The genesis and development of deathscapes in America – a story of how Chicago and Louisville cemeteries demonstrate the shifting rationale of cemetery placement during the 19th and 20th centuries.

Thomas D. Cleven
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Anthropology Commons, Landscape Architecture Commons, and the Urban, Community and Regional Planning Commons

Recommended Citation

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.
THE GENESIS AND DEVELOPMENT OF DEATHSCAPES IN AMERICA --
A STORY OF HOW CHICAGO AND LOUISVILLE CEMETERIES DEMONSTRATE
THE SHIFTING RATIONALE OF CEMETERY PLACEMENT DURING THE 19TH
AND 20th CENTURIES

By

Thomas D. Cleven
B.S., University of Wisconsin – Madison, 1996
B.S.L.A, University of Wisconsin – Madison, 2014
B.S., University of Wisconsin – Oshkosh, 2017

A Thesis
Submitted to the Faculty of the
College of Arts and Sciences of the University of Louisville
in Partial Fulfillment of the Requirements
for the Degree of

Master of Arts
in Anthropology

Department of Anthropology
University of Louisville
Louisville, Kentucky

December 2019
ABSTRACT

THE GENESIS AND DEVELOPMENT OF DEATHSCAPES IN AMERICA --

A STORY OF HOW CHICAGO AND LOUISVILLE CEMETERIES DEMONSTRATE
THE SHIFTING RATIONALE OF CEMETERY PLACEMENT DURING THE 19TH
AND 20th CENTURIES

Thomas D. Cleven

November 22, 2019

Today, most construction projects require a systematic site qualification based on a suitability analysis utilizing parameters such as slope, soil type, elevation, distance to open water, and distance to transportation. The proper siting determines the success of a project in terms of project stability and longevity. However, has this suitability analysis exist for one of the most significant phases of humanity – death

Historically dead bodies seem to have been placed without suitable qualification being many cemeteries have created environmental problems for the living. Hence, with which placement rationale has been used comes to mind. With a varied array of rationale used in cemetery placement, this thesis aimed to focus on a simple question. Were cemeteries placed based on qualifying criteria mentioned above or not? If so, factors beyond a normal suitability analysis exist. If not, then these qualifying criteria should probably be employed going forward.

This question was investigated through a spatial analysis of cemeteries placed in two different geographical areas of the United States.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SIGNIFICANCE OF DEATHSCAPE GENESIS</td>
<td>1</td>
</tr>
<tr>
<td>THE IMPORTANCE OF THE DISSOLUTION OF THE DEAD</td>
<td>3</td>
</tr>
<tr>
<td>HISTORICAL DEVELOPMENT FOR CEMETERY PLACEMENT</td>
<td>7</td>
</tr>
<tr>
<td>PUNCTUATING EVENTS</td>
<td>8</td>
</tr>
<tr>
<td>Pre-Modern Era – Prior To 10,000 B.C.</td>
<td>8</td>
</tr>
<tr>
<td>Modern Era – 10,000 B.C. To Present</td>
<td>10</td>
</tr>
<tr>
<td>Disease Theories</td>
<td>11</td>
</tr>
<tr>
<td>Pre-Miasma Theories</td>
<td>12</td>
</tr>
<tr>
<td>Pre-Miasma Theories Effect</td>
<td>16</td>
</tr>
<tr>
<td>Miasma Theory 1700 To 1900 A.D.</td>
<td>17</td>
</tr>
<tr>
<td>Miasma Theory Effect</td>
<td>17</td>
</tr>
<tr>
<td>Germ Theory 1900 To Current</td>
<td>19</td>
</tr>
<tr>
<td>Germ Theory Effect</td>
<td>20</td>
</tr>
<tr>
<td>Rise Of Modern Religions</td>
<td>21</td>
</tr>
<tr>
<td>Wars</td>
<td>22</td>
</tr>
<tr>
<td>Civil War</td>
<td>22</td>
</tr>
<tr>
<td>World War I (WWI) & World War II (WWII)</td>
<td>24</td>
</tr>
<tr>
<td>Industrialization</td>
<td>26</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Individual Conscientiousness</td>
<td>27</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>30</td>
</tr>
<tr>
<td>Analysis Objective</td>
<td>31</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>32</td>
</tr>
<tr>
<td>Literature Review</td>
<td>32</td>
</tr>
<tr>
<td>Spatial Data</td>
<td>32</td>
</tr>
<tr>
<td>County Selection</td>
<td>32</td>
</tr>
<tr>
<td>Jefferson County, Kentucky</td>
<td>33</td>
</tr>
<tr>
<td>Cook County, Illinois</td>
<td>33</td>
</tr>
<tr>
<td>Location</td>
<td>34</td>
</tr>
<tr>
<td>Cemetery Designation</td>
<td>34</td>
</tr>
<tr>
<td>Number of Cemeteries</td>
<td>35</td>
</tr>
<tr>
<td>Establishment Year Variable</td>
<td>37</td>
</tr>
<tr>
<td>Size Variable</td>
<td>37</td>
</tr>
<tr>
<td>Slope Variable</td>
<td>38</td>
</tr>
<tr>
<td>Elevation Variable</td>
<td>39</td>
</tr>
<tr>
<td>Distance to Railroads Variable</td>
<td>40</td>
</tr>
<tr>
<td>Distance to Open Water Variable</td>
<td>41</td>
</tr>
<tr>
<td>Soil Texture</td>
<td>41</td>
</tr>
<tr>
<td>Cemetery Name Variable</td>
<td>42</td>
</tr>
<tr>
<td>Statistics</td>
<td>43</td>
</tr>
<tr>
<td>Results</td>
<td>44</td>
</tr>
<tr>
<td>County Selection Comparisons</td>
<td>44</td>
</tr>
<tr>
<td>Number of Cemeteries</td>
<td>45</td>
</tr>
<tr>
<td>Establishment Year Variable</td>
<td>45</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1 -- POPULATION INCREASE, TOTAL DEATHS, MORTALITY RATE 80
Table 2 -- RAW DATA SUMMARY ... 81
Table 3 -- NUMBER OF CEMETERIES BY ESTABLISHMENT YEAR 82
Table 4 -- CEMETERY SIZE ... 83
Table 5 -- SLOPE .. 84
Table 6 -- ELEVATION .. 85
Table 7 -- DISTANCE TO RAILROADS .. 86
Table 8 -- DISTANCE TO OPEN WATER ... 87
Table 9 -- SOIL TEXTURE ... 88
Table 10 -- CEMETERY NAME CATEGORIZATIONS 89
Table 11 -- CEMETERY NAME STATISTICS BETWEEN COUNTIES 93
Table 12 -- CEMETERY NAME STATISTICS WITHIN COUNTIES 94
Table 13 -- STATISTICS SUMMARY .. 95
LIST OF FIGURES

Figure 1 – GOOGLE NGRAM VIEWER, TERMS .. 63
Figure 2 – NUMBER OF CEMETERIES AND MORTALITY 64
Figure 3 – CEMETERY LOCATIONS .. 65
Figure 4 – CEMETERY SIZE ... 66
Figure 5 – AVERAGE SLOPE .. 67
Figure 6 – SPOT ELEVATION DISTANCE .. 68
Figure 7 – SPOT ELEVATION DISTANCE - continued .. 69
Figure 8 – SPOT ELEVATION DISTANCE - continued .. 70
Figure 9 – RAILROAD DISTANCE .. 71
Figure 10 – RAILROAD DISTANCE - continued .. 73
Figure 11 – OPEN WATER DISTANCE .. 74
Figure 12 – OPEN WATER DISTANCE -- continued ... 75
Figure 13 – SOIL TEXTURE .. 76
Figure 14 – CEMETERY NAME INFERENCES ... 77
Figure 15 – PRINCIPAL COMPONENT ANALYSIS ... 78
Figure 16 – PRINCIPAL COMPONENT ANALYSIS -- continued 79
INTRODUCTION

SIGNIFICANCE OF DEATHSCAPE GENESIS

Recently, while strolling through the winding paths of Cave Hill Cemetery, in Louisville, Kentucky, the smell of fall filled my lungs as the serene beauty teased my eyes that all was well. However, the statuary and tombstones whispered other words. They whisper that life’s clock is ticking. Amongst the 150-year-old white oak (*Quercus alba*) and the 200-year-old American beech (*Fagus grandiflora*), the Grimm Reaper lurks. When and how he appears is unknown, but his footprints can be seen amongst the graves. His shadow dances amongst the trees. His voice echoes in the breeze. The picturesque vistas only pacify for the inevitable meeting with the Grimm Reaper will come for me and for all.

While the meeting with the Grimm Reaper is inevitable, our perception of death has changed over time (Davies, 2005). The way we treat the dead in terms of burial has changed as well. This treatment of dead (or burial practices) has been evaluated on burials going back thousands of years. Until recently, the first known hominin burials were believed to have occurred approximately 50,000 years ago by Neandertals (Wilford, 2013) and were believed to be intentional (Rendu, et al. 2014). However, the newly discovered skeletal material of *Homo naledi* changed when the first burials occurred. The multi-age *H. naledi* skeletons were found in the Rising Star Cave in South Africa (Berger and Hawks, et al, 2015) and were believed to be purposefully deposited.
(Dirks, P, Berger, L R, et al, 2015) between 236,000 and 335,000 thousand years ago
(Dirks, 2017) which supports a long-held practice of hominin burials to before the
McKie, 2013; Rendu et al, 2014).

While body deposition (burial) occurred for a long time, we cannot be certain of
the reason for the burial. The intentional burials are thought to have been done for
compassionate reasons (Bellah, 2011) or it might simply have been for symbolic (Cullota,
2009) or superstitious (supernatural) reasons (Barber, 1988; Puckle, 1926). According to
Darwin (1896), kindness (or compassion) presented an evolutionary advantage as our
species evolved. In fact, “compassion” has been observed in closely related species
including chimpanzees and bonobos (Goetz, et al, 2010; Prüfer, et al, 2012; Gibbons,
2012) which have diverged from our latest common ancestor between 4 and 7 million

Nonetheless, whether compassion motivated the burials, or they were done for
some other reason, the fate of the decomposition products has not been suggested as a
factor in where the bodies were placed. Or perhaps the hominins did not perceive the
potential consequences of burial placement 335,000 years ago.

However, more recently during the 19th century, there was a concern for the
increasing mass of urban dead which lead to reactive measures to relocate the dead to the
city periphery (Rugg, 2013b; Meller and Parsons, 2011), to move dead out of churches
(Puckle, 1926; Jenner, 2005; Anthony, 2016), or to place them in haphazard locations
(Ucisik and Rushbrook, 1998; Pattison, 1955). Whether the burial site was in a cave at
La Chapelle-aux-Saints (Rendu, et al, 2014), or on a picturesque hillside in
Massachusetts (Rotundo, 1984), the rationale for these deposition locales seem varied. But the deposition did not seem to be due to systematic siting rationale (Pattison, 1955). In fact, during the 19th century, many cemeteries were built for purposes of aggrandizement (Meller and Parsons, 2011), and built with a lack of systematic rationale leading to pollution events at more than a few cemeteries (Ucisik and Rushbrook, 1998; Environment Agency, 2004; Boyd, 2005; Graeber, 2012). Using a systematic rationale can mitigate the pollution effects from cemeteries, but to understand the pollution effects, one must understand how the pollution can come about.

THE IMPORTANCE OF THE DISSOLUTION OF THE DEAD

The potential pollution is important to briefly review because it creates the framework for understanding why cemetery placement is important. If this review were skipped with a statement “Pollution has occurred in more than a few cemeteries”, the justification for the hypothesis would be undermined. This justification is equally as important as reviewing the sociocultural history for cemetery placement. Otherwise, a statement like the on above can be written to summarize the sociocultural history “Humanity’s preoccupation with sociocultural practices thwarted sound judgement in cemetery placement for the past 335,000+ years”. To be thorough, the review ensues below.

The potential pollution effects from cemeteries come about from embalming (Chan, et al 1992; Chiappelli and Chiappelli, 2008), casket and vault materials (Harker, 2012; Rumble, et al, 2014), materials within the body such as amalgam dental fillings (Batchelder, 2008; Nieschmidt and Kim, 1997), artificial joints (Harker, 2012), pharmaceuticals (Kümmerer, 2008; Carrara, 2008; Paiga and Delerue-Mayos, 2016), and
from the normal decomposition products. Aside from these, disease pathogens can pose a risk for the living if not handled with extra care such as with ebola virus (Nielsen, et al, 2014) or Creutzfeldt-Jakob disease (CDC, 2019).

The decomposition products originate from the five decomposition stages (Powers, 2005) and result in volatile organic compounds (Rosier, et al, 2016; Stadler, 2015; Vass, 2002), biological macromolecules (proteins, nucleic acids, polysaccharides, and lipids (Vass, 2002), numerous cations and anions (Zychowski, 2012), countless microorganisms (Bucheli and Lynne, 2016; Hawksworth and Wiltshire, 2011), and various entomological creatures (Sanford, 2015). Even the population of multicellular organisms can be affected by cemeteries (Miller and Trigoboff, 2001).

For every kilogram of dry body mass, a human body decomposes into 32g of protein, 10g of phosphorus, 4g of potassium, 1g of magnesium, and numerous other byproducts (Costandi, 2015). Hence, to put this into perspective, one average weighted person in the United States (Fryar, et al, 2016) releases enough nitrogen for about 1,000 square feet of lawn for one year (MacLachlan, 2013) in the United States. This may not seem substantial, but evidence has been documented that decomposition by products have created pollution (Chiappelli and Chiappelli, 2008). This may not seem substantial, but evidence has been documented that the “non-living”, prion diseases are infective to humans zoonotically (Priola and Priola, 2004). Hence, who is to say what amount of contaminants or what quantity of prions are safe to be exposed to?

Nonetheless, normally over half of the pollutant load from human decomposition dissipates within a year and half of the remaining dissipates with each year with 0.1 % of the original pollutant load remaining after 10 years (Environment Agency, 2004).
However, the decomposition process may take up to 100 years (Zychowski, 2011) or in excess of millions of years with which recognizable tissue can be identified (Hardy, et al, 2017). Prions are much smaller than recognizable tissue.

Microorganisms can persist 2 weeks (Meyer, 2013), 84 days (Duboise, et al, 1976), 120 days (Metcalf, et al, 2016), a year or more (Finley, et al, 2016), or several years (Zychowski and Bryndal, 2015) in soil according to the various studies. Microorganisms can be transported via rain into groundwater within weeks (Zychowski and Bryndal, 2015) and can be recovered from groundwater up to 70 days (Bitton et al, 1983). In fact, being prions are little more than non-living, naked strands of proteins, which can cause devastating diseases, the isolation of nucleic acids (proteins in the form of DNA) from skeletonized horse tissue from 700,000 years ago (Lee, 2017; Orlando et al, 2013) may suggest a corpse may have impacts long after the nitrogen has hypothetically fed your lawn for the summer.

As for other decomposition products, chemicals such as chloride, sulphate, and sodium have been found to migrate through unsaturated soil zone beneath a cemetery for up to 20 years (Zychowski, 2012). Volatile organic compounds (VOCs) are released within days of production, but Rosier, et al (2015) found 452 VOCs within 6 months of decomposing humans and various animals. Zychowski (2012), reported that cemeteries “adversely affected the quality of underground water” by discharging numerous chemicals up to 200 meters.

To briefly touch on mitigation of the above decomposition products, vaults are commonly used for burial in the United States which should prevent the release of decomposition products. The vaults of Wilbert Group who is the leader in burial vault
production in the United States are warranted to last 50 or 100 years (www.centurywilbert.com). However, the concrete will eventually crack. As the second law of thermodynamics can be paraphrased as “nature tends toward entropy”. Likewise, nature will “uncreate” vaults as Boltzman demonstrated the reversibility of entropy (Woldram, 2002). The vault’s contents will eventually be released. The decomposition products will eventually be released. And without a vault and without burial, even cremains can produce detrimental effects upon release (Batchelder, 2008).

Other mitigating factors which minimize release include the type and composition of soil in which the inhumation occurs. Humic acids and tannins found in soil can influence chemical (Vass, et al, 1992) and microbial (Bitton and Harvey, 1992; McCaulou et al, 1994) translocation. The percentage of clay (Gammack, et al, 1992), the bulk soil density (Gammack, et al, 1992), the amount of organic matter (Gammack, et al, 1992), the percentage of plant root volume (Mawdsley, et al, 1994), and the cation exchange capacity (Gammack, et al, 1992) can dramatically affect the movement of microbes and other byproducts.

Consequently, many variables can be utilized to mitigate potential cemetery effluvia through the siting process. John Claudius Loudon (1783 – 1843) who was a prominent designer in the garden cemetery movement in the United Kingdom, in Europe, and elsewhere (Curl, 1983) proposed a classic design strategy: “The main object of a burial-ground is, of course, the disposal of the remains of the dead in such a manner that their decomposition and return to the earth shall not prove injurious to the living, either by affecting health or by shocking feelings, opinions, or prejudices” (Curl, 1983).
Utilizing the mitigating factors above through systematic guidelines seems like a good place to start for being concerned about the fate of decomposition products.

In having reviewed the dissolution of the dead, next the sociocultural basis for cemetery placement genesis will be explored.

HISTORICAL DEVELOPMENT FOR CEMETERY PLACEMENT

As discussed earlier, the reason for burials, whether it be for reasons of compassion (Bellah, 2011), of symbolism (Cullota, 2009), or superstition (supernatural) (Barber, 1988; Puckle, 1926), a more conclusive analysis can be derived from looking at cemetery placement during historic times (within the last 10,000 years). The placement of cemeteries is rooted in each cemetery’s history and the sociocultural attitudes toward death (Schuyler, 1984; Rotundo, 1984; Dethlefsen, 1981). These attitudes are translated through the siting and design of cemeteries (Francaviglia, 1971; Vidutis and Lowe, 1980; Rotundo, 1984; Worepole, 2003). For example, burial of bodies close to and within churches (Puckle, 1926; Jenner, 2005; Anthony, 2016) reflected the sociocultural rationale for religious belief compliance. Burial in plague cemeteries (Puckle, 1926; Maddicott, 1997; Hawkins, 1990; Association of Graveyard Rabbits, 2008) normally reflected reactionary, rationale. Many plague cemeteries were planned in the midst of heavy death tolls and short-term planning dominated the siting.

Historically, cemetery placement has been serpentine across time and through cultures. Nonetheless, within a more Western context, cemetery placement genesis can sometimes be revealed through a series of punctuating events (Marcucci, 2000). It is because of the punctuating events significant changes occurred. These punctuated events oftentimes shattered the socio-cultural (Curl, 1975; Welford, 1992) and supernatural
rituals practiced (Keyworth, 2010; Stetson, 1896). These punctuating events changed the trajectory of cemetery placements. They even changed due to environmental impacts at times, but the concern for these impacts were not maintained.

PUNCTUATING EVENTS

For this review, punctuating events span pre-modern (pre-10,000 B.C.) to modern eras (10,000 B.C. to present). The events will be discussed in brief.

Pre-Modern Era – Prior To 10,000 B.C.

In the Pre-Modern Era, nomadic life and sedentary life altered deathscape development (Renfrew, 2006; Rendu, 2014). Societal sophistication (maintaining organized groups or not) and agriculture (nomadic or sedentary) were two components that changed the dealings with death (Bar-Yosef and Belfer-Cohen, 2002).

For example, during the Middle Paleolithic, intentional burials were treated differently, depending upon the area examined and upon the group of Homo (*Homo sapiens* or the subspecies *H. s. neanderthalensis*) (Smirnov, 1989). Some corpses were concealed; some were buried intact; some were disarticulated; some were buried as whole bodies; some had only body parts buried (Smirnov, 1989). The bodies were buried alone or sometimes in groups, but not in the current sense of cemeteries of today. Also, inhumation was selectively practiced on only a small minority of the population with men being buried more often than women (Smirnov, 1989). In addition, patterns of burial seemed to be independent of technology (Smirnov, 1989). The *H. s. neanderthalensis* suggests a presence of a type of religious belief (Smirnov, 1989).

In general, however, the sacredness of body burial increased as hominin groups became more “organized” (Bar-Yosef and Belfer-Cohen, 2002). By the Late Paleolithic,
at the dawn of agriculture, groups were still largely nomadic, hunter-gatherers (Feynman and Ruzmaikin, 2007). The dead were deposited along the migratory routes like the Early Natufians did by the Mediterranean Sea (Bar-Yosef and Belfer-Cohen, 2002). As some of the Natufians became more sedentary in pursuing agriculture, the burials made along the seasonal travel routes were later exhumed and reburied at more sacred secondary sites (Bar-Yosef and Belfer-Cohen, 2002; Grosman and Munro, 2007). The data suggests, however, that the precise burial practices, and the adaptation to agriculture did vary between Natufian groups (Bar-Yosef and Belfer-Cohen, 2002).

The advent of agriculture is believed to have taken place around 10,000 years B.C. (Feynman and Ruzmaikin, 2007). It developed independently in at least four societies around the world: in the Levant, China, Meso-America, and Andean-Amazonian (Feynman and Ruzmaik. 2007). Plants (wheat, barley, lentils, peas, bitter fetch, and chickpeas) were domesticated over a few centuries beginning nearly 12,000 years ago (Feynman and Ruzmaikin, 2007). Animals (sheep and goats) were domesticated beginning ~9,000 years ago (Feynman and Ruzmaikin, 2007). Some believe the advent of agriculture was related to long-term weather stability (Feynman and Ruzmaikin, 2007) and some suggest the reason was due to food deprivation or food surplus (Svizzero and Tisdell, 2014). The advent was a gradual process over 5,000 years, but the burial practices remain consistent (Feynman and Ruzmaikin, 2007) in these sedentary peoples. The burials were done in special (Grosman and Munro, 2007), sacred locations. As sedentariness increased, the burials became more central (Faull, 1976). These burials were some of the first “burial grounds” as we define the term today (Rugg, 2000b).
For the Late Natufians, in the Southern Levant, such a burial site was a cave (Grosman and Munro, 2007). Earlier burials which were more formally organized in the manner of a cemetery were in southeast Asia, however (Bar-Yosef and Belfer-Cohen, 2002). The center of civilization became the area for life and for deposition of the dead (Mumford, 1961). The Modern Era brought forth additional burial placement challenges.

As for specific burial placement within the civilization centers, some cultures buried their dead close to their family’s home (Puckle, 1926). This was done for several reasons. It was done to better honor the deceased (Pearson, 1999; Etlin, 1982). It was done with the belief the deceased would protect the house and family (Puckle, 1926). It was done out of convenience (Puckle, 1926). Sometimes the deceased were buried beneath the house (Halliday, 2009; Pearson, 1999; Naumov, 2007). Sometimes burials were done near and in churches (Puckle, 1926; Keister, 2004; Jenner, 2005; Anthony, 2016).

Nevertheless, the deceased were buried in congregated areas as individuals, in family plots, as local village burial grounds, as church associated graveyards (Anthony, 2016; Pattison, 1955), or at burial places for larger geographical areas (Faull, 1976). The formal cemetery, as we know of them today, was born (Pardoe, 1988). However, the rationale for the siting of these concentrated burials is not as well understood as in the modern era.

Modern Era – 10,000 B.C. To Present

In the Modern Era, the most drastic changes occurred through a series of punctuating events including disease theories (pre-miasma and post-miasma (Jenner, 2005)), rise of modern religions (Jenner, 2005), wars (i.e., Civil War (Blankenship, 2012)}
and World War I and World War II (Zychowski, 2011), the industrial revolution (Rugg, et al, 2014), and individual conscientiousness.

Disease Theories

Throughout human history, disease has played a role in shaping humanity (Blaser, 2006). Up until the early 20th century, the bubonic plague (*Yersenia pestis*), influenza (H1N1 and H5N1 influenza viruses), cholera (*Vibrio cholerae*), small pox (*Variola* virus), and others were some of the diseases that changed the trajectory of human civilization in the Old World and in the New World (Nelson and Williams, 2014). They also impacted the treatment of the dead and the deposition of them.

Aside from the effects of significant human loss, the epidemics had terrifying effects on the psyche of the villagers (Hecker, 1832; Crawfurd, 1914; Rosen, 1972). The loss of up to 60% of a village during the plague epidemics through the centuries in Europe (Perry and Fetherston, 1997) pushed the villagers to seek answers for the plague from anywhere (Nelson and Williams, 2014). The answers people accepted were from what they knew (Barber, 1988; Tesh, 1995; Morgan, 1985). They tended to believe earlier, previous knowledge over new (Morgan, 1985). They did not know of etiologic agents for disease like we know today. Villagers did not comprehend the effects of bacteria, viruses, fungi, and protozoa which would become known as the Germ Theory of disease by 1900 (Moffett, 2010) even though the first inkling for a contagiousness or etiologic cause for disease was suggested by the Persian, self-taught, medical doctor Avicenna in 1025 (Moffett, 2010).
Pre-Miasma Theories

Nonetheless, prior to 1900, various pre-miasma theories existed to explain disease and illness (Moffett, 2010; Comrie, 1933). Some of these theories described below are ether, entelechy, hormesis, phlogiston, homeopathy, zymosis, humoral, spontaneous generation, miasma, and countless others (Moffett, 2010; Thagard, 1996; Karamanou et al, 2012; Magner, 2009; Holden and McDonald-Madden, 2018). These theories create a conglomeration of belief systems that instilled a more spiritual perception of death and burials as compared to the subsequent disease theories. Diseases and illnesses were not agents that people had control over.

The pre-miasma theories did not appear on a specific date and disappear on another; they were born from multiple disciplines. Some joined into new. Some were disjoined into separate. Many are subscribed to today. Nonetheless, the dates depicted, and the descriptions made are written from a point of earliest found documentation.

The humoral theory (7th century B.C. to current times) explained that all life is a mixture of the four basic elementary powers: earth, air, water, and fire (Bujalkova, et al, 2001). These powers are in constant motion seeking balance. These opposing powers affect the four body fluids/ humors, namely blood, phlegm, yellow bile, and black bile (Bujalkova, et al, 2001). The four humors are furthermore bound together by the oppositional qualities in the body such as warm – cold, sweet – bitter, wet -- dry (Bujalkova, et al, 2001). Normal health was considered a balance between the body fluids (eukrasia) and the external environment (Bujalkova, et al, 2001; Nutton, 2013). If there is an imbalance, the result is dyskrasia. In order to achieve the body’s harmony, the right diet must be taken in to balance the body fluids (Bujalkova, et al, 2001; Nutton, 2013). However, the balance also was construed to the body and spirit balance

The ether theory (4th century B.C.) was delineated by the Indian Ayurvedic medicine, a 5th element, ether, evoked (in addition to earth, air, fire, water) which is space or “ether”. Too much space in blood or bile causes illness (Moffett, 2010). Ayurvedic medicine is still taught today in India but is not normally learned by Western doctors. The ether theory releases agency to other worldly forces.

The spontaneous generation theory (3rd century B.C.) arises from Aristotle’s claimed that living beings arose from one of three ways: sexual reproduction, asexual reproduction, or nonliving matter (Moffett, 2010). The Roman poet Virgil wrote in ~29 B.C. (Georgics, 2019) that for “making…bees, a practice known as bougonia, which involved beating a poor calf to death, blocking its nose and mouth, and leaving the carcass on a bed of thyme and cinnamon sticks”. Additionally, “creatures fashioned wonderfully appear,” he wrote, “first void of limbs, but soon awhir with wings” (Ball, 2016). Three hundred years later, Aristotle claimed in his book On the Generation of Animals that a fertile matrix of decaying matter spontaneously yielded insects and mice (Ball, 2016) from if the nonliving matter contained pneuma (vital heat) (OpenStax, no date). Even the bible mentions creation of living “out of clay” (von Holsten, 1936).

Spontaneous generation beliefs continued until 1668 when the Italian physician, Francesco Redi (1626 – 1697), demonstrated that maggots would not spontaneously
generate from rotten meat (OpenStax, no date). Redi’s experiment involved setting up six containers of meat. Two were open to air, two were covered by gauze, and two were sealed. As he hypothesized, maggots appeared in the open jar, but not in the gauzed jar nor in the sealed jar (OpenStax, no date). Hence, maggots did not spontaneously generate from decaying meat. Up until Redi, the belief that life came from non-life helped justify aberrant burial practices such as those for revenants (Barber, 1988) and other supernatural forces. The belief in spontaneous generation mystified death and dissolved agency in treatment of the dead.

The entelechy theory (3rd century B.C.) conveys that organisms are composed of matter plus a vital force which creates life (Moffett, 2010). The vital force can be disrupted causing illness or be extinguished causing death. Aristotle described this vital force as entelecheia or ἐντελέχεια which is translated as entelechy or soul (Aristotle, 1908; Hicks, 1907; Gendin, 2012) whereby “…when the soul departs, what is left is no longer a living animal…” (Aristotle, 1908). The agency is held by non-worldly forces as are the burial practices.

The contagion theory (10th century A.D.) had a dual meaning for many centuries. The word “contagion” originally had a religious medicine meaning whereby illness was an affliction from a god (Jouanna, 2012; Harvard University Library, 2018). For example, a person with epilepsy has seizures as a result of a god’s possession of the person (Jouanna, 2012). Further to the east, the Persian doctor, Avicenna, suggested the conventional idea of contagion when he submitted that quarantining ill patients prevented the spread of disease (Moffett, 2010). However, in subsequent centuries, contagion theory became associated with the spread illness, in association with miasmata (Pelling,
1994; Harvard University Library, 2018). In the subsequent centuries, the spread of disease drew causation. The burial of the dead drew causation as well, as discussed in the Miasma section below.

The hormesis theory (16th century A.D.) arises from Paracelsus who claimed that there is a dose response to a substance exposure (Moffett, 2010). A high dose may kill while a small dose may be curative.

Consequently, applying a small amount of something that causes illness will protect one from that illness. This idea is applied in the pharmaceutical industry that evaluates the dose response of compounds. While a small amount of digitalis can be beneficial in heart disease, a large amount is lethal. Like contagion theory, hormesis linked causation. It linked control with consequences.

The phlogiston theory (17th century A.D.), according to Joachim Becher (1635-1682), claimed that all material is made of air, water, earth. Illness can be cured by adjusting these materials. Stahl in about 1700 submitted that “…when a substance burned or when a patient was fevered, an element to which he gave the name “phlogiston” escaped with the development of heat. The physician’s duty…was to prevent the phlogiston from escaping and being lost to the body” (Comrie, 1933).

The homeopathy theory (18th and 19th century A.D.) began with Samuel Hahnemann (1755-1833) whose scintillating idea is paraphrased by the following from Schmidt (2010)

It is Hahnemann's basic idea of an art of healing that, on the one [hand], attempts to conform as closely as possible to the sick human and primary phenomena (disturbed well-being/feeling, detuned vitality, remedies as potencies
to influence these states) and, on the other band, strives to find tools, rules and laws that make the highly demanding practice of medicine certain and reliable.

Putting it simply, one can say that similar cures similar (Schmidt, 2010). Hahnemann claimed, “substances which arouse a kind a fever extinguish the types of intermittent fever” (Schmidt, 2010).

However, Hagnemann’s ideas stemming from the term “homeopathic” which he coined in 1807 involves more than the simplification of above (Schmidt, 2010). Consequently, Hagnemann encapsulated his ideas in six editions of Organon published between 1810 and 1842 (Schmidt, 2010). Interestingly, this theory is quite popular today, albeit in a different form.

The zymosis theory (19th century A.D.) is based upon what Antoine Béchamp claimed that tiny organisms called zymes are fundamental building blocks of life (Moffett, 2010). These morph into disease agents and have immortality.

Pre-Miasma Theories Effect

The above theories do not in and by themselves cause a change in rationale for cemetery placement. However, they do morph in part to influence the miasma theory. They do mirror the attitudes toward life and toward death. They demonstrate a supernatural perspective with subservience to the earth and to forces beyond human control. Consequently, burial practices were oftentimes meant to gain favor, to seek redemption, to pay penance, or to make an offering to spiritual or supernatural forces. These spiritual and supernatural forces dictated where and how burials were done rather than following any earthly rationale. Likewise, the fate of the decomposing body was thought to left to the forces out of human control.
The miasma theory in its “non-morphed” form claims that disease “ferments” combine with noxious air to bring about disease. The disease “ferments” come from a disease, but are only “activated” through the noxious vapors of sewer gas, of a manure pile, of decomposing leaves, etc. The more noxious vapors a person is exposed to, the stronger the disease.

The miasma theory morphed over time (Halliday, 2001; Pannell, 2016) with each morphogenesis being difficult to pinpoint with any degree of certainty. Sometimes, a morphing of the theory arose by one influential person (Halliday, 2001). A Professor H Booth, from London, writing in the Builder in July 1844 claimed, “From inhaling the odour of beef the butcher’s wife obtains her obesity” (Halliday, 2001). However, in general, the miasma theory involved a spiritual, ghostly, and supernatural component as well as the standard noxious vapor component. Because the essence of the miasma theory persisted for so long and was spread geographically through many people and cultures along the silk roads from Asia to Europe (Morelli et al, 2010; Perry and Fetherston, 1997), merging of other theories into miasmata occurred (Moffet, 2010; Pannell, 2016).

Miasma Theory Effect

The miasma had impact on the treatment of the dead and on the placement of cemeteries (Rugg, 2013b). Cemeteries were not welcome in the city largely due to petitions from those such as Dr. Rausch. The Chicago City Ordinance of 1881, section 1.439 (Jamieson and Adams)
The common council of the city of Chicago shall have the power, by ordinance:

First. To prevent the interment of the dead within the present or future limits of the city.

Second, To provide for the vacation of the several cemeteries in said city by the purchase and extinguishment of the titles of lot owners, or otherwise.

Nevertheless, this theory coincided with many epidemics (Hays, 2005; Rotundo, 1984; Szczygiel and Hewitt, 2000; Martensen, 2009), the development of large cities (Pregill and Volkman, 1999), and the over-filling of city graveyards (Rugg, 2013b). The miasma theory, in part, forced an abandonment of sociocultural norms in favor of cemeteries being placed in rural, non-secular areas. America’s romantic era paralleled miasmata and favored the placement of cemeteries in picturesque (Bender, 1974), country vistas away from city centers (Bender, 1974; Rugg, 2013b; Meller and Parsons, 2011), away from putrid laden churchyards (Puckle, 1926; Jenner, 2005), away from crowded, layered burials (Curl, 1983) to open, space abundant, rolling hills of America (Bigelow, 1860). There was an overwhelming appeal in the 19th century to place the dead in rural, countryside locales which mediated the relationship between the dead and the bereaved (Tarlow, 2000; Meller and Parsons, 2011). Additionally, the cotyledons of the Landscape Architecture profession rooted itself into the romantic, rural cemetery movement (Pregill and Volkman, 1999). The profession reveled in creating beautiful, vista-ful, country landscapes (Curl, 1983).
Germ Theory 1900 To Current

The development of the germ theory took a serpenticious route with elements dating to before the Persian doctor, Avicenna suggested disease contagiousness in 1025 (Moffett, 2010).

Evidence for the existence of pathogens was not known until the light microscope was invented in approximately 1590 by either Hans and Zacharias Janssen or Hans Lippershey (Davidson, 2009; Cox, 2013). The microscope was further perfected by Antoni van Leeuwenhoek who used it to study nearly all his surroundings. He described "little animacules" in the 1600s which enabled the visualization of this “invisible” world (Fred, 1933; Dobell, 1932). Van Leeuwenhoek showed the world through his drawings that microorganisms existed. Despite this knowledge, the scientists of the day did not generally connect them as causative agents to disease. They could not believe that something so small caused disease. Consequently, the germ theory of disease was not well accepted until nearly 1900 (Kokayeff, 2012; Moffett, 2010; Harvard University Library, 2018; Thagard, 1996; Halliday, 2001). The preponderance of evidence for “germs” causing disease was overwhelming from the late 18th century and throughout the 19th century (Mcclary, 1980). While it took a while for the concepts to spread and gain popularity in the medical community, many contributed (Mcclary, 1980). Some of the pioneers who advanced the germ theory in the 19th century included John Snow, Louis Pasteur, and Joseph Lister.

In 1854, after repeated outbreaks of human cholera in London, John Snow (1813-1858) demonstrated statistically and epidemiologically that the cholera outbreaks in South London was caused by a contaminated well and not by miasmatic vapors (Moffett, 2010; Cameron and Jones, 1983). John Snow showed on a map that those Londoners that
contracted the disease primarily got their drinking water from the Broad Street Pump (Moffett, 2010; Cameron and Jones, 1983). After city officials removed the pump’s handle, the residents had to get their water from other city wells which stopped the outbreak (Moffett, 2010; Cameron and Jones, 1983).

In 1865, Joseph Lister (1827 – 1912) provided more causative evidence when he successfully curbed post-operative infection by using carbolic acid as an antiseptic on surgery instruments and wounds (Pitt and Aubin, 2012). In the mid to late 1800s, Louis Pasteur (1822-1895) demonstrated that microbes caused alcohol, wine, beer, and milk to ferment (Bordenave, 2003). He later proved that vaccination confers protection to chickens against cholera (Pasteurella multocida) and he boldly vaccinated a 9-year-old boy (Joseph Meister) against rabies after the child was bitten by a rapid dog (Bordenave, 2003). The life of Joseph Meister was saved, and Pasteur gained great support for the role of microbes in disease.

The conclusions of the pioneers of the germ theory lead to its eventual acceptance. Dissemination of the germ knowledge was made through newspapers and magazines which led to a germ phobia and germ panic, but acceptance of the fact that microbes are everywhere settled the public (McClary, 1980).

Germ Theory Effect

The germ theory helped put things into perspective. The germ theory also enabled direct causation to be drawn between pathogen and death. The germ theory demonstrated that miasmatic vapors were not going to emanate from dead bodies in cemeteries within or without the city. As an effect of the germ theory came a sense of mastery of life and a mastery over death. Consequently, by 1905, the City of Chicago
ordinances did not restrict cemeteries from being placed within the city limits or the future city limits (Chicago, et al, 1905). In fact, the ordinances referred to “contagious or infectious disease” when referring to the handling of dead bodies which reflects the acceptance of disease pathogens (Chicago, et al, 1905). The city did control the manner within the city a body could be carried, however (Chicago, et al, 1905).

Rise Of Modern Religions

While a deep discussion of religion is beyond the scope of this thesis, suffice it to say that religion has long been tethered to the origination of life and of the dissolution of life. Religion has also created practices, rituals, and edicts of what is done with the deceased (Rugg, 2013b). These practices were rooted in a vacillation of what the dissolution of life meant. Nevertheless, the practices were rooted in an abscentic awareness of the fate of decomposition and of the long-term consequences of burials (and of cremation).

As far as 100,000 years ago, some believe a religious belief system began (Culotta, 2009). Smirnov (1989) indicated evidence that Neandertals are some of the first hominin to practice religious-like burial practices. However, the better-known religions fostered by ancient Israel, classical Greece, Confucian China, and Buddhist India flourished in the 500 years before Christ (Bellah, 2001; Wolfe, 2011). Between the 13th and 20th century, a religious fervor created a different view on death. As the germ theory of disease provided a systematic, pathogen causation to disease, the rise of Christianity can be viewed by some to reverse the gains in disease understanding to one focusing on spirituality (Withington, 1892). Christianity also re-introduced a spiritual element to death and burials that was diminishing with an emboldened discipline of science and
medicine. For example, Christianity expected good Christians to be buried near the church in church yards (Geake, 1992). Christianity banned cremation until 1966 after which it was allowed (Puckle, 1926).

Nevertheless, the rise of modern religions morphed our perception of death from one of acceptance, to one of fear, to one of an afterlife, and to one of an overcoming of death. Each religion codified the treatment of the dead and directly impacted where and how bodies were buried regardless of other factors.

Wars

The Civil War and the two world wars were traumatic on society’s perception of death and the treatment of it. The development of cemeteries shifted as a result of these societal traumas.

The Civil War, WWI, and WWII, overwhelmed humanity’s emotions, our ability to adhere to religious and traditional burial practices, brought about a few technological changes in dealing with death, have transitioned burial grounds into perpetual honorariums (Budreau, 2010, p. 13), and have covertly brought forth humanity’s concern for crimes against humanity.

Civil War

Amidst the revelation of the germ theory, the Civil War in the United States broke out in xxx. Between April 12, 1861 and May 9, 1865, between 828,000 and 1,000,000 people died directly from combat, shortly thereafter due to wounds incurred during combat, accidents, and collateral deaths. The United States had never suffered such war mortality. There was no adequate system in place to deal with the wounded nor with the dead. Dorothea Lynde Dix (Burns, 2019) was one of the first to treat wounded soldiers
and was appointed on June 10, 1861, to the position of Superintendent of Female Nurses of the Union Army by Secretary of War Simon Cameron to treat soldiers on or near the battlefield. Clarissa “Clara” Harlow Barton (1821 – 1912), Mary Ann Ball (1817 – 1901), Louisa May Alcott (1832 – 1888) were other well documented nurses that worked under Dorothea or on their own (Burns, 2019). Barton worked to establish the American Red Cross. Ball worked with the Sanitary Commission serving in 19 battles, often under fire, and was known to walk the battlefields at night hoping to find anyone alive (Burns, 2019).

Aside from treating the wounded, the deaths were beyond what anyone imagined. The ritualistic mourning a loved one graveside and burial nearby could not happen. The cultural belief systems of religious- and non-religious-prescribed practices of burial in a specific direction, burial in a homemade coffin, processionally following the body to the grave, placing a substantial marker at the grave, and countless other practices could not take place. Instead, after blow flies, countless microbes, and the sweltering heat caused corpses to swell into monstrous-looking gooey blobs, the bodies were hastily buried or had dirt kicked over them. Most were unidentified, haphazardly placed (if moved at all), and rest in silence to this day. In silence, most never were mourned in a manner traditional for the day. Because of these deaths en mass, the government set up National Military Cemeteries. In these, union soldiers who fought in the Civil War, and soldiers that fought in other earlier wars had the option to be buried in newly formed National Cemeteries. Many of these cemeteries were formed at sites “after the fact”. That is soldiers were already buried at a site and the designation of a National Cemetery was added later. Consequently, many of the sites were placed based on being at the near
proximity to the battle site. The bodies from the Civil War that were recovered were removed in the years following the Civil War to these National Military Cemeteries or at a cemetery of the family’s request. In a way, many of these sites may have been situated as places of military strategic significance or as places of chance.

The Civil War created several new challenges to American’s dealings with death. It was the first time that families were forced to deal with the death of family members at a distance. It was the first time, large numbers of people died, and the United States government was grossly ill prepared for the mass deaths. Battle treatments, embalming, corpse identification, and transportation methods for corpses were new to the union. Furthermore, National Cemeteries were declared by Lincoln which began a memorialization of those that died in the service of the country.

Generations of grave maltreatment were begun as a result of the war. And death became a fact of life for all Americans. It became a source of great sorrow for prematurely dying family members as compared to old-age attritional causes of death.

World War I (WWI) & World War II (WWII)

Subsequent to the Civil War, WWI and WWII created additional shifts in cemetery placement. Being both wars were battled abroad, the dead never received the mourning rituals of the day. Although during the Civil War, some of dead were brought to their home area for mourning rituals, during WWI and WWII, the dead were often buried in the country in which they died. They never had the mourning rituals by loved ones (Budreau, 2010), but were buried by strangers at or near the battlefields of their death. These Military Cemeteries were created near the battle for logistical and cultural purposes (Harke, 1990; Robertson, 1983) and not because the site was best for burials.
Burials in the proximity of the battle made logistical sense. However, a long held cultural belief bestowed great honor by being buried at the place of death. In these situations, the cultural belief systems weighed more heavily than the cultural implications (Budreau, 2010) and more heavily than the long-term strategy addressing the fate of decomposition.

Following WWII, a heightened national confidence arose in the United States as in any national achievement (Smith, 1998). The nation had overcome the Great Depression. The nation had "won" two world wars. The nation had advanced technologically and industrially through these times. In converting countless factories to war time products and weapons brought an awareness that American’s can do anything. The WWII also brought forth a sense of righteousness. The United States and its allies remedied a moral injustice in the world. It brought an end to the extermination of millions of Jews. WWII had brought an enwrapment of moral superiority to the United States. Consequently, the Military Cemeteries that were placed abroad became nexi for the symbolism of honor (Harkle, 1990; Roberston, 1983; Budreau, 2010) and purpose for dying. These cemeteries brought forth the idea that death with honor is better than death without. These cemeteries brought forth the idea that while the individual tombstones were alike, the monumentation of the mass graves gave a resurgence to the purpose of cemeteries – death can be honorable and cemeteries can reflect this (Roberston, 1983).

Both World Wars resulted in great masses of deaths. However, these deaths were on foreign territory. The United States’ war department concluded that transporting the war dead back to the United States was an impractical use of war resources (Budreau, 2010). Consequently, far-away deaths removed “the closure” for many of having a grave
to visit. The nexical sacredness of having a grave to communicate to the dead was prevented from being possible (Walter, 2005). Great honor was bestowed upon the military cemeteries unlike previous burial grounds (Budreau, 2010), particularly WWII. Military Cemeteries became places of memorialization, national pride (Budreau, 2010), and tourism.

Mass graves, the barbarity of humanity, and the effects of mass burials transformed death into the realm of honorarium and into the realm of evidences against humanity.

Industrialization

In the early 1900s, people became emotionally detached from death during the beginnings of urbanity (Anthony, 2016); the putrescence and the ills associated with death and the overcrowded churchyards (Curl, 1983) were “forgotten”. The industrial revolution in America brought a “can do” attitude (National Day Calendar, 2019) for mechanization, automation, and overcoming all. Americans believed they can conquer hunger, overcome “unjust” political regimes, accelerate technological innovations, and advance beyond disease and death. A distancing from death became more pervasive. The cemetery was not as important. The minimalist design and the pristine, lawn, flat-markered cemeteries became commonplace. Function above form was the norm.

Religion’s hold on death practices were eroded during the 2nd half of the 19th century (Walter, 2005). Concerns for public health, advances in the medical field (citation), and an increased emphasis of defining death through medical terms rather than religious faith (Anthony, 2016) lead to a rationalization for cemeteries into the countryside away from churches (Jenner, 2005).
Through the sense of honor and the surge in the United States’ industrialization era, cemeteries were placed with greater prominence. New cemeteries were placed with more conspicuousness and existing ones became more conscious of their presentation to the world. Sections of the existing cemeteries were modified to highlight fallen soldiers of not only WWI and WWII, but also the subsequent wars. Korean War monuments, Vietnam War monuments, and monuments of all wars became almost expected across the country in cemeteries in which military personnel were buried. However, the placement of the new cemeteries and the adaptations of existing cemeteries were done so for sociocultural reasons and not for reasons of long-term fate consideration.

Individual Conscientiousness

Beginning during the United States’ industrialization era, people started individualizing their burial plots. While individualization occurred greatly in Victorian-Styled Cemeteries of the late 18th and throughout the 19th century in terms of demonstrating greatness, power, money, and status, the individualization that slowly emerged during the industrial era was buried in a humble consciousness. With the great strides of the earlier wars and those of the industrial era, some looked introspectively at their own impact on the world. These effects are mostly evident today with societal concern for the climate, pollution, income and food inequality, and other causes, but I contend these sentiments began in the 1940s and 1950s. The saving of millions from extermination by the Nazi was a bold and necessary move toward a humble, self-aware individualism. Individualism is written because these ideas are rooted in an individual’s mind. Most of the “causes” depicted above only could be achieved through the involvement of thousands and millions, but the individual mind and body was changed.
The individual mind and body were changed or more accurately directed to a higher purpose. The higher purpose was not necessarily in reference to religion, but a higher purpose for humanity.

In the 1940s, the YMCA was a pioneer in blazing a trail toward non-profit societies. The labor laws in the United States to protect worker’s rights and safety originated in 1938 and 1893, respectively (https://en.wikipedia.org/wiki/United_States_labor_law; https://en.wikipedia.org/wiki/Occupational_Safety_and_Health_Act_(United_States)).

The Civil Rights movement culminated in the 1960s. The anti-war movement culminated in the late 1960s. The Clean Air Act and Clean Water Act were passed nationally in and 1972 and (1963/) 1970, respectively (https://www.epa.gov/laws-regulations/history-clean-water-act).

Additionally, regarding cemeteries, individuals have become concerned about their carbon footprint. Individuals want to have their ashes incorporated into concrete blocks, to be sank into the ocean, and to provide a home for ocean coral (https://www.eternalreefs.com/). Individuals want to be buried more naturally without embalming, without a casket, without a vault (Harker, 2012; Holden and McDonald-Madden, 2018). Individuals want to be cremated instead of having a whole-body burial to save land. Individuals want to be cremated to have their ashes scattered over flower gardens as a fertilizer. In ground cemeteries are becoming less of an impact for the 65% that are choosing cremation. However, even cremation can have deleterious effects. Toxic chemicals, air pollution, disease, and crematory energy demand also need assessment. These other modes of dissolution of the dead are not harmless. As a species,
we tend to jump ahead before knowing the consequences. In fact, as a biological precept, most species destroy their environment in favorment of the next successional species. Perhaps this is a destinal course we must take. Perhaps humanity does not have the patience to look toward impacts before proceeding.

Even Native American Indians have been lauded as an epitomal symbol of respect for their environment (Lewis and Anderson, 2002; Callicott, 1982) and for foreseeing consequences. However, the Native American Indians in the United States have in the past dramatically altered their surroundings (Lewis and Anderson, 2002; Williams, 2002; Raish, et al, 2007) and in fact can be said to have destroyed the existing natural flora to suit their own needs (Raish, et al, 2007). They started fires along the tree tension zone to push back and to limit the advancement of the forest in favor of open prairie (Lewis and Anderson, 2002). It was in open prairie that buffalo, elk, and various gallinaceous birds thrived. While lightning also created such fires, the Native American Indians far surpassed lightning fires in their affect. In addition to pushing back the tree line, the new, vigorous growth occurring after the fire dramatically improved the habitat for white-tailed deer, rabbits, and other r-strategists.

Consequently, if the epitomous society of modern civilization also destroyed their natural habitat, will we do any different? The rationale for cemetery placement is the purpose of this thesis.
HYPOTHESIS

Historically, cemetery placement has followed sociocultural rationale without regard to eventual effects on the environment (Ucisik and Rushbrook, 1998). The rationale has shifted through a series of punctuating events over time but has nonetheless resulted in more than a few pollutive cemetery placements (Graeber, 2012; Eastern Cemetery, 2017; Associated Press, 1989; Bannos, 2019; Chadwick, 1843). Cemeteries in Jefferson County and Cook County will be used as proxies for cemetery placement. Some cemeteries in Jefferson County (Eastern Cemetery) and Cook County (Fleig, 2018) have been placed without foresight.
ANALYSIS OBJECTIVE

The above introduction delineates the genesis of cemeteries in brief. It delineates the genesis as sourced from literature and historical documents. It delineates a lot of complexities and confounding rationale to the placement of the deathscapes. However, is there objective evidence that gives concrete evidence to the deathscape genesis and to the placement of them. And more to the point, has the vacillating cemetery placement rationale been done to foreword planning, reactive planning, or chaos theory.

In order to determine this, cemeteries in two counties have been selected from which cemeteries were analyzed. The method to discover the placement rationale is through a spatial analysis of variables that may have been rooted in or have been reflective of the logic of cemetery placement. These variables include cemetery name, cemetery size, slope of terrain, elevation, distance to railroads, and distance to open water.

Overall, the goal of this thesis was to evaluate and to draw conclusions about the following.

- To identify and understand the sociocultural and physical factors influencing the development of deathscapes in Cook County, Illinois and Jefferson County, Kentucky primarily during the 19th century.
- Determine if the rationale for cemetery placement has been for sociocultural reasons or with planning rationale with foresight on consequences.
MATERIALS AND METHODS

LITERATURE REVIEW

The literature reviewed were gathered from various sources including PubMed, Google Scholar, and other peer-reviewed databases available such as the University of Louisville, Library System, the University of Chicago, Library System, and the Filson Historical Society. Further data were gathered from non-peer reviewed sources available through both Library Systems and public access.

SPATIAL DATA

The data were collected from historical documents; land deeds; USDA Natural Resource Conservation Service geographical, soil, slope, and hydrology data Web Soil Survey (2019); Google Earth Pro (Google Earth), 2018 and Google Maps; historical maps; religious centers; peer reviewed literature; newspapers and magazines; and other sources.

Some of the spatial data was gathered and analyzed with specific terminology and assumptions. These are described below.

COUNTY SELECTION

In evaluating the counties to choose, Jefferson County, Kentucky and Cook County, Illinois are the two chosen for the spatial analysis.
Jefferson County, Kentucky

Jefferson County, Kentucky was selected as a study area for several reasons. First, the University of Louisville is located within Jefferson County, so research from this thesis may have direct relevance to the University and to those associated with it. Second, Kentucky sits at a nexical location through which a lot of cultural changes, stressors, and transitions occurred. These included the split loyalties over the Civil War, the racial tensions stemming over 200 years, the prominence of grave robbing during the 19th and early 20th century, the strong southern religious influence, and the mountainous terrain. Kentucky offered a complex mix of interactions which provided a great test for the variables of interest.

Cook County, Illinois

Cook County was selected as a direct contrast to the characteristics of Jefferson County. Cook County is relatively flat. It was significantly impacted by the miasma theory and the transition between it and the germ theory (Loerzel, 2019). These theories shaped cemeteries during the 19th century. Slavery and racial tensions were not a significant impactor in the deathscape development. Immigrants dramatically impacted the City of Chicago’s growth and deathsapes. The county reflects the surveying, plotting, and development of the Public Planning Survey System (PLSS) following the development of the 13 original colonies. The City of Chicago and its environs was heavily impacted by the industrial era and experienced rapid growth. Lastly, Cook County seems to reflect a demeanor and philosophy created by farmers and immigrants which has been translated into deathscape development.
LOCATION

The location of each cemetery was determined based on its center point (centroid) in terms of latitude and longitude in decimal degrees, except for the data sources that had GPS coordinates complete.

The reason for using the centroid of each cemetery was because each cemetery has different dimensions. In analyzing the distance to a stream is confounded by using a point along a boundary other than the centroid. The boundary of each cemetery could be used to measure distance, but the specific point on the boundary would need to be detailed. Standardizing a point to use on each cemetery to be consistent is next to impossible with triangle shaped, square shaped, 6-sided polygonal, 8-sided polygonal shaped, and all the other shapes. Additionally, some cemeteries have no defined boundary.

The distance measurements used in this analysis were conducted based on what appeared to be the centroid of each cemetery based on the visual representation of each cemetery in Google Earth and/or Google Maps. The “tilt while zooming” was disabled in Google Earth to more accurately view each site perpendicularly. Also, a satellite image was used for determining centroids to better visualize the ground plane.

CEMETERY DESIGNATION

Each cemetery was considered a separate cemetery if any of the following was true.

- The GIS file considered a site as unique.
- One of the sources for data as described above considered a cemetery as unique.
- Different sources for data considered a cemetery as unique.
The synonymy between cemeteries was questionable for any reason.

NUMBER OF CEMETERIES

According to the lists the author compiled, Jefferson County has in excess of 648 and Cook County has about 718 cemeteries. The uncertainty in the number of cemeteries is due to the imprecision in every knowing the precise number. The number of cemeteries were gathered primarily from GIS files, findagrave.com, the Filson Historical Society, and the cemetery’s website (where applicable), but no cemetery list can be complete. Countless family cemeteries exist that are not listed online, primarily in Jefferson County. Cook County does not appear to have as many backyard, family burial grounds, but it cannot be known with absolute certainty. Many cemeteries have become overgrown, forgotten, or destroyed. Many cemeteries have had bodies moved elsewhere with a weak paper trail to know if all bodies have been removed. Many cemeteries have joined others, have had name changes, are un-named, or are known by two or more different names which greatly confounded a list of cemeteries. In Jefferson County, there are likely quite a few family and slave cemeteries that have never been designated as such and have long been forgotten. While Cook County may have many family cemeteries, the land development was largely done at a later time. Cook County has also been plotted, in part, through the initial Public Land Survey System (PLSS) which designated original man-made elements. And subsequent surveying documented subsequent elements. All land transfers would have documented changes to the surveying through deed transfers and sales. Consequently, documentation of the existence of cemeteries can be more assured in Cook County than in Jefferson County.

Additionally, there appears to be no central repository from which comparisons can be made to eliminate duplicate entries or other errors. As it exists, numerous
databases/lists exist duplicity and in parallel by various city, county, state, and national organizations. To illustrate some of the complexity below are some examples.

- In Jefferson County, there are 14 entries for the Portland Cemetery. The GIS file information indeed shows 14 separate parcels of land. This cemetery was separate at one time, but over the years had been joined.

- There are very similar names for two different parcels of land.
 - Oxmoor Lodge and another is known as Oxmoor Lodge, Adjacent.
 - Oldham Cemetery and at a separate location one named Oldham Family Cemetery.
 - Murray Family Cemetery and a Murray – Young Cemetery.
 - Moore Heafer Road Cemetery, a Moore Family Cemetery, a Moore – Fishpool Cemetery, a Moore Slack Cemetery [defunct].
 - Saint Michael Cemetery and another named Saint Michaels Cemetery

The only way to reconcile the disparities pointed out is to physically go to each and document them. While many volunteers have been doing this, it is a monumental task and beyond the scope of this thesis.

Also, infant mortality was high which were transformed into small family cemeteries, but many dead infants never were represented in the cemetery numbers because the infant deaths originated when a family was young. As the family got older,
they may have moved away or were buried elsewhere. Not all infants were buried in a formalized cemetery nor were they the seed of new cemeteries.

Nevertheless, the cemeteries that were selected had at least two variables collected for which to compare, except for the name analysis which only required a name.

ESTABLISHMENT YEAR VARIABLE

The date of establishment was determined through one of several means. If the GIS files that were gathered had the date, the GIS date was used. Some cemeteries had website with establishment dates. Other dates were determined through mining the online tombstone inscriptions on a genealogy website, such as findagrave.com. If dates between these differed, the order of acceptance priority was in order of priority GIS – cemetery’s website – tombstone data. If dates were in doubt beyond that, the earliest of the dates was used. Furthermore, a date reflecting when burials occurred was considered the establishment date rather than official ceremonial dates. For example, some cemeteries had burials, but were not chartered or did not have an official opening until a later date. Some cemeteries were opened on a given date but were under construction for several years before which the first burial occurred.

SIZE VARIABLE

The cemetery size was ascertained from the GIS files, the cemetery’s website, other websites that refer to a cemetery’s size (e.g. findagrave.com), Google Earth measuring tools, or calculations based on the number of graves.

When calculations were made, the number of published graves was used. These were multiplied by a grave size of 32 square feet (8’ long x 4’ wide). The total area was multiplied by 2.5 to account for border areas around each grave and around the cemetery.
SLOPE VARIABLE.

Slope is an elemental design factor in many cemeteries during the 19th century (Francaviglia, 1971), especially when creating picturesque cemeteries (French, 1974; Bigelow, 1860). The slope of cemeteries has also demonstrated environmental issues (Jackson, 2006).

The slope was gathered from the Soil Web Survey (2019). The slope can be gathered from other sources including contours, but the Soil Web Survey has the most complete data set. Also, the slope can be evaluated based on percentage or based on degrees. Percentage was used in this analysis because it is more familiar by most and is more easily analyzed statistically than degrees. The limitation of using slope from the Soil Web Survey is that some generalities are made. Cemetery sites may have changed slope because of excavation or because of natural events which will not be reflected in the Soil Web Survey. Lastly, the slope data is what is indicated in the latest Soil Web Survey data which is from 2017. However, reliable data is not available on slope from the 19th century. Systematic elevation measurements were not for construction until machinery was available to change it on a scale basis. This equipment was not available readily until World War II. Nonetheless, the data still reflects general changes in terrain. Generally, elevational changes of several feet were not changed to build a cemetery in the 19th century. Today, this can be done, but the current slopes should reflect that of the 19th century being that most cemeteries analyzed have been in existence and operational since the 19th century.
ELEVATION VARIABLE

The elevational data were gathered from Jefferson County (https://www.lojic.org/) and Cook County (https://datacatalog.cookcountyil.gov/) GIS data. In order to compare Jefferson to Cook County, the elevation from each county was normalized. While the elevation across the country is normalized to sea level, this does not reflect local specificities. Consequently, as a means of reflecting local nuances, the elevations for each county were deducted from the minimum elevation for each county. In this way, local floodplains, and other variations can be considered. For example, if the minimum elevation of Cook County is 300, and a cemetery is at 340 feet, a calculation was done to subtract 340 from the minimum of 300. The analysis was done on 40 feet.

At these sites, contour data and spot elevation data are available. The contour data files are very large and complex when trying to analyze so many cemeteries. For example, each township in Cook County, Illinois has a separate contour layer file. Each township has slightly different benchmarks and GPS correction datum. Consequently, to analyze across these townships would entail merging the files together and to adjust each to a central datum. ArcGIS had issues in merging these files and it became an issue beyond the scope of this thesis. As a result, the spot elevations were used. These spot elevations were created on a county wide basis for both Jefferson County and for Cook County. This avoided the need to adjust for different township datum.

In using the spot elevations, several methods could be used for representation of each cemetery. Several spot elevations could be averaged to gain a wider perspective on a given cemetery. However, some cemeteries are very small. Consequently, the nearest spot elevation was chosen as representative of each cemetery. While this single elevation does not represent a 500-acre site in completion, it indicates whether further analysis is
warranted. If such a deeper look is deemed appropriate, an actual survey of each site would be needed.

DISTANCE TO RAILROADS VARIABLE

Railroads were used as a variable because they were used as a means of transport of dead during the 19th century, especially during the Civil War (Habenstein, 1962), and during an era of many cemetery beginnings.

The railroads used for the analysis were from 1910 for Cook County (University of Chicago, 1910), and 1891 for Jefferson County (Hoeing, 1891). These maps were used for analysis because they represent the cemeteries from the 19th century and the 20th century.

The distance to railroads was done through ArcGIS computation in U.S. feet. The cemetery centroid and the railroad layers were transformed by ArcGIS’s transformation tool to be the same. Assumptions were made that ArcGIS was correctly transforming the layers and no quality control was conducted to verify these measurements.

The ArcGIS tool used for determining distance was it “near” and “near to” tools. These determined the distance from each centroid to the nearest point of the nearest railroad which was represented as a polyline. No adjustments were made for the near distance in terms of if it was near through a perpendicular axis or an angular axis. Assumptions were made that ArcGIS was measuring accurately and ArcGIS’s tools employ methods that are well accepted.
DISTANCE TO OPEN WATER VARIABLE

A cemetery’s proximity to water is a concern because of the ease of distribution of contaminants through it (da Costa Silva and Malagutti Filho, 2012) and because it is a source of drinking water (Diakonidze, 2013).

The distance to open water was done through ArcGIS computation in U.S. feet. The cemetery centroid and the open water layers were transformed by ArcGIS’s transformation tool to be the same. Assumptions were made that ArcGIS was correctly transforming the layers and no quality control was conducted to verify these measurements.

The ArcGIS tool used for determining distance was it “near” and “near to” tools. These determined the distance from each centroid to the nearest point of the nearest open water boundary which was represented as a polyline with streams and lake edges. No adjustments were made for the near distance in terms of if it was near through a perpendicular axis or an angular axis. Assumptions were made that ArcGIS was measuring accurately and ArcGIS’s tools employ methods that are well accepted.

The open water comprised any water identified as such in the GIS layers that were collected from Jefferson County and Cook County. Each county identified streams and lakes which were both relabeled as “open water”. No distinction was made to whether water was of a natural source, a drainage ditch, or other classification.

SOIL TEXTURE

The soil type was assessed because decomposition can leave a mark on the soil (Charzyński, 2010) and the soil type can mitigate these effects. The types of soil refer to the texture with clay being the smallest particle at less than 0,002 mm, with silt being
0.05 mm to 0.002 mm, with sand being 0.05 to 2.00 mm, and a loam being a mixture of these 3 textures (Burt, 2011). These texture sizes are reflective of the physiochemical properties of a soil and of a soil’s suitability for a given purpose. The soil textures were collected from the Soil Web Survey (2019). For statistical computation reasons, these textures were simplified and numerically categorized. The core texture was used. For example, if a soil was labelled a clay loam, the loam was the texture used. Furthermore, each soil category was assigned a number with 1 being clay, 2 being silt, 3 being sand, and 4 being the “other” soil type.

CEMETERY NAME VARIABLE

The names used were liberal interpretation in nature. If multiple names were used for a given cemetery from multiple sources, they all were included in the datasheet. Hence, if one website had a name with a “also known as” listed while another source has two more, but different names listed, the cemetery was listed to have four names. While official land deeds and business records reflect official names of more current cemeteries, many did not have such formality. And if different data sources referred to a cemetery by different names, that tells something about the nature of the cemetery. The multiple names are reflective of the culture surrounding such cemeteries.

Many cemeteries have no noun in their name. Some only had a family name with no reference to “cemetery” or “burial ground” or “graveyard” (e.g. Immanuel Lutheran Church, Wilcott). With these, the most generic, unbiased term for subsequent analysis was “cemetery”. In reviewing the other names, it seemed that those that were specifically a “memorial park” or a “graveyard” were designated as such. Consequently, “cemetery” was added to the adjectives.
Furthermore, to eliminate duplicates, a few criteria were used from which one of the terms was used for analysis.

The perceived intended purpose was used as the selected term for analysis. For example, if a family burial ground had the word *cemetery* in its name, the term *family* was used over *cemetery* because it was believed that the burial ground was originally started as a family burial ground. For example, the term *cemetery* was not evaluated against the term *religious* because most religious burial grounds were considered cemeteries.

Lastly, the terms selected were those that appeared to dominate the list of names. The names evaluated were those of the entire list of cemeteries whether any variable data was present or not. The terms selected were combined into categorical terms. It is these categorical terms which were analyzed. These terms as they were categorized are in the following table.

STATISTICS

The data was analyzed with the statistical packages within SigmaPlot v11.0, Excel 2010, and SPSS v25. Independent t-tests between means with unequal variance were used to compare establishment date to size, to slope, to distance to railroads, and to distance to open water. Pearson Correlations (non-parametric) were performed to examine the relationship between establishment date to size, to slope, to distance to railroads, and to distance to open water. Frequencies for Slope, Elevation, Soil Texture, and distance to open water and distance to railroads over time between Jefferson County, Kentucky and Cook County, Illinois were compared using Chi Square tests. Specific frequencies observed between the states and between time groupings were compared.
using Binomial Proportion Tests. The binomial proportion test evaluated for a difference between 2 proportions based on p values for 2-tailed tests (Siegel and Castellan Jr, 1988). Assumptions for this test were: 1) variables are dichotomous, assuming an equal chance of either occurrence, such as 50-50 for Yes or No; 2) checked whether a correction is needed for proportions that have a small \(n \) or the proportions are too extreme (too small or too large); 3) Z scores from 1.65-1.95 are significant at the .05 with a 1-tailed test.

Principal Component Analysis (PCA, Varimax rotation) was performed separately for Jefferson County, Kentucky and Cook County, Illinois to determine which outcome measures (Soil Texture, Slope, Elevation, Cemetery Size, Distance to Open Water, and Distance to Railroads) show interrelatedness for which to know which further statistical test to perform.

The \(r \) is considered significant above 0.9. The t-test and Chi-square test were considered significant at \(P < .001 \), \(< .05 \), or \(< .01 \). The principal component analysis shows the relatedness between the primary variables with values greater than 0.8 have important relatedness.

RESULTS

COUNTY SELETION COMPARISONS

These two counties have several characteristic differences (see Figure 3 and Table 2). Jefferson County has 380 square miles of land and 17 square miles of water (https://en.wikipedia.org/wiki/Jefferson_County,_Kentucky). Cook County has 11,819 square miles of land and 690 square miles of water. While Kentucky and Illinois became states in 1792 and 1818, respectively, the cumulative population censuses through 2010 for Kentucky and Illinois were 46,942,436
Jefferson County, Kentucky and 123,198,784 people over a total area of 40,408 square miles, respectively. It is readily apparent that Illinois has had a greater cumulative number of people per square mile over time (Kentucky = 1,162; Illinois = 2,127). If the census data from above is taken in combination with data from Haines (2001) for the 19th century and Bastian, et al (2019) data for the 20th century a projected cumulative mortality number is 7,398,295 and 17,927,695 for Kentucky and Illinois, respectively (see Figure 2 and Table 1). This is crude data, but it reflects the number of cemeteries and the size of cemeteries expected. Chicago appeared to contain more cemeteries than the population would call for (Pattison, 1955). However, based on the data, Jefferson County has 296 and Cook County has 259.

NUMBER OF CEMETERIES

The year of establishment shows a peak at between 1826 and 1900 with Jefferson County increasing and decreasing earlier and Cook County lagging in the increase and decrease (Figure 2 and Table 3). When comparing these dates to population increases and mortality, there appears to be a general decrease in cemetery establishment with a decreasing mortality.

ESTABLISHMENT YEAR VARIABLE

The cemeteries studied varied in establishment year between 1759 and 2014 for Jefferson County and between 1781 and 2005 for Cook County (Figure 2 and Table 3). Cemeteries appear to have been established by 50 years earlier in Jefferson County.
SIZE VARIABLE

The size summary data can be found in Figure 4 and Table 4. The cemetery sizes in Cook County varied between 500 square feet and over 37,000,000 square feet. Those in Jefferson County varied between 25 and over 12,000,000 square feet. The median and average size for Cook County cemeteries is 807,400 and 3,337,273 square feet. The median and average size for Jefferson County cemeteries is 5,200 and 238,859 square feet.

Overall the size of the cemeteries between Jefferson and Cook Counties show a statistical difference with a P value of < 0.001. The size across the years of analysis also showed significance (P ≤ 0.001) within Jefferson County and within Cook County as well as each showing a positive linear trend.

SLOPE VARIABLE

The size summary data can be found in Table 5 and the statistical data can be found in Figure 5. The slopes in Jefferson County are generally greater than Cook County because of the proximity to the Appalachian Mountains. Cook County is next to Lake Michigan and much is in a flood plain. As a result, the minimum, maximum, average, and median slope for Jefferson County is 0%, 31%, 6.51%, and 6%, respectively. The same for Cook County is 1%, 25%, 3.04%, and 3%, respectively.

The slope between Jefferson County and Cook County shows significance through ANOVA (P ≤ 0.001). The slopes also show significance over the timeline within Jefferson and within Cook Counties (P ≤ 0.001) with a negative trend in Jefferson County and a positive trend in Cook County.
ELEVATION VARIABLE

The elevation summary data can be found in Figure 7, 8, and Table 6. The actual elevation of cemeteries in Jefferson County is generally greater than Cook County because of the proximity to the Appalachian Mountains. Consequently, the minimum, maximum, average, and median elevation for Jefferson County are 425.90, 771.20, 613.16, and 673.10, respectively. The same for Cook County is 583.20, 827.20, 643.96, and 628.20, respectively.

The elevation shows significance between Jefferson County and Cook County (P < 0.001) and over the timeline within Jefferson County and within Cook County at P ≤ 0.001. Jefferson County shows a decreasing trend while Cook County shows an increasing trend.

DISTANCE TO RAILROADS VARIABLE

The distance to railroads summary data can be found in Figure 9, 10, and Table 7. The minimum, maximum, average, and median distance to railroads for Jefferson County is 89.79, 29948.40, 5010.35, and 3840.74 feet, respectively. The minimum, maximum, average, and median distance for Cook County are 5.06, 14038.97, 3346.93, 2295.27 feet, respectively.

The ANOVA between Jefferson and Cook County do not show a significance correlation (P = 0.092). However, the difference in distance to railroads is not significant over the timeline in Cook County (P ≤ 0.381), but it is in Jefferson County (P ≤ 0.001). Both Jefferson and Cook Counties show a positive trend over time.
DISTANCE TO OPEN WATER VARIABLE

The distance to open water summary data can be found in Figure 11, 12, and Table 8. The minimum, maximum, average, and median distance to open water for Jefferson County are 89.03, 6420.34, 1192.21, and 818.21 feet, respectively. The minimum, maximum, average, and median distance for Cook County are 53.58, 7287.22, 1291.29, and 1009.44 feet, respectively.

The distance to open water approaches significance between Jefferson and Cook County, but not quite at $P = 0.0757$. The distance over time within Jefferson County shows significance as does that within Cook County with P values ≤ 0.001. Also, both Jefferson and Cook County show in increasing distance trend over time.

SOIL TEXTURE VARIABLE

The soil texture summary data can be found in Figure 13 and Table 9. The soil texture changes over time shows significance within Jefferson County and within Cook County with P values ≤ 0.001.

CEMETERY NAME VARIABLE

The cemetery names are informative. The name statistics are summarized in Figure 14, Table 10, 11, and 12. Aside from the data below, it is intriguing that no cemeteries in Jefferson County named to reference Native American Indians like there are in Cook County. In Cook County, there are 23 cemeteries referencing Native American Indians which is a striking difference.

STATISTICAL RESULTS AND TRENDS

The overall statistical results are in the Table 11, 12, and 13.
DISCUSSION

CEMETERY LOCATION

In 1859, the prominent medical physician, John Rauch, who would become Chicago’s Sanitary Superintendent and president of the Illinois State Board of Health (Loerzel, 2019), petitioned for the City Cemetery to be closed because he feared that corpses were oozing disease into Lake Michigan and contaminating the air (Loerzel, 2019). The cemetery was established only in 1837 (Maggio, 2004) and had a large Potter’s Field at the northern side, but through Rauch’s petitioning, those of other city officials (Loerzel, 2019), and city residents, a city ordinance from 1864 ordered burials in the City Cemetery to cease (Maggio, 2004). Residents complained that the burial conditions were inadequate and lead to water contamination and disease, such as cholera (Maggio, 2004). Despite resistance to the cemetery’s closure, it was eventually closed in 1870 (Maggio, 2004). Bodies were hastily relocated from the City Cemetery to Rosehill and Calvary Cemeteries (Maggio, 2004). However, in 2000, human remains were found during a construction project of a housing development (Maggio, 2004).

The location of the cemeteries within each county was not specifically evaluated because it was beyond the scope of this thesis. However, in reviewing the figures, there appear to be clustering along railroads (or other means of transportation), along specific elevations, and near other possible geographic features (e.g. historical suburban town centers).
NUMBER OF CEMETERIES BY ESTABLISHMENT YEAR

The number of cemeteries by year of establishment largely reflected the growth in the population and the mortality. Prior to the germ theory that gained acceptance in the late 19th century, mortality from Old World diseases (cholera, small pox, tuberculosis, yellow fever, etc.) were common place. Having a place to bury such dead was at the forefront of people’s mind.

As the Romantic Movement ensued and as new towns were established in the 19th century, new town development involved building a church, establishing a blacksmith, creating a cemetery, and establishing other necessities. Many of these small, pioneer cemeteries later were abandoned, but they were part of town establishment as the populations moved westward.

After the turn of the 20th century, the field of city planning came into being (Pregill and Volkman, 1999). Developing sewage systems, indoor plumbing, and the flourishment of sanitary commissions (Pregill and Volkman, 1999) changed the consciousness of death into one of denial. The germ theory and the control people felt over their lives led to a lessening of the perceived need for cemeteries.

SIZE VARIABLE

The size of cemeteries generally increased over time. The increase seemed to be the result of a greater need and due to merging of adjacent cemeteries (Pattison, 1955). Instead of planning for one’s family or for one’s church, planning was done to accommodate an entire town or city (Pattison, 1955). Also, as church graveyards became overfilled, the putrescence and the fear of miasma led to larger, more expansive, countryside secular cemeteries were constructed (Water, 2005).
As far as Jefferson and Cook County, specifically, the size overall in Jefferson County were much smaller than those in Cook County. This seems mostly due to efforts at accommodating larger communities rather than families as the name analysis suggests. Another factor that is hidden is that many cemeteries in Cook County were abandoned or were moved due to the flooding in Cook County. Much of Cook County was built on marsh land, so after the small cemeteries flooded, they were moved, or they got buried deep in flooding sediment. Nonetheless, the relocated cemeteries were not counted and the bodies were oftentimes added to other cemeteries which made them bigger.

SLOPE VARIABLE

The slope should be a good indicator for the advance during the genesis of cemeteries. However, that does not seem to be the case in Jefferson and Cook Counties. Creating cemeteries on sites with less slope would seem to make the cemetery functions easier. The pursuit of picturesque, vista-ful sites may negate the ease with which a cemetery functions. Many graves at the time were dug by hand being excavators such as the bulldozer were not invented until 1904 (Bellis, 2019). Mowing cemeteries was not commonplace until after the lawn mower was invented and popularized (Shukitis, 2012).

Nevertheless, a confounding factor in Cook County is that the County is much flatter than Jefferson County. No slope correction was made in each county. Nevertheless, the slight increase in slope in Cook County may have been related to moving cemeteries out of the flat floodplains, moving cemeteries to more beautiful vistas as influenced by the Romantic Movement, and moving cemeteries away from prime farmland (former swamp land).
In Jefferson County, the decreasing trend in slope seems to reflect a greater comfort with building at lower elevations. In Louisville, flooding was common for over a hundred years (Louisville/ Jefferson County Metropolitan Sewer District (MSD), 2019; Moseley, 1939; United Department of the Interior, 1938). However, they were particularly devastating in 1883 and 1884 (MSD, 2019), 1907 (MSD, 2019), 1913 (Shockley, 2015 -- https://www.onlyinyourstate.com/kentucky/8-of-the-most-horrific-disasters-in-ky-history/), 1945 (MSD, 2019), and 1937 (Moseley, 1939; United Department of the Interior, 1938). The 1884 flood was the largest on record (MSD, 2019). The 1937 flood covered 60% of the City of Louisville and 65 square miles of Jefferson County (MSD, 2019 -- http://louisvillemsd.org/programs/programs-and-projects/floodplain-management/flooding-history-louisville). However, flood waters were stopped through river embankments, backfilling marshland, and redirecting the Ohio River. Siting construction projects on highlands was no longer a necessity for houses nor for burials. Slope as a building qualification was becoming less of a factor.

ELEVATION VARIABLE

The elevation is linked to slope. The positivity and negativity of the elevation are like the slope for both Jefferson and Cook County. The “meaning” behind the decreasing elevation in Jefferson County is tempered by the sameness in elevation. This seems to be due to a plateau effect amongst the hills (see Figure 6). In viewing the contours of Jefferson County, a few cemeteries appear along plateaus in the terrain (see Figure 6). Basically, the cemeteries cannot be built at the peak of a hill due to logistics but cannot be built in a valley either. Consequently, cemeteries may have been forced to be built in “benches” along the hills.
In Cook County, the cemeteries have been built at progressively higher elevations as time progressed. The reasons may be due to the same reasons for the slope. Hence, there is no significant difference in much of the terrain. For the terrain that existed, cemetery construction was being done away from floodplains (Fleig, 2018).

As Fleig (2018) noted, the City of Chicago was built on what was a lake bottom 12,500 years ago. Consequently, early burials in the 1800s were at a person’s home (Fleig, 2018). People lived near the water of Lake Michigan and the Chicago River, so that is where they were buried upon death. In fact, all along both sides of the Chicago River, “…bodies of early Chicagoans are thickly laid” (Fleig, 2018). As well, “…early cemeteries in the low lakefront sand fared poorly” (Fleig, 2018). Coffins were seen floating down the river according to the 1897 edition of the Daily Democrat (Fleig, 2018). In fact, Rosehill and Graceland Cemeteries in the eastern edge of Cook County were built on “spits”, which were ridges amongst low areas (Fleig, 2018). As the Chicago population grew western, the cemeteries were built on “…spits, islands, and moraines, once the western shore of 12,500 year-old Lake Chicago” (Fleig, 2018). Therefore, cemeteries carried the names Blue Island, Ridgeland, Mount Forest, and Ridge Road.

DISTANCE TO RAILROADS VARIABLE

The distance to railroads seemed to represent a pattern based on the initial maps. Afterall, railroads were an important means of transportation in the 19th century. Nineteenth century trails and roads followed moraines, ridges, and spits (Fleig, 2018) as did railroads. The first railroad appeared in Chicago in 1849 (Clogher, 1849) and in Louisville in 1853 (Castner, 2019). Dead soldiers during the Civil War were returned to
loved ones by means of railroads (PBS, 2015; Lee, 2014) as in other times (Meller and Parsons, 2011). Additionally, towns had a major railroad element in their planning. Or more accurately, railroads were built where they were needed by burgeoning populations (Clogher, 1849). Consequently, placing cemeteries near these routes of culture seemed to make sense.

However, the apparent seeming link between railroads and cemetery was demonstrated only in Jefferson County. The link there may be simply due to the terrain. Due to the hills, railroads were forced to be built on the “bench” elevations. There was a limited number of flat areas. Cemeteries may have been forced to be build along these same flat areas.

DISTANCE TO OPEN WATER VARIABLE

Water contamination due to humans goes back to way before John Snow. Historically, water has been found to be contaminated based on several sources (Diakonidze, 2013; Braz, 2000; da Costa Silva and Malagutti Filho, 2012). Consequently, distance to water would have seemed to be a qualification criterion for cemetery placement.

In fact, in this thesis, the distance to open water increased over time. However, the statistics do not support this. Consequently, the increased distance for Jefferson County seems more related to redirecting streams and backfilling. The analysis did not specifically focus on swamps because they are much harder to track over time.

The 19th century and before was a battleground across the globe between civilization and nature. For centuries, nature was viewed as a dark creature that needed to be conquered, fought against, and beat back (Nash, 1963). The dark forest represented
a struggle between nature and light, between nature and good, between nature and mankind’s mission to “Be fruitful, and multiply, and replenish the earth, and subdue it: and have dominion over…every living thing that moveth upon the earth” [Genesis 1:28, King James Version] (Nash, 1963). Filling in of swamp lands and controlling rivers was part of this battle under the guise of preventing flooding. Cemetery placement seemed to be more of a reaction to the battle with nature than to a long-term suitability analysis.

SOIL TEXTURE VARIABLE

According to Lawson (1910), the ideal land for cemetery purposes is “…that which has well cultivated top soil with sandy loam subsoil to a depth of at least six feet” (p. 308). However, this specification is for having soil that is good for plant growth rather than soil that is good for remediating decomposition byproducts. Furthermore, Lawson (1910) continues that cemeteries that are composed of heavy clay need to be drained with drain tile (p. 309). These specifications are also not for consideration of remediating decomposition byproducts, but for ease of burial and for access to the sites. Consequently, even in the field of landscape architecture the fate of decomposition byproducts was not of concern.

As for concern, the soil texture is a point of concern in terms of suitability. The soil texture translates to the physiochemical suitability for construction of buildings and for remediation of decomposition byproducts as described in the introduction of this thesis.

As for the data, the soil texture analysis provides some interesting revelations. The data mirrors the bell-shaped curve of the number of cemeteries over the years of
establishment. Hence, the significance within each county seems to be related to a “false positive” rather than to a significant planning qualification criterion.

Nonetheless, the number of cemeteries where there is loam is greater in Kentucky, but most of Cook County has a clay loam. It is interesting why a lesser number of cemeteries have loam in Cook County. The sand in Cook County is logical, but much of Louisville is a sandy loam, which makes the absence of it in cemeteries odd. However, many of the cemeteries are in higher ground where the sand will have washed away over the millennia.

Another interesting data value is the high number of complex soils in Kentucky. Many of these classifications are termed “cemetery soils” and “urban soils”. Consequently, these classifications appear to be of more recent designation than of a site’s parent soil. This biases the data significantly.

Additionally, while quite a few large and small cemeteries are represented, the data is not weighted by size. Each cemetery has one value regardless of the cemetery’s size. Consequently, had the soil texture of each cemetery been weighted, the soil texture may have provided a more meaningful result for discussion.

CEMETERY NAME VARIABLE

The cemetery names appear to reflect the purpose of the cemeteries analyzed on a macro scale. In Jefferson County, a strong focus on family burials is reflected in the prevalence of family name for a cemetery label. There are quite a few cemeteries with names such as Stillwell-Wilcox Cemetery, Hewitt Family Cemetery, Blankenbaker Family, etc. in Jefferson County. Not as many such cemeteries exist in Cook County. Part of this may be related to the earlier settlements of Kentucky where connections to
family pioneers were more prominent. For example, establishment of one’s name in a community was most important. Some land in Kentucky was deeded as payment for service in the Revolutionary War, the War of 1812, and other deeds for national service. In fact, the cemetery was a means of continued notoriety and was a continuation of the first burials being of family members. As the cemetery grew, the name continued.

Cook County, however, was established later and its people were involved in farming or manufacturing. The county had many immigrants where the focus was on working hard, getting established, and earning a better life than in their homeland. The people’s identity was comprised of their country of origin and to their religion. Hence, cemeteries reflected these two essences of their life with the terms of reference religious, ethnic (German, Italian, Polish), sacred, Catholic, inspirational, Jewish, etc.

The names referencing memorial were greater in Cook County than Jefferson County which may simply reflect later establishment dates during which America’s romantic movement was occurring.

The terms referencing nature (ecosystem and tree) may reflect a nature due to the romantic movement during time of establishment of the cemeteries in Cook County. However, the significance of the term referencing water in Jefferson County contradicts this rationale. Jefferson County has 4.47% water and Cook County has 5.84%, so it does not seem likely due to prominence.

The terms by date within each county are not surprising. Cemetery dominated over graveyard as did cemetery over memorial. As cemeteries increased in size and merged, the names were likely changed to reflect them as cemeteries which was a term more commonly used as the 19th century progressed. The term family was significant in
Jefferson County and not Cook which also supports the idea of family’s importance.

Lastly, the *religious* term is more significant due to the close association with death and religion over an institution being responsible for the dead.
CONCLUSION

In reviewing the summary table, some of the normal variables used in landscape planning today (distance to floodplain (water), soil type, slope, and distance to transportation do not appear to have been used as criteria for cemetery placement. While there was significance, the principal component analysis (Figure 15 and 16) strongly indicates another undetermined variable is responsible for the cemetery placement during the 19th and 20th centuries. In addition, being the variable explored are not convincing rationale statistically, it is assumed that sociocultural rationale was used for cemetery placement during the 19th and 20th century.

The correlations observed are likely due to reactionary measures such as the desire to not have loved ones wash down the river when a stream-side cemetery flooded. The correlations observed are likely due to not having loved ones get in the way of farming, manufacturing, or housing projects. The placement rationale has not addressed the critical issues which have harkened centuries ago from John Snow, from the putrid church graveyards, or from common sense. An accumulation of people’s waste and cemeteries have caused pollution in the past. Hence, we should have placed cemeteries with consideration to the potential pollutiveness of them.
With our understanding soil chemistry, human decomposition processes, landscape architecture, and urban planning, we have an opportunity to create cemetery placement criteria. We have a responsibility to today’s earth and that of tomorrow to create limits on what we do. We have a responsibility to not be simplistic planners that only react when a loved one’s body floats by in the flooded river or when we get sick from the sweat taste of well water (Graeber, 2012).

Annese (1983) suggests a few cemetery placement standards to include placement above the water table, installing a base course below crypts, and to install drainage lines. Loudon proposed that cemeteries be sited according to elevation, the nature of the soil, and the proximity to drinking water (Curl, 1983).

Washington Irving believed the ‘grave should be surrounded by everything that might inspire tenderness and veneration for the dead, or that might win the living to virtue. It is the place, not of disgust and dismay, but of sorrow and meditation’ (Curl, 1983). In fact, Loudon believed that advance planning should be done whereby when a cemetery is filled, it should be closed as burial grounds and turned into public walks or gardens while maintaining the gravestones, architectural or sculptural monuments (Curl, 1983).

The conclusion from this thesis is that cemeteries have not been planned well and we can do better.
FUTURE DIRECTIONS

This thesis has revealed several future angles of which further research can explore. For example, analyzing the apparent clustering observed can get at the root of sociocultural and/ or planning factors used in establishing cemeteries.

As noted above, there was a tendency prior to the germ theory to locate cemeteries at the periphery of cities. And even after the germ theory, city planning did not look at cemeteries as a resource and positioned them at the periphery. Conducting an analysis of the city limits over time or evaluating the distance from the city center may reveal interesting factors not revealed in this thesis.

Researching city ordinances, town meeting notes, and local historical documentation over time may reflect the positioning of cemeteries. While this is a difficult task, many cities have such ordinances available. Chicago has them published and stored in various libraries as an example.

Expanding the analysis to other cities across the country can provide support or not for the variables explored. In fact, in looking at other cities, new variables may become apparent.

Investigating the reason for death for the people at cemeteries can reveal multitude of rationale for cemetery placement.

Developing a series of sociocultural rationale for cemetery placement may prove fruitful in statistically assessing the rationale for cemetery placement.
Analyzing the cemetery name in more detail, with more parsing, and with more historical documentation support can be interesting as a project of its own.

Lastly, creating a compiled diary of a given cemetery can get at the root of why a cemetery was placed where it was.
Figure 1 – GOOGLE NGRAM VIEWER, TERMS
Figure 2 – NUMBER OF CEMETERIES AND MORTALITY

Red circles correspond to mortality peaks derived from:

Mortality rates compiled from:

Figure 3 -- CEMETERY LOCATIONS
Figure 4 -- CEMETERY SIZE
Figure 5 -- AVERAGE SLOPE

AVERAGE MU-SLOPE (%)

AvgSlope(%)_SoilMUDerived, Cook County

AvgSlope(%)_SoilMUDerived, Jefferson County

R² = 0.0076

R² = 0.008
Figure 6 -- SPOT ELEVATION DISTANCE

Kentucky to left and Illinois to right
Figure 7 -- SPOT ELEVATION DISTANCE - continued

[Graph showing near minimum elevation over years grouped by quarter century, with data points for IL and KY.]
Figure 8 -- SPOT ELEVATION DISTANCE - continued

NearestSpotElevation_above-minimum, Cook County

R² = 0.0256

NearestSpotElevation_above-minimum, Jeferson County

R² = 0.0033
Figure 9 -- RAILROAD DISTANCE
Figure 10 -- RAILROAD DISTANCE - continued
Figure 11 -- OPEN WATER DISTANCE
Figure 12 -- OPEN WATER DISTANCE -- continued
Figure 13 -- SOIL TEXTURE

Soil Texture Type by Number of Cemeteries

Number of Cemeteries

Clay | Complex | Loam | Sand

IL | KY

75
Figure 14 – CEMETERY NAME INERENCE
Figure 15 – PRINCIPAL COMPONENT ANALYSIS

Strength of association in Primary comp. by year categ.

Cook County Jefferson County
Figure 16 – PRINCIPAL COMPONENT ANALYSIS -- continued
<table>
<thead>
<tr>
<th>Name</th>
<th>Illinois Population Increase 1818</th>
<th>Kentucky Population Increase 1792</th>
<th>Mortality Rate 1818</th>
<th>Kentucky Mortality Rate 1792</th>
</tr>
</thead>
<tbody>
<tr>
<td>1790</td>
<td>2,458</td>
<td>73,677</td>
<td>2.25%</td>
<td>220,959</td>
</tr>
<tr>
<td>1800</td>
<td>12,282</td>
<td>2,763</td>
<td>2.25%</td>
<td>406,511</td>
</tr>
<tr>
<td>1810</td>
<td>55,211</td>
<td>12,422</td>
<td>2.25%</td>
<td>566,317</td>
</tr>
<tr>
<td>1820</td>
<td>157,445</td>
<td>35,425</td>
<td>2.25%</td>
<td>687,917</td>
</tr>
<tr>
<td>1830</td>
<td>476,183</td>
<td>107,141</td>
<td>2.25%</td>
<td>779,828</td>
</tr>
<tr>
<td>1840</td>
<td>851,470</td>
<td>151,581</td>
<td>2.25%</td>
<td>982,405</td>
</tr>
<tr>
<td>1850</td>
<td>1,711,951</td>
<td>385,189</td>
<td>2.25%</td>
<td>1,155,684</td>
</tr>
<tr>
<td>1860</td>
<td>2,539,891</td>
<td>571,475</td>
<td>2.25%</td>
<td>1,321,011</td>
</tr>
<tr>
<td>1870</td>
<td>3,077,871</td>
<td>692,521</td>
<td>2.25%</td>
<td>1,648,690</td>
</tr>
<tr>
<td>1880</td>
<td>3,826,351</td>
<td>800,929</td>
<td>2.25%</td>
<td>1,833,635</td>
</tr>
<tr>
<td>1890</td>
<td>4,821,550</td>
<td>1,214,006</td>
<td>2.52%</td>
<td>2,147,174</td>
</tr>
<tr>
<td>1900</td>
<td>5,038,591</td>
<td>1,306,574</td>
<td>2.32%</td>
<td>2,289,905</td>
</tr>
<tr>
<td>1910</td>
<td>6,485,280</td>
<td>1,388,758</td>
<td>2.14%</td>
<td>2,416,630</td>
</tr>
<tr>
<td>1920</td>
<td>7,630,654</td>
<td>1,463,247</td>
<td>1.94%</td>
<td>2,614,589</td>
</tr>
<tr>
<td>1930</td>
<td>7,897,241</td>
<td>1,409,658</td>
<td>1.75%</td>
<td>2,845,627</td>
</tr>
<tr>
<td>1940</td>
<td>8,712,175</td>
<td>1,259,781</td>
<td>1.45%</td>
<td>2,944,806</td>
</tr>
<tr>
<td>1950</td>
<td>10,081,153</td>
<td>1,350,069</td>
<td>1.34%</td>
<td>3,038,156</td>
</tr>
<tr>
<td>1960</td>
<td>11,113,976</td>
<td>1,358,755</td>
<td>1.22%</td>
<td>3,218,706</td>
</tr>
<tr>
<td>1970</td>
<td>11,426,513</td>
<td>1,186,872</td>
<td>1.04%</td>
<td>3,660,777</td>
</tr>
<tr>
<td>1980</td>
<td>11,430,602</td>
<td>1,072,190</td>
<td>0.94%</td>
<td>3,685,296</td>
</tr>
<tr>
<td>1990</td>
<td>12,419,293</td>
<td>1,079,237</td>
<td>0.87%</td>
<td>4,042,769</td>
</tr>
<tr>
<td>2000</td>
<td>12,830,632</td>
<td>958,448</td>
<td>0.75%</td>
<td>4,339,367</td>
</tr>
</tbody>
</table>

Data compiled from:
Table 2 -- RAW DATA SUMMARY

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>Average</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILLINOIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>25.00</td>
<td>3.04</td>
<td>3.00</td>
</tr>
<tr>
<td>Elevation</td>
<td>0.00</td>
<td>244.00</td>
<td>60.76</td>
<td>45.00</td>
</tr>
<tr>
<td>Actual Elevation</td>
<td>583.20</td>
<td>827.20</td>
<td>643.96</td>
<td>628.20</td>
</tr>
<tr>
<td>RR Distance</td>
<td>5.06</td>
<td>14038.97</td>
<td>3346.93</td>
<td>2295.27</td>
</tr>
<tr>
<td>H2O Distance</td>
<td>53.58</td>
<td>7287.22</td>
<td>1291.29</td>
<td>1009.44</td>
</tr>
<tr>
<td>Soil Texture</td>
<td>Complex</td>
<td>Loam</td>
<td>Clay & Sand</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>500.00</td>
<td>37,419,520</td>
<td>3,337,273</td>
<td>807,400</td>
</tr>
<tr>
<td>KENTUCKY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.00</td>
<td>31.00</td>
<td>6.51</td>
<td>6.00</td>
</tr>
<tr>
<td>Elevation</td>
<td>1.20</td>
<td>346.50</td>
<td>188.46</td>
<td>248.40</td>
</tr>
<tr>
<td>Actual Elevation</td>
<td>425.90</td>
<td>771.20</td>
<td>613.16</td>
<td>673.10</td>
</tr>
<tr>
<td>RR Distance</td>
<td>89.79</td>
<td>29948.40</td>
<td>5010.35</td>
<td>3840.74</td>
</tr>
<tr>
<td>H2O Distance</td>
<td>89.03</td>
<td>6420.34</td>
<td>1192.21</td>
<td>818.21</td>
</tr>
<tr>
<td>Soil Texture</td>
<td>Clay</td>
<td>Loam</td>
<td>Complex</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>25.00</td>
<td>12,443,655</td>
<td>238,859</td>
<td>5,200</td>
</tr>
</tbody>
</table>
Table 3 -- NUMBER OF CEMETERIES BY ESTABLISHMENT YEAR

<table>
<thead>
<tr>
<th>YEAR RANGE</th>
<th>IL</th>
<th>KY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1750-1775</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1776-1800</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>1801-1825</td>
<td>6</td>
<td>46</td>
</tr>
<tr>
<td>1826-1850</td>
<td>62</td>
<td>68</td>
</tr>
<tr>
<td>1851-1875</td>
<td>78</td>
<td>73</td>
</tr>
<tr>
<td>1876-1900</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>1901-1925</td>
<td>41</td>
<td>19</td>
</tr>
<tr>
<td>1926-1950</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>1951-1975</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>1976-2000</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>2001-2025</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>259</td>
<td>296</td>
</tr>
</tbody>
</table>
Table 4 -- CEMETERY SIZE

<table>
<thead>
<tr>
<th>YEAR RANGE</th>
<th>IL</th>
<th>KY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1750 1775</td>
<td>2,606,834</td>
<td>100</td>
</tr>
<tr>
<td>1776 1800</td>
<td>161,172</td>
<td>42,994</td>
</tr>
<tr>
<td>1801 1825</td>
<td>673,723</td>
<td>74,962</td>
</tr>
<tr>
<td>1826 1850</td>
<td>3,829,882</td>
<td>234,731</td>
</tr>
<tr>
<td>1851 1875</td>
<td>2,297,031</td>
<td>151,956</td>
</tr>
<tr>
<td>1876 1900</td>
<td>2,639,927</td>
<td>55,181</td>
</tr>
<tr>
<td>1901 1925</td>
<td>5,660,394</td>
<td>781,492</td>
</tr>
<tr>
<td>1926 1950</td>
<td>3,630,510</td>
<td>800,662</td>
</tr>
<tr>
<td>1951 1975</td>
<td>4,214,589</td>
<td>609,264</td>
</tr>
<tr>
<td>1976 2000</td>
<td>2,606,834</td>
<td>178,041</td>
</tr>
<tr>
<td>2001 2025</td>
<td>354,279</td>
<td>60,484</td>
</tr>
</tbody>
</table>

Note: The figures in yellow highlighting are an average of the other values in order to perform the statistical computation.
Table 5 -- SLOPE

<table>
<thead>
<tr>
<th>YEAR RANGE</th>
<th>IL</th>
<th>KY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1750-1775</td>
<td>2.6</td>
<td>9.0</td>
</tr>
<tr>
<td>1776-1800</td>
<td>2.3</td>
<td>5.7</td>
</tr>
<tr>
<td>1801-1825</td>
<td>1.0</td>
<td>6.4</td>
</tr>
<tr>
<td>1826-1850</td>
<td>2.8</td>
<td>7.0</td>
</tr>
<tr>
<td>1851-1875</td>
<td>3.0</td>
<td>7.4</td>
</tr>
<tr>
<td>1876-1900</td>
<td>4.3</td>
<td>6.1</td>
</tr>
<tr>
<td>1901-1925</td>
<td>2.4</td>
<td>7.2</td>
</tr>
<tr>
<td>1926-1950</td>
<td>2.4</td>
<td>4.5</td>
</tr>
<tr>
<td>1951-1975</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>1976-2000</td>
<td>2.6</td>
<td>5.7</td>
</tr>
<tr>
<td>2001-2025</td>
<td>3.0</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Note: The figures in yellow highlighting are an average of the other values in order to perform the statistical computation.
Table 6 — ELEVATION

<table>
<thead>
<tr>
<th>YEAR RANGE</th>
<th>IL</th>
<th>KY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1750</td>
<td>1775</td>
<td>69.7</td>
</tr>
<tr>
<td>1776</td>
<td>1800</td>
<td>102.7</td>
</tr>
<tr>
<td>1801</td>
<td>1825</td>
<td>71.3</td>
</tr>
<tr>
<td>1826</td>
<td>1850</td>
<td>60.6</td>
</tr>
<tr>
<td>1851</td>
<td>1875</td>
<td>46.0</td>
</tr>
<tr>
<td>1876</td>
<td>1900</td>
<td>71.5</td>
</tr>
<tr>
<td>1901</td>
<td>1925</td>
<td>64.5</td>
</tr>
<tr>
<td>1926</td>
<td>1950</td>
<td>65.1</td>
</tr>
<tr>
<td>1951</td>
<td>1975</td>
<td>82.2</td>
</tr>
<tr>
<td>1976</td>
<td>2000</td>
<td>69.7</td>
</tr>
<tr>
<td>2001</td>
<td>2025</td>
<td>63.6</td>
</tr>
</tbody>
</table>

Note: The figures in yellow highlighting are an average of the other values in order to perform the statistical computation.
Table 7 -- DISTANCE TO RAILROADS

<table>
<thead>
<tr>
<th>YEAR RANGE</th>
<th>IL</th>
<th>KY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1750-1775</td>
<td>4001.0</td>
<td>5454.5</td>
</tr>
<tr>
<td>1776-1800</td>
<td>3591.7</td>
<td>4761.3</td>
</tr>
<tr>
<td>1801-1825</td>
<td>6256.8</td>
<td>4552.1</td>
</tr>
<tr>
<td>1826-1850</td>
<td>2743.2</td>
<td>4876.3</td>
</tr>
<tr>
<td>1851-1875</td>
<td>3594.6</td>
<td>4890.8</td>
</tr>
<tr>
<td>1876-1900</td>
<td>3008.4</td>
<td>4752.4</td>
</tr>
<tr>
<td>1901-1925</td>
<td>3066.7</td>
<td>5967.0</td>
</tr>
<tr>
<td>1926-1950</td>
<td>3837.9</td>
<td>6873.1</td>
</tr>
<tr>
<td>1951-1975</td>
<td>7822.0</td>
<td>4239.4</td>
</tr>
<tr>
<td>1976-2000</td>
<td>4001.0</td>
<td>10510.1</td>
</tr>
<tr>
<td>2001-2025</td>
<td>2088.1</td>
<td>2429.5</td>
</tr>
</tbody>
</table>

Note: The figures in yellow highlighting are an average of the other values in order to perform the statistical computation.
Table 8 -- DISTANCE TO OPEN WATER

<table>
<thead>
<tr>
<th>YEAR RANGE</th>
<th>IL</th>
<th>KY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1750-1775</td>
<td>1014.7</td>
<td>1371.7</td>
</tr>
<tr>
<td>1776-1800</td>
<td>586.8</td>
<td>1156.2</td>
</tr>
<tr>
<td>1801-1825</td>
<td>510.9</td>
<td>1241.5</td>
</tr>
<tr>
<td>1826-1850</td>
<td>995.3</td>
<td>967.5</td>
</tr>
<tr>
<td>1851-1875</td>
<td>1547.6</td>
<td>1185.5</td>
</tr>
<tr>
<td>1876-1900</td>
<td>1191.7</td>
<td>1538.3</td>
</tr>
<tr>
<td>1901-1925</td>
<td>1426.6</td>
<td>752.7</td>
</tr>
<tr>
<td>1926-1950</td>
<td>1289.3</td>
<td>1474.7</td>
</tr>
<tr>
<td>1951-1975</td>
<td>1232.9</td>
<td>943.4</td>
</tr>
<tr>
<td>1976-2000</td>
<td>1014.7</td>
<td>2343.5</td>
</tr>
<tr>
<td>2001-2025</td>
<td>351.6</td>
<td>1898.5</td>
</tr>
</tbody>
</table>

Note: The figures in yellow highlighting are an average of the other values in order to perform the statistical computation.
Table 9 -- SOIL TEXTURE

<table>
<thead>
<tr>
<th></th>
<th>IL</th>
<th>KY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>Complex</td>
<td>9</td>
<td>115</td>
</tr>
<tr>
<td>Loam</td>
<td>107</td>
<td>167</td>
</tr>
<tr>
<td>Sand</td>
<td>25</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 10 -- CEMETERY NAME CATEGORIZATION

<table>
<thead>
<tr>
<th>Referential Term</th>
<th>Terms Compiled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemetery</td>
<td>Cemetery</td>
</tr>
<tr>
<td></td>
<td>Cemeter*</td>
</tr>
<tr>
<td>Graveyard</td>
<td>Grave Site</td>
</tr>
<tr>
<td></td>
<td>Burying Ground</td>
</tr>
<tr>
<td></td>
<td>Graveyard</td>
</tr>
<tr>
<td></td>
<td>Burial Ground</td>
</tr>
<tr>
<td></td>
<td>Churchyard</td>
</tr>
<tr>
<td></td>
<td>Burial Site</td>
</tr>
<tr>
<td></td>
<td>Grave*</td>
</tr>
<tr>
<td>Memorial</td>
<td>Memor* (as in Memorial or Memory)</td>
</tr>
<tr>
<td></td>
<td>Garden*</td>
</tr>
<tr>
<td></td>
<td>Park</td>
</tr>
<tr>
<td>Family</td>
<td>Family</td>
</tr>
<tr>
<td></td>
<td>Burial Site</td>
</tr>
<tr>
<td></td>
<td>Grave</td>
</tr>
<tr>
<td>Institutions</td>
<td>National</td>
</tr>
<tr>
<td></td>
<td>City</td>
</tr>
<tr>
<td></td>
<td>State</td>
</tr>
<tr>
<td></td>
<td>Hospital</td>
</tr>
<tr>
<td></td>
<td>Village</td>
</tr>
<tr>
<td></td>
<td>Township</td>
</tr>
<tr>
<td>Religious</td>
<td>Relig*</td>
</tr>
<tr>
<td></td>
<td>Saint</td>
</tr>
<tr>
<td></td>
<td>Catholic</td>
</tr>
<tr>
<td></td>
<td>Lutheran</td>
</tr>
<tr>
<td></td>
<td>Evang*</td>
</tr>
<tr>
<td></td>
<td>Eden</td>
</tr>
<tr>
<td></td>
<td>Baptist</td>
</tr>
<tr>
<td></td>
<td>Church</td>
</tr>
<tr>
<td></td>
<td>Christ*</td>
</tr>
<tr>
<td></td>
<td>Our Lady</td>
</tr>
<tr>
<td></td>
<td>Angel*</td>
</tr>
<tr>
<td></td>
<td>Sacred</td>
</tr>
<tr>
<td></td>
<td>Resurrection</td>
</tr>
<tr>
<td></td>
<td>Pass* (Passion)</td>
</tr>
<tr>
<td></td>
<td>Benevolent</td>
</tr>
<tr>
<td></td>
<td>Light</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Ethnic</td>
<td>German</td>
</tr>
<tr>
<td>Nature</td>
<td>Oak</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal</td>
<td>Deer</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>Ecosystem</td>
<td>Forest</td>
</tr>
<tr>
<td></td>
<td>Lawn</td>
</tr>
<tr>
<td></td>
<td>Prairie</td>
</tr>
<tr>
<td>Flower</td>
<td>Bloom</td>
</tr>
<tr>
<td></td>
<td>Flower</td>
</tr>
<tr>
<td>Fruit</td>
<td>Apple</td>
</tr>
<tr>
<td>Land Description</td>
<td>Cave</td>
</tr>
<tr>
<td></td>
<td>Hill*</td>
</tr>
<tr>
<td></td>
<td>Island</td>
</tr>
<tr>
<td></td>
<td>Ridge</td>
</tr>
<tr>
<td>Other</td>
<td>Green</td>
</tr>
<tr>
<td>Tree</td>
<td>Acacia</td>
</tr>
<tr>
<td></td>
<td>Hackberry</td>
</tr>
<tr>
<td></td>
<td>Oak</td>
</tr>
<tr>
<td>Water</td>
<td>Brook</td>
</tr>
<tr>
<td></td>
<td>River</td>
</tr>
<tr>
<td>Sacred</td>
<td>Holy</td>
</tr>
<tr>
<td>General</td>
<td>Church</td>
</tr>
<tr>
<td></td>
<td>Relig*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rose Woods</th>
<th>Grove</th>
<th>Lawn</th>
<th>Evergreen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Deer</td>
<td>Elk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecosystem Forest</td>
<td>Grove</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lawn</td>
<td>Prairie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prairie</td>
<td>Woods</td>
<td></td>
</tr>
<tr>
<td>Flower Bloom</td>
<td>Flora*</td>
<td>Flower</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit Apple</td>
<td>Berry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Description Cave</td>
<td>Country</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hill*</td>
<td>Hollow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Island</td>
<td>Ridge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ridge</td>
<td>Rock</td>
<td></td>
</tr>
<tr>
<td>Other Green</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree Acacia</td>
<td>Evergreen</td>
<td>Hackberry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oak</td>
<td>Willow</td>
<td></td>
</tr>
<tr>
<td>Water Brook</td>
<td>Lake</td>
<td>River</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Run</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacred Holy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Church</td>
<td>First</td>
<td>Relig*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>United</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catholic</td>
<td>Angel*</td>
<td>Baptist</td>
<td>Catholic</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Inspirational</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspirational</td>
<td></td>
<td>Benevolent</td>
<td></td>
</tr>
<tr>
<td>Inspirational</td>
<td></td>
<td>Hope</td>
<td></td>
</tr>
<tr>
<td>Inspirational</td>
<td></td>
<td>Light</td>
<td></td>
</tr>
<tr>
<td>Jewish</td>
<td></td>
<td>Jewish</td>
<td></td>
</tr>
<tr>
<td>Hebrew</td>
<td></td>
<td>Hebrew</td>
<td></td>
</tr>
</tbody>
</table>

* = represents a wildcard character in the excel formula. For example, cemetery, cemeteries will both be tallied with the * in the formula.

N.S. = not significant
Table 11 -- CEMETERY NAME STATISTICS BETWEEN COUNTIES

<table>
<thead>
<tr>
<th>BINOMIAL PROPORTIONS TEST ON NAMES</th>
<th>SIGNIFICANCE BETWEEN COUNTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemetery</td>
<td>N.S.</td>
</tr>
<tr>
<td>Graveyard</td>
<td>N.S.</td>
</tr>
<tr>
<td>Memorial</td>
<td>P <.001 (Cook)</td>
</tr>
<tr>
<td>Family</td>
<td>P <.001 (Jefferson)</td>
</tr>
<tr>
<td>Institutions</td>
<td>N.S.</td>
</tr>
<tr>
<td>Religious</td>
<td>P <.001 (Cook)</td>
</tr>
<tr>
<td>Ethnic</td>
<td>P <.05 (Cook)</td>
</tr>
<tr>
<td>Nature</td>
<td>N.S.</td>
</tr>
<tr>
<td>Animal</td>
<td>Not enough frequencies to test</td>
</tr>
<tr>
<td>Ecosystem</td>
<td>P <.001 (Cook)</td>
</tr>
<tr>
<td>Flower</td>
<td>Not enough frequencies to test</td>
</tr>
<tr>
<td>Fruit</td>
<td>Not enough frequencies to test</td>
</tr>
<tr>
<td>Land Description</td>
<td>N.S.</td>
</tr>
<tr>
<td>Other</td>
<td>N.S.</td>
</tr>
<tr>
<td>Tree</td>
<td>P <.001 (Cook)</td>
</tr>
<tr>
<td>Water</td>
<td>P <.005 (Jefferson)</td>
</tr>
<tr>
<td>Sacred</td>
<td>P <.001 (Cook)</td>
</tr>
<tr>
<td>General</td>
<td>P <.05 (Cook)</td>
</tr>
<tr>
<td>Catholic</td>
<td>P <.001 (Cook)</td>
</tr>
<tr>
<td>Inspirational</td>
<td>P = .001 (Cook)</td>
</tr>
<tr>
<td>Jewish</td>
<td>P <.001 (Cook)</td>
</tr>
<tr>
<td>Hebrew</td>
<td>Not enough frequencies to test</td>
</tr>
<tr>
<td>County with the greatest frequency listed</td>
<td>N.S. = not significant</td>
</tr>
</tbody>
</table>
Table 12 -- CEMETERY NAME STATISTICS WITHIN COUNTIES

<table>
<thead>
<tr>
<th>BINOMIAL PROPORTIONS TEST ON NAMES</th>
<th>SIGNIFICANCE WITHIN COUNTY BY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JEFFERSON</td>
</tr>
<tr>
<td>Cemetery to Graveyard</td>
<td>P <.001 (cemetery)</td>
</tr>
<tr>
<td>Cemetery to Memorial</td>
<td>P <.001 (cemetery)</td>
</tr>
<tr>
<td>Graveyard to Memorial</td>
<td>N.S.</td>
</tr>
<tr>
<td>Family to Institutional</td>
<td>P <.001 (family)</td>
</tr>
<tr>
<td>Family to Religious</td>
<td>N.S.</td>
</tr>
<tr>
<td>Institutional to Religious</td>
<td>P <.001 (religious)</td>
</tr>
</tbody>
</table>

N.S. = not significant

Term with highest frequency indicated
Table 13 -- STATISTICS SUMMARY

<table>
<thead>
<tr>
<th>Variable</th>
<th>Significance Between Counties</th>
<th>Significance Within County by Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jefferson County</td>
</tr>
<tr>
<td>Size</td>
<td>P < .001</td>
<td>P < .001, +</td>
</tr>
<tr>
<td>Slope</td>
<td>P < .001</td>
<td>P < .001, -</td>
</tr>
<tr>
<td>Elevation</td>
<td>P < .001</td>
<td>P < .001, -</td>
</tr>
<tr>
<td>Distance to Railroad</td>
<td>N.S.</td>
<td>P < .001, +</td>
</tr>
<tr>
<td>Distance to Open Water</td>
<td>N.S.</td>
<td>P < .001, +</td>
</tr>
<tr>
<td>Soil Texture</td>
<td>Not tested</td>
<td>P < .001</td>
</tr>
</tbody>
</table>

+ or - indicates positive or negative trend
N.S. = not significant
ENDNOTES – DEFINITIONS, MEANINGS, AND CAVEATES

Throughout this paper, various terms were used. Many have specific meaning from a historical perspective and yet others from a practical-daily-usage perspective. Consequently, in brief, some terms are delineated below.

CULTURE, SOCIAL, AND SOCIOCULTURAL

“Culture is an integrated system of symbols, ideas and values that should be studied as a working system, an organic whole” (Kuper, 1999).

CEMETERY, GRAVEYARD, DEATHSCAPE, ETC.

The term deathscape spans the entirety of landscapes around which burials are created (Higgins, 2013). The term gain popularity in the 1990s (Google Ngram Viewer, Deathscape). The term cemetery (Pardoe, 1988), graveyard, burial ground, churchyard, and necropolis became popular in the 1800s, the 1840s, 1800s, 1530s, and 1820s respectively (see Figure 1 for Google Ngram Viewer, Cemetery; Google Ngram Viewer, Graveyard; Google Ngram Viewer, burial ground; Google Ngram Viewer, Churchyard; and Google Ngram Viewer, necropolis).

The term burial ground is a term in reference to areas within which burials are done including family plots, individual graves, and graves that are not laid out in a specific geometricized order.
Cemetery is an old term but has been in more common usage with the advent of organized, geometricized burial areas (Curl, 1983) representing numerous individuals that are not all related (Semerani, 1983; Rugg, 2000a). Churchyards (and church yards) refer simply to graveyards associated with a church. However, necropolis is a term referring more precisely to the Greek burial grounds posited at the entrance to the cities.

Nevertheless, the above terms were used synonymously.

SITING OR PLACEMENT

The term sitting is a term used more often by urban planners, landscape architects, and architects. It is a term that is infused with an analysis of the location based upon various criteria to determine suitability. Nonetheless, for simplicity sake, the terms sitting and placement were used with the same meaning.

AMERICA/ AMERICAN VS. UNITED STATES

Throughout this thesis, the terms America, American, United States, North America were used with synonymy. Even in reference to the states discussed through the Civil War, the term United States were used in reference primarily to all the states, unless otherwise denoted. Furthermore, America or American will refer specifically to the United States whether the political designated term was in place or not.

LANGUAGE FLUENCY AND LITERACY

Throughout this paper, descriptions, analyses, and arguments are made. These are made in context to the literature reviewed. Of this literature, primarily English literature was reviewed. However, an enormous amount of literature exists in Latin, Egyptian, Greek, Armenian, Tamil, Chinese, and others from which this thesis does not address.
Additionally, literacy world-wide was not represented in a meaningful way until the last few thousand years (Sampson, 1985). And most people were not able to write until the late 19th and early 20th century. Consequently, a lot of ideas, beliefs, and rationale were not available for analysis. For example, while many theories on health and disease were written by the “educated”, these are the ones that perpetuated far and wide and not those of individual towns, villages, nor homes.

SUPERNATURAL

The term supernatural is used to reflect the ideas, theories, and belief systems that are not enwrapped in a religion or in a formalized theory. Such references include, in part, beliefs in vampires, witchcraft, magic, and other phantomisic. However, the term is not intended to include sociocultural practices of the time. Delineating the rationale between culture, social, and supernatural belief system differences is beyond the scope of this paper but suffice it to say that *supernatural* is intended to refer to beliefs and practices more hyper-normal. An argument can be made that vampiric and witchcraft fears were a social construct, but the beliefs were seen historically as more isolated, village-bound beliefs. They were not widespread until more recent times.

PUBLIC LAND SURVEY SYSTEM (PLSS)

The PLSS system is the system used to subdivide and describe the United States land parcels. This measuring system divided the states into 6-mile square townships and described legally into townships, ranges, directions, and section numbers. This was done so that the land could be sold. After the Revolutionary War, the United States was broke and needed money to fund a defense force and to fund the federal government.
Consequently, the government sent survey crews, of at least 3, across the land which had not already been established as states to measure, to mark corners, and to describe 30 southern and western states. The original descriptions were oftentimes wooden stakes, marked trees, piles of rock, or natural features.

Land transactions after these initial surveys were documented through land patents and subsequently as land deeds. Many of these transactions were recorded legally. Today, they are available in the U.S. Library of Congress.
REFERENCES

Dobell C. Antony van Leeuwenhoek and his" Little animals": being some account of the father of protozoology and bacteriology and his multifarious discoveries in these disciplines. London: Staples Press; 1932.

Natural Burial, Wikipedia, the Free Encyclopedia, en.wikipedia.org/wiki/Natural_burial.

Occupational Safety and Health Act (United States), Wikipedia, the Free Encyclopedia, en.wikipedia.org/wiki/Occupational_Safety_and_Health_Act.

Puckle, Bertram S. Funeral Customs, Their Origin and Development. London, T. Werner Laurie Ltd, 1926.

Williams, G.W., 2002. Aboriginal use of fire: are there any “natural” plant communities. USDA Forest Service, Washington DC.

APPENDIX 1 – CEMETERY LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>ZIP</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>John Doe</td>
<td>123 Main St.</td>
<td>New York</td>
<td>NY</td>
<td>10001</td>
<td>123-456-7890</td>
<td>jdoe@example.com</td>
</tr>
<tr>
<td>2</td>
<td>Jane Smith</td>
<td>456 Oak Ave.</td>
<td>Chicago</td>
<td>IL</td>
<td>60601</td>
<td>234-567-8901</td>
<td>jsmith@example.com</td>
</tr>
<tr>
<td>3</td>
<td>Robert</td>
<td>789 Pine Dr.</td>
<td>Los Angeles</td>
<td>CA</td>
<td>90001</td>
<td>345-678-9012</td>
<td>rwhite@example.com</td>
</tr>
</tbody>
</table>

... (continued)
<table>
<thead>
<tr>
<th>Day</th>
<th>Event/Station</th>
<th>Start Time</th>
<th>End Time</th>
<th>Duration</th>
<th>Distance</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Event A</td>
<td>09:00</td>
<td>10:30</td>
<td>01:30</td>
<td>5</td>
<td>Type A</td>
<td>Notes</td>
</tr>
<tr>
<td>2</td>
<td>Event B</td>
<td>11:00</td>
<td>12:45</td>
<td>01:45</td>
<td>3</td>
<td>Type B</td>
<td>Notes</td>
</tr>
<tr>
<td>3</td>
<td>Event C</td>
<td>14:00</td>
<td>15:30</td>
<td>01:30</td>
<td>4</td>
<td>Type C</td>
<td>Notes</td>
</tr>
<tr>
<td>4</td>
<td>Event D</td>
<td>16:00</td>
<td>17:45</td>
<td>01:45</td>
<td>2</td>
<td>Type D</td>
<td>Notes</td>
</tr>
</tbody>
</table>

Note: All events are held at the main campus.
<table>
<thead>
<tr>
<th>Employee ID</th>
<th>Date</th>
<th>Image</th>
<th>Total Credit Hours</th>
<th>Total Credit Hours Converted</th>
<th>Available Credit Hours</th>
<th>Credits Earned</th>
<th>Credits Earned as a % of Total</th>
<th>Total Tier 5 Credits</th>
<th>Total Tier 6 Credits</th>
<th>Total Tier 7 Credits</th>
<th>Total Tier 8 Credits</th>
<th>Total Tier 9 Credits</th>
<th>Total Tier 10 Credits</th>
<th>Total Tier 11 Credits</th>
<th>Total Tier 12 Credits</th>
<th>Total Tier 13 Credits</th>
<th>Total Tier 14 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>01-01-2023</td>
<td>231</td>
<td>120</td>
<td>36</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>1002</td>
<td>01-01-2023</td>
<td>240</td>
<td>120</td>
<td>40</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>1003</td>
<td>01-01-2023</td>
<td>250</td>
<td>120</td>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>1004</td>
<td>01-01-2023</td>
<td>260</td>
<td>120</td>
<td>60</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>1005</td>
<td>01-01-2023</td>
<td>270</td>
<td>120</td>
<td>70</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>1006</td>
<td>01-01-2023</td>
<td>280</td>
<td>120</td>
<td>80</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>1007</td>
<td>01-01-2023</td>
<td>290</td>
<td>120</td>
<td>90</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>1008</td>
<td>01-01-2023</td>
<td>300</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>1009</td>
<td>01-01-2023</td>
<td>310</td>
<td>120</td>
<td>110</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>1010</td>
<td>01-01-2023</td>
<td>320</td>
<td>120</td>
<td>120</td>
<td>80</td>
<td>0</td>
</tr>
</tbody>
</table>

... (continues)
<table>
<thead>
<tr>
<th>Project Title</th>
<th>Completion Date</th>
<th>Status</th>
<th>Funding</th>
<th>Total Budget</th>
<th>Budget Allocated</th>
<th>Contract Amount</th>
<th>Contracted FTEs</th>
<th>Contracted Person</th>
<th>Project Manager</th>
<th>Progress Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>345 Project</td>
<td>07/15/2023</td>
<td>Completed</td>
<td>$345,678</td>
<td>$345,678</td>
<td>$345,678</td>
<td>$345,678</td>
<td>345,678</td>
<td>345,678</td>
<td>345,678</td>
<td>345,678</td>
</tr>
<tr>
<td>678 Project</td>
<td>11/30/2023</td>
<td>In progress</td>
<td>$678,901</td>
<td>$678,901</td>
<td>$678,901</td>
<td>$678,901</td>
<td>678,901</td>
<td>678,901</td>
<td>678,901</td>
<td>678,901</td>
</tr>
</tbody>
</table>

1. **Funding**
 - **Total Budget**: The total amount of money allocated for the project, excluding funding from other sources.
 - **Budget Allocated**: The amount of money allocated for the specific project.

2. **Contract Amount**
 - The contract amount is the amount of money that has been allocated to the project for specific activities or tasks.

3. **Contracted FTEs**
 - Contracted FTEs are the full-time equivalent employees contracted for the project.

4. **Contracted Person**
 - The contracted person is the individual(s) responsible for the project's progress.

5. **Progress Notes**
 - Notes on the progress of the project, including any issues or challenges encountered.
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Location</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Material</th>
<th>Density</th>
<th>Sound Rating</th>
<th>Wind Rating</th>
<th>Rain Rating</th>
<th>Fire Rating</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>Sheetmetal</td>
<td>Indoor</td>
<td>A</td>
<td>6</td>
<td>24</td>
<td>300</td>
<td>32</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>None</td>
</tr>
<tr>
<td>122</td>
<td>Glass</td>
<td>Outdoor</td>
<td>B</td>
<td>24</td>
<td>6</td>
<td>500</td>
<td>20</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>123</td>
<td>Wood</td>
<td>Indoor</td>
<td>C</td>
<td>6</td>
<td>6</td>
<td>200</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>None</td>
</tr>
<tr>
<td>124</td>
<td>Concrete</td>
<td>Outdoor</td>
<td>D</td>
<td>24</td>
<td>6</td>
<td>800</td>
<td>25</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>125</td>
<td>Metal</td>
<td>Indoor</td>
<td>E</td>
<td>6</td>
<td>6</td>
<td>300</td>
<td>15</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>None</td>
</tr>
<tr>
<td>126</td>
<td>Brick</td>
<td>Outdoor</td>
<td>F</td>
<td>24</td>
<td>6</td>
<td>450</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>None</td>
</tr>
</tbody>
</table>

Note: The above table is a simplified representation of the data provided in the image.
CURRICULUM VITAE

Thomas D. Cleven

3574 Ryan Road
De Pere, WI 54115
(608) 844.1222
tdcleven@gmail.com

EDUCATION:
University of Wisconsin-Madison B.S. in Agriculture, Poultry Science - May, 1996
University of Wisconsin-Oshkosh B.S.L.A. – May, 2014
University of Louisville B.S. in Anthropology – August, 2017
University of Louisville M.A. in Anthropology – December, 2019

UNIVERSITY OF LOUISVILLE, Anatomical Sciences & Neurobiology, Louisville, KY 40202
LAB TECHNICIAN III 2017 to current
● Manage three grant budgets totaling $1.8 million.
● Conduct PCR for genotyping of 12 mouse colonies.
● Create and maintain procedures and protocols.
● Create and maintain 12 mouse colonies.
● Project mouse needs for coming years to meet study demand.
● Culture PC12 cells and dorsal root ganglia.
● Learning qPCR and cryosectioning.
● Trained and learning mouse cryopreservation techniques.

VANDE HEY COMPANY, INC, Appleton, WI 54913
LANDSCAPE ARCHITECT – IN-TRAINING 2014 to 2017
● Designed residential and commercial landscapes.
● Specialized in designs for assisted living facilities and large commercial sites.
● Created bids for installation jobs.
● Prepared client presentations.
● Estimate design/ build costs.
● Met with clients and sold designs.

UW-MADISON, DEPARTMENT OF PATHOLOGY, Madison, WI 53706 and
STRATATECH CORPORATION, Madison, WI 53719
RESEARCH SPECIALIST 2010 to 2014
● Performed numerous grafting experiments on rodents.
● Wrote protocols, developed SOPs, created training materials, maintained DEA license.
● Helped develop a Good Laboratory Practices framework for FDA submissions.
● Wrote and assisted in maintenance of IACUC-approved animal use protocols.
● Performed some tissue culture.
● Wrote study procedures and reports.
● Determined bacterial endpoint analysis from experiments.
● Assisted in experiment designs and methodology.
BRUCE COMPANY, Middleton, WI 53562

NURSERY SALES PERSON/CONSULTANT 2007 to 2014
- Did pencil sketches for customers needing help landscaping areas of their yard.
- Problem solved plant health concerns.
- Assisted in selecting the best plant material to meet the customer’s needs.
- Sold approximately 5x my wages of nursery stock and services seasonally.

ARTFUL LANDSCAPE DESIGN, Verona, WI 53593

LANDSCAPE DESIGNER, PRINCIPAL 2006 to 2014
- Managed the company with up to 4 employees and 25 jobs at a time.
- Designed and installed residential landscapes.
- Maintained established landscapes.
- Provided consultation services.

COVANCE LABORATORIES, Madison, WI 53704

ASSISTANT SAFETY PHARMACOLOGIST, Toxicology Services 2007 to 2010
- Initiated costing and scheduling requests, prepared draft protocol and amendments, and secured approval for such from the Study Director.
- Verified that the project schedule accurately reflected the requirements of the protocol.
- Collected study data through the use of specific software and equipment used by Safety Pharmacology (DSI Open Art, Ponemah Analysis system, transmitters, receivers, DEM’s, plethysmography chambers, amplifiers etc.).
- Set-up protocols with above mentioned system, selected data (ECG cutting and respiratory analysis) and manipulated it as deemed appropriate.
- Assisted Study Directors in monitoring critical phases of studies, and reported any problems or deviations to Study Directors.
- Addressed QA audits and client comments relating to reports.
- Ensured that revised or final reports were scheduled and mailed on time.
- Assisted in client lab visits including accompanying clients to observe critical phases and provide data upon request.

SUPERVISOR, Anatomic Pathology Department 2005 to 2007
- Supervised the Anatomic Pathology Operations technical staff.
- Prepared daily and monthly schedules and coordinated the histology process.
- Gave performance reviews.
- Prosected, collected, trimmed, and processed tissues and organs for histologic processing.
- Recorded lesions, collected organ weights, and documented other pathology data.
- Trained assistants and technicians.

STUDY TECHNICIAN II, Anatomic Pathology Department 2004 to 2005
- Performed general necropsy and histology technical tasks, in compliance with appropriate SOP’s and GLP’s, on a variety of laboratory species.
- Trimmed and embedded wet tissue into paraffin and performed the basic duties of necropsy and histology.
- Recorded gross observations, weighed tissues, froze tissues, prepared bone marrow and blood smears.
- Prepared fixatives and solutions.
- Performed clear and accurate documentation of all duties.
STUDY TECHNICIAN I, Anatomic Pathology Department 2004
● Performed general necropsy and histology technical tasks on a variety of laboratory species.
● Collected, trimmed, processed, and embedded tissues of all species.
● Performed other miscellaneous duties including recording gross observations, weighing tissues, freezing tissues, preparing bone marrow and blood smears.
● Prepared fixatives and solutions.
● Performed clear and accurate documentation of all duties.

LAKEVILLE GROWERS, Petaluma, CA 94955
AREA FIELD SUPERVISOR 2002 to 2003
● Supplied three antibiotic-free contract and one organic company ranch totaling 1.25 million broilers.
● Monitored the health and administered various prophylactic and preventative treatment programs.
● Ensured that proper husbandry methods were being utilized and that the protocols for organic certification were being followed.
● Designed a facility for renovation that achieved 27 degrees of cooling in summer.
● Decreased age to market on one ranch by three days (worth $1.35 million dollars) and by two days on another (worth $73,235).

FOSTER FARMS, Fresno, CA 93706
BROILER FLOCK SUPERVISOR 2001 to 2002
● Supervise overall management of 2.5 million broilers on company and contract ranches.
● Develop Performance Improvement Plans for each flock placed.
● Maintain sound bird health.
● Strengthen relations with contract growers.
● Ensure compliance to sound management practices.
● Manage personnel on company-owned ranches.
● Perform chick evaluations, submit residue samples, and fulfill various administrative functions.

GRIMAUD FARMS OF CALIFORNIA, Hegins, PA 17938
BREEDER/HATCHERY MANAGER 2000 to 2001
● Maximized efficiency and productivity of hatchery for Muscovy ducks, Pekin ducks, and guinea fowl.
● Maximized efficiency and productivity of breeder flocks.
● Managed hatchery and breeder costs.
● Assisted in marketing of commercial ducks.
● Ensured that hatchery, breeders, and contract growers were meeting budgetary, productivity, and planning objectives.
● Supervised contract duck growers.
● Hired, trained, and supervised employees within department.
● Ensured that safety, biosecurity, and company policies were followed.
● Increased egg production by over 10 eggs per hen and decreasing costs by 2.71 cents per egg.

GLACIER LANDSCAPE, Verona, WI 53593
LANDSCAPE CREW SUPERVISOR 1999 to 2000
● Supervised a landscape crew installing various plant material including perennials, shrubs, trees, and sod.
● Interpreted blueprints and landscape plans for installation.
● Involved in constructing a large artificial pond, retaining walls, and brick pathways.

BLAIR LAWN AND LANDSCAPE, Madison, WI 53703
LANDSCAPE FOREPERSON 1999 to 2000
● Supervised lawn maintenance and landscape installation crews.
● Designed landscape plans for clients.
● Performed cost analysis for jobs performed.
● Submitted bids for job proposals.
BUTTERBALL TURKEY CO., Turlock, CA 95380

TURKEY FLOCK SUPERVISOR 1998 to 1999
- Promoted good management practices.
- Monitored, managed, and treated various turkey diseases.
- Developed improved techniques for grade and growth.
- Provided budgetary projections.
- Projected weights, grade, and costs for all flocks.

W. J. MERRILL, CO., Turlock, CA 95381

ASSISTANT PRODUCTION MANAGER 1997 to 1998
- Assisted in managing over 1,000,000 turkeys annually.
- Problem solved issues relating to a gradual decrease in performance.
- Provided advice on new management techniques utilized in Virginia.
- Offered labor assistance when needed.
- Supervised 15 employees.

ROCCO TURKEYS, INC., Dayton, VA 22821

TURKEY GROW-OUT FLOCK SERVICEPERSON 1996 to 1997
- Monitored and treated numerous turkey diseases.
- Ensured proper growth, grade, and feed conversion.
- Instructed growers on good management practices.
- Managed sound biosecurity and sanitation techniques.
- Aided growers in contract and settlement interpretation and procedures.
- Maximized other turkey production factors.

ZACKY FARMS, Fresno, CA 93721

TURKEY BREEDER FIELD SUPERVISOR 1995 to 1996
- Coordinated the production of fertile turkey hatching eggs on two laying farms.
- Produced breeder replacements on one brood-grow and one darkening farm.
- Assisted in organizing placements, selection, vaccination, and artificial insemination.
- Managed supplies, equipment, and overall farm operations.
- Supervised 26 personnel on four farms.
- Responsible for improving egg production, decreasing mortality, maintaining bird weights, monitoring biosecurity practices, and ensuring efficient production techniques.
UW-MADISON, DEPARTMENT OF ANIMAL HEALTH AND BIOMEDICAL SCIENCES, Madison, WI 53706

LABORATORY ASSISTANT 1993 to 1995
● Performed Western Blot Electrophoresis.
● Prepared solutions, buffers, and reagents.
● Performed general laboratory maintenance and ordered supplies.
● Assisted with various histochemical studies.

INDEPENDENT LANDSCAPE SERVICES, Madison, WI 53711
INDEPENDENT LANDSCAPER, Partner in the Business 1991 to 1995
● Operated business with a colleague. I found the clients, he created the designs, and I installed them.
● Secured and managed clients.
● Installed residential landscape designs.

BRITISH UNITED TURKEYS OF AMERICA, Lewisburg, WV 24901
INTERN 1994
● Rotated through the hatchery, veterinary lab, and rearing and laying sites.
● Assisted in culling breeders, pulling hatches, placing poult, breaking-out eggs, sampling for Mycoplasma and Salmonella, collecting eggs, weighing and traying eggs, inseminating hens, milking toms, and loading birds.
● Established standard values for blood glucose, blood pH, body weight, and rectal temperature and made correlations to poult starve-out mortality.

UW-MADISON, DEPARTMENT OF POULTRY SCIENCE, Madison, WI 53706
RESEARCH ASSISTANT 1993
● Evaluated the effect of two fungicides on feed conversion and growth rate of chickens.
● Determined the effect on feed conversion and immune function of two anti-mycotoxins.
● Performed hemagglutination assays and macrophage isolation and quantification.

UW-MADISON, SCHOOL OF VETERINARY MEDICINE, Madison, WI 53706
RESEARCH ASSISTANT 1990 to 1992
● Assisted with a reproductive study on beagles.
● Inoculated beagles intradermally with Borrelia burgdorferi.
● Monitored estrus cycles cytological.
● Bred beagles naturally and artificially.
● Ultrasounded beagles to monitor gestation.
● Helped with parturition.
● Collected blood.
● Necropsied various animals and cultured tissues for B. burgdorferi isolation.
● Utilized techniques such as dark-field microscopy, Indirect Immunofluorescent Antibody assays, Western Blot Electrophoresis, Polymerase Chain Reaction, tissue trimming for histology.
● Prepared various solutions and media.
BROWN COUNTY MAINTENANCE DEPT., Green Bay, WI 54301

BROWN COUNTY GROUNDSKEEPER 1988 to 1990
- Designed seasonal display beds totaling several thousand square feet in downtown Green Bay.
- Performed maintenance of seasonal display beds, shrub borders, and trees.
- Installed perennials, shrubs, trees, and sod as needed.

JACK’S LANDSCAPE NURSERY, Green Bay, WI 54302

ASSISTANT NURSERY MANAGER 1987 to 1988
- Managed retail nursery.
- Created simple designs for customers as needed.
- Diagnosed plant health concerns.
- Assisted in plant selection and provided advice on planting and growing conditions.

PUBLICATIONS AND PRESENTATIONS:

Presentation titled *Are Deer Ticks (Ixodes dammini) and Lyme Disease in Brown and Door Counties, Wisconsin?* given at the University of Wisconsin-Green Bay, Cofrin Arboretum Undergraduate Research Symposium, Green Bay, Wisconsin, October, 1989.

ADDITIONAL TRAINING:

- Learned flash freezing of hamster brains, basic immunohistochemical staining, and Western blot electrophoresis.

UW-Madison, School of Veterinary Medicine, Dr. Elizabeth C. Burgess, 1990 – 1992
- Learned the Indirect Immunofluorescent Antibody and Lowry Assays; aseptic tissue collection during necropsy; culturing *Borrelia burgdorferi*; preparing growth media, buffers, and reagents; canine vaginal cytology, artificial insemination, ultrasounding, and palpation.

- Became skilled at monitoring post-surgery small animals, injecting medicines, maintaining intravenous lines, tube-feeding, and comforting clients.

ParaTechs Corporation, Lexington, Kentucky, 2019
- Learned through a hands-on workshop the techniques involved with mouse reproductive techniques including cryopreserving and recovery of sperm and zygotes, and superovulating mice.

ADDITIONAL COURSE WORK:

Wildlife Diseases, University of Wisconsin-Madison, 1995