxial and triaxial fibers, was attributed to water 

penetrating the porous fiber shell, allowing transient release. In another example 
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of coaxial fiber design, water-soluble PVP was used as a core with a hydrophobic 

ethyl cellulose (EC) shell to encapsulate hydrophobic compounds of either 

quercetin or ketoprofen. Using this architecture, ~75% of both hydrophobic 

encapsulants were released within 24 h. 

Hydrophilic Shell—Hydrophobic or Hydrophilic Cores 

Similarly, coaxial fibers that have hydrophilic shells can facilitate the rapid 

release of encapsulated agents with an initial burst release of 1 to 4 h followed by 

continued transient release within 24 h of administration. One architecture that has 

been adopted to achieve rapid- or on-demand release from coaxial fibers is a 

hydrophilic shell in combination with a hydrophilic or hydrophobic core. In one 

study, zein-PVP core-shell fibers were developed that incorporated the active 

agent in both the core (zein) and the shell (PVP) layers128. Zein, a natural, 

moderately hydrophobic polymer was used to achieve immediate and transient 

release of the hydrophobic drug, ketoprofen. A burst release of 43% was observed 

within the first hour, followed by transient release of the remaining ketoprofen over 

10 h. The initial burst release was correlated with rapid dissolution of the 

hydrophilic shell, while the more transient 10 h release was attributed to the 

hydrophobic core. In another study, the release profile of a hydrophobic drug, 

asiaticoside, was compared between coaxial fibers composed of chitosan cores 

with either a hydrophilic alginate and PVA-blended polymer shell or a hydrophobic 

centella triterpenes cream shell129. The coaxial fiber with the alginate-PVA shell 

demonstrated 80% more asiaticoside release relative to the centella control within 

10 h, which was attributed to the shell hydrophilicity129. Additionally, the trend of 
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burst release followed by more gradual transient release was attributed to rapid 

degradation of the alginate-PVA shell, followed by subsequent degradation of the 

chitosan core. While this example incorporated a polymer blend (alginate-PVA) as 

the hydrophilic shell, to be considered a core-shell structure, it should be noted 

that the material itself needs to be electrospinnable without other polymers. As this 

example demonstrates, hydrophilic polymers such as PVP, PVA, or PEO can be 

electrospun alone or in blends to create hydrophilic core and shell layers. 

Core-Shell Architectures with Similar Core-Shell Hydrophobicity 

Coaxial fibers comprised of both hydrophilic core and shell layers have also 

been investigated to provide transient release of active agents. For example, 

coaxial fibers fabricated with a hydrophilic PVP shell and hydrophilic cellulose 

acetate core were investigated. These coaxial fibers with both a hydrophilic core 

and shell released 31% of their hydrophobic encapsulant (epicatechin) within 10 

min, followed by 80% release after 4 h130. 

In addition to the utilization of materials with similar hydrophobicities, coaxial 

fibers consisting of identical core-shell materials have been fabricated to provide 

the rapid release of active agents. In one study, fibers with PVP shells and cores 

were investigated to provide rapid release of the hydrophobic drug, quercetin. The 

PVP shell-PVP core fibers released quercetin within one minute131, and this burst 

release was similarly observed in a separate study that used the same fiber 

formulation to deliver acyclovir132. In another study, the hydrophobic antibiotic, 

allyltriphenylphosphonium bromide, was incorporated within the core of coaxial 
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fibers, and the volumetric ratios of core-shell solutions were varied to study 

release. Fibers comprised of zein-zein with core-shell volume ratios greater than 

1:2 were found to suppress the burst release of the antibiotic, only releasing 15% 

within the first hour. In contrast, 35% and 45% of the antibiotic were released from 

fibers with a 1:1 core:shell volumetric ratio or blended fiber controls over the same 

duration133. In a separate study, a triaxial fiber in which all three layers were 

comprised of ethyl cellulose provided zero-order release of ketoprofen over 20 h 

due to the gradual increase in the drug content moving from shell to the core134. 

These studies highlight the role of the active agent distribution within the fiber 

layers, suggesting that encapsulant localization within the fiber core may enhance 

release. 

Finally, the release of fluorescently labeled bovine serum albumin (BSA) 

from core-shell hydrogel nanofilaments composed of a poly(lactide-co-ε-

caprolactone) (PLCL) shell and N,N-isopropylacrylamide (NIPAAm)/N,N′-

methylene bisacrylamide crosslinked core was studied. The crosslinker, N,N′-

methylene bisacrylamide, was used to polymerize NIPAAm during the 

electrospinning process. This study showed that by changing the NIPAAm-

crosslinker (w/w) ratio from 4:1 to 37:1, the release of BSA increased from 0.15 to 

0.7 ug/mg over 24 h. However, in the absence of a hydrogel within the core, BSA 

showed nearly complete release over the same duration. This study demonstrated 

that the mechanical and corresponding drug release properties could be more 

finely tailored by altering the NIPAAm-crosslinker (w/w) ratio135. 

Stimuli-Responsive Coaxial Architectures 
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Another method to modulate the release of active agents from coaxial fibers 

is to integrate stimuli-responsive layers to precisely release agents in response to 

surrounding physiological conditions136. Unlike stimuli-responsive uniaxial fibers, 

the more complex interactions between the core and shell layers in coaxial fibers 

can provide increased control of active agent release via pH- or other stimuli-based 

mechanisms. A variety of natural and synthetic materials have been investigated 

for their use in pH-responsive applications. In one example, a coaxial fiber 

comprised of a lecithin-diclofenac sodium core and a Eudragit S100 shell provided 

the pH-responsive release of ferulic acid for 10 h137. Ferulic acid release was 

facilitated under conditions of neutral pH (pH 7), with minimal release occurring in 

a more acidic (pH 2) environment. Another pH-sensitive polymethacrylate-based 

copolymer137-139, Eudragit EPO, was used to fabricate pH-responsive antibacterial 

fibers. Here, Eudragit EPO cores, which dissolve below pH 5, were used in 

combination with Eudragit L100 shells, which dissolve at a pH greater than 6. 

These coaxial fibers provided pH-responsive release for an hour under slightly 

acidic conditions (pH 6) while demonstrating attenuated release in very acidic 

conditions (pH 2)29. Additionally, two separate studies investigated coaxial fibers 

comprised of Eudragit S100 shells and PEO cores to stimulate pH-responsive 

release within the gastrointestinal tract140,141. In both studies, the release of 

hydrophobic indomethacin and hydrophilic mebeverine hydrochloride agents was 

minimal (~10%) after 2 h under acidic conditions, followed by rapid release for 6 h 

when switched to neutral conditions (pH 7.4). Coaxial fibers comprised of cellulose 

acetate phthalate shells with polyurethane cores, as well as gelatin-sodium 



    

33 
     

bicarbonate shells with PLCL cores have also been used to provide similarly rapid 

pH-responsive release of ciprofloxacin and rhodamine B (Rhd B). These studies 

demonstrated the potential of coaxial fibers as pH-sensitive delivery systems142,143. 

Coaxial fibers with other stimuli-responsive properties have been 

investigated for on-demand, rapid release applications. Although studies with other 

stimuli-responsive systems have been limited, one study investigated the use of 

self-immolative polymers, or polymers that depolymerize when exposed to specific 

external stimuli, for rapid stimuli-responsive release144. In this study, self-

immolative fibers comprised of dibutyltin dilaurate and phenyl (4-

(hydroxymethyl)phenyl) carbamate were blended with polyacrylonitrile and used 

as shells to surround PVP cores. The fibers provided minimal release of KAB dye 

when incubated in water; however, the fibers depolymerized when exposed to 

trifluoroacetic acid, resulting in zero-order release of ~40% dye within a week. 

Short-Term Release (One Day to One Week) 

Hydrophobic Shell—Hydrophilic Core 

A key advantage of short-term release specifically for intravaginal delivery 

is that the burden of frequent or daily administration may decrease, thereby 

increasing user adherence of prophylactics and therapeutics. Traditionally, 

hydrophobic materials have been well-suited to provide longer durations of release 

(depending on the encapsulant) due to their decreased degradation rates in 

aqueous environments. For more traditional uniaxial hydrophobic fiber platforms, 

most hydrophobic small molecule drugs or larger macromolecules achieve release 
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for up to one week due to the similar hydrophobic properties of the polymer and 

encapsulant38. This compatibility allows for hydrophobic encapsulants to partition 

more evenly within and distribute throughout hydrophobic polymers. However, 

hydrophilic agents, which have low solubility in nonpolar polymers, often partition 

to the fiber surface, resulting in burst release and suboptimal short-term and/or 

sustained-release properties. To address this challenge, coaxial fibers in which 

hydrophilic agents are encapsulated within a hydrophilic core and surrounded by 

a protective hydrophobic shell can prolong and adjust the release of hydrophilic 

molecules. 

The use of coaxial fibers with hydrophobic shells and hydrophilic cores has 

been shown to extend the release of many encapsulants118,145,146. In one study, a 

coaxial fiber comprised of a hydrophobic ethyl cellulose shell with a hydrophilic 

PVP core was investigated for short-term release. These fibers released maraviroc 

over a duration of hours to days depending on the thickness of the hydrophobic 

shell, which was modulated via flow rate and total electrospun volume. The 

increased thickness of the hydrophobic shell extended encapsulant release from 

24 h to five days by increasing the shell-to-core volume ratio from 0.5 to 4145. In 

another study, a PCL fiber shell surrounding a PVP-graphene oxide blended core 

was studied. These fibers released 65% of hydrophilic vancomycin hydrochloride 

within 4 h and attained full release of vancomycin after 96 h147. Although this 

coaxial fiber provided short-term release, the long-term safety of graphene oxide 

within the FRT is unknown, and further studies are required to assess its safety in 

intravaginal delivery applications. Finally, a coaxial fiber composed of a synthetic 
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hydrophilic poly-cyclodextrin core and hydrophobic poly(methacrylic acid) shell 

reduced the burst release of a hydrophilic drug, propranolol hydrochloride, by 50%, 

and extended release to 180 h relative to the 140 hour release obtained from 

uniaxial fibers148. 

Hydrophobic Shell—Hydrophobic Core 

In addition to the widely used hydrophobic shell-hydrophilic core coaxial 

architectures, the use of hydrophobic materials in both the core and the shell layers 

has also been investigated to provide the short-term release of active agents. In 

one study, a PCL core surrounded by an outer PCL shell was used to prolong the 

release of the antibiotic ampicillin. Ampicillin, a hydrophilic compound, normally 

localizes to the surface of PCL when spun as a uniaxial fiber, resulting in burst 

release149. As an alternative, a 4% (w/v) PCL solution was used to fabricate an 

ultra-thin shell to delay release. In addition, the parameters for coaxial 

electrospinning were modified using dilute sheath solutions to improve the control 

of fiber diameter and morphology. The resulting coaxial fiber efficiently 

encapsulated ampicillin and provided short-term release for ~80 h149. In another 

study, coaxial fibers comprised of a zein shell with a PCL core reduced the burst 

release of the hydrophilic antibiotic, metronidazole, achieving short-term release 

for more than four days125. 

Stimuli-Responsive Coaxial Architectures 

Coaxial fibers exhibiting stimuli-responsive properties have also been 

investigated to provide short-term release of active agents. As one example, 
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poly(N-isopropylacrylamide), a thermoresponsive polymer, was used as a core 

layer in combination with an ethyl cellulose and anhydrous ethanol shell solution. 

At room temperature, poly(N-isopropylacrylamide) exhibits hydrophilic properties; 

however, at temperatures above 32 °C, the polymer demonstrates more 

hydrophobic characteristics. At room temperature and after 55 h, the fibers 

released 65% of ketoprofen in PBS, while only 40% of the same drug was released 

at 37 °C150. 

Blended Polymers in Coaxial Architectures 

Another method of prolonging release is to use blended polymers to 

formulate coaxial fibers, which can decrease fiber wettability. One study combined 

gelatin, a natural hydrophilic protein, with the hydrophobic polymer, PCL, to create 

coaxial fibers with increased hydrophobicity and mechanical stability relative to 

gelatin alone151. In one study, the release of hydrophilic doxycycline was measured 

from three different fiber architectures—a uniaxial PCL-gelatin blended fiber, 

coaxial fibers with three different cores (PCL, gelatin, or a PCL-gelatin blend) and 

a PCL-gelatin blended shell, and a triaxial fiber with both a PCL-gelatin blended 

core and outer shell and an intermediate gelatin layer. Among these five designs, 

uniaxial PCL-gelatin blended fibers released the most doxycycline within 24 h 

(90%), while coaxial fibers with a PCL-gelatin core and shell released the least 

(50%). Additionally, only coaxial fibers with either a PCL-gelatin or gelatin core 

prolonged release over five days. Furthermore, the other architectures including 

the uniaxial PCL-gelatin blend, coaxial fiber with PCL core, and triaxial fibers failed 

to release doxycycline for more than 30 h. The burst release observed in fibers 
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with PCL cores was attributed to the lack of compatibility between the hydrophobic 

PCL cores and hydrophilic encapsulant, which caused doxycycline to localize on 

the core surface. Additionally, the subsequent suboptimal encapsulant release 

was attributed to low water penetration into the hydrophobic core. These studies 

demonstrate that utilization of both hydrophobic and hydrophilic polymers alone or 

as blends can modulate the short-term release of hydrophilic encapsulants due to 

the variation in the permeability of different layers and core-encapsulant 

interactions. 

Sustained-Release (One Week to Multiple Months) 

Hydrophobic Shell—Hydrophilic Core 

Similar to fibers that provide short-term release, fibers designed for 

sustained-release commonly use hydrophobic polymers as the outer shell to 

prevent the fiber from undergoing rapid hydrolysis. Studies have demonstrated that 

the most promising coaxial architecture to achieve sustained-delivery utilizes a 

hydrophobic shell and hydrophilic core38. A polymer that is frequently used in 

coaxial fibers to provide sustained-release is poly(lactic-co-glycolic acid) (PLGA). 

In one study, a coaxial fiber composed of a PLGA shell was used to shield a 

hydrophilic core consisting of tragacanth gum. The encapsulant, tetracycline 

hydrochloride, served as a model hydrophilic agent. Investigators observed that 

PLGA (shell)-tragacanth gum (core) coaxial fibers diminished burst release and 

provided sustained-release of tetracycline hydrochloride for 75 days, releasing 

68% of tetracycline hydrochloride during this period152 . In another study, a PLGA 
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(shell)-polyethylenimine (PEI, core) architecture was used to prolong the release 

and stability of bone morphogenetic protein-2 plasmid (pBMP2-2). The hydrophilic 

PEI core was used to encapsulate and retain the bioactivity of pBMP2-2, while the 

hydrophobic PLGA shell was used as a protective barrier to prolong release. When 

compared to uniaxial PLGA-PEI blended fibers, the PLGA (shell)-PEI (core) 

coaxial fiber exhibited both improved bioactivity and prolonged release of the 

pBMP2-2 plasmid. The coaxial fiber released 80% of the plasmid over 20 days, 

while the uniaxial fibers released the same amount over seven days153. 

Polymers other than PLGA have been used as hydrophobic shells to sustain 

the release of active agents from coaxial fibers. One study formulated coaxial 

fibers containing a hydrophilic dextran core and hydrophobic PCL shell. The 

addition of polyethylene glycol (PEG) to the PCL shell increased the release of the 

encapsulated BSA by forming pores in the shell layer. Although all fibers released 

~20% BSA within the first 24 h, increasing the PEG concentration increased the 

amount of BSA released over extended durations. Interestingly, all fibers 

demonstrated sustained-release regardless of PEG concentration; coaxial fibers 

fabricated with 5% PEG shells released ~60% BSA, while fibers containing 40% 

PEG shells released 90% BSA over 27 days154. In another study, the relationship 

between PEG (core):PCL (shell) molar ratio and the release of BSA or lysozyme 

was investigated. The thinnest shell layers with a core:shell molar ratio of 1.59 and 

a core flow rate of 2 mL/h provided complete release of both encapsulants within 

24 days, compared to only 50% release from thicker fibers with a core:shell molar 

ratio of 0.32 and a core flow rate of 0.6 mL/h. Moreover, the fibers preserved the 
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bioactivity of lysozyme and released BSA over 29 days, with no noticeable 

differences between BSA and lysozyme release rates155. In addition to 

conventional coaxial spinning, the use of emulsion electrospinning has also been 

investigated to fabricate coaxial fibers, which can be electrospun using a uniaxial 

spinneret117. One study that used emulsion electrospinning fabricated core-shell 

fibers composed of a PEG-poly(d,l-lactic acid) shell and methyl cellulose core to 

minimize the burst release of lysozyme156. The release of lysozyme from the core 

was achieved over 15 days and was dependent on the percent of lysozyme loaded, 

while the structural integrity and bioactivity of lysozyme was protected by the shell. 

A later study compared these same coaxial fibers to blended uniaxial fibers 

composed of PCL and PEG and showed that the coaxial fibers improved 

sustained-release by releasing ~50% of BSA over 35 days relative to blended 

fibers, which released ~75% BSA157. 

Another study explored the effects of multiple processing parameters, 

including PEG and PCL concentrations, PEG molecular weight, encapsulant 

concentration, and fiber diameter, in modulating the release of plasmid DNA 

(pDNA). Plasmid DNA was encapsulated in a PEI core, and a non-viral gene 

delivery vector (r-PEI-HA) was incorporated within a PCL shell158. An increase in 

fiber diameter was observed with an increase in all of the three other parameters, 

while the loading and release of r-PEI-HA were correlated to pDNA concentration 

in the fiber core and PEG molecular weight. The fibers formulated with high PEG 

molecular weight and low pDNA concentration exhibited ~30% release of r-PEI-
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HA over 60 days, while the fibers with high pDNA concentration and low molecular 

weight PEG completely released pDNA within 60 days. 

Core-Shell Architectures with the Same Core-Shell Hydrophobicity 

Although coaxial architectures with similar core and shell hydrophobicities 

have been utilized to obtain transient and short-term release, coaxial fibers that 

use the same materials have been less frequently investigated to provide 

sustained-release. In one study, PLGA was utilized in both the core and shell 

layers to investigate the effect on vancomycin and ceftazidime delivery159. Both 

hydrophilic drugs were encapsulated within the core PLGA layer and exhibited 

similar burst release kinetics within the first day, followed by a second phase of 

more gradual release over five to ten days. Ninety percent of the antibiotics were 

released after 11 days, followed by complete release after 25 days, with the more 

gradual release attributed to the PLGA barrier layer. 

Applications for Intravaginal Delivery 

The enhanced tunability and versatility provided by the core and shell layers 

of coaxial fibers make them excellent candidates for intravaginal delivery 

applications. While uniaxial fibers have been studied for sustained- and stimuli-

responsive release of active agents in the FRT38,75,85,87,160-162, they have faced 

challenges in providing the sustained-release of therapeutically relevant 

concentrations of individual active agents and effectively modulating the release 

of multiple agents core38. Often, compatibility between the polymer and 

encapsulant can pose challenges to achieving sustained-release with uniaxial 
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fibers, while coaxial fibers may circumvent this issue by integrating two different 

polymers, enabling the separation of agents within a compatible polymer 

formulation (core or shell). Moreover, the additional outer shell can help to 

modulate release. One can envision that with a coaxial architecture, multiple 

agents may be delivered against a particular infection to provide a synergistic 

effect or to provide protection against multiple types of viral or bacterial infections. 

Together, these features allow for enhanced tunability with the option of providing 

immediate to short-term release for on-demand applications while also providing 

long-term release that may be particularly useful in prophylactic or contraceptive 

applications. 

A variety of release kinetics can be attained from coaxial fibers by using 

different combinations of materials in the core and shell layers. Transient or rapid 

release of active agents is often accomplished with the use of hydrophilic polymers 

due to their rapid dissolution in aqueous environments. To achieve short-term 

release extending to one week, a hydrophilic core in combination with a 

hydrophobic shell is the most frequently used architecture, enabling the slow 

dissolution of the shell layer, which acts as a barrier to encapsulant diffusion from 

the core. For sustained-release applications that require delivery on the order of 

weeks to months, hydrophobic polymers such as PLGA and PCL are often 

selected as shell polymers due to their slower degradation kinetics and 

biocompatibility. Yet, due to the number of parameters involved in the synthesis of 

coaxial fibers, two similar architectures may still be tailored to perform very 

differently by altering physical versus chemical properties. An example may be 
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seen in which fibers composed of similar or even the same polymers display very 

different release rates due to the modulation of shell thickness. In these cases, 

thinner shells have been shown to provide more transient release, while increasing 

the shell thickness delays or alters the trend to more gradual release. 

Coaxial fibers have been investigated previously for intravaginal 

delivery142,145. In one study, maraviroc release from coaxial fibers was adjusted by 

varying the drug loading and solution flow rates to provide release over five 

days145. In addition, pH-responsive coaxial fibers have been fabricated to react in 

the presence of semen by utilizing the pH-sensitive polymer cellulose acetate 

phthalate as a shell. The outer shell dissolved immediately after exposure to PBS, 

promoting pH-responsive release of Rhd B142. 

Although coaxial fibers have shown promise in general drug and initial 

intravaginal delivery applications, further refinements are required to expand their 

overall utility. First, compatibility between the solvents of the two polymer 

electrospinning solutions may limit the potential combinations of core-shell 

materials and encapsulated agents to achieve successful electrospinning. 

Additionally, residual solvents from the electrospinning process may interact with 

and inactivate encapsulated active agents in the core layer. Therefore, while 

research in coaxial fiber design is still ongoing, other fiber architectures such as 

multilayered fibers may offer additional advantages to advance intravaginal 

delivery. 

Multilayered Electrospun Fibers 
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Multilayered Fiber Architectures and Properties 

Multilayered fibers can provide layer-by-layer delivery platforms that are 

relatively simple and inexpensive to fabricate while allowing for the encapsulation 

of different active agents within the individual layers. The topology, thickness, and 

composition of each individual layer can be easily tuned to provide different release 

properties based on the envisioned application. Moreover, multilayered fibers have 

been shown to have increased mechanical stability and flexibility compared to 

coaxial fibers163. While the interactions between two or more polymer solution 

interfaces must be considered for coaxial fibers, multilayered fibers can be 

fabricated from normally incompatible polymers due to their sequential versus 

simultaneous fabrication process. 

Electrospun multilayered fibers can be fabricated by sequential layering, 

stacking, or interweaving fibers164-166. In sequential layering, the first layer of 

polymer is electrospun onto a collector, followed by electrospinning additional 

polymer layers directly onto the same collector. In comparison, “stacking” fibers 

refers to individually electrospinning each layer separately and subsequently 

adhering individual layers together post-spin. Stacked fibers share similar physical 

properties with sequentially-layered fibers, enabling temporally-programmed or 

spatially-specific delivery of active agents167. Finally, the fabrication of interwoven 

fibers utilizes dual or multiple-syringes to simultaneously electrospin two or more 

different polymer solutions (usually one hydrophilic and hydrophobic) onto the 

same collector. In contrast to fibers produced using the sequential layering and 

stacking processes, which have distinct, separate layers of polymeric fibers, 
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interwoven fibers result from the blending of these different polymer solutions from 

syringes placed opposite of or adjacent to each other into one integrated layer168-

170. This technique seamlessly integrates both hydrophilic and hydrophobic 

polymers in a way that prevents unwanted interactions between the electrospun 

polymer solutions170,171 while enabling the porosity of the hydrophilic fibers to be 

altered to more finely tune fiber degradation172. Although interwoven fibers do not 

have a shell layer, the interwoven architecture has been beneficial in promoting 

cell adhesion and growth and has the potential to more finely modulate active 

agent release via porosity-based mechanisms for drug delivery applications173,174. 

Regardless of fabrication technique, multilayered fibers are beneficial in that 

they can temporally modulate the release of multiple agents from a single delivery 

platform and can provide additional tunability by modulating the barrier or discrete 

layers of the multilayered structure (Figure 1.6). In addition, the ability to impart 

spatially-specific release—where specific layers of the multilayered fiber possess 

distinct release profiles—is a key advantage of this architecture. This advantage 

may be envisioned for intravaginal delivery applications where one layer provides 

rapid active agent release to the mucus while another layer enables sustained-

delivery specific to underlying epithelial or immune cells164,165. For interwoven 

multilayered fibers, studies have shown that the incorporation of a hydrophilic 

polymer can alter the overall porosity and wettability172,175,176, while using a 

hydrophobic outer layer in multilayered fibers (similar to coaxial fibers) can 

decrease surface wettability and corresponding active agent release177. 
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Figure 1.6 Schematic of anticipated active agent release from multilayered fibers. 

One method to modulate the release of active agents (shown in green) is to vary 

the thickness of the outer layer (shown in blue). (A) A thin outer layer provides both 

rapid burst release and limited sustained-release of encapsulants. (B) In contrast, 

increased outer layer thickness can delay the release of some active agents. 
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While the process of creating multilayered fibers is well established, more 

work is required to elucidate how each polymer layer impacts release kinetics. 

Physical properties including the pore size, fiber diameter, and thickness of 

traditional uniaxial fibers are known to impact the delivery kinetics of active agents 

from individual layers. Thus, the presence of one or more fiber layers can 

contribute to the complexity in establishing and predicting the release kinetics of 

diverse active agents from differently layered architectures. Despite these 

considerations and complexities, the adoption of different layering techniques to 

create multilayered fibers can achieve diverse patterns of release for transient, 

short-term, and sustained-release applications. 

Release Kinetics from Multilayered Fibers 

Transient and Short-Term Release 

Multilayered fibers have shown promise in providing transient and short-

term release of active agents. Conventionally, a hydrophilic layer serves as a 

reservoir for active agents, while hydrophobic materials provide an outer shell layer 

to prolong release. One study utilized a multilayered fabrication approach to 

encapsulate the hydrophobic antibiotic, gentamicin, in a hydrophilic PVA center 

layer and utilized a PU outer layer to envelop the inner PVA fiber178. Three 

separate fibers were fabricated by altering the thickness of the PU outer layer 

between 3.4 and 8.1 µm. The release of gentamicin was modulated with the 

thinnest PU layer (3.4 µm) demonstrating complete release within 1 h, relative to 

10% release obtained from the thickest layer (8.1 µm). Furthermore, the thickest 
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PU layer continued to release gentamicin for 24 h. Another study using interwoven 

electrospun fibers containing PEO and PCL demonstrated that by adjusting the 

ratio of the two polymers, tunable fiber degradation could be achieved from the 

resulting changes in pore size and porosity170. Although this study investigated 

interwoven fibers to enhance cell infiltration through the pores, the use of sacrificial 

fiber layers may be applied to modulate active agent release from the fibers for 

intravaginal delivery applications170. 

In addition to modulating the outer layer thickness and overall fiber 

composition, alterations to the number of layers have been shown to impact active 

agent release. In one study, fibroin-gelatin blended uniaxial fibers exhibited release 

of trypan blue, fluorescein isothiocyanate (FITC)-inulin, and FITC-BSA within 

minutes179. In contrast, multilayered fibers composed of the same materials 

extended the release of all three model compounds to 28 days179. In another study, 

dual-release, multilayered electrospun fibers containing the model dyes, 

5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS) 

and chromazurol B, were encapsulated in four-layered PLCL (75:25) fibers. The 

release rate and duration of the dyes were controlled by the fiber diameter and 

individual fiber layer thicknesses. Minimal release of both dyes was observed for 

the first 15 min, followed by a quasi-linear release profile for up to 4 h. However, 

increasing the thickness of dye-loaded layers resulted in higher quasi-linear 

release rates due to the reduced density of the fiber surface180. In another study, 

the transient release of ketoprofen was achieved using trilayer fibers composed of 

two EC outer layers surrounding a center PVP fiber. These fibers provided nearly 
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complete release of ketoprofen within 24 h164. Last, asymmetric multilayered 

polylactide fibers with different designs on each side were fabricated to prevent 

liver cancer recurrence by promoting one-sided prolonged chemotherapeutic 

release181. The fiber was composed of five poly(lactic acid) (PLA) layers, with each 

layer serving as either a barrier to release or a drug encapsulating reservoir. In 

vivo studies in a murine model demonstrated tumor suppression for at least four 

days, indicating that the multilayered fiber may provide localized chemotherapy for 

short-term durations181. 

Multilayered fibers with stimuli-responsive properties have also been 

investigated for transient and short-term release applications. In one of the first 

studies to investigate multilayered architectures, the pH-responsive polymers, 

poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH), were 

electrospun together to create a blended fiber. These fibers were loaded with a 

low molecular weight cationic molecule, methylene blue, and demonstrated rapid 

release of methylene blue (~10 min) at a neutral pH (7.4). However, by gradually 

adjusting the pH from 6 to 2 in aqueous solutions, the step-wise pH-responsive 

release of methylene blue was achieved over three and a half days. Building upon 

this work, the effect of coating the fibers with a thermoresponsive polymer blend, 

poly(N-isopropylacrylamide)-PAA, or perfluorosilane was assessed. The addition 

of the thermoresponsive poly(N-isopropylacrylamide)-PAA coating modulated 

methylene blue release via temperature. Above a critical temperature, the 

thermoresponsive polymer became insoluble and formed intramolecular hydrogen 

bonds, which led to the release of methylene blue within 50 min (PBS, pH 7.4). In 
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comparison, coating with perfluorosilane modulated release for up to 20 h at 

neutral pH. When both the pH-responsive and multiple layers of thermoresponsive 

polymers were integrated and evaluated at 25 and 40 °C, dye released for a 

maximum of 10 h regardless of layer thickness182. 

Sustained-Release 

The ability of multilayered fibers to provide long-term release has been 

demonstrated in a variety of studies113,114,183. In one study, the release of a 

hydrophobic chemotherapeutic agent, 7-ethyl-10-hydroxycamptothecin (SN-38), 

was prolonged to 30 days by using a triple-layered fiber in which SN-38 was 

encapsulated in the center layer and surrounded by two superhydrophobic outer 

layers consisting of PCL and poly(glycerol monostearate-co-ε-caprolactone) 177. 

Similar to the trends seen for transient and short-term release from multilayered 

fibers, increasing the thickness of the outer fiber substantially improved the 

longevity and amount of drug released. In another study, multilayered fibers 

comprised of a PCL shell and a PEO/Rhd B core were fabricated to assess the 

effect of increasing the outer layer thicknesses between 46.1, 68.9, and 186.1 

µm184. While the thinnest 46 µm layers released 85% of Rhd B in one day, the 68.9 

and 186.1 µm layers increased release to 15 and 25 days, respectively. Moreover, 

the release from the two fibers with the thicker outer layers demonstrated zero-

order kinetics, producing gradual, even release of drug with respect to time. 

Applications for Intravaginal Delivery 
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Multilayered fibers have shown promise as a platform to co-deliver or 

prolong the release of active agents in different environments. The process of 

creating multilayered fibers is relatively simple, eliminating the more complex set-

up and considerations of polymer-solvent interactions between the adjacent, 

simultaneously spun layers present in coaxial spinning. By removing this 

complexity of interactions, multilayered fibers can achieve “programmed release” 

by simply modulating the thickness of each layer. 

Multilayered fibers possess other unique features that make them excellent 

candidates for intravaginal delivery applications. One of the unique strengths of 

multilayered fibers is that they can provide spatially-specific release in that, unlike 

other architectures, the individual layers of multilayered fibers can be designed for 

specific and discrete purposes. For example, one layer may be designed to 

improve mucoadhesion for enhanced longevity and biocompatibility within the 

FRT, while another layer may provide release of active agents dependent on its 

location within the multilayered matrix. Compared to coaxial fibers, the optimization 

of multilayered fibers is not limited by solvent compatibility, as they can be 

sequentially spun and assembled post-fabrication. Moreover, multiple individually 

spun layers can increase the ease of encapsulating multiple types of active agents, 

which serve mechanistically different roles against a single type of viral infection 

or as a multipurpose viral-contraceptive or viral-bacterial dosage form. Finally, 

each fiber layer can be adjusted to have distinct mechanical properties that include 

tensile strength, porosity, and elasticity, important for comfort and user 

preference185. 
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To date, the use of multilayered fibers for intravaginal delivery has been 

briefly explored104,145,166. In one study, circular sheets of pre-spun PVP and PVP-

EC fibers were stacked and annealed via a pressed metal die that was dipped in 

solvent. The die annealed the edges of the stacked fibers, creating a multilayered 

fiber with a PVP inner layer surrounded by blended PVP-EC sheaths. Other 

multilayered fibers were also constructed by folding the outer layers and pressing 

the seams. Both types of multilayered fibers encapsulated the hydrophilic 

compound maraviroc and provided biphasic release, exhibiting an initial burst 

release followed by short-term release for up to five days. Another study from the 

same group examined tenofovir (TFV) localization within stacked PCL/PLGA 

fibers. It was found that TFV localization within the multilayered fiber could be 

predicted by considering the changes in polymer crystalline structure caused by 

encapsulant-polymer interactions and correlating drug-polymer hydrophilicity104. 

Both multilayered and coaxial fibers have the potential to provide tunable 

and sustained-release; however, each architecture still faces the challenges 

surrounding FRT delivery. For example, the interplay between two polymer 

solutions still needs to be considered for interwoven multilayered (and coaxial) 

fibers, which may result in challenges to altering active agent release. Additionally, 

as stated previously, the most significant obstacles to intravaginal delivery are 

providing a dosage form that can facilitate active agent penetration of mucus and 

retention and release of therapeutically relevant agent concentrations within the 

FRT. To improve retention, fibers can be fabricated using polymers or polymer 

blends that have mucoadhesive properties. However, this longevity is rarely 
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translated to active agents once they have been released from fibers. Thus, new 

measures may be considered to provide efficacious and sustained-delivery from 

fibers. 

Composite Nanoparticle-Fiber Delivery Vehicles 

Nanoparticle-Fiber Architectures and Properties 

Over the past two decades, polymeric NPs have been extensively studied 

as efficacious drug delivery platforms for a variety of applications. Polymeric 

nanoparticles are an attractive option for intravaginal delivery relative to traditional 

delivery platforms such as gels and films due to the tunability of active agent 

release, ability for surface modification, potential for targeted delivery, enhanced 

distribution potential, and the often resulting enhanced efficacy of encapsulated 

agents. Additionally, polymeric NPs have been shown to elicit minimal immune 

response and to improve the delivery and bioactivity of biologics186-188. Although 

metallic nanoparticles have also been explored for use in many drug delivery 

applications, they have been less commonly administered within the FRT, hence, 

a more comprehensive review of their applications may be found in189,190. 

Many physicochemical characteristics of NPs can be altered, such as 

particle size, surface charge, and hydrophobicity, which contribute to their success 

in achieving sustained-release and localization to target sites191. Although NPs 

have proven to be effective delivery platforms, as discussed in previous 

reviews192,193, achieving the prolonged release of active agents can be difficult due 

to the natural clearance mechanisms of the FRT. In particular, NPs are challenged 
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with retention in the vaginal cavity due to mucus clearance and transport through 

mucus to underlying tissue194-196. These challenges may be overcome by 

incorporating NPs into electrospun fibers, thereby creating a composite delivery 

vehicle that complements the capabilities of both technologies. One might envision 

that fibers may act as a reservoir for NPs, improving NP and active agent retention, 

while the innate fiber porosity can help to more finely tune encapsulant release 

from NPs relative to the release observed from freely administered NPs or fibers. 

Nanoparticle-fiber composites are dual-component systems that have the 

ability to alter the release kinetics of active agents from NPs or NPs 

themselves197,198. Often, the active agent of interest is encapsulated within the 

NPs, which are then preloaded into polymer solutions for subsequent 

electrospinning. While a variety of inorganic NPs have been incorporated into 

fibers199-201, concerns still persist regarding the safety of their use relative to 

polymeric NPs, particularly for intravaginal applications. By utilizing biocompatible 

polymeric materials for both nanoparticles and fibers, composites may provide safe 

and prolonged release for clinical applications. 

Release Kinetics from Nanoparticle-Fiber Composites 

Transient Release 

Nanoparticle-fiber composites have been used to rapidly release NPs and 

their encapsulated agents. A study was conducted with hydrophilic PVA and PEO 

fibers that incorporated PLGA NPs that contained the dye, Coumarin 6202. PEO 

fibers released 90% of NPs within 30 min when immersed in a 50:50 ethanol:PBS 
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solution, followed by additional release (5%) after 3.5 h. In comparison, PVA fibers 

released approximately 70% of PLGA NPs within 30 min, followed by a decrease 

in NP release (15%) over 8 h. Slightly slower release over 24 h was observed when 

PVA fibers were crosslinked prior to NP incorporation. This study highlights that 

nanoparticle-fiber composites can be used to successfully incorporate NPs and to 

modulate the transient release of NPs from these composites within aqueous 

solutions202. 

Short-Term Release 

Several studies have utilized nanoparticle-fiber composites to provide the 

short-term release of active agents. One group explored a composite drug delivery 

system that encapsulated the antibiotic, erythromycin, in gelatin NPs and free 

lidocaine hydrochloride within PVA-chitosan blended fibers203. Eighty percent of 

the lidocaine hydrochloride was released from the fibers within 54 h, while 70% of 

the erythromycin was released after 70 h. In contrast, free gelatin NPs released 

90% of erythromycin within the same duration. In a separate study, chitosan-PEO 

blended fibers containing methoxypolyethylene glycol (mPEG)-b-PLA micelles 

demonstrated a low initial burst release (15%) of 5-fluorouracil (5-FU), followed by 

prolonged release (91%) for 109 h204. In another study, the release of free 

hydrophobic naproxen and chitosan nanoparticles containing Rhd B was studied 

from PCL fiber scaffolds205. Rhodamine B exhibited low levels (5%) of burst 

release, while 30–40% of naproxen was released within the first 2 h. Moreover, 

after 72 h, only 20% of Rhd B was released, while 60% of naproxen was released. 

The rapid release of naproxen was achieved via incorporation within the fiber 
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scaffold, while the extended release of Rhd B was obtained and enhanced through 

nanoparticle-fiber encapsulation. These results demonstrate the utility of 

nanoparticle-fiber composites in providing the short-term release of multiple 

agents. 

Sustained-Release 

Nanoparticle-fiber composites have also demonstrated long-term release 

capabilities in several studies. In one study, dual-release nanoparticle-fiber 

composites were used to mend and treat critically sized calvarial defects in rats206. 

These composites, consisting of PCL-co-PEG fibers encapsulating 

dexamethasone and BSA NPs and loaded with bone morphogenic protein-2 (BMP-

2), demonstrated sustained-release of both molecules over 35 days. Another study 

explored the incorporation of siRNA into chitosan NPs and PLGA fiber 

composites198. In these composites, the release of active siRNA was sustained in 

vitro, with 95% of siRNA released from the fibers over 32 days, while gene 

silencing activity was maintained. Sustained-release from nanoparticle-fiber 

composites was also demonstrated in another study with chitosan-PEO 

electrospun fibers that were loaded with PLGA NPs encapsulating phenytoin. 

Nearly complete release of phenytoin from the composite scaffold was achieved 

over nine days207. Lastly, PLA fibers encapsulating chitosan particles provided 

sustained-release of BSA (45%) for 27 days, while chitosan particles alone 

released 80% BSA in 14 days208. 
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In addition to NP incorporation within traditional uniaxial or blended fibers, 

NPs have been incorporated in more complex fiber architectures to prolong the 

release of active agents. For instance, the effect of combining a multilayered fiber 

architecture with nanoparticle-fiber composites was investigated by fabricating 

alternating layers of poly-l-lactic acid (PLLA) and PCL fibers with layers of PCL 

fibers encapsulating positively-charged chitosan BSA NPs209. The multilayered 

composite released 80% of the BSA in approximately eight days, whereas the 

monolayer control released the same concentration of BSA within 24 h. 

Applications for Intravaginal Delivery 

Composite delivery vehicles containing nanoparticles and fibers have thus 

far been primarily studied in wound healing and tissue engineering to fabricate 

scaffolds for tissue regeneration and bone remodeling133,210-212. However, these 

platforms may be promising candidates for intravaginal delivery applications due 

to their structural stability and ability to sustain the release of active agents. In such 

systems, the fibers may be utilized as a reservoir for NPs to aid in intravaginal 

retention by helping to decrease NP clearance during shedding. In addition, it is 

envisioned that, depending on fiber formulation and, importantly, NP size and 

charge, NP (and active agent) release may be modulated, enabling NPs to 

traverse mucus and deliver agents to target cells that reside in the epithelium or 

underlying lamina propria. Similar to other architectures, fiber parameters such as 

polymer composition and size can be tailored to impact release in combination with 

altering NP composition, size, and loading within the fiber. 
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For intravaginal delivery applications, NPs can impart cell specificity, cell 

internalization, as well as mucoadhesive or mucopenetrative properties to their 

encapsulated active agents46. Numerous studies have demonstrated the ability of 

NPs to enhance cell targeting via surface modification213,214. Additionally, surface 

modification can increase cell internalization, which may enhance the transport, 

subcellular localization, and corresponding efficacy of drugs like tenofovir 

disoproxil fumarate (TDF), which require cell internalization. Furthermore, the NP 

surface charge can be modulated to provide either mucoadhesive or 

mucopenetrative properties that further enhance active agent delivery. 

Additionally, fibers can be fabricated to encapsulate NPs for sustained-release as 

well as free agents for rapid release, providing both on-demand and sustained-

release in one platform. Finally, nanoparticle-fiber composites, when coupled with 

coaxial or multilayered fiber architectures, provide an attractive strategy to retain 

and sustain the release of active agents within the FRT (Figure 1.7). 
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Figure 1.7 Schematic of electrospun nanoparticle-fiber composites that integrate 

coaxial and multilayered fiber architectures. (A) Coaxial fibers can be fabricated to 

encapsulate nanoparticles (NPs) within the core fiber, conferring sustained- or 

delayed-release of active agents that are encapsulated in NPs (shown in green). 

(B) Multilayered fibers that encapsulate NPs can also act as reservoirs for either 

NP or active agent release. 
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As with multilayered fibers, the use of nanoparticle-fiber composites has 

only recently been investigated for intravaginal delivery. In a proof-of-concept 

study, rapid-release PEO, PVA, or PVP fibers encapsulated PLGA NPs containing 

C6 dye or etravirine drug215. In this study, composites and free NPs were 

administered within murine FRTs and assessed for retention and release. The 

encapsulated nanoparticles exhibited a 30-fold increase in retention in the mouse 

FRTs relative to free NPs. Furthermore, nanoparticles alone provided transient 

release of etravirine, while all nanoparticle-fiber composites demonstrated release 

for up to seven days. To date, this is the only investigation of nanoparticle-fiber 

composites for use in intravaginal delivery. However, the significant difference in 

retention and release rate achieved with nanoparticle-fiber composites highlights 

the immense potential of this architecture for sustained-delivery in the FRT. 

Although combining nanoparticles and electrospun fibers into one delivery 

vehicle has demonstrated potential, challenges exist for this platform. The major 

concern is related to the concentration of nanoparticles that can be effectively 

encapsulated within fibers without hindering the ability of the polymer solution to 

be electrospun216. Furthermore, the concentration of active agent may decrease 

with the use of a coaxial or multilayered architecture, as only specific layers of the 

fiber will encapsulate NPs. Finally, polymeric NPs are often comprised of the same 

or similar polymers as electrospun fibers, thus care must be taken to prevent 

polymer solvents from dissolving the NPs prior to or during the electrospinning 

process217. Moreover, the morphology of NPs may also be adversely affected by 

electrospinning voltage. These factors limit the combinations of fiber and 
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nanoparticle materials available for composite fabrication. Thus, for composite 

delivery applications to succeed, polymer choice and electrospinning conditions 

must be taken into consideration. 

Future Directions and Discussion 

Within the past decade, electrospun fibers have been explored as a 

multipurpose delivery platform to prevent and treat sexually transmitted infections 

(STIs). For intravaginal applications, fibers have typically been uniaxially 

electrospun to release active agents targeted to HIV-1/HSV-2 infections and 

contraceptive applications. However, other electrospun architectures have been 

developed that may provide more finely-tuned active agent release, the 

encapsulation of multiple agents, and longer release durations, desirable for next-

generation vehicles. Given this, the goal of this review was to summarize the 

advancements in electrospun fiber architectures including coaxial, multilayered, 

and nanoparticle-fiber composites, to meet these needs, and to review their use in 

other drug delivery applications. We sought to relate different temporal regimens 

of delivery, including transient (occurring within hours), short-term (spanning hours 

to one week), and sustained (extending from one week to months), to architectural 

design and materials selection to help guide the design of future platforms that 

meet the unique temporal needs of intravaginal delivery. 

One of the major challenges facing intravaginal delivery is the lack of user 

adherence surrounding the administration of current delivery platforms. Several 

clinical trials have highlighted how a lack of user adherence contributes to 
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decreased efficacy in clinical trials. In both the FACTS-001 and VOICE trials, South 

African women deemed high risk for HIV-1 exposure were given antiretroviral TFV 

gels to administer prior to intercourse29,218. Despite the known efficaciousness of 

TFV, the gels provided suboptimal protection against HIV-1 infection, which was 

attributed to low user adherence of the gels prior to intercourse. Another study 

examined the efficacy of gels that incorporated the antiviral polysaccharide, 

carrageenan, in women in Thailand. This study demonstrated similarly 

disappointing clinical outcomes, with low user adherence considered the most 

significant reason for the lack of clinical efficacy219. Negative outcomes in other 

trials such as PRO-2000 and cellulose sulfate gel studies, which examined the 

efficacy of anti-HIV gels in female populations, further validated these studies, 

highlighting that both user preference and adherence regimens must be 

considered during product design rather than at the clinical trial stage. As a result 

of these studies, there has been an increased emphasis to design vehicles that 

decrease the administration frequency by prolonging active agent release after a 

single topical application. 

In conjunction with improving user adherence, the development of 

multipurpose delivery vehicles that offer long-term protection against the various 

stages of a single infection or a diversity of different types of infections is highly 

desirable220. For single infections, a delivery platform may administer multiple 

agents with different mechanisms of action that target different stages of the viral 

or bacterial life cycle. However, the increased likelihood of viral co-infections, such 

as HSV-2 and HIV-1, as well as bacterial and fungal infections will likely require 
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co-administration of antiviral and antimicrobial agents to be successful. 

Furthermore, applications that seek to meet both antiviral and contraceptive needs 

in the same dosage form will require the incorporation of multiple types of agents 

to expand a platform’s effectiveness. Therefore, a delivery platform that has the 

capability to release multiple active agents, each over time frames relevant to the 

application or active agent, will have greater utility and enable more convenient 

administration schedules based on specific user needs. 

Despite these needs, tailoring the delivery of multiple types of active agents 

for viral, bacterial, fungal, and contraceptive applications is an ambitious goal given 

the unique chemical properties of each agent. For example, the antiretroviral TFV 

and its pro-drug TDF have similar structures and both work as nucleoside reverse 

transcriptase inhibitors yet possess markedly different hydrophobicities. As such, 

a delivery platform designed to prolong TFV release may result in different release 

kinetics of TDF, requiring the formulation of distinct delivery vehicles specific to the 

selected active agents104,161,162,221,222. Furthermore, each active agent may 

necessitate specific temporal dosing regimens to provide protection or treatment. 

For example, it may be desirable to administer viral entry inhibitors, which 

inactivate virions prior to cell entry, over a different time frame than active agents 

that work inside of cells and need to transport through and localize to target tissue. 

Several studies have investigated this and have found that more complex and 

specialized architectures may be useful to achieve temporal delivery goals by 

tuning the release properties of multiple encapsulants for multiple targets 223,224. 

Similarly, for contraceptive applications, on-demand and/or zero-order release with 
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equivalent daily dosing may be desirable for spermicides and hormonal/non-

hormonal contraceptives, respectively. Conversely, it may be desirable to deliver 

active agents such as hormones and small hydrophilic drugs (e.g., etonogestrel 

and acyclovir) within the same time frame for simultaneous long-term 

contraception and prevention. However, the drastically different chemical 

properties of these agents will require more complex solutions to achieve similar 

release profiles. Given this, multipurpose intravaginal delivery platforms must be 

tailored to maximize the efficacy of individual active agents, including small 

molecule drugs, proteins, antibiotics, hormones, and live organisms (e.g., 

probiotics), to meet the needs of these diverse applications. 

While providing distinct release profiles of different active agents is an 

important criterion for the development of future intravaginal platforms, to date, 

intravaginal rings (IVRs) are the only platforms that provide delivery over a duration 

of weeks to months225-229. Furthermore, IVR studies indicate that more complex 

dosage forms, such as rings with drug-encapsulating pods, may more likely 

succeed, particularly in challenging delivery scenarios, e.g., achieving the 

sustained-release of small hydrophilic molecules223. These and other studies 

223,224,230,231 emphasize the need to offer alternative delivery vehicles for women, 

with the key lesson that platform architecture must be designed to consider the 

hydrophobicity and chemical compatibility of the encapsulants in combination with 

its surrounding materials. 

In addition to the development of fibers with more complex architectures, 

active agent release and transport from these platforms must be assessed. Tissue 
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mimetics and ex vivo tissues have been used to assess these parameters within 

the context of intravaginal delivery applications161,232-237. One of the most common 

ways in which to assess intravaginal delivery is by using human ectocervical tissue 

explants derived from patients233-237. These explants provide a representative 

environment in which to measure transport by accounting for the three-dimensional 

structure of patient tissue. However, patient-specific variations and tissue 

availability can limit the use of vaginal explants. Given this, organotypic three-

dimensional vaginal tissue models such as EpivaginalTM tissue have been created 

to help evaluate the safety, transport, and efficacy of active agents within an FRT 

mimetic238,239. Other in vitro models have also been developed to explore bacteria 

and host cell interactions in the reproductive environment240. Moreover, within the 

past decade, new biomarkers and assay endpoints have been identified and 

studied in different models to more fully assess microbicide interactions with the 

FRT241. The use of tissue models promises to streamline the assessment of future 

fiber platforms as viable intravaginal delivery platforms. 

To date, a variety of studies have developed uniaxial electrospun fibers for 

intravaginal applications, including HIV-1 prevention75,83,85,86,104,160-162,221,222,242,243. 

In these studies, electrospun fibers have demonstrated promising potential for 

intravaginal applications due to their mucoadhesive characteristics, mechanical 

properties, and ability to be fabricated in different shapes and sizes101. Depending 

upon the polymer hydrophilicity, traditional uniaxial fibers have been formulated as 

transient, short-term, or long-term delivery platforms. For the purposes of on-

demand and short-term release, many of these studies use hydrophilic fibers, 
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which dissolve or degrade quickly. In contrast, fibers consisting of more 

hydrophobic materials are expected to persist within the FRT, acting as reservoirs 

to sustain the release of active agents. We envision (and have observed) that long-

term delivery vehicles maintain their structure during the delivery duration of 

interest and may require physical removal from the FRT, similar to current IVRs. 

However, one of the key challenges for intravaginal delivery has been to sustain 

the release of small hydrophilic antiretrovirals due to their rapid diffusion through 

the porous fiber matrix, solubility in aqueous solutions, and chemical 

incompatibility with hydrophobic polymer cores38. Many of these uniaxial fibers 

demonstrated burst release of hydrophilic agents followed by short-term 

release107,244, partially attributed to the localization of hydrophilic agents on the 

fiber surface. Compounding this, concerns exist that the subsequent release of 

active agents may be insufficient to provide complete protection against future 

infections. While blended uniaxial fibers have been moderately successful in 

addressing these challenges, more work is required85. 

The primary parameters that impact release from uniaxial fibers are the 

choice of solvent and polymer. Other factors such as polymer concentration and 

electrospinning parameters also play a role in attaining different release profiles; 

however, it is unlikely that these factors alone are sufficient to overcome the 

challenge of delivering sustained and therapeutically-relevant concentrations of 

hydrophilic agents. Furthermore, it is difficult to utilize traditional uniaxial fibers for 

the encapsulation of multiple diverse agents such as large proteins and small 
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drugs. Due to these issues, other electrospinning architectures may be better 

suited to meet the diverse challenges of intravaginal delivery. 

As discussed previously, coaxial fibers have shown promise for the 

encapsulation and release of small hydrophilic and hydrophobic molecules, which 

may be useful for intravaginal delivery applications. The different goals of transient, 

short-term and long-term release can be achieved by changing the composition 

and hydrophobicity of core and shell materials as well as by modulating the shell 

thickness and core:shell ratio. As described, the shell layer can help regulate active 

agent release, while the core layer is designed to provide optimal compatibility with 

an encapsulant. For instance, by using pH-responsive polymer shells, an 

immediate stimuli-responsive release of agents can be achieved when the fiber is 

in contact with semen. In this scenario, the core layer may be tailored to 

encapsulate multiple agents, while the shell, comprised of pH-sensitive polymers, 

retains encapsulants until needed. Another advantage of coaxial fibers is that they 

can be fabricated to exploit drug-polymer hydrophilicities. For example, a coaxial 

fiber comprised of a hydrophobic shell and hydrophilic core can be utilized to 

provide long-term release of hydrophilic compounds. Agent encapsulation into 

both layers would allow for both transient burst release from the shell due to 

surface localization and high loading and sustained-release from the core layer. 

Finally, coaxial fibers can provide release of biological agents such as large 

proteins. Coaxial cores may be engineered to achieve high protein encapsulation 

and biocompatibility, while shells can be constructed with porous surfaces, 

allowing tunable release. This is particularly significant given that many biologics 
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are being investigated as future viral prophylaxes and therapeutics. Although 

coaxial electrospinning is a more complex process that requires additional 

optimization, relative to uniaxial spinning, it may enable a versatile platform for 

transient, short-term, and long-term release85. 

Multilayered fibers combine different polymer layers via sequential or post-

spinning to incorporate multiple and chemically distinct drugs within specific layers, 

thereby tailoring the release kinetics for each encapsulated agent. Multilayered 

interwoven fibers can be utilized to provide transient release using sacrificial layers 

to encapsulate agents for on-demand applications. The sacrificial layers 

comprised of hydrophilic polymers would provide on-demand release of agents 

based on their immediate degradation when exposed to physiological fluids. Active 

agent release can be further modulated by the number, thickness, and porosity of 

each fiber layer245. Moreover, blank fibers may be incorporated within the 

multilayers to either act as a physical barrier for sustained-release or for 

contraceptive purposes. The layer thickness and level of porosity of blank fibers 

can be conveniently modulated to delay the release of small hydrophilic molecules 

from the drug-loaded layers, serving to prolong release. Additionally, multilayered 

fibers have the potential to deliver biologics and non-hormonal contraceptives. 

These agents, although efficacious, may degrade when exposed to harsh solvents 

during the electrospinning process. By incorporating these active agents in distinct 

layers and integrating barrier layers, multilayered fibers can provide long-term 

release of drugs and biologics while retaining their activities. 
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While each of these strategies offers advantages relative to uniaxial 

spinning, the delivery of active agents may be further enhanced by integrating 

nanoparticles with fibers. A composite platform may offer a new alternative to 

address the challenges of intravaginal delivery, such as the maintaining active 

agent stability, providing cell-specific targeting (via NPs), and enhancing cell 

internalization. Like electrospun fibers, nanoparticles can be designed to 

encapsulate virtually any compound. The limitations of nanoparticle-fiber 

composites mentioned earlier may be overcome by utilizing fibers as a reservoir 

for both active agents and nanoparticles to release multiple therapeutics. 

Furthermore, the release rates of encapsulants from both nanoparticles and fibers 

may be modulated by adjusting the composition of the polymeric scaffold. For on-

demand transient release, hydrophilic polymers may be used to enable rapid 

release of NPs for immediate distribution through and enhanced retention within 

tissue. In contrast, more hydrophobic fibers may be used to delay the release of 

NPs or NP-encapsulated agents. Although drug-polymer hydrophobicity is a major 

contributor to release, other factors such as polymer choice, molecular weight, and 

crystallinity, as well as solvent choice and electrospinning parameters, also affect 

the release of agents from fibers. 

The application of advanced fiber architectures has only recently been 

explored in the context of intravaginal delivery. Advanced fiber architectures 

demonstrate the potential to provide the sustained-release of individual active 

agents in addition to concurrently providing both transient and sustained-delivery 

of multiple active agents. These are key advantages over traditional uniaxial fibers, 
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which are challenged with the long-term delivery of small hydrophilic molecules, in 

addition to providing transient and sustained-release simultaneously. We envision 

that future fiber architectures will localize active agents within specific sections of 

the fiber to tailor the release of individual agents independent of other 

encapsulants. Moreover, we anticipate that future platforms will combine 

architectures to maximize or complement the advantages of individual platforms. 

As previous clinical trials have shown, effective protection will be dependent upon 

fulfilling user preferences, offering convenience, and providing necessary release 

profiles from one vehicle, which fibers have the potential to realize. 

Building upon this previous research, the goal of this work was to employ 

EFs to topically deliver antiviral agents and provide dual-protection against both 

HIV-1 and HSV-2 infections. Towards this end, fibers were fabricated to 

incorporate and provide release (> 1 week) of TDF. Additionally, we began to 

develop delivery vehicles to deliver the antiviral biologic GRFT, using a variety of 

uniaxial fiber types. These included fibers that were covalently surface-modified 

with GRFT to serve as “viral traps”, and pH-responsive GRFT fibers, enabling on-

demand protection against infections. In addition, hydrophilic rapid-release 

polymer formulations were fabricated to high incorporate GRFT, to provide on-

demand protection against viral infections. Finally, EFs and nanoparticles were 

combined to create a NP-EF composite, incorporating the attributes of both 

technologies. It was hypothesized that fibers would serve as long-term NP 

reservoirs to modulate the release of GRFT from incorporated GRFT NPs. 
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All fiber formulations incorporating either TDF or GRFT were assessed for 

loading and (where applicable) release characteristics. All formulations were 

tested against both HIV-1 and HSV-2 infections in vitro, and the potential 

cytotoxicity of all formulations was evaluated using MTT assays. Finally, several 

animal studies were conducted using 5-week-old female BALB/c mice to assess 

selected fiber formulations for GRFT delivery. First, the in vivo safety of blank fiber 

formulations was assessed. Histology and cytokine expression were evaluated 

from collected mouse reproductive tracts and vaginal lavages from mice 

administered fibers or composites for either 24 or 72 hr. Finally, it was 

hypothesized that these platforms would provide in vivo protection against viral 

infection, and demonstrate comparable antiviral activity relative to free GRFT. In 

these studies, mice were administered GRFT fibers or NP-EF composites, 

followed by a single challenge later with HSV-2 (LD90) after 24 hr platform 

incubation. Following viral challenge, mice monitored for 14 days post-infection to 

evaluate survival and possible viral progression.
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CHAPTER 2 

MULTIPURPOSE TENOFOVIR DISOPROXIL FUMARATE ELECTROSPUN 

FIBERS FOR THE PREVENTION OF HIV-1 AND HSV-2 INFECTIONS IN VITRO 

Introduction 

In this study, the goal of our work was to develop PLGA and poly(DL-lactide-

co-ε-caprolactone) (PLCL) EFs containing TDF to demonstrate safe and 

efficacious inhibition of both HIV-1 and HSV-2 infections in vitro. TDF was selected 

as a model ARV to demonstrate proof-of-concept of our delivery vehicles, as at the 

time of this study, it was a next-generation, more lipophilic form of TFV, that had 

demonstrated strong protection after sustained-release from IVRs. Here we 

fabricated both PLGA and PLCL EFs to evaluate and compare two different 

biodegradable polymers known to impart the sustained-release of active agents. 

We synthesized 3 different formulations for each polymer, PLGA and PLCL, and 

characterized the loading and sustained-release of TDF from EFs. We 

subsequently assessed the efficacy of fiber release eluates against both HSV-2 

and HIV-1 infections in vitro, while demonstrating EF biocompatibility in vaginal 

keratinocytes, ectocervical and endocervical cells, and EpiVaginal tissue. 

Materials and Methods 

Materials 
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Poly(lactic-co-glycolic acid) (PLGA 50:50, 0.55-0.75 dL/g, 31–57k MW) and 

poly(DL-lactide-co-ε-caprolactone) (PLCL 80:20, 0.75 dL/g, 37k MW) were both 

purchased from Lactel Absorbable Polymers (Cupertino, CA). Solvents 1, 1, 1, 3, 

3, 3—hexafluoro-2-propanol (HFIP) and trifluoroethanol (TFE) were obtained from 

Fisher Scientific (Pittsburgh, PA). TDF was purchased as Viread® (Tenofovir 

disoproxil fumarate, Gilead Sciences Inc., Foster City, CA) tablets from the 

University of Louisville Pharmacy. Other chemicals, including dimethyl sulfoxide 

(DMSO), acetonitrile, trifluoroacetic acid and thiazolyl blue tetrazolium bromide 

(MTT) were purchased from Sigma Aldrich (St Louis, MO). Fetal bovine serum 

(FBS), antibiotics (penicillin/streptomycin and gentamicin), minimum essential 

medium (MEM, Corning), keratinocyte serum-free medium (KSFM, Gibco), and 

Dulbecco’s modified Eagle medium (DMEM, Invitrogen) were all purchased from 

VWR and Thermo-Fisher. Simulated vaginal fluid (SVF) was prepared in house 

using a previously established protocol246. Finally, pure TFV and TDF were kindly 

provided by the NIH AIDS Reagent Program. 

Cell Lines, Virus, and Tissue Culture 

TZM-bl cells were obtained from the NIH AIDS Reagent Program. These 

cells are a genetically engineered HeLa cell clone that express CD4, CXCR4, and 

CCR5 and contain Tat-responsive reporter genes for firefly luciferase (Luc) and 

Escherichia coli β-galactosidase under regulatory control of an HIV-1 long terminal 

repeat247,248. TZM-bl cells were maintained in DMEM containing 10% heat-

inactivated FBS, 25 nM HEPES, and 50 μg/mL gentamicin, in a vented T-75 culture 

flask. Env-pseudotype HIV-1 was kindly provided by Dr. Nobuyuki Matoba from 
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the University of Louisville, and originally obtained from the NIH AIDS Reagent 

Program. To conduct HSV-2 plaque assays, African green monkey kidney cells 

(Vero E6, originally obtained from ATCC), HEK-293T (human embryonic kidney 

cells originally purchased from ATCC) and HSV-2 (4674) were kindly provided by 

Dr. Kenneth Palmer from the University of Louisville. Cells were maintained in 

MEM supplemented with 10% FBS, and 1% penicillin and streptomycin (100 μg/mL 

each). 

To assess cytotoxicity, endocervical, End1/E6E7 (End1); ectocervical, 

Ect1/E6E7 (Ect1); and vaginal keratinocyte, VK2/E6E7 (VK2) cell lines were used 

(courtesy of Dr. Kenneth Palmer, originally from ATCC). These cell lines were 

selected because they are representative of the cell types in the female 

reproductive tract that would be exposed to the topical EFs. End1, Ect1, and VK2 

cells were maintained in KSFM supplemented with bovine pituitary extract (50 

μg/mL), epidermal growth factor (0.1 ng/mL), and 1% penicillin and streptomycin. 

The media was further supplemented with calcium chloride (CaCl2) to a final 

concentration of 0.4 mM. During cell trypsinization for plating and cell count, cells 

were neutralized using DMEM/F12 (Gibco) with 10% FBS, and 1% penicillin and 

streptomycin. Organotypic EpiVaginal cultures of normal human vaginal-

ectocervical epithelial cells were purchased from and cultivated as suggested by 

MatTek. 

Synthesis of Electrospun Fibers 
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PLGA and PLCL EFs were prepared with different solvents and TDF 

concentrations spanning (1–20% wt drug/wt polymer (w/w)). Powder from crushed 

Viread tablets (700 mg tablets containing 300 mg TDF) were used as the source 

of TDF. The presence of inactive excipients in these samples was accounted for 

when determining the theoretical loading of TDF into polymer fibers. Blank fibers 

containing no TDF were prepared as negative controls. For blank EFs, 15–20% 

PLGA w/w and 12–20% PLCL w/w were dissolved in either 3 mL TFE or HFIP 

solvent overnight while shaking at 37 °C. The following day, 2 mL of PLGA or PLCL 

solution was aspirated into, and electrospun from, a 3 mL plastic syringe as 

previously described75,87. All formulations were electrospun with a flow rate of 2.0 

mL/h and an applied voltage of 20 kV. EFs were collected on a rotating 4 mm 

outer-diameter stainless steel mandrel, located 20 cm from the blunt needle tip. 

Sample flow rate was monitored by an infusion pump (Fisher Scientific, Pittsburgh, 

PA) and the voltage was applied using a high voltage power supply (Spellman CZE 

1000R). For fibers incorporating TDF, either 1, 10, or 20% w/w TDF was dissolved 

in 1.2 mL solvent overnight. The next day the TDF solution was added to 1.8 mL 

polymer solution prior to electrospinning. After electrospinning, fibers were 

removed from the mandrel and dried overnight in a desiccator cabinet. 

Electrospun Fiber Size and Morphology 

The impact of various parameters including: solvent choice, polymer 

composition, and TDF concentration on fiber size and morphology were evaluated 

using scanning electron microscopy (SEM). Desiccated EFs were placed on 

carbon tape, sputter coated with gold, and imaged using SEM (Supra 35 SEM 
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Zeiss). SEM images were acquired at magnifications ranging from 1000–5000 x to 

enable clear visualization of the fiber microstructure. The average fiber diameter 

was determined by analyzing SEM images in NIH ImageJ, and drawing line 

elements across a minimum of 50 fibers per image. Statistical significance 

between fiber diameters was determined using the Bonferroni post hoc t-test (p < 

0.05). 

Fiber Characterization: Loading, Encapsulation Efficiency, and Controlled 

Release 

Incorporated TDF was quantified via HPLC-UV/Vis using a modified 

established method85. Briefly, 10 mg of PLGA and PLCL fibers were dissolved in 

1 mL of DMSO prior to analysis. Dilutions of these samples were injected into a 

Waters 515 HPLC pump using a Waters 717 Plus auto sampler with a Waters 2487 

absorbance detector. The mobile phase was comprised of an isocratic mixture of 

72% Milli-Q water with 0.045% trifluoroacetic acid and 28% acetonitrile with 

0.036% trifluoroacetic acid. The column used for this procedure was a Waters Sun 

Fire C18 Column, (100 Å, 5 μm, 4.6 mm × 250 mm). The instrument method 

comprised a 1 mL/min flow rate, 15 min run time, UV/vis detection at 259 nm, and 

20 μL sample injection volume. TFV was found to elute from the column 2.2 min 

after injection, while TDF eluted 12 min post-injection. The initial quantification of 

fibers was performed using combined TDF and TVF standards prepared in DMSO. 

Standard curves of both TDF and TFV (0.7–100 μg/mL) were used to quantitate 

incorporated TDF and to assess TDF degradation. Samples from Viread tablets 

were assessed to verify TDF concentration and were used as standards in 
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subsequent experiments. Controls included blank fibers and fibers spiked with a 

known concentration of TDF. TDF values determined from HPLC measurements 

were compared with the quantity of TDF added prior to electrospinning to obtain 

percent encapsulation efficiency (EE), where EE = [(Mass of TDF 

Incorporated)/(Mass of TDF Initially Added)] x 100. Unless otherwise noted, all 

samples were analyzed in triplicate. 

Controlled release experiments were performed to assess the release of 

TDF from EFs. Triplicate 10 mg fiber pieces were cut and suspended in 1 mL of 

simulated vaginal fluid (SVF) to represent intravaginal conditions in vitro. Samples 

were incubated at 37 °C and constantly shaken. The complete volume of SVF was 

removed and replaced with fresh SVF at time points: 1, 2, 4, 6, 24, 48, 72 h, and 

1, 2, 3, and 4 wk. The amount of TDF in the supernatant was measured using 

HPLC. Quantification was performed using a Viread standard diluted in SVF, with 

eluate from blank fibers in SVF used as background correction. Statistical 

significance of both loading and release profiles between fiber formulations was 

determined by one-way ANOVA with the Bonferroni post hoc t-test (p < 0.05). 

In vitro efficacy of PLGA and PLCL fibers against HIV-1 infection 

HIV-1 pseudovirus assays were used to assess the efficacy of TDF 

released from EFs against HIV-1 infection in vitro. TZM-bl cells were infected with 

Env-pseudotype HIV-1, kindly provided by both Dr. Nobuyuki Matoba (University 

of Louisville) and the NIH AIDS Reagent Program. To produce and propagate HIV-

1 Env-pseudovirus, HEK293T/17 cells were transfected with two plasmids, one 
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containing an Env-defective HIV-1 genome and a plasmid solely expressing Env. 

Transfection was facilitated with the use of FuGENE (Promega). HEK293T cells 

were allowed to incubate for 48 h, after which viral particles were collected and 

titered using the 50% Tissue Culture Infectious Doses assay (TCID50). Viral 

particles were stored at −80 °C until use249. 

To determine the in vitro efficacy of PLGA and PLCL TDF EFs against Env-

pseudotype HIV-1 infection, TZM-bl cells were seeded in 96-well plates at 100,000 

cells/well in 100 μL of DMEM. Fifty microliters of fiber eluate media (DMEM 10% 

FBS) collected from time points: 1 and 24 h; week 1 (release from days 0–7); week 

2 (release from days 8–14), week 3 (release from days 15–21), and week 4 

(release from days 22–28) were diluted by a maximum of 5 orders of magnitude 

from collected eluate (1:100,000 maximum dilution). Eluate dilutions were added 

to cells in triplicate, and 50 μL of diluted virus stock (1:8) was subsequently added 

to each well. The administered virus dose resulted in relative luminescence units 

(RLU) of at least twenty times that of background observed in untreated/uninfected 

cells, yielding an average of 100,000 RLUs in our experiments. Experimental 

controls included untreated/uninfected cells, untreated/infected cells, and blank 

fiber eluate-treated/infected cells. For wells containing untreated/uninfected and 

untreated/infected cell controls, 100 μL DMEM was added to the wells; for infected 

cells with blank fiber eluate, 50 μL DMEM was added to 50 μL blank fiber eluate, 

resulting in a final volume of 200 μL for all wells. After infection, plates were 

incubated 48 h at 37 °C, and 100 μL of media was subsequently removed from 

each well (post-incubation), and replaced with 100 μL of Bright Glo Reagent 
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(Promega). Cells were incubated at room temperature for another 5 min and the 

luminescence of each well was read at an integration time of 1 s and a gain of 135 

(Synergy HT luminometer). The amount of virus inhibition was determined by 

normalizing the RLUs of treated/infected cells to untreated/infected cells. 

Additionally, all RLU values were corrected by subtracting the RLU of 

untreated/uninfected cells. IC50 values were determined using GraphPad 6.0 

sigmoidal regression analysis. Unless otherwise noted, all experiments were run 

with three or more replicates per treatment group. Statistical significance between 

the IC50s was determined using one-way ANOVA with the Bonferroni post hoc t-

test (p < 0.05). 

In Vitro Efficacy of PLGA and PLCL Fibers against HSV-2 Infection 

HSV-2 plaque assays were conducted to test the efficacy of TDF EFs 

against HSV-2 infection in vitro. Fibers were incubated in 10 mL complete plating 

media (1% FBS MEM) for 1 and 24 h. Additional fiber eluates were collected at 

week 1 (release from days 0–7); week 2 (release from days 8–14); week 3 (release 

from days 15–21); and week 4 (release from days 22–28) to assess the ability of 

PLGA and PLCL TDF EFs to provide prolonged delivery and corresponding HSV-

2 protection. The antiviral activity of PLGA and PLCL TDF EF eluates was 

determined using HSV-2 (4674) plaque assays in Vero E6 cells. Vero E6 cells were 

seeded with 600,000 cells/well and grown to near confluence for 24 h in a 6-well 

flat bottom plate. After 24 h, the media was removed and cells were simultaneously 

administered 2 mL of fiber eluate serial dilutions from the above collected time 

points and 3000 PFU of HSV-2 per well. Free TDF was used as a positive control 
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for HSV-2 inhibition, in parallel with untreated/uninfected cells; whereas 

untreated/infected cells were used as a positive control of cell infection and death. 

After 48 h, cells were fixed with methanol for 10 min, stained with 0.1% crystal 

violet for 30 min, and washed with DI water. Plaques were counted, and plaque 

numbers from experimental groups were normalized relative to the number of 

plaques in untreated/infected cells (∼280-300 plaques). Samples were analyzed 

in triplicate, and GraphPad was used to determine the IC50 values of the TDF EF 

formulations. Statistical analysis was performed by comparing the average percent 

inhibition of HSV-2 using one-way ANOVA with the Bonferroni post hoc t-test (p < 

0.05). 

In Vitro Cytotoxicity of PLGA and PLCL Fibers 

Vaginal epithelial (VK2/E6E7), ectocervical (Ect1/E6E7), and endocervical 

(End1/E6E7) cells were incubated with TDF EFs in KSFM to assess the in vitro 

biocompatibility of TDF fibers. Cells were plated at a density of 300,000 cells/well 

in 12-well plates and incubated in triplicate with 10 mg fiber pieces placed in 

transwell inserts (10 mg/mL final concentration). No treatment (media alone) and 

10% DMSO were used as positive and negative controls of cell viability, 

respectively. After 24, 48, and 72 h incubation, 10 mL of MTT reagent was added 

to the cells, cells were lysed, and absorbance was read at 570 nm the following 

day. PLGA and PLCL EF-treated cell absorbance values were normalized to 

untreated cell absorbance to obtain percent viability. 

EpiVaginal Cytotoxicity of PLGA Fibers 
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Full thickness vaginal epithelial (VEC-100 FT) EpiVaginal™ tissues 

(MatTek) were administered low (5 mg/mL) and high (50 mg/mL) concentrations 

of PLGA TDF fibers to best represent administration in a future in vivo model. 

PLGA samples were chosen due to our initial experiments demonstrating its 

enhanced TDF release profile and efficacy relative to PLCL. Control samples 

included untreated, blank PLGA fiber-treated, and toxic (0.2% nonoxynol-9)-

treated control groups. The tissues were incubated at 37 °C, 5% CO2 for 2 and 3 

days. 

To monitor the tissue viability following exposure to TDF PLGA EFs, the 

basal side tissue culture media was collected on days 2 and 3. Cytotoxicity was 

measured using a lactate dehydrogenase (LDH) cytotoxicity assay kit (Pierce). The 

viability of the TDF EF treated tissues was determined by normalizing the 

absorbance of the treated tissues to the absorbance of the untreated tissue. 

Percent cell viability was expressed as: % Viability = [OD (treated tissue)/OD 

(untreated tissue)] × 100. Transepithelial electrical resistance (TEER) was 

measured using an EVOM2 Epithelial Voltohmmeter equipped with an Endohm 

electrode chamber (World Precision Instruments, Sarasota, FL) on days 0, 1, 2, 

and 3 of the treatment. 

To assess inflammatory markers resulting from fiber exposure, tissue media 

was analyzed for cytokine production. Based on previous work238,239,250,251, 

cytokines: IL-1α, IL-β, IL-6, IL-8, and TNF-α were assessed in all collected media 

via Luminex assay. Additionally, GM-CSF, IFN-γ, and MCP-1 expression were 

assessed based on previous microbicide studies using Luminex68,69,252. Cytokine 
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expression in samples was compared with untreated EpiVaginal tissue via fold 

increase. The fold-increase was calculated by dividing the sample expression level 

by the untreated tissue values. 

To visually examine the structural integrity of the tissue after 3 days of 

consecutive treatment, the tissue samples were washed with PBS and fixed with 

4% paraformaldehyde. The tissue specimens were embedded in a paraffin block, 

stained with hematoxylin and eosin (H&E), and cross-sections were observed 

under 20× magnification using an Aperio Imagescope (Leica Biosystems Inc., 

Buffalo Grove, IL). Tissue samples were subjected to histological analysis by a 

pathologist blinded to treatment group assignment. 

Results 

Electrospun Fiber Size and Morphology 

Fiber morphology was evaluated using SEM, and NIH ImageJ software was 

used to assess fiber diameters. Blank PLGA and PLCL fibers fabricated using 

either HFIP or TFE solvent are shown in Figure 2.1. For fibers electrospun in HFIP, 

15% w/w PLGA or 12% w/w PLCL provided well-defined fiber morphologies. 

However with TFE, both polymers required an increase in concentration to 20% 

(w/w) to produce well-delineated microstructures. The average diameters were 2.0 

± 0.8 and 1.7 ± 0.4 μm for 15% PLGA and 12% PLCL fibers made with HFIP, and 

1.9 ± 0.9 and 1.9 ± 0.8 μm for 20% PLGA and 20% PLCL fibers made with TFE 

(Table 2.1). Once well-delineated fibers were established, the effect of TDF 
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incorporation on PLGA and PLCL EF morphologies electrospun with HFIP was 

evaluated (Figure 2.2). 
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Figure 2.1 SEM images of blank PLGA and PLCL fibers electrospun using 

different solvents. (A) 15% w/w PLGA in HFIP; (B) 20% w/w PLGA in TFE; (C) 

12% w/w PLCL in HFIP; and (D) 20% w/w PLCL in TFE. Scale bars represent 10 

μm. 
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Table 2.1 Diameters of electrospun fibers. Blank and TDF fibers were fabricated 

using HFIP or TFE solvents. EFs incorporating TDF exhibited decreased 

diameters compared with blank fibers. 

 

 

 

 

 

 

 

Fiber Formulation Average Width (μm) 

HFIP 15% PLGA 

Blank Fiber 1.7 ± 0.6 

1% TDF 1.1 ± 0.3 

10% TDF 0.8 ± 0.3 

20% TDF 1.1 ± 0.4 

HFIP 12% PLCL 

Blank Fiber 1.7 ± 0.5 

1% TDF 1.1 ± 0.5 

10% TDF 0.9 ± 0.3 

20% TDF 0.7 ± 0.2 

TFE 20% PLGA Blank Fiber 2.0 ± 1.0 

TFE 20% PLGA 10% TDF 1.2 ± 0.4 

TFE 20% PLCL Blank Fiber 1.9 ±0.9 

TFE 20% PLCL 10% TDF 0.6 ± 0.2 
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Figure 2.2 SEM images of PLGA and PLCL fibers prepared with increasing 

concentrations of TDF, using HFIP as the solvent. (A) Blank PLGA, (B) 1% TDF, 

(C) 10% TDF, and (D) 20% TDF PLGA fibers; (E) Blank PLCL, (F) 1% TDF, (G) 

10% TDF, and (H) 20% TDF PLCL fibers. Scale bars represent 10 μm. 



    

86 
     

The morphologies and diameters of TDF EF formulations are shown in 

Figure 2.2, Figure 2.3, respectively. Prior to TDF incorporation, the average 

diameters of all blank fiber formulations were similar, ranging from 1.7 to 2.0 μm, 

with no statistically significant differences observed between formulations. In 

comparison, PLGA fibers incorporating TDF showed no particular trend in fiber 

diameters; whereas PLCL fiber diameters decreased with increased TDF 

concentration. The average fiber diameters for HFIP 15% PLGA 1%, 10%, and 

20% TDF were 1.1 ± 0.3, 0.8 ± 0.3, and 1.1 ± 0.4 μm. For HFIP 12% PLCL 1%, 

10%, 20% TDF fibers, the resulting fiber diameters were 1.1 ± 0.5, 0.9 ± 0.3, 0.7 ± 

0.2 μm (Table 2.1). TDF-incorporated fibers electrospun with TFE solvent, 

displayed a similar decrease in diameters to 1.2 ± 0.4 μm and 0.6 ± 0.2 μm, for 

PLGA and PLCL respectively. All TDF fibers exhibited statistically significant 

decreases in fiber diameter relative to blank PLGA (1.7 and 2.0 μm for HFIP and 

TFE blank EF respectively) and PLCL (1.7 and 1.9 μm for HFIP and TFE blank EF 

respectively) EFs. However, no statistical significance was observed between the 

1, 10, and 20% TDF fiber formulations as a function of TDF incorporation. Thus, 

TDF incorporation resulted in decreased fiber diameter relative to blank fibers; 

whereas variation in the amount of TDF incorporation had no significant effect on 

fiber diameter. 
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Figure 2.3 Average diameters of electrospun fibers measured from SEM images, 

using ImageJ. (A) Diameters of blank PLGA and PLCL fibers electrospun with 

either HFIP or TFE solvents. Diameters ranged from 1.7 to 2.0 μm. Statistical 

significance between fiber diameters was determined using one-way ANOVA with 

Bonferroni post hoc test (p < 0.05, n=150, 3 images, 50 measurements per image). 

No statistical significance was observed between fiber diameters prepared with 

either HFIP or TFE. (B) Diameters of TDF EFs electrospun with HFIP were 

significantly smaller than those of blank fibers, ranging from 0.7 to 1.2 μm. While 

the PLGA TDF fiber diameters seemed randomly distributed, PLCL TDF fibers 

demonstrated a trend of decreased diameter with increasing TDF concentration. 

Statistical significance was observed between blank fibers and all TDF fiber 

diameters; however, no statistical difference in diameters was observed between 

the TDF EF formulations. 
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Fiber Characterization: Loading, Encapsulation Efficiency, and Controlled 

Release 

To determine the loading of TDF in PLGA and PLCL fibers, different 

concentrations of TDF (1, 10, and 20% w/w) were incorporated. The TDF, TFV, 

and Viread standard curves, used to quantify TDF in fibers, maintained linearity 

and similar peak intensities in both DMSO as well as SVF (Supplemental Figure 

2.1). For all samples examined, TDF incorporated into fibers remained stable 

against degradation or hydrolysis. Although TFV peaks were present in many 

loading samples, they were either below the limit of quantification or comprised 

less than 2% of TDF sample concentration. In addition to TFV peaks, a minor peak 

eluting at 3.5 min was present in all samples and standards containing TDF. This 

peak, dubbed “minor TDF” comprised an area that was 4% of the TDF peak area 

(Supplemental Figure 2.1) and may be attributed to the monoester derivative of 

TDF (mPTFV). This proportionality was observed in all loading samples as well as 

controlled release samples collected during the first week of release. After 1 wk, 

the proportion of mPTFV increased, reaching a 1:1 ratio with TDF in some samples 

(data not shown). This increased ratio of mPTFV:TDF is attributed to the increased 

exposure of fibers to aqueous solution at later time points, coupled with an overall 

decrease in TDF release. The mPTFV concentration was quantified using the TDF 

standard. 
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Supplemental Figure 2.1 HPLC chromatogram of (A) a standard containing pure 

TDF and TFV, (B) 20% PLGA TDF EF eluate, and (C) 20% PLCL TDF EF eluate. 

(A) Standards containing both TFV and TDF were prepared to quantify TDF 

incorporated into fibers.  TDF peaks elute at 12 min while TFV elutes 2 min after 

injection. For fiber samples, EFs were weighed and dissolved in DMSO and 

analyzed. (B) 20% PLGA fibers and (C) 20% PLCL fibers exhibited peaks for TDF 

while showing minimal hydrolysis products. The elution times were maintained 

throughout the experiment. 
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Table 2.2 summarizes the total loading (μg TDF/mg fiber) and 

encapsulation efficiency (EE) achieved for the various fiber formulations. Overall, 

we observed that fibers electrospun with HFIP resulted in high EEs spanning 60–

89%. Furthermore, proportional increases in loading were observed based on the 

amount of TDF added to PLGA and PLCL formulations. However, comparing 

polymer formulations electrospun with different solvents, PLGA and PLCL fibers 

electrospun with HFIP demonstrated higher loading and encapsulation efficiency, 

relative to PLGA and PLCL fibers electrospun with TFE. Ten percent TDF fibers 

electrospun with HFIP showed high encapsulation efficiencies spanning 76 to 

89%, relative to fibers electrospun with TFE (∼60%). Considering the higher 

polymer concentration required to fabricate well-delineated fibers with TFE (20% 

for PLGA and PLCL vs. 12 and 15% for PLGA and PLCL, respectively) and the 

lower EE, HFIP was selected to electrospin subsequent formulations. 
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Table 2.2 Quantification of TDF fiber loading and encapsulation efficiency.  PLGA 

and PLCL fibers electrospun with HFIP demonstrated higher loading and 

encapsulation efficiency, relative to PLGA and PLCL fibers electrospun with TFE. 

Increases in encapsulation efficiency were observed based on the amount of TDF 

added to 10% TDF PLGA and PLCL formulations. 
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After determining PLGA and PLCL fiber loading, we assessed the release 

of TDF from PLGA and PLCL EFs in SVF for up to 4 weeks (Figure 2.4). Figure 

2.4A demonstrates increased TDF release per mass of fiber, and corresponds with 

increased incorporation of TDF in 1, 10, and 20% PLGA and PLCL fibers. While 

both the 1% TDF PLGA and PLCL formulations exhibited release near the limit of 

TDF detection, the cumulative release of TDF from the 10% and 20% PLCL fibers 

resulted in 16 and 26 μg/mg (31 and 29% total release), while the PLGA fibers 

averaged only 9.3 and 19.7 μg/mg (20 and 22% total release) within 1 h. Within 

the first 24 h, the 10% and 20% formulations demonstrated a burst release, with 

the amount of TDF release increasing with increased TDF incorporation. Overall, 

the 10 and 20% PLGA fibers released up to 40% more TDF than PLCL fibers. 

Although appreciable increases in release were only observed for approximately 

72 h, PLGA fibers released more TDF than PLCL fibers for the 10 and 20% TDF 

formulations. The 10% PLGA and PLCL fibers released 66 and 39% of their cargo, 

respectively, while the 20% PLGA and PLCL fibers released 64 and 43% of their 

cargo after 4 wk. 
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Figure 2.4 Release profiles of TDF from 1, 10, and 20% TDF PLGA and PLCL 

fibers in SVF. (A) Cumulative release of TDF per milligram of fiber (μg TDF/mg 

fiber) and (B) as percent total loading over 4 wk. While PLCL fibers showed a 

higher burst release after 1 h, PLGA fibers exhibited greater release, as early as 

24 h, relative to PLCL fibers. 
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In Vitro Efficacy of PLGA and PLCL Fibers against HIV-1 Infection 

Short-Term Efficacy 

To assess the antiviral activity of TDF PLGA and PLCL fibers, HIV-1 

inhibition assays were performed using fiber eluates collected at different release 

time points. Both short- and long-term release samples were collected to assess 

efficacy. For short-term assessment of antiviral activity, 10 mg fibers were 

incubated in 1 mL DMEM for 1 or 24 h. A histogram of the HIV-1 inhibition after 

administration of the 1 h (Figure 2.5A) or 24 h fiber release eluates (Figure 2.5B) 

is shown, and the corresponding IC50s are shown in Table 2.3. All 10 or 20% TDF 

fibers (PLGA or PLCL) completely inhibited viral infection in TZM-bl cells down to 

a 1:100 eluate dilution. For 1 and 24 h eluate dilutions exceeding 1:100, viral 

inhibition was more pronounced after administration of the 24 h eluates, relative to 

1 h eluates. The increased efficacy observed with 24 h eluates can be attributed 

to the higher amount of TDF released within 24 h. However, for both time points, 

the IC50s of both fibers were similar against in vitro infection (Table 2.3). 
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Figure 2.5 PLGA and PLCL fiber eluates inhibit HIV-1 infection in vitro after 1 and 

24 h, and 1 and 2 wk of release. Dilutions of release eluate from 10 mg/mL fiber 

concentrations at different time points were normalized to untreated/infected cell 

control RLUs to assess percent HIV-1 inhibition in vitro. Figures show the percent 

of cells infected, after incubation with: (A) 1 and (B) 24 h release eluates from all 

PLGA and PLCL EF formulations; (C) 1 and 2 wk release eluates from 20% TDF 

PLGA and PLCL fibers; (D) 3 and 4 wk eluates from 20% TDF PLGA and PLCL 
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fibers; compared to (E) free TDF (200 μg/mL) 1 and 2 wk eluate, and (F) blank 

fiber eluates at each time point. 
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Table 2.3 The IC50s of PLGA and PLCL fibers (against HIV-1) after administration 

of the 1 and 24 h release eluates. The IC50s of PLGA and PLCL TDF 1 and 24 h 

fiber eluates were similar to, or less than free TDF. Using one-way ANOVA with 

Bonferroni post hoc test, no statistical significance was observed between the 

IC50s of fiber eluates taken at the same time, there was a statistically significant 

increase in the IC50s of all formulations after 24 h release (p < 0.05). Confidence 

intervals of the IC50s are shown in parentheses. 
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Overall, the antiviral activities of these eluate dilutions demonstrate that the 

amount of TDF in the fiber corresponds with increased HIV-1 inhibition. For the 1% 

TDF PLGA and PLCL fibers, 1 h undiluted eluates decreased infection to 27% and 

10%, relative to untreated/infected controls. However, subsequent dilutions of the 

1% TDF 1 h eluates yielded decreased protection against HIV-1 infection. In 

contrast, after 24 h release, the 1% TDF PLGA and PLCL fibers completely 

inhibited virus infection, with subsequent decreases in virus inhibition 

corresponding with increased eluate dilution. Full infection resulted after 

administration of the 1% PLGA and PLCL fibers at a dilution of 1:10 and 1:1000, 

respectively for the 1 h eluates; and 1:1000 and 1:100 for the PLGA and PLCL 24 

h eluates. 

For the 10% TDF formulations, both PLGA and PLCL fibers exhibited 

complete protection against HIV-1 down to 1:100 and 1:1000 eluate dilutions, 

respectively after 1 h. After administration of the 24 h eluates, complete protection 

was observed even after a 1:1000 dilution of each formulation. Subsequent 

dilutions of PLGA eluates for 1 h and 24 h time points exhibited an increase in 

infectivity (decrease in prevention) to 31% and 13% for 1:1000, and complete 

infectivity for 1:10,000 dilutions, respectively. For PLCL, complete protection was 

achieved with the 1:1000 eluate dilutions at both 1 and 24 h time points. 

Additionally, these fibers showed efficacy even at eluate dilutions of 1:10,000; with 

48% and 69% infectivity at 1 and 24 h. The corresponding IC50s for 10% TDF 

PLGA and PLCL EFs were 2.4 and 3.1 ng/mL TDF after 1 h, and 7.2 and 7.4 ng/mL 

after 24 h (Table 2.3). 
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As expected, the 20% TDF fibers exhibited the highest efficacy against HIV-

1 infection per mass of fiber tested. Similar to the 10% TDF PLGA and PLCL EFs, 

20% TDF fibers completely inhibited infection after a 1:1000 dilution, and exhibited 

partial efficacy (58–100%) between 1:10,000 and 1:100,000 dilutions. The 

corresponding IC50s for 20% TDF PLGA and PLCL EFs were 4.6 and 3.1 ng/mL 

after 1 h release, and 5.1 and 1.9 ng/mL after 24 h release (Table 2.3). Despite 

these small differences, the PLGA and PLCL TDF fibers were equally efficacious 

at their respective time points (Table 2.3). While statistical analysis was performed 

between each formulation and time point, no clear pattern emerged. There was no 

statistical significance between any of the formulations after 1 h release, with the 

exception of free TDF, which had a significantly higher IC50 than the TDF fiber 

formulations. However, after 24 h there was marked decrease of the IC50 of free 

TDF (12.1 and 5.3 ng/mL at 1 and 24 h respectively) which resulted in no statistical 

difference between free TDF and fibers. However, most of the IC50s at 24 h 

possessed statistical significant differences at that time point. Furthermore, the 

IC50s at 24 h generally were larger than their 1 h counterparts, although this trend 

was not seen in all formulations. Considering that all EF formulations possessed 

similar IC50 to their free TDF counterparts, suggests that any formulation could be 

used to provide short-term protection for 1 or 24 h. 

Long-Term Efficacy 

To assess the long-term efficacy of the fibers against HIV-1 infection in vitro, 

eluates were collected from 10 mg of 20% TDF PLGA and PLCL fibers after 1, 2, 

3, and 4 wk. Twenty percent TDF fibers were selected due to their greater 
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encapsulation, release, and applicability to future dosing in vivo. The resulting HIV-

1 inhibition after administration of 1 and 2 wk fiber release eluates is shown in 

Figure 2.5C and the corresponding IC50s are quantified in Table 2.4. After 1 and 

2 wk, eluates from 10 mg/mL PLGA and PLCL EFs completely inhibited HIV-1 

infection. However, only the 1 wk eluates completely inhibited HIV-1 infection, after 

a 1:100 or 1:1000 dilution. Two week eluates demonstrated weaker activity, 

showing only marginal protection (14% and 27%) at 1:10 dilutions of PLGA and 

PLCL fiber eluates, respectively. The corresponding IC50s were 1.9 and 11.9 

ng/mL for 1 wk PLGA and PLCL eluates and 10.2 and 72.3 μg/mL for 2 wk PLGA 

and PLCL eluates. Free TDF controls showed a similar decrease in inhibition, 

relative to their IC50s after 1 and 24 h exposure to media (12 and 5.2 ng/mL), to 

4.5 and 4.9 μg/mL at 1 and 2 wk, suggesting the hydrolysis of free TDF into its 

monoester derivative after prolonged exposure to media (Figure 2.5E, which has 

been documented in similar studies56. Undiluted eluates from weeks 3 and 4 

showed minimal protection against HIV-1 at the doses tested (Figure 2.5D). Blank 

fiber eluates were tested as a negative control for inhibition (Figure 2.5F). The 

decreased efficacy of TDF EFs against HIV-1 may be attributed to increased levels 

of mPTFV within the solution, as well as decreased TDF release from the fiber. 

 

 

 



    

101 
     

Table 2.4 The IC50s of PLGA and PLCL fibers (against HIV-1) after administration 

of 1 and 2 wk release eluates. As exposure time to media increased, the efficacy 

of TDF fibers decreased.  However, both PLGA and PLCL fiber eluates were more 

efficacious than free TDF after 1 wk exposure to media.  Confidence intervals of 

the IC50s are shown in parentheses. 
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As the incubation time increased, the level of protection seen from both TDF 

EFs and free TDF decreased. Although 1 wk PLGA fiber eluates showed higher 

efficacy (1.9 ng/mL), relative to PLCL (11.9 ng/mL), the IC50s were not statistically 

significant. However, when compared to free TDF, the IC50s of both PLGA and 

PLCL fibers demonstrated statistically significant increases in protection (p < 0.05, 

Table 2.4). Furthermore, all IC50s of the 1 wk eluates were statistically significant 

(p < 0.05) relative to the 1 h, 24 h, and 2 wk time points. Thus for applications 

spanning one week, TDF fibers demonstrated prolonged activity, relative to free 

TDF. Additionally, less PLGA fiber was needed, relative to PLCL, to release 

therapeutically relevant amounts of TDF. 

In Vitro Efficacy of PLGA and PLCL Fibers against HSV-2 Infection 

To evaluate the potential of these fibers to inhibit HSV-2 infection, the 

antiviral efficacy of the 20% TDF EFs was also assessed in HSV-2 plaque assays. 

Similar to the HIV-1 infection assay, eluate from 5 mg/mL fibers at 1 and 24 h was 

shown to completely inhibit viral plaque formation. Figure 2.6 illustrates the results 

of 1 and 24 h eluate serial dilutions on infectivity. Both PLGA and PLCL fiber 

eluates completely inhibited HSV-2 infection, and exhibited decreased protection 

with increased dilution. Eluates from 24 h showed greater efficacy against HSV-2 

infection due to the increased amount of released TDF. 
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Figure 2.6 Both PLGA and PLCL fiber release eluates prevent HSV-2 infection in 

vitro. Plaque assays were conducted to assess the efficacy of 20% TDF PLGA and 

PLCL fiber eluates (5 mg/mL) against HSV-2 infection in vitro. Plaques were 

counted and normalized to untreated/uninfected cells. Results demonstrate HSV-

2 efficacy attained with: (A) 1 and (B) 24 h fiber eluate dilutions. 
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The IC50s of PLGA and PLCL TDF fibers were assessed using these eluate 

dilutions. Table 2.5 shows that the IC50s of PLGA and PLCL 1 and 24 h eluates 

were comparable to the IC50 of free TDF (8.9 μg/mL). The plaque assays showed 

a trend of enhanced protection across dilutions provided by PLGA EFs after 1 and 

24 h, compared with PLCL fibers. However, no statistical significance was 

observed between formulations or compared to free TDF. Fiber eluates were also 

collected to assess HSV-2 protection after 1, 2, and 3 wk. For these time points 

and fiber concentration (5 mg/mL) tested, no virus inhibition was observed (data 

not shown). Similar to the HIV-1 studies, both 20% EF formulations demonstrate 

similar short-term protection compared with free TDF. 
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Table 2.5 The IC50s of PLGA and PLCL fibers (against HSV-2) after administration 

of the 1 and 24 hr release eluates. Plaque assays were performed to assess the 

antiviral activity of 20% TDF fiber eluates against HSV-2 infection. Fiber eluates 

from 1 and 24 hr showed similar activity, relative to free TDF. Confidence intervals 

of the IC50s are shown in parentheses. 
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In Vitro and EpiVaginal Cytotoxicity of PLGA and PLCL Fibers 

To assess the potential of these fibers to safely interact with epithelial cells, 

fiber cytotoxicity was assessed in VK2, Ect1, and End1 E6E7 cells, using the MTT 

assay. As seen in Figure 2.7, high cell viability was maintained after administration 

of TDF fibers for 24, 48, and 72 h. All cells demonstrated greater than 93, 91, and 

96% cell viability at 24, 48, and 72 h respectively, for all formulations tested. In 

addition to cell monolayers, EpiVaginal tissue viability after PLGA fiber application 

was examined using the LDH cytotoxicity assay and H&E staining (Figure 2.8). 

Due to the limited availability of EpiVaginal tissue samples, PLGA EFs were 

selected for analysis due to their enhanced release profiles and therapeutic 

potential, relative to PLCL fibers. PLGA EFs incorporating 20% TDF (5 and 50 

mg/mL) were incubated 48 and 72 h with EpiVaginal tissue. Microscopic 

examination of the untreated, blank PLGA EF-treated, and TDF PLGA EF-treated 

tissues, revealed normal full thickness vaginal epithelium, while tissue treated with 

0.2% non-oxynol 9 (N-9) exhibited severe degeneration of the epithelium (Figure 

2.8A). No adverse histological findings were noted in EpiVaginal tissue treated 

with PLGA or TDF PLGA EFs. Furthermore, tissue incubated with either 5 or 50 

mg/mL fiber exhibited comparable viability in the LDH assay relative to untreated 

tissue controls after 48 and 72 h (Figure 2.8B). 



    

107 
     

 

Figure 2.7 Cytotoxicity assessed via MTT assay. Vaginal epithelial cell lines: (A) 

Ect1 E6/E7, (B) VK2 E6/E7, (C) and End1 E6/E7, were incubated with blank or 

20% TDF PLGA or PLCL fibers (10 mg/mL) for 24, 48, and 72 h. All cells 

demonstrated greater than 93, 91, and 96% cell viability at 24, 48, and 72 h 

respectively, for all formulations tested. 
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Figure 2.8 EpiVaginal cytotoxicity was assessed via H&E staining (A) and LDH 

assay (B). (A) H&E stained cross-sections of EpiVaginal VEC-100-FT tissues 

following 3-day exposure to PLGA TDF fibers, relative to untreated and toxic 

control (0.2% N-9) groups. Scale bar represents 200 μm. (B) Tissue viability (LDH) 

measurements for EpiVaginal VEC-100-FT tissues following two or three day 

exposure to PLGA TDF fibers, relative to untreated and toxic control (0.2% N-9) 

groups. 
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In parallel, cytokine production from EpiVaginal tissue was analyzed after 

48 and 72 h of PLGA fiber administration. Cytokine expression, including GM-CSF, 

IFN-γ, IL-1α, IL-1β, IL-6, IL-8, MCP-1 and TNF-α, was compared to untreated and 

N-9 treated controls (Figure 2.9). After 48 h administration of TDF EFs, only GM-

CSF and IL-6 expression showed statically significant increase in expression 

(approximately two-fold) compared with untreated tissue. After 72 h, only the 50 

mg/mL TDF fibers showed a slight increase of GM-CSF and MCP-1 cytokine 

expression (1.3-fold increase for both) relative to untreated tissue. Cytokine 

expression from tissue samples exposed to blank fibers was comparable with 

untreated samples at both time points, showing no statistical significance. In 

contrast, EpiVaginal tissue exposed to N-9 for 48 h showed a marked decrease in 

GM-CSF, IFN-γ, IL-6, MCP-1, and TNF-α (0.7, 0.1, 0.12, and 0.4 respectively) 

while showing a slight increase of both IL-1α and β (1.7 and 1.2-fold increases, 

respectively). After 72 h, the expression of all cytokines following N-9 treatment 

was lower than observed in untreated samples, which is attributed to the loss of 

the vaginal epithelium. The negligible increase in cytokine expression (0–2 fold 

difference) from exposure of TDF EFs demonstrates promising preliminary safety 

profiles of these fiber formulations69. 
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Figure 2.9 Cytokine expression from EpiVaginal studies after (A) 48 and (B) 72 h 

administration of fibers. TDF EFs elicited minimal cytokine expression relative to 

untreated samples after 72 h. Positive N-9 treated samples failed to induce 

cytokine expression due to epithelial cell death. 
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Discussion 

There is an urgent need for new topical PrEP technologies that can confer 

the sustained-release of active agents, while providing discreet and convenient 

protection against STIs. The emerging application of polymeric electrospun fibers 

for intravaginal delivery offers the potential to fill this unique role. In these studies, 

we evaluated two electrospun fiber delivery platforms, comprised of PLGA or PLCL 

polymers, for their ability to release TDF, and protect against both HIV-1 and HSV-

2 infections in vitro. Here TDF served as a model antiretroviral drug, as it is only 

one of two agents approved by the FDA to prevent HIV-1 infection. Furthermore, 

TDF has demonstrated antiviral activity against both HIV-1 and HSV-2 in vivo, 

establishing its versatility as a multipurpose active agent. The goal of this work was 

to develop and characterize polymeric electrospun fibers to safely and efficaciously 

provide protection against both HIV-1 and HSV-2 in vitro, as a potential 

multipurpose prevention platform. For the doses tested in our studies, TDF PLGA 

and PLCL fibers demonstrated equivalent protection, relative to free TDF, against 

both HIV-1 and HSV-2 infections upon exposure to short-term (24 h) release 

eluates. In addition, enhanced efficacy of TDF EFs compared with free TDF 

against HIV-1 was demonstrated after exposure to release eluates taken through 

2 wk. Moreover, this is the first time the safety of PLGA and PLCL TDF fibers has 

been investigated in EpiVaginal tissue. 

The first goal of this study was to determine the formulation of TDF PLGA 

and PLCL fibers that resulted in the most cohesive and well-defined fiber macro- 

and microstructures. During the fabrication of blank PLGA and PLCL fibers, 
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several solvents were assessed (Figure 2.1). We observed that both HFIP and 

TFE solvents yielded reproducible PLGA and PLCL fiber morphologies. These 

solvents also enabled the incorporation of high weight percent polymer to solvent, 

which is critical to incorporating high concentrations of active agents in polymers. 

Using PLGA and PLCL fibers electrospun with HFIP as our baseline platforms, we 

sought to evaluate the effect of TDF incorporation on fiber diameter (Figure 2.2, 

Figure 2.3). 

Fiber diameter has a critical role in the release properties of active agents. 

Previous research has shown that decreasing fiber diameter can enhance the 

release of active agents. This is attributed to the increased surface-to-volume ratio, 

and decreased distance necessary for encapsulate diffusion253,254. In our studies, 

the incorporation of TDF resulted in decreased fiber diameters relative to blank 

fibers (Figure 2.3). The diameters of blank fibers ranged from 1.7 to 2.0 μm; 

whereas TDF fiber diameters ranged from 0.7 to 1.1 μm. Even for the lowest 

concentration (1%) TDF fibers tested, a 50% decrease in fiber diameter was 

observed. This decrease in fiber diameter may be attributed to the charge of the 

active agent, and/or increased polymer jet instability resulting from these charge 

effects. Correspondingly, this jet instability may result in the polymer traveling 

longer distance/duration during the electrospinning process prior to reaching the 

mandrel, promoting elongation and decreased fiber diameter255,256. Thus, 

incorporated active agents can affect the microstructural morphologies and 

diameters of electrospun fibers. 
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The incorporation of antiviral or biological agents has been shown to affect 

fiber diameter in a number of ways. In previous studies, Tenofovir (TFV), a 

compound less hydrophobic (solubility = 1.87 mg/mL) than TDF (the 

phosphorylated fumaric salt form of TFV, used in this study 0.71 mg/mL257,258, was 

shown to slightly increase fiber diameter, though the differences were not 

statistically significant166. In other studies, the incorporation of antivirals resulted in 

the opposite effect on fiber diameter. Incorporation of TFV in polyvinyl alcohol 

polymers resulted in slightly smaller diameters, attributed to the increased 

instability described above242. Finally, some experiments show no change in fiber 

diameter after active agent incorporation. Fibers comprised of the pH-responsive 

CAP polymer, incorporating TDF, showed no change in fiber diameter relative to 

blank fibers83. These studies highlight that a variety of parameters including solvent 

choice, polymer selection, solvent-polymer/polymer-drug interactions, active agent 

characteristics, and solvent viscosity all contribute to the microstructural properties 

of electrospun fibers. 

After obtaining well-defined and reproducible EFs, we next assessed the 

loading of TDF in PLGA and PLCL fibers as a function of solvent type (HFIP vs. 

TFE) used in the electrospinning process. From these loading studies (Table 2.2), 

we observed that fibers electrospun with HFIP showed ∼30% higher encapsulation 

efficiency, relative to fibers electrospun with TFE. Furthermore, higher polymer 

concentrations were needed to obtain well-defined fiber microstructure, based on 

solvent type (15 and 12% w/w for PLGA and PLCL in HFIP; 20% PLGA and PLCL 

in TFE). Despite both HFIP and TFE sharing many characteristics such as high 
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polarity and similar molecular structure, there are several key differences that may 

impact fiber properties. As previously described87, TFE has a higher dielectric 

constant (26.1 F/m) compared to HFIP (16.7 F/m)259. This increased charge 

capacity may confer additional instability to TFE solvents during electrospinning, 

requiring more polymer to produce well-defined fiber morphology260. Additionally, 

this increase in dielectric constant may result in decreased TDF incorporation, and 

even TDF localization on or near the fiber surface. HFIP also possesses a much 

lower boiling point (58.2 °C) relative to TFE (73.6 °C)261,262. Solvents with lower 

boiling points tend to produce more stable fiber morphology due to complete 

evaporation during electrospinning; whereas less volatile (higher boiling point) 

solvents may not fully evaporate from the polymer, causing beaded 

morphologies76. These undesirable properties, in addition to the higher polymer 

concentrations required to produce TFE fibers with well-defined fiber 

microstructures and lower loading efficiencies, prompted us to fabricate 

subsequent formulations with HFIP. 

Controlled release studies using TDF EFs yielded several interesting results 

(Figure 2.4). First, as expected with most polymeric delivery vehicles263, PLGA 

and PLCL formulations demonstrated a burst release of TDF during the first 24 h. 

The exception was 1% TDF fibers, which released TDF quantities near our limit of 

detection. While the 10% and 20% TDF PLCL fibers showed a higher burst release 

relative to 10 and 20% PLGA fibers within the first hour, after 24 h, all PLGA 

formulations released more TDF. While burst release is a common phenomenon 

in polymer drug delivery263, here TDF surface localization may be exacerbated 
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during the electrospinning process, due to charge effects between the incorporated 

drug, polymers, and solvent. Solution instability during electrospinning due to these 

charge effects, as well as hydrophilic interactions between the solvent and drug 

can also result in agent localization near the fiber surface256,264. In the case of 

PLCL EFs, due to the increased hydrophobicity, more TDF may have accumulated 

on the fiber surface, increasing burst release within the first 1 h. Another 

observation in the release studies was that all PLGA fibers released higher 

percentages of TDF compared to PLCL fibers, after ∼1 wk in SVF. We attribute 

this increased TDF release to the hydrophilicity of PLGA, enabling enhanced 

wettability of the fiber, resulting in increased diffusion of TDF from the fiber into the 

surrounding eluate259,265. 

Other studies using similar polymers yielded similar release results. In one 

recent study, TFV (relative to TDF) was incorporated in PLGA and PCL polymers 

and polymer blends, and controlled release was evaluated for 10 days85. Similar 

to our work, PLGA demonstrated greater overall release of drug while showing an 

initial lower burst release. In contrast, PCL released all incorporated TFV after 24 

h, while PLGA released only ∼20% of incorporated drug during this time. While 

TDF was not extensively evaluated, similar burst release of TDF was also 

observed with 20:80 PCL:PLGA fibers, a trend that differed from the prolonged 

release observed from polymer blends that incorporated TFV266. These studies 

highlighted the effect that small molecular changes in drug design can have on the 

release kinetics from polymeric delivery vehicles. Furthermore, several 

formulations of PCL/PLGA blends were fabricated, demonstrating decreased burst 
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release of TFV with increasing PLGA concentration29. We expect that in future 

work, similar blends will prove favorable to tailor the release of TDF, despite its 

increased lipophilicity. 

Polymer hydrophobicity is another important consideration for providing 

sustained-release. In another study relevant to microbicide delivery, the antiviral 

compounds, MVC (Maraviroc) and AZT, were encapsulated in PCL, polyethylene 

oxide (PEO), and poly-l-lactic acid (PLLA) polymer blends. Sustained-release from 

70:30 PEO/PLLA blends showed almost complete release of hydrophilic 

compounds after 1 h, due to the hydrophilicity and quick degradation of PEO. In 

contrast, 30:70 PEO:PLLA blends exhibited lower burst release and higher 

sustained-release relative to the more hydrophilic 70:30 PEO:PLLA blends. 

Additionally, the moderately hydrophobic 30:70 PEO:PLLA fibers demonstrated 

better release profiles relative to pure PCL fibers, which released around 95% of 

incorporated drugs after 1 h. This more efficacious release profile was attributed 

to the intermediate hydrophobicity and crystallinity of PLLA compared to PEO and 

PCL86. Whereas the hydrophilicity of PEO confers quick degradation in aqueous 

solutions, resulting in burst release; PCL is highly hydrophobic, causing 

incorporated compounds to localize on the fiber surface, thereby significantly 

contributing to high burst release. The results from these studies are in agreement 

with our observations that polymers comprised of lactic and glycolic acid, relative 

to the more hydrophobic PLCL (or PCL), exhibit less burst release of moderately 

hydrophilic compounds. Moreover they emphasize the advantages of fabricating 

blended formulation to tune release properties. 
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After characterizing these fibers, TDF EFs were evaluated for their potential 

to protect against HIV-1 and HSV-2 infections in vitro (Figure 2.5, Figure 2.6). In 

these studies, TDF EF eluates collected for up to 2 wk, conferred protection 

against HIV-1, particularly for the 10 and 20% formulations (Figure 2.5); whereas 

HSV-2 inhibition was only achieved using the 1 and 24 h release eluates (Figure 

2.6). The most evident factor that contributes to this lack of efficacy associated 

with longer release times is the difference in TDF potency against HSV-2 and HIV-

1. While TDF is efficacious against both HSV-2 and HIV-1, TDF is much less 

efficacious against HSV-2 (IC50 = 8.9 μg/mL) relative to HIV-1 (0.0053 μg/mL). 

Based on the release profiles of the 20% TDF PLGA and PLCL polymers, we 

expect that we would need approximately 15–20 mg fiber to provide 3–4 mg of 

TDF release (over one month), and corresponding efficacy after 2 wk release. This 

dose corresponds to previous studies indicating that concentrations ranging from 

100 to 500 μg/mL are needed to completely prevent HSV-2 replication in vitro56. 

These estimates are within the dosing we envision for in vivo studies, in which 

similar studies have delivered a range of 0.2 to 0.7 mg/mL TDF per day within the 

murine reproductive tract to prevent HIV-1/HSV-2 infections57,69. 

In addition to the increased amount of TDF needed to prevent HSV-2 

relative to HIV-1 infection, the duration of fiber exposure to eluate likely impacts 

the potency of TDF released from the fibers. This is clearly observed in our efficacy 

studies where the administration of 1 and 24 h TDF fiber eluates demonstrated 

similar efficacy to free TDF; whereas, after 1 wk of release, TDF fiber eluates 
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exhibited greater efficacy against HIV-1, relative to free TDF (Table 2.3, Table 

2.4). 

One factor that supports the improved IC50s of TDF fibers, relative to free 

TDF with respect to time, is that TDF is known to hydrolyze to the monoester 

derivative (mPTFV) in aqueous environments both in vitro and in vivo56,265,267,268. 

While increasing the stability of active agents is a benefit of utilizing delivery 

platforms such as fibers, we acknowledge that even TDF fiber eluate exhibited 

decreased efficacy against HIV-1 after 1 to 2 wk in media (Table 2.4). HPLC 

analysis showed that fiber-incorporated TDF was protected from hydrolysis, with 

no indication of mPTFV accumulation for samples collected during the first week 

of release. This lack of mPTFV measured in loading and early release samples 

indicates that the monoester derivative was formed subsequent to fiber release, 

and that EFs function as an appropriate delivery vehicle to provide drug stability in 

solution. However, drug that is released and exposed to surrounding fluid for 

longer durations (here > 1 wk), will be less efficacious. Additionally, for long-term 

applications, lactic acid release may enhance TDF hydrolysis and contribute to the 

decreased efficacy of TDF268. Thus, as expected, the longer an incorporated drug 

remains within the polymer under physiological pH, the longer it will retain efficacy. 

To modulate release in future work, utilization of a different polymer or polymer 

blends may more optimally maintain active agent activity against HIV-1 and HSV-

2 for durations exceeding 1 to 2 weeks. 

Finally, the safety of both TDF PLGA and PLCL fibers was assessed after 

administration to vaginal and cervical cells, and to EpiVaginal tissue. In VK2, Ect1, 
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and End1 E6E7 cells, all cell lines demonstrated strong viability after fiber 

administration for 1 to 3 days (Figure 2.7). This is in agreement with our 

expectations, given that the polymers have demonstrated biocompatibility and that 

TDF is FDA-approved. Similarly, after 2 and 3 days exposure to blank or TDF 

PLGA fibers, EpiVaginal tissue exhibited comparable viability relative to untreated 

tissue controls. Furthermore, blank PLGA EF- and TDF PLGA EF-treated tissues, 

revealed normal full thickness vaginal epithelium, with no apparent adverse 

histological findings. Based on these in vitro results, we expect to see similar safety 

profiles in in vivo studies. 

Another critical aspect of intravaginal delivery is the assessment of 

inflammatory response. Studies have shown that increased expression of 

cytokines such as IL-6, IL-8, as well as IL-1α and β is strongly associated with 

increased susceptibility to HIV-1 infection137,269. Nonoxynol-9, once a promising 

microbicide candidate against HIV-1, was shown to increase the rate of HIV-1 

infection in clinical studies due to its pro-inflammatory properties and disruption of 

the reproductive epithelium270,271. Therefore, it is critical that any active agents or 

delivery vehicles used as a microbicide must minimally induce pro-inflammatory 

cytokines. For these experiments, PLGA was selected for examination due to the 

polymer exhibiting both decreased burst release and longer sustained-release 

properties relative to PLCL fibers. Despite analyzing a plethora of cytokines, TDF 

EFs were found only to weakly induce (0–2 fold increase) the expression of GM-

CSF, IL-1α, and IL-6. This cytokine expression was not observed after 72 h, and 

may have been the result of the actual application of EF onto the EpiVaginal 
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tissue252. Finally, the nonoxynol-9 control showed a marked decrease of cytokine 

expression after 72 h, which we attribute to epithelial necrosis and shedding. 

Previous studies have shown that concentrations of N-9 as low as 0.03% can 

induce epithelial disruption and necrosis after 24 h272. However, no epithelial 

disruption was observed from TDF EF exposure, indicating that these fibers are 

non-inflammatory and will not elicit a cytokine response. As in previous studies 

with microbicides, antiviral compounds may induce cytokine production as high as 

3–10 fold, which is still considered reliably safe69. 

While our preliminary work with EpiVaginal tissue demonstrates promising 

biocompatibility, future mechanical testing with respect to the interactions between 

the fibers, vaginal mucosa, and virus will need to be investigated in vivo. 

Importantly, tissue contact studies will need to assess how mechanical properties 

(e.g., flexibility, rigidity, size) impact host tissue interactions. Additionally, while we 

envision that electrospun fibers may be administered similarly to vaginal films, 

appropriate studies will need to assess the retention time and distribution of fibers 

within the vaginal cavity and relate these to the structural properties and 

mechanical durability after different durations of administration in vivo. 

More broadly, the user preference and feasibility of different dosage forms 

and administration methods must be considered for subsequent clinical 

development. A variety of studies have highlighted the lack of correlation and 

reporting of user adherence in clinical trials273,274. Hence, there is a need for more 

accurate reporting and adherence, to fully achieve the prophylactic and/or 

therapeutic potential of intravaginal delivery vehicles. In particular, if women 
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experience user adherence challenges (resulting in unadministered doses), or feel 

uncomfortable using the dosage form, lower adherence (and efficacy) may result. 

Given these factors, women’s input is critical to the development of microbicide 

dosage forms that women not only want to use, but are able to use correctly and 

consistently275. Interestingly, recent work that investigated user preferences in 

vaginal films (for more “on-demand” applications) identified factors  ̶ such as the 

opacity and size of films ̶ that most significantly impacted user preference276. As 

we further develop electrospun fibers for intravaginal applications, we are aware 

that addressing similar considerations will be necessary to ensure vehicle success 

in subsequent development stages. 

In parallel with these long-term goals of advancing fiber formulations for in 

vivo studies and clinical applications, in the near-term our laboratory seeks to 

improve the release profiles, and enhance the efficacy of our electrospun fibers 

against multiple STIs. The use of different polymers or polymer blends will likely 

reduce the initial burst release of incorporated products while simultaneously 

providing for prolonged (> 1 wk) release. Additionally while these fibers were not 

specifically formulated for mucoadhesion, surface-modification or a different 

polymer choice/blend (e.g., chitosan, acrylic acid polymers) may be considered to 

improve mucoadhesivity. Furthermore, the development of multilayered and 

coaxially-spun fibers may also provide a more suitable platform for the delivery of 

multiple compounds with sustained-release profiles. 

Conclusion 
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There is an urgent need to develop new and alternative sustained-release 

technologies to prevent HIV-1 and HSV-2 infections. To address these needs, we 

fabricated PLGA and PLCL electrospun fibers, and compared the loading and 

release properties of these fibers, using TDF as a model antiviral. Both PLGA and 

PLCL fibers provided complete protection against both HIV-1 and HSV-2 infections 

in vitro. Both short- (1 and 24 h) and long-term release eluates (1 and 2 wk) 

provided protection against HIV-1; whereas short-term protection (attributed to 

fiber dosing and difference in IC50) was achieved against HSV-2 in vitro. 

Additionally, TDF fibers demonstrated significantly enhanced efficacy against HIV-

1, relative to free TDF, after long-term release of 1 wk. Vaginal and cervical cells 

exposed to TDF PLGA and PLCL fibers showed high viability, after up to 3 days 

post-administration, demonstrating their safety in vitro. Finally, PLGA fibers 

induced negligible and temporary increases (0–2 fold) in cytokine expression, 

suggesting their potential for in vivo applications. 

Comparing the attributes of PLGA and PLCL TDF EFs, PLGA appears to 

be a more promising candidate compared to PLCL, based on its improved release 

profile. However, as both formulations demonstrated efficacy against HIV-1 and 

HSV-2 in vitro, future testing may reveal both fiber formulations to be equally 

efficacious in vivo. 

Using the information obtained from this work, we seek to further enhance 

the efficacy and delivery duration of small molecule antivirals and biologics from 

EFs by utilizing a variety of encapsulants and polymer blends. In particular, future 

plans include fabricating formulations that co-deliver multiple active agents. Our 
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hope is that these future fibers will provide more potent protection. We predict that 

these, or similar electrospun fibers will confer long lasting and sustained protection 

against both HIV-1 and HSV-2 infections.
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CHAPTER 3 

PH-RESPONSIVE DELIVERY OF GRIFFITHSIN FROM ELECTROSPUN FIBERS 

Introduction   

Recently, polymeric electrospun fibers (EFs) have been investigated as a 

new delivery platform for reproductive applications, demonstrating both on-

demand and sustained protection against HSV-2 and HIV-1 

infections75,84,86,87,101,161. However, one of the challenges of delivery vehicles, 

including EFs, is that to provide adequate protection they must release 

therapeutically relevant concentrations of active agents for the duration of use. 

This often requires frequent administration and highly localized doses to maintain 

adequate release for prolonged durations. While user adherence may be 

increased by developing a product that necessitates less frequent application, 

designing a dosage form that is efficacious regardless of administration time is 

challenging. Many sustained-release formulations undergo a “burst” release 

phase, where a significant fraction of active agent is released within the early hours 

of delivery – regardless of whether this time frame is suitable for protection38. 

An alternative approach is to design a product that requires less frequent 

dosing, by inducing the release of active agent only when needed, in response to 

microenvironmental cues. This strategy has the potential to conserve active agent 
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from unnecessary release, provide protection independently of administration 

time, and deliver active agents directly to the target site of virus entry. One such 

cue in the reproductive tract, increased pH, is associated with semen infiltration 

peri- and post-coitus. While the “normal” vaginal pH ranges from 4.0 to 5.0, 

exposure to semen (pH ∼ 7.5) increases the local pH to more neutral levels. We 

expect a pH-responsive delivery vehicle that responds to increases in intravaginal 

pH, will only release active agent when triggered by semen, while maintaining the 

bioactivity and payload of encapsulated biologics under non-coital conditions. 

While pH-responsive delivery has been used in a variety of drug delivery 

applications79,263,277-281, thus far pH-responsive dosage forms are in the early 

stages of development for delivery to the female reproductive tract (FRT)83,280,282-

285. Prior to the use of electrospun fibers for intravaginal applications, temperature 

and pH sensitive hydrogels were developed to impart the dual advantages of 

semen-triggered release and vaginal distribution and retention prior to 

intercourse282. Hydrogels with pH-responsive properties have been shown to 

release effective concentrations of antivirals. However, hydrogels tend to provide 

more transient protection due to their propensity for leakage from the FRT. 

Similarly, polymeric NP platforms comprised of poly(lactic-co-glycolic acid) (PLGA) 

and S-100 Eudragit® blends were evaluated to provide pH-responsive release of 

the antiretroviral reverse transcriptase inhibitors, tenofovir and TDF283. Increased 

S-100 ratios resulted in decreased encapsulation efficiency, while conversely 

providing improved pH-dependent release. Similar studies assessed the mucosal 

delivery of pH-sensitive Eudragit S-100 NPs loaded with hydrophilic or 
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hydrophobic molecules280, demonstrating retention of molecules within NPs under 

acidic intravaginal pH and released upon exposure to more neutral pH conditions. 

This study additionally demonstrated the uptake and biocompatibility of NPs in 

vaginal cells280. Most recently, spray dried mucoadhesive and pH-responsive TFV 

microspheres prepared from polymethacrylate salts were fabricated, resulting in 

∼90% release within the first hour, while demonstrating biocompatibility and 

mucoadhesivity to vaginal cells and porcine vaginal tissue284. 

Relative to gel and NP delivery platforms, electrospun fibers have recently 

emerged as an alternative intravaginal delivery platform that offer a durable 

stationary reservoir of encapsulated agents. However, many of these studies have 

focused on the delivery of antibiotics or ARVs, relative to new biologics280,283. One 

of the first studies to investigate pH-responsive fibers for vaginal applications, 

demonstrated that cellulose acetate phthalate (CAP) fibers highly incorporated the 

reverse transcriptase inhibitors etravirine and TDF, and the hydrophilic dye 

rhodamine83. The CAP polymer, itself a potent antiviral, is minimally soluble in 

acidic conditions, and the addition of SSF rapidly dissolved the CAP fibers, 

releasing the encapsulated drugs. While this quick degradation was attributed to 

the natural (vs. synthetic) polymer chemistry, the fiber degradation raised concerns 

over long-term structural integrity as well as corresponding protection, prompting 

the development of fibers with improved mechanical properties. To address this 

need, coaxial fibers, comprised of a polyurethane core and CAP shell layer, were 

fabricated to provide pH-inducible release of rhodamine, while demonstrating 

enhanced mechanical properties142. Finally, fibers comprised of Eudragit L-100 
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encapsulating horseradish peroxidase and alkaline phosphatase were fabricated 

using emulsion electrospinning286. These fibers modulated protein release in 

response to pH, while preserving protein activity. In another study, pH-responsive 

fibers comprised of poly(methacylic acid-co-methyl methacrylate), encapsulating 

the ARVs, dapivirine and etravirine, were fabricated287. These fibers demonstrated 

sustained-release of therapeutics within acidic conditions, while the fibers rapidly 

dissolved in alkaline pH, to provide encapsulant release. 

While a variety of pH-responsive platforms have demonstrated promise 

against STIs, many of these platforms, inclusive of electrospun fibers, have 

focused on the delivery of antibiotics or ARVs, relative to new biologics150,153. 

Recently, we and others have developed EFs as an efficacious platform to provide 

sustained-delivery of antiviral drugs to the FRT75,84,86,87,101,161. Building upon this 

work, the goal of this project was to develop and test pH-responsive EFs that 

incorporate the antiviral lectin, GRFT. Griffithsin fibers were designed to address 

the needs of an on-demand delivery system, while providing a delivery vehicle that 

may reduce the frequency of daily administration. It is well known that poly(acrylic 

acid) (PAA) has been used to fabricate a variety of pH-responsive dosage 

forms288,289. Moreover, due to its carboxylic acid groups that are deprotonated 

within acidic environments (here, vaginal), active agents are retained under slightly 

acidic conditions. Conversely, in neutral and alkaline environments, the carboxylic 

acid groups become ionized, inducing electrostatic repulsion, which results in fiber 

swelling and agent release into the surrounding medium289. Additionally, PAA as 

well as the polymer poly(n-butyl acrylate) (PBA) have been used to produce 
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mucoadhesive polymers, demonstrated in buccal delivery and other 

applications290-295. Given these properties, we selected the copolymer, PBA-co-

PAA, to blend with known sustained-release polymers, PLGA and 

methoxypolyethylene glycol (mPEG)-PLGA, to provide pH-dependent GRFT 

release. We hypothesized that the encapsulated GRFT released from these pH-

responsive fibers would retain antiviral properties relative to free GRFT and that 

utilizing PBA-co-PAA fibers to deliver biological entry inhibitors, such as GRFT, 

may prove useful to conserve the payload and activity of active agent when 

needed.   

Materials and Methods 

Materials 

 Carboxyl-terminated poly(d, l-lactic-co-glycolic acid) (PLGA, 50:50, 0.55–

0.75 dL/g, 31–57 kDa MW) was purchased from LACTEL® Absorbable Polymers 

(Cupertino, CA, USA). Methoxy poly(ethylene glycol)-b-poly(lactide-co-glycolide) 

(mPEG-PLGA, 5,000:55,000 kDa) was obtained from PolySciTech® Akina Inc. 

(West Lafayetter, IN, USA). Poly(n-butyl acrylate-co-acrylic acid) (PBA-co-PAA, 

50:50, catalog number 19911-10), an alkali-soluble 20% latex in alcohol was 

purchased from Polysciences Inc. (Warrington, PA, USA). Chemical solvents 

including 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), dichloromethane (DCM), and 

hydrochloric acid (HCl) were obtained from Fisher Scientific (Pittsburgh, PA, USA). 

Sodium dodecyl sulfate (SDS) and MTT [3-(4,5-dimethylthiazol-2-yl)2,5-

diphenyltetrazolium bromide] were purchased from Sigma Aldrich (St Louis, MO). 
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Griffithsin (MW 12.7 kDa) was produced by Kentucky BioProcessing LLC 

(Owensboro, KY, USA) and was kindly provided by Dr. Kenneth Palmer (University 

of Louisville). Fetal bovine serum (FBS) and 100× penicillin-streptomycin solutions 

were purchased from VWR. Simulated vaginal fluid (SVF) and simulated semen 

fluid (SSF) were prepared as described in246,296. 

Cell Lines and Virus 

 Vaginal keratinocyte (VK2/E6E7), endocervical (End1/E6E7), and 

ectocervical (Ect1/E6E7) cell lines were used to assess fiber cytotoxicity (courtesy 

of Dr. Kenneth Palmer, originally from ATCC, Rockville MD). VK2/E6E7 (VK2), 

End1/E6E7 (End1), and Ect1/E6E7 (Ect1) are well-characterized immortalized cell 

lines derived from normal human vaginal, endocervical, and ectocervical epithelia, 

respectively. These cell lines were chosen as they are representative of the cell 

types found within the female reproductive tract. VK2, End1, and Ect1 cells were 

maintained in keratinocyte serum-free medium (KSFM) supplemented with 

recombinant human epidermal growth factor (0.1 ng/mL), bovine pituitary extract 

(50 μg/mL), calcium chloride (0.4 mM) (Thermo Fisher, Waltham, MA), with 1% 

penicillin and streptomycin (100 μg/mL each). During cell trypsinization, plating, 

and cell counting, cells were neutralized with Dulbecco’s Modified Eagle Medium: 

Nutrient Mixture F-12 media (DMEM/F-12, 1:1, VWR) with 10% fetal bovine serum 

(FBS), and 1% penicillin/streptomycin (100 μg/mL each). 

TZM-bl cells, obtained from the National Institutes of Health AIDS Research 

and Reference Reagent Program (ARRRP), were used to assess in vitro HIV-1 
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infectivity. TZM-bl cells, previously designated JC53-bl (clone 13), are derived from 

a HeLa cell clone engineered to express CD4, CCR5 and CXCR4. These cells 

have a Tat-driven luciferase or E. coli β-galactosidase reporter system, under the 

control of an HIV-1 long terminal repeat, permitting sensitive and accurate 

measurements of infection247,248. TZM-bl cells were cultured in DMEM containing 

10% FBS, 25 mM HEPES, and 50 μg/mL gentamicin. These cells are highly 

permissive to infection by most strains of HIV-1, SIV and SHIV, including primary 

or molecularly cloned viral isolates and molecularly cloned Env-pseudotyped 

viruses. 

The Env-pseudotype HIV-1 was produced in 293T/17 cells, using an 

envelope (env)-expressing plasmid (CCR5-tropic clade A strain, Q769.h5) and an 

env-deficient HIV-1 backbone vector (pNL4.3ΔEnv-Luc), both obtained from the 

NIH AIDS Reagent Program (11884 and 3418). HEK-293T (human embryonic 

kidney) cells were purchased from ATCC. Cells were maintained in MEM 

supplemented with 10% FBS, and 1% penicillin and streptomycin (100 µg/mL 

each). 

Synthesis of Electrospun Fibers 

 Blank PLGA and mPEG-PLGA polymers (15% w/w) were dissolved in 

0.6 mL HFIP overnight, while shaking at room temperature. Subsequent polymer 

blends, comprised of varying PLGA:PBA-co-PAA polymer ratios (100:0, 90:10, 

85:15, 80:20, and 75:25 w/w) were prepared as follows (Figure 3.1). Briefly, PLGA 

polymers (15–30% w/w) were first dissolved in HFIP. Corresponding mass to mass 
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ratios of PBA-co-PAA polymer were added to the PLGA polymer mixture and 

allowed to solubilize overnight on a shaker at room temperature. Prior to 

electrospinning, 140 μL of Tris-EDTA buffer (TE, pH = 7.4) was added to the 

polymer solution and briefly vortexed. 
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Figure 3.1 Schematic of mPEG-PLGA and PBA-co-PAA co-polymers and the fiber 

fabrication process. 
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For fibers incorporating GRFT, the GRFT stock solution was first 

concentrated with a Spin-X® UF concentrator (10 kDa MWCO, Corning 

Incorporated-Life Sciences, Oneonta, New York, USA) and resuspended to a 

volume of 1 mL in TE buffer. For a 90:10 polymer blend, 144 mg of either PLGA or 

mPEG-PLGA was weighed and added to 0.6 mL of HFIP. Immediately after, 80 µL 

(16 mg) of PBA-co-PAA ethanol solution (20% w/v) was added to this mixture, 

resulting in a polymer blend with a final concentration of 13.8% w/w 

(polymer/solvent). After the polymers solubilized overnight, 140 μL (4.8 mg) of 

GRFT solution (34.2 mg/mL) was added dropwise to the polymer mixture giving a 

final electrospinning volume of 820 μL, with theoretical GRFT loading of 30 μg 

GRFT/mg polymer. The solution was briefly vortexed and immediately 

electrospun. 

Five hundred microliters of PLGA:PBA-co-PAA and GRFT suspension was 

aspirated into and electrospun from a 1 mL plastic syringe as previous 

described87,161. Flow rates spanning (0.3–1.0 mL/h) were optimized over a range 

of voltages (20–25 kV). The resulting fiber mat was collected on a rotating 4 mm 

outer diameter stainless steel grounded mandrel located 10–20 cm from the 

needle tip. All electrospinning processes were performed at room temperature (RT, 

∼25 °C). Sample flow rate was monitored using an infusion pump (Fisher 

Scientific, Pittsburgh, PA) while the voltage was applied using a high voltage power 

supply (Spellman CZE 1000R). Final electrospinning conditions applied a voltage 

of 25 kV, with a sample flow rate of 0.8 mL/h, with a distance of 20 cm, for the 
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mPEG-PLGA:PBA-co-PAA 90:10 blend. After electrospinning, fibers were 

removed from the mandrel and dried overnight in a desiccator. 

Fiber Morphology 

 The morphologies of GRFT PLGA:PBA-co-PAA and mPEG-PLGA:PBA-co-

PAA blended fibers were evaluated using scanning electron microscopy (SEM) 

(JSM-820 microscope, JEOL, Tokyo, Japan). Briefly, after drying, fibers were cut 

into 5 mm pieces and placed on double-sided adhesive carbon tabs (Ted Pella, 

Inc., Redding, CA, USA), which were then adhered to aluminum stubs. Samples 

were coated with a thin gold alloy film using a Bio-Rad E5100 sputter coat system. 

The coating process was operated at 20 mA for 90 s and images were captured at 

an accelerating voltage of 8 kV. The average fiber diameter was determined by 

analyzing SEM images in NIH ImageJ, and drawing line elements across a 

minimum of 50 fibers per image. Statistical significance between fiber diameters 

was determined using the Bonferroni post hoc t-test (p < 0.05). 

Griffithsin Loading and Release 

 The amount of GRFT incorporated into each fiber was determined by 

dissolving of 3–5 mg fiber pieces in 500 μL DCM, and adding 500 μL TE buffer to 

extract GRFT. This extraction process was repeated twice by vortexing for 1 min 

and centrifuging for 5 min at 13,000 rpm to fully extract GRFT. The TE buffer was 

collected and analyzed using ELISA to determine GRFT loading. The 

encapsulation efficiency (EE) was defined as the ratio of actual GRFT loading to 

the theoretical loading (30 μg/mg). 
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 To quantify GRFT release from pH-responsive fibers under different in vitro 

conditions, SVF (pH = 4.4), phosphate buffered saline (PBS, pH = 7.4), and 

SVF:SSF (1:3, v/v, pH = 7.4) were used as eluates. The SVF:SSF mixture was 

used to measure inducible GRFT release after exposure to semen-vaginal fluid 

mixture296. Samples of GRFT PLGA:PBA-co-PAA and mPEG-PLGA:PBA-co-PAA 

fibers were hole-punched with a Ribbel biopsy punch (7 mm diameter), resulting 

in an approximate fiber mass of 10 mg. These fibers were immersed in 1 mL SVF 

or PBS, in a shaker at 37 °C and 150 rpm. At pre-determined time points, the 

release buffer was completely replaced with 1 mL of either fresh SVF or PBS. In 

subsequent pH-dependent release studies, fibers were incubated in SVF for 24, 

48, or 72 h. To create a pH “switch”, the SVF was replaced with either PBS or (1:3) 

SVF:SSF to assess differences in GRFT release after a pH change. Fiber eluates 

were collected and replaced at 1, 4, 24, 48, 72, 96, and 120 h after the initial PBS 

or SVF:SSF “switch.” 

 The concentration of GRFT released was determined using an established 

ELISA method. Briefly, Nunc Maxisorp ELISA plates were coated with 0.9 mg/mL 

influenza virus hemagglutinin (diluted in 0.1 M PBS) overnight at 4 °C for use as a 

coating buffer, which GRFT selectively binds to. The plate was washed three times 

with PBS containing 0.05% Tween-20 (PBST) using an Immunowash plate washer 

(Bio-Rad, Hercules, CA, USA). The wells were blocked by adding 3% (w/v) bovine 

serum albumin in PBST at room temperature (RT) for 2–3 h to block non-specific 

binding. A GRFT standard, loading extract and release eluates were added to the 

wells for 1 h at room temperature. A 1:10,000 dilution of both a primary antibody 
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goat anti-GRFT (provided by Dr. Nobuyuki Matoba, University of Louisville) and 

secondary antibody rabbit anti-goat IgG-HRP (Sigma-Aldrich, St. Louis, MO, USA) 

were added to the wells for another 1 h to detect bound GRFT. Colorimetric values 

were derived using SureBlue Reserve TMB Peroxidase substrate (KPL, 

Gaithersburg, MD, USA), and the reactions were stopped by 1 N H2SO4. 

Absorbance was measured at 450 nm on a Synergy HT reader (BioTek, Winooski, 

VT, USA). Results are shown as the cumulative amount of GRFT released per 

mass fiber (μg/mg) and the cumulative release percentage, as a function of release 

time. The encapsulation efficiency (EE) was defined as the ratio of actual GRFT 

loading to the theoretical loading (30 μg/mg). All data are shown as the 

mean ± standard deviation. All experiments were conducted in triplicate, with a 

minimum of three independent experiments, unless otherwise noted. 

Nuclear Magnetic Resonance Spectroscopy 

 For the quantification of the polymer composition, mPEG-PLGA, PLGA-co-

PAA, empty-fiber, and GRFT-loaded fiber were dissolved with fully deuterated 

dimethyl sulfoxide for Nuclear magnetic resonance (NMR) spectroscopy. NMR 

spectra of all the samples were obtained at a temperature of 298 K using a 

600 MHz proton frequency spectrometer equipped with a triple resonance prodigy 

probe (Bruker, Billerica, MA, USA). All the spectra were acquired with 2048 

complex points and 4 number of scans and processed using TOPSPIN. Based on 

the chemical structures of mPEG-PLGA and PBA-co-PAA, peaks in the spectra of 

mPEG-PLGA and PBA-co-PAA were assigned to individual proton resonances. 

These assignments were consequently used to identify resonances in the fiber 
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spectra. Although severe overlapped resonances from mPEG moiety in mPEG-

PLGA and aliphatic moiety in PBA-co-PAA in the fiber spectra were observed, 

protons attached to carbons of lactic and glycolic moieties in mPEG-PLGA and 

proton in hydroxyl group in PBA-co-PAA could be unambiguously assigned to the 

resonances at ∼5.0, ∼5.5, and ∼8.0 ppm, respectively (Supplemental Figure 

3.1). After the assignments, the relative composition of moieties in mPEG-PLGA 

were determined using integration of resonances in each spectrum and the 

determined number of chains for lactic and glycolic moieties in mPEG-PLGA were 

∼34 and ∼54, respectively and the chain number of acrylic acid in PBA-co-PAA 

was ∼34. The relative ratio of mPEG-PLGA and PBA-co-PAA in the fiber were 

determined as 1:0.1 using the integration of the peaks at ∼ 5.0, ∼5.5, and 

∼8.0 ppm in the spectra of fibers (Supplemental Figure 3.1). Additional to the 

resonances from the fiber, GRFT resonances were observed only in the GRFT-

loaded fiber (Supplemental Figure 3.1) that confirms that GRFT is incorporated 

into the fiber using our protocol. 
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Supplemental Figure 3.1 NMR Spectrograph of GRFT Fibers. 
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HIV-1 Pseudovirus-Based Neutralization Assay 

The antiviral activity of GRFT loading extract and fiber release eluates was 

measured relative to free GRFT, as a function of reduction in luciferase reporter 

gene expression after a single round of infection with Env-pseudotyped virus 

(CCR5-using clade A strain Q769.h5) in TZM-bl cells. The optimal virus dilution 

was established to yield ≥ 100,000 relative luminescence units (RLU) after 

infection. Assay stocks of molecularly cloned Env-pseudotyped viruses were 

prepared by transfection of 293T cells and were titrated in TZM-bl cells as 

previously described297. Briefly, all samples were diluted using serial dilutions 

(ranging from no dilution to 1:10,000 with PBS to a final volume of 50 μL within a 

96-well plate. One hundred microliters of TZM-bl cell solution (104 cells in DMEM 

medium with 10 μg/mL DEAE-dextran) was subsequently added to each well, 

followed by the addition 50 μL of HIV-1 pseudovirus virus dilution. Samples were 

then incubated at 37 °C for 48 h. After the 48 h incubation, 100 µL culture medium 

was carefully removed from each well. Luminescence was measured using the 

Bright-Glo™ luciferase assay system (Promega Corporation, Madison, WI, USA) 

by adding 100 µL Bright-Glo™ reagent solution to each well for 5 min. Plates were 

read via luminescence by the Synergy HT reader (BioTek, Winooski, VT, USA). All 

RLU values were corrected by subtracting the RLU of untreated/uninfected cells 

from the sample RLUs (treated infected cells). The percent virus inhibition was 

determined by normalizing the corrected RLUs of infected/treated cells to 

corrected untreated/infected cells: % Infection = [(sample RLU − untreated 

uninfected cells) ÷ (untreated infected cells –untreated uninfected cells)] × 100%. 
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Antiviral activity is reported as the sample concentration at which RLUs compared 

with virus control wells RLUs. 

In Vitro Cytotoxicity 

The in vitro cytotoxicity of mPEG-PLGA:PBA-co-PAA (90:10), relative to 

free GRFT was evaluated in VK2, Ect1, and End1 cells using a colorimetric MTT 

assay. Briefly, each cell line was seeded into 12-well plate at a density of 600,000 

cells per well. Eluates from 1 and 10 mg GRFT mPEG-PLGA:PBA-co-PAA fibers, 

suspended in 1 mL of media were incubated with the cells for 24, 48, and 72 h. 

After each time point, 100 μL MTT solution (5 mg/mL) was added to each well 

followed by incubation for 4 h at 37 °C. Lysis buffer (550 µL, 10% SDS in 0.01 M 

HCl) was then added to each well for and incubated for 16 h. Absorbance readings 

were performed at 570 nm. Ten percent DMSO was used as the positive control 

for cytotoxicity, with blank fibers eluate-treated and untreated cells as negative 

controls. All data are shown as the mean ± standard deviation. 

Results 

Fiber Morphology 

The morphology and microstructure of PLGA and mPEG-PLGA fibers were 

assessed with scanning electron microscopy (Figure 3.2). In addition, the 

morphology of PLGA and PBA-co-PAA polymer fibers with blend ratios of: 100:0, 

90:10, 85:15, 80:20 and 75:25 and mPEG-PLGA:PBA-co-PAA (90:10) fibers were 

evaluated (Figure 3.3). As shown in Figure 3.2 and Figure 3.3, all formulations 

provided well-defined fiber morphologies. The fiber diameters of the different 
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polymer blends tested for pH-responsive release were assessed using ImageJ 

software (NIH) (Table 3.1). The fiber diameters of the PLGA:PBA-co-PAA and 

mPEG-PLGA:PBA-co-PAA (90:10) blends ranged from 204 to 407 nm. As the 

initial PBA-co-PAA ratio increased, the average fiber diameter decreased; 

however, only the 75:25 PLGA blend exhibited a statistically significant difference 

relative to the other PLGA blends. There was no evident relationship between 

polymer type, PBA-co-PAA ratio, and fiber diameter. 
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Figure 3.2 SEM images of (A) PLGA and (B) mPEG-PLGA electrospun polymer 

fibers that incorporate GRFT. The scale bar represents 2 μm. 
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Figure 3.3 SEM images of different pH-responsive electrospun fiber blends that 

incorporate GRFT. (A) PLGA:PBA-co-PAA (100:0, w/w); (B) PLGA:PBA-co-PAA 

(90:10); (C) PLGA:PBA-co-PAA (85:15); (D) PLGA:PBA-co-PAA (80:20); (E) 

PLGA: PBA-co-PAA (75:25); and (F) mPEG-PLGA:PBA-co-PAA (90:10). The 

scale bar represents 2 μm. 
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Table 3.1 pH-responsive fiber diameters measured from SEM images. 
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Griffithsin Fiber Loading and Release Characterization 

To determine the impact of polymer blend ratio on GRFT loading, the 

extracts from 100:0, 90:10, 85:15, 80:20 and 75:25 PLGA:PBA-co-PAA and 90:10 

mPEG-PLGA:PBA-co-PAA polymer blends were evaluated using an ELISA. Table 

3.2 compares the actual amount of GRFT incorporated per milligram of fiber, to 

the theoretical loading of 30 μg/mg. The encapsulation efficiency of active GRFT 

in PLGA-only (100:0) EFs, measured via ELISA was over 90%, indicating the high 

loading potential of these fibers. The 90:10, 85:15, 80:20 and 75:25 PLGA:PBA-

co-PAA blends exhibited GRFT encapsulation efficiencies of 62, 53, 51, and 80%, 

respectively, while the 90:10 mPEG-PLGA:PBA-co-PAA fibers demonstrated 54% 

loading efficiency. Similarly high GRFT loading was attained for both the PLGA-

only and the 75:25 polymer blend, while GRFT loading of the other formulations 

was statistically lower. Although statistical significance was observed between the 

encapsulation efficiencies of different fiber formulations, there was no correlation 

between GRFT loading and increased PBA-co-PAA ratio. 
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Table 3.2 GRFT loading and encapsulation efficiency based on formulation. 
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To initially assess the ability of fibers to release GRFT under different pH 

conditions, the total cumulative release of GRFT from PLGA and mPEG-PLGA 

fibers was measured during 72 h incubation in SVF (pH 4.4) or PBS (pH 7.4). 

Although PLGA EFs demonstrated high GRFT encapsulation, negligible GRFT 

release was observed from PLGA-only fibers in either SVF or PBS (Figure 3.4). 

However, GRFT release from mPEG-PLGA fibers in SVF and PBS exhibited burst 

release within the first 6 h (∼33 and 45% of total GRFT loading, respectively), 

followed by minimal sustained-release during the remaining incubation period 

(Figure 4.4). Based on these results, alternative polymer formulations were 

investigated to improve GRFT release. 
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Figure 3.4 In vitro release profiles of GRFT from mPEG-PLGA fibers. Negligible 

GRFT release was detected from PLGA-only fibers (data not shown, release 

coincides with x-axis). Cumulative release data is shown as a function of percent 

total loading (solid circles) and mass released per mass of fiber (open squares). 

Fibers were incubated in either SVF (solid lines) or PBS (dashed lines) for 72 h at 

37 °C. Data are expressed as the mean ± SD of triplicate samples. 
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In comparison to these initial release studies with PLGA and mPEG-PLGA 

fibers, it was observed that blending PLGA with a pH-responsive polymer, PBA-

co-PAA, both enabled the formation of well-delineated fibers (Figure 4.3), and 

provided enhanced GRFT release in PBS, relative to PLGA- or mPEG-PLGA-only 

fibers (Figure 3.5). To mimic the more basic pH conditions of semen entry for pH-

responsive applications, EFs were incubated in SVF for 24 h, and subsequently 

“switched” to PBS (Figure 3.5). The same fiber formulations were also incubated 

in PBS alone as a control. While unblended PLGA-only fibers (100:0) released 

minimal amounts of GRFT, polymer blends containing increased PBA-co-PAA 

(10–25% w/w), released more GRFT within the first 24 h in either PBS or SVF. Of 

these blends, only the 90:10 PLGA:PBA-co-PAA blend exhibited increased GRFT 

release in PBS only (relative to SVF), indicating its potential for pH-responsive 

applications. In contrast, blends with increased PBA-co-PAA ratios (15, 20, and 

25%) released GRFT in both PBS as well as SVF, deeming them less discerning 

for a pH-responsive delivery platform. 
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Figure 3.5 In vitro pH-responsive release profiles of GRFT from different 

PLGA:PBA-co-PAA blended fiber formulations, each theoretically loaded with 

30 μg GRFT/mg polymer. The cumulative release of GRFT from: (A) PLGA:PBA-

co-PAA (100:0, w/w); (B) PLGA:PBA-co-PAA (90:10); (C) PLGA:PBA-co-PAA 

(85:15); (D) PLGA:PBA-co-PAA (80:20); and (E) PLGA: PBA-co-PAA (75:25) were 

monitored at 37 °C. Fibers were initially incubated in SVF (pH = 4.5) for 24 h and 

switched to PBS (pH = 7.4) for an additional 24 h. Release in PBS (pH 7.4) is 

shown (without a switch) for comparison. A summary of GRFT release from all 

blends in PBS is provided in (F). As the ratio of PLGA decreases, the cumulative 
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amount of GRFT release increases. Release data are expressed as the mean ± SD 

of triplicate samples. 
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Based on these release results (Figure 3.4, Figure 3.5), it was 

hypothesized that incorporating the properties of the 90:10 PLGA:PBA-co-PAA 

blend with the increased hydrophilicity of mPEG-PLGA, may increase GRFT 

release in more neutral conditions due to increased hydrophilicity, while retaining 

GRFT loading at low intravaginal pH (e.g., SVF). To evaluate this, mPEG-

PLGA:PBA-co-PAA (90:10) fibers were formulated and incubated in SVF for either 

24, 48, and 72 h. After 24, 48, and 72 h, the fibers were “switched” to PBS (Figure 

3.6A) or simulated vaginal-semen fluid (SVF:SSF (1:3) w/w, pH 7.4)) (Figure 

3.6B). The mPEG-PLGA:PBA-co-PAA blend provided negligible release of GRFT 

in SVF after 24, 48, and 72 h, releasing only 0.27, 0.41, and 0.47 μg/mg GRFT 

respectively. However, when switched to PBS, the blend exhibited a nearly thirty-

fold increase in GRFT release, releasing 10–12 μg/mg (66–74%) over a 

subsequent 120 h (Figure 3.6A). Moreover, within the first hour post-switch, the 

fibers that were incubated for 24, 48, and 72 h in SVF released 6.2, 3.5, and 4.2 μg 

GRFT/mg fiber, respectively. Similar release was observed when fibers were 

switched from SVF to a more representative intravaginal environment of SVF:SSF 

(1:3), with 1.3, 1.3, and 1.4 μg GRFT/mg fiber release 1 h post-switch from the 24, 

48, and 72 h SVF incubations, respectively (Figure 3.6B). Overall, GRFT release 

from fibers switched to SVF:SSF showed a lesser and more gradual release curve 

relative to fibers switched to PBS. While fibers switched to PBS released 

approximately 11 μg GRFT/mg fiber 24 h post-switch, fibers switched to SVF:SSF 

released ∼5 μg GRFT/mg fiber within the same duration. Moreover, the PBS 

switched fibers exhibited minimal release after 24 h, while the SVF:SSF switched 
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fibers continued to release, resulting in a total of ∼7 μg GRFT released per mg 

fiber, 72 h post-switch. 
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Figure 3.6 In vitro pH-responsive release profiles of GRFT from mPEG-

PLGA:PBA-co-PAA (90:10, w/w) fibers. The cumulative release of GRFT is shown 

as a function of mass released (A, C) and percent total loading (B, D). Fibers were 

incubated in SVF for 24, 48, or 72 h. The media was subsequently “switched” to 

(A, B) PBS or (C, D) SVF:SSF (1:3) mixture, and fibers were incubated for an 

additional 72 h. Release values are expressed as the mean ± SD of triplicate 

samples. 
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HIV-1 Inhibition Studies 

Based on the release results, mPEG-PLGA:PBA-co-PAA (90:10) GRFT 

fibers were evaluated to provide pH-dependent protection against HIV-1 infection 

in vitro. First, the activity of GRFT, extracted from electrospun fibers, was assessed 

to determine whether GRFT is inactivated during electrospinning. Previous studies 

have shown that harsh solvents and electric field used during the electrospinning 

process may denature protein and decrease biologic activity298,299. Therefore, the 

inhibitory potential of extracted, relative to free GRFT, was tested against HIV-1 

infection. Similar antiviral activity was observed between free GRFT and GRFT 

extracted from mPEG-PLGA:PBA-co-PAA (90:10) fibers (Figure 3.7). Complete 

protection against HIV-1 infection was achieved from undiluted fiber extracts (IC50 

10.6 ng/mL) and free GRFT (15.5 ng/mL), with a dose-dependent decrease in 

protection observed for both fiber extract and free GRFT dilutions. 
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Figure 3.7 HIV-1 inhibition assays were conducted to assess the functional activity 

of extracted GRFT after electrospinning into fibers, relative to free GRFT. GRFT 

extracted from mPEG-PLGA:PBA-co-PAA (90:10) fibers demonstrates complete 

efficacy against HIV-1 infection, and similar efficacy to free GRFT. The percent of 

HIV-1 infected cells, relative to untreated cells, is shown as the mean ± SD of 

triplicate samples, as a function of (A) eluate dilution or (B) GRFT concentration. 
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To assess the inhibitory activity of GRFT fibers after an induced pH change, 

mPEG-PLGA:PBA-co-PAA (90:10) fibers were incubated in SVF for either 24, 48, 

or 72 h, followed by a switch to PBS or SVF:SSF, for an additional hour. After 1 h, 

the eluates were collected and assessed in HIV-1 inhibition assays. As seen in 

Figure 3.8A and B, despite different initial incubation periods in SVF (24, 48, or 

72 h), GRFT maintained bioactivity and completely inhibited HIV-1 infection after 

exposure to PBS. The IC50s for the 1 h PBS release eluates, after an initial 24, 48, 

and 72 h in SVF were 28.3, 29.6 and, 23.5 ng/mL respectively. Similarly, complete 

inhibition of HIV-1 infection was achieved from mPEG-PLGA:PBA-co-PAA fibers 

that were switched to a more physiologically relevant environment of SVF:SSF 

after the same durations (24, 48, 72 h) (Figure 4.8C and D). The IC50 values from 

1 h post-switch SVF:SSF release eluates, were 23.2, 23.7, and 21.3 ng/mL 

respectively. The IC50s of both PBS and SVF:SSF 1 h post-switch release eluates 

were not statistically different, demonstrating that GRFT maintains bioactivity 

regardless of incubation time. 
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Figure 3.8 HIV-1 inhibition assays were conducted to assess the antiviral activity 

of GRFT mPEG-PLGA:PBA-co-PAA (90:10) fiber release eluates against HIV-1 

infection. GRFT mPEG-PLGA:PBA-co-PAA fibers were incubated in SVF for 24, 

48, or 72 h. (A) After each time point, SVF was “switched” to PBS, and serial 

dilutions of fiber eluates were collected to assess antiviral efficacy after 1 h in PBS. 

(B) The percent of HIV-1 infected cells, relative to untreated cells, is shown as the 

mean ± SD of triplicate samples. (C and D) The study was repeated with fibers 

“switched” from SVF to SVF:SSF (1:3). The serial dilutions of GRFT release 

eluates were evaluated against HIV-1 and IC50 values were calculated. 
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In Vitro Safety 

To determine the biocompatibility of pH-sensitive GRFT EFs, vaginal epithelial cell 

lines: VK2, Ect1, and End1 E6/E7 were incubated with 1 and 10 mg/mL fibers in 

vitro. As shown in Figure 3.9, all cell lines demonstrated greater than 95% cell 

viability after 24, 48, and 72 h fiber administration, relative to untreated and DMSO-

treated cells. There were no statistically significant differences noted in cell 

viability, as a function of cell line or administration duration. 

 

 

 

 

 

 



    

160 
     

 

Figure 3.9 In vitro safety evaluation of mPEG-PLGA:PBA-co-PAA (90:10) fibers 

on cervicovaginal cell viability. (A) Ectocervical (Ect1/E6E7), (B) endocervical 

(End1/E6E7), (C) and vaginal (VK2/E6E7) epithelial cells were incubated with 

GRFT mPEG-PLGA:PBA-co-PAA fibers (1 and 10 mg/mL) for 24, 48, and 72 h and 

assessed for cytotoxicity using the MTT assay. All cells had greater than 90% 

viability, relative to untreated positive controls. Cell viability is expressed as the 

mean ± SD of triplicate samples. 
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Discussion  

While previous work has demonstrated the potential to provide pH-

responsive release of traditional antivirals, here we present a method to induce the 

pH-responsive release of the antiviral lectin, GRFT. Griffithsin is a promising new 

biologic for use against HIV-1, HSV-2, human papillomavirus, and a variety of other 

viruses, due to its potent binding and antiviral activity61,62,71,300,301. Additionally, 

GRFT has demonstrated stability and safety, prompting its development in clinical 

trials. As such, we hypothesized that the incorporation of GRFT within an 

electrospun fiber may provide an effective antiviral delivery vehicle to satisfy the 

on-demand needs of virus entry inhibition. In this work we demonstrate that these 

fibers provide pH-inducible release of GRFT while preserving GRFT activity and 

payload for up to 3 days, prior to exposure to PBS or SVF:SSF solutions. 

In our initial studies, fibers comprised of either PLGA or mPEG-PLGA 

polymers were fabricated to provide sustained-release of GRFT. Based on the 

biocompatibility of PLGA and its previous utilization in sustained-release 

applications78, it was reasoned that similar sustained-release of GRFT may be 

achieved. However, GRFT release from PLGA fibers was minimal, and 

substantially below prophylactic needs, beyond 6 h application. We hypothesized 

that the diminished release of GRFT from PLGA fibers may be attributed to the 

isoelectric point of GRFT (pI = 5.4), facilitating GRFT adhesion to, or hydrophobic 

interactions with, the negatively-charged PLGA polymer. In contrast, GRFT 

release increased from the slightly more hydrophilic mPEG-PLGA fibers. Despite 

slightly improved initial release, mPEG-PLGA fibers exhibited sub-optimal release 
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at later time points, highlighting the need for an improved formulation that retains 

GRFT under relevant intravaginal conditions, yet releases GRFT in response to 

coital cues. 

In combination with the challenges of obtaining sustained-release, one of 

the issues with any sustained-release system, is that cargo is released under 

temporal conditions that may not prophylactically (or therapeutically) necessitate 

release. For more expensive and labile biologics, conventional sustained-release 

platforms (not triggered by stimuli) may be inefficient to deliver active agent, 

particularly an entry inhibitor like GRFT that should be present in high 

concentration, to protect against virus entry and exposure. Moreover, from an 

economic perspective, the premature release of biological molecules that have 

shorter half-lives or are more expensive to produce may adversely impact overall 

cost and feasibility. Given these considerations, we sought to develop a vehicle 

that retains GRFT, and only releases GRFT upon exposure to the more neutral pH 

conditions of semen infiltration. We hypothesized that this would be a desirable 

option, given the role of GRFT as an entry inhibitor. 

To test the pH-responsive properties, 100:0, 90:10, 85:15, 80:20, and 72:25 

of PLGA:PBA-co-PAA GRFT fibers were evaluated. Increases in the length of 

hydrophobic alkyl groups on acrylic acid, often result in increases in pKa, affecting 

the pH of polymer switch302. In addition, pendant acidic groups are typically ionized 

at a pH dependent on pKa, in neutral and alkaline solutions, and their induced 

repulsion affects the physical properties of the polymer. Thus, the ionizable 

carboxylic acid groups in both PBA and PAA increase solubility at neutral/basic 
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pH288. In our studies, it was observed that increased ratios of PBA-co-PAA resulted 

in increased GRFT release after exposure to PBS and SVF:SSF solutions. We 

expect this trend is due in part to fiber swelling upon exposure to neutral PBS and 

SVF:SSF solutions. We additionally observed that even small increases in the ratio 

of PBA-co-PAA, relative to PLGA, resulted in increased release under both neutral 

and acidic conditions. In fact, increased GRFT release corresponded with 

increased ratio of PBA-co-PAA under acidic conditions, which was undesirable for 

a pH-responsive application. The pKa values of PBA (7.4) and PAA (4.28), indicate 

that the amount of PBA is driving this release, in both neutral (PBS, SVF:SSF) and 

acidic (SVF) conditions. Of these selected formulations, the 90:10 blend exhibited 

the most desirable pH-dependent release profile, and release in PBS and 

SVF:SSF was improved by utilizing the more hydrophilic mPEG-PLGA fibers. 

In addition to the pH-responsive properties imparted by PBA-co-PAA, PLGA 

provides a biocompatible polymer that lends mechanical stability for use in 

implants78. Moreover, it is well known that PLGA fibers specifically impart high 

mechanical strength for a variety of applications, such as scaffolds303. Given these 

favorable properties, blending with other polymers can add complementary 

attributes304, here pH-responsive behavior. The anionic polymers PBA and PAA 

have been applied to a variety of biomedical applications305-311. Together, it was 

anticipated that mPEG-PLGA and PBA-co-PAA may provide a stable mechanical 

scaffold for administration and longevity in the FRT, while imparting properties that 

enable prompt dissolution when needed. While not addressed in this immediate 

work, we seek to assess the mechanical properties in addition to the 
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mucoadhesivity often provided by blending with PBA or PAA312. For long-term 

applications, these features would be useful to provide immediate protection with 

retention and subsequent release of GRFT. 

In this work we show that pH-responsive fibers retain GRFT for up to 72 h 

in SVF, suggesting that this platform may provide greater active agent stability and 

tailored release for less frequent administration. In addition, we evaluated GRFT 

release from fibers exposed to both PBS and SVF:SSF after initial incubation in 

SVF. Fibers switched to PBS exhibited complete release of GRFT within the first 

24 h (Figure 3.6), whereas fibers incubated in SVF:SSF exhibited a more gradual 

release, for up to 72 h after SVF:SSF exposure. This difference in release may be 

attributed to the increased viscosity and osmolality of simulated seminal fluid 

relative to PBS296,313. The daily release of GRFT from fibers switched to SVF:SSF 

was enough to provide protection throughout the 72 h post-switch incubation 

period, indicating that these fibers may provide activity for up to 6 days 

administration in the female reproductive environment. Moreover, previous studies 

have shown that human semen may be present within the FRT for up to 72 h post-

coitus, during which time multiple exposures to HIV-1 may occur. A platform that 

provides pH-dependent release coupled with sustained short-term release post-

switch may address the administration challenges of short- versus long-term (or 

unknown) exposure. This platform demonstrates the ability to rapidly release 

GRFT under pH conditions of semen exposure, while also preserving GRFT after 

3 days in SVF, demonstrating exciting utility relative to traditional delivery 

platforms. 
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In addition to conserving GRFT payload and providing inducible release, 

mPEG:PBA-co-PAA (90:10) EFs provided corresponding immediate and complete 

protection against HIV-1 in vitro. Fiber eluates maintained antiviral activity against 

HIV-1 after different incubation durations, demonstrating their potential utility for 

administration every few days. Building upon this work, we expect to conduct more 

prolonged release and efficacy studies in the future. Furthermore, the in vitro 

release profiles indicate that the fibers retain GRFT for short duration, unlike 

traditional sustained-release delivery platforms, which often exhibit an initial burst 

release whether or not it is needed. This design feature may provide enhanced 

protection relative to the administration of free GRFT alone or other traditional 

delivery platforms, in which prematurely released GRFT may be shed with mucus, 

or may be locally diluted when needed. Considering that GRFT acts as an entry 

inhibitor by interacting with viral envelope proteins, the ability of this pH-responsive 

platform to provide GRFT release immediately after exposure to SSF, may 

increase the success rate of viral inhibition by releasing a timely localized 

concentration of GRFT to inactivate virus. 

In addition to relevant release times and efficacy, the design of intravaginal 

delivery vehicles requires that safety and biocompatibility are considered early in 

the development process. Particularly for GRFT, which has demonstrated 

outstanding safety68,69, similar safety must be assessed with its integration in new 

delivery vehicles. In our studies with vaginal epithelial cells, incubation with fiber 

eluates resulted in greater than ∼95% cell viability after 1, 2, and 3 day exposure, 

indicating the preliminary safety of these pH-responsive fibers. Future work will 



    

166 
     

assess if these fibers induce inflammation or enhance cytokine production in in 

vivo experiments. 

Conclusions 

Drug delivery systems in which active agent release can be tailored to 

release in response to incoming stimuli are particularly promising for biologics that 

may lose activity quickly and be expensive to produce. In this study, pH-responsive 

fibers comprised of PLGA, mPEG-PLGA, and PBA-co-PAA polymer blends were 

fabricated to provide pH-responsive release of GRFT. Of the formulations tested, 

the mPEG-PLGA:PBA-co-PAA (90:10) blend provided the optimal release of 

GRFT, exhibiting increased release under more neutral conditions while 

maintaining minimal release in acidic SVF. In addition, fiber release eluates 

provided immediate activity against HIV-1 infection while simultaneously retaining 

GRFT activity. Furthermore, the release profiles demonstrated that fibers provided 

pH-induced release for at least 72 h, further indicating the utility of this delivery 

platform to preserve active agent for a minimum of 3–6 days post-administration.
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CHAPTER 4 

RAPID RELEASE GRIFFITHSIN ELECTROSPUN FIBERS FOR USE AGAINST 

SEXUALLY TRANSMITTED INFECTIONS  

Introduction 

In this study, our goal was to develop rapid-release electrospun fibers that 

incorporate the biologic GRFT to provide on-demand dual-purpose protection 

against HIV-1 and HSV-2 infections in vitro, and to demonstrate initial safety and 

efficacy against HSV-2 infection in vivo. Rapid-release fibers, composed of 

polyethylene oxide (PEO), polyvinyl alcohol (PVA), and polyvinylpyrrolidone (PVP) 

were selected due to their established biocompatibility, mucoadhesivity, and rapid 

dissolution in aqueous environments314-317. The ability of GRFT fibers to provide 

complete protection against both HIV-1 and HSV-2 infections was demonstrated 

in vitro. Furthermore, the efficacy of GRFT fibers was assessed in a murine model 

of lethal HSV-2 infection, demonstrating that a single application of PEO, PVA, or 

PVP GRFT fibers provided potent protection when administered 4 hr prior to 

infection. In addition, histology and cytokine expression data, assessed from 

murine reproductive tissues and vaginal lavages, demonstrated the preliminary 

safety of rapid-release GRFT fibers in vaginal tissue.  

Materials and Methods
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Materials.  

PEO (600,000 MW), PVA (87-90% hydrolyzed, 30,000-70,000 MW), and 

PVP (1,400,000 MW) were purchased from Sigma Aldrich (St Louis, MO). Organic 

solvents including dimethyl sulfoxide (DMSO) were also purchased from Sigma 

Aldrich. Cell culture media and reagents including Dulbecco's modified Eagle 

medium (DMEM), minimum essential media (MEM), fetal bovine serum (FBS), 

penicillin, streptomycin, and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) were purchased from VWR (Radnor, PA). Keratinocyte Serum Free 

Media (KSFM) and gentamicin were purchased from Thermo Fisher (Hampton, 

NH).  

Cell Lines and Virus.  

TZM-bl cells, obtained from the National Institutes of Health (NIH) AIDS 

Research and Reference Reagent Program (ARRRP), were used to assess in vitro 

HIV-1 infectivity. TZM-bl cells are engineered HeLa cells that express CD4, CCR5 

and CXCR4 receptors and contain a Tat-driven luciferase gene, which is activated 

by HIV-1 infection and permits sensitive and accurate measurements of infection. 

TZM-bl cells are highly permissive to infection by most strains of HIV-1 and 

molecularly cloned Env-pseudotyped viruses. TZM-bl cells were cultured in DMEM 

containing 10% FBS, 25 mM HEPES, and 50 μg/mL gentamicin.  

The Env-pseudotype HIV-1 was produced in house by transducing HEK-

293T/17 cells with both an envelope (env)-expressing plasmid (CCR5-tropic clade 

A strain, Q769.h5) and an env-deficient HIV-1 backbone vector (pNL4.3ΔEnv-
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Luc). Both plasmids were obtained from the NIH AIDS Reagent Program (Cat# 

11884 and 3418). HEK-293T (human embryonic kidney) cells were purchased 

from ATCC. Cells were maintained in minimum essential medium (MEM) 

supplemented with 10% FBS, penicillin (100 µg/mL), and streptomycin (100 

µg/mL). 

To conduct HSV-2 plaque assays, Vero E6 cells and HSV-2 (4674) were 

kindly provided by Dr. Kenneth Palmer from the University of Louisville. Cells were 

maintained in MEM supplemented with 10% FBS, penicillin (100 µg/mL), and 

streptomycin (100 µg/mL). 

Finally, vaginal keratinocyte (VK2/E6E7), ectocervical (Ect1/E6E7), and 

endocervical (End1/E6E7) cell lines were used to assess fiber cytotoxicity (all cells 

courtesy of Dr. Kenneth Palmer, originally from ATCC, Rockville MD). VK2/E6E7 

(VK2), Ect1/E6E7 (Ect1), and End1/E6E7 (End1) are well-characterized 

immortalized cell lines derived from normal human vaginal, ectocervical, and 

endocervical epithelia, respectively, which are representative of the cell types 

found within the FRT. Cells were maintained in KSFM supplemented with 

recombinant human epidermal growth factor (0.1 ng/mL), bovine pituitary extract 

(50 μg/mL), calcium chloride (0.4 mM), and 1% penicillin and streptomycin (100 

μg/mL each). During cell trypsinization, plating, and counting, cells were 

neutralized with 1:1 DMEM:KSFM (with 10% FBS, and 1% penicillin/streptomycin 

(100 μg/mL each)). 

Rapid-Release Fiber Fabrication.  
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Hydrophilic polymer solutions were fabricated by first weighing polymer into 

a glass scintillation vial and incubating overnight in 1 mL of Milli-Q water. To create 

PVA and PVP fibers with well-defined morphologies, 200 mg of either PVA or PVP 

were added to 1 mL Milli-Q water (20% w/v solution), while PEO fibers were 

fabricated by adding 50 mg of polymer to 1 mL Milli-Q water (5% w/v). Blank fibers 

were electrospun with a mandrel-to-syringe distance of 20 cm, flow rate of 0.2 to 

0.3 mL, and a voltage of 15 kV. The flow rate and voltage were changed to 0.2 

mL/hr and 25 kV for 1 and 10% w/w (GRFT to polymer weight ratio) GRFT fibers.  

Fiber Morphology.  

The morphology of blank PEO, PVA, and PVP fibers, as well as 1% and 

10% GRFT w/w PEO, PVA, and PVP fibers was assessed using scanning electron 

microscopy (SEM). After electrospinning, fibers were dried for 24 hr in a desiccator, 

cut into 5 mm pieces and placed on double-sided adhesive carbon tabs (Ted Pella 

Inc., Redding, CA), which were adhered to aluminum stubs. The adhered fiber 

pieces were sputter coated with a thin gold alloy film using a Bio-Rad E5100 sputter 

coat system (Hercules, CA). The coating process was operated for 90 s at 20 mA. 

Multiple SEM images were acquired using a Supra 35 SEM (Zeiss, Oberkochen, 

Germany), with images captured under an accelerating voltage of 8 kV and using 

an average magnification of 1,000 to 5,000x. The average fiber diameter was 

determined with ImageJ software (NIH, Bethesda, MD), and a minimum of 50 

fibers were assessed per image.  

Fiber Characterization.  
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To assess GRFT loading, PEO, PVA, and PVP fibers were weighed (3 to 5 

mg) into separate 1.5 mL Eppendorf tubes, followed by the addition of 1 mL PBS. 

After 1 to 2 min, the dissolved fiber solutions were vortexed and analyzed using 

ELISA to quantify GRFT loading and encapsulation efficiency (defined as: [actual 

loading ÷ theoretical loading] × 100).  

The ELISA was conducted using 96-well Nunc Maxisorp plates as 

previously described162. Briefly, plates were first prepared by coating wells with 

100 µL of gp120 (250 ng/mL) in PBS, and incubating overnight at 4°C. Afterward, 

the coating buffer was removed and 300 µL of blocking buffer, consisting of PBS 

with 0.05% (v/v) Tween-20 (PBST) and 3% (w/v) bovine serum albumin, was 

added to each well. Plates were incubated at room temperature for 2 hr and then 

washed three times with PBST using a Multiwash III plate washer (Gardner 

Denver, Milwaukee, WI). One hundred microliters of GRFT standards (ranging 

from 0.2 to 120 ng/mL) and loading extracts were added to each well and incubated 

for 1 hr at 37ºC. Dilutions of goat anti-GRFT primary antibody (1:10,000, provided 

by Dr. Kenneth Palmer, University of Louisville) and rabbit anti-goat IgG-HRP 

secondary antibody (1:20,000, Sigma-Aldrich) were added in volumes of 100 µL 

and each incubated for 1 hr at 37ºC to detect bound GRFT. Finally, 100 µL of KPL 

SureBlue TMB microwell peroxidase substrate (Sera Care, Milford, MA, USA) was 

added to each well for 90 s, and the reaction was quenched with the addition of 

100 µL of 1 N H2SO4 (Thermo Fisher, Waltham, MA). Plate absorbance was 

measured at 450 nm on a Synergy HT reader (BioTek, Winooski, VT, USA). Data 

were analyzed using Prism (GraphPad Software Version 6.0, La Jolla, CA). 
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In Vitro HIV-1 Pseudovirus Inhibition Assay.  

The antiviral activity of GRFT fibers against HIV-1 was measured using an 

in vitro HIV-1 pseudovirus inhibition assay. As previously described75,161,162, HIV-1 

inhibition was determined as a function of reduction in luciferase reporter gene 

expression after a single round of infection in TZM-bl cells. The optimal virus 

dilution was established prior to the experiments to yield ~100,000 relative 

luminescence units (RLUs).  

Briefly, 1% GRFT fibers (~3 to 5 mg) were first dissolved in sterile PBS, 

followed by serial dilutions (1:2) with DMEM to a final volume of 50 μL within a 96-

well plate. TZM-bl cells (10,000 cells in 100 µL DMEM medium with 10 μg/mL 

DEAE-dextran) were subsequently added to each well, followed by the addition of 

50 μL of diluted HIV-1 pseudovirus. Cells were then incubated at 37°C for 48 hr. 

Dilutions of free GRFT (stock concentration 50 µg/mL) ranging from 15 pg/mL to 

120 ng/mL were similarly prepared for comparison. 

After 48 hr, 100 µL culture medium was carefully removed from each well. 

Luminescence was measured using the Bright-Glo luciferase assay system 

(Promega Corporation, Madison, WI) by adding 100 µL Bright-Glo reagent solution 

to each well for 5 min. Plates were read via luminescence by the Synergy HT 

reader (BioTek). All RLU values were corrected by subtracting the RLU of 

untreated/uninfected cells from the sample RLUs (treated/infected cells). The 

percent virus inhibition was determined by normalizing the corrected RLUs of 

treated/infected cells to corrected untreated/infected cells: % Infection = [(sample 
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RLU – untreated/uninfected cells) ÷ (untreated/infected cells – 

untreated/uninfected cells)] × 100. The antiviral activity of GRFT fibers is reported 

as the half maximal inhibitory concentration (IC50), which was calculated by 

comparing the untreated/infected corrected control RLUs to the corrected RLU 

values of sample dilutions.  

In Vitro HSV-2 Plaque Assay. 

 HSV-2 plaque assays were conducted to evaluate the in vitro efficacy of 

10% w/w GRFT fibers against HSV-2 infection as previously described161. Briefly, 

Vero E6 cells were seeded at 600,000 cells/well in a 6-well flat bottom plate (50% 

confluence) and grown for 24 hr to confluence. Prior to cell infection, 10% w/w 

GRFT fibers (30 mg) were dissolved in 20 mL complete plating media (1% FBS 

MEM). Once the cells were fully confluent, the growth media was removed and 

replaced with 2 mL of GRFT fiber eluate dilutions, followed by HSV-2 infection 

(3,000 PFU per well) 1 hr later. Free GRFT (2,000 µg/mL), corresponding to the 

concentration necessary to provide complete HSV-2 inhibition, was used as a 

positive control for inhibition, in addition to untreated/uninfected cells. 

Untreated/infected cells, were used as a negative control of inhibition.  

Subsequent to HSV-2 infection, plates were incubated for 48 hr at 37°C, all 

media was removed, and cells were fixed with 1.5 mL methanol for 10 min. 

Afterward, 0.1% crystal violet was applied for 30 min to stain the plaques. Finally, 

plates were washed with Milli-Q water, and plaques were counted after drying. 

Plaque numbers from experimental groups were normalized relative to the number 
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of plaques in untreated/infected cells (~280-300 plaques per well). Samples were 

analyzed in triplicate, and GraphPad Prism software was used to determine and 

compare the IC50 values of GRFT fibers to free GRFT.  

In Vitro Cytotoxicity.  

Vaginal epithelial (VK2/E6E7), ectocervical (Ect1/E6E7), and endocervical 

(End1/E6E7) cells were administered either blank or GRFT fibers to assess in vitro 

safety. Cells were plated at a density of 50,000 cells/well in 96-well plates and 

incubated in triplicate with 0.5 mg fiber pieces placed in the solution (2.5 mg/mL 

final concentration). No treatment (media alone) and 10% DMSO were used as 

positive and negative controls of cell viability, respectively. After 24, 48, and 72 hr, 

20 µL of MTT reagent was added to the cells and incubated for an additional 4 hr, 

followed by overnight lysis with the addition of 100 µL lysis buffer (10% sodium 

dodecyl sulfate in 0.01 M hydrochloric acid). Absorbance measurements (570 nm) 

were taken the following day. All sample absorbance values were normalized to 

untreated cell absorbance to obtain percent viability. 

In Vivo Efficacy against a Lethal Dose of HSV-2 Infection.  

All in vivo experimental procedures were approved by the University of 

Louisville’s Institutional Animal Care and Use Committee (IACUC 17135) prior to 

testing. All animal studies were conducted using 5-week-old female BALB/c mice 

(Jackson Laboratory, Bar Harbor, ME) to evaluate the efficacy and safety of GRFT 

fibers. For efficacy studies, mice were administered either blank or GRFT fibers (5 

mg) that were UV-sterilized for 15 s. Mice were subcutaneously injected with 3 mg 
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Depo-Provera (Revive, Madison, NJ) to induce the diestrous stage of their cycle, 

5 days prior to fiber administration. 

To determine the efficacy of GRFT fibers against HSV-2 infection, mice 

were administered a single dose of either GRFT PEO, PVA, or PVP fibers, or 

control groups (n=20). Twenty-four hours after fiber administration, mice were 

challenged with HSV-2 (20 µL, LD90 5,000 PFU). Untreated/infected mice were 

used as positive controls for infection, while untreated/uninfected mice and 

infected mice treated with free GRFT (20 µL of 1,000 µg/mL, 20 µg GRFT) served 

as negative controls. Free GRFT doses were based on previous studies with 

GRFT gels that were shown to provide in vivo protection against HSV-2 infection65. 

Blank PEO fibers were administered as an additional control group in efficacy 

studies. Mice were monitored daily for 14 days after HSV-2 challenge using an 

established 4-point scale to monitor the progression of viral infection69,318. Each 

day, mice were weighed and examined for signs of neurological and epithelial 

damage. After the two-week period following HSV-2 challenge, mice were 

euthanized and Kaplan-Meier survival curves were generated. Log-ranked post 

hoc tests were conducted to assess the statistical significance between groups. 

In Vivo Safety.  

To assess the safety of fiber administration, mice were similarly 

subcutaneously injected with 3 mg of Depo-Provera, 5 days prior to fiber 

administration. Afterward, UV-sterilized blank fibers (5 mg) were intravaginally 

administered to mice under isoflurane anesthesia using sterile tweezers. 



    

176 
     

Treatment groups included mice administered blank PEO, PVA, or PVP fibers, 

while control groups included untreated mice, or mice treated with 20 µL free GRFT 

in PBS (1,000 µg/mL) or 40 μL of Conceptrol gel. An additional sham control was 

used to mimic fiber administration using tweezers alone. Mice were euthanized 24 

or 72 hr after fiber administration and mouse reproductive tracts and vaginal 

lavages were collected and stored at -80°C following euthanasia (n=3). 

The structural integrity of collected reproductive tracts was evaluated using 

histological analysis. First, tissue samples were washed with PBS, followed by 

fixation with 4% paraformaldehyde. Samples were then embedded in a paraffin 

block, and stained with hematoxylin and eosin (H&E). Sample cross-sections were 

analyzed by a pathologist blinded to the treatment groups. 

To determine cytokine levels after blank fiber administration, murine 

reproductive tracts and vaginal lavages were assessed using a Luminex assay. 

First, 20 µL of T-Per solution (Thermo Fisher) containing 1% Halt Protease Inhibitor 

Cocktail (Thermo Fisher) was added per milligram of reproductive tissue. 

Approximately 20 zirconia/silica beads (BioSpec Productions) were added to each 

sample, followed by homogenization at 4,500x for 180 s using Precellys 24 

homogenizer instrument (Bertin, France). Homogenized samples were cooled on 

ice for 5 min, and centrifuged at 10,000 x g at 4°C for 5 min. Afterward, sample 

supernatants were collected, aliquoted, and stored at -80°C for further study. Prior 

to conducting the Luminex assay, interleukin-1 beta (IL-1β) levels were tested in 

reproductive tissue samples using specific ELISA Ready-SET-Go! kits (Thermo 

Fisher). Finally, Luminex assays were used to quantify the cytokine levels in 
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collected mouse tissue and lavages. Cytokines including G-CSF, IFN-γ, IL-1α, IL-

1β, IL-2, IL-6, IP-10, MCP-1, MIP-1α, MIP1-β, MIP-2, and TNF-α were selected 

based on previous studies that examined these markers for intravaginal 

inflammation and damage65,69. 

Statistical Analysis.  

Unless otherwise noted, all in vitro experiments were conducted in triplicate, 

with a minimum of 3 replicates per sample. Statistical analysis of samples 

assessing fiber morphology, fiber characterization, in vitro assays, and in vivo 

safety studies was performed by using one-way ANOVA with the Bonferroni post 

hoc test (p < 0.05). For murine studies assessing viral efficacy, log-ranked post 

hoc tests were conducted to assess statistical significance as a function of 

treatment group and survival outcome. 

Results 

Fiber Size and Morphology.  

The morphology of blank and GRFT PEO, PVA, and PVP fibers is shown in 

Figure 4.1. All fibers demonstrated well-rounded fiber morphology with average 

diameters ranging from 220 to 507 nm (Supplemental Table 4.1). The addition of 

1% GRFT w/w to PEO and PVP fibers resulted in significantly decreased 

diameters of 239 and 242 nm, while no statistical significance was observed 

between blank PVA and 1% GRFT PVA fibers that shared similar diameters 

regardless of GRFT incorporation. The addition of 10% w/w GRFT produced fibers 

with diameters spanning 243 to 339 nm, demonstrating a statistically significant 
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increase in fiber diameter for 10% w/w GRFT PVA and PVP fibers relative to 1% 

w/w GRFT PVA and PVP fibers. However, PEO fiber diameters remained 

unchanged with additional GRFT incorporation. Within similarly loaded GRFT 

fibers, statistical significance in fiber diameter was observed between the 10% 

GRFT PEO and PVA fibers, while no statistical significance was observed across 

the 1% w/w GRFT formulations.  

 

 

 

 

 

 

 

 

 



    

179 
     

 

Figure 4.1. Scanning electron microscopy (SEM) images of (A-C) blank, (D-F) 1% 

w/w GRFT, and (G-I) 10% w/w GRFT fibers. (A) 5% PEO, (B) 20% PVA, (C) 20% 

PVP blank fibers; (D) 5% PEO, (E) 20% PVA, (F) 20% PVP fibers incorporating 

1% w/w GRFT; and (G) 5% PEO, (H) 20% PVA, (I) 20% PVP fibers incorporating 

10% w/w GRFT. Scale bars represent 2 μm.  
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Supplemental Table 4.1. Fiber diameters as a function of polymer formulation and 

GRFT content. Statistical significance between different polymers with the same 

GRFT loading is shown as *, while statistical significance between the same 

polymer type with different GRFT loading is shown as # (p < 0.05). Statistical 

significance was assessed using one-way ANOVA with the Bonferroni post hoc 

test. 

 

 

 

 

 

 

Fiber Formulation Diameter (nm)

Blank PEO 507 ± 147

Blank PVA 249 ± 84*

Blank PVP 418 ± 137
#

PEO 1% GRFT 239 ± 53
#

PVA 1% GRFT 220 ± 59

PVP 1% GRFT 242 ± 57

PEO 10% GRFT 243 ± 95*

PVA 10% GRFT 339 ± 99
#

PVP 10% GRFT 324 ± 79
#
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Fiber Characterization.  

GRFT loading was assessed using an ELISA (Figure 4.2). For 1% w/w 

GRFT PEO, PVA, and PVP fibers, GRFT loading ranged from 7.4 to 9.7 µg 

GRFT/mg fiber, exhibiting no statistical significance between formulations. For 

10% w/w GRFT PEO, PVA, and PVP fibers, GRFT loading was 84.8, 69.6, and 

62.4 µg GRFT/mg fiber, respectively, with PEO fibers demonstrating statistically 

higher loading than PVP fibers. Correspondingly, the encapsulation efficiencies for 

each fiber formulation ranged from 74.0 to 97.2%, and 62.4 to 84.2% for 1 and 

10% GRFT fibers, respectively, demonstrating consistently high GRFT loading and 

suggesting electrospinning compatibility between the polymer and lectin. There 

were no observable trends between GRFT encapsulation efficiency and fiber 

diameters. 
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Figure 4.2. GRFT loading in different hydrophilic fiber formulations. Eluates from 

GRFT fibers dissolved in PBS were used to determine GRFT loading via ELISA. 

GRFT loading is expressed as the mean ± standard deviation of triplicate readings 

of three independent fiber batches. Statistical significance between fiber 

formulations with the same loading are shown (*p < 0.05). 
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In Vitro HIV-1 and HSV-2 Inhibition from GRFT Fibers.  

The dual-purpose antiviral activity of GRFT fibers was determined using 

HIV-1 pseudovirus and HSV-2 plaque inhibition assays. For HIV-1 inhibition 

studies, all fibers demonstrated complete and dose-dependent HIV-1 inhibition 

(Figure 4.3A, B). The IC50 values for PEO, PVA, and PVP fibers administered 1 

and 24 hr prior to infection ranged from 17.3 ± 7.2 to 26.7 ± 7.7 ng/mL, relative to 

24.1 ±15.6 and 22.8 ± 12.2 ng/mL for free GRFT at 1 and 24 hr respectively (Table 

4.1). No statistical significance was observed between the IC50 values of GRFT 

PEO, PVA, and PVP fibers, suggesting no differences in efficacy based on polymer 

type or as a function of administration time with respect to cell infection. Moreover, 

similar inhibition values relative to free GRFT indicate that the electrospinning 

process maintains the functional activity of GRFT.   
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Figure 4.3. GRFT fibers demonstrate complete protection against in vitro HIV-1 

and HSV-2 infections. Three independent batches of 1% w/w GRFT fibers were 

assessed for their ability to inhibit HIV-1 infection. Fiber eluates were incubated 

with cells (A) 1 hr and (B) 24 hr prior to HIV-1 infection. GRFT released from all 

three fiber formulations achieved complete efficacy against HIV-1 infection, similar 

to free GRFT. (C) In vitro HSV-2 plaque assays were performed using 10% w/w 

GRFT fibers, which similarly achieved complete efficacy against HSV-2 infection 

in vitro, similar to free GRFT. (D) Wells treated with GRFT fibers showed 

decreased plaque sizes and numbers relative to (E) untreated (or blank fiber-

treated, data not shown) cells infected with HSV-2. The percent infection relative 

to untreated/infected control groups for both HIV-1 and HSV-2 assays is shown as 

the mean ± standard deviation of triplicate readings. 
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Table 4.1. IC50 values from in vitro HIV-1 and HSV-2 infectivity assays. GRFT 

eluates from rapid-release fibers were assessed against HIV-1 and HSV-2 

infections, and compared to free GRFT using one-way ANOVA with the Bonferroni 

post hoc test. Fibers demonstrated comparable activity relative to free GRFT. No 

statistical significance between groups was observed in HIV-1 inhibition studies as 

a function of fiber formulation or with respect to administration time. In HSV-2 

plaque inhibition assays, GRFT PVA fibers demonstrated lower IC50 values relative 

to other formulations and free GRFT-treated controls (p < 0.05). The average IC50 

values are expressed as the mean ± standard deviation. Statistical significance 

between GRFT PVA fibers and free GRFT is shown as (*p < 0.05). 

 

 

 

 

 

 

 

Fiber Formulation 1 Hr HIV-1 IC50 (ng/mL) 24 Hr HIV-1 IC50 (ng/mL) 1 Hr HSV-2 IC50 (µg/mL)

PEO 17.9 ± 5.4 17.3 ± 7.2 22.0 ± 2.1

PVA 26.7 ± 7.7 21.7 ± 14.8 16.6 ± 0.9
*

PVP 26.6 ± 2.7 23.5 ± 14.1 21.0 ± 2.4

Free GRFT 24.1 ± 15.6 22.8 ± 12.2 25.5 ± 0.5
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Plaque assays were used to assess the ability of GRFT fibers to inhibit 

HSV-2 infection. Fibers containing a higher concentration of GRFT (10% w/w) 

were evaluated, due to the increased concentration of GRFT needed to inhibit 

HSV-2, relative to HIV-1 infection. GRFT PEO, PVA and PVP fibers demonstrated 

equivalent protection against HSV-2 infection, relative to free GRFT (IC50 25.5 ± 

0.5 µg/mL), with IC50s of 22.0 ± 2.14, 16.6, ± 0.92 and 21.0 ± 2.4 µg/mL (Figure 

4.3C). No statistical significance in efficacy was observed between GRFT fibers 

and free GRFT, except for PVA fibers, which showed a lower IC50 value relative to 

free GRFT (p < 0.05, Table 4.1). Moreover, administration of all GRFT fiber 

formulations resulted in decreases in both plaque number and size, relative to 

untreated/infected controls (Figure 4.3D, E).  

In Vitro Cytotoxicity.  

To assess the cytotoxicity of rapid-release fibers, MTT assays were 

conducted using VK2/, Ect1/, and End1/E6E7 cell lines. All cell lines, incubated 

with 1 and 10% w/w GRFT fibers, demonstrated greater than 93% viability after 

24, 48, and 72 hr fiber administration, relative to untreated cells (Figure 4.4). No 

statistical significance in cell viability was observed as a function of polymer type 

or GRFT loading. 
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Figure 4.4 The cytotoxicity of PEO, PVA, and PVP fibers administered to vaginal 

VK2/E6E7, Ect1/E6E7, and End1/E6E7 cells for (A) 24, (B) 48, and (C) 72 hr was 

assessed using the MTT assay. Greater than 93% viability was observed across 

all cell lines for all fiber formulations. 
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In Vivo Efficacy against HSV-2 Infection.  

The antiviral efficacy of rapid-release GRFT fibers was assessed in a 

murine model of lethal HSV-2 infection (Table 4.2). A single dose of 10% w/w 

GRFT fibers was intravaginally administered to female BALB/c mice, followed by 

a single HSV-2 challenge with 5,000 PFU (LD90), 4 hr after fiber insertion (Figure 

4.5A, B). Mice were evaluated daily for progression of HSV-2 infection for 14 d 

post-infection (Figure 4.5C). Mice that were administered GRFT fibers (PEO, PVA, 

or PVP) exhibited statistically significant decreases in HSV-2 infectivity, with 85, 

95, and 100% survivability respectively, relative to untreated/infected controls (5% 

survivability, p < 0.05). In addition, mice administered GRFT PEO, PVA, or PVP 

fibers exhibited comparable protection against HSV-2 relative to free GRFT (p > 

0.05), while blank PEO fibers imparted protection to 50% of the animals (p < 0.05).  

 

 

 

 

 

 

 

 

 

 

 

 



    

189 
     

Table 4.2. GRFT doses administered in fibers or gel during in vivo HSV-2 infectivity 
studies.  
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Figure 4.5. Schematic timetable and Kaplan-Meier survival curves of in vivo HSV-

2 efficacy study. (A) Sequence of murine treatments during the course of the 

efficacy study and (B) timeline of HSV-2 efficacy study. (C) GRFT fibers (10% w/w) 

were assessed for their ability to protect mice against a lethal challenge (LD90) of 

HSV-2 infection (n=20). All GRFT fiber formulations demonstrated strong 

protection against HSV-2 infection, resulting in 85 to 100% murine survivability. 

Blank fibers also demonstrated partial protection and showed significant 

survivability (50%), relative to the untreated/infected control group. In contrast, 
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untreated/infected mice demonstrated only 5% survivability. Statistical significance 

between experimental groups is shown as (*p < 0.05).   
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Another important finding from this study was the difference in infection 

progression between untreated/infected mice and mice treated with GRFT fibers 

(Figure 4.6). The first symptoms of HSV-2 infection in mice typically manifest 4 to 

5 days post-infection, during which time mice exhibit symptoms of localized 

swelling in the vaginal area and decreased hind leg mobility. After 5 to 8 days, 

~75% of mice from the untreated/infected control group required euthanasia due 

to the rapid progression and severity of infection. In contrast, all mice administered 

GRFT fibers (PEO, PVA, or PVP) or free GRFT that exhibited symptoms, showed 

decreased progression of infection relative to untreated/infected mice over the 

same duration. The mice that did not survive infection despite pre-treatment with 

GRFT fibers or free GRFT (representing up to 15% total mice, respectively) 

exhibited a more gradual progression of infection, requiring euthanasia 7 to 10 d, 

instead of 5 to 8 d post-infection. The prolonged duration of viral quiescence 

suggests that GRFT may provide partial protection against infection for the few 

mice that exhibited overt signs of infection. In comparison, the administration of 

blank fibers showed no change in progression of HSV-2 infection in mice, relative 

to untreated/infected controls. Finally, for the few infected mice treated with free 

GRFT (1 of 20) or GRFT PVA fibers (2 of 20), initial symptoms disappeared near 

of the end of the study. The decreased levels of infection in combination with the 

more gradual progression demonstrate the ability of GRFT fibers to protect against 

a lethal dose of HSV-2 after a single application.  
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Figure 4.6 Griffithsin fibers protect mice against HSV-2 infection. Mice were 

administered 10% w/w GRFT fibers 4 hr prior to HSV-2 infection (LD90). Mice were 

evaluated and scored for progression of infection once daily for 14 d post-infection. 

Infected mice were administered (A) PEO, (B) PVA, (C) PVP GRFT fibers, as well 

as (D) free GRFT, or (E) no treatment. Mice administered GRFT fibers and free 

GRFT exhibited decreased severity of infection, as well as more gradual 

progression of infection, relative to untreated/infected animals.  
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In Vivo Safety.  

To assess the in vivo safety of rapid-release platforms, fibers were 

intravaginally administered to mice, and reproductive tissue and vaginal lavages 

were collected and analyzed 24 and 72 hr following administration.  

Tissue samples were evaluated for possible edema of muscle, interstitial, 

and epithelial tissue. In addition, untreated and blank fiber-treated cervical and 

vaginal epithelia morphologies were compared, and assessed for possible 

keratinization and goblet cell presence. A score ranging from 1 to 4 was used to 

determine the severity of epithelial changes. Figure 4.7 shows images of tissues 

collected 24 hr after fiber administration. Extracted tissues from untreated controls 

demonstrated compact squamous and cervical epithelial tissue, with no evidence 

of edema nor inflammation. Samples from tissues treated with blank PEO, PVA, 

and PVP fibers showed similar morphology and normality, relative to untreated 

controls (scores of 1 to 2). Furthermore, there was no increase in lymphocyte 

accumulation in fiber-treated groups. Overall the tissues from blank fiber-treated 

mice were comparable to tissues from untreated mice; however, one PVA-treated 

sample exhibited increased levels of mucin secretion and neutrophil presence 

(score 3), yet the vaginal and cervical epithelia were intact (Supplemental Figure 

4.1A). Results from tissues collected after 72 hr administration were similar to 24 

hr samples (images not shown). 
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Figure 4.7. The in vivo safety of rapid-release fibers was assessed by 

intravaginally administering fibers for 24 and 72 hr. Images depict H&E stained 

tissues of murine reproductive tracts exposed (A) no treatment, (B) N-9 gel, (C) 

and sham-treatment, as well as blank (D) PEO, (E) PVA, and (F) PVP fibers for 24 

hr. There was no indication of tissue inflammation or epithelial disruption from fiber 

administration, relative to untreated controls. Similar trends were observed for 

tissue specimens assessed 72 hr post-administration (data not shown). 
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Supplemental Figure 4.1. Images of H&E stained tissue outliers. (A) A blank PVA 

fiber-treated tissue sample replicate demonstrated increased levels of mucin 

secretion and neutrophil presence; however, no disruption of the vaginal or cervical 

epithelium was observed. (B) In contrast, a replicate of N-9 treated tissue exhibited 

inflammatory markers indicated by the presence of peripheral blood mononuclear 

cells, goblet cell fusions, and epithelial disruption. 
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For N-9 treated mice, a slight increase in neutrophil accumulation was 

observed on the surface of the cervical squamous epithelium, relative to untreated 

controls, indicating minor topical damage (score range 1 to 2). Murine tissue from 

one N-9 treated mouse exhibited increased inflammation, due to the presence of 

peripheral blood mononuclear cells, goblet cell fusions, and epithelial disruption, 

resulting in a score of 3 (Supplemental Figure 4.1B). As for sham-treated mice, 

there was a slight increase in neutrophil accumulation after 24 hr in most samples, 

relative to untreated controls (score range 1 to 2), and one sham-treated replicate 

was noted for widespread neutrophil accumulation, indicating tissue repair (score 

3). These alterations present in both N-9 and sham-treated controls were not 

observed in 72 hr tissue samples, perhaps indicating transitory damage.   

Cytokine expression was assessed from murine FRTs and vaginal lavages 

24 and 72 hr after blank fiber administration. Cytokine expression was compared 

to untreated, N-9 treated, and sham-treated mice based on previously published 

guidelines, in which a significant level of intravaginal inflammation results in a 2 to 

5-fold increase in cytokine expression, relative to untreated controls69. Figure 4.8 

summarizes the results from the cytokine analysis, indicating that blank fibers do 

not induce pro-inflammatory or immune-regulatory cytokine expression. In fiber-

treated tissue and vaginal lavage samples, cytokine levels were found to be 

comparable to tissue and washes collected from untreated control groups. 

Cytokine expression was similar in both 24 and 72 hr samples, with 11 of 13 

cytokines within a range of 2 to 5-fold expression of untreated controls. A few 

exceptions were observed using the above criteria: vaginal lavages collected 24 
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hr after PVA and PVP fiber administration demonstrated a 5-fold increase in IL-1α 

expression, while vaginal tissue collected 24 hr after PEO administration 

demonstrated elevated levels of MIP1-α and PVP MIP-2, relative to untreated 

controls (p < 0.05). Additionally, vaginal tissue collected 72 hr after PEO fiber 

administration demonstrated a 6-fold increase in MCP-1 and MIP-1α expression, 

relative to untreated controls (p < 0.05). For sham-treated controls, which 

simulated the administration method via tweezers only, increased cytokine 

expression was observed in 24 hr tissue (MIP-2), 24 hr wash (IL-1β), and 72 hr 

wash (IL-6, MCP-1), relative to untreated controls. N-9 treated samples 

demonstrated an increase in MIP-2 expression in 72 hr wash samples only. Both 

IP-10 and INF-γ were undetected in vaginal lavage or tissue samples.  
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Figure 4.8. Cytokine expression from extracted murine tissue and vaginal lavages 

collected (A, B) 24 and (C, D) 72 hr after fiber administration. Cytokine expression 

was assessed concurrently with histology to determine the preliminary safety of 

rapid-release fibers in a murine model. Mice treated with blank fibers expressed 

similar cytokine levels relative to untreated controls, indicating that the presence 

of fibers does not induce inflammation or an inflammatory response (*p < 0.05). 
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An ELISA, used to confirm IL-1β levels, showed similar results, in that blank 

fibers induced negligible increases in cytokine expression relative to untreated 

controls (p > 0.05).   

Discussion 

In this study, electrospun fibers composed of hydrophilic polymers were 

evaluated as an alternative topical delivery platform to provide on-demand dual-

purpose protection against HSV-2 and HIV-1 infections. GRFT PEO, PVA, and 

PVP fibers demonstrated complete in vitro efficacy against both HIV-1 and HSV-2 

infections and exhibited comparable safety to free GRFT and untreated cells when 

tested in three vaginal cell lines. Furthermore, GRFT fibers were efficacious in an 

in vivo HSV-2 infection model, and demonstrated preliminary safety by maintaining 

macrostructural histology and similar cytokine expression, relative to untreated 

mice. Moreover, fibers preserve the activity of incorporated GRFT and substantiate 

the feasibility of electrospun fibers to provide an efficacious alternative platform for 

the intravaginal delivery of Griffithsin.  

The antiviral lectin GRFT has been shown to potently inhibit a variety of viral 

infections, and has demonstrated particular promise in providing dual-purpose 

protection against HIV-1 and HSV-2 infections65,66. To date, GRFT has been 

primarily developed as a gel dosage form65; however, concerns surrounding gel 

administration, such as leakage and suboptimal user adherence in clinical trials, 

has prompted research into alternative delivery platforms. Other recent work has 

begun to evaluate the use of fast dissolving inserts (FDIs) comprised of the gelling 
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agents carrageenan, hydroxyethyl cellulose, and xanthan gum73, for the delivery 

of active agents GRFT and carrageenan. These inserts have shown promise in 

providing on-demand release of agents, corresponding to immediate inhibition of 

SHIV infection in macaque models and HSV-2 and HPV inhibition in murine 

models. Another recent study examined the efficacy of poly(lactide-co-glycolide) 

GRFT nanoparticles (NPs)319 that co-encapsulate the ARV dapivirine, 

demonstrating synergistic protection against in vitro HIV-1 infections. While these 

studies show the potential of alternative GRFT delivery platforms, they may also 

be prone to challenges regarding leakage and ease of administration, prompting 

the development of solid dosage form alternatives that may be easily and 

discreetly administered to the FRT. 

In this work, we envisioned a solid dosage form comprised of PEO, PVA, or 

PVP polymers, due to their established mucoadhesivity, biocompatibility, and 

hydrophilicity312,320. All three polymers have been used alone or in blends for drug 

delivery applications, particularly for the delivery of proteins and biologics321-327. In 

previous intravaginal delivery studies, mucoadhesive polymers were explored to 

increase active agent retention312,320. Specifically, one study investigated the use 

of PVA and PVP fibers to increase nanoparticle retention in the murine 

reproductive tract215, finding that nanoparticles incorporated within fibers 

demonstrated a 30-fold increase in retention relative to free NPs215. In addition, 

their established biocompatibility, suggests their potential for translation, 

particularly in the reproductive microenvironment. Finally, the hydrophilic 

properties of  PEO, PVA, and PVP enable fiber fabrication using aqueous 
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solutions, which can help to retain GRFT328 and potentially other biologic activity. 

In future work we anticipate that the mucoadhesive properties of these polymers 

will increase GRFT retention within the FRT, thereby enhancing efficacy at 

potentially lower doses, relative to the administration of other dosage forms such 

as gels or nanoparticles. Future studies will be conducted to assess how 

mucoadhesion may enhance GRFT retention within the reproductive tract. 

In these studies, the goal was to develop and preliminarily assess the safety 

and efficacy of rapid-release GRFT fibers in a murine model of HSV-2 infection. 

PEO, PVA, and PVP fibers all demonstrated high GRFT loading in both the 1 and 

10% w/w GRFT formulations. These results are in agreement with other studies 

that have used hydrophilic fibers to incorporate proteins and other hydrophilic 

agents329,330. The high encapsulation efficiency of these fibers is attributed in part 

to the favorable interactions between GRFT and polymers, specifically hydrogen 

bonding via hydrophilic functional groups312. This high loading, and moreover the 

preservation of GRFT activity, was further demonstrated in our in vitro efficacy 

studies where GRFT fibers completely inhibited both HIV-1 and HSV-2 infections 

in a dose-dependent manner, regardless of polymer formulation, and with similar 

IC50 values relative to free GRFT.  

Previous studies have shown that GRFT exhibits picomolar potency against 

HIV-1, enabling 1% w/w GRFT fibers to completely prevent HIV-1 infection in vitro. 

However, the decreased number of oligomannose N-linked glycans present on the 

surface of HSV-2, necessitates a higher dose of GRFT65 and correspondingly, 

GRFT fibers to prevent HSV-2 infection in vitro. Despite these differences in GRFT 
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potency against HIV-1 and HSV-2, each fiber formulation provided complete, dual-

purpose protection against in vitro infections.  

Based on these successes, we sought to assess the efficacy and safety 

after fiber administration in a murine model of HSV-2 infection. In these studies, 

GRFT fibers were administered 4 hr prior to HSV-2 infection. This administration 

time was based on surveys that studied female preference for topical delivery 

platforms, showing that an “ideal” platform should provide convenient and discreet 

administration, and can be applied hours prior to intercourse331. In line with 

previous studies testing GRFT gels65, all three GRFT fiber formulations provided 

comparable or enhanced protection in efficacy (LD90) studies (85-100% survival), 

relative to free GRFT (85% survival). Moreover, the few mice that became infected 

showed decreased weight loss and overall slower progression of HSV-2 

symptoms, relative to untreated/infected controls, indicating that GRFT fibers may 

reduce the severity of symptoms and alter the course of infection. This trend of 

reduced severity and delayed progression was also observed in previous in vivo 

GRFT studies further validating the efficacy profile of GRFT fibers332. 

Interestingly, blank fiber administration protected up to 50% of total mice, 

relative to untreated/infected control mice, suggesting that physical fiber presence 

alone may provide a significant level of barrier-like prevention against infections.  

Previous studies by our group have demonstrated similar in vitro results, 

suggesting that the fiber itself may act as a barrier to viral infection75,87. Future 

work seeks to better define the fiber characteristics that contribute to this inhibition 

and utilize this information to improve fiber design. We hypothesize that fibers may 
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be fabricated to serve as physical barriers to limit viral distribution within the FRT, 

in addition to providing release of incorporated active agents. 

Last, we acknowledge that regardless of the protection imparted by GRFT 

fibers (or free GRFT), a small fraction of mice (averaging 1.3 and 3 mice of 20, for 

GRFT fiber and free GRFT-treated mice, respectively) became infected. Previous 

work has shown similar results, in which free GRFT significantly reduces the 

incidence of infection, but may not impart complete protection within a sample 

group65. Future work will assess dose-dependence and effects of different 

administration times of GRFT fibers on in vivo prevention.  

In addition to efficacy, it is critical that fibers are safe to administer and 

minimize potential inflammatory responses333,334. All fiber formulations (PEO, PVA, 

and PVP) exhibited preliminary safety in in vitro and in vivo experiments. 

Histological analyses demonstrated the safety of these platforms in vivo, with the 

majority of fiber-treated tissue showing no signs of cervical or vaginal epithelium 

disruption, nor increased neutrophil accumulation relative to untreated controls. 

Additionally, cytokine expression in fiber-treated mice tissues and vaginal lavages 

demonstrated values within the normal range shown in previous studies, 

confirming the biocompatibility of both polymers and GRFT69,335. Although cytokine 

values from a few experimental and sham control group tissues were elevated 

relative to untreated controls (as seen with increased levels of IL-1α in PVA and 

PVP 24 hr vaginal lavages, and increased expression of MCP-1 and MIP-1 in PEO 

72 hr tissue samples), we attribute these incidences of a single elevated cytokine 

expression in samples to either vehicle administration or the inherent variability of 
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in vivo studies. Previous studies have shown that inflammation is characterized by 

the overexpression of multiple cytokines. For example, increased IL-1α 

expression, is typically associated with increased TNF-α or IL-1β 

expression186,336,337, therefore the singular overexpression of IL-1α in both PVA 

and PVP 24 hr lavage samples may not be a sufficient indicator of inflammatory 

response. Additionally, PEO 72 hr tissue samples demonstrated increased 

expression of both MCP-1 and MIP-1, which causes increased localization of 

neutrophils338-340; however, no increased neutrophil accumulation was observed in 

histology samples during this time period. 

In comparison to experimental groups, the sham-treated control group, 

which used sterile tweezers to mimic the method of fiber administration, showed 

similar cytokine profiles to blank fiber-treated tissue, with a slight increase in 

neutrophil accumulation in some histological sample replicates. These results 

suggest that this method of delivery may cause damage to the murine reproductive 

tract. While previous studies used positive displacement pipettes to intravaginally 

administer rolled-fibers, the amount of fiber administered with this method is 

limited215. We believe the method of administration may be partially responsible 

for the observed increased cytokine expression, as well as the increased 

neutrophil accumulation seen in one of the blank PVA histology replicates 

(Supplemental Figure 4.1A). Future studies, will be conducted using alternative 

methods of fiber administration, to assess the impact of administration methods 

and to more closely represent more commonly used tampon-like administration 

packages. 
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Concurrent with testing rapid-release GRFT fibers, N-9 gel was used as a 

positive control in our in vivo safety studies65. However, histology samples showed 

that a single administration of N-9 only marginally increased neutrophil 

accumulation in tissue and no marked increase was observed in cytokine 

expression, relative to untreated or blank fiber-treated mice (Supplemental 

Figure 4.1B). Previous studies using N-9 gels have shown that a single 

administration may result in transient damage within murine reproductive tissue, 

with the highest severity 4 hr post-administration, followed by nearly complete 

recovery after 24 hr341. This correlates with our in vivo efficacy results, in that mice 

give a single application of N-9 gel show high HSV-2 infectivity, which may be due 

to the time of viral administration corresponding to the time at which N-9 damage 

is most prominent.  

In these studies, we have fabricated rapid-release GRFT fibers to provide 

on-demand protection against HIV-1 and HSV-2 infections, and have 

demonstrated the preliminary safety of GRFT fibers. Our goal is to create a delivery 

platform providing women an alternative viable solid dosage form that offers dual-

protection against STI infections. Based on our cytokine work, future preclinical 

studies will explore alternative administration methods to ensure that platform 

administration does not enhance susceptibility to viral infection or cause off-target 

effects. Additionally, future studies will examine the window of protection provided 

by GRFT fibers by challenging with HSV-2 at different time points with respect to 

fiber administration and assessing the dose-dependent response to fiber 

administration. Moreover, we anticipate that GRFT fibers may enhance retention 
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within the reproductive tract and in future work seek to study the retention and 

pharmacokinetics of GRFT delivered from these fibers after different durations, 

and how these concentration profiles relate to protection. Last, we anticipate that 

these rapid-release fibers may be used as a foundation to develop sustained-

release multilayered fibers, which may provide extended release, decreased 

doses, and, potentially increased user adherence relative to existing delivery 

platforms.
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CHAPTER 5 

MULTIPURPOSE GRIFFITHSIN NANOPARTICLE-ELECTROSPUN FIBER 

COMPOSITES AGAINST HIV-1 AND HSV-2 INFECTIONS 

Introduction 

A promising option to provide sustained topical delivery of GRFT may be 

polymeric electrospun fibers (EFs), which have been developed for FRT 

applications over the past decade342. Early studies showed that fibers comprised 

of cellulose acetate phthalate provided pH-responsive release of tenofovir 

disoproxil fumarate to inhibit HIV-1 infection in vitro83. In other studies, polymeric 

fibers and fiber blends were fabricated to incorporate maraviroc, raltegravir, and 

tenofovir, and demonstrated sustained-release of these agents for up to 10 

days85,86,145,160,166. While these fiber platforms have demonstrated sustained-

delivery of ARVs for many applications, to date, no fiber-based platforms have 

demonstrated the long-term delivery of biologics, such as GRFT, within the 

FRT38,107-109,204,211.  

In addition to electrospun fibers, polymeric nanoparticles (NPs) have been 

explored for a variety of FRT applications, and have been used to incorporate 

ARVs and other biologics (e.g., siRNA, antibodies)187,191,343-349. One of the key 

strengths of NPs for FRT delivery is that they can distribute throughout the
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FRT186,349,350; however, NPs are often administered in gels or aqueous solutions, 

resulting in decreased agent retention due to mucus clearance. To address this 

challenge, we envisioned that a composite of nanoparticles and electrospun fibers 

(NP-EF) may provide an alternative delivery platform that integrates the attributes 

of each to prolong GRFT delivery. We hypothesized that multilayered fibers may 

act as a NP reservoir to increase NP retention and modulate GRFT release. 

Furthermore, in future work, we envision that this NP-EF composite platform may 

incorporate and modulate the delivery of multiple active agents to provide long-

term, multi-mechanistic, and synergistic protection against multiple types of viral 

infections.  

In previous work, our group developed pH-responsive and surface-modified 

GRFT fibers that provided in vitro on-demand protection against HIV-1 

infection75,162. The goal of this study was to design and evaluate a novel NP-EF 

composite that incorporates GRFT to provide multipurpose and potentially long-

term (> 1 month) protection against HSV-2 and HIV-1 infections. Here, NPs were 

electrospun into fibers, composed of a polyethylene oxide (PEO), polyvinyl alcohol 

(PVA), or polyvinylpyrrolidone (PVP) inner layer, surrounded by a 

polycaprolactone (PCL) outer layer (Figure 5.1). We hypothesized that NP-EF 

composites would provide sustained-release of GRFT and provide protection 

against a lethal HSV-2 challenge in a murine model. Furthermore, we 

hypothesized that the administration of NPs or NP-EFs would result in similar 

cytokine expression and tissue macrostructure, relative to untreated murine 

lavages and tissues. Importantly, the sustained-release of GRFT from NP-EF 
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composites was demonstrated for up to 90 days, and completely inhibited HSV-2 

and HIV-1 in vitro. Furthermore, GRFT NP-EF composites and GRFT NPs 

protected mice against a lethal HSV-2 challenge, suggesting that NP-EF 

composites may serve as an alternative platform for women that seek long-term 

dual-purpose prevention.  
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Figure 5.1. (A) Schematic depicting the incorporation of NPs within hydrophilic 

fibers to create multilayered NP-EF composites. Multilayered fibers consist of an 

inner layer of hydrophilic polymer (here, PEO) that incorporates GRFT or C6 NPs, 

and outer hydrophobic layers of PCL to tune GRFT release from the incorporated 

NPs. (B) Schematic of NP-EF composites fabricated with varying outer layer 

thicknesses to modulate GRFT release. The multilayered fiber acts as a NP 

reservoir, conferring localized GRFT release from the composite. 
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Methods and Materials 

Polymers and Solvents 

mPEG-PLGA (LG 50:50, 5,000 MW mPEG-50,000 MW PLGA) and PLGA 

(50:50, 0.55-0.75 dL/g, 31-57k MW) were purchased from PolySciTech (Lafayette, 

Indiana) and Lactel Absorbable Polymers (Cupertino, CA), respectively. Polymers 

including PCL (80,000 MW), PEO (600,000 MW), PVA (87-90% hydrolyzed, 

30,000-70,000 MW), and PVP (1,400,000 MW) were purchased from Sigma 

Aldrich (St. Louis, MO). Trifluoroethanol (TFE) and dichloromethane (DCM) were 

purchased from Thermo Fisher (Waltham, MA). Other chemicals, including 

dimethyl sulfoxide (DMSO) and thiazolyl blue tetrazolium bromide (MTT) were 

purchased from Sigma Aldrich. Griffithsin stock solution (12.0 mg/mL, in PBS) was 

kindly provided by Kentucky Bioprocessing (Owensboro, KY). 

Nanoparticle Synthesis 

mPEG-PLGA and PLGA nanoparticles containing GRFT were synthesized 

using the double emulsion solvent evaporation technique. First, 100 mg PLGA or 

mPEG-PLGA were dissolved in 2 mL of DCM and incubated overnight. The next 

day, the polymer solutions were vortexed, and 200 µL of GRFT stock solution (25, 

50, or 100 mg/mL in PBS) was added dropwise to synthesize NPs with a theoretical 

loading of 50, 100, or 200 μg GRFT/mg polymer. GRFT-polymer mixtures were 

sonicated and added to 2 mL of 5% PVA solution, sonicated again, and 

subsequently transferred to a beaker containing 50 mL of 0.3% PVA solution for 3 

hr. The newly synthesized NPs were washed with Milli-Q water three times to 
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remove residual PVA and solvent, followed by lyophilization and storage at -20°C 

until use. 

To assess NP loading within the NP-EF composite, Coumarin 6 (C6) NPs 

were synthesized as previously described351-355. Briefly, C6 was dissolved in DCM 

(15 µg C6/mg polymer or 15 mg C6 in 200 µL DCM), followed by the dropwise 

addition of 200 µL to the 2 mL polymer/DCM mixture. Afterward, the fabrication 

process of C6 NPs mirrored that of GRFT NPs, with sonication of the polymer-

solvent mixture, addition to 2 mL of 5% PVA solution, and subsequent transfer to 

50 mL of 0.3% PVA solution for 3 hr. 

NP Loading in Hydrophilic (Inner Layer) Fibers 

Hydrophilic fibers, incorporating GRFT mPEG-PLGA NPs, were fabricated 

by first adding PEO (5% w/w), PVA (20% w/w), and PVP (20% w/w) to scintillation 

vials containing 1 mL Milli-Q water and were incubated overnight.  Blank fiber 

controls were electrospun with a mandrel-to-syringe distance of 20 cm, flow rate 

of 0.25-0.60 mL/hr, and a voltage of 15-20 kV. To determine the loading capacity 

of NPs within the fibers, C6 NPs were electrospun in fibers at 1, 2, 10, or 20% w/w 

(NP/EF weight ratio). For GRFT NP-EF composites, PEO fibers were electrospun 

with 1 or 20% w/w GRFT NPs. Electrospinning parameters were adjusted for 

GRFT and C6 NP-EFs by changing the flow rate to 0.2 mL/hr and voltage to 20-

25 kV. 

NP-EF Composite Synthesis 
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Polycaprolactone (11% w/w or 152 mg/mL) was dissolved in 7 mL TFE and 

incubated overnight. Different PCL solutions were electrospun using volumes of 1, 

3, 5 or 7 mL to create composites with varying outer layer thicknesses. Similar 

electrospinning conditions were used with the mandrel-to-syringe distance set to 

15 cm, flow rate of 2.2 mL/hr, and voltage of 20 kV. Pre-massed NP-PEO fiber 

sheets were placed on the freshly electrospun PCL layer and an additional PCL 

layer was electrospun on top to create a PCL−(NP/PEO)−PCL multilayered 

structure (Figure 5.1), and fibers were desiccated overnight prior to 

characterization. 

NP and NP-EF Composite Morphology 

Scanning electron microscopy (SEM) was used to characterize the physical 

structure and morphology of NPs, EFs, and NP-EF composites. Individual 

hydrophilic and hydrophobic fiber layers as well as multilayered composites were 

cut into 5 mm pieces and placed on double-sided adhesive carbon tabs (Ted Pella 

Inc., Redding, CA, USA), which were then adhered to aluminum stubs. 

Nanoparticles were similarly adhered to carbon tabs and all samples were sputter 

coated with a thin gold alloy using a Bio-Rad E5100 sputter coat system (Hercules, 

CA). Samples of composite cross sections were prepared by slicing composites 

into 2 to 5 mm sections and adhering sections sideways to the aluminum stubs. 

Sample images were acquired in triplicate using a Supra 35 SEM (Zeiss, 

Oberkochen, Germany). Fiber and composite images were captured using an 

accelerating voltage of 8 kV, with magnifications of 5,000- to 10,000x, while NP 

images were captured with a voltage of 10 kV, and magnification of 20,000 to 
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23,000x. The mean diameters of NPs and fibers were determined using ImageJ 

software (NIH, Bethesda, Maryland), by measuring 50 line elements per SEM 

image.  

Quantification of GRFT NP, GRFT NP-EF, and C6 NP-EF Loading 

The loading of GRFT in NPs and NP-EFs was assessed using an enzyme-

linked immunosorbent assay (ELISA). Griffithsin loading and encapsulation 

efficiency (defined as [actual loading ÷ theoretical loading] × 100%) was 

determined for NPs and NP-EF composites. To determine loading, GRFT NPs and 

NP-EF composites (2 to 4 mg) were dissolved in 1 mL DCM, and vortexed for 30 

s. Griffithsin was extracted from the DCM into 500 µL Tris-EDTA (TE) buffer, 

vortexed, and centrifuged at 18,500 x g for 5 min. TE buffer was collected, and the 

process was repeated to collect GRFT into a final volume of 1 mL. All extracts were 

analyzed using ELISA as previously described162.  

For the ELISA, 96-well Nunc Maxisorp plates were incubated overnight with 

100 µL coating buffer (250 ng/mL gp120 in PBS). Coating buffer was removed 

from the plates, and 300 µL blocking buffer (0.05% Tween-20 and 3% w/v bovine 

serum albumin in PBS) was added to the wells for 2 hr. After incubation, the plates 

were washed with PBST (0.05% Tween-20 in PBS) using a Gardner Denver 

Multiwash III plate washer (Milwaukee, WI), and free GRFT standards (100 µL, 0.2 

to 120 ng/mL) or sample extracts were added to each well. Plates were incubated 

for 1 hr at 37ºC, followed again with a PBST wash. Dilutions of goat anti-GRFT 

primary antibody (1:10,000, kindly provided by Dr. Kenneth Palmer, University of 
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Louisville) and rabbit anti-goat IgG-HRP secondary antibody (1:20,000, Sigma 

Aldrich) were subsequently added to each well in 100 µL volumes and incubated 

for 1 hr at 37ºC to detect bound GRFT. After incubation, both antibody solutions 

were rinsed and 100 µL of KPL SureBlue TMB microwell peroxidase substrate 

(Sera Care, Milford, MA, USA) was added to each well for 90 s, followed by 

quenching with 100 µL of 1 N H2SO4 (Thermo Fisher). Plate absorbance was 

measured at 450 nm on a Synergy HT reader (BioTek, Winooski, VT, USA) and 

data were analyzed using Prism (GraphPad Software, La Jolla, CA). 

The loading of C6 NPs within NP-EFs was assessed via fluorescence. First, 

C6 NP-EFs (2 to 4 mg) were dissolved in 1 mL DMSO, and vortexed for 1 min to 

ensure complete composite dissolution. Composite dilutions were added (100 µL) 

to 96-well plates. C6 NPs (3mg) were similarly dissolved in DMSO, and NP 

dilutions were used to generate a standard curve (ranging 6 ng/mL to 100 µg/mL), 

while dissolved blank NPs were used as background controls. Plates were read at 

excitation and emission wavelengths of 443 and 494 nm using a Synergy HT 

reader.  

Quantification of GRFT Release from NPs and NP-EF Composites 

The sustained-release of GRFT from NPs and NP-EF composites was 

assessed for 30 and 90 d, respectively. GRFT PLGA and mPEG-PLGA NPs (3 to 

5 mg) were aliquoted to 1.5 mL centrifuge tubes that contained 1 mL of simulated 

vaginal fluid (SVF)246, while NP-EF composites were placed in 10 mL scintillation 

vials and incubated in 3 mL SVF to ensure complete submersion. All samples were 
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placed in a shaker at 37ºC and 150 rpm, and at specific time points, the SVF was 

collected and replaced with fresh SVF. To collect NP release eluate, samples were 

centrifuged at 18,500 x g at 4ºC for 10 min prior to supernatant collection.  

Cell Lines and Virus 

TZM-bl cells, obtained from the National Institutes of Health AIDS Research 

and Reference Reagent Program (ARRRP), are engineered HeLa cells that 

express CD4, CCR5 and CXCR4 receptors, and were used to assess in vitro HIV-

1 infectivity. TZM-bl cells are highly permissive to infection by most HIV-1 and 

pseudovirus strains, and contain HIV-activated Tat-driven luciferase, allowing for 

precise quantification of infection. TZM-bl cells were cultured in Dulbecco’s 

Modified Eagle medium (DMEM) containing 10% fetal bovine serum (FBS), 25 mM 

HEPES, and 50 μg/mL gentamicin (Thermo Fisher).  

The Env-pseudotype HIV-1 was produced in house by introducing HEK-

293T/17 cells (ATCC, Rockville MD) with both an envelope (env)-expressing 

plasmid (CCR5-tropic clade A strain, Q769.h5) and an env-deficient HIV-1 

backbone vector (pNL4.3ΔEnv-Luc). Both plasmids were obtained from the NIH 

AIDS Reagent Program (catalog# 11884 and 3418). Cells were maintained in 

minimum essential medium (MEM) supplemented with 10% FBS, 1% penicillin 

(100 µg/mL), and 1% streptomycin (100 µg/mL) (VWR Radnor, PA). 

To assess HSV-2 infection in plaque assays, Vero E6 cells (African green 

monkey kidney) and HSV-2 (4674) were kindly provided by Dr. Kenneth Palmer 
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from the University of Louisville. Cells were maintained in MEM supplemented with 

10% FBS, and 1% penicillin and streptomycin. 

Finally, vaginal keratinocyte (VK2/E6E7), ectocervical (Ect1/E6E7), and 

endocervical (End1/E6E7) cell lines were used to assess fiber cytotoxicity (all cells 

courtesy of Dr. Kenneth Palmer, originally from ATCC, Rockville MD). VK2/E6E7 

(VK2), Ect1/E6E7 (Ect1), and End1/E6E7 (End1) are well-characterized 

immortalized cell lines derived from normal human vaginal, ectocervical, and 

endocervical epithelia, respectively, and are representative of the cell types found 

within the FRT. Cells were maintained in keratinocyte serum-free medium (KSFM) 

supplemented with recombinant human epidermal growth factor (0.1 ng/mL), 

bovine pituitary extract (50 μg/mL), calcium chloride (0.4 mM) (Thermo Fisher), 

with 1% penicillin and streptomycin. During cell trypsinization, plating, and cell 

counting, cells were neutralized with 1:1 DMEM:Nutrient Mixture F-12 media 

(Thermo Fisher) with 10% FBS, and 1% penicillin/streptomycin. 

In Vitro HIV-1 Inhibition  

The activity of GRFT NPs and NP-EF composites against HIV-1 infection 

was assessed using an in vitro HIV-1 inhibition assay as previously 

described75,87,161,162. HIV-1 inhibition was determined as a function of reduction in 

luciferase reporter gene expression after a single round of infection with 

pseudotyped HIV-1 in TZM-bl cells. The optimal virus dilution (1:16) was 

established to yield ≥ 96,800 relative luminescence units (RLUs). Briefly, GRFT 

NP or NP-EF eluates were prepared in either PBS or DMEM (1.0 mg/mL), followed 
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by 1:2 serial dilutions with DMEM to a final volume of 50 μL within a 96-well plate. 

One hundred microliters of TZM-bl cells (10,000 cells in DMEM supplemented with 

10 μg/mL DEAE-dextran) was added to each well, followed by the addition 50 μL 

of HIV-1 pseudovirus dilution. Infected cells administered NPs or NP-EFs were 

incubated at 37°C for 48 hr and compared to the inhibition obtained with free 

GRFT-treated/infected (stock concentration 50 µg/mL), untreated/infected, and 

untreated/uninfected control groups. 

After 48 hr, 100 µL of culture medium was removed from each well. 

Luminescence was measured using the Bright-Glo luciferase assay (Promega 

Corporation, Madison, WI) by adding 100 µL Bright-Glo reagent solution to each 

well for 5 min and recording relative luminescence units (RLUs, Synergy HT 

reader, BioTek). All RLU values were corrected by subtracting the RLU of 

untreated/uninfected cells from the RLUs of treated/infected cells. The percent 

virus inhibition was determined by normalizing the corrected RLUs of 

treated/infected cells to corrected untreated/infected cells with the following 

formula: % Infection = [(sample RLU – untreated uninfected cells) ÷ (untreated 

infected cells – untreated uninfected cells)] × 100%. The antiviral activity is 

reported as the half maximal inhibitory concentration (IC50) and was calculated by 

comparing the sample luminescence intensity to the luminescence intensity from 

untreated/infected controls.  

In Vitro HSV-2 Inhibition  
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HSV-2 plaque assays were conducted to determine the in vitro efficacy of 

GRFT mPEG-PLGA NPs against HSV-2 infection. Briefly, Vero E6 cells were 

seeded at a density of 600,000 cells/well in a 6-well flat bottom plate and grown 

for 24 hr to complete confluence. Prior to cell infection, ~20 mg of GRFT NPs were 

added to 20 mL complete plating media (1% FBS MEM).  Once the cells were fully 

confluent, the growth media was removed and replaced with 2 mL dilutions per 

well of GRFT NPs, followed by the introduction of HSV-2 (10 µL containing 3,000 

PFU per well) after 1 hr of treatment. Free GRFT (2,000 µg/mL) corresponding to 

the concentration needed to provide complete inhibition and untreated/infected 

cells, were used as negative and positive controls of HSV-2 infection. 

Untreated/uninfected cells were used as additional negative controls.  

After HSV-2 infection, plates were incubated for 48 hr at 37°C. After 

incubation, media was removed, cells were fixed for 10 min with 1.5 mL of 

methanol, stained with crystal violet (0.1% crystal violet in 80:20 water: ethanol 

solution), and incubated for 30 min. Finally, plates were washed with Milli-Q water, 

dried, and plaques were counted. Plaque numbers from experimental groups were 

normalized to the number of plaques in untreated/infected cells (~280-300 

plaques). Samples were analyzed in triplicate, and GraphPad Prism software was 

used to determine and compare the half maximal inhibitory concentration IC50 

values of GRFT NPs to free GRFT.  

In Vitro Cytotoxicity 
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Vaginal epithelial (VK2/E6E7), ectocervical (Ect1/E6E7), and endocervical 

(End1/E6E7) cells were incubated with either blank NPs, blank NP-EFs, GRFT 

NPs, or GRFT NP-EF composites to assess the in vitro cytotoxicity of GRFT 

delivery platforms. Cells were plated at a density of 50,000 cells/well in 96-well 

plates and incubated in triplicate with either 0.5 or 1 mg/mL NPs in media. 

Composites were tested by incubating cells with 0.5 mg NP-EF pieces (2.5 mg/mL 

in media). No treatment (media alone) and 10% DMSO were used as positive and 

negative controls of cell viability, respectively. After 24, 48, and 72 hr incubation, 

20 µL of MTT reagent was added to the cells and incubated for an additional 4 hr. 

Cells were lysed overnight with 100 µL lysis buffer (10% sodium dodecyl sulfate in 

0.01 M hydrochloric acid). Absorbance values were measured at 570 nm the 

following day and normalized to untreated cell absorbance to obtain percent 

viability. 

In Vivo HSV-2 Efficacy 

All in vivo experiments were approved by the University of Louisville’s 

Institutional Animal Care and Use Committee (IACUC-17135) prior to testing. 

Animal studies were conducted using 5-week-old female BALB/c mice (Jackson 

Laboratory, Bar Harbor, ME) to evaluate the efficacy of mice to HSV-2 infection 

after administration of GRFT NPs and NP-EF composites (n=20). For these 

studies, mice were subcutaneously injected with 3 mg Depo-Provera (Revive, 

Madison, NJ) 5 days prior to vehicle administration to induce the diestrous stage 

of their cycle. All materials administered to mice were UV-sterilized for 15 s prior 

to use. Mice were administered 0.5 mg blank or GRFT NPs diluted in sterile PBS 
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(20 µL of 25 mg/mL) or 20% w/w GRFT NP-EF composites (5 mg) under isoflurane 

anesthesia. Untreated/uninfected mice and mice treated with 20 µg free GRFT (20 

µL of 1,000 µg/mL) served as negative controls of infection, while 

untreated/infected mice served as a positive control for infection. Blank mPEG-

PLGA nanoparticles were administered as an additional control group in efficacy 

studies. A single challenge of HSV-2 LD90 (here, 5,000 PFU, HSV-2(4674) was 

given 24 hr after vehicle administration, followed by 14 day observation using an 

established 4-point scale to monitor infection progression69,252,318. Each day, mice 

were weighed and examined for neurological and epithelial damage. The study 

concluded 14 d after HSV-2 challenge, mice were euthanized, and survival was 

assessed. Kaplan-Meier survival curves were generated from the data, followed 

by log-ranked post hoc tests to assess the statistical significance between groups.   

In Vivo Safety 

Additional studies were conducted to evaluate the safety of blank NPs and 

NP-EF composites in vivo. NPs and NP-EFs were UV-sterilized for 15 s, and 

intravaginally administered to mice under isoflurane anesthesia, at the same doses 

(0.5 and 5 mg, respectively) that were evaluated in the efficacy study. Control 

groups included uninfected mice that were untreated, treated with 20 µL free GRFT 

in PBS (1,000 µg/mL), or treated with 40 μL of N-9 gel. An additional “sham” control 

was used to evaluate the effects of tweezer administration alone. Mice were 

euthanized after 24 or 72 hr of vehicle administration (n=3 per time point) and 

reproductive tracts and vaginal lavages were collected and stored at -80°C 

following mouse euthanasia.  



    

223 
     

The structural integrity of the murine reproductive tracts was evaluated with 

histology. Collected tissue samples were washed with PBS, and subsequently 

fixed with 4% paraformaldehyde. The uterine horns, uterine body, and vagina were 

resected, fixed in 10% formalin, embedded in paraffin and sliced and stained with 

hematoxylin and eosin (H&E) for histological examination. Similarly, tissue 

samples and vaginal lavages were collected and analyzed for cytokine expression. 

The histology of sample cross-sections was assessed by a pathologist blinded to 

treatment groups.  

Cytokine expression from murine reproductive tracts and vaginal lavages 

was determined using Luminex assays. First, 20 µL of T-Per solution (Thermo 

Fisher) containing 1% Halt Protease Inhibitor Cocktail (Thermo Fisher) was added 

per 1 mg of reproductive tissue. Approximately 20 zirconia/silica beads (BioSpec 

Productions) were added to each sample, followed by homogenization at 4,500x 

for 3 min (Bertin, France). Homogenized samples were cooled on ice for 5 min, 

and centrifuged at 10,000 x g at 4°C for 5 min. Sample supernatants were 

collected, aliquoted, and stored at -80°C for further study. Prior to Luminex 

analysis, interleukin 1 beta (IL-1β) levels were tested in the reproductive 

specimens using specific ELISA Ready-SET-Go! kits (Thermo Fisher) to confirm 

cytokine concentration ranges prior to the Luminex assays. Luminex assays were 

subsequently used to quantify cytokine levels, including G-CSF, INF-γ, IL-1α, IL-

1β, IL-2, IL-6, IP-10, MCP-1, MIP-1α, MIP1-β, MIP-2, and TNF-α from murine 

tissues and lavages. These cytokines were selected for assessment based on 

intravaginal inflammatory markers quantified in previous studies65,69. 
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Statistical Analysis 

Unless otherwise noted, all in vitro experiments were conducted in triplicate, 

with 3 replicates per sample. Statistical analysis of samples for delivery vehicle 

morphology, loading, in vitro assays, and in vivo safety studies was performed by 

using one-way ANOVA with the Bonferroni post hoc test (p < 0.05). For murine 

efficacy studies, log-ranked post hoc tests were conducted to determine statistical 

significance as a function of treatment group and survival outcome. 

Results 

Nanoparticle Characterization 

PLGA and mPEG-PLGA NPs were synthesized with 50, 100, or 200 μg 

GRFT per mg polymer. NPs were assessed for morphology, total GRFT loading, 

and sustained-release. The morphology and diameter of GRFT NPs, relative to 

blank NPs, were evaluated using SEM (Figure 5.2) and ImageJ software 

(Supplemental Figure 5.1). All NP formulations possessed spherical 

morphologies, with diameters ranging from 72 to 131 nm. Blank nanoparticles 

demonstrated the largest diameters, with average PLGA and mPEG-PLGA NP 

diameters of 118 and 128 nm respectively. The addition of 50 µg/mg GRFT to 

PLGA and mPEG-PLGA NPs decreased NP diameters to 97 and 102 nm, 

respectively, while the addition of 100 µg/mg GRFT resulted in average diameters 

of 131 and 78 nm. The smallest PLGA and mPEG-PLGA NP diameters (72 and 

74 nm), were achieved with the addition of 200 µg/mg GRFT. Overall the 

incorporation of GRFT corresponded to a decrease in NP diameter.  



    

225 
     

 

Figure 5.2 Scanning electron microscopy images of (A) blank, (B) 50, (C) 100, and 

(D) 200 µg/mg GRFT PLGA NPs, and (E) blank, (F) 50, (G) 100, and (H) 200 

µg/mg GRFT mPEG-PLGA NPs. Scale bars represent 100 nm.  
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Supplemental Figure 5.1. Characterization of the average diameter of blank and 

GRFT NPs. NP diameters were determined using SEM and ImageJ software. 

Statistical significance between groups represented by *(p < 0.05).  
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The loading of GRFT in PLGA and mPEG-PLGA NPs is shown in Table 

5.1. The addition of 50, 100, and 200 µg GRFT/mg PLGA NPs resulted in 23.6 ± 

1.4, 42.4 ± 3.1, and 77.8 ± 4.6 µg GRFT/mg PLGA respectively, while mPEG-

PLGA NPs demonstrated consistently higher total GRFT loading of 49.6 ± 1.9, 

63.6 ± 15.1, and 171.1 ± 21.5, for each formulation, respectively.  
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Table 5.1. Griffithsin loading in mPEG-PLGA and PLGA NPs. Griffithsin extracts 

from NPs were assessed using ELISA. Increased theoretical loading resulted in 

increased actual loading. Three NP batches were fabricated for each formulation, 

with GRFT loading expressed as mean ± standard deviation of triplicate readings 

of each NP batch. Statistical significance was assessed using one-way ANOVA 

with the Bonferroni post hoc test. 
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During NP release studies, an initial burst release was observed from both 

PLGA and mPEG-PLGA NPs through one week, followed by minimal GRFT 

release from 1 to 4 wk (Figure 5.3). Increased release was seen from mPEG-

PLGA NPs, relative to PLGA NPs, with 66.5 and 38.6 µg/mg GRFT released from 

200 µg/mg mPEG-PLGA and PLGA NPs within 4 wk. Finally, as expected, the 

amount of GRFT release corresponded to the amount of GRFT loading for both 

polymers, with 200 µg/mg mPEG-PLGA NPs releasing the most GRFT over 4 wk. 
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Figure 5.3. The cumulative release of GRFT from mPEG-PLGA and PLGA NPs 

shown as (A) total GRFT release or (B) the percent of total loading.  Increased 

amounts of GRFT were released from mPEG-PLGA NPs relative to PLGA NPs, 

and total release corresponded with GRFT loading for each formulation. Release 

values are shown as the mean ± standard deviation of three independent NP 

batches. 
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Nanoparticle-Electrospun Fiber Composite Characterization 

Studies were conducted to assess the maximum loading that could be 

attained by adding C6 NPs to PEO, PVA, and PVP inner layer fibers. Fibers were 

loaded with 1, 2, 10 and 20% w/w NP/fiber, resulting in high NP incorporation, 

regardless of and corresponding to, theoretical loading (Table 5.2). The 

encapsulation efficiency of maximally-loaded NP-fiber composites (20% w/w) was 

97, 65, and 46% for PEO, PVA, and PVP, respectively. Based on these results, 

PEO was selected as the hydrophilic layer for the multilayered composite. 
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Table 5.2. Coumarin-6 NP loading in PEO, PVA, and PVP NP-EF composites. 

Dilutions of NP-EF composites, dissolved in DMSO, incorporating 10, 20, 100, or 

200 µg/mg C6 NPs were evaluated by measuring fluorescence. Three composite 

batches were fabricated for each formulation, with C6 loading expressed as mean 

± standard deviation of triplicate readings of each NP batch. Statistical significance 

was assessed using one-way ANOVA with the Bonferroni post hoc test. 

 

 

 

 

 

 

 

Fiber Formulation
Theoretical Loading                    

NP/EF (µg/mg)

Actual Loading           

NP/EF (µg/mg)

Encapsulation 

Efficiency (%)

10 10.5 ± 1.2 105 ± 11

20 15.8 ± 1.2 78.9 ± 3.9

100 77.6 ± 23.0 77.6 ± 23.0

200 194.6 ± 11.3 97.3 ± 6.0

10 7.4 ± 0.5 74.3 ± 4.3

20 13.4 ± 1.2 67.3 ± 7.2

100 86.0 ± 4.0 86.8 ± 4.9

200 130.4 ± 42.0 65.2 ± 22.4

10 9.1 ± 1.1 91 ± 11.0

20 9.2 ± 1.1 46.0 ± 6.2

100 68.3 ± 7.2 68.3 ± 7.2

200 147.2 ± 16.3 71.1 ± 8.2

PVA

PVP

PEO
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Based on NP loading in the hydrophilic layer, multilayered PCL-PEO-PCL 

composites that incorporated 1 or 20% w/w mPEG-PLGA GRFT NPs (200 µg/mg 

GRFT) were fabricated. As shown in Figure 5.4, both PEO (inner) and PCL (outer) 

layers maintained fiber morphology and integrity. Subsequent loading studies 

showed that 58 ± 8 and 56 ± 8% of GRFT NPs were incorporated from 1 and 20% 

NP w/w loaded multilayered NP-EFs.  
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Figure 5.4. Scanning electron microscopy images of GRFT NP-EF composites 

taken from (A) inner layer PEO fibers (5% w/w) that incorporate 20% w/w blank 

mPEG-PLGA NPs, (B) outer layer PCL fibers, and (C) a cross-sectional image of 

an NP-EF composite. Scale bars for panels A and B represent 2 µm, while the 

scale bar in panel C represents 20 µm. 
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Sustained-release studies were conducted to assess GRFT release from 

NP-EF composites with varying outer layer thicknesses corresponding to 1, 3, 5 

and 7 mL volumes. First, release was measured from composites that contained 

1% w/w GRFT NPs (Figure 5.5A, B). All formulations, regardless of thickness, 

exhibited an initial burst release through ~72 hr, followed by sustained-release of 

GRFT for up to 90 d. Overall, increasing the PCL outer layer thickness resulted in 

decreased GRFT release. After 90 d, the total GRFT released from fibers was 81, 

67, 54, and 57 ng/mg for 1, 3, 5 and 7 mL composites respectively.  
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Figure 5.5. Cumulative release of GRFT from multilayered GRFT NP-EF 

composites. The cumulative release of GRFT from multilayered mPEG-PLGA NP-

EF composites formulated with 1% w/w NP loading, with different outer layer 

thicknesses shown as (A) total GRFT release or (B) percent of total loading. 

Subsequent release studies evaluated the cumulative release of GRFT from 

mPEG-PLGA NP-EF composites formulated with 20% w/w NPs shown as (C) total 

GRFT release or (D) percent of total loading. Overall, GRFT release increased 

from composites with thinner shells. Griffithsin release values are shown as the 

mean ± standard deviation of three independent NP-EF batches. 
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Based on the release results, composites that incorporated 20% w/w GRFT 

NPs with 1 and 3 mL PCL outer layers were fabricated. After 90 d, the total GRFT 

released was 11 and 9 µg/mg (53 and 45% total release) for the 1 and 3 mL NP-

EF composites (Figure5. 5C, D). Release profiles showed similar trends to 1% 

NP-EFs in that there was a noticeable burst release during the first 72 hr; however, 

decreased release was observed through week 4, while increased GRFT release 

was observed between weeks 4 and 8. 

In Vitro Viral Inhibition Studies 

Both mPEG-PLGA GRFT NPs and NP-EF composites were assessed in 

vitro against HIV-1 and HSV-2 infections. Dilutions of GRFT NPs and eluates from 

20% w/w NP-EF composites were administered to TZM-bl cells 1 and 24 hr prior 

to viral infection. GRFT NPs demonstrated complete dose-dependent inhibition 

against HIV-1 at both time points (Figure 5.6A, B). Furthermore, the IC50 of GRFT 

released from NPs was comparable to free GRFT. Additionally, GRFT released 

from NP-EF composites demonstrated comparable efficacy relative to free GRFT, 

achieving complete protection (> 98%) after 1 and 24 hr administration. The IC50 

values of GRFT NPs, GRFT NP-EFs, and free GRFT were 51.1 ± 2.3, 35.6 ± 7.1, 

21.5 ± 5.3, after 1 hr and 36.1 ± 6.8, 29.7 ± 18.1, and 20.8 ± 6.7 ng/mL after 24 hr 

administration. All platforms demonstrated statistically similar IC50 values to free 

GRFT, with the exception of 1 hr GRFT NPs, which showed a statistically higher 

IC50 value relative to both 1 and 24 hr free GRFT. These results indicate that 

incorporation of GRFT in either NPs or NP-EFs composites maintains antiviral 

activity.  
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Figure 5.6. Results from in vitro HIV-1 inhibition and MTT toxicity assays. Three 

independent batches of GRFT NPs and NP-EF composites were assessed for their 

ability to inhibit HIV-1 infection. Nanoparticles or composite eluates were incubated 

with cells (A) 1 hr and (B) 24 hr prior to HIV-1 infection. GRFT released from both 

platforms exhibited complete HIV-1 inhibition at both 1 and 24 hr, relative to free 

GRFT. The cytotoxicity of the maximum dose of GRFT NPs and NP-EFs used in 

the in vitro assays was administered to vaginal VK2/E6E7, Ect1/E6E7, and 

End1/E6E7 cells for (C) 24, (D) 48, and (E) 72 hr was assessed using the MTT 

assay. Greater than 94% viability was observed in all cell lines for all NPs and NP-

EF formulations. 
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In Vitro Safety Studies 

Prior to in vivo studies, both blank and GRFT NPs and NP-EFs were assessed for 

cytotoxicity in VK2/, Ect1/, and End1/E6E7 cells using MTT assays. All cell lines 

demonstrated greater than 94% viability after 24, 48, and 72 hr incubation with 

samples, relative to untreated controls (Figure 5.6C-E). 

In Vivo Efficacy Studies 

The efficacy of GRFT NPs and GRFT NP-EF composites was assessed 

within a murine model of lethal HSV-2 infection. Delivery platforms were 

intravaginally administered to female BALB/c mice, followed by a single challenge 

of HSV-2 (LD90, 5,000 PFU) 24 hr later (Fig. 5.7A, B, Table 5.3). Mice were 

monitored for 14 d post-infection, and Kaplan-Meier survival analyses were applied 

to generate survival curves (Fig. 5.7C). Mice administered GRFT NPs or GRFT 

NP-EF composites showed statistically significant decreases in HSV-2 infection 

(70 and 80% survivability, respectively), relative to the untreated/infected control 

group (5% survivability, p < 0.05). Additionally, GRFT NPs exhibited statistically 

similar protection to free GRFT (85% survivability), whereas GRFT NP-EFs 

demonstrated a slight decrease in protection, relative to free GRFT controls (p < 

0.05). Additionally, the administration of blank NPs provided a significant level of 

protection against HSV-2 (35% survival), relative to GRFT NPs, GRFT NP-EFs, 

and untreated/infected controls (p < 0.05).   
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Figure 5.7. Schematic, timetable, and results of in vivo HSV-2 efficacy study. (A) 

Sequence of murine treatments and (B) administration schedule from HSV-2 

efficacy study. (C) Kaplan-Meier survival curves from HSV-2 in vivo efficacy study. 

GRFT platforms were assessed for their ability to protect mice against a lethal 
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challenge (LD90) of HSV-2 infection (n=20). Both GRFT NPs and NP-EF 

composites demonstrated comparable protection (70% and 80%, respectively) 

relative to free GRFT (85%), and demonstrated a significant increase in protection 

relative to untreated/infected controls (5% survival). Additionally, blank NPs were 

found to decrease viral infection and protect 35% mice after 14 d, *p < 0.05. 

Furthermore, mice were evaluated and scored for progression of infection once 

daily for 14 d post-infection. Infected mice administered (D) no treatment, (E) free 

GRFT, (F) GRFT NPs or (G) GRFT NP-EFs exhibited decreased severity of 

infection and more gradual progression of infection, relative to untreated/infected 

animals.  
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Table 5.3. Dosing regimen of GRFT NPs, GRFT NP-EFs, and free GRFT 

administered in in vivo studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formulation Name
Amount of Vehicle                                        

Administered per Mouse

Total GRFT Administered                                       

Based on Loading (µg)

GRFT NPs 20 µL of 25 mg/mL PBS  63

GRFT NP-EFs 5 mg 71

0.1% w/v GRFT Solution 20 µL in PBS 20



    

243 
     

In addition to preventing HSV-2 infection, the mice treated with GRFT NPs, 

GRFT NP-EF composites, or free GRFT that became symptomatic, demonstrated 

delayed onset of symptoms and a more gradual progression of infection, relative 

to the untreated/infected control group (Figure 5.7D-G). In the untreated/infected 

control group, the first symptoms of HSV-2 infection typically manifest 4 to 5 d post-

infection, during which time mice exhibit localized vaginal swelling and decreased 

hind leg mobility. After 5 to 8 d, ~75% of mice from the untreated/infected control 

group required euthanasia due to the rapid progression and severity of infection. 

In contrast, mice exposed to free GRFT or GRFT delivery platforms showed 

decreased progression of symptoms within the same duration. Mice that did not 

survive HSV-2 challenge despite GRFT pre-treatment, exhibited a more gradual 

progression of infection, requiring euthanasia 7 to 10 d instead of 5 to 8 d post-

infection, suggesting that GRFT may provide partial protection at these doses for 

the few mice that exhibited overt signs of infection. No differences were observed 

in the progression of HSV-2 infection after administration of blank NPs, relative to 

the untreated/uninfected control group (data not shown). 

In Vivo Safety Studies 

To assess the in vivo safety of these delivery platforms, blank NPs and NP-

EF composites were intravaginally administered to uninfected mice, and 

reproductive tissue and vaginal lavages were collected and analyzed 24 and 72 hr 

following administration.  
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Tissue samples were evaluated for edema of muscle, interstitial, and 

epithelial tissue. In addition, the macrostructure of untreated and vehicle-treated 

cervical and vaginal epithelia were compared, and assessed for potential 

keratinization and goblet cell presence. A score ranging from 1 to 4 was used to 

determine the severity of epithelial changes. Images of tissues collected 24 hr after 

vehicle administration are shown in Figure 5.8A-E. Extracted tissues from 

untreated controls demonstrated compact squamous and cervical epithelial tissue, 

with no evidence of edema nor inflammation. Similarly, tissues treated with blank 

NPs or NP-EF composites showed similar morphology and normality, relative to 

untreated tissue (scores of 1 to 2). Furthermore, no increase in lymphocyte 

accumulation was observed in these groups. Overall the tissues from vehicle-

treated mice were comparable in morphology to tissues from untreated mice. 
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Figure 5.8. The safety of NPs and NP-EF composites was assessed by 

administering platforms to murine reproductive tracts for 24 and 72 hr. H&E stained 

tissues of murine reproductive tracts exposed to (A) no treatment, (B) sham-

treatment, (C) blank NPs, and (D) blank NP-EF composites for 24 hr. No indication 
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of tissue inflammation or epithelial disruption was observed after NP or NP-EF 

administration, relative to untreated controls. Additionally, cytokine expression was 

evaluated from extracted murine tissue and vaginal lavages collected (E, F) 24 and 

(G, H) 72 hr after vehicle administration. Cytokine expression was assessed using 

previously published criteria, with acceptable safety values within a 2 to 5-fold 

range of expression in the untreated control group. Statistical analysis was used 

in addition to evaluate possible increased cytokine expression in both tissue and 

vaginal lavage samples.  Mice treated with blank NPs or NP-EF composites 

expressed similar cytokine levels relative to untreated controls, with no cytokine 

levels demonstrating over 5-fold increase relative to untreated controls, indicating 

that the presence of either platform does not induce inflammation or immune 

response. Statistical significance between untreated controls and other groups 

represented by * (p < 0.05).  
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For N-9 treated mice, a slight increase in neutrophil accumulation was 

observed at the surface of the cervical squamous epithelium, relative to untreated 

controls, indicating minor topical damage (score range 1 to 2). One N-9 treated 

sample exhibited increased inflammation, due to the presence of peripheral blood 

mononuclear cells, goblet cell fusion, and epithelial disruption, resulting in a score 

of 3 (data not shown). However, the alterations observed in the N-9 control 

replicate were not observed in any 72 hr N-9 treated tissue controls, indicating 

transitory damage.  

Finally, cytokine expression was assessed in collected murine tissues and 

vaginal lavages 24 and 72 hr after blank NP and NP-EF administration. Cytokine 

expression from blank NP or NP-EF treated mice was compared to levels in 

untreated mice, as well as to N-9 and sham-treated control groups. Cytokine 

expression was evaluated based on previously published guidelines, in which a 

significant level of intravaginal inflammation results in a 2 to 5-fold increase in 

cytokine expression, relative to untreated controls69. Cytokine expression from 

extracted vaginal tissue and vaginal lavages is shown in Figure 5.8F-I, indicating 

that both blank NPs and NP-EFs are non-inflammatory. In both collected vaginal 

tissue and lavage samples treated with blank NPs and NP-EF composites, 

cytokine levels were comparable to untreated negative controls (p > 0.05). This 

trend was exhibited both 24 and 72 hr post-administration, with no statistical 

significance in cytokine expression between most untreated and blank fiber-

treated groups. The only exceptions observed were in tissues that had been 

administered NPs for 72 hr, which demonstrated decreased cytokine levels of both 
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MIP-1β and TNF-α, and 72 hr wash samples from the NP-EF treated group, which 

showed increased IL-6 expression, relative to the untreated group. For sham-

treated controls, which simulated the administration method via tweezers only, 

increased cytokine expression was observed in 24 hr tissue (MIP-2), 24 hr wash 

(IL-1β), and 72 hr wash (IL-6, MCP-1), relative to untreated controls. The N-9 

treated group demonstrated an increase of MIP-2 in 72 hr wash samples only.  

Increased TNF-α expression is typically associated with increased IL-1α, IL-1β, 

and IL-2 expression, whereas increased MIP-1β is associated with increased 

neutrophil accumulation, neither of which were observed in NP-treated tissue 

samples337,338,340. Additionally, increased IL-6 expression alone is not indicative of 

inflammation, but is overexpressed with TNF-α and IL-1α under conditions of 

localized inflammation, which were not observed in NP-EF treated mice356. 

Therefore, we attribute the increased expression of IL-6, MIP-1β and TNF-α to 

variability in samples, and not inflammation, as our delivery platforms did not elicit 

increased the expression of multiple cytokines. An ELISA, used to confirm IL-1β 

levels, showed similar results, showing that both blank NP and NP-EF composites 

induced negligible increases in cytokine expression, relative to untreated controls 

(p > 0.05). 

Discussion 

During the past decade, Griffithsin has been studied for its activity against 

a variety of viruses, including HSV-2 and HIV-163,65,66, and has demonstrated an 

outstanding in vivo safety profiles, with no induction of inflammatory or cytokine 

responses. Given these successes, recent work has focused on exploring GRFT 
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delivery in topical dosage forms to provide on-demand delivery options in 

preventing viral infections. Toward these efforts, recent work evaluating GRFT gels 

has shown in vivo efficacy against both HIV-1 and HSV-2. Moreover, other studies 

demonstrated the efficacy of GRFT fast dissolving inserts (FDIs) in vivo73,74. In 

these studies, both gels and inserts released GRFT within 4 hr to protect mice 

against a lethal dose of HSV-2 infection65,73. Furthermore, previous work in our 

group has developed pH-responsive and surface-modified fibers that incorporate 

GRFT for short-term protection against HIV-1 infections75,162. While these 

technologies may provide on-demand protection, to date, vehicles have not been 

developed that provide long-term (here, > 72 hr) biologic or GRFT delivery options. 

Delivery platforms that provide sustained-release may enable less frequent 

administration to provide an effective and practical long-term prevention strategy 

that is less reliant on user adherence.  

To achieve long-term prevention, multilayered nanoparticle-fiber 

composites were developed in this study to provide a dual-purpose sustained-

release platform against HSV-2 and HIV-1 infections. Previous studies for other 

applications (e.g., chemotherapy, antibacterial) have demonstrated the potential 

of multilayered fibers alone to provide spatially-specific release, where specific 

layers incorporate active agents, and other layers are tailored to delay or tune 

release177-182,184,357. These architectures provide unique advantages relative to 

traditional uniaxial fiber architectures, particularly for sustained-release 

applications. Multilayered fibers comprised of distinct hydrophilic and hydrophobic 

polymer layers have combined the advantages of both polymer types to highly 
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incorporate small hydrophilic drugs or biologics, resulting in better tunability of 

release357. Given these attributes, parallel to these NP-EF composite studies, free 

GRFT was incorporated into multilayered fibers with shell thicknesses similar to 

the NP-EF composites. Although shell thickness did delay release from 

multilayered fibers, complete GRFT release from all fibers was observed within 72 

hr (Supplemental Fig 5.2), which may be attributed to the pore sizes of PCL shell 

layers and the lack of NPs to further modulate release (Figure 5.4B). 
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Supplemental Figure 5.2. The cumulative release of GRFT from multilayered 

fibers with different outer layer thicknesses shown as (A) total GRFT release or (B) 

percent of total loading. Increased GRFT release was observed from multilayers 

with thinner shells, although complete release was observed in all samples after 

72 hr. Griffithsin release values are shown as the mean ± standard deviation of 

three independent NP-EF batches. 
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While multilayered electrospun fibers alone (without NPs) have been 

previously studied to provide the sustained-release of hydrophilic agents177-182,184, 

NP-EF composites have been less extensively studied to prolong delivery198,206-

209. In one proof-of-concept study, multilayered fibers alone comprised of a PCL 

shell and a PEO inner layer were fabricated to provide sustained-release of the 

small hydrophilic dye rhodamine B for up to 15 days358. By increasing the shell 

thickness by a factor of 4, release was extended up to 25 days, with thicker outer 

layers providing close to zero-order release profiles, relative to fibers with thinner 

outer layers. More recently, hydrophilic, rapid-dissolve NP-EF single-layered 

composites have been designed to enhance agent retention within the murine 

reproductive tract215. Hydrophilic PVA and PVP fibers incorporating rhodamine B 

or etravirine PLGA NPs were fabricated and intravaginally administered to mice. It 

was found that composite dissolution within murine tissue was slower, relative to 

in vitro release studies, due to the decreased wettability within the murine 

reproductive tract, which contributed to the prolonged release of both rhodamine 

B and etravirine. The intravaginal retention of rhodamine was 30-fold higher 24 hr 

after composite administration (~50% total dose present) relative to administration 

of free NPs (1.5% total dose), in addition, detectable amounts of rhodamine were 

present within the reproductive tract for up to 72 hr. Additionally, etravirine released 

from NP-EF composites demonstrated a 12-fold increase in concentration after 72 

hr composite administration (44% total dose), relative to free NP administration 

(1.2% total dose). For both rhodamine B or etravirine PLGA NPs, durations longer 

than 24 hr post-administration showed a significant fraction of freely administered 
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NPs (~99%) absent from the murine reproductive tract, due to high mucus 

clearance. In contrast, NP-EF composites provided short-term release of both 

compounds and improved rhodamine and etravirine retention over the course of 

72 and 120 hr, respectively. Although this study demonstrated only short-term 

release (up to 120 hr) using readily dissolvable NP-EF composites, it demonstrates 

the potential of nanoparticle-fiber composites to prolong active agent release, 

relative to the administration of free NPs. While NP encapsulation within 

hydrophilic polymers such as PVA and PVP may improve NP retention for 

durations less than one week, we hypothesized that the incorporation of 

hydrophobic polymers in more complex multilayered architectures may 

significantly extend release profiles of active agents compared to using to fibers or 

NPs alone.  

In this work, combining the unique advantages of electrospun fibers and 

nanoparticles, resulted in extended GRFT release (up to 90 d) from multilayered 

nanoparticle-fiber composites, relative to PLGA and mPEG-PLGA NPs, which 

released GRFT within one week. GRFT NP-EFs demonstrated long-term release, 

particularly from the formulation that incorporated a lower concentration of NPs 

(1% w/w). Based on these results, GRFT NP-EF composites incorporating 20% 

w/w GRFT NPs were fabricated and assessed for sustained-release. Although a 

greater amount of GRFT release was demonstrated in the 20% w/w composites, 

compared to 1% NP-EFs, higher burst release was observed in the 20% w/w 

composites, with negligible release between weeks 1 and 4. However, both 1 and 

20% formulations demonstrated extended GRFT release from wk 5 through wk 9, 
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which was attributed to NP and EF degradation. Future studies may evaluate other 

polymer types or polymer blends in the outer layer to further tailor GRFT sustained-

release profiles. Additionally, outer layer thickness provided some modulation of 

GRFT release, but additional options such as electrospinning conditions affecting 

fiber micromorphology such as pore size, may provide further tunability of release. 

Moreover, the overall multilayered fiber architecture, including the number of 

discrete fiber layers, may be changed to further adjust GRFT release. Finally, the 

differences between in vitro models of release and the reproductive tract must be 

considered as well. The decreased wettability within the FRT, may prolong release 

of agents from composites, to in vitro models215.  

In addition, to addressing the need for sustained-release delivery, another 

benefit of composite platforms is that both NPs and fibers can preserve the activity 

of encapsulants. While GRFT has been shown to retain activity in a variety of 

physiological environments, including human semen and blood68,73,162,359, studies 

have shown that GRFT is susceptible to oxidation, specifically the 78th amino acid 

residue (methionine), which may impact its long-term stability360,361. Moreover, 

studies evaluating  GRFT-containing FDIs showed that GRFT was initially 

susceptible to thermal shear and compression stresses, in addition to oxidation 

during conventional FDI fabrication processes, requiring specialized fabrication in 

order to provide stability for incorporated GRFT74. Similar to these specialized 

FDIs, electrospun fibers have been shown to preserve the stability of incorporated 

proteins80,362,363. In particular, previous work has shown that incorporated agents 

released from fibers provided enhanced long-term in vitro efficacy relative to free 
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agents, due to fibers preserving encapsulant  activity357. Moreover, the 

incorporation of hydrophilic polymers can improve biologic encapsulation and 

maintain protein integrity and activity, relative to more hydrophobic polymers that 

often require harsh organic solvents during fabrication.  

In line with previous observations regarding NPs and fibers, multilayered 

NP-EFs were also shown to preserve the activity of incorporated GRFT. The 

results from in vitro HIV-1 inhibition assays demonstrated that GRFT released from 

either NPs or NP-EF composites provided comparable antiviral activity relative to 

free GRFT. These results are in agreement with previous studies that evaluated 

free GRFT and GRFT incorporating pH-responsive and surface-modified fibers, 

demonstrating a high degree of stability and retention of functional activity75,162. 

Similar results are shown here, suggesting that multilayered composites maintain 

the structure and corresponding functional activity of GRFT. More importantly, 

composites provided similar inhibition of in vivo HSV-2 infections relative to free 

GRFT. Future work with composites seek to optimize GRFT and GRFT NP 

loading, and will potentially evaluate the co-delivery of multiple active agents with 

different mechanisms of action, to reduce doses required to provide dual-

protection.  

While this study sought to translate the antiviral properties of GRFT NPs 

and composites to in vivo applications, GRFT NPs and NP-EF composites were 

initially evaluated using an HSV-2 challenge model 24 hr following vehicle 

administration. This challenge time was selected to evaluate the initial potential of 

these vehicles to provide complete protection relative to other GRFT-based on-
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demand platforms currently under evaluation. Both GRFT NPs as well as GRFT 

composites provided potent protection against infection, similar to free GRFT. 

Moreover, for the few mice that were infected, GRFT reduced the infection severity 

and disease course, which is in line with previous studies that evaluated the in vivo 

efficacy of GRFT gels62.  Another observation from the efficacy study was that 

blank platforms provided modest levels of protection against viral infection relative 

to untreated/infected controls (35% survivability). This confirms previous in vitro 

studies from our group that have shown that polymer presence alone can serve as 

a physical barrier to virus infection75,87. In future work, we may evaluate different 

shapes and sizes of composites, in line with a dose-optimization study to provide 

a more detailed characterization of this delivery platform.   

In addition to investigating dose response and evaluating the potential of 

composites to act as a physical barrier of protection, intravaginal retention active 

agents released from topical delivery vehicles could be explored further. In other 

studies that evaluated GRFT and carrageenan gels, efficacious GRFT 

concentrations were detected in murine models 8 hr following initial administration, 

despite in vitro FDI dissolution occurring within 1 min73. These studies attributed 

epithelial-bound GRFT to the high concentrations present for hours after vehicle 

dissolution. In addition to the decreased wettability of the delivery platforms 

presented here, we hypothesize that GRFT and even vehicle binding may further 

extend the GRFT retention within the reproductive tract. Although examining the 

pharmacokinetics of GRFT released from multilayered composites in murine 

reproductive tissue was beyond the scope of this work, future studies will explore 
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how intravaginal retention relates to the long-term protection imparted by 

multilayered composites against single or multiple challenges of HSV-2 at different 

times with respect to composite administration. Based on the release studies 

presented here, we anticipate that GRFT composites will maintain efficacious 

levels of GRFT on the order of weeks to months, depending on fiber dose and NP 

loading, and will demonstrate long-term efficacy against both HIV-1 and HSV-2 

infections. 

Finally, the safety of nanoparticles and multilayered composites were 

assessed in both in vitro and murine models. These safety studies were conducted 

to evaluate potential toxicity or inflammation caused by the administration of these 

delivery platforms, representing an important criteria of topical delivery platforms. 

Previous work has shown that increased cytokine expression within the female 

reproductive tract is associated with an increased risk of HIV-1 acquisition, which 

may negate any protective attributes of a delivery platform364. Results from 

cytotoxicity and histology studies showed that blank and GRFT NPs and NP-EF 

composites demonstrated safety and biocompatibility. Furthermore, cytokine 

expression levels from vaginal lavages and tissues exposed to NP and NP-EFs 

were within a 2 to 5-fold range of levels in untreated controls, indicating the 

preliminary safety of these delivery platforms69. These results were anticipated, 

given the established safety profiles of the selected polymers, the encapsulant 

GRFT, and our previous observations with electrospun fibers and NPs individually.  

Conclusion 
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In this study, multilayered NP-EF composites that incorporate the antiviral 

lectin GRFT were fabricated to provide dual-protection against HIV-1 and HSV-2 

infections. Composites demonstrated high loading of GRFT NPs and achieved 

sustained-release of GRFT, over a duration of 90 d, dependent on GRFT NP 

loading within the NP-EFs. Both NPs and NP-EF composites inhibited HIV-1 

infection in vitro and moreover, these vehicles demonstrated protection against a 

lethal dose of HSV-2 infection in a murine model. Overall these platforms 

demonstrated preliminary safety and efficacy in vivo, suggesting the potential of 

these new composite platforms as an alternative sustained-delivery dosage form 

to provide dual-protection against HIV-1 and HSV-2 infections.
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CHAPTER 6 

OVERALL DISCUSSION AND CONCLUSION 

In these studies, electrospun fibers, composed of different polymer types 

and fiber architectures were fabricated to deliver the antiviral lectin GRFT or the 

antiretroviral TDF. The overall goal was to create topical delivery platforms that 

would provide dual-purpose protection against both HIV-1 and HSV-2 infections. 

Additionally, these platforms were designed to overcome challenges associated 

with other topical delivery platforms, such as transient release, as well as to 

provide an alternative dosage form for women in providing protection.  Ultimately, 

the objective is to translate the success of these fiber formulations into effective 

dosage forms that provide efficacious, discreet, and convenient protection against 

STIs for women. 

Studies have shown that HSV-2 infection increases the susceptibility to HIV-

1 infection by 2 to 4-fold2,3. Hence, there is a pressing need to provide dual-

purpose protection against both HIV-1 and HSV-2 infections. Additionally, women 

are disproportionately impacted by the HIV pandemic, necessitating strategies 

focused on new alternatives for female-applied protection365. 

The development of active agents that provide multipurpose protection 

against HIV-1 and HSV-2 is a potential solution. There are dozens of therapeutics 
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available to treat either HIV-1 or HSV-2; however only a fraction of these have the 

ability to prevent both infections55,366. Currently, Truvada® is the only oral tablet 

FDA-approved to prevent HIV-1 infections27. One of the two active agents in the 

tablet, TDF, has shown activity against HSV-2, albeit with decreased efficacy 

relative to HIV-1. However, other traditional antivirals, such as valaciclovir, 

foscarnet, and raltegravir, also have the potential to provide dual-purpose 

protection367-369. However, these agents are concurrently used in treatment 

regimens, raising the risk of antiviral resistance and potentially rendering 

preventative strategies using these molecules ineffective.  

Recently, new classes of antiviral biological agents have been discovered 

that possess potent antiviral activity. Polysaccharides including carrageenan or the 

proteins, of cyanovirin-N and scytovirin, have all shown promising activity against 

HIV-1300,370-372. However, the lectin GRFT, originally derived from a species of red 

algae has demonstrated potent activity within the picomolar range against HIV-1 

and other viruses, relative to other biologic candidates66. Moreover, unlike other 

tested biologics, GRFT has been shown to be safe and biocompatible, and to 

induce negligible immune response or inflammation68,69.  

Concurrent with the development of new active agents, efforts have focused 

on oral and topical pre-exposure prophylaxis (PrEP) to prevent viral infections. For 

oral PrEP, Truvada is the only oral tablet that is FDA-approved to prevent HIV-1 

infection. However, efficacy is dependent on strict user adherence, and side effects 

have been reported with long-term use373,374. Additionally, many of the new 

antiviral biologics lack oral bioavailability, excluding their use for oral PrEP. Topical 
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PrEP, where dosage forms are directly administered to the FRT, may reduce the 

occurrence of side effects relative to oral PrEP, and improve biologic delivery. 

However, the dosage forms commonly used to administer biologics, such as gels, 

films, or fast dissolving inserts, may be challenged with providing prolonged 

protection or achieving acceptable user adherence29. Several topical PrEP delivery 

platforms, such as gels and films, have showed disappointing results in clinical 

trials, due to low user adherence29,219,375. Although biologics such as GRFT have 

been successfully incorporated into gels and fast dissolving inserts to impart in 

vivo antiviral protection, to date there is no delivery platform that extend the release 

of GRFT within the FRT for longer than 72 hr65,73. 

In response to these challenges, this work sought to develop polymeric 

electrospun fibers to deliver TDF and GRFT for different temporal administration 

strategies. The wide diversity of polymers available for electrospinning, 

electrospinning parameters, and the different fiber architectures available allows 

for a variety of fibers types to be fabricated76,109,114,376. In these studies, fibers 

comprised of PLGA polymers were covalently surface-modified with GRFT, to act 

as a stationary viral trap. Results from in vitro HIV inhibition assays demonstrated 

that GRFT surface-modified fibers completely inhibited HIV-1, and that fibers alone 

reduced infection. Next, fibers composed of polymer blends were developed to 

provide pH-responsive release of GRFT. In addition, fibers comprised of 

hydrophilic polymers were fabricated to provide rapid-release of GRFT against 

both HIV-1 and HSV-2 infections. All rapid-release formulations were shown to 

highly incorporate GRFT and to provide complete protection against both 
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infections in vitro, while maintaining comparable in vivo protection relative to free 

GRFT.  Finally, multilayered composites demonstrated the sustained-release of 

GRFT and corresponding potent antiviral activity against HSV-2 in vivo. 

Conclusion and Future Work 

During the course of these studies, target product profiles (TPP) were 

established for GRFT NPs, fibers, and NP-EF composites (Table A 1, Table A 2). 

These profiles defined the acceptable and ideal properties as criteria by which to 

measure these platforms, with for example, providing sustained-release of 

efficacious GRFT concentrations for at least one month. Other goals included 

providing in vitro anti-HIV-1 activity and in vivo safety and efficacy against HSV-2 

infection. In these studies, the selected GRFT platforms provided complete in vitro 

inhibition of HIV-1 infection and more importantly, in vivo protection against HSV-

2 challenge at an LD90 dose. Furthermore, our in vivo safety studies confirm the 

preliminary safety of GRFT rapid-release EFs, NPs, and NP-EF composites, 

demonstrating the potential of these dosage forms for intravaginal application. 

In accordance with the established TPPs, one of the first delivery criteria 

was that delivery vehicles would release GRFT concentrations that were 

efficacious against both HSV-2 and HIV-1 infections. Although these platforms 

failed to provide daily release of GRFT (600 ng/mL and 39 µg/mL for HIV-1 and 

HSV-2 respectively), these values were initially determined primarily from in vitro 

GRFT studies in completely preventing infections. Upon further evaluation, these 

values may not reflect the actual GRFT dose required to prevent infections in vivo, 
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based on the efficacy of our delivery platforms assessed within HSV-2 murine 

models of infection. Despite the decreased GRFT release relative to initial TPP 

requirements, GRFT delivery platforms provided comparable protection against a 

LD90 of HSV-2 infection. In agreement with our observations, other studies that 

assessed GRFT FDIs demonstrated that GRFT is retained within the reproductive 

tract due to the interactions between the tissue and lectin73,74. Furthermore, it was 

found that efficacious concentration of GRFT would be retained for several days, 

lowering the required daily release of GRFT. Additionally, the amount of GRFT 

released in vivo is dependent upon the amount of fiber intravaginally delivered.  In 

line with our own observations and other’s work, future studies evaluating NPs and 

NP-EF composites will assess if these platforms will provide extended protection 

against multiple challenges of in vivo HSV-2 infection.  

In addition to providing GRFT release, the TPPs established the 

requirement that our GRFT delivery platforms must demonstrate acceptable safety 

profiles. Our in vivo and in vitro work have demonstrated the preliminary safety 

profiles of all delivery platforms. MTT analysis demonstrated that all platforms 

provided over 95% viability of vaginal cell lines. Additionally, no histological 

abnormalities were noted in murine tissues incubated with blank platforms. 

Although individual cytokines expression levels in some samples showed over a 2 

to 3-fold increase relative to untreated controls, this was not observed with multiple 

cytokines, indicating negligible inflammatory response. However, further studies 

will be required to assess the safety of platforms, such as evaluating peripheral 

blood mononuclear cells (PMBCs) following intravaginal administration.  
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Despite the success of these platforms, more work is required to assess the 

safety and efficacy of these platforms. First, in vivo murine models could be used 

to assess GRFT release, retention, and distribution within the reproductive tract as 

a function of administration time. Previous studies evaluating FDI and gel murine 

intravaginal retention found that GRFT released from these platforms was retained 

for longer durations in vivo than in vitro release studies suggested65,73. This 

disparity between release profiles has been attributed to the decreased wettability 

of the reproductive tract, resulting in delayed release of agents from platforms and 

increased retention of GRFT. Hence, the increased GRFT retention may translate 

to these platforms providing increased durations of protection against viral 

infections, than estimated from in vitro release studies. To validate this hypothesis, 

future studies may assess GRFT concentration in both reproductive tissue and 

vaginal lavages at selected timepoints following GRFT platform administration. To 

accomplish this, platforms incorporating fluorescently-labeled GRFT could be 

utilized, with murine reproductive tracts imaged for quantification of localized 

fluorescence at selected timepoints.  We hypothesize that our GRFT platforms, in 

particular the GRFT NPs and NP-EF composites, will demonstrate prolonged 

retention and release, relative to the results observed during in vitro release 

studies. 

Concurrent with assessing the retention and distribution of GRFT from 

delivery platforms is to evaluate the window of protection imparted by GRFT 

delivery vehicles. Our initial in vivo studies evaluated the efficacy of rapid-release 

and sustained-release delivery platforms 4 hr and 24 hr after administration, 
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respectively. Immediate future work can assess if GRFT platforms protect against 

extended HSV-2 challenges, such as 1 wk, 1 month, or longer durations following 

platform administration. Additionally, multiple challenges of HSV-2 may be 

administered to assess if platforms provide protection in circumstances of multiple 

exposures to virus.  

In addition to expanding the evaluation of these platforms against HSV-2 

infection, other efficacy studies may assess the impact that multiple active agents 

with different mechanisms of action incorporated in fibers or NP-EF composites, 

may have on the dose needed to prevent HSV-2 infection. Although GRFT shows 

potent activity against HIV-1, it is less efficacious against HSV-2, demonstrating a 

1000-fold higher IC50 for HSV-2, relative to HIV-1. Future formulations may 

incorporate other active agents tailored against HSV-2 (and HIV-1) infections, in 

addition to GRFT, to improve the dual-purpose utility of these platforms. We 

hypothesize that by incorporating additional active agents, future GRFT platforms 

will demonstrate synergistic efficacy against both HIV-1 and HSV-2 infections. 

During our in vivo HSV-2 efficacy studies, it was found that blank EFs and 

NPs alone imparted partial protection against infection, relative to 

untreated/infected controls. Previous studies in our group have shown that the fiber 

structure itself can act as a barrier to viral particles, and inhibit cell entry. Future in 

vivo experiments may evaluate this property in order to enhance antiviral 

protection of delivery platforms. A potential experimental setup could determine 

how different fiber or composite structures (without active agent) could inhibit or 

prevent the spread of seminal fluid in murine models. Using seminal fluid 
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containing fluorescent compounds mimicking viral particles or fluorescently-

labeled sperm, different fiber architectures could be assessed in mice to minimize 

virus transport throughout the reproductive tract. We hypothesize that fiber 

structures, in addition to providing release of incorporated agents, can be 

fabricated to as a physical barrier to virus distribution in tissue, imparting further 

protection.    

Although we anticipate success of these platforms in providing sustained-

release protection against viral infections, additional preclinical studies are 

required to fully ascertain the potential safety risks associated with administration 

of intravaginal delivery platforms, such as evaluating off-target effects and 

correlating with GRFT concentration and distribution in the reproductive tract. 

Previous safety studies with GRFT have demonstrated an outstanding safety 

profile, revealing that GRFT does not induce inflammation nor toxicity following 

subcutaneous or intravaginal administration. Although, intravaginal administration 

of GRFT gel in murine models results in GRFT distribution throughout the 

reproductive tract, including the uterine horns, it is considered unlikely for GRFT 

to absorb systemically. Similar results were observed in tests assessing polymers 

that comprising both EFs and NPs215, however, further testing will be required to 

validate the safety of our platforms. We hypothesize that our delivery platforms will 

continue to exhibit acceptable safety profiles in future studies that examine the 

pharmacodynamics and pharmacokinetics of released GRFT. 

Lastly, we anticipate the need for additional studies to confirm the safety of 

these delivery platforms. Previous studies examining microbicide candidates, such 
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as N-9, showed that traditional safety studies failed to reveal the gel’s cytotoxic 

properties, which enhanced the risk of viral acquisition, and exposed the need for 

further studies. A virus susceptibility study, run with the proper positive controls 

can be investigated to validate the complementary histological and cytokine 

studies conducted to date. Compounds known to increase viral susceptibility, such 

as N-9 and benzalkonium chloride, will be administered as positive controls of 

toxicity and inflammation. We hypothesize that GRFT delivery platforms will not 

enhance the risk of HSV-2 acquisition, but that the positive controls will enhance 

susceptibility. 

Based on our criteria and future studies, multilayered composites 

demonstrated the most promising potential for long-term GRFT release of the 

platforms examined. The composites provided GRFT release for up to 90 d, and 

were designed to overcome the challenge of high mucus clearance within the FRT. 

However, it was noted that only 50% of incorporated GRFT released from NP-EF 

composites. Future studies will be necessary to account for the lack of complete 

release during the 90 d period. It is possible that residual GRFT may be 

noncovalently bound to the composite scaffold structure. Established extraction 

methods may be used to separate GRFT protein from polymeric scaffolds. Another 

possibility for low GRFT recovery is that GRFT was released completely, but was 

unable to be quantitated due to denaturation or alteration. Quantification of eluate 

samples from composite release studies can be analyzed using liquid 

chromatography-mass spectrometry to account for possible denatured or 

covalently modified GRFT compounds. Although GRFT has been characterized as 
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highly stable and the high loading of rapid-release GRFT fibers results indicate 

that the electrospinning process does not affect the activity or structure of GRFT, 

further analysis will be required to validate the stability of incorporated GRFT from 

NP-EF composites. 

Finally, in future work, the composite architectures may be more finely 

tailored to modulate active agent release. Altering polymer choice, electrospinning 

conditions, or the number of fiber layers, all have the potential to tune GRFT 

release from multilayered composites. Additionally, the shape and size of 

composites may be revisited to better serve user preference and needs. 

Concurrent with experimental composite alterations, mathematical modeling may 

be employed to better predict the release kinetics of agents from fiber delivery 

platforms. Previous work has shown the capacity of in silico modeling in predicting 

TDF release from PLGA fibers. By accounting for parameters involved in agent 

release, in silico models can complement and expedite the optimization of agent(s) 

release. This optimization may be helpful for composites, in which the fabrication 

of these complex structures is dependent upon dozens of interdependent 

parameters.
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APPENDICES 

FABRICATION AND CHARACTERIZATION OF GRIFFITHSIN-MODIFIED FIBER 

SCAFFOLDS FOR PREVENTION OF SEXUALLY TRANSMITTED INFECTIONS  

Introduction 

During the past two decades, EFs have been extensively used in the fields 

of drug delivery and tissue engineering108. Often, biocompatible polymers are 

selected to easily translate to therapeutic applications. To fabricate polymeric EFs, 

the selected polymer is dissolved in an organic solvent or aqueous solution, 

depending on the degree of polymer hydrophobicity377. Active agents of interest 

are then added to the solvent or aqueous solution prior to the electrospinning 

process. The polymer solution is then aspirated into a syringe and slowly ejected 

while subject to an electrical current. This process typically results in polymer fibers 

with sheet or cylindrical macrostructures (Figure A.1), and fiber diameters ranging 

from the micro- to nano-scale80. For most therapeutic applications, active agents 

are incorporated within the fibers during the electrospinning process and are 

released from the fiber via diffusion and subsequent fiber degradation. The rate of 

degradation or release may be altered by using different types of polymers or 

polymer blends to establish a desired release profile, imparting unique chemical 

and physical properties376, and promoting the encapsulation of virtually any 
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compound. As such, EFs have proven beneficial to the delivery of small molecule 

drugs and biological agents including proteins, peptides, oligonucleotides, and 

growth factors80,110,183.  
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Figure A.1 The macroscale morphology of electrospun fibers. The electrospun 

fibers shown were fabricated using a 4 mm (cylinder) and 25 mm (sheet) diameter 

mandrel, respectively. 
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In the field of STI prevention, EFs have been recently used to incorporate 

and provide sustained- or inducible-release of antiviral agents38,83-87,101,160,166,378. 

In one of the earliest studies, pH-responsive fibers were developed to release 

active agents in response to environmental changes within the female reproductive 

tract (FRT), as an on-demand method of protection against HIV-183. Since, other 

studies have investigated polymer blends comprised of polyethylene oxide (PEO) 

and poly-L-lactic acid (PLLA), to evaluate the tunable release of antiviral and 

contraceptive agents for HIV-1 prevention and contraception in vitro86. Additional 

studies have demonstrated the feasibility of EFs to provide the following: prolonged 

release of small molecule antivirals87, strong and flexible mechanical properties379, 

3-D delivery architectures380, inhibition of sperm penetration86, and the ability to 

merge with other delivery technologies378. Finally, previous work has evaluated 

polymeric fibers for the sustained-delivery of antiviral agents against common co-

infective viruses, HSV-2 and HIV-187. In this study, polymer fibers provided 

complementary activity to antiviral delivery by retaining their structure for up to 1 

month and providing a physical barrier to viral entry. From these results, it was 

observed that EFs may be used to both physically and chemically hinder virus 

infection. 

While tunable release properties make polymeric EFs an attractive delivery 

platform for microbicide delivery, EFs have been developed in other applications 

to serve as surface-modified scaffolds376. EFs have been used to mimic the 

morphology of the extracellular matrix (ECM), often acting as scaffolds to improve 

cellular regeneration381, and enhance their utility in tissue engineering211,382. Fibers 
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comprised of polymers such as poly-ε-caprolactone (PCL) and PLLA have been 

surface-modified with growth factors and proteins after electrospinning to impart 

ECM-like properties including increased cellular adhesion and proliferation383,384. 

Additionally, antimicrobial surface-modified EFs have been evaluated to prevent 

the growth of specific pathogenic bacteria385,386. Due to this versatility and the 

ability to induce biological effects, EF technology continues to expand across a 

variety of fields to provide multi-mechanistic functionality. Yet, despite their utility 

in a diversity of applications, surface-modified fibers have only recently been 

explored in the microbicide field75. 

In parallel with the development of new delivery technologies to prevent and 

treat STIs, novel biological therapeutics have been developed. One of the most 

promising microbicide candidates is the adhesive antiviral lectin, GRFT66. 

Originally derived from a species of red algae, GRFT has demonstrated activity as 

a potent inhibitor of HIV-1, HSV-2, SARS, as well as Hepatitis C virus62-65,67,70. In 

fact, among biologically-based inhibitors, GRFT has one of the most potent anti-

HIV activities, inactivating HIV-1 almost immediately upon contact66, while 

maintaining stability and activity in the presence of culture media from vaginal 

microbes for up to 10 days69. More recently, a 0.1% GRFT gel was shown to 

protect mice against intravaginal HSV-2 challenge, making it a promising 

candidate for the first line of protection against both HSV-2 and HIV-165,387. For 

HIV-1 specifically, GRFT inhibits infection by physically binding gp120 or terminal 

mannose N-linked glycan residues on viral envelope surfaces to prevent entry61,387-

390. This inhibition is highly potent, with IC50s approaching 3 ng/mL62. In addition to 
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inhibiting HIV-1 infection, studies have also shown that GRFT protects against 

HSV-2 infection by inhibiting the cell-to-cell spread of the virus65. In all cases, 

GRFT has been shown to be adhesive to viral particles, while demonstrating high 

resistance to denaturation. Last, GRFT has demonstrated synergistic activity with 

combinations of Tenofovir (TFV) and other antivirals72, making it feasible and likely 

beneficial to co-administer with EFs. The potent properties of GRFT make it an 

excellent biologically-based antiviral candidate, in which delivery may be 

enhanced with EF technology.  

Utilizing this knowledge of the adhesive and innate antiviral properties of 

GRFT, a polymeric fiber scaffold was designed, that integrates these properties to 

provide the first layer of virus entry inhibition75. Finding inspiration in the way that 

cervicovaginal mucus hinders virus transport primarily through mucoadhesive 

mucin interactions, we hypothesized that by using EFs as a scaffold and covalently 

modifying the surface with GRFT, a high density of surface-conjugated GRFT 

would debilitate and inactivate virus at its entry point391-393. Here EFs were 

developed as a stationary scaffold to provide a protein-based, viral adhesive-

inactivating barrier platform. We sought to combine the potent antiviral properties 

of GRFT with a biocompatible, modifiable, and durable polymer platform, to create 

a novel virus "trap."  

To achieve these goals, fibers comprised of PLGA were electrospun, and 

EDC-NHS chemistry was used to subsequently modify the EF surface with GRFT. 

PLGA served as a model polymer due to its extensive use in electrospinning394, 

combined with its biocompatibility and cost-effectiveness. Additionally, surface 
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modification exploits the large surface area of EFs, and provides a useful 

alternative that can be combined with encapsulation to maximize fiber utility88. 

Unlike traditional encapsulation methods where only a portion of GRFT is available 

(and only transiently present in the FRT), surface modification may enable GRFT 

to maintain maximum bioactivity during the entire duration of treatment. 

Furthermore, the incorporation of hydrophilic compounds such as proteins, by 

traditional electrospinning methods, may result in lower encapsulation efficiencies 

and loss of protein activity362. Therefore, GRFT surface-modified fibers may offer 

a promising alternative delivery method that can be used alone or in combination 

with electrospinning to enhance protection against STI infection. 

Protocol 

Preparation and Fabrication of the Electrospun Fiber Scaffold 

CAUTION: All work with solvents or polymer solutions should be performed in a 

chemical fume hood. Refer to material safety datasheet of each reagent before 

starting the protocol. 

1. To electrospin a 3 mL 15% w/w PLGA polymer solution, weigh 720 mg of 50:50 

poly(lactic-co-glycolic acid) (PLGA; 0.55 to 0.75 dL/g, 31-57 kDa) into a 10 mL 

scintillation vial. The volume of the solution is based on the typical batch size used 

in current studies. 

NOTE: The polymer mass to add to a given volume of solvent must be calculated 

by first determining the density of the solvent used to dissolve the polymer. The 

density of the solvent Hexafluoro-2-propanol (HFIP) is 1.59 g/mL. Thus, the weight 
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of solvent, based on a volume of 3.0 mL HFIP needed, is 4.8 g (3.0 mL x 1.59 

g/mL). For a 15% w/w fraction of PLGA to HFIP, 720 mg PLGA must be added to 

3.0 mL HFIP (0.15 x 4,800 mg = 720 mg). The advantage of using a % w/w 

polymer/solution, rather than % w/v, is that this provides a defined weight of the 

final solution. This defined weight enables more accurate solvent replacement, in 

the case of solvent evaporation during step 1.3. 

2. Add 3.0 mL HFIP to the glass scintillation vial containing PLGA (from step 1.1) 

using a serological glass pipette. Cover the vial with plastic film, then measure and 

record the vial mass. 

3. Incubate the polymer suspension overnight at 37 °C to ensure complete 

dissolution of the polymer. If any solvent evaporates, decreasing the vial mass, 

add HFIP until the vial reaches its original mass in step 1.2. 

4. After incubation, prepare the electrospinning apparatus (Figure A.2A). Although 

a mandrel of any size may be used, here a rotating 25 mm outer-diameter stainless 

steel mandrel was used as the collector.  

NOTE: A larger mandrel diameter will decrease the fiber thickness, given the same 

volume of electrospinning solution. 
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Figure A.2 Electrospinning apparatus. (A) The collecting mandrel where the liquid 

jets of polymer deposit, and (B) the full electrospinning setup. 
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5. Aspirate the polymer solution into a 3 mL syringe. 

6. Connect a blunt 18-gauge, ½ inch needle tip to the syringe and dispense the 

excess solution (typically 0.25 mL) to remove empty headspace in the needle tip. 

7. Place the syringe on a syringe pump and set the instrument flow rate to 2.0 

mL/h. 

NOTE: This flow rate was previously optimized based on polymer viscosity for this 

formulation. 

8. Connect the power source to the syringe needle and electrospin the polymer 

solution using a voltage of +27 kV. The distance between the needle and collector 

should be set to approximately 25 cm (Figure A.2B. 

CAUTION: The electrospinning process creates a solvent vapor. Use a fume hood 

or an enclosed apparatus (Figure A.2) to remove the harmful vapor. 

9. Once the entire solution is electrospun, turn off the power source and allow the 

mandrel to spin for an additional 30 min to fully evaporate solvent. 

10. Turn off the rotating mandrel collector, and use a razor blade to cut the fiber 

from the mandrel. Use the blade to gently peel the fiber from the mandrel. 

11. Collect the electrospun PLGA fiber into a labeled Petri dish, and place in a 

desiccator overnight to remove residual solvent. 

Surface-modification of Fibers with GRFT 
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1. Prepare solutions of phosphate-buffered saline (PBS) and 2-(N-morpholino) 

ethanesulfonic acid (MES buffer). Prepare PBS by dissolving 8 g NaCl, 0.2 g KCl, 

1.44 g Na2HPO4, and 0.24 g KH2PO4 in 1 L of ultrapure water. Similarly, dissolve 

19.52 g MES (free acid, MW 195.2) and 29.22 g NaCl in 1 L of ultrapure water, to 

prepare MES buffer. Ensure the final pH of each solution is between 7.2 - 7.5 and 

5.0 - 6.0, respectively, using a pH meter. 

2. Prepare individual working solutions of EDC (2 mM) and NHS (5 mM). Remove 

the EDC and NHS from the freezer and allow them to equilibrate to room 

temperature before weighing. Weigh 4 mg of EDC into a 1.5 mL microcentrifuge 

tube. Weigh 6 mg of NHS into another microcentrifuge tube. Add 1 mL MES buffer 

to each tube. Vortex both tubes vigorously to ensure the reagents are fully 

dissolved. 

3. Prepare a solution of hydroxylamine by weighing 70 mg into a 50 mL conical 

centrifuge tube. 

4. Add 20 mL PBS to the hydroxylamine and vortex to dissolve. 

5. Mass out an appropriate amount of PLGA fiber into a 15 mL conical centrifuge 

tube. Typically, 75 mg of fiber is used for each reaction batch. 

6. Add 8 mL of MES buffer to the 15 mL tube. 

7. Add 1 mL each of the EDC and NHS solutions prepared earlier to the tube. The 

final volume of the solution should be 10 mL. The final concentrations of EDC and 

NHS should be 0.4 mg/mL and 0.6 mg/mL, respectively. 
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8. Close and seal the 15 mL tube with plastic film and place on a rotator to allow 

the solution to be gently inverted for 15 min at room temperature (Figure A.3B). 

This step activates the carboxyl groups on the polymer to allow for covalent 

modification with the GRFT protein (Figure A.3A). 
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Figure A.3 Schematic of EF modification with GRFT using EDC-NHS chemistry. 

(A) Carboxyl groups on the PLGA EF react with NHS in the presence of EDC to 

form amine-reactive esters, which will subsequently form stable amide bonds with 

the primary amines of GRFT. (B) Two milligram fiber disks or pieces are cut and 

incubated in 8 mL of MES buffer with 2 mL of EDC/NHS reagent and rotated for 

15 min. 
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9. After activation, carefully quench the reaction by adding 14 μL of β-

mercaptoethanol to the tube. Invert the tube several times to ensure complete 

mixing. 

CAUTION: β-mercaptoethanol is highly toxic and should only be used in a 

chemical fume hood. 

10. Discard the supernatant and rinse the PLGA fiber twice, with 10 mL of PBS, to 

remove any remaining β-mercaptoethanol. 

11. After rinsing, add an appropriate amount of GRFT stock solution to the tube. 

For example, a 5 nmol GRFT/mg fiber would require 6.35 μL of GRFT stock 

solution (from a 10 mg/mL stock) per mg of fiber. Thus a 75 mg fiber sample would 

require 476.25 μL of 10 mg/mL GRFT stock solution. 

NOTE: GRFT fibers with theoretical loadings of 0.05, 0.5, and 5 nmol GRFT per 

mg fiber were fabricated. 

12. Add enough PBS to bring the final volume to 8 mL, close and invert the tube 

to ensure thorough mixing. 

13. Seal the tube with plastic film and place on a rotor again, this time for 2 h. 

14. After the 2 h incubation, quench the reaction by adding 2 mL of hydroxylamine 

solution into the 15 mL centrifuge tube. Per manufacturer instructions, the final 

concentration of hydroxylamine during the quenching reaction should be 0.7 

mg/mL. 
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15. Mix the solution well and discard the supernatant. Rinse the surface-modified 

PLGA fiber twice with 10 mL ultrapure water to remove any unconjugated GRFT. 

16. Transfer the fiber to a Petri dish and place inside of a desiccator until the fiber 

is completely dry. Transfer the Petri dish to 4 °C for storage. 

SEM Characterization of GRFT Surface-modified Fibers 

1. Place a strip of double-sided carbon tape on an SEM specimen mount. Label 

the bottom of the specimen mount with the sample identifying information using a 

permanent marker. 

2. Cut three samples from one surface-modified fiber and place them on separate 

specimen mounts. The thickness of each sample is approximately 0.5 mm. 

3. Sputter coat the samples using electron-induced particle deposition from a gold 

plate. Sputter coat for 90 s, at 2.4 kV. 

NOTE: The sputter coat time may vary depending on equipment parameters, 

including voltage and amperage. 

4. Image the samples at 8 kV with a magnification ranging from 1,000 to 5,000X. 

Extraction of GRFT from Surface-modified Fibers 

1. Mass out 2 mg of fiber in triplicate into 1.5 mL microcentrifuge tubes. 

2. Add 1 mL dimethyl sulfoxide (DMSO) to the tube, then vortex and incubate for 

1 min at room temperature to completely dissolve the fiber. 
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3. After incubation, dilute a 10 μL aliquot of the DMSO-fiber solution from step 4.2, 

at least 100-fold in Tris-EDTA (TE) buffer (pH = 8.0). 

4. Store samples at -20 °C until loading characterization with ELISA. 

Measuring GRFT Desorption from Fibers 

1. To assess the amount of GRFT released or desorbed from the fiber, weigh 5 - 

10 mg of surface-modified fiber and place in a microcentrifuge tube. Record the 

fiber mass in each tube. 

2. Add 1 mL of an appropriate solution that mimics the physiological environment 

(e.g., PBS, TE buffer, simulated vaginal fluid (SVF), etc.) to each sample. 

3. Incubate the samples for 1 h on a rotating shaker at 200 rpm, 37 °C. 

4. After incubation, remove approximately 1 mL of TE buffer containing the 

desorbed GRFT from the vial, and aliquot to cluster tubes. Store at -20 °C until 

protein quantification. 

5. Transfer the sample to a new microcentrifuge tube, add 1 mL of fresh buffer 

solution to the fiber within the microcentrifuge tube, and incubate until the next time 

point. 

6. Typical time points used to measure release include: 1, 2, 4, 6, 8, 24, 48, 72 h, 

and 1 wk. Negligible desorption was observed in these studies after 4 h. 

Quantification of GRFT Extraction and Desorption via ELISA 

1. Coat a 96-well ELISA plate with 0.1 mL of HA (10 μg/mL) per well as previously 
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described395. Seal the plate with plastic film and incubate overnight at 4 °C (Figure 

A.4). 
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Figure A.4 Schematic illustrating GRFT quantification using ELISA. A 96-well 

immunoplate is coated with gp120 or HA to capture and immobilize GRFT. Primary 

antibodies against GRFT, secondary antibodies linked to horseradish peroxidase, 

and ELISA substrate are sequentially added to quantify GRFT. 
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2. Remove the coating buffer, and add 0.3 mL blocking buffer (2 - 3% bovine serum 

albumin (BSA) in PBS with 0.05% polysorbate 20) to each well. Incubate the plate 

for at least 2 h at room temperature. 

3. After incubation, rinse the plate 3 times with 1x PBS with 0.1% polysorbate 20 

(PBS-P). After rinsing, dispense 0.1 mL of sample, standard, or PBS as negative 

control into the respective wells. Incubate the plate again for 1 h at room 

temperature. 

4. Rinse the plate 3 times again with PBS-P. After rinsing, add 0.1 mL of primary 

antibody (goat anti-GRFT antiserum) into each well and incubate for at least 1 h at 

room temperature. Typically, the primary antibody solution is diluted by 1:10,000 

in PBS. 

5. After incubating the samples with primary antibody rinse the plates again 3 times 

with PBS-P. Add 0.1 mL of secondary antibody (horseradish peroxidase (HRP)-

conjugated rabbit anti-goat IgG) to each well and incubate for 1 h at room 

temperature. The secondary antibody solution is diluted by 1:10,000 in PBS. 

6. Wash the plate 3 times. Add 0.1 mL TMB 2-peroxidase substrate to each well. 

Monitor color development (approximately 2 min), then add 0.1 mL H2SO4 (1 N) 

to quench the reaction. Read plate at 450 nm on a plate reader. 

7. Average the background OD values (wells which only receive PBS), and 

subtract this from the experimental groups. 
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Representative Results 

Fiber morphology has a significant effect on the ability of surface-modified 

EFs to provide protection against viruses. Although electrospinning is a convenient 

and straightforward procedure, non-optimized polymer formulations may result in 

irregular fiber morphology (Figure A.5). Alterations in electrospinning conditions 

that result in the formation of beaded or amorphous mat-like morphologies, are 

often caused by solvent polymer incompatibility, low polymer viscosity, flow rate, 

or other electrospinning conditions. The resulting variations in fiber structure can 

result in different release profiles for drug-incorporated fibers or inconsistencies in 

conjugation efficacy, altering the fibers ability to physically or chemically hinder 

virus penetration. The PLGA EFs fabricated using the described electrospinning 

conditions should result in distinct fiber morphologies with diameters ranging 

between 1.5 and 2.8 μm (Figure 3.6). To determine fiber morphology and 

diameter, EFs should be examined with SEM prior to other characterization or 

modification steps.  
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Figure A.5 Effects of solvent choice on PLGA EF morphology. (A) The 15% w/w 

PLGA EFs in HFIP displayed desirable thread-like morphology. (B) The 15% w/w 

PLGA EFs in chloroform and dimethylformamide, failed to form due to non-optimal 

solvent choice or polymer concentration (viscosity). (C) The 15% w/w and (D) 20% 

w/w PLGA EFs in TFE demonstrate the importance of polymer viscosity. Beads 

formed in the formulation with lower polymer concentration (C), while increasing 

the polymer concentration (solvent viscosity) resulted in well-defined fiber 

morphology (D). Note, Figure 3.5B was taken at a lower magnification to show the 

mat-like morphology. Scale bars = 10 µm. 
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Figure A.6 SEM images and fiber diameters of bare and GRFT-modified EFs. (A) 

Bare PLGA EFs and PLGA EFs surface-modified with (B) 0.05 nmol, (C) 0.5 nmol, 

and (D) 5 nmol of GRFT per mg of fiber. Scale bars = 10 µm. (E) Diameters of 

unmodified and GRFT-EFs. Error bars represent the mean ± SEM. No statistical 

difference was observed between the diameters of unmodified and GRFT-modified 

fibers. Figure A.6E has been adapted from Grooms et al.75 



    

316 
     

SEM images of blank, 0.05, 0.5, and 5 nmol GRFT fibers showed no 

significant differences in fiber morphology (Figure A.6A-D), indicating that GRFT 

modification has no effect on fiber morphology. To determine the average diameter 

of each EF formulation, a minimum of 50 random measurements were taken per 

field of view from the SEM images diameters of the EF formulations were 

measured and calculated in ImageJ, as shown in Figure A.6E. All EF formulations 

had similar average diameters around 1.9 μm, demonstrating the consistency of 

unmodified fiber fabrication process across batches.  

To determine the amount of GRFT conjugated to the EFs, GRFT-EFs were 

dissolved in DMSO, followed by a 100-fold dilution in TE buffer, to extract GRFT 

from the fiber. The quantity of GRFT conjugated per mg of fiber was quantified 

using ELISA. For each modification density (0.05, 0.5, and 5 nmol GRFT per mg 

fiber), ten replicates were evaluated. For the 5, 0.5, and 0.05 nmol GRFT/mg EF 

modifications, each EF had 373, 165, and 42 ng GRFT per mg of EF, resulting in 

conjugation efficiencies of 0.6, 4.2, and 6.9%, respectively. These results 

demonstrate that GRFT-EFs conjugated with higher theoretical surface-

modification density, result in more GRFT conjugated to the fiber (Figure 3.7A). 

However, there was an inverse correlation with the resulting conjugation 

efficiency75 
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Figure A.7 Quantity of GRFT conjugated to and desorbed from GRFT-modified 

EF. (A) The quantity of GRFT conjugated to each mg of EF fiber increases with 

increased GRFT reactant concentration. (B) The quantity of GRFT released from 

each mg of fiber is shown for the 0.05, 0.5, and 5 nmol formulations after 1, 2, and 

4 h incubation in SVF. Error bars represent the mean ± SEM. This figure has been 

adapted from Grooms et al75. 



    

318 
     

To assess the amount of GRFT covalently conjugated to the fiber surface 

relative to that adsorbed, GRFT-EFs were incubated in SVF to determine the 

amount of GRFT released. Within the first 4 h, 113, 25, and 10 ng of GRFT per mg 

EF was detected in SVF for the 5, 0.5, and 0.05 nmol theoretical modification 

concentrations, respectively. These values correspond to 30%, 41%, and 24% of 

the amount of GRFT conjugated to 5, 0.5, and 0.05 nmol GRFT-EFs. After 4 h, 

negligible GRFT was detected in the release eluate for all three formulations. 

GRFT release after 1, 2, and 4 h is shown in Figure 3.7B. Taken together, these 

data indicate that the majority of GRFT is covalently bound to the EFs, and that 

the surface-adsorbed GRFT is released within the first 4 h. 

Discussion  

Due to their porous structures and large surface areas, EFs have found a 

variety of applications in healthcare, one of which includes serving as therapeutic 

delivery vehicles. Drugs and other active agents can be incorporated within EFs 

for tunable delivery, while biologics and chemical ligands can be conjugated to the 

fiber surface for cell-specific targeting396 or biosensing102. Here the fabrication of 

GRFT surface-modified PLGA EFs, as a delivery scaffold to prevent HIV-1 

infection, is described. GRFT-EFs were synthesized by electrospinning, providing 

the advantages of low cost and high production rate relative to other fiber 

production methods88,102. 

Critical Steps in the Protocol 
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The formation of EFs is critically dependent on the properties of polymer 

solution, in particular the solution or solvent viscosity397. The factors that affect the 

viscosity of a polymer solution include polymer molecular weight, polymer 

concentration, and the type of solvent used. The solution or solvent viscosity is 

typically adjusted by changing the ratio of polymer to solvent, to obtain the desired 

polymer concentration. With each fabrication, the volume must be maintained 

during overnight incubation to maintain the proper polymer-to-solvent ratio 

(viscosity). At sufficiently high polymer concentration, the polymer molecules 

entangle in the solution during the electrospinning process to produce fibers. 

During the electrospinning process, a bead will form at the spinneret tip and if there 

is sufficient polymer entanglement, liquid jets will erupt from this point at a critical 

voltage and accelerate in whip-like fashion toward the collecting mandrel398. 

Solvent evaporation will then lead to jet thinning, producing threads of fiber as they 

deposit on the collecting mandrel. Once synthesized, EFs should be analyzed by 

SEM to verify proper morphology and consistent fiber diameter. The presence of 

beaded EFs may be the result of low solution viscosity399, exceedingly high applied 

voltage256, polymer feed rate400, or a combination of all three factors. If this is 

observed, polymer concentration should be increased and the applied voltage and 

feed rate should be adjusted, to attain fiber-like morphology. 

To conjugate proteins to the EF surface, here PLGA carboxyl groups were 

reacted using EDC-NHS carbodiimide crosslinking chemistry401. During the 

modification process, fibers are briefly incubated with EDC in the presence of NHS 

which results in the conversion of carboxylates into semistable, amine-reactive 
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esters. During the two-step conjugation process, it is critical that the buffers used 

during each step have the optimal pH, noted in the manufacturer's instructions, to 

ensure maximum conjugation efficiency. The half-life of NHS esters ranges from 

four to five hours at neutral pH and dramatically decreases in more basic 

conditions402. Thus, the first reaction should be performed in MES buffer at pH 5 - 

6 and the activated fibers should then be transferred to a PBS buffer (pH 7.2 - 7.5) 

for subsequent and immediate reaction with GRFT. It is also important that EDC is 

inactivated by the addition of 2-mercaptoethanol and sufficiently rinsed from the 

fibers after carboxylate activation. This will help prevent protein activation by EDC 

and self-crosslinking during the second reaction, which may reduce conjugation 

efficiency. 

Modifications and Troubleshooting 

Although our previous work demonstrated the efficacy of a variety of GRFT-

modified fibers against HIV-1 infection, certain process alterations may be 

considered to customize EF morphology or to improve GRFT (or other protein) 

conjugation efficiency or fiber yield75. In particular, the EF surface area may be 

increased by decreasing the fiber diameter, to enable a greater surface area for 

conjugation. Previous studies have shown that reducing polymer concentration 

and viscosity produces smaller fiber diameter403,404. However, this approach is 

limited by the formation of beaded fibers when the concentration is below the 

threshold value. To decrease fiber diameter without changing solution viscosity, 

dual-solvent systems can be utilized to reduce the surface tension, or salts may 

be added to increase solution conductivity256,399. Both methods will enable greater 
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stretching of the electrospinning jets which may produce smaller fiber diameters. 

In addition, lower molecular weight polymers may be used to fabricate smaller 

diameter fibers. Decreasing fiber diameter also provides the added advantage of 

generating smaller pores, potentially making EFs more effective as a barrier to 

virus penetration, for microbicide-based applications405. Finally, it was observed 

that humidity can affect EF yield. At higher humidity, the yield tends to decrease 

due to the formation of fibers with unusual macro-morphology. Installing a humidity 

control system within the electrospinning chamber could therefore facilitate 

producing EFs with consistent yields, if this presents a challenge to fabrication. 

To improve GRFT conjugation efficiency, investigating the selection and 

location of functionalizable groups may also be considered. For example, if the 

primary amines of the protein of interest are located near the interior of the three-

dimensional protein structure, steric hindrance may prevent activated carboxyl 

groups on EFs from interacting with primary amines, thereby decreasing the 

likelihood of the reaction. This challenge may be overcome by amino acid 

substitution of the protein to generate a primary amine group closer to the protein 

surface. However, as GRFT and other proteins depend on the specific activity of 

its binding sites for functionality, alterations in protein conformation should be 

thoroughly tested in functional assays prior to conjugation. 

Limitations 

A major limitation of GRFT surface modification is the potential for low 

conjugation efficiency using carbodiimide crosslinking chemistry. If the antiviral 
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protein of interest has a high IC50, a low conjugation efficiency may not provide 

sufficient protection (in these applications) against virus infection. However, for 

GRFT (or other modified) EFs, proteins and active agents that are not covalently 

bound to EFs may still adsorb to the surface. These adsorbed agents offer the 

potential to complement the activity of conjugated GRFT, by transiently increasing 

the localized concentration available for virus binding. In this example, desorbed 

GRFT may bind to HIV-1 virions that do not directly contact EFs, and may provide 

an alternative mechanism of protection with the first 4 h of (pericoital) 

administration. Thus, both conjugated and surface-adsorbed GRFT may contribute 

to providing uniform protection against STIs. 

Despite the protection conferred from both protein conjugation and 

desorption, other surface-modification strategies with potentially higher efficiency 

might be pursued. For example, PLGA terminated with amines instead of carboxyl 

groups could be used to conjugate activated GRFT. Alternatively, a different 

surface-modification strategy may be utilized to improve EF-protein conjugation 

efficiency. Nanofibrous membranes composed of EFs have been functionalized 

with avidin via carbodiimide crosslinking chemistry406. Biotinylation or addition of a 

Strep-tag (Trp-Ser-His-Pro-Gln-Phe-Glu-Lys) through recombination may enable 

the modified protein to form strong and extremely stable non-covalent interaction 

with avidin EFs. While non-covalent, the avidin-biotin linkage is the strongest non-

covalent bond, with femtomolar affinity, likely resulting in stable conjugation to the 

fiber surface. For any surface-modification strategies, steric hindrance should be 

considered to maximize conjugation efficiency. 
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Lastly, we envision that surface-modified EFs will offer an alternative 

strategy to active agent encapsulation to provide complementary modes of 

protection. One consideration with combining encapsulation and surface-

modification technologies on a single EF platform will be reducing the premature 

release of active agents during the surface-modification process. For surface-

modification reactions that require relatively long incubation time in aqueous 

solution, a significant percentage of the active agents loaded could be lost due to 

polymer hydrolysis. 

Significance of the Method with Respect to Existing and Alternative Methods 

In previous work, we observed that unmodified blank EFs were able to 

inhibit HIV-1 infection by ~38% when placed in a transwell insert above infectible 

cells75. This observation combined with the biocompatibility, web-like 

microstructure, and tortuosity of EFs, in parallel with the observed potent antiviral 

and adhesive properties of GRFT, prompted the development of the surface-

modified EFs described here.  

Relative to other delivery technologies currently employed in microbicide 

applications, EFs have a wide range of potential applications due to their 

architecture and capacity for customization. In other work, the fibrous morphology 

of EFs has enabled them to deliver active agents, and to mimic the ECM, making 

them suitable scaffolds for tissue engineering. EFs have also been surface-

modified to enhance biocompatibility and enhance sustained-release407,408. 
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To enhance biocompatibility or deliver agents that function through specific 

binding activity, numerous methods exist that allow for the attachment of 

compounds to the surfaces of EFs such as plasma treatments, wet chemical 

methods, and surface graft polymerizations362. In the case of GRFT which 

specifically bind to the viral glycoproteins of HIV-1, the wet chemical method of 

EDC-NHS is the most optimal due to the ability to penetrate fibers deep within the 

mesh while also preserving GRFT functionality362. GRFT immobilized to EFs can 

then be delivered in a durable formulation to the FRT and provide immediate 

protection against HIV-1 infection. 

Compared to the existing strategy of encapsulating therapeutics within EFs 

to inhibit STIs, covalent conjugation offers the distinct advantage of increasing the 

potential avidity between GRFT and HIV-1 virions. By immobilizing GRFT to EFs 

through surface-modification, highly localized concentrations of GRFT can be 

achieved, which increase the opportunity for multivalent binding with HIV-1. In 

addition, EF-immobilized GRFT, relative to free GRFT in solution, may prevent the 

depletion of the GRFT pool by hindering cell internalization. Moreover, due to the 

unique mechanism of action of GRFT as a stable and adhesive entry inhibitor, 

covalent surface conjugation enables surface-modified EFs to provide a physical 

barrier to virus penetration, in addition to potent antiviral properties. 

Future Applications of this Method 

The utilization of surface-modification for delivery presents the opportunity 

to integrate multiple active agents within a single EF platform. In the future, we 
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seek to develop a multipurpose technology (MPT) where a variety of active agents 

may be encapsulated within and conjugated to EFs. These MPTs may be designed 

to confer protection against a wider range of pathogens by incorporating 

therapeutics with different mechanisms of action. By utilizing both the surface and 

interior of EFs to deliver active agents with different mechanisms of action, the 

potential of EFs to protect against virus infection will be maximized. 
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Target Product Profile 

Table A 1. GRFT Electrospun Fibers Target Product Profile 

GRFT Electrospun Fibers Target Product Profile 

Formulation Properties Minimum Acceptable 
Result 

Ideal Result 

Primary Purpose* To fabricate GRFT 
encapsulated electrospun 
fibers that will provide 
sustained release of GRFT 
for one week to one month.  
Furthermore, the released 
GRFT will provide 
protection against both 
HSV-2 and HIV-1 in vitro as 
well as HSV-2 in vivo 
against a single challenge. 

To fabricate GRFT 
encapsulated electrospun 
fibers that will provide 
sustained release of GRFT 
for up to one month.  
Furthermore, the released 
GRFT will provide complete 
protection against both 
HSV-2 and HIV-1 in vitro as 
well as HSV-2 in vivo 
against multiple challenges. 

In Vitro Target Population TZM-bl, Vero, VK2, Ect, 
End. 

TZM-bl, Vero, VK2, Ect, 
End. 

In Vivo Target Population BALB/c female mice. BALB/c female mice. 

In Vitro Treatment Duration Test 1 day to 1 month 
eluates. 

Test 1 day to 1 month 
eluates. 

In Vivo Treatment Duration Test single dose of fibers. Test single dose of fibers. 

In Vivo Delivery Mode Intravaginal administration 
for murine model. 

Intravaginal administration 
for murine model. 

In Vivo Regimen One administration for the 
entire duration. 

One administration for the 
entire duration. 

Dosage for In Vitro 3-10 mg of GRFT fiber for in 
vitro studies. Minimum 
release is 600 ng/mL per 
day against HIV-1 409,410, 
while at least 19-39 µg/mL 
is required for HSV-265,71. 

3-10 mg of GRFT fiber for in 
vitro studies. Minimum 
release is 600 ng/mL per 
day against HIV-1409,410, 
while at least 19-39 µg/mL 
is required for HSV-265,71. 

Dosage for In Vivo 
 

4-5 mg of GRFT fiber for in 
vivo studies. Minimum 
release is 600 ng/mL per 
day against HIV-1409,410, 
while at least 19-39 µg/mL 
is required for HSV-265,71. 

4-5 mg of GRFT fiber for in 
vivo studies. Minimum 
release is 600 ng/mL per 
day against HIV-1409,410, 
while at least 19-39 µg/mL 
is required for HSV-265,71. 

In Vitro Efficacy Greater than 90% reduction 
in HIV-1BaL infectivity for up 
to 1 week eluates. 
 
50-90% reduction of cell to 
cell spread (via plaque 
counts). 

Greater than 90% reduction 
in HIV-1BaL infectivity for up 
to 1 month eluates. 
 
At least 90% reduction of 
cell to cell spread (via 
plaque counts). 
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In Vivo Efficacy HSV-2: 5,000 PFU/20µL 
(LD90). Single dose of fibers 
provides greater than 90% 
protection for at least one 
week. 

HSV-2: 5,000 PFU/20µL 
(LD90). Single dose of fibers 
provides greater than 90% 
protection for for up to one 
month. 

In Vitro Risk/Side Effects Greater than 80% viability 
(MTT assay) in cell lines 
after 3 day culture. 

Greater than 80% viability 
(MTT assay) in cell lines 
after 3 day culture. 

In Vivo Risk/Side Effects No histopathological 
aberrations in the FRT from 
exposure to GRFT fibers. 
No more than a 2-3 fold 
difference in cytokines 
(GM-CSF, IFN-γ, IL-1α, IL-
1β, IL-6, CCL-2, TNF-α) 
after exposure to GRFT 
EFs68. 

No histopathological 
aberrations in the FRT from 
exposure to GRFT fibers. 
No more than a 2-3 fold 
difference in cytokines 
(GM-CSF, IFN-γ, IL-1α, IL-
1β, IL-6, CCL-2, TNF-α) 
after exposure to GRFT 
EFs68. 

Stability Most (>50%) incorporated 
GRFT is stable for 1 month. 

All incorporated GRFT is 
stable for 1 month. 

 

Primary Purpose  

Minimum Acceptable Result  

The primary purpose of using polymeric electrospun fibers as delivery 

vehicles is to provide sustained-release of the antiviral Griffithsin (GRFT) for one 

month. Additionally, both the incorporated and released GRFT will maintain its 

bioactivity and by extension antiviral properties. Acceptable fiber formulations will 

release enough GRFT to significantly protect against both HIV-1 as well as HSV-

2 throughout a week’s duration. Furthermore, GRFT release from fibers should 

continue for an entire month.  

 

Ideal Result  
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The ideal result would meet all of the specifications listed above, releasing 

enough GRFT to completely prevent HIV-1 or HSV-2 infection for the entire one 

month duration. 

In Vitro Target Population 

Minimum Acceptable Result   

These fibers will be assessed in vitro against both HIV-1 and HSV-2 

infection. To assess against HIV-1 infection TZM-bl cell lines will be used in an 

HIV-1 inhibition assay. These cell lines are an accepted cell model to assess the 

therapeutic efficacy against HIV-1 infection. Eluates from GRFT EFs at various 

time points during the one month period will be evaluated.   

For HSV-2 infection, plaque assays using Vero E6 cell lines will be used. 

Vero E6 is a widely used and accepted model to determine viral infection. For both 

HIV-1 and HSV-2 assays, the minimum acceptable result will be a significant 

decrease in infection within a 1 week duration. In addition, a decrease of cell-to-

cell spread will be assessed in our HSV-2 studies. Finally, VK2/E6E7, Ect1/E6E7, 

and End/E6E7, cell lines will be used to assess cytotoxicity. An acceptable result 

is that cells in contact with GRFT EFs exhibit 80-97% viability.  

Ideal Result 

The ideal result is that electrospun fibers completely inhibit HIV-1 and HSV-

2 infections while maintaining full viability of selected cell lines. 

In Vivo Target Population  
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Minimum Acceptable Result 

 BALB/c female mice will be used for these studies. This mouse type is an 

acceptable model for studies involving HSV-2 infection. 

Ideal Result  

Same as minimum acceptable result (MAR). 

In Vitro Treatment Duration  

Minimum Acceptable Result 

 Any fabricated fiber incorporating GRFT must release GRFT throughout 

the entire 1 month duration. However, the MAR is therapeutically relevant GRFT 

release during the first week of release. 

Ideal Result 

Any fabricated fiber incorporating GRFT must release enough of the 

antiviral to completely inhibit viral infection throughout the entire 1 month. Our ideal 

result is that therapeutically relevant concentrations of GRFT are released during 

the entire one month. 

In Vivo Treatment Duration  

Minimum Acceptable Result  

Our in vivo studies are to be conducted for 1 month. 

Ideal Result 
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Same as MAR. 

Delivery Mode  

Minimum Acceptable Result 

 Fibers will be delivered intravaginally to assess a new topical antiviral 

delivery vehicle that will be administrated within the female reproductive tract. 

Ideal Result 

Same as MAR. 

Regimen 

Minimum Acceptable Result 

One administration for the entire 1 month duration.  

Ideal Result 

Same as MAR. 

In Vitro Dosage 

Minimum Acceptable Result 

For GRFT released from fibers, a daily release of 600 ng/mL is required to 

provide an IC90 against HIV-1 infection409,410. In regard to HSV-2 infection, 

literature mentions several IC50 values for GRFT dependent on cell type (19, 4.5, 

and 72 μg/mL for Vero E671, Caski65, and VK2/E6E765 respectively). However, 

GRFT mainly acts to prevent the cell-to-cell spread of HSV-2 infection with IC50 
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values of 4.5 and 72 μg/mL65. As for IC90, GRFT concentrations of 39 and 335 

μg/mL were required to prevent of cell-to-cell spread65. Thus, for HSV-2, a GRFT 

daily release of at least 19-39 μg/mL will be required in our in vitro studies using 

Vero cell lines. 

This release should also be enough to significantly decrease HIV-1 

infection. To provide an IC90 against HIV-1 for one entire week, a fiber will have to 

release a total of at least 4.2 µg/mL of GRFT in total. For in vitro testing, a 3 mg 

fiber sample with a loading of 1.4 µg/mg is needed to provide an IC90 against HIV-

1 infection for 1 week (assuming complete release during this period). For HSV-2, 

to provide at least an EC50 for one week in Vero cells, a 3 mg fiber sample must 

have a loading of 45 µg/mg (135 µg) of GRFT. To provide an IC90 against HSV-2, 

a 3 mg sample must load 91 µg/mg (273 µg) of GRFT. 

Ideal Result 

For GRFT released from fibers, we anticipate a daily release of 600 ng/mL 

for 1 month duration to provide an IC90 against HIV-1. This would require a fiber to 

release a total of 18 µg of GRFT during this duration. For a 3 mg fiber sample, the 

total loading would require a loading of at least 6 µg/mg (assuming full release 

after one month). As for HSV-2, 570 µg of GRFT would need to be released to 

provide an IC50 against HSV-2 for one month, requiring a loading of (190 µg/mg) 

from a 3 mg EF sample. To provide an IC90 against HSV-2 the entire one month 

duration, a 3 mg EF sample must load 390 µg/mg (1.17 mg) of GRFT. 

In Vivo Dosage 
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Minimum Acceptable Result  

For GRFT released from fibers, a daily release of 1 μg/μL (0.1% wt/vol) 

would be required to provide protection against HSV-2 within a mouse model65.  

This daily release must be extended for at least one week. 

Ideal Result 

For GRFT released from fibers, we anticipate a daily release of 3 μg/μL 

(0.3% wt/vol) for 1 month duration to provide an EC90 against HSV-2 infection 

within a mouse model. This would require a fiber to release a total of 1.8 mg of 

GRFT during this duration. For a 10 mg fiber sample, the total loading would 

require a loading of at least 180 µg/mg (assuming full release after one month).   

In Vitro Efficacy  

Minimum Acceptable Result 

For HIV-1 in vitro testing, the minimal result acceptable would be at least a 

90% decrease of infection during a 1 week period. In regard to HSV-2, a decrease 

in plaque formation is ideal; however, a 50-90% reduction in cell-to-cell spread of 

HSV-2 is required. 

Ideal Result:  

The ideal result would be that collected daily or weekly eluates collected 

from fibers demonstrate a 90% decrease of both HIV-1 and HSV-2 infections. 

These eluates will be collected for up to one month.  
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In Vivo Efficacy 

Minimum Acceptable Result 

  Fibers provide 90% protection against a single challenge with HSV-2 (LD90) 

for 1 week. 

Ideal Result 

Fibers provide 90% protection against a single challenge with HSV-2 (LD90) 

for 1 month. 

In Vitro Risk/Side Effects  

Minimum Acceptable Result 

An acceptable result would be cells in contact with GRFT EFs exhibiting 70-

100% viability. These viability values are from the JFHE grant proposal.  

Ideal Result 

Ideally, we would want no cytotoxicity expressed from contact from fibers. 

In Vivo Risk/Side Effects  

Minimum Acceptable Result: 

From literature, GRFT is biocompatible and does not induce inflammation68.  

Furthermore, our selected polymers share the same attributes in safety. Therefore, 

the administration of GRFT fibers should not induce toxicity or lead to increased 
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cytokine expression. Histopathological grading should reflect a lack of 

inflammation.  

Ideal Result 

Same as MAR. 

Stability  

Minimum Acceptable Result 

GRFT has shown remarkable stability409. Therefore, there should not be 

any decrease of activity shown form released GRFT. We predict that encapsulated 

GRFT will retain activity for the entire 1 month duration. However, since the amount 

of GRFT encapsulated within fibers will be more than necessary to provide IC90, a 

decrease of activity can be tolerated. For our purposes, a decrease of at most 50% 

will be tolerated. 

Ideal Result 

Ideally, we would want all incorporated and released GRFT to maintain 

bioactivity for the entire duration. 
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Table A 2. GRFT Nanoparticle Target Product Profile 

GRFT Nanoparticle Target Product Profile 

Formulation Properties Minimum Acceptable 
Result 

Ideal Result 

Primary Purpose* To fabricate encapsulated 
GRFT NPs that will provide 
sustained release of GRFT 
for up to one month.  
Furthermore, the released 
GRFT and will provide 
significant protection 
against both HSV-2 and 
HIV-1 in vitro as well as 
HSV-2 in vivo. 

To fabricate encapsulating 
GRFT NPs that will provide 
sustained release of GRFT 
for up to one month.  
Furthermore, the released 
GRFT and will provide 
complete significant 
protection against both 
HSV-2 and HIV-1 in vitro as 
well as HSV-2 in vivo. 

In Vitro Target Population TZM-bl, Vero, VK2, Ect, 
End. 

TZM-bl, Vero, VK2, Ect, 
End. 

In Vivo Target Population BALB/c female mice. BALB/c female mice. 

In Vitro Treatment Duration Test 1 day to 1 month 
eluates. 

Test 1 day to 1 month 
eluates. 

In Vivo Treatment Duration Test single dose of NPs. Test single dose of NPs. 

Delivery Mode Intravaginal administration 
for murine model. 

Intravaginal administration 
for murine model. 

Regimen One administration for the 
entire duration. 

One administration for the 
entire duration. 

Dosage for In Vitro 2-5 mg for in vitro studies. 
Minimum release is 600 
ng/mL per day against HIV-
1409,410, while at least 19-39  
µg/mL is required for HSV-
65,71. 

2-5 mg for in vitro studies.  
Minimum release is 600 
ng/mL per day against HIV-
1409,410, while at least 19-39 
µg/mL is required for HSV-
265,71. 

Dosage for In Vivo 4 mg in 20 μL for in vivo 
studies.  Minimum release 
is 600 ng/mL per day 
against HIV409,410, while at 
least 19-39 µg/mL is 
required for HSV-265,71. 

4 mg in 20 μL for in vivo 
studies.  Minimum release 
is 600 ng/mL per day 
against HIV409,410, while at 
least 19-39 µg/mL is 
required for HSV-265,71. 

In Vitro Efficacy Greater than 90% reduction 
in HIV-1BaL infectivity for up 
to 1 wk eluates. 
 
50-90% reduction of cell to 
cell spread (via plaque 
counts). 

Greater than 90% reduction 
in HIV-1BaL infectivity for up 
to 1 month eluates. 
 
At least 90% reduction of 
cell to cell spread (via 
plaque counts). 

In Vivo Efficacy HSV-2: 5,000 PFU/20µL 
(LD90). Single dose of NPs 
provides greater than 90% 
protection for at least one 
week. 

HSV-2: 5,000 PFU/20µL 
(LD90). Single dose of 
provides greater than 90% 
protection for at least one 
month. 
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In Vitro Risk/Side Effects Greater than 80% viability 
(MTT assay) in cell lines 
after 3 day culture. 

Greater than 80% viability 
(MTT assay) in cell lines 
after 3 day culture. 

In vivo Risk/Side Effects No histopathological 
aberrations in the FRT from 
exposure to GRFT NPs. No 
more than a 2-3 fold 
difference in cytokines 
(GM-CSF, IFN-γ, IL-1α, IL-
1β, IL-6, CCL-2, TNF-α) 
after exposure to GRFT 
NPs68. 

No histopathological 
aberrations in the FRT from 
exposure to GRFT NPs. No 
more than a 2-3 fold 
difference in cytokines 
(GM-CSF, IFN-γ, IL-1α, IL-
1β, IL-6, CCL-2, TNF-α) 
after exposure to GRFT 
NPs68. 

Stability Most (>50%) incorporated 
GRFT is stable for 1 month. 

All incorporated GRFT is 
stable for 1 month. 

 

Primary Purpose 

Minimum Acceptable Result 

The primary purpose of using polymeric nanoparticles (NPs) as mobile 

delivery vehicles is to provide sustained-release of the antiviral griffithsin (GRFT) 

for one month. Additionally, both the incorporated and released GRFT will maintain 

its bioactivity and by extension antiviral properties. Acceptable NP formulations will 

release enough GRFT to significantly protect against both HIV-1 as well as HSV-

2 throughout a week’s duration. Furthermore, GRFT release from NPs should 

continue for an entire month. 

Ideal Result 

The ideal result would meet all of the specifications listed above, releasing 

enough GRFT to completely prevent HIV-1 or HSV-2 infection for the entire one 

month duration 

 In Vitro Target Population  
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Minimum Acceptable Result 

These NPs will be assessed in vitro against both HIV-1 and HSV-2 infection.  

To assess against HIV-1 infection TZM-bl cell lines will be used in an HIV-1 

inhibition assay. These cell lines are an accepted cell model to assess the 

therapeutic efficacy against HIV-1 infection. Eluates from GRFT NPs at various 

time points during the one month period will be evaluated.  

 For HSV-2 infection, plaque assays using Vero E6 cell lines will be used. 

Vero E6 is a widely used and accepted model to determine viral infection. For both 

HIV-1 and HSV-2 assays, the minimal acceptable result will significantly decrease 

in infection within a 1 week period. A decrease of cell-to-cell spread will be 

assessed during the HSV-2 studies. Finally, VK2/E6E7, Ect1/E6E7, and End/E6E7 

cell lines will be used to assess cytotoxicity. An acceptable result is that cells in 

contact with GRFT NPs exhibit 80-97% viability.   

Ideal Result 

The ideal result is that NPs completely inhibit HIV-1 and HSV-2 infections 

while maintaining full viability of selected cell lines. 

In Vivo Target Population  

Minimum Acceptable Result  

BALB/c female mice will be used for these studies. This mouse type is an 

acceptable model for STI studies. 

Ideal Result 
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Same as minimum acceptable result (MAR). 

In Vitro Treatment Duration  

Minimum Acceptable Result 

NPs incorporating GRFT must release GRFT throughout the entire 1 month.  

Ideal Result 

GRFT NPs release enough of the antiviral to completely inhibit viral infection 

throughout the entire 1 month. 

In Vivo Treatment Duration  

Minimum Acceptable Result 

Our in vivo studies are to be conducted for 1 month. 

Ideal Result 

 Same as MAR. 

Delivery Mode  

Minimum Acceptable Result 

NPs will be delivered intravaginally using PBS to assess a new topical 

antiviral delivery vehicle that will be administrated within the female reproductive 

tract. 

Ideal Result 
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Same as MAR. 

Regimen 

Minimum Acceptable Result 

One administration for the entire 1 month duration.  

Ideal Result 

Same as MAR. 

In Vitro Dosage 

Minimum Acceptable Result 

For GRFT released from nanoparticles, a daily release of 600 ng/mL is 

required to provide an IC90 against HIV-1 infection. As for HSV-2 infection, a daily 

release of 19-39 µg/mL would be required to provide an EC50 for Vero cell lines71. 

This release should also be enough to significantly decrease HIV-1 infection. To 

provide an IC90 against HIV-1 for one entire week, NPs will have to release a total 

of at least 4.2 µg/mL of GRFT for one week. For in vitro testing, a 2 mg with a 

loading of 2.1 µg/mg is needed provide an IC90 against HIV-1 infection for 1 week 

(assuming complete release during this period). For HSV-2, to provide at least an 

EC50 for one week, a 2 mg of NPs must have a loading of 66 µg/mg (135 µg) of 

GRFT. To provide an IC90 against HSV-2, a 2 mg NP sample must load 136 µg/mg 

(273 µg) of GRFT. 

Ideal Result 
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For GRFT released from nanoparticles, we anticipate a daily release of 600 

ng/mL for 1 month duration to provide an IC90 against HIV-1. This would require 

NPs to release a total of 18 µg of GRFT during this duration. For a 2 mg NP sample, 

the total loading would require a loading of at least 9 µg/mg (assuming full release 

after one month). As for HSV-2, 570 µg of GRFT would need to be released to 

provide an IC50 against HSV-2 for one month, requiring a loading of (285 µg/mg) 

from a 2 mg NP sample. To provide an IC90 against HSV-2 the entire one month 

duration, a 2 mg NP sample must load 585 µg/mg (1.17 mg) of GRFT. 

In Vivo Dosage 

Minimum Acceptable Result 

For GRFT released from NPs, a daily release of 1 μg/μL (0.1% wt/vol) would 

be required to provide protection against HSV-2 within a mouse model65. This daily 

release must be extended for at least one week. 

Ideal Result 

For GRFT released from NPs, we anticipate a daily release of 3 μg/μL (0.3% 

wt/vol) for 1 month duration to provide an EC90 against HSV-2 infection within a 

mouse model. This would require a fiber to release a total of 1.8 mg of GRFT 

during this duration. For a 4 mg NP sample, the total loading would require a 

loading of at least 450 µg/mg (assuming full release after one month). 

In Vitro Efficacy  

Minimum Acceptable Result 
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For HIV-1 in vitro testing, the minimal result acceptable would be at least a 

90% decrease of infection during a 1 week period. In regard to HSV-2, a decrease 

in plaque formation is ideal; however, a 50-90% reduction in cell-to cell-spread of 

HSV-2 is required. 

Ideal Result 

The ideal result would be that daily or weekly eluates collected from GRFT 

NPs demonstrate a 90% decrease of both HIV-1 and HSV-2 infections. These 

eluates will be collected for up to one month.   

In Vivo Efficacy 

Minimum Acceptable Result 

GRFT NPs provide 90% protection with a single challenge against HSV-2 

(LD90) for 1 week. 

Ideal Result 

GRFT NPs provide 90% protection against a single challenge with HSV-2 

(LD90) for 1 month. 

In Vitro Risk/Side Effects  

Minimum Acceptable Result 

An acceptable result would be cells in contact with GRFT NPs exhibiting 

80-100% viability. 
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Ideal Result 

Ideally, we would want no cytotoxicity expressed from contact from 

nanoparticles. 

In vivo Risk/Side Effects  

Minimum Acceptable Result 

Same as EFs. 

Ideal Result 

Same as EFs. 

Stability  

Minimum Acceptable Result 

Same as EFs. 

Ideal Result 

Ideally, we would want all incorporated and released GRFT to maintain 

bioactivity.
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LIST OF ABBREVIATIONS 

ACV – Acyclovir  

AIDS – Acquired immunodeficiency syndrome 

ARRRP – AIDS Research and Reference Reagent Program 

AZT – Azidothymidine 

BSA – Bovine serum albumin 

C6 – Coumarin 6 

CCR5 – Chemokine receptor 5 

CD4 – Cluster of differentiation 4 receptor 

CG – Carrageenan 

CXCR4 – Chemokine receptor type 4 

D – Day 

DCM – Dichloromethane 

DMEM – Dulbecco`s modified Eagle media 

DMSO – Dimethyl sulfoxide 

EC90 – 90% maximal response 

ECM – Extracellular matrix 

EDC – 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride 

EE% – Encapsulation efficiency 

EFs – Electrospun fibers
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ELISA – Enzyme-linked immunosorbent assay 

ENV – Envelope glycoprotein 

FBS – Fetal bovine serum 

FDA – Food and Drug Administration 

FDI – Fast dissolving insert 

FRT – Female reproductive tract 

GRFT – Griffithsin 

HAART – Highly active antiretroviral therapy 

H&E – Haemotoxylin and Eosin 

HFIP – Hexafluoro-2-propanol 

HIV-1 – Human immunodeficiency virus 

HSV-2 – Herpes simplex virus 

IC50 – The half maximal inhibitory concentration 

IVR – Intravaginal ring 

KFSM – Keratinocyte serum-free media 

LC/MS – Liquid chromatography–mass spectrometry 

LD10 – Lethal dose 10% 

LD90 – Lethal dose 90% 

MEM – Minimal essential medium 

MES – 2-ethanesulfonic acid 

mPEG-PLGA – methoxy poly(ethylene glycol)-b-poly(lactide-co-glycolide) 

MTT – 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

N-9 – Nonoxynol-9 



    

345 
     

NHS – N-Hydroxysuccinimide 

NIH – National Institutes of Health 

NNRTIs – Non-nucleoside/nucleotide reverse transcriptase inhibitors 

NP-EFs – Nanoparticle-Electrospun Fiber composites 

NPs – Nanoparticles 

NRTI – Nucleoside/nucleotide reverse transcriptase inhibitors 

PAA – Poly(acrylic acid) 

PBA – Poly(n-butyl acrylate) 

PBS – Phosphate-buffered saline 

PBS-T – Phosphate-buffered saline Tween 20 

PCL – Polycaprolactone 

PEO – Poly(ethylene oxide) 

PFU – Plaque forming units 

PI – Protease inhibitors  

PLCL – Poly(lactide-co-caprolactone) 

PLGA – Poly(lactic-co-glycolic acid) 

PLLA – Polylactide (Poly(lactic acid) 

PrEP – Pre-exposure prophylaxis 

PVA – Polyvinyl alcohol 

PVP – Polyvinylpyrrolidone 

RhB – Rhodamine B 

RLU – Relative luminescence unit 

SDS – sodium dodecyl sulfate 
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SEM – Scanning electron microscopy 

SiRNA – Small interfering RNA 

SIV – Simian immunodeficiency virus 

STI – Sexually transmitted infection 

SSF – simulated semen fluid 

SVF – Simulated vaginal fluid 

TCID50 – Median tissue culture infectious dose 50% 

TEER – Transepithelial/transendothelial electrical resistance 

TFE – 2,2,2 –Trifluoroethanol 

TDF –Tenofovir disoproxil fumarate 

TFV – Tenofovir 

WK – Week 
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