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ABSTRACT 

THE MANIPULATION OF HOST TRANSCRIPTION BY THE ANKH EFFECTOR 

OF LEGIONELLA 

Juanita Von Dwingelo 

August 15, 2019 

Legionella pneumophila is a Gram-negative facultative intracellular bacterium that can be 

found dispersed throughout freshwater environments, where it primarily parasitizes 

amoebae and other protozoan species. Humans are an accidental host for L. pneumophila, 

and infection occurs upon inhalation of aerosolized water droplets that contain the 

bacteria. L. pneumophila is the causative agent of Legionnaires’ Disease, which is the 

result of intracellular proliferation within alveolar macrophages. Pathogenesis of L. 

pneumophila is dependent on the Dot/Icm type 4 secretion system (T4SS) apparatus, 

which is comprised of 27 proteins and is responsible for translocating over 330 effector 

proteins into the host cell. Many of these effector proteins contain eukaryotic-like 

domains and motifs, which have been acquired through interkingdom horizontal gene 

transfer from various aquatic eukaryotic hosts. While L. pneumophila contains such a 

large repertoire of effector proteins, most of them are not required for survival and 

proliferation in mammalian macrophages, since single deletion of most effectors does not 

result in a defect in intracellular replication. Although this could be explained by effector 

redundancy, it is more likely that these effector proteins constitute a tool box utilized by 

L. pneumophila to survive and replicate within numerous species of protozoa. One 
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effector identified, that when deleted results in a defect in intracellular replication, is the 

AnkH effector. It has been shown that AnkH is required for robust intracellular 

replication of L. pneumophila within amoebae, human macrophages and the A/J mouse 

model of infection. It has previously been shown that AnkH is an effector that contains 

ankyrin repeats, which are eukaryotic-like domains, and function as a scaffold for 

protein-protein interactions. Other than requirement of AnkH during intracellular 

replication, its function and host targets remain unknown and are the focus of this work. 

We further characterized AnkH to elucidate its host target and function during infection 

of macrophages. Using a yeast 2 hybrid system, seven potential host interacting partners 

have been identified and one interacting partner, human La related protein 7 (LARP7), 

has been confirmed via co-immunoprecipitation. LARP7 is a component of a 

transcriptional regulatory complex, 7SK snRNP complex that negatively regulates 

transcriptional elongation. The AnkH -LARP7 interaction blocks LARP7 binding to 

components of the 7SK snRNP complex, resulting in the disruption of the complex. 

Knockdown of LARP7 using LARP7 specific RNAi results in a significant growth defect 

of the WT strain during infection of macrophages, and the growth defect of the ∆ankH 

null mutant becomes more severe. RNAseq has been performed on macrophages infected 

with either WT or ∆ankH strains of L. pneumophila to determine modulation of 

transcription during infection.  The data show that there are a total of 405 genes that are 

differentially regulated in cells infected with WT versus the ∆ankH mutant. The crystal 

structure of AnkH has been resolved, and it revealed that AnkH contains 4 ankyrin 

repeats, 2 asparagine hydroxylation motifs, a cysteine-like protease domain and a cap 

domain. When residues are substituted within the ankyrin repeats, asparagine 
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hydroxylation sites and cysteine-like protease domain, a decrease in intracellular 

replication is observed, indicating these domains are critical for the function of AnkH. A 

substitution within the β-hairpin loop of the third ankyrin repeat results in diminished 

LARP7-AnkH interactions, and phenocopies the ΔankH null mutant defect in 

intracellular growth.  Taken together, these data suggest that the β-hairpin loop of the 

third ankyrin repeat of AnkH interacts with the host LARP7, which disrupts host cell 

transcription elongation by inhibiting assembly of the 7SK snRNP complex resulting in 

global modulation of transcription. This interaction is important for the intracellular 

replication of L. pneumophila in human macrophages. The ARDs, asparagine 

hydroxylation motifs and cysteine-like protease pocket are all required for the function of 

AnkH in intracellular replication of WT L. pneumophila. AnkH is an important effector 

protein that aids in the survival and replication of L. pneumophila in all hosts, the study 

of which would result in a better understanding of how L. pneumophila creates an 

environment within host cells that supports robust intracellular replication.
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INTRODUCTION
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INTRODUCTION 

Discovery of Legionnaires’ Disease 

In July of 1976, Philadelphia, PA was host to the bicentennial celebration of the 

formation of the United States as well as the 56th annual American Legion Convention. 

The 4-day gathering was attended by more than 2,000 American Legion delegates and 

was hosted at the Bellevue-Stratford Hotel. After the convention, numerous attendees 

suffered from pneumonia-like symptoms. In total, 182 of the convention attendees 

reported symptoms and a total of 34 individuals succumbed to the mysterious disease, 

nicknamed the “Philly Killer” [1]. 

At first, it was feared that this disease was caused by a new strain of Influenza. 

The outbreak prompted a high-profile investigation by the Centers for Disease Control 

and Prevention (CDC). It was determined early in the investigation that the outbreak was 

caused by a previously unidentified agent. The investigation lasted close to six months 

and was worked on by multiple teams of parasitologists, virologists, epidemiologists, 

bacteriologists, and toxicologists. In January 1977, the causative agent was identified but 

was called the Legionnaires’ Disease bacterium until April 1979. The bacteria was given 

a name representing the disease caused as well as those who were affected by the first 

documented outbreak, Legionella pneumophila [1-3]. 

What was unknown when the investigation began was the unique nutritional 

requirements of L. pneumophila that makes it difficult to culture and isolate. Unless a 

special kind of agar plates are used. Moreover, the bacteria replicate within alveolar 

macrophages making identification from lung tissue secretion difficult. The use of guinea 
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pigs by the CDC led to the identification of L. pneumophila since guinea pigs are 

susceptible to infection with Legionella [2]. 

The Legionella genus consists of approximately 65 species with half (30 species) 

known to cause disease [4]. L. pneumophila remains the primary causative agent of 

Legionnaires’ disease globally, causing 95% of reported cases. However, in Australia L. 

longbeachae causes most reported cases of disease [5, 6]. L. pneumophila can be 

subdivided into 16 serogroups with most of confirmed cases caused by serogroup 1 (Lp1) 

[4, 7, 8]. 

Legionnaires’ Disease 

Infection with L. pneumophila results in two distinct clinical manifestations – 

Pontiac Fever or Legionnaires’ Disease [4, 9]. Pontiac Fever is a mild, self-limiting flu 

like illness which usually resolves in 2 to 5 days and does not benefit from any treatment 

with antibiotics. Legionnaires’ disease can be a multisystem disease and is the pneumonic 

form of legionellosis that has a case fatality rate of 10%. In immunocompromised and 

immunosuppressed patients mortality is increased as much as 25% [9]. Immune 

compromised individuals and smokers are more susceptible to Legionnaires’ disease but 

healthy individuals are also at risk for contracting the disease [10, 11]. The incubation 

period for both forms of disease varies with symptoms surfacing anywhere from 2-14 

days after inoculation. The symptoms of Legionnaires’ disease include cough, fever, 

headache, shortness of breath and muscle pains. Patients with a more severe form of the 

disease may show symptoms including diarrhea, bloody sputum, ataxia, vomiting, and/or 

loss of appetite [12]. Death is usually the result of multi organ failure or respiratory shock 
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[13]. No vaccines exist to protect from Legionnaires’ Disease but the disease can be 

successfully treated with antibiotics including macrolides, tetracyclines, and quinolones, 

which to date are the most effective [14-16]. Legionnaires’ disease cannot be successfully 

treated with penicillin and β-lactams as a result of the resistance of L. pneumophila to the 

antibiotics. Treatment with these antibiotics also leads to an increased mortality. 

Legionnaires’ disease is likely underreported in many countries because of a lack 

of diagnostics and surveillance systems [9, 17]. In 2016 alone, the CDC reported 6,100 

confirmed cases of Legionnaires’ disease in the United States and acknowledged that this 

number may be higher because of undiagnosed disease [18]. In many cases, when 

patients present with pneumonia, they are treated with antibiotics and no lab diagnostic 

tests are performed to determine the causative agent of the pneumonia. Urine-ELISA 

assays are needed to confirm Legionella infections but are becoming more commonly 

performed [19-21]. Without consistent patient testing, it is difficult to confirm the number 

of Legionnaires’ disease cases annually. Importantly, roughly 50% of pneumonia cases 

are of unknown etiology [21], suggesting that L. pneumophila may be responsible for 

more cases then is currently appreciated. 

Epidemiology of L. pneumophila 

L. pneumophila are aquatic organisms globally distributed and natural bodies of 

water serve as the natural reservoir. As a result, Legionnaires’ disease remains an 

important public health problem worldwide. Outbreaks of L. pneumophila is thought to 

have emerged in the 20th century because of alterations to the environment by humans 

that generate water aerosols that act as a vehicle to transmit L. pneumophila from 
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different water sources [4]. Some of these sources include air conditioning systems, 

cooling towers, grocery store misters, humidifiers, and hot tubs[4]. Generally, infection 

starts with the inhalation of contaminated aerosolized water droplets [22-25]. Until 

recently, it was widely accepted that L. pneumophila was exclusively transmitted in this 

manner [27]. A single recent case in Europe is the only report of person-to-person 

transmission [27]. The conditions surrounding this case aided in transmission from one 

person to another. In this case, an individual was taking care of a seriously ill close 

relative where frequent and lengthy exposure occurred leading to the transmission of L. 

pneumophila [26-28].  Thus, water serves as the natural reservoir for L. pneumophila and 

serves as the only source of transmission. 

L. pneumophila can be controlled in water handling systems with proper 

maintenance. While this is simple enough, many water handling systems and water 

holding units are not properly cared for. This is a wide-spread problem which was 

illustrated by a study through the CDC that identified Legionella DNA in 84% of cooling 

towers tested in the United States [29]. For eradication, continual water treatment is 

required. Treatments include keeping hot tank water temperatures above 55 ºC and 

treatment with either monochloramine, chlorine dioxides, or copper-silver ions [30-32]. 

Short term interventions are the common method for treatment of contaminated water 

sources including biocides, overheating of water or single treatments using UV 

irradiation, but these methods are not successful for eradicating the bacteria from water 

sources [30, 31, 33]. 
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Ecology of L. pneumophila and its Adaptation to Protoza   

The natural reservoir for L. pneumophila is water; and this bacterium has been 

found in many freshwater environments, and in many man-made water systems, in close 

association with freshwater protozoa. Legionnaires’ disease has only recently emerged 

because of human alterations to the environment which result in optimal conditions to 

support replication of the organism [4, 34]. When L. pneumophila are left in their natural 

aquatic environment it is unlikely that they would cause disease; and natural water 

environments have never been implicated in Legionnaires’ disease outbreaks [4]. 

Protozoa are an important reservoir for L. pneumophila, and in aquatic 

environments, these bacteria parasitize and replicate within amoebae. There are 17 

known species of amoebae and 7 species of non-amoebal protozoa that are capable of 

supporting L. pneumophila growth [35-49]. L. pneumophila infects the trophozoite form 

of amoebae and serves to protect the bacteria [50]. Amoebae do not only play an 

important role in enhancing the pathogenicity of L. pneumophila, enable the bacteria to 

persist in the environment thereby contributing to the pathogenesis of Legionella.  

The ability to infect human macrophages is hypothesized to be a consequence of 

the prior adaptation of L. pneumophila to the intracellular life within the various 

protozoan hosts [51]. Respirable sized vesicles are released from protozoa, which contain 

bacteria that are highly resistant to biocides while the vesicles themselves are resistant to 

sonication and freezing [52].  When released from a protozoan host, L. pneumophila 

exhibits an enhanced ability to infect mammalian cells as well as being more invasive to 

cells [53]. L. pneumophila grown in protozoa show changes in biochemistry, physiology, 

and virulence potential relative to those grown in vitro [54].These changes include an 
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increased resistance to antibiotics, biocides, disinfectants and harsh conditions as well as 

altered fatty acid and protein profiles, decrease in size and motility, an increased ability to 

infect amoeba and mammalian cells, an increase in environmental fitness, and an increase 

in uptake via coiling phagocytosis [55-62]. During outbreaks, L. pneumophila and 

amoebae have been isolated from the same source of infection and these amoebae have 

been shown to support the growth and replication of L. pneumophila [63]. Some L. 

pneumophila that cannot be isolated using classical culturing methods have been 

culturable if in the presence of protozoa [51]. 

When conditions become unfavorable, protozoa can differentiate from their 

trophozoite form into a cyst form that protects the organisms and ensures their survival. 

L. pneumophila has also been shown to survive within amoebic cysts [64].This 

differentiation is a highly resistant developmental stage for the amoebae and contributes 

to the resistance of L. pneumophila to different chemical and physical agents [65]. 

Environmental stress plays an important role in the transition of L. pneumophila 

from environmental bacteria to an intracellular pathogen [66]. The relationship between 

L. pneumophila and amoebae plays an important role in the pathogenicity of the 

bacterium [67].  Contributing to the pathogenesis of Legionella, a great deal of evidence 

shows that growth of bacteria in amoebae also plays a role in transmission. First, there is 

no transmission of L. pneumophila between individuals under normal circumstances. 

Second, the number of free bacteria isolated from the environmental sources of 

Legionnaires’ disease infections is usually low or undetectable [68]. Third, protozoa 

release respirable sized vesicles that contain L. pneumophila [52]. Fourth, the bacteria 

exhibit an enhanced ability to infect mammalian cells after being released from a 
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protozoa host [53]. Perhaps because L. pneumophila that has been grown in amoebae is 

more motile and invasive [52]. Fifth, the bacteria grown in a protozoan host show 

increased resistance to chemical disinfectants, biocides and antibiotics, which makes the 

bacteria better at establishing disease then free-living amoebae [60-62]. Sixth, bacteria 

also show an increased resistance to harsh conditions compared to those grown in vitro 

[59]. Seventh, bacteria and amoebae have been isolated from the same source of infection 

during outbreaks [63]. Lastly, L. pneumophila that cannot be cultured using classical 

methods can be cultured if they are co-cultured with protozoa [51, 69]. 

There are Legionella-like species that cannot be grown on bacteriologic media but 

must be co-cultured with protozoa and are referred to as Legionella-like amoebal 

pathogens (LLAP). LLAPs are closely related to Legionella phylogenetically and 

acquired their name because of their ability to infect and multiply within amoebae [70]. 

The genes that code rRNA in bacteria are highly conserved and are often used to compare 

the relatedness of different organisms. When comparing LLAPs rRNAs to those of L. 

pneumophila, LLAP rRNA shows 91.6-95.8% similarity to L. pneumophila rRNA 

indicating there is a phylogenetic relationship between the two organisms [70]. The 

LLAPs play a role in community-acquired pneumonia, usually as a co-pathogen and 

rarely as the sole pathogen [71]. LLAPs are remain a mystery and future studies sre 

needed to gain a better understanding of the significance of these organisms to human 

health. 

Numerous methods have been employed to attempt to eradicate L. pneumophila 

from aquatic environments. These attempts, which include chemical biocides, 

overheating water and UV irradiation, have been successful for short periods after which 
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the bacteria can be again detected. It has been suggested that to eradicate L. pneumophila 

from aquatic environments treatments should be continuous and effective against both the 

bacteria and the protozoa host [51, 54, 65]. These findings support the hypothesis that 

amoeba play a key role in the ecology and pathogenesis of L. pneumophila and 

demonstrate the close and unique relationship between the two organisms. 

 

 

Intracellular life cycle of L. pneumophila within Amoebae and Macrophages 

The infection of human phagocytic cells occurs when an individual inhales 

contaminated aerosolized water [4]. Once L. pneumophila infects a human host it enters 

alveolar macrophages where the intracellular life cycle is strikingly similar to the life 

cycle observed when amoebae engulf L. pneumophila (Figure 1-1) [4]. The mode of 

uptake for both macrophages and amoeba has been described as coiling phagocytosis [72, 

73]. Once inside the host cell the bacteria can be found inside a unique replicative 

vacuole whose biogenesis does not follow the endosomal-lysosomal degradation pathway 

[74].  This vacuole is termed the L. pneumophila containing vacuole (LCV). The LCV is 

associated with ribosome-studded membranes of the host cell endoplasmic reticulum [4]. 

Within the LCV, L. pneumophila replicates in high numbers which causes the LCV to 

rupture releasing the bacteria into the host cell cytosol where another 1-2 rounds of 

replication occur. During these final stages of replication, the bacteria become flagellated 

and virulent [51, 75, 76]. The final stage in the L.pneumophila intracellular lifecycle is 

lytic of the host cell and release of bacteria [77-79]. This cycle is repeated once the 

bacteria infects new host cells in the lungs.   
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Figure 1-1: The environmental life cycle of L. pneumophila. (1) Flagellated L. 

pneumophila infect protozoa in the aquatic environment. (2) The LCV evades the default 

endosomal–lysosomal degradation pathway and becomes rapidly remodeled by the ER 

through intercepting ER-to-Golgi vesicle traffic and becomes rapidly decorated with 

polyubiquitinated proteins in an AnkB-dependent manner. (3) Under unfavorable stress 

conditions, such as nutrient deprivation, amoebae encyst and bacterial proliferation will 

not occur due to nutrient limitation. Under growth-permissive conditions for the 

amoebae, the LCV is decorated with polyubiquitinated proteins, which are targeted for 

proteasomal degradation leading to elevated cellular levels of amino acids (AA) that 

power bacterial proliferation of the wild-type strain, while the ankB mutant is defective in 

this process and is unable to grow despite formation of ER-remodeled replicative LCV. 

(4) During late stages of infection, the LCV becomes disrupted leading to bacterial egress 

into the cytosol where the last 1–2 rounds of proliferations are completed. Upon nutrient 

depletion (see magnified box), RelA and SpoT are triggered leading to increased levels of 

ppGpp, which triggers phenotypic transition into a flagellated virulent phenotype 

followed by lysis of the amoeba and bacterial escape from the host cell. Excreted vesicles 

filled with bacteria are also released. The infectious particle is not known but may 

include excreted Legionella-filled vesicles, intact Legionella-filled amoebae, or 

free Legionella that have been released from host cell. (5) Transmission to humans occurs 

via aerosols generated from man-made devices and installations, such as cooling towers, 

whirlpools, and showerheads [80]. Adapted from Richards et al 2013 [79]. 

Biphasic Life Cycle of L. pneumophila 

The intracellular lifecycle of L. pneumophila consists of a replicative phase, 

within the LCV, and a transmissive phase, exhibited upon escape into the cytosol [75, 81-

83].  This biphasic lifestyle is characterized by dramatic changes in gene expression and 

phenotypes [84, 85]. During the replicative phase, the bacterium is undergoing 

exponential (E) growth, it is non-motile, avirulent, sodium resistant and represses its 

transmissive traits [86, 87]. A ‘stringent-like’ response pathway is triggered upon 

transition of L. pneumophila into post-exponential (PE) growth. The bacteria become 

virulent, cytotoxic, motile, and capable of lysosomal evasion. These changes are 

necessary to invade a new host and start a second cycle of proliferation [58, 88].  
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Transcriptional analysis of L. pneumophila during infection of Acanthamoeba castellanii 

showed that these two phases exist both in vivo and in vitro [85]. 

Replicative to transmissive phase transition is triggered by nutrient limitation and 

is a highly orchestrated event involving many factors [75, 76, 89].  Upon amino acid 

depletion, uncharged tRNAs activate RelA to synthesize the bacterial alarmone 3’,5’-

bispyrophosphate (ppGpp), a master regulator of numerous genes of L. pneumophila 

pathogenesis, which triggers differentiation into the post exponential (PE) phase [90, 91].  

RpoS and several global response two-component regulators, such as LetA/S [76, 92-94], 

are required for phenotypic transition at the PE phase while the RNA-binding protein 

CsrA acts as a global repressor of the transition and needed later for replication [95]. Two 

small, non-coding RNAs, RsmY and RsmZ, are induced by LetA at the stationary phase 

to relieve the repression of CsrA from target genes, required to avoid lysosomal 

degradation [76, 87]. The ppGpp synthetase RelA monitors amino acid availability 

through its association with the ribosome [96] and works in conjunction with SpoT, a 

bifunctional synthetase/hydrolase that responds to fatty acid starvation, to control levels 

of ppGpp [96]. DskA, a RNA polymerase (RNAP) secondary channel interacting protein, 

mediates the physiological effects of ppGpp through interactions with RNAP [97]. 

Without DskA, L. pneumophia is defective in stationary phase survival, flagellar gene 

activation, lysosomal avoidance, and macrophage cytotoxicity [96]. 

The Type II Secretion System (T2SS) 

There are 8 secretion systems that Gram-negative bacteria possess that permits the 

export of bacterial proteins from within the bacteria to the target host cell or into the 
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extracellular milieu [98]. L. pneumophila codes for two distinct secretion systems, type 2 

and type 4, both of which contribute to the pathogenesis of the bacterium [99-101]. The 

Type 2 secretion system (T2SS) exists in many Gram-negative bacteria including both 

plant and animal pathogens. 

The T2SS is composed of 12 core proteins with 4 subcomplexes. The first 

subcomplex is an outer membrane “secretin” which provides a pore through the 

membrane, second is an inner membrane platform which provides a connection to the 

secretin, third is a cytoplasmic ATPase which gets recruited to the inner membrane 

platform, and lastly is a periplasm-spanning pseudopilus [99, 102-104]. The T2S consists 

of a two-step process where proteins that are destined to be secreted are first trafficked 

into the periplasm, across the inner membrane of the bacteria by the Sec pathway or the 

Tat pathway [102]. The second step is responsible for secreting proteins that are 

recognized by the secretion apparatus to the extracellular milieu via an outer membrane 

pore [102].  The L. pneumophila T2SS is important for intracellular infection in host cells 

and amoebae, as well as growth in mouse models of disease [105-108]. Nearly all 

pathogens that express the T2SS system exist within aquatic and soil environments in 

addition to their higher organism hosts [102]. The Legionella type 2 secretion (Lsp) 

system, plays a major role in the infection of amoeba and is involved in promoting 

bacterial replication in at least four genera of amoebae [46, 100, 104, 109, 110]. The 

T2SS system functions at a temperature range of 22-37°C,  temperatures commonly 

associated with aquatic niches thus implicating the T2SS system as being necessary for L. 

pneumophila survival in the environment [107]. 
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To date, 25 proteins have been identified as substrates of the T2SS, many of 

which are enzymes responsible for degrading proteins and lipids as well as some proteins 

with novel functions [102]. The effector substrates of the T2SS system increase the 

likelihood of infection of amoebae with L. pneumophila. These effectors include the 

acyltransferase PlaC, ribonuclease SrnA, metalloprotease ProA, and two novel proteins – 

NttA and NttC [46, 104, 105, 111]. Each effector is important for infection and their 

importance varies depending on the species of amoebae. This suggests that the repertoire 

of L. pneumophila effectors secreted by the T2SS system has evolved to enhance the 

broad host range of this bacterium. 

Various studies have considered the importance of the T2SS system in relation to 

its ability to survive in aquatic environments either as part of a multi-organismal biofilms 

or planktonically [106, 111-115]. One study from Söderberg et al [106] has shown that 

T2SS mutants show a decreased ability to survive extracellularly in tap water samples 

that have been incubated at a temperature range of 4-25°C [107, 112]. The secretome of 

L. pneumophila changes in relation to temperature changes, which suggests there are 

effectors secreted by the T2SS that facilitate survival in low temperatures [107, 112]. It 

has also been shown that mutants lacking the T2SS Lcl protein are not able to form 

biofilms as efficiently as bacteria containing a functional T2SS system [113]. Lastly, it 

was shown that T2SS systems mutants have impaired gliding motility, which is likely the 

result of an inability to secret a novel surfactant [114-116]. 

 While evidence shows the T2SS is important for infection of amoebae and 

persistence in the aquatic environment, it also aids in L. pneumophila growth within the 

lung. For example, T2SS mutants show impaired growth within the mouse and Guinea 
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pig disease models [106, 109, 117].  Studies have shown that the T2SS is not required for 

entry of L. pneumophila into alveolar macrophages, nor is it required for the evasion of 

the host phagosome-lysosome degradation pathway but is required for bacterial 

replication at 4-8 hours post infection and for the ability to replicate to large numbers 

within the LCV at and beyond 12 hours post infection [108].  The T2SS is responsible for 

dampening the cytokine output of infected macrophages as well as the secondary host 

during infection, epithelial cells [117].  The T2SS suppression of the innate immune 

response is hypothesized to limit inflammatory cell infiltrates into the lung initially, 

which aids in prolonged bacterial growth [118]. The intracellular localization of T2SS 

substrates is unknown for many of the substrates secreted via this system [119]. It has 

been suggested that T2SS are not restricted to the LCV lumen due to the observation that 

T2SS mutants show an impaired ability to retain Rab1B on the LCV, which suggests that 

a T2SS substrate may exit the LCV where it can engage host GTPases in the cytoplasm 

[119]. It has also been shown that T2SS mutants trigger immune response pathways, like 

MyD88 and Toll Like receptor 2, resulting in an increase in inflammatory cytokine levels 

and suggesting T2SS effector proteins dampen cytosolic innate immunity sensors [118, 

120]. A recent study by Truchan et al elucidated the cellular localization of 2 T2SS 

effectors, ProA (a metalloproteinase) and ChiA (chitinase), which escape the LCV and 

then form a ring-like pattern around the LCV membrane in the host cell cytosol [121]. 

These studies help to shift views from the predominant paradigm in the L. pneumophila 

field, which is that only type 4 secretion system (T4SS) effectors are able gain access to 

the host cell cytoplasm during infection [121]. 
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The Dot/Icm Type 4 Secretion System 

 While there is still much to learn about the T2SS, more is known about the T4SS. 

The Dot/Icm T4SS system is an important virulence system that is involved in almost all 

aspects of the intracellular biology of L. pneumophila [122]. This set of roughly 30 genes 

were named dot (defective in organelle trafficking) or icm (intracellular multiplication) 

[123-129].  The Dot/Icm system, which is classified as a T4SS system because of its 

similarity with conjugation systems, is composed of 27 proteins that form a syringe-like 

apparatus responsible for translocating effector proteins from the inside the bacteria 

across the LVC membrane into the host cell cytosol [130, 131]. This system is 

responsible for translocating ~330 effector proteins into the host cell cytoplasm with the 

help of a secretion system coupling complex comprised of DotL, DotM, and DotN [132]. 

DotL, DotM, and DotN form a coupling complex that is responsible for recruiting protein 

substrates in the bacterial cytoplasm and delivering them to the translocation channel in 

the inner membrane [132]. This complex works in association with three chaperone 

proteins, IcmW, IcmS and LvgA, which recruit some of the substrates to DotL via a 20-

amino acid region translocation sequence located within the C terminal portion of the 

protein [130, 132-136].  This need for a chaperone is not the case for all effectors as some 

can still bind to the coupling complex without the help of the chaperone proteins [132].    

The ~330 substrates of the Dot/Icm system are known as effector proteins, which 

accounts for approximately 10% of the L. pneumophila genome coding capacity [137-

140]. L. pneumophila contains the largest repertoire of effector proteins, followed by 

Coxiella burnetii which contains ~100 effector proteins [141]. Some of the L. 

pneumophila effector proteins are translocated upon attachment of the bacterium to a host 
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cell, but the translocation of these proteins occurs throughout the intracellular growth 

phase of the bacteria [142, 143]. RalF was the first effector shown to be translocated from 

the bacteria to the host cell in a Dot/Icm dependent manner [144]. Since the discovery of 

RalF, numerous other effectors have been identified that have been shown to play roles in 

modifying host cell processes in order to establish a replicative niche that supports robust 

replication of L. pneumophila. Some of the better characterized examples of effectors 

whose functions have been identified play roles in vesicular trafficking pathways (LidA 

& AnkX), host protein synthesis (Lgt1 & Sidl), cell apoptosis (SdhA & SidF), and host 

ubiquitination pathways (AnkB & LubX) [145-151].  

The accumulation of the alarmone ppGpp increases mRNA for T4SS components, 

secreted host regulators, and effectors [96]. Many of the substrates for the T4SS are 

strongly upregulated during the transmissive phase [152]. Many of the effectors 

upregulated during this phase of growth are involved in inhibition of phagosome 

maturation, altering trafficking and proteins involved in egress from the amoeba [152]. 

An important effector molecule for intracellular survival and replication of L. 

pneumophila is the eukaryotic-like protein AnkB which is temporally and differentially 

regulated at the PE phase by RelA [56]. AnkB is injected into the host cytoplasm by the 

Dot/Icm system immediately upon bacterial attachment to the plasma membrane, and 

anchors into the LCV [54, 150].  Where it plays a role in creating nutrients required for L. 

pneumophila survival and replication. 

The Dot/Icm system is located at the poles of the bacteria, which is an important 

for the bacteria since studies have shown that non-polar localization results in the failure 

of lysosomal evasion by L. pneumophila [153]. While this system is responsible for 
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translocating many substrates, only 2-4 Dot/Icm apparatus complexes have been 

identified at the poles of the LCV [153]. Not all effectors are translocated at the same 

concentration or point during infection, which could be a result of the number of 

apparatuses located on the LCV [154, 155]. 

 

 

Functional Redundancy of Effector Proteins 

 Deletion of very few effector proteins result in intracellular growth defects in 

macrophages of L.pneumophila, which is likely the result of functional redundancy 

among the effector repertoire [156-158]. One explanation for functional redundancy is 

that over time, L. pneumophila has acquired a toolbox of effector proteins as a result of 

inter-kingdom horizontal gene transfer. Different effectors are likely specific for infection 

of specific hosts, which explains why deletion of effectors does not result in a growth 

defect in macrophages. Eliminating up to 31% of the effectors has been shown to barely 

cause any replication defects in mouse macrophages [158].  

Effector redundancy occurs via different mechanisms including pathway 

redundancy, cellular process redundancy, target redundancy, molecular redundancy and 

system redundancy [156].  Redundant effector proteins have been shown to perform the 

same function in host cells and interact with the same host cell targets. One well 

characterized example of this is the SidE family of effectors [157].  The SidE family 

consists of four effector proteins (SidE, SdeA, B, and C) which function to catalyze the 

addition of ubiquitin moieties to the host proteins Reticulon 4 and Rab33b [159, 160]. 

When each of these effectors are individually deleted, there is no replication defect 

detected, but when all four effector proteins are deleted there is a significant decrease in 
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intracellular replication of L. pneumophila, which can be restored with complementation 

of SdeA alone [160, 161]. An example of pathway redundancy is that of VipD and SidK, 

both of which target different components of the host endocytic pathway [154, 162]. 

Effectors that show redundancy in targets include SidM and AnkX, both of which 

modulate Rab1 activity but through different mechanisms [163-165]. SidF and SidP are 

two examples of effectors that show cellular process redundancy as both effectors 

modulate host lipid metabolism and phosphoinositide abundance at the LCV by targeting 

redundant or complementary host pathways governed by a single process [156, 166, 167]. 

Lastly, system redundant effectors are effectors that are responsible for modulating more 

than one cellular processes in host cells in order to accomplish the same task. Examples 

of this include LegK1, that activates NF-κB by degrading IκB, Lgt1/2/3 blocks host 

protein synthesis by restoring IκB, and SidF, which inhibits the host pro-apoptotic 

proteins [165, 167]. These effectors work to satisfy the end goal of inducing mechanisms 

of host cell survival [146, 166, 168]. 

Genome Plasticity 

A hallmark of the L. pnumophila genome is its low GC content. The GC content 

of the L. pneumophila genome is roughly 38.3% and the GC content of protozoan 

genomes is also similarly low [169]. The long-term co-evolution of L.pneumophila with 

different protozoan hosts has likely affected genome structure of this bacteria primarily 

through inter-kingdom horizontal gene transfer (HGT) [89, 170-173]. A high degree of 

plasticity is observed even between strains of the same species of L. pneumophila [169]. 

When comparing the L. pneumophila strains Paris and Lens, there are 2,664 genes 
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conserved but 428 and 280 are strain-specific, respectively [169]. Different potential “hot 

spots” for genomic rearrangement that contribute to the plasticity of Legionella have been 

identified [169, 174]. Some L. pneumophila strains contain plasmids that have been 

inserted into the chromosome, which has also contributed to the plasticity of the genome 

[169]. 

Co-evolution of L. pneumophila with amoebae and other protozoan hosts has 

likely contributed to the plasticity of the genome. L. pneumophila is naturally competent 

and is capable of natural transformation of DNA uptake through conjugation machinery 

[67, 129, 175]. Amoebae have possibly played the role of a melting pot for L. 

pneumophila which has resulted in long term convergent evolution and gene modification 

via HGT, which probably explains both the genome plasticity, large repertoire of effector 

proteins, effectors containing eukaryotic-like domains and motifs, as well as effector 

redundancy of the organism [169, 171, 176]. 

Eukaryotic-Like Proteins of L. pneumophila and their Origin 

L. pneumophila harbors a plethora of eukaryotic-like effectors that interfere with 

host processes by mimicking eukaryotic functions. One of the best described examples of 

effector proteins with conserved eukaryotic domains that are necessary for intracellular 

proliferation of L. pneumophila is AnkB [54, 150, 177]. The AnkB protein consists of 

Ankyrin domains (ANK), an asparagine hydroxylation motif, a eukaryotic CaaX motif 

(“C’ cysteine, “a” aliphatic amino acid, “X” any amino acid), and an F-box domain [177-

180]. Ankyrin repeat domains are 33-amino acid domains that primarily function as 

scaffolds to mediate protein-protein interactions [181, 182]. These domains are 

responsible for targeting effector proteins in the host and are one of the most versatile 
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domains present in Legionella effectors [137, 138]. The CaaX motif allows the protein to 

be farnesylated, which is a highly conserved posttranslational modification that confers 

hydrophobicity allowing the lipidated protein to be anchored in membranes [183]. 

Another example of an effector of L. pneumophila that hijacks conserved host eukaryotic 

systems is the SidE family of effectors. This family of effectors exploits the 

ubiquitination machinery and specifically ubiquitinates Reticulon4 and Rab33 [158, 159]. 

Reticulon4 and Rab33 do not have homologs in all species of protozoa that can be hosts 

for L. pnueumophila and only a few have Rtn4 and Rab33 homologs indicating the SideE 

family has host-specific functions [208]. Many of these translocated effectors are 

functionally and structurally similar to eukaryotic proteins and interact with various 

eukaryotic processes such as signaling, protein synthesis, apoptosis, posttranslational 

modification, vesicular trafficking, ubiquitination, and proteasomal degradation [57, 

184].   

The long-term coevolution of L. pneumophila with various protists and metazoa 

has influenced the genomic structure of the bacteria through inter-kingdom HGT. 

Translocated effectors contain many motifs and domains normally found only in 

eukaryotic proteins. Long term modification of the acquired host genes through cquisition 

of prokaryotic promoters and regulators, as well as translocation motifs is essential to 

evolve the proteins to become functionally active effectors in the host cell [159]. A good 

example is AnkB. The F-box domain of AnkB contains the ANK domain which is 

common for amoeba F-box proteins but not for mammalian F-box proteins indicating 

AnkB was likely acquired from a primitive eukaryotic host [89, 180, 185].  It is to be 
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expected that many of the eukaryotic-like proteins are still undergoing modifications that 

might allow for them to be translocated and/or to act as effector proteins [89].  

Domain shuffling has also played a major role in the evolution of Legionella 

effector proteins. Two recent studies, one conducted by Burstein et al. and one conducted 

by Gomez-Valero et al., analyzed the genomes of multiple species of Legionella [137, 

138]. The Burstein study identified and analyzed effector proteins in 41 Legionella 

genomes. Analysis was performed using two criteria – first was the similarity to known 

domains in a domain database, and the second was the conservation of effector regions 

across orthologous groups of effectors [137]. The group identified 99 distinct domains 

including 53 well characterized domains and 46 new conserved domains. Next, they 

analyzed protein architecture, or domain combinations, and found that the same domains 

were commonly present in different architectures or combinations [137]. The Gomez-

Valero study expanded on the data found in the Burstein study [137]. This group 

sequenced 58 Legionella species and analyzed them with publicly available genomes (80 

genomes total) [138]. This group identified a total of 137 different eukaryotic 

motifs/domains present in the strains studied. Both studies found that the Ankyrin repeat 

domain (ANK) was the most common domain [137, 138]. This domain appeared in 

combination with a variety of other domains and architectures across the Legionella 

genome.  Over 300 Legionella effector proteins contain an ANK domain [137, 138]. 

Ankyrin repeats commonly appear in combination with other protein domains in 

numerous effector proteins [137, 138]. Some Ankyrin repeats are found in combinations 

that are species-specific effectors in Legionella, while others were conserved across the 

genus. 
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L. pneumophila has an extraordinary number of effectors that are in its toolbox 

and are the probable source of ability of L. pneumophila to exploit many host processes 

within many different amoebae hosts, thus effectively increasing its fitness as a generalist 

pathogen [89].  Long term coevolution of L. pneumophila with its protozoan hosts and 

inter-kingdom horizontal gene transfer has likely resulted in an accidental ability to cause 

disease in humans, perpetuated by changes in human lifestyle.  Understanding its 

association with amoeba will give us a better understanding of how L. pneumophila is 

able to cause disease though the exploitation of evolutionary conserved eukaryotic 

processes. 

Core Effectors of L. pneumophila 

In total, Burstein et al. identified 5,885 putative effectors present within the 

Legionella genus [137]. Legionella genes that consisted of  ≥ 80% predicted effectors 

were split into orthologous groups which were designated Legionella effector ortholog 

groups (LEOGs) [137]. A total of 608 LEOGs were identified and it was observed that 

most of the LEOGs were shared by a small subset of species. Roughly 63% of the 

effector repertoire (3,715 effectors in 269 LEGOs) consisted of orthologs of validated 

effectors from L. longbeachae and L. pneumophila. The remainder (2,170 effectors in 

339 LEGOs) represent new putative effectors which may show novel functionality [137]. 

The study conducted by Gomez-Valero et. al. identified roughly 18,000 effector proteins 

representing more than 1,600 orthologous groups [138]. 

Interestingly, both studies only identified seven core effectors. The study 

conducted by Gomez-Valero et al. also identified one other effector that was not included 

in the search by Burstein et al. which brings the total number of core effectors to eight. 
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[137, 138]. Six of the 8 core effectors are conserved among all species of Legionella, 

sequenced. One effector (MavN) had orthologs in all the sequenced Legionella as well as 

one other bacterium encoding the DOT/ICM T4SS, Rickettsiella gyrlli [137]. 

Remarkably, only one of the core effectors (AnkH/LegA3/Lpg2300) is not only 

conserved across the Legionella genus but also contains orthologs in other organisms 

containing the Dot/Icm T4SS, including Coxiella burnetii and Rickettsiella grylli [137, 

138]. The conservation of the AnkH effector among bacterial species encoding the 

Dot/Icm T4SS indicated that it is involved in modulating host cell processes that are 

evolutionarily conserved and required by various intracellular pathogens. 

Structure of AnkH and its role in the intracellular survival and replication of L. 

pneumophila 

The AnkH effector is a 467-amino acid protein that contains four eukaryotic-like 

ANK domains [186]. Previous studies in the Abu Kwaik lab have established that AnkH 

is successfully translocated into the host cell cytoplasm [187]. This effector is required 

for intracellular replication within multiple host cells, including human monocyte-derived 

macrophages (hMDM), Acanthamoeba polyphaga, Hartmanella vermiformis, and for 

intrapulmonary proliferation in the mouse model of infection [186, 187]. This replication 

defect as a result of deletion of ankH has been shown using both colony forming units 

(CFUs) and confocal microscopy. With the later, we have shown that when cells are 

infected with a L. pneumophila strain lacking the AnkH effector (∆ankH), the LCV 

contains fewer bacteria than the LCV of cells infected with the wild type strain [187]. 

The ∆ankH mutant is rescued by complementation and can also be trans-rescued in 
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eukaryotic cells transfected with the ankH gene [186]. This was also the case when the 

∆ankH mutant shared communal or distinct LCVs within the same cell as the WT strain 

during co-infection studies [187]. 

When cells are infected with the ∆ankH strain, the LCV biogenesis and its fusion 

to ER-derived vesicles is indistinguishable from the LCV harboring the WT strain. When 

AnkH is ectopically expressed, there was no significant difference observed between the 

association of the tagged AnkH protein with trafficking markers including Lamp2, 

cathepsin D, GM130, KDEL actin, tubulin, or mitochondrial protein [186] (Figure 1-2). 

In addition to ANK repeats, there have also been two asparagine hydroxylation 

motifs identified within AnkH [179]. The crystal structure of AnkH has revealed two Asn 

hydroxylation motifs, four ANK domains, as well as a cysteine-like protease domain and 

a CAP domain [188]. We have previously shown that two of the ANK domains are 

required for proper function of the protein, since deletion of either domain results in an 

intracellular replication defect [185].  It has also been shown that one of the asparagine 

hydroxylation motifs is hydroxylated (at N59) and the motifs are required for proper 

function of AnkH [179]. Overall, previous data has shown that AnkH is an important 

effector for L. pneumophila and defining the function of AnkH during infection would 

result in a better understanding of the pathogenesis of L. pneumophila. 
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Figure 1-2: AnkH is not involved in LCV formation or evasion of host 

degradation pathways. Once engulfed by the host cell (1), LCVs harboring the 

WT or ankH mutant strain inhabit similar LCVs which evade the host endosome-

lysosome degradation pathway (2) and go on to intercept ER derived vesicles that 

help to create a replicative niche for the bacterium (3).  

1 

2 

3 
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SPECIFIC AIMS 

L. pneumophila has spent a considerable amount of time co-evolving with 

primitive eukaryotic organisms resulting in a plethora of effectors with eukaryotic like 

protein domains. These protein domains are found dispersed among L. pneumophila 

effector proteins resulting in a toolbox that aids in the infection of specific L. 

pneumophila host organisms. Many of the ~330 effector proteins translocated by L. 

pneumophila contain eukaryotic-like protein domains demonstrating the importance of 

these domains in the function of many of the effectors, which contributes to intracellular 

survival of L. pneumophila. Ankyrin repeat domains were identified as the most 

commonly occurring eukaryotic-like protein domain among effectors in the Legionella 

genus [136, 137]. Ankyrin repeat domains are involved in protein-protein interactions 

and act as a scaffold for these interactions [180, 181]. L. pneumophila contains 11 

effector proteins containing ANK domains [186]. One of the ANK domain containing 

effector proteins, AnkH, has been shown to be required for intracellular replication of L. 

pneumophila in amoebae, human macrophages, and for intrapulmonary proliferation in 

the mouse model of infection. The crystal structure revealed that AnkH consists of four 

ANK domains, a cysteine-like protease domain, two asparagine hydroxylation motifs, 

and a cap domain [188]. The Legionella genus codes for ~18,000 effector proteins. Of 

those effector proteins, AnkH is the only effector that is conserved among all sequenced 
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Species of Legionella as well as among organisms that contain the Dot/Icm T4SS [137, 

138]. 

I hypothesize that the AnkH effector interacts with a specific highly conserved 

host target and modulates an evolutionarily conserved process in eukaryotic cells.   

This hypothesis will be tested through three specific aims: 

Specific Aim 1: Identify the host-cell interacting partners for AnkH. 

Specific Aim 2: Identify downstream cellular processes altered by the interaction 

between AnkH and its host cell target proteins. 

Specific Aim 3: Determine the role of various domains and motifs of AnkH in its 

function. 
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CHAPTER 2: 

INTERACTION OF THE ANKYRIN H CORE EFFECTOR OF LEGIONELLA WITH 

THE HOST LARP7 COMPONENT OF THE 7SK SNRNP COMPLEX* 

___________________ 
* Von Dwingelo, J., Chung, I., Price, C.T., Li, L., Jones, S., Cygler, M., Abu Kwaik, Y.

Interaction of the Ankyrin H Core Effector of Legionella with the Host LARP7 

Component of the 7SK snRNP Complex. mBio, 2019, 10(4) e01942-19; DOI: 

10.1128/mBio.01942-19 
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Summary 

The Legionella genus encode at least 18,000 effector proteins that are translocated 

through the Dot/Icm type IVB translocation system into macrophages and protist hosts to 

enable intracellular growth. Eight effectors, including Ankyrin H (AnkH), are common to 

all Legionella species. The AnkH effector is also present in Coxiella and Rickettsiella. To 

date, no pathogenic effectors have ever been described that directly interfere with host 

cell transcription. We identified the host nuclear protein LARP7, which is a component 

of the 7SK snRNP complex, to interact with AnkH in the host cell nucleus. The AnkH-

LARP7 interaction partially impedes interaction of the 7SK snRNP components with 

LARP7, interfering with transcriptional elongation by Pol II.  Consistent with that, our 

data show AnkH-dependent global reprogramming of transcription of macrophages 

infected by L. pneumophila. The crystal structure of AnkH shows that it contains N-

terminal four ankyrin repeats, followed by a cysteine protease-like domain and an α-

helical C-terminal domain. A substitution within the β-hairpin loop of the third ankyrin 

repeat results in diminished LARP7-AnkH interactions and phenocopies the ankH null 

mutant defect in intracellular growth. LARP7 knockdown partially suppresses 

intracellular proliferation of WT bacteria and increases severity of the defect of the 

∆ankH mutant indicating a role for LARP7 in permissiveness of host cells to intracellular 

bacterial infection. We conclude that AnkH-LARP7 interaction impedes interaction of 

LARP7 with 7SK snRNP, which would block transcriptional elongation by Pol II leading 

to host global transcriptional reprogramming and permissiveness to L. pneumophila. 
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Importance 

In order for intracellular pathogens to thrive in host cells, an environment that 

supports the survival and replication needs to be established. L. pneumophila 

accomplishes this through the ~330 effector proteins that are injected into host cells 

during infection. Effector functions range from hijacking host cells trafficking pathways 

to altering host cell machinery resulting in altered cell biology and innate immunity. One 

such pathway is the host protein synthesis pathway. Currently, 5 L. pneumophila 

effectors have been identified that alter host cell translation while only 2 effectors have 

been identified that indirectly affect host cell transcription. To date, no pathogenic 

effectors have ever been described that directly interfere with host cell transcription. Here 

we show direct interaction of the AnkH effector with a host cell transcription complex 

involved in transcriptional elongation. We identify a novel process by which AnkH 

interferes with host transcriptional elongation through interference with formation of a 

functional complex and this interference is required for pathogen proliferation. 
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Introduction 

Legionella pneumophila is a Gram-negative intracellular pathogen that is 

ubiquitous in freshwater environments [189] where it primarily parasitizes a wide range 

of protozoan hosts, which serve as the bacterial natural hosts [40, 190, 191] and 

contribute to pathogenesis and ecology of the pathogen [4, 50, 65, 192]. When humans 

encounter contaminated water sources, aerosolized water droplets can be inhaled and 

reach the lung where bacteria can invade and proliferate within alveolar macrophages, 

causing pneumonia [193]. To date, approximately 65 species of Legionella have been 

identified with almost half of the species capable of causing disease in humans [137, 138, 

194, 195]. L. pneumophila in particular is responsible for 90% of Legionnaires disease 

cases globally [8]. 

The life cycle of L. pneumophila within amoebae and alveolar macrophages, is 

strikingly similar [196-201]. After the bacteria are engulfed by the cell, ER-derived 

vesicles fuse to the phagosome to generate the Legionella-containing vacuole (LCV) 

[198, 200, 202, 203], which evades the host endosomal-lysosomal degradation pathway 

but communicates with early secretory vesicle trafficking pathways [156, 204]. 

Biogenesis of the LCV is dependent on the Dot/Icm type IV secretion system that is 

responsible for translocation of at least 330 effector proteins into the host cell cytoplasm 

[205, 206]. The injected effectors interact with specific host targets to modulate a 

plethora of host cell processes that remodel the macrophage and amoeba host into a 

proliferative niche [205, 207-209]. In most cases, the deletion of a single L. pneumophila 

effector gene does not result in a growth defect in mammalian macrophages or amoeba 

[158]. Although this is thought to be due to redundancy, it is more likely that many of 
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this arsenal of effectors are host-specific and constitute a “toolbox” from which specific 

tools are utilized in specific environmental eukaryotic hosts [156, 210]. Genomic analysis 

of 58 Legionella species have shown that the legionella genus has ~18,000 effectors but 

only 8 of these effectors (MavN, VipF, RavC, CetLp1, lpg2832, lpg3000, 

lpg1356/lpp1310 and AnkH/LegA3/Lpg2300) are conserved among all Legionella 

species and are designated as core effectors [137, 138]. Of the 8 core effectors, AnkH is 

the only effector conserved among all bacterial pathogens harboring the Dot/Icm T4SS, 

including Coxiella burnetii and Rickettsiella grylli [137, 138]. It is therefore likely that 

AnkH is involved in altering an evolutionarily conserved eukaryotic process required for 

the infection by many obligate and facultative intracellular pathogens. 

A large number of the Dot/Icm-translocated effector proteins contain eukaryotic-

like motifs and domains, which is likely the result of long-term co-evolution of L. 

pneumophila with its various protozoan hosts, leading to inter-kingdom horizontal gene 

transfer [89, 169-172, 192, 210]. Examples of these eukaryotic domains include F box 

and prenylation motifs, U box domain, leucine-rich repeats, and ankyrin repeat domains 

(ARDs), which are protein-protein interactions domains [54, 150, 211-213].  

The ankyrin repeat (AR) is a structural fold composed of two α-helices forming a 

helix-turn-helix motif. It is one of the most commonly structural motifs found in 

eukaryotic proteins [54, 169]. AR-containing domains (ARD) usually contain multiple 

ARs [181, 214-218] and function predominantly as protein-protein interactions scaffolds 

[219, 220]. Many bacterial pathogens that inject protein effectors into host cells harbor 

eukaryotic-like ARD-containing protein effectors that interact with specific host targets 

[89, 165, 221]. Among 58 sequenced species of Legionella, 1134 ARD-containing 
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effectors have been identified in various combinations with other eukaryotic domains 

[137, 138, 187]. 

While many L. pneumophila effectors are dispensable for intracellular growth of 

the pathogen in macrophages, we have previously shown that the AnkH ARD-containing 

effector is one of very few effectors required for intracellular replication in macrophages, 

amoebae, and for intrapulmonary proliferation in the A/J mouse model [186, 187]. We 

have also shown that AnkH is one of the effector proteins that contains an asparagine 

hydroxylation motif (Lxxxxx(D/E)(ILVA)N(ILVA)), which is hydroxylated in human 

macrophages [179, 186]. 

While no L. pneumophila effectors have been shown to interfere directly with 

host transcription machinery, few L. pneumophila effectors have been identified that 

modulate host translation machinery. Five effectors (Lgt1, Lgt2, Lgt3, SidI, and SidL) act 

on host translation machinery primarily by interfering with the host elongation factors 

eELF1A and eELF1Bγ [145, 146, 222, 223]. In contrast, the RomA (or LegAS4) 

effectors are SET-domain containing proteins that directly modify host chromatin 

through histone modification but the effect on host transcription is not known [224, 225]. 

The LegK7 effector interferes with the host Hippo signaling pathway, which results in the 

degradation of TAZ and YAP1 transcriptional regulators to alter the transcriptional 

profile of mammalian macrophages [226]. 

No bacterial effector has been shown to modulate the function of 7SK small 

nuclear ribonucleoprotein (7SK snRNP). The La related protein 7 (LARP7) is a 

component of the 7SK snRNP complex which controls the pausing time of Pol II at the 

initiation of transcriptional elongation at almost all metazoan genes [227-229]. Binding of 
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LARP7 to the 7SK 3’-terminal U-rich sequence protects 7SK from nucleolytic 

degradation [229-233].  The canonical 7SK snRNP core complex consists of 7SK, 

LARP7, and γ-methylphosphate capping enzyme (MePCE) [227-229].  Formation of the 

7SK snRNP core complex enables recruitment of transcription elongation factor b (P-

TEFb; Cdk9-cyclin T1 heterodimer) and HEXIM1/2 dimer to the complex [228, 231, 

234-237]. Binding and sequestration of P-TEFb within the 7SK snRNP complex results 

in inhibition of its kinase activity and continued pause in Pol II transcription elongation 

[230, 233, 238, 239]. P-TEFb is the critical factor that controls the release of paused Pol 

II into productive elongation at almost all metazoan genes.  Various stimuli trigger the 

release of P-TEFb from the 7SK snRNP complex, leading to activation of its kinase 

activity and transition of Pol II into productive transcriptional elongation [240, 241].  Our 

data indicate that the β-hairpin loop of the third ankyrin repeat of AnkH interacts with 

LARP7. The AnkH-LARP7 interaction impedes interaction of LARP7 with the 7SK 

snRNP complex components, which would trigger transcriptional elongation by Pol II 

leading to host global transcriptional reprogramming. 

Results 

Interaction of AnkH with the LARP7 host protein 

We utilized the yeast two-hybrid system to identify potential host cell interacting 

partners of AnkH. The full-length coding sequence of AnkH served as the bait construct 

and the normalized universal human library was used for the prey. After mating of the 

two yeast strains, a total of 1004 potentially positive clones were identified, and their 

growth on a selective media narrowed the number of positive clones to 37. After multiple 
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rounds of co-transformations of AnkH and the 37 positive clones, seven potential 

interacting partners of AnkH were identified (Table 2-1). Of the seven host proteins 

candidates, LARP7 was the only positive in all co-transformations and we pursued 

verification of its interaction with AnkH. 

Table 2-1. Potential interacting partners identified in Y2H screen. 

Proteins identified by Yeast 2 Hybrid Assay 

LA related protein 7 (LARP7) Involved in global transcription regulation 

Intersectin 2 (INST2) Adaptor protein involved in trafficking of 

endocytic vesicles 

Ubiquitin specific peptidase like 1 

(USPL1) 

SUMO specific isopeptidase involved in 

protein desumoylation 

ANK repeat domain 18A (ANKRD18A) Possible role in global regulation of platelet 

function and number 

TOX4 Involved in regulating chromatin structure 

and cell cycle progression 

Sodium channel modifier 1 (SNCM1) Zinc finger protein and putative splicing 

factor 

HLA-DQA1 Involved in process of presenting antigens 

on cell surface 

The LARP7 protein is a component of the 7SK snRNP complex, which enables 

continued pause of Pol II elongation through sequestering and inhibiting the kinase 

activity of P-TEFb [242]. To confirm the AnkH-LARP7 interaction, tagged-AnkH and 

LARP7 were co-transfected into human embryonic kidney (HEK293T) cells and 

subjected to reciprocal co-immunoprecipitation (co-IP) by IP of AnkH or LARP7 (Fig. 2-

1A).  The data showed that LARP7 was pulled down with AnkH in the reciprocal co-IPs 

(Fig. 2-1A, third lane from left). To determine if AnkH-LARP7 interaction impacted 

recruitment of critical components essential for sequestration of P-TEFb in the 7SK 

snRNP complex, we determined whether the LARP7-AnkH complex interacted with the 
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7SK snRNP components.  The AnkH co-IP was probed in immunoblots for components 

of the 7SK snRNP complex (CDK9, CyclinT1, MePCE, HEXIM 1/2). The data showed 

that none of the other complex components were immunoprecipitated with the LARP7-

AnkH complex, similar to the vector control (Fig. 2-1B). However, MePCE was 

immunoprecipitated with the LARP7-AnkH complex 60% of the time (3 out of 5 

replicates). This could be the result of expression of MePCE and the transient formation 

of the 7SK snRNP complex or that these MePCE positive samples were 

immunoprecipitated in instances where LARP7 is part of the complex and has not yet 

been removed from the complex via the LARP7-AnkH interaction. Importantly, in the 

absence of AnkH, all the 7SK snRNP components immunoprecipitated in a complex with 

LARP7 (Fig. 2-1C). Our data show that AnkH specifically interacts in vivo with the 

LARP7 protein and this impedes interaction of LARP7 with critical components of the 

7SK snRNP complex required for the sequestration of P-TEFb in the 7SK snRNP 

complex. 
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Figure 2-1. Interaction of LARP7 with the AnkH effector. (A) HEK293T cells were 

transiently transfected with 3xFLAG-AnkH or 3xFLAG-BAP and c-myc-LARP7, and 

immuneprecipitated with anti-FLAG or anti-myc antibody, and the co-IP was 

immunoblotted to detect the presence of AnkH and LARP7. (B) The AnkH co-IP was 

immunoblotted against 7SK snRNP complex components. (C) HEK293T cells were 

transiently transfected with c-myc-LARP7 and immunoprecipitated with anti-myc 

antibody and the IP was immunoblotted to detect the presence of 7SK snRNP complex 
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components. Lanes for total cell lysates of the immunoblot were imaged for less time due 

to high intensity signal. Results are representative of five independent experiments. 

Localization of AnkH with LARP7 to the host cell nucleus 

Consistent with its role in transcription, LARP7 is localized primarily in the 

nucleus [242]. Since AnkH interacts with LARP7, we determined whether the AnkH 

effector was targeted to the nucleus. HEK293T cells were transfected with a plasmid 

containing tagged AnkH and subcellular localization of AnkH was examined using 

confocal microscopy (Fig. 2-2A).  In 85% of transfected cells, the AnkH effector was 

predominantly localized to the nucleus in addition to some cytosolic localization (Fig. 2-

2A). In contrast, the AnkB effector control was primarily localized to the plasma 

membrane (92%) (Fig. 2-2A) [177]. 

To confirm sub-cellular localization of AnkH, nuclear and cytoplasmic fractions were 

analyzed by immunoblotting. In cells transfected with tagged AnkH, the majority of 

AnkH was present in both the nuclear and cytoplasmic fractions (Fig. 2-2B), while the 

AnkB effector control was mainly localized to the cytoplasmic fraction (Fig. 2-2B). 

Cellular fractionation was confirmed using the nuclear protein Lamin as a control (Fig. 2-

2B). 

To determine if AnkH and LARP7 were simultaneously localized to the nucleus, 

HEK293T cells were transfected with tagged AnkH and LARP7 and confocal 

microscopy was performed. The tagged bacterial alkaline phosphatase (BAP) was used as 

the control. Our data confirmed that ~70% of the cells showed simultaneous localization 

of AnkH and LARP7 in the nucleus (Student t-test p < 0.01) (Fig 2-2C), compared to the 
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Figure 2-2. Localization of AnkH with LARP7 in the nucleus. (A) Representative 

confocal microscopy images of HEK293T cells transiently transfected with 3xFLAG-

AnkH or 3xFLAG-AnkB control. The cells were labeled with anti-FLAG antibody 

(green), and the nucleus is stained with DAPI (blue). (B) Representative confocal 

microscopy images of HEK293T cells transiently co-transfected with 3xFLAG-AnkH 

and c-myc-LARP7 or 3xFLAG-BAP and c-myc-LARP7. The cells were labeled with 

anti-FLAG (green), anti-myc (red), and the nucleus is stained with DAPI (blue). Numbers 

in the merged images in (A) and (B) are quantification of % of nuclear localizations of 

AnkH and LARP7 proteins in HEK293T cells. For (A) and (B), 100 transfected cells 

were analyzed from multiple coverslips. Results are representative of three independent 

experiments performed in triplicate. (C) HEK293T cells transiently transfected with 

3xFLAG-AnkH or 3xFLAG-AnkB control were subjected to nuclear fractionation. Cell 

fractions were separated by SDS-PAGE and analyzed by immunoblotting. AnkH and 

AnkB were detected using anti-FLAG monoclonal antibody. Fractionation was confirmed 

by detection of the nuclear protein Lamin. 
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control BAP (~30%), which is a highly expressed protein (Fig. 2-2C). Our data showed 

that AnkH and LARP7 are localized to the nucleus, consistent with their interaction. 

Role of LARP7 in intracellular replication of L. pneumophila in hMDMs 

We have previously shown that AnkH is required for intracellular replication of L. 

pneumophila in macrophage and amoeba [186, 187]. Depletion of either LARP7 or 

MePCE via RNAi triggers 7SK degradation in cells [231, 235, 243]. Since AnkH 

interacts with the LARP7 component of the 7SK snRNP complex, we investigated if 

LARP7 was also required for replication of L. pneumophila. We utilized a lentiviral 

RNAi system to knockdown expression of LARP7 in human monocyte derived 

macrophages (hMDMs) that were infected with the WT strain of L. pneumophila or the 

∆ankH null mutant. Knockdown of LARP7 was confirmed by immunoblot (Fig. 2-3A). 

Interestingly, when LARP7 was knocked down and cells were infected with the ΔankH, 

the defective phenotype was exacerbated. Surprisingly, the knockdown of LARP7 

resulted in a partial but significant decrease in intracellular replication of the WT strain 

(Student t-test p < 0.05), which was not observed in non-treated or control RNAi-treated 

cells (Fig. 2-3B). These data support our findings for the role of AnkH-LARP7 

interaction in intracellular replication of L. pneumophila in hMDMs and indicates that 

LARP7 is involved in transcription of genes involved in permissiveness to L. 

pneumophila. 
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Figure 2-3. Requirement of LARP7 for intracellular replication of L. pneumophila. 

(A) Cells were treated with LARP7 RNAi for 24 hours then infected. Knockdown of 

LARP7 was determined by immunoblotting with anti-LARP7 polyclonal antibody. (B) 

Intracellular growth kinetics of L. pneumophila in hMDMs treated with LARP7-specific 

or scrambled RNAi. The results are representative of three independent experiments 

performed in triplicate. Statistical analysis was performed comparing all conditions to 

WT untreated using Student’s T test where *, P < 0.05.  
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Alteration of host global transcription by AnkH 

Our data showed that the LARP7-AnkH complex impedes interaction of LARP7 

with critical components of the 7SK snRNP complex required for the sequestration of P-

TEFb in the 7SK snRNP complex, which indicates an active P-TEFb kinase and release 

of Pol II from pause sites and transitions into productive transcriptional elongation [231, 

242].  We utilized RNAseq to examine modulation of global gene expression in hMDMs 

infected with either the WT strain or the ∆ankH null mutant. The data showed deletion of 

AnkH had a dramatic effect on global transcription of L. pneumophila-infected hMDMs, 

with a total of 405 genes that were differentially regulated in cells infected with the WT 

strain compared to the ∆ankH mutant, the top 10 of each based on log-fold change are 

listed in Table 2-2 (Full list in Table 2-3 & 2-4). MetaCore was used to determine which 

pathways were differentially regulated based on p values. Certain cellular pathways were 

downregulated in AnkH-dependent manner, including apoptosis, autophagy and certain 

signaling pathways including STK3/4 pathway and JNK pathway, indicating negative 

regulation of these pathways by AnkH during infection (Table 2-5). When cells were 

infected with the ∆ankH null mutant, transcription and immune response pathways were 

downregulated compared to cells infected with the WT strain, indicating their 

upregulation by AnkH (Table 2-5). An array of 10 cytokines were tested based on 

RNAseq data to determine which were altered by the presence of AnkH (Figure 2-4A-H). 

Human monocyte derived macrophages were infected with WT or ∆ankH L. 

pneumophila for 6 hours. Supernatants were collected and centrifuged to remove debris 

then cytokine levels were tested using a 10-panel cytokine multiplex. Of the 10 cytokines 

tested, only eight produced levels that were in a detectable range, and only IL-1α, showed 
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a significant difference in cells infected with WT versus ∆ankH (Figure 2-4G). These 

data show that AnkH triggers a dramatic reprogramming of cellular transcription and that 

is most likely mediated by interaction with several host substrates, one of which is 

LARP7.  

Table 2-2: Top 10 up regulated and top 10 down regulated genes in cells infected 

with ankH mutant compared to cells infected with WT. 

Gene Symbol | Description Log2FC Gene Symbol | Description Log2FC 
HSPA1B| Heat shock 70kDa protein 

1B 
+2.9979 TMC8|Transmembrane 

channel-like 8 

-2.75204 

EGR1| Early growth response 1 +2.25815 HMHA1| Histocompatibility 

(minor) HA-1 

-1.99385 

DNAJB1| DnaJ (Hsp40) 

homolog, subunit B, member 1 

+1.51215 DAPK3|Death associated 

protein kinase 3 

-1.91505 

DUSP1| Dual specificity 

phosphatase 1 

+1.24951 PDLIM2|PDZ and LIM 

domain 2 

-1.79007 

FOS| FBJ murine osteosarcoma 

viral oncogene homolog 

+1.15258 SDF2L1|Stromal cell-

derived factor 2-like 1 

-1.65596 

TDO2| Tryptophan metabolism +1.01074 TOR2A|Torsin family 2, 

member A 

-1.62058 

MS4A4E| Membrane-spanning 

4-domains, subfamily A, 

member 4E 

+2.36464 LMF2|Lipase maturation 

factor 2 

-1.59493 

PKIB| Protein kinase inhibitor 

beta 

+1.33129 NOTCH3| Notch 3 -1.57732 

PEG3| Paternally espressed 3 +2.64637 IL27| Interleukin 27 -1.55472 

GRIK2| Glutamate receptor, 

ionotropic, kainate 2 

+1.78851 CPSF1|Cleavage and 

polyadenylation specific 

factor 1 

-1.89935 
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Table 2-3: Complete list of genes upregulated in hMDMs infected with ΔankH null 

mutant compared to WT strain of L. pneumophila.  
ENSEMBL GENE ENTREZ ID GENE 

SYMBOL|DESCRIPTION 

log2FC 

(ankh/wild_type) 
p_value 

ENSG00000120129 1843 DUSP1|dual specificity 
phosphatase 1 

1.24951 5.00E-05 

ENSG00000120738 1958 EGR1|early growth response 
1 

2.25815 5.00E-05 

ENSG00000132002 3337 DNAJB1|DnaJ (Hsp40) 
homolog, subfamily B, 
member 1 

1.51215 5.00E-05 

ENSG00000135549 5570 PKIB|protein kinase (cAMP-
dependent, catalytic) 
inhibitor beta 

1.33129 0.00105 

ENSG00000151790 6999 TDO2|tryptophan 2,3-
dioxygenase 

1.01074 0.0006 

ENSG00000152380 167555 FAM151B|family with 
sequence similarity 151, 
member B 

1.08992 0.00015 

ENSG00000164418 2898 GRIK2|glutamate receptor, 
ionotropic, kainate 2 

1.78851 0.00245 

ENSG00000165694 90167 FRMD7|FERM domain 
containing 7 

1.3049 5.00E-05 

ENSG00000170345 2353 FOS|FBJ murine 
osteosarcoma viral 
oncogene homolog 

1.15258 5.00E-05 

ENSG00000185842 127602 DNAH14|dynein, axonemal, 
heavy chain 14 

1.00125 0.0014 

ENSG00000198300 5178 PEG3|paternally expressed 3 2.64637 0.0013 

ENSG00000204388 3304 HSPA1B|heat shock 70kDa 
protein 1B 

2.9979 5.00E-05 

ENSG00000214787 643680 MS4A4E|membrane-
spanning 4-domains, 
subfamily A, member 4E 

2.36464 0.001 

ENSG00000225465 RFPL1S| 2.61193 0.00195 

ENSG00000226047 1.04367 0.0009 

ENSG00000227028 100128590 SLC8A1-AS1|SLC8A1 
antisense RNA 1 

2.66729 5.00E-05 

ENSG00000229956 100852410 ZRANB2-AS2|ZRANB2 
antisense RNA 2 (head to 
head) 

1.22918 0.00125 

ENSG00000234506 101927015 LINC01506|long intergenic 
non-protein coding RNA 
1506 

1.10281 5.00E-05 

ENSG00000245573 497258 BDNF-AS|BDNF antisense 
RNA 

1.01595 0.00595 

ENSG00000262097 101927311 |uncharacterized 
LOC101927311 

1.32999 5.00E-05 

ENSG00000279348 1.02381 5.00E-05 



46 

Table 2-4: Complete list of genes downregulated in hMDMs infected with ΔankH 

null mutant compared to WT strain of L. pneumophila.  
ENSEMBL GENE ENTREZ ID GENE SYMBOL|DESCRIPTION log2FC 

(ankh/wild_type
) 

p_value 

ENSG000000050
75 

5439 POLR2J|polymerase (RNA) II (DNA 
directed) polypeptide J, 13.3kDa 

-1.00719 0.0004 

ENSG000000083
82 

84954 MPND|MPN domain containing -1.13737 0.0030
5 

ENSG000000084
41 

4784 NFIX|nuclear factor I/X (CCAAT-
binding transcription factor) 

-1.56187 0.0021
5 

ENSG000000102
95 

25900 IFFO1|intermediate filament 
family orphan 1 

-1.02159 5.00E-
05 

ENSG000000110
28 

9902 MRC2|mannose receptor, C type 2 -1.58459 0.0001 

ENSG000000141
64 

23144 ZC3H3|zinc finger CCCH-type 
containing 3 

-1.16549 5.00E-
05 

ENSG000000152
85 

7454 WAS|Wiskott-Aldrich syndrome -1.02431 5.00E-
05 

ENSG000000217
62 

114879 OSBPL5|oxysterol binding protein-
like 5 

-1.0211 0.0032
5 

ENSG000000231
91 

6050 RNH1|ribonuclease/angiogenin 
inhibitor 1 

-1.21807 5.00E-
05 

ENSG000000257
70 

29781 NCAPH2|non-SMC condensin II 
complex, subunit H2 

-1.01792 0.0008
5 

ENSG000000295
34 

286 ANK1|ankyrin 1, erythrocytic -1.56839 0.0002
5 

ENSG000000305
82 

2896 GRN|granulin -1.10623 5.00E-
05 

ENSG000000370
42 

27175 TUBG2|tubulin, gamma 2 -1.06627 0.001 

ENSG000000508
20 

9564 BCAR1|breast cancer anti-
estrogen resistance 1 

-1.06863 0.0047
5 

ENSG000000511
28 

9454 HOMER3|homer scaffolding 
protein 3 

-1.92266 0.0026 

ENSG000000515
23 

1535 CYBA|cytochrome b-245, alpha 
polypeptide 

-1.24454 5.00E-
05 

ENSG000000619
38 

10188 TNK2|tyrosine kinase, non-
receptor, 2 

-1.22665 0.0003
5 

ENSG000000632
45 

29924 EPN1|epsin 1 -1.40878 5.00E-
05 

ENSG000000638
54 

3029 HAGH|hydroxyacylglutathione 
hydrolase 

-1.02578 0.003 

ENSG000000644
90 

8625 RFXANK|regulatory factor X-
associated ankyrin-containing 
protein 

-1.10454 0.0011
5 

ENSG000000646
87 

10347 ABCA7|ATP-binding cassette, sub-
family A (ABC1), member 7 

-1.16013 0.0030
5 

ENSG000000652
68 

57418 WDR18|WD repeat domain 18 -1.24648 0.0052 

ENSG000000653 9423 NTN1|netrin 1 -1.27328 0.0001
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20 5 

ENSG000000680
01 

8692 HYAL2|hyaluronoglucosaminidase 
2 

-1.02605 0.0037 

ENSG000000704
04 

10272 FSTL3|follistatin-like 3 (secreted 
glycoprotein) 

-1.47082 0.0003
5 

ENSG000000704
13 

9993 DGCR2|DiGeorge syndrome 
critical region gene 2 

-1.08748 0.0010
5 

ENSG000000718
59 

9130 FAM50A|family with sequence 
similarity 50, member A 

-1.03637 0.0007 

ENSG000000718
89 

60343 FAM3A|family with sequence 
similarity 3, member A 

-1.10308 5.00E-
05 

ENSG000000718
94 

29894 CPSF1|cleavage and 
polyadenylation specific factor 1, 
160kDa 

-1.89935 5.00E-
05 

ENSG000000721
10 

87 ACTN1|actinin, alpha 1 -1.02917 5.00E-
05 

ENSG000000727
86 

6793 STK10|serine/threonine kinase 10 -1.09231 5.00E-
05 

ENSG000000741
81 

4854 NOTCH3|notch 3 -1.57732 5.00E-
05 

ENSG000000749
64 

55160 ARHGEF10L|Rho guanine 
nucleotide exchange factor (GEF) 
10-like 

-1.11483 0.0009
5 

ENSG000000756
18 

6624 FSCN1|fascin actin-bundling 
protein 1 

-1.54859 5.00E-
05 

ENSG000000769
24 

56949 XAB2|XPA binding protein 2 -1.45048 5.00E-
05 

ENSG000000774
54 

4034 LRCH4|leucine-rich repeats and 
calponin homology (CH) domain 
containing 4 

-1.18425 5.00E-
05 

ENSG000000782
69 

8871 SYNJ2|synaptojanin 2 -1.03271 0.0051
5 

ENSG000000788
08 

51150 SDF4|stromal cell derived factor 4 -1.34504 5.00E-
05 

ENSG000000794
32 

23152 CIC|capicua transcriptional 
repressor 

-1.26161 0.0007 

ENSG000000805
73 

50509 COL5A3|collagen, type V, alpha 3 -1.26729 5.00E-
05 

ENSG000000838
38 

55663 ZNF446|zinc finger protein 446 -1.70362 0.0043
5 

ENSG000000851
17 

3732 CD82|CD82 molecule -1.09771 5.00E-
05 

ENSG000000882
56 

2767 GNA11|guanine nucleotide 
binding protein (G protein), alpha 
11 (Gq class) 

-1.47458 5.00E-
05 

ENSG000000900
13 

645 BLVRB|biliverdin reductase B -1.05725 5.00E-
05 

ENSG000000953
97 

25861 DFNB31|deafness, autosomal 
recessive 31 

-1.94109 0.0003
5 

ENSG000000998
17 

5434 POLR2E|polymerase (RNA) II (DNA 
directed) polypeptide E, 25kDa 

-1.17485 0.0013
5 
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ENSG000000998
21 

5442 POLRMT|polymerase (RNA) 
mitochondrial (DNA directed) 

-1.29291 0.0033
5 

ENSG000000999
95 

10291 SF3A1|splicing factor 3a, subunit 
1, 120kDa 

-1.15539 0.0006 

ENSG000001000
56 

8220 DGCR14|DiGeorge syndrome 
critical region gene 14 

-1.05868 0.0004
5 

ENSG000001000
75 

6576 SLC25A1|solute carrier family 25 
(mitochondrial carrier; citrate 
transporter), member 1 

-1.07913 5.00E-
05 

ENSG000001000
97 

3956 LGALS1|lectin, galactoside-
binding, soluble, 1 

-1.05694 5.00E-
05 

ENSG000001001
47 

79879 CCDC134|coiled-coil domain 
containing 134 

-1.1867 0.0001
5 

ENSG000001002
41 

6305 SBF1|SET binding factor 1 -1.6413 0.0001
5 

ENSG000001002
58 

91289 LMF2|lipase maturation factor 2 -1.59493 5.00E-
05 

ENSG000001002
92 

3162 HMOX1|heme oxygenase 1 -1.08059 5.00E-
05 

ENSG000001002
99 

410 ARSA|arylsulfatase A -1.05355 0.0006 

ENSG000001003
00 

706 TSPO|translocator protein (18kDa) -1.12915 5.00E-
05 

ENSG000001003
19 

55954 ZMAT5|zinc finger, matrin-type 5 -1.14104 5.00E-
05 

ENSG000001004
17 

5372 PMM1|phosphomannomutase 1 -1.44872 5.00E-
05 

ENSG000001004
25 

23774 BRD1|bromodomain containing 1 -1.0918 0.0017 

ENSG000001004
29 

83933 HDAC10|histone deacetylase 10 -1.30876 5.00E-
05 

ENSG000001009
49 

5875 RABGGTA|Rab 
geranylgeranyltransferase, alpha 
subunit 

-1.06608 5.00E-
05 

ENSG000001009
85 

4318 MMP9|matrix metallopeptidase 9 -1.06531 5.00E-
05 

ENSG000001011
94 

63910 SLC17A9|solute carrier family 17 
(vesicular nucleotide transporter), 
member 9 

-1.14327 5.00E-
05 

ENSG000001013
35 

10398 MYL9|myosin, light chain 9, 
regulatory 

-1.0549 0.0022
5 

ENSG000001014
43 

10406 WFDC2|WAP four-disulfide core 
domain 2 

-1.6624 0.0038 

ENSG000001019
86 

215 ABCD1|ATP-binding cassette, sub-
family D (ALD), member 1 

-1.45046 5.00E-
05 

ENSG000001019
97 

28952 CCDC22|coiled-coil domain 
containing 22 

-1.08562 5.00E-
05 

ENSG000001022
65 

7076 TIMP1|TIMP metallopeptidase 
inhibitor 1 

-1.0606 5.00E-
05 

ENSG000001028
79 

11151 CORO1A|coronin, actin binding 
protein, 1A 

-1.06787 5.00E-
05 
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ENSG000001031
45 

54985 HCFC1R1|host cell factor C1 
regulator 1 (XPO1 dependent) 

-1.00296 0.0002
5 

ENSG000001032
57 

8140 SLC7A5|solute carrier family 7 
(amino acid transporter light 
chain, L system), member 5 

-1.07431 5.00E-
05 

ENSG000001033
35 

9780 PIEZO1|piezo-type 
mechanosensitive ion channel 
component 1 

-1.04014 0.003 

ENSG000001036
53 

1445 CSK|c-src tyrosine kinase -1.20218 5.00E-
05 

ENSG000001043
68 

5327 PLAT|plasminogen activator, 
tissue 

-1.51427 5.00E-
05 

ENSG000001049
07 

55621 TRMT1|tRNA methyltransferase 1 -1.04471 0.0011
5 

ENSG000001049
73 

81857 MED25|mediator complex subunit 
25 

-1.51656 0.0024 

ENSG000001049
76 

6618 SNAPC2|small nuclear RNA 
activating complex, polypeptide 2, 
45kDa 

-1.68231 0.0001
5 

ENSG000001052
04 

9149 DYRK1B|dual-specificity tyrosine-
(Y)-phosphorylation regulated 
kinase 1B 

-1.28731 0.0018 

ENSG000001052
23 

23646 PLD3|phospholipase D family, 
member 3 

-1.04403 5.00E-
05 

ENSG000001052
29 

51588 PIAS4|protein inhibitor of 
activated STAT, 4 

-1.88599 0.0012
5 

ENSG000001053
74 

4818 NKG7|natural killer cell granule 
protein 7 

-1.11691 5.00E-
05 

ENSG000001056
69 

11316 COPE|coatomer protein complex, 
subunit epsilon 

-1.00067 0.0003
5 

ENSG000001057
01 

23770 FKBP8|FK506 binding protein 8, 
38kDa 

-1.50269 5.00E-
05 

ENSG000001057
17 

80714 PBX4|pre-B-cell leukemia 
homeobox 4 

-1.63027 0.0019 

ENSG000001057
23 

2931 GSK3A|glycogen synthase kinase 3 
alpha 

-1.21067 5.00E-
05 

ENSG000001057
32 

64763 ZNF574|zinc finger protein 574 -1.53883 0.0001
5 

ENSG000001060
09 

221927 BRAT1|BRCA1-associated ATM 
activator 1 

-1.35966 0.0044
5 

ENSG000001063
48 

3614 IMPDH1|IMP (inosine 5'-
monophosphate) dehydrogenase 1 

-1.2246 5.00E-
05 

ENSG000001066
83 

3984 LIMK1|LIM domain kinase 1 -1.28683 5.00E-
05 

ENSG000001078
16 

84445 LZTS2|leucine zipper, putative 
tumor suppressor 2 

-1.12868 0.0010
5 

ENSG000001086
39 

9144 SYNGR2|synaptogyrin 2 -1.0749 5.00E-
05 

ENSG000001088
40 

10014 HDAC5|histone deacetylase 5 -1.07427 0.0002
5 

ENSG000001097
36 

10227 MFSD10|major facilitator 
superfamily domain containing 10 

-1.23104 5.00E-
05 
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ENSG000001100
25 

29907 SNX15|sorting nexin 15 -5.02403 0.0016 

ENSG000001100
46 

23130 ATG2A|autophagy related 2A -1.21033 0.0002 

ENSG000001104
46 

51296 SLC15A3|solute carrier family 15 
(oligopeptide transporter), 
member 3 

-1.04048 5.00E-
05 

ENSG000001107
17 

4728 NDUFS8|NADH dehydrogenase 
(ubiquinone) Fe-S protein 8, 23kDa 
(NADH-coenzyme Q reductase) 

-1.04348 5.00E-
05 

ENSG000001109
44 

51561 IL23A|interleukin 23, alpha 
subunit p19 

-1.04283 5.00E-
05 

ENSG000001113
21 

4055 LTBR|lymphotoxin beta receptor 
(TNFR superfamily, member 3) 

-1.05988 5.00E-
05 

ENSG000001116
78 

113246 C12orf57|chromosome 12 open 
reading frame 57 

-1.18795 0.0036 

ENSG000001134
94 

5618 PRLR|prolactin receptor -1.28143 0.0021
5 

ENSG000001136
57 

1809 DPYSL3|dihydropyrimidinase-like 
3 

-1.12821 5.00E-
05 

ENSG000001145
54 

5361 PLXNA1|plexin A1 -1.40661 0.0026
5 

ENSG000001146
26 

80325 ABTB1|ankyrin repeat and BTB 
(POZ) domain containing 1 

-1.08265 0.0018 

ENSG000001150
85 

7535 ZAP70|zeta-chain (TCR) associated 
protein kinase 70kDa 

-2.2362 0.0002
5 

ENSG000001152
86 

374291 NDUFS7|NADH dehydrogenase 
(ubiquinone) Fe-S protein 7, 20kDa 
(NADH-coenzyme Q reductase) 

-1.2702 0.0028
5 

ENSG000001157
18 

5624 PROC|protein C (inactivator of 
coagulation factors Va and VIIIa) 

-1.5442 0.0027 

ENSG000001166
91 

60672 MIIP|migration and invasion 
inhibitory protein 

-1.06346 5.00E-
05 

ENSG000001168
09 

7709 ZBTB17|zinc finger and BTB 
domain containing 17 

-1.2056 5.00E-
05 

ENSG000001179
84 

1509 CTSD|cathepsin D -1.18663 5.00E-
05 

ENSG000001208
99 

2185 PTK2B|protein tyrosine kinase 2 
beta 

-1.15075 5.00E-
05 

ENSG000001209
13 

64236 PDLIM2|PDZ and LIM domain 2 
(mystique) 

-1.7752 5.00E-
05 

ENSG000001209
49 

943 TNFRSF8|tumor necrosis factor 
receptor superfamily, member 8 

-1.03051 5.00E-
05 

ENSG000001210
57 

8165 AKAP1|A kinase (PRKA) anchor 
protein 1 

-1.03472 0.0005
5 

ENSG000001231
43 

5585 PKN1|protein kinase N1 -1.00546 5.00E-
05 

ENSG000001234
53 

1757 SARDH|sarcosine dehydrogenase -1.14408 0.0002 

ENSG000001242
16 

6615 SNAI1|snail family zinc finger 1 -1.78349 0.0019
5 
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ENSG000001250
89 

54436 SH3TC1|SH3 domain and 
tetratricopeptide repeats 1 

-1.0519 0.0001
5 

ENSG000001251
48 

4502 MT2A|metallothionein 2A -1.06199 5.00E-
05 

ENSG000001255
03 

54776 PPP1R12C|protein phosphatase 1, 
regulatory subunit 12C 

-1.29062 5.00E-
05 

ENSG000001255
34 

79144 PPDPF|pancreatic progenitor cell 
differentiation and proliferation 
factor 

-1.42636 5.00E-
05 

ENSG000001256
56 

8192 CLPP|caseinolytic mitochondrial 
matrix peptidase proteolytic 
subunit 

-1.14732 5.00E-
05 

ENSG000001257
26 

970 CD70|CD70 molecule -1.07511 0.0003
5 

ENSG000001258
17 

1059 CENPB|centromere protein B, 
80kDa 

-1.06327 5.00E-
05 

ENSG000001259
12 

56926 NCLN|nicalin -1.60475 5.00E-
05 

ENSG000001260
62 

11070 TMEM115|transmembrane 
protein 115 

-1.19645 5.00E-
05 

ENSG000001262
54 

79171 RBM42|RNA binding motif protein 
42 

-1.67206 5.00E-
05 

ENSG000001263
53 

1236 CCR7|chemokine (C-C motif) 
receptor 7 

-1.03117 5.00E-
05 

ENSG000001264
61 

58506 SCAF1|SR-related CTD-associated 
factor 1 

-1.67049 5.00E-
05 

ENSG000001265
61 

6776 STAT5A|signal transducer and 
activator of transcription 5A 

-1.08881 5.00E-
05 

ENSG000001269
03 

8273 SLC10A3|solute carrier family 10, 
member 3 

-1.01445 5.00E-
05 

ENSG000001269
34 

5605 MAP2K2|mitogen-activated 
protein kinase kinase 2 

-1.03897 5.00E-
05 

ENSG000001276
63 

23030 KDM4B|lysine (K)-specific 
demethylase 4B 

-1.5128 5.00E-
05 

ENSG000001276
66 

148022 TICAM1|toll-like receptor adaptor 
molecule 1 

-1.0486 5.00E-
05 

ENSG000001282
28 

23753 SDF2L1|stromal cell-derived factor 
2-like 1 

-1.65596 5.00E-
05 

ENSG000001282
71 

135 ADORA2A|adenosine A2a 
receptor 

-1.51909 0.0041
5 

ENSG000001283
42 

3976 LIF|leukemia inhibitory factor -1.17852 5.00E-
05 

ENSG000001299
11 

83855 KLF16|Kruppel-like factor 16 -1.04128 5.00E-
05 

ENSG000001299
25 

58986 TMEM8A|transmembrane protein 
8A 

-1.35995 5.00E-
05 

ENSG000001301
65 

84337 ELOF1|ELF1 homolog, elongation 
factor 1 

-1.04415 5.00E-
05 

ENSG000001302
03 

348 APOE|apolipoprotein E -1.35627 5.00E-
05 

ENSG000001302
22 

10912 GADD45G|growth arrest and DNA-
damage-inducible, gamma 

-1.11982 0.0008 
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ENSG000001302
55 

25873 RPL36|ribosomal protein L36 -1.11055 0.0001 

ENSG000001303
13 

25796 PGLS|6-phosphogluconolactonase -1.22736 5.00E-
05 

ENSG000001304
79 

55201 MAP1S|microtubule-associated 
protein 1S 

-1.1206 5.00E-
05 

ENSG000001307
06 

11047 ADRM1|adhesion regulating 
molecule 1 

-1.1761 5.00E-
05 

ENSG000001307
26 

10155 TRIM28|tripartite motif containing 
28 

-1.0238 5.00E-
05 

ENSG000001311
65 

5119 CHMP1A|charged multivesicular 
body protein 1A 

-1.09835 5.00E-
05 

ENSG000001314
59 

9945 GFPT2|glutamine-fructose-6-
phosphate transaminase 2 

-1.10419 5.00E-
05 

ENSG000001316
53 

84231 TRAF7|TNF receptor-associated 
factor 7, E3 ubiquitin protein ligase 

-1.41604 0.0001
5 

ENSG000001316
69 

4814 NINJ1|ninjurin 1 -1.35514 5.00E-
05 

ENSG000001317
59 

5914 RARA|retinoic acid receptor, alpha -1.14887 5.00E-
05 

ENSG000001320
17 

90379 DCAF15|DDB1 and CUL4 
associated factor 15 

-1.20722 0.0003
5 

ENSG000001323
82 

10514 MYBBP1A|MYB binding protein 
(P160) 1a 

-1.00679 0.0008 

ENSG000001330
27 

10400 PEMT|phosphatidylethanolamine 
N-methyltransferase 

-1.50047 5.00E-
05 

ENSG000001330
69 

9911 TMCC2|transmembrane and 
coiled-coil domain family 2 

-1.31481 5.00E-
05 

ENSG000001332
75 

1455 CSNK1G2|casein kinase 1, gamma 
2 

-1.29917 0.0047
5 

ENSG000001350
94 

10993 SDS|serine dehydratase -1.05989 5.00E-
05 

ENSG000001357
23 

29109 FHOD1|formin homology 2 
domain containing 1 

-1.22406 0.0009
5 

ENSG000001362
86 

64005 MYO1G|myosin IG -1.06235 5.00E-
05 

ENSG000001367
17 

274 BIN1|bridging integrator 1 -1.00875 5.00E-
05 

ENSG000001368
77 

2356 FPGS|folylpolyglutamate synthase -1.20062 5.00E-
05 

ENSG000001371
66 

116113 FOXP4|forkhead box P4 -1.45906 0.0004 

ENSG000001372
21 

93643 TJAP1|tight junction associated 
protein 1 (peripheral) 

-1.18844 0.0006
5 

ENSG000001372
66 

63027 SLC22A23|solute carrier family 22, 
member 23 

-1.00819 0.0050
5 

ENSG000001378
18 

6176 RPLP1|ribosomal protein, large, P1 -1.18368 5.00E-
05 

ENSG000001380
80 

11117 EMILIN1|elastin microfibril 
interfacer 1 

-1.52419 5.00E-
05 

ENSG000001395 94 ACVRL1|activin A receptor type II- -1.09297 0.0025 
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67 like 1 

ENSG000001405
48 

374655 ZNF710|zinc finger protein 710 -1.03225 0.0063 

ENSG000001408
54 

10300 KATNB1|katanin p80 (WD repeat 
containing) subunit B 1 

-1.00905 0.0025 

ENSG000001409
39 

8996 NOL3|nucleolar protein 3 
(apoptosis repressor with CARD 
domain) 

-1.33415 0.0001 

ENSG000001415
26 

9123 SLC16A3|solute carrier family 16 
(monocarboxylate transporter), 
member 3 

-1.11006 0.0005
5 

ENSG000001419
85 

6455 SH3GL1|SH3-domain GRB2-like 1 -1.01881 5.00E-
05 

ENSG000001419
94 

56931 DUS3L|dihydrouridine synthase 3-
like 

-1.48655 0.0008
5 

ENSG000001421
86 

57410 SCYL1|SCY1-like, kinase-like 1 -1.14476 5.00E-
05 

ENSG000001425
46 

51070 NOSIP|nitric oxide synthase 
interacting protein 

-1.00975 5.00E-
05 

ENSG000001433
73 

57592 ZNF687|zinc finger protein 687 -1.07338 0.0059 

ENSG000001437
74 

2987 GUK1|guanylate kinase 1 -1.12173 5.00E-
05 

ENSG000001444
76 

57007 ACKR3|atypical chemokine 
receptor 3 

-1.37842 0.0023 

ENSG000001445
79 

58190 CTDSP1|CTD (carboxy-terminal 
domain, RNA polymerase II, 
polypeptide A) small phosphatase 
1 

-1.14305 5.00E-
05 

ENSG000001459
01 

10318 TNIP1|TNFAIP3 interacting protein 
1 

-1.22933 5.00E-
05 

ENSG000001459
36 

3779 KCNMB1|potassium channel 
subfamily M regulatory beta 
subunit 1 

-1.08752 5.00E-
05 

ENSG000001474
43 

9046 DOK2|docking protein 2, 56kDa -1.19973 5.00E-
05 

ENSG000001483
43 

84895 FAM73B|family with sequence 
similarity 73, member B 

-1.53125 0.0006 

ENSG000001497
81 

83706 FERMT3|fermitin family member 3 -1.03321 5.00E-
05 

ENSG000001497
82 

5331 PLCB3|phospholipase C, beta 3 
(phosphatidylinositol-specific) 

-1.09659 5.00E-
05 

ENSG000001499
25 

226 ALDOA|aldolase A, fructose-
bisphosphate 

-1.32281 5.00E-
05 

ENSG000001506
72 

1740 DLG2|discs, large homolog 2 
(Drosophila) 

-1.14705 0.0054 

ENSG000001516
51 

101 ADAM8|ADAM metallopeptidase 
domain 8 

-1.08517 5.00E-
05 

ENSG000001534
43 

124402 UBALD1|UBA-like domain 
containing 1 

-2.02675 0.0038
5 

ENSG000001540 123872 DNAAF1|dynein, axonemal, -1.18584 0.0001 
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99 assembly factor 1 

ENSG000001569
66 

93010 B3GNT7|UDP-GlcNAc:betaGal 
beta-1,3-N-
acetylglucosaminyltransferase 7 

-1.07511 0.0001
5 

ENSG000001573
53 

197258 FUK|fucokinase -1.20746 5.00E-
05 

ENSG000001585
17 

653361 NCF1|neutrophil cytosolic factor 1 -1.18042 5.00E-
05 

ENSG000001589
41 

57805 CCAR2|cell cycle and apoptosis 
regulator 2 

-1.03328 0.0002 

ENSG000001590
69 

54461 FBXW5|F-box and WD repeat 
domain containing 5 

-1.37742 0.0044 

ENSG000001591
66 

3898 LAD1|ladinin 1 -1.50991 0.0036
5 

ENSG000001591
89 

714 C1QC|complement component 1, 
q subcomponent, C chain 

-1.17726 5.00E-
05 

ENSG000001593
14 

201176 ARHGAP27|Rho GTPase activating 
protein 27 

-1.75118 0.0017 

ENSG000001593
63 

23400 ATP13A2|ATPase type 13A2 -1.22485 0.0003
5 

ENSG000001594
96 

266747 RGL4|ral guanine nucleotide 
dissociation stimulator-like 4 

-2.44684 0.0002
5 

ENSG000001602
11 

2539 G6PD|glucose-6-phosphate 
dehydrogenase 

-1.21866 5.00E-
05 

ENSG000001602
85 

4047 LSS|lanosterol synthase (2,3-
oxidosqualene-lanosterol cyclase) 

-1.12374 5.00E-
05 

ENSG000001603
26 

11182 SLC2A6|solute carrier family 2 
(facilitated glucose transporter), 
member 6 

-1.12955 5.00E-
05 

ENSG000001604
04 

27433 TOR2A|torsin family 2, member A -1.62058 5.00E-
05 

ENSG000001604
46 

84885 ZDHHC12|zinc finger, DHHC-type 
containing 12 

-1.41004 5.00E-
05 

ENSG000001607
03 

79671 NLRX1|NLR family member X1 -1.04198 0.0013 

ENSG000001607
89 

4000 LMNA|lamin A/C -1.37469 5.00E-
05 

ENSG000001608
77 

112939 NACC1|nucleus accumbens 
associated 1, BEN and BTB (POZ) 
domain containing 

-1.09164 5.00E-
05 

ENSG000001610
11 

8878 SQSTM1|sequestosome 1 -1.15104 5.00E-
05 

ENSG000001610
16 

6132 RPL8|ribosomal protein L8 -1.01671 5.00E-
05 

ENSG000001616
53 

162417 NAGS|N-acetylglutamate synthase -1.02547 0.0044
5 

ENSG000001621
04 

115 ADCY9|adenylate cyclase 9 -1.14224 0.0039 

ENSG000001623
02 

8986 RPS6KA4|ribosomal protein S6 
kinase, 90kDa, polypeptide 4 

-1.01178 0.0002 

ENSG000001627 93185 IGSF8|immunoglobulin -1.28496 5.00E-
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29 superfamily, member 8 05 

ENSG000001628
97 

83953 FCAMR|Fc receptor, IgA, IgM, high 
affinity 

-1.0373 5.00E-
05 

ENSG000001634
30 

11167 FSTL1|follistatin-like 1 -1.53001 0.0027
5 

ENSG000001637
02 

84818 IL17RC|interleukin 17 receptor C -1.2268 5.00E-
05 

ENSG000001638
70 

131601 TPRA1|transmembrane protein, 
adipocyte asscociated 1 

-1.11974 5.00E-
05 

ENSG000001639
31 

7086 TKT|transketolase -1.00824 5.00E-
05 

ENSG000001648
96 

10922 FASTK|Fas-activated 
serine/threonine kinase 

-1.07824 5.00E-
05 

ENSG000001648
97 

83590 TMUB1|transmembrane and 
ubiquitin-like domain containing 1 

-1.22881 0.0008 

ENSG000001651
78 

654817 NCF1C|neutrophil cytosolic factor 
1C pseudogene 

-1.27805 5.00E-
05 

ENSG000001652
33 

84270 CARD19|chromosome 9 open 
reading frame 89 

-1.44697 5.00E-
05 

ENSG000001658
86 

80019 UBTD1|ubiquitin domain 
containing 1 

-1.08225 5.00E-
05 

ENSG000001661
33 

27079 RPUSD2|RNA pseudouridylate 
synthase domain containing 2 

-1.01157 5.00E-
05 

ENSG000001661
40 

84936 ZFYVE19|zinc finger, FYVE domain 
containing 19 

-1.02447 0.0043
5 

ENSG000001661
65 

1152 CKB|creatine kinase, brain -2.00337 5.00E-
05 

ENSG000001661
89 

79803 HPS6|Hermansky-Pudlak 
syndrome 6 

-1.07737 5.00E-
05 

ENSG000001664
84 

5598 MAPK7|mitogen-activated protein 
kinase 7 

-1.02829 5.00E-
05 

ENSG000001668
16 

197257 LDHD|lactate dehydrogenase D -1.10143 0.0028
5 

ENSG000001668
31 

348093 RBPMS2|RNA binding protein with 
multiple splicing 2 

-1.04779 0.0008
5 

ENSG000001669
25 

81628 TSC22D4|TSC22 domain family, 
member 4 

-1.25566 5.00E-
05 

ENSG000001671
73 

56905 C15orf39|chromosome 15 open 
reading frame 39 

-1.15298 0.0007 

ENSG000001673
02 

146705 ENTHD2|ENTH domain containing 
2 

-1.79226 0.0001 

ENSG000001675
08 

4597 MVD|mevalonate (diphospho) 
decarboxylase 

-1.50744 5.00E-
05 

ENSG000001675
78 

53916 RAB4B|RAB4B, member RAS 
oncogene family 

-1.0446 5.00E-
05 

ENSG000001676
57 

1613 DAPK3|death-associated protein 
kinase 3 

-1.91505 5.00E-
05 

ENSG000001677
03 

124935 SLC43A2|solute carrier family 43 
(amino acid system L transporter), 
member 2 

-1.24864 5.00E-
05 

ENSG000001677 84798 C19orf48|chromosome 19 open -1.0195 0.0056
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47 reading frame 48 5 

ENSG000001677
79 

3489 IGFBP6|insulin-like growth factor 
binding protein 6 

-1.10574 5.00E-
05 

ENSG000001677
97 

10263 CDK2AP2|cyclin-dependent kinase 
2 associated protein 2 

-1.05986 5.00E-
05 

ENSG000001678
95 

147138 TMC8|transmembrane channel-
like 8 

-2.75204 5.00E-
05 

ENSG000001679
62 

90850 ZNF598|zinc finger protein 598 -1.11773 0.0013 

ENSG000001680
56 

4054 LTBP3|latent transforming growth 
factor beta binding protein 3 

-1.12471 0.0055 

ENSG000001680
71 

283234 CCDC88B|coiled-coil domain 
containing 88B 

-1.58332 0.0039
5 

ENSG000001680
96 

124401 ANKS3|ankyrin repeat and sterile 
alpha motif domain containing 3 

-1.20393 0.0039
5 

ENSG000001684
87 

649 BMP1|bone morphogenetic 
protein 1 

-1.11063 0.0003 

ENSG000001685
28 

347735 SERINC2|serine incorporator 2 -1.73007 5.00E-
05 

ENSG000001690
26 

84179 MFSD7|major facilitator 
superfamily domain containing 7 

-1.08125 0.0011 

ENSG000001691
88 

27301 APEX2|APEX nuclease 
(apurinic/apyrimidinic 
endonuclease) 2 

-1.21942 5.00E-
05 

ENSG000001696
92 

10555 AGPAT2|1-acylglycerol-3-
phosphate O-acyltransferase 2 

-1.47395 5.00E-
05 

ENSG000001697
10 

2194 FASN|fatty acid synthase -1.67319 0.0015
5 

ENSG000001697
38 

51181 DCXR|dicarbonyl/L-xylulose 
reductase 

-1.2648 5.00E-
05 

ENSG000001699
76 

83443 SF3B5|splicing factor 3b, subunit 
5, 10kDa 

-1.05208 5.00E-
05 

ENSG000001704
58 

929 CD14|CD14 molecule -1.1104 0.0002 

ENSG000001706
38 

80305 TRABD|TraB domain containing -1.48765 0.0003 

ENSG000001709
06 

4696 NDUFA3|NADH dehydrogenase 
(ubiquinone) 1 alpha subcomplex, 
3, 9kDa 

-1.03021 0.0045
5 

ENSG000001711
05 

3643 INSR|insulin receptor -1.09733 0.002 

ENSG000001712
98 

2548 GAA|glucosidase, alpha; acid -1.31969 5.00E-
05 

ENSG000001721
83 

3669 ISG20|interferon stimulated 
exonuclease gene 20kDa 

-1.3279 0.0035 

ENSG000001723
54 

2783 GNB2|guanine nucleotide binding 
protein (G protein), beta 
polypeptide 2 

-1.24667 5.00E-
05 

ENSG000001723
75 

9854 C2CD2L|C2CD2-like -1.04602 0.0033 

ENSG000001725 1521 CTSW|cathepsin W -1.00814 0.0001
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43 5 

ENSG000001726
63 

80194 TMEM134|transmembrane 
protein 134 

-1.30309 5.00E-
05 

ENSG000001727
24 

6363 CCL19|chemokine (C-C motif) 
ligand 19 

-1.52581 5.00E-
05 

ENSG000001732
64 

56834 GPR137|G protein-coupled 
receptor 137 

-1.33788 5.00E-
05 

ENSG000001733
69 

713 C1QB|complement component 1, 
q subcomponent, B chain 

-1.0098 5.00E-
05 

ENSG000001733
72 

712 C1QA|complement component 1, 
q subcomponent, A chain 

-1.07418 5.00E-
05 

ENSG000001734
57 

26472 PPP1R14B|protein phosphatase 1, 
regulatory (inhibitor) subunit 14B 

-1.07777 5.00E-
05 

ENSG000001735
40 

29925 GMPPB|GDP-mannose 
pyrophosphorylase B 

-1.1117 0.0001
5 

ENSG000001735
46 

1464 CSPG4|chondroitin sulfate 
proteoglycan 4 

-1.1675 5.00E-
05 

ENSG000001747
75 

3265 HRAS|Harvey rat sarcoma viral 
oncogene homolog 

-1.59219 5.00E-
05 

ENSG000001748
86 

126328 NDUFA11|NADH dehydrogenase 
(ubiquinone) 1 alpha subcomplex, 
11, 14.7kDa 

-1.18046 0.0001 

ENSG000001749
38 

26470 SEZ6L2|seizure related 6 homolog 
(mouse)-like 2 

-1.28382 5.00E-
05 

ENSG000001749
39 

253982 ASPHD1|aspartate beta-
hydroxylase domain containing 1 

-1.0931 0.0010
5 

ENSG000001755
73 

83638 C11orf68|chromosome 11 open 
reading frame 68 

-1.06967 5.00E-
05 

ENSG000001757
56 

54998 AURKAIP1|aurora kinase A 
interacting protein 1 

-1.36108 5.00E-
05 

ENSG000001761
01 

8636 SSNA1|Sjogren syndrome nuclear 
autoantigen 1 

-1.53953 5.00E-
05 

ENSG000001761
70 

8877 SPHK1|sphingosine kinase 1 -1.0981 0.0046 

ENSG000001764
54 

254531 LPCAT4|lysophosphatidylcholine 
acyltransferase 4 

-1.31541 0.0005 

ENSG000001769
73 

23625 FAM89B|family with sequence 
similarity 89, member B 

-1.24525 5.00E-
05 

ENSG000001769
78 

29952 DPP7|dipeptidyl-peptidase 7 -1.53086 5.00E-
05 

ENSG000001770
30 

10522 DEAF1|DEAF1 transcription factor -1.01725 0.0049
5 

ENSG000001771
06 

64787 EPS8L2|EPS8-like 2 -1.39058 0.0013 

ENSG000001775
42 

79751 SLC25A22|solute carrier family 25 
(mitochondrial carrier: glutamate), 
member 22 

-1.57688 0.0001
5 

ENSG000001776
00 

6181 RPLP2|ribosomal protein, large, P2 -1.01189 5.00E-
05 

ENSG000001782
09 

5339 PLEC|plectin -1.41348 5.00E-
05 
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ENSG000001786
05 

8225 GTPBP6|GTP binding protein 6 
(putative) 

-1.08428 5.00E-
05 

ENSG000001794
09 

50628 GEMIN4|gem (nuclear organelle) 
associated protein 4 

-1.17819 5.00E-
05 

ENSG000001795
93 

247 ALOX15B|arachidonate 15-
lipoxygenase, type B 

-1.01864 5.00E-
05 

ENSG000001799
22 

147808 ZNF784|zinc finger protein 784 -1.28387 0.0023
5 

ENSG000001804
48 

23526 HMHA1|histocompatibility (minor) 
HA-1 

-1.99385 5.00E-
05 

ENSG000001815
77 

221416 C6orf223|chromosome 6 open 
reading frame 223 

-1.01552 0.0001
5 

ENSG000001820
87 

91304 TMEM259|transmembrane 
protein 259 

-1.03373 5.00E-
05 

ENSG000001824
87 

654816 NCF1B|neutrophil cytosolic factor 
1B pseudogene 

-1.20503 5.00E-
05 

ENSG000001825
04 

79598 CEP97|centrosomal protein 97kDa -2.16027 5.00E-
05 

ENSG000001830
92 

57596 BEGAIN|brain-enriched guanylate 
kinase-associated 

-2.03118 0.0030
5 

ENSG000001835
70 

54039 PCBP3|poly(rC) binding protein 3 -1.32106 0.0008 

ENSG000001836
84 

10189 ALYREF|Aly/REF export factor -1.21359 0.0002 

ENSG000001837
51 

10607 TBL3|transducin (beta)-like 3 -1.49669 5.00E-
05 

ENSG000001842
81 

10078 TSSC4|tumor suppressing 
subtransferable candidate 4 

-1.44619 0.0007
5 

ENSG000001844
89 

11156 PTP4A3|protein tyrosine 
phosphatase type IVA, member 3 

-1.09171 0.0002
5 

ENSG000001847
30 

55911 APOBR|apolipoprotein B receptor -1.1535 5.00E-
05 

ENSG000001848
97 

8971 H1FX|H1 histone family, member 
X 

-1.03817 0.0001 

ENSG000001850
33 

10509 SEMA4B|sema domain, 
immunoglobulin domain (Ig), 
transmembrane domain (TM) and 
short cytoplasmic domain, 
(semaphorin) 4B 

-1.18097 5.00E-
05 

ENSG000001851
87 

59307 SIGIRR|single immunoglobulin and 
toll-interleukin 1 receptor (TIR) 
domain 

-1.21446 0.0011 

ENSG000001852
01 

10581 IFITM2|interferon induced 
transmembrane protein 2 

-1.04698 5.00E-
05 

ENSG000001855
04 

80233 FAAP100|Fanconi anemia core 
complex associated protein 100 

-1.02877 0.0028
5 

ENSG000001855
07 

3665 IRF7|interferon regulatory factor 7 -1.52581 0.0002
5 

ENSG000001856
69 

333929 SNAI3|snail family zinc finger 3 -1.06225 0.0014 

ENSG000001858
03 

79581 SLC52A2|solute carrier family 52 
(riboflavin transporter), member 2 

-1.02906 0.0031
5 
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ENSG000001858
85 

8519 IFITM1|interferon induced 
transmembrane protein 1 

-1.3133 0.0005
5 

ENSG000001860
10 

51079 NDUFA13|NADH dehydrogenase 
(ubiquinone) 1 alpha subcomplex, 
13 

-1.0379 5.00E-
05 

ENSG000001861
74 

283149 BCL9L|B-cell CLL/lymphoma 9-like -1.37879 0.0001 

ENSG000001865
01 

84065 TMEM222|transmembrane 
protein 222 

-1.30675 5.00E-
05 

ENSG000001866
35 

116985 ARAP1|ArfGAP with RhoGAP 
domain, ankyrin repeat and PH 
domain 1 

-1.10892 5.00E-
05 

ENSG000001868
91 

8784 TNFRSF18|tumor necrosis factor 
receptor superfamily, member 18 

-1.226 5.00E-
05 

ENSG000001869
07 

349667 RTN4RL2|reticulon 4 receptor-like 
2 

-1.7492 0.0018
5 

ENSG000001875
31 

51547 SIRT7|sirtuin 7 -1.1814 0.0011
5 

ENSG000001876
08 

9636 ISG15|ISG15 ubiquitin-like 
modifier 

-1.68484 0.0001
5 

ENSG000001876
88 

51393 TRPV2|transient receptor 
potential cation channel, 
subfamily V, member 2 

-1.06984 5.00E-
05 

ENSG000001878
38 

57048 TMEM256-PLSCR3|phospholipid 
scramblase 3 

-1.15105 0.0004
5 

ENSG000001883
72 

7784 ZP3|zona pellucida glycoprotein 3 
(sperm receptor) 

-1.13303 5.00E-
05 

ENSG000001885
66 

27158 NDOR1|NADPH dependent 
diflavin oxidoreductase 1 

-1.12096 0.0023 

ENSG000001889
76 

26155 NOC2L|NOC2-like nucleolar 
associated transcriptional 
repressor 

-1.05362 5.00E-
05 

ENSG000001890
77 

83862 TMEM120A|transmembrane 
protein 120A 

-1.08651 5.00E-
05 

ENSG000001963
65 

9361 LONP1|lon peptidase 1, 
mitochondrial 

-1.0442 5.00E-
05 

ENSG000001964
53 

27153 ZNF777|zinc finger protein 777 -1.06024 5.00E-
05 

ENSG000001964
98 

9612 NCOR2|nuclear receptor 
corepressor 2 

-1.03301 0.0004
5 

ENSG000001965
76 

23654 PLXNB2|plexin B2 -1.37984 0.0005
5 

ENSG000001968
43 

10865 ARID5A|AT rich interactive 
domain 5A (MRF1-like) 

-1.11183 5.00E-
05 

ENSG000001968
78 

3914 LAMB3|laminin, beta 3 -1.08183 0.0001 

ENSG000001969
24 

2316 FLNA|filamin A, alpha -1.22521 5.00E-
05 

ENSG000001971
14 

84619 ZGPAT|zinc finger, CCCH-type with 
G patch domain 

-2.04932 0.0003
5 

ENSG000001971
50 

11194 ABCB8|ATP-binding cassette, sub-
family B (MDR/TAP), member 8 

-1.24739 5.00E-
05 
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ENSG000001972
72 

246778 IL27|interleukin 27 -1.55472 5.00E-
05 

ENSG000001979
03 

85236 HIST1H2BK|histone cluster 1, 
H2bk 

-1.34856 5.00E-
05 

ENSG000001980
26 

63925 ZNF335|zinc finger protein 335 -1.1129 5.00E-
05 

ENSG000001980
55 

2870 GRK6|G protein-coupled receptor 
kinase 6 

-1.15645 5.00E-
05 

ENSG000001985
17 

7975 MAFK|v-maf avian 
musculoaponeurotic fibrosarcoma 
oncogene homolog K 

-1.40139 5.00E-
05 

ENSG000001989
17 

51490 C9orf114|chromosome 9 open 
reading frame 114 

-1.48285 0.001 

ENSG000002054
14 

-1.02484 0.0008
5 

ENSG000002116
49 

IGLV7-46| -16.0296 0.0001 

ENSG000002118
93 

IGHG2| -1.60157 0.0032 

ENSG000002118
99 

IGHM| -1.09468 5.00E-
05 

ENSG000002131
45 

1396 CRIP1|cysteine-rich protein 1 
(intestinal) 

-1.586 5.00E-
05 

ENSG000002136
89 

11277 TREX1|three prime repair 
exonuclease 1 

-1.27944 0.0034
5 

ENSG000002138
53 

2013 EMP2|epithelial membrane 
protein 2 

-1.63523 0.0008
5 

ENSG000002139
23 

1454///1028003
17 

CSNK1E|casein kinase 1, 
epsilon///CSNK1E|LOC400927-
CSNK1E readthrough 

-1.18937 0.0022
5 

ENSG000002140
63 

7106 TSPAN4|tetraspanin 4 -1.36378 0.0004
5 

ENSG000002185
37 

MIF-AS1| -1.59613 0.0005 

ENSG000002219
68 

3995 FADS3|fatty acid desaturase 3 -1.51122 5.00E-
05 

ENSG000002257
83 

440823 MIAT|myocardial infarction 
associated transcript (non-protein 
coding) 

-1.24161 0.0042
5 

ENSG000002263
32 

-1.49849 0.0019
5 

ENSG000002283
00 

55009 C19orf24|chromosome 19 open 
reading frame 24 

-2.10381 0.0063 

ENSG000002309
43 

101927686 |uncharacterized LOC101927686 -1.06553 5.00E-
05 

ENSG000002351
73 

51236 HGH1|HGH1 homolog -1.15194 0.001 

ENSG000002379
89 

101928399 |uncharacterized LOC101928399 -1.12929 0.0001
5 

ENSG000002382
27 

90120 C9orf69|chromosome 9 open 
reading frame 69 

-1.00007 5.00E-
05 
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ENSG000002398
57 

51608 GET4|golgi to ER traffic protein 4 -1.1015 0.0044
5 

ENSG000002419
45 

5822///1027241
59 

PWP2|PWP2 periodic tryptophan 
protein homolog 
(yeast)///PWP2|periodic 
tryptophan protein 2 homolog 

-1.74723 0.0009 

ENSG000002428
02 

9907 AP5Z1|adaptor-related protein 
complex 5, zeta 1 subunit 

-1.48415 5.00E-
05 

ENSG000002431
56 

57553 MICAL3|microtubule associated 
monooxygenase, calponin and LIM 
domain containing 3 

-1.00651 0.0045 

ENSG000002497
80 

-1.07823 0.0002 

ENSG000002544
52 

-1.35845 0.0001 

ENSG000002545
59 

-1.1664 0.0026 

ENSG000002549
86 

10072 DPP3|dipeptidyl-peptidase 3 -1.10415 0.0001
5 

ENSG000002560
07 

ARAP1-AS1| -1.71348 0.004 

ENSG000002571
56 

-1.13237 0.0029 

ENSG000002576
63 

-1.03551 0.0001 

ENSG000002612
36 

23246 BOP1|block of proliferation 1 -1.50606 0.0024 

ENSG000002617
96 

100534599 ISY1-RAB43|ISY1-RAB43 
readthrough 

-1.10893 0.0003
5 

ENSG000002620
49 

-1.24797 0.0060
5 

ENSG000002624
13 

-1.08612 0.0005 

ENSG000002674
36 

-1.09667 0.0007
5 

ENSG000002675
19 

284454 |uncharacterized LOC284454 -1.17642 0.0003 

ENSG000002698
58 

112398 EGLN2|egl-9 family hypoxia-
inducible factor 2 

-1.00968 5.00E-
05 

ENSG000002699
68 

-1.1508 0.0002
5 

ENSG000002729
16 

-1.14253 0.0008 

ENSG000002738
12 

-1.43518 0.0001
5 

ENSG000002750
74 

79873 NUDT18|nudix (nucleoside 
diphosphate linked moiety X)-type 
motif 18 

-1.35046 5.00E-
05 

ENSG000002752
94 

-1.08204 5.00E-
05 
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Table 2-5: Up regulated and down regulated pathway in cells infected with ankH. 

Up regulated 

Pathway 

P value Down regulated 

pathway 

P value 

Development 

positive regulation 

of STK3/4 (Hippo) 

pathway and 

negative regulation 

of YAP/TAZ 

function 

1.338e-9 Transcription, HIF-1 

targets 

2.822e-15 

Transport clathrin 

coated vesicle cycle 

2.291e-9 Immune response, 

IL-3 signaling via 

JAK/STAT, p38, 

JNK, and NFκB 

1.745e-14 

Apoptosis and 

survival, FAS 

signaling cascades 

9.334e-9 Immune response, 

IL-1 signaling 

pathway 

1.270e-11 

Immune response, 

antigen presentation 

by MHC class I: 

cross-presentation 

5.959e-8 Immune response, 

IL-10 signaling 

pathway 

1.397e-11 

Signal transduction, 

JNK pathway 

6.740e-8 Apoptosis and 

survival, anti-

apoptotic 

TNFs/NFκB/Bcl-2 

pathway 

2.725e-11 
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Figure 2-4. Cytokine production in cells infected with WT or ∆ankH strains of L. 

pneumophila. (A-H) HMDMs were infected with either the WT or ∆ankH strains of L. 

pneumophila for 6 hours. Supernatants were collected and centrifuged to remove 

extracellular bacteria and cell debris. Samples were then used for Milliplex assay and 

cytokine concentrations were determined per assay instructions. The results are 

representative of one experiment performed in triplicate. Statistical analysis was 

performed using Student t-test where *, P < 0.05. 
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The crystal Structure of AnkH 

AnkH is one of a few of the ~330 Legionella effectors required for intracellular 

growth within amoebae hosts and human macrophages [192, 210]. To get more insight 

into possible cellular function of AnkH, we have determined its three-dimensional crystal 

structure. AnkH is an α/β fold protein and contains a total of 21 α-helices and seven β-

strands (Fig. 2-5A). AnkH consists of 3 domains: N-terminal ankyrin domain (α1-8, red), 

the middle domain (α10-17 and β3-7, cyan and magenta) and the cap domain (β1-2, α9 

and α18-21, wheat [186, 187]. The N-terminal domain contains ankyrin repeats with four 

helix-turn-helix repeats (α1-α8, residues 1-122) (Fig. 2-5B). The first repeat is somewhat 

distorted and has shorter α-helices. The ARD is followed by a 4-turn-long helix α9 and an 

extended β-hairpin (β1-β2, residues 123-162) leading to the middle domain (Fig. 2-5A). 

This domain (residues 163-361) contains a central 5-stranded antiparallel β-sheet, β3-β7 

and extended by helix α12. The β-sheet is flanked by two layers of two helices (inner 

α11, α16 and outer α10, α17) on one side and two helices α14-α15 on the other side. The 

C-terminal domain (residues 362-461) contains a five-helix bundle (Fig. 2-5A) and packs 

tightly together with α9 and the following β-hairpin forming one domain. The N- and C-

terminal domains pack end to end into a crescent shape (Fig. 2-5A). The middle domain 

forms an independent insertion abated to the side of the ARD that is typically functioning 

as the protein binding surface. The long loops emanating from the ARD, usually involved 

in protein-protein interactions, face the middle domain. 

The inserted middle domain of AnkH has a cysteine protease fold 

To gain insight into possible functions of the middle and cap domains we have 

searched for their structural homologs using the Dali server [244]. The middle (insertion) 
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domain showed structural similarity to several proteins with cysteine protease fold albeit 

with relatively low scores. This cysteine protease-like domain (CPLD) is most similar to 

the outer protein D (XopD, PDB ID: 2OIX) from bacterial plant pathogen Xanthomonas 

campestris pv. Vesicatoria [245-247]  (Fig. 2-5C). It also shows similarity to a domain of 

another Legionella pneumophila effector, RavZ [248, 249]. 

XopD belongs to the ubiquitin-like-specific protease 1 family [250] and is 

classified within Clan CE in the MEROPS database [251], with the catalytic triad is 

arranged in the order of histidine, glutamate/aspartate/asparagine and cysteine. Cysteine 

functions as a nucleophile while histidine serves as a general base and is in turn stabilized 

by glutamic acid/aspartic acid [250]. The structure-based sequence identity between the 

aligned regions of CPLD and XopD is only ~12%, nevertheless three β-strands and two 

α-helices are structurally similar between AnkH and XopD (Fig. 2-5C), with His243, 

Asp258 and Cys324 of AnkH superposed on the catalytic triad of XopD. The histidine 

resides on the N-terminal end of the conserved strand within the protease fold (β4 in 

AnkH, Fig 2-5A). The stabilizing aspartic acid sits at the C-terminal end of the conserved 

antiparallel strand (β5 in AnkH, Fig 2-5A). The cysteine nucleophile is at the end of a 

long loop leading to the penultimate helix of the protease fold (Fig. 2-5A). The 

orientation of these three sidechains in AnkH deviates from the active configuration and a 

small rearrangement of the triad sidechains has to occur to attain the active state (Fig. 2-

5C). The fold of AnkH CPLD was recognized due to very low sequence identity to other 

cysteine protease and is not yet classified in the peptidase database MEROPS [252], 

which already includes several other peptidases from the Legionella species (data not 

shown). 
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Figure 2-5. The crystal structure of AnkH. (A)AnkH consists of 3 domains: N-terminal 

ankyrin domain (α1-8, red), the cysteine proteinase-like domain (α10-17 and β3-7, cyan 

and magenta) and the cap domain (β1-2, α9 and α18-21, wheat). Inset shows the closeup 

of the putative catalytic triad residues H243, D258 and C324. The HIF hydroxylation 

sites (N59 and N92) are located within the N-terminal domain and are shown in a sphere 

representation (blue and red). (B) Primary sequence of ankryin domain.  The length of 

each ankryin repeat was determined using the consensus sequence based on statistical 

analysis on 4,000 ankryin repeat sequence from the PFAM database as proposed by 

Mosavi et al [217].  Highlighted (colored) letters correspond to α-helices for each 

domain. The conserved residues are underlined, and the a-helices are shown as cylinders 

(C) Superposition of AnkH with Xanthomonas XopD C470A mutant. Cartoon diagram of 

superposed AnkH cysteine protease-like domain (residues 163-342, orange) and 
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Xanthomonas XopD C470A mutant (green, PBD ID:20IX, residues 336-515). The three 

β-strands and two α-helices that form the core of the domains and overlap well are 

marked. Inset shows the closeup of the catalytic triad. In AnkH it consists of His243, 

Asp258 and Cys324 and in XopD these residues are His409, Asp429 and Cys470.  

Structure-function of AnkH 

The structure of AnkH suggested that it binds cellular target(s) through the β-

hairpin loops within ARD domain and has a predicted proteolytic activity (Fig. 2-5A). To 

better understand the roles of the AnkH domains and to validate its structure, a total of 12 

residues were chosen for single substitutions based on their location within a specific 

domain (Table 2-6 and Fig. 2-5). The substituted residues included residues on the 

extended β-hairpin loops of ARs (Fig. 2-1 & Fig.2-5B), the putative cysteine protease 

catalytic triad and two asparagine residues (N59 and N92) that have been reported to 

undergo asparagine hydroxylation, which impacts protein-protein interactions [179]. 

Figure 2-6A illustrates each of the ARDs. Figure 2-6B & C illustrate the location of each 

substitution made within the ARDs. The mutations had no detectable effect on stability of 

the variant proteins in L. pneumophila (Fig. 2-6D) or during transient transfection (Fig. 

6E). 

HEK293T cells were co-transfected with LARP7 and either native AnkH or 

AnkH containing substitutions within the β-hairpin loops of the ARDs then immune-

precipitated. Our data showed that substitutions of residues within the ARD3, specifically 

Asn97, diminished LARP7-AnkH interaction (Fig. 2-6F). In contrast, substitution of 30, 

31, 33, 63, 64, or 96 resulted in enhanced binding between LARP7 and AnkH (Fig 2-6F). 
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Table 2-6: Point mutants generated in different domains of AnkH. ANK1,2,3 

designate ankyrin repeat 1,2,3.  
ANK1 ANK2 ANK3 Asn Hydrox Cysteine-protease 

E30T V63Y R96A N59A H243D 

Y31S T64E N97V N92A D258A 

F33A V63Y/T64E R96A/N97V N59A/N92A C324S 

E30T/Y31S/F33A H243D/D258A/C324S 
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Figure 2-6. Substitutions in ARDs alters binding efficiency of AnkH and LARP7. 

(A) The ankryin domain of AnkH shown as ribbon diagram.  The ankyrin domain 

consists of four ankryin repeats: N-cap, repeat 1, repeat2 and C-cap. (B&C) Crystal 

structure of AnkH illustrating different locations within the ARDs where residues were 

substituted. (D) Bacterial lysates from WT L. pneumophila and each of the AnkH 

substitution mutant strains were tested by immunoblot for AnkH to determine protein 

stability. Cell lysates were immunoblotted to detect the presence of AnkH using goat α-

AnkH (53, 56). Equal number of bacteria were lysed for each strain. (E) HEK293T cells 

were transiently transfected with 3xFLAG-AnkH or the indicated 3xFLAG-AnkH 

substitution mutants and c-myc-LARP7. Densitometry was determined with actin ratio. 

(F) Cell lysates were immunoprecipitated with anti-FLAG antibody, and the co-IP was 

immunoblotted to detect the presence of AnkH and LARP7. Densitometry of the blots 

was determined as LARP7 to AnkH ratio. Results are representative of two independent 

experiments. 

In order to determine if the substitutions affected the function of AnkH in 

intracellular replication of L. pneumophila, hMDMs were infected with the WT strain, 

the ∆ankH null mutant, ∆ankH mutant complemented with the WT allele of ankH or the 

substitution variants of AnkH. We first determined if the mutated constructs were 

translocated by the T4SS. One residue from each ANK domain (E30T, V63Y, N97V) 

was selected for mutation (Figure 2-7A&B). Translocation was determined using Cya-

reporter fusions and measurement of cAMP which showed that all three representative 

mutant constructs were translocated (Figure 2-7A) and produced at equivalent 

concentrations by L. pneumophila (Figure 2-7B). Our data showed that substitution in the 

β-hairpin loop of ARD3, which led to a reduced binding of LARP7 to AnkH, resulted in 

reduced intracellular growth of L. pneumophila (Fig. 2-8). All other residues selected for 

substitutions were partially required for various degrees for AnkH function in 

intracellular replication, since introducing these mutations resulted in a various degrees of 

partial replication defect compared to the WT strain (Student t-test p < 0.05) (Fig. 2-8) 

(Table 2-6). Therefore, we conclude that the ARD, in particular Asn97, cysteine-like 
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Figure 2-7. Translocation of AnkH ANK domain substitution mutants. (A) U937 

cells were infected with WT or dotA strains of L. pneumophila harboring Cya contructs 

of full-length AnkH, RalF, AnkHE30T, AnkHV63Y, AnkHN97V at an MOI of 10 for 1 

hour. Cells were lysed and cAMP levels were measured. (B) Bacterial strains used for 

cAMP assay were used to confirm protein production by L. pneumophila. 1X106 bacteria 

were lysed and used for western blot analysis. The results are representative of 

experiment performed in triplicate. Statistical analysis was performed using Student t-test 

where *, P < 0.05. 
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Figure 2-8. Structure-function of AnkH in intracellular growth of L. pneumophila 

within hMDMs. Intracellular growth kinetics were determined for WT strain, the ankH 

mutant, the ankH mutant complemented with the WT allele (c.ankH), or with single and 

multiple substitution variants as indicated. All strains in all the panels were tested using 

the same WT control. (A) Mutations within first ANK repeat, (B) second ANK repeat, 

(C) third ANK repeat, (D) asparagine hydroxylation motif and (E) cystine like protease 

pocket. The results are representative of three independent experiments performed in 

triplicate. Statistical analysis was performed using Student t-test where *, P < 0.05. 
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protease domain, and the asparagine hydroxylation motifs are all required for the function 

of AnkH in intracellular proliferation of L. pneumophila within hMDMs. 

Materials and Methods 

Bacterial strains and cell culture 

L. pneumophila strain AA100/130b (BAA-74; American Type Culture Collection) and 

the isogeneic mutant’s dotA, ankH, and complemented ankH mutants were grown on 

BCYE agar plates for 3 days at 37°C prior to use in infections, as described previously 

[54]. E. coli strain DH5-α was used for cloning purposes. Human monocyte-derived 

macrophages (hMDMs) were cultured using RPMI1640 media (Gibco), as described 

previously [150]. Maintenance of HEK293T cells was performed as previously described 

[150]. All methods were carried out and approved in accordance to the University of 

Louisville Institutional Review Board guidelines and blood donors gave informed 

consent as approved by the University of Louisville Institutional Review Board (IRB # 

04.0358). 

DNA manipulations 

DNA manipulations and restriction enzyme digestions were performed using standard 

procedures [150, 253]. Restriction enzymes and T4 DNA ligase were purchased from 

NEB (Madison, WI). Plasmid preparations were performed with the PureLink HiPure 

Plasmid Maxiprep kit (Invitrogen). Purification of DNA fragments from agarose gels for 

subcloning was carried out with the QIAquick gel purification kit (Qiagen Inc, Valencia, 
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CA). Generation of AnkH substitution mutants was achieved using primers listed in 

Table 2-7 and described previously [150, 186]. 

Table 2-7. Primers used in this study. 
ankHE30T F CATATGGTTTTACTCCCCTCATAG 

ankHE30T R TATCGATATCATCCAAAGATTCCC 

ankHY31S F CTGGTTTTACTCCCCTCATAGAGT 

ankHY31S R ATTCATCGATATCATCCAA 

ankHF33A F CTACTCCCCTCATAGAGTGTGCCA 

ankHF33A R CACCATATTCATCGATATCA 

ankHV63Y F ACACAGGACGCACTCCATTACATT 

ankHV63Y R AGTCTGGCTTGTTGATATCCACTT 

ankHT64E F AAGGACGCACTCCATTACATTGGG 

ankHT64E R CGACGTCTGGCTTGTTGATA 

ankHR96A F CTAATGGTCTTTGTGTATTGGTTT 

ankHR96A R CAGTGTAGGCATTAGGATCAGCGC 

ankHN97V F TTGGTCTTTGTGTATTGGTTTATC 

ankHN97V R CACGAGTGTAGGCATTAGGA 

ankHN59A F CAAGCCAGACGTCACAGGACGC 

ankHN59A R CGATATCCACTTTTCGAGCAATTAA 

ankHN92A F TTGCCTACACTCGTAATGGTCTT 

ankHN59A R CAGGATCAGCGCCGTAGGTTAA 

ankHH243D F AATGCCTTATGCTTTGTC 

ankHH243D R GCCACGACTCGCCGCAGG 

ankHD258A F CCAGGGGTGAAAATAGCTTACAAG 

ankHH243D R CAATTTTTGCCCACCACTGGTGAT 

ankHC324S F AGTTCGTGGGCTAATGTG 

ankHC324S R ATTTCCACTAATTTGAGA 

*All primers are 5’-phosphorylated. Orientation: F, forward; R, reverse

Translocation Assay 

Legionella pneumophila strains AA100-Ralf-Cya, ∆dotA-RalF-Cya, AA100-AnkH-Cya, 

∆dotA-RalF-Cya, AA100-AnkHE30T-Cya, AA100-AnkHV63Y-Cya, and AA100-

AnkHN97V-Cya were grown for on BCYE for 3 days at 37°C prior to infection. U937 cells 

were plated in 12 well plates at a concentration of 2 X 106 in triplicates and infected with 

L. pneumophila at an MOI of 10 for 1 hour. Cells were lysed using HCl + 0.1% Triton-X. 
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Levels of cAMP in cell lysates was analyzed using Direct cAMP ELISA (Enzo Life 

Sciences) kit per instructions. 

Transfection of HEK293T cell 

HEK293T cells were grown to ~70% confluent and plated onto poly-L-lysine-treated 24 

well plates. Following 24 h of incubation, HEK293T cell monolayers were transfected 

with ~2 µg of plasmid DNA/well by using polyethylenimine (Polysciences) and 

OptiMem (Gibco) for 24 h, as described previously [89, 186]. The c-myc-LARP7 

plasmid was a gift from B. Matija Peterlin, University of California, San Francisco. 

Confocal laser scanning microscopy 

Processing of transfected cells for confocal microscopy was performed as we described 

previously. Briefly, monolayers were permeabilized and fixed using 100% methanol held 

at -20°C for 5 min, and then blocked and labeled with mouse-anti-FLAG (1/200 dilution, 

Sigma, in 3% BSA-PBS), and rabbit-anti-Myc (1/200 dilution, ProteinTech, in 3% BSA-

PBS). Cells were counter-labelled with Alexa-Fluor 488 anti-mouse antibody (1/4000 

dilution, Invitrogen, 3% BSA-PBS), Alexa-Fluor 555 anti-rabbit antibody (1/4000 

dilution, Invitrogen) and DAPI to stain the nuclei. Monolayers were examined by 

confocal microscopy. A total of 100 cells for each replicate were counted for presence or 

absence of localization. 

Intracellular Replication 

The wild type strain and the isogenic mutants, dotA and ankH, and the complemented 

ankH mutants were grown on BCYE for 3 days at 37°C prior to infection and used to 

infect hMDMs. A total of 1 X 105 host cells (hMDMs) per well were plated in 96 well 
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plates and infected with L. pneumophila at an MOI of 10 for 1 h and then treated for 1 h 

with gentamicin to kill remaining extracellular bacteria. Over a 24 h time course, the host 

cells were lysed with sterile water and L. pneumophila CFUs were determined by plating 

serial dilutions onto BCYE agar. Experiments were performed in triplicate. 

Yeast two-hybrid (Y2H) analysis 

The Matchmaker Gold Two-Hybrid system (Clontech) was used to screen host proteins 

that interact with the AnkH protein per manufactures instructions. Full length AnkH 

coding sequence was amplified, sequenced and cloned into the pGBKT7 bait vector 

(Clontech) and transformed into the AH109 yeast strain (Clontech). A normalized 

universal human cDNA library in pGADT7 was purchased (Clontech) to use as potential 

prey targets. The library and bait containing AH109 were mated and resulting colonies 

were screened per manufactures instructions. Plasmids from positive clones were isolated 

using yeast lysis buffer and glass beads. Isolated prey plasmid and bait plasmid were used 

to co-transform the AH109 yeast strain. Transformants were selected by growing the 

yeast on SD medium lacking His, Leu and Trp (SD-His/-Leu/-Trp) (Clontech). Positive 

colonies were then transferred to SD-Ade/-His/-Leu/-Trp plates containing 5-bromo-4-

chloro-3-indoxyl-α-D-galactopyranoside (X-α-gal) (GoldBio). Blue colonies were 

selected for plasmid isolation. Isolated plasmids were then sequenced to determine the 

human genes. 

In vivo Co-immunoprecipitation 

HEK293T cells were transfected with 3XFLAG-AnkH, BAP, and c-myc-LARP7 for 24 h 

and collected in lysis buffer, as described previously [177, 254]. FLAG-tagged and myc-
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tagged proteins were immunoprecipitated by using anti-FLAG M2 magnetic beads 

(Sigma) or SureBeads Protein G Magnetic Beads (BioRad) crosslinked with anti-myc 

antibody (ProteinTech). 

Antibodies and western blot analysis 

Legionella pneumophila strains were lysed using B-PER (Thermo Scientific) and heated 

at 99°C for 5 minutes in sample buffer. 1 X 106 bacteria were loaded per lane and 

separated by 10.4 to 15% SDS-PAGE (BioRad), and transferred onto a polyvinylidene 

difluoride (PVDF) (BioRad) membrane, as described previously [254] 

Immunoprecipitated proteins were heated at 99°C for 5 minutes in sample buffer, 

separated by 10.4 to 15% SDS-PAGE (BioRad), and transferred onto a polyvinylidene 

difluoride (PVDF) (BioRad) membrane, as described previously [254]. Anti-Flag 

(Sigma) used at 1:1000 dilution, anti-myc (60003-2-Ig) (ProteinTech) used at 1:1000 

were incubated overnight in 8% milk at 4°C overnight. Anti-LaminB (13435) (Cell 

Signaling) was used at 1:1000 dilution. Anti-HEXIM1 (15676-1-AP), anti-LARP7 

(17067-1-AP) and anti-MePCE (14917-1-AP) were purchased from ProteinTech and 

used at a 1:500 dilution. Anti-CDK9 (sc-13130) was purchased from Santa Cruz and used 

at a dilution of 1:200. Anti-CyclinT1 (sc-271348) was purchased from Santa Cruz and 

used at a dilution of 1:100. Goat Anti-AnkH antiserum was produced at Cocalico 

Biologics and was used at a dilution of 1:100 [186, 187].Cya-hybrids were detected using 

monoclonal M-45 antibody at a dilution of 1:50 [53]. 
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RNA Isolation, Reverse transcription and Real-Time PCR 

Total RNA was extracted using Trizol reagent (Invitrogen). cDNA synthesis was 

performed with 1 μg of total RNA using iScriptTM cDNA Synthesis kit (Bio-Rad) 

according to the manufacturer’s instructions. Endogenous mRNA levels were measured 

by real-time PCR analysis based on SYBR Green detection (Fermentas) with the Bio-Rad 

MiniOpticon real-time PCR system. 

RNA Seq 

Libraries were prepared using the TruSeq Stranded mRNA LT Sample prep kit Set A or 

Set B with poly-A enrichment (Illumina). One microgram of sample (in a volume of 

50µl) were treated with RNA purification beads and denatured for 5 minutes at 65°C. 

Then the supernatant was discarded, and the beads were washed with bead wash buffer. 

Captured polyadenylated RNA was eluted using Elution buffer at 80°C for 2 min. mRNA 

is further purified in a second bead clean-up, as well as fragmented and primed during 

elution by adding 19.5µg of Elute, Prime, Fragment High Mix to the beads and 

incubating the samples for 8 minutes at 94°C. After fragmentation, 17µl of supernatant is 

removed from the beads and we proceeded immediately to synthesize first strand cDNA. 

Following the protocol, 8µl of First Strand Synthesis Mix Act D and SuperScript II mix 

(Illumina) was added to each sample and heated on a thermocycler using preprogramed 

thermal conditions. Once the reaction finished and reached 4°C, we immediately 

proceeded for second strand cDNA synthesis. 

Diluted end repair control and Second Strand Marking Mix were added, mixed well and 

incubated in a pre-heated thermocycler at 16°C for one hour. The DNA was purified 
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using Agencourt AMPure XP Beads (Beckman). Finally, samples were eluted with 

resuspension buffer and 15µl of elute was collected and stored at -20°C. 

A-Tailing control and A-Tailing mix were added to the purified samples and the samples 

were incubated on the preprogrammed thermal cycler. Once the incubation is done, we 

proceeded immediately to ligate adapters. Diluted ligation control, Ligation Mix and 

barcodes were added and incubated in a pre-heated thermocycler at 30°C for 10 minutes. 

Stop Ligation Buffer was immediately added to each sample and mixed well. Then the 

ligated samples were purified using Agencourt AMPure XP Beads. We eluted with 50µl 

of resuspension buffer and the elute was again purified for a second time using Agencourt 

AMPure XP Beads. Afterwards, the final elution, consisting of 20µl of the elute was 

collected and used for DNA enrichment. Samples were barcoded with Illumina TruSeq 

Adapters as listed Table 2-8. A complete list of the barcode sequences can be obtained 

from the Illumina support site (http://support.illumina.com/dam/illumina-

support/documentation/chemistry_documentation/experiment-design/illumnia-adapter-

sequences_1000000002694-01.pdf). 

Table 2-8: Sample and Barcode Information 
No. Sample-BMDM Barcodes Used 

1 Control_1 2 

2 Control_2 4 

3 Control_3 5 

4 Wildtype_1 6 

5 Wildtype_2 7 

6 Wildtype_3 12 

10 ankH_1 16 

11 ankH_2 18 

12 ankH_3 19 

http://support.illumina.com/dam/illumina-support/documentation/chemistry_documentation/experiment-design/illumnia-adapter-sequences_1000000002694-01.pdf
http://support.illumina.com/dam/illumina-support/documentation/chemistry_documentation/experiment-design/illumnia-adapter-sequences_1000000002694-01.pdf
http://support.illumina.com/dam/illumina-support/documentation/chemistry_documentation/experiment-design/illumnia-adapter-sequences_1000000002694-01.pdf
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PCR Primer Cocktail Mix and PCR Master Mix were added to the samples and incubated 

on a preprogrammed thermal cycler. Then the samples were purified using Agencourt 

AMPure XP Beads. Finally, 30µl of eluted library was collected and stored -20°C. 

Libraries were validated by quality where size, purity, and semi quantitation was 

performed on an Agilent Bioanalyzer using the Agilent DNA 1000 Kit. The final 

fragment size for all the samples was approximately 300bp which is expected according 

to the protocol. Libraries were also validated by quantity. Sequencing library quantitation 

was performed by qPCR using he KAPA library Quantitation Kit (KAPA Biosystems) 

for Illumina Platforms. The standard curve method was used for quantitation using 1-5 

DNA standards that came with the kit. 

Ten microliters of sample was transferred from the wells to a new MIDI plate. We then 

normalized the concentration of the libraries to 10nM using Tris-HCl 10mM, pH 8.5 with 

0.1% Tween 20. Five microliters of each sample was then transferred to be pooled into a 

new LowBind 1.5ml micro centrifuge tube for a total volume of 60µl pooled 10nM 

library. Then, 4nM dilution was made from the 10nM pooled library by diluted with Tris-

HCl 10mM, pH 8.5 with 0.1% Tween 20. 

A total volume of 1.3ml of 1.8pM denatured library is needed for sequencing using v2 

kit. Pooled 4nM library was denatured by mixing with diluted NaOH and incubated at 

room temperature for 5 minutes. Two hundred millimolar Tris HVl, pH 7.0 was then 

added. The reaction mixture was diluted to 20pM using a pre-chilled Hybridization 

buffer. Twenty picomolar denatured library was further diluted to 1.8pM using the same 

Hybridization buffer. Before loading onto the reagent cartridge, 1.3 µl of denatured 20pM 
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Phix control was added to the 1299µl of denatured 1.8pM library to a total volume of 1.3 

ml for the sequencing run. 

Sequencing was performed on the University of Louisville Center for Genetics and 

Molecular Medicines (CGeMM) Illumina NextSeq 500 using the NextSeq 500/550 1x75 

cycle High Output Kit v2. 

Milliplex Assay 

Human monocyte derived macrophages were plated at a concentration of 2X106 in 12 

well plates. Cells were infected with either WT or ∆ankH strain of L. pneumophila for 6 

hours at an MOI of 10. Cell supernatants were collected and used for assay. Milliplex 

assays (Millipore) were performed according to the manufacturer’s instruction. Standards 

or culture supernatant samples were mixed with antibody-bound magnetic beads, and 

incubated overnight at 4 °C. Beads were washed and then incubated with the biotinylated 

detection antibody for one hour at room temperature. The beads were incubated with 

phycoerythrin-labeled streptavidin for thirty minutes at room temperature and the median 

fluorescent intensities were quantified with a Bio-plex 200 analyzer and analyzed with 

Bio-plex Manager 6.0 software. All samples were measured in duplicate. 

RNAi Knockdown 

Human LARP7 siRNA Lentivector against four LARP7 target sequences and scrambled 

siRNA GFP Lentivector were used with pLEnti-P2A, pLenti-P2B and Lentifectin to 

produce lentiviral particles per manufactures protocol (Applied Biological Materials, 

Inc). Lentiviral particles were mixed with complete RPMI (Corning) containing 8 µg/ml 

https://www.sciencedirect.com/topics/medicine-and-dentistry/streptavidin
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polybrene (Milipore). Virus and media mixture was added to wells at 50 µL mixture per 

1 mL of cells and incubated for 24 h. 

Cloning ankH and protein expression 

The ankH gene (Uniprot: Q5ZT65) from Legionella pneumophila strain Philadelphia 1 

was cloned into vector pMCSG7, a derivative of vector pET-21a adapted for ligation-

independent cloning (PMID: 18988021). This plasmid was then transformed into BL21 

(DE3). The expressed protein contained a TEV-cleavable 6X-histidine tag at the N-

terminus. For large-scale expression, a 15 mL overnight culture in LB was inoculated 

into 1 L of terrific broth medium (Bio Basic Inc. Markham, Ontario). The inoculated 

culture was grown at 37oC and was induced with 1 mM isopropyl β-D-1-

thiogalactopyranoside when OD600 reached 0.6 and the temperature reduced to 18oC for 

overnight growth. The cells were harvested by centrifugation at rpm of 9,000 x g for 15 

min. 

For expression of the Se-methionine derivative, the cell pellet from 100 mL of overnight 

culture grown in LB media was inoculated into 1 L of M9 minimal media. After shaking 

at 37oC until OD600 reached 0.6, a mixture of L-amino acids (100 mg of lysine, 

phenylalanine, and threonine; 50 mg of isoleucine, leucine, and valine) and 60 mg of Se-

methionine were added to the culture. Protein expression was induced with by adding 1 

mM of Isopropyl β-D-1-thiogalactopyranoside after 15 minutes. The induced culture 

grew overnight at 18oC and the cells were harvested by centrifugation at rpm of 9,000 x g 

for 15 min. 
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Protein purification 

The cell pellet was re-suspended in lysis buffer (50 mM Tris-HCl buffer pH 8.0, 10% 

glycerol, and 0.1% Triton X). The cells were lysed in a cell disruptor (Constant Systems 

Ltd). The cell debris was removed by centrifugation at rpm of 31,000 x g for 30 min. The 

resulting supernatant was applied to a 3 mL TALON cobalt metal-affinity column 

(Clontech). The column was washed with 5 column volumes of standard buffer (20 mM 

Tris pH 8.0 and 50 mM NaCl). A step gradient containing 100 mM and 200 mM 

imidazole in standard buffer was used to elute the His-tagged protein. Fractions 

containing AnkH were pooled and loaded on a Superdex 200 10/300 GL column (GE 

Healthcare) equilibrated with crystallization buffer (15 mM Tris-HCl pH 8.0 and 100 

mM NaCl). AnkH-containing fractions were pooled and concentrated to 5 mg/mL in a 

Millipore centrifugal filter with a molecular weight cut-off of 10,000 Da for-

crystallization trials. The concentration was measured using the Nanodrop UV 

Spectrophotometer (Themo Scientific) using extinction coefficient of 70,250 for AnkH 

calculated by the ProtParam [255]. 

Protein crystallization and data collection 

Initial crystals were obtained by screening and optimized using the 24-well plate format. 

The best crystals were obtained by the hanging-drop method by mixing 1 μL of protein 

solution and 1 μL of reservoir solution containing 1.0 M ammonium tartrate dibasic, pH 

7.0. The drop was incubated over 0.5 mL reservoir solution. The crystals were 

cryoprotected in solution containing 70% of reservoir solution and 30% glycerol. Crystals 

were flash cooled in liquid nitrogen and diffraction data collected at the 08ID and 08BM 
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beamlines at the Canadian Light Source. Data were processed and scaled with XDS. The 

same procedure was followed for the Se-methionine labeled derivative. 

Structure determination 

The native and SeMet dataset were indexed, integrated and scaled using Program 

HKL3000 [256]. Experimental phases were obtained by single-wavelength anomalous 

dispersion (SAD) method and the structure was solved using Program HKL3000. The 

auto-built model from HKL3000 was ~90% complete and the remaining 10% of the 

molecule was built manually using program Coot (PMID: 20383002). The refinement 

was done using program suite Phenix [257]. The model contains residues 1-461 and was 

refined to Rwork=0.172 and Rfree=0.210. The geometry was validated with the program 

MolProbity [258]. The pertinent details of data collection and refinement are listed in 

Table 2-9. The coordinates and structure factors were deposited with the Protein Data 

Bank with the code 6MCA. Crystal structure was modeled using Chimera software 

(UCSF) and structure similarity to other peptidases was determined using peptidase 

database MEROPS [252]. 

Table 2-9. Data collection and refinement 
SeMet AnkH Native AnkH 

Data collection statistics 

Space group P65 2 2 P65 2 2 

a,b,c  (Å), γ (º) 100.3, 100.3, 266.6, 120 102.1, 102.1, 266.0, 120 

Wavelength (Å)      0.9788 0.9795 

Resolution (Å) 50-2.9 (2.95-2.90) 51.1-2.45 (2.49-2.45) 

Total Reflections    930045 643977 

Unique reflections  18541 30933 
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Rmeas 0.117 (0.882) 0.082 (0.855) 

Completeness (%) 96.8 (94.7) 97.3 (94.4) 

Redundancy 50.2 (49.8) 20.8 (21.3) 

I/σ(I)      49.3 (6.0) 48.1 (6.1) 

Wilson B (Å2) 47.0 32.4 

Refinement statistics 

Rcryst d / Rfree e  (%) 0.172 / 0.210 

Rmsd on bonds (Å) 0.004 

Rmsd on angles (º) 0.601 

     Favored (%) 98.25 

     Allowed (%) 1.75 

PDB code 6MCA 

Statistical analysis 

All experiments were performed at least three independent biological repeats, and the 

data shown are representatives of one experiment. To analyze for statistically significant 

differences between three sets of data, the two-tailed Student’s t-test was used, and the p-

value was obtained. 

Data Availability 
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CHAPTER 3: 

DISCUSSION 
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An important step for the survival and replication of intracellular pathogens after 

infection of a host cell is to create an environment that supports the pathogen life cycle. 

Establishment of this environment is commonly accomplished through effector proteins 

[137, 138]. Legionella is a unique genus in that it codes for roughly 18,000 effectors 

proteins, many of which contain eukaryotic like protein domains and motifs. Among the 

18,000 effector proteins, AnkH is the only effector conserved among all Legionella 

species, as well as other pathogens that harbor the Dot/Icm secretion system [137, 138].  

While many L. pneumophila effectors are dispensable for intracellular growth of the 

pathogen in macrophages [156, 210, 259, 260], the AnkH effector plays an important role 

in intracellular growth of L. pneumophila within amoeba hosts and within macrophages 

[186, 187].  In addition, the high conservation of AnkH among many pathogenic obligate 

and facultative intracellular species of bacteria [137, 138] suggests it has a role in 

modulating an evolutionarily conserved eukaryotic process exploited by various obligate 

and facultative intracellular pathogens that translocate the AnkH effector by the Dot/Icm 

secretion system. Blast searches [261] with the nucleotide sequence of AnkH shows that 

in addition to various Legionella species homologous proteins are also found in 

Gammaproteobacteria species, Coxiella species, Candidatus berkiella, Rickettsia species, 

Aquicella, and Legionella micdadei [259]. 

AnkH is one of the many L. pneumophila effectors that contain eukaryotic like 

protein domains. AnkH contains ankyrin repeat domains (ARD) which are the most 

commonly found eukaryotic like protein domains found among Legionella effectors. The 

ARDs are capable of binding to multiple protein partners. Due to this possibility, it is 

likely that AnkH has multiple host interacting partners. We confirmed the host LARP7 is 
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an interacting partner for AnkH in HEK293T cells. LARP7 is a component of the 7SK 

snRNP complex which controls pausing of RNA polymerase II at the initiation of 

transcriptional elongation (see model in Fig. 3-1) [227-229]. Formation of the 7SK 

snRNP core complex (7SK, LARP7 and MePCE) enables recruitment of the P-TEFb and 

HEXIM1/2 to the complex [228, 231, 234-237]. Binding and sequestration of P-TEFb 

within the 7SK snRNP complex results in inhibition of its kinase activity and continued 

pause in Pol II transcription elongation [230, 233, 238, 239]. Various stimuli trigger the 

release of P-TEFb from the 7SK snRNP complex, leading to activation of its kinase 

activity, which is responsible for phosphorylating RNA pol II. This phosphorylation 

event ends the paused state of RNA pol II leading to productive transcriptional elongation 

[240, 241]. While LARP7 immunoprecipitates with AnkH, other components of the 7SK 

snRNP complex were not able to consistently be immunoprecipitated with AnkH, 

indicating that AnkH does not interact with a fully formed and functional 7SK snRNP 

complex. 

The cellular localization of LARP7 corresponds to its function. Transcription 

takes place in the nucleus of cells and that is where LARP7 and the 7SK snRNP complex 

are found. Pathogenic effectors that modulate host transcription machinery are limited 

and the manipulation of the host 7SK snRNP complex via LARP7-AnkH interaction 

identifies a novel effector mechanism for host transcription control during infection. 

However, it is not known whether the interaction between AnkH and LARP7 and 

potentially other host targets has evolved during interaction of L. penumophila with 

various protist hosts in the aquatic environment to modulate amoeba hosts-specific gene 

transcription [137, 138, 210]. LARP7 is conserved in both human cells and amoeba. 
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Therefore, it is highly possible that some of the transcriptional activity impacted by the 

interaction of AnkH with LARP7 and other host targets in human macrophages may 

simply be an evolutionary accident [137, 138, 210]. Since knockdown of LARP7 results 

in a significant decrease in the intracellular replication of both WT and ∆ankH null 

mutant of L. pneumophila, it is likely that the AnkH-LARP7 interaction promotes 

transcription of genes involved in permissiveness to L. pneumophila in evolutionarily 

distant hosts. It was unexpected that LARP7 knockdown caused a significant decrease in 

intracellular replication of ∆ankH mutant. This could be explained by the hypothesis that 

AnkH does not interact with all LARP7 available within a host cell, which could create a 

balance between pause of transcription elongation and relief of the pause in elongation 

that creates a favorable environment for L. pneumophila replication. When AnkH is 

deleted and LARP7 is knocked down there is no longer a transcriptional balance. This 

may result in the decrease in replication as the result of unchecked transcription in hose 

cells leading to the alteration of many processes involved in permissiveness of the host 

cell to L. pneumophila. 
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Figure 3-1. Working Model of AnkH-LARP7 Interaction. In un-infected cells or 

during ΔankH mutant infection of HEK293T cells, formation of the 7SK snRNP begins 

when the 5’ methyl capping enzyme (MePCE) and LARP7 are recruited to the 7SK 

snRNA forming the core of the 7SK snRNP. After core formation, the HEXIM 1/2 

dimers as well as the P-TEFb (Cdk9 & CyclinT1) kinase are recruited to complete the 

7SK snRNP complex, which prevents transcription elongation by holding RNA 

Polymerase II in a paused state. During infection with WT L. pneumophila, AnkH is 

trafficked to the nucleus where it interacts with a portion of available LARP7 in the cell. 

The interaction between AnkH and LARP7 results in a partial inhibition of the 7SK 

snRNP complex function leading to enhanced transcriptional elongation by blocking the 

recruitment of HEXIM1/2 and P-TEFb. The remaining LARP7 present in the cell 

(fraction that does not interact with AnkH) is available to interact with other components 

of the 7SK snRNP complex to pause transcription elongation by preventing P-TEFb from 

phosphorylating RNA Polymerase 2 keeping the polymerase in a paused state. This 

balance between the pause and relief of the pause in transcriptional elongation results in 
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transcriptional reprogramming within host cell that enhance permissiveness to L. 

pneumophila infection. There are likely other unidentified substrates of AnkH that could 

aid in this process or could act independently of the interaction with LARP7. The effect 

on amoeba host transcription by AnkH maybe different from human macrophages. 

Our data indicate LARP7-AnkH interaction impedes 7SKsnRNP complex 

formation leading to transcriptional elongation of certain genes by Pol II resulting in host 

global transcriptional reprogramming. Translocation of AnkH into the host cell results in 

up regulation of pathways regulating transcription and immune responses in the host cell.  

However, in the absence of AnkH there is an upregulation in pathways involved in 

vesicular trafficking, autophagy and apoptosis. Due to the up regulation in immune 

response pathways, a series of cytokine levels were measured in response to infection. 

Ten cytokines levels were measured but only 8 were at at detectable levels. The multiplex 

data showed that of the cytokines tested, IL-1α was the only one that had levels that were 

significantly higher in cells infected with the ∆ankH compared to the cells infected with 

the WT strain. IL-1α was one of the cytokines identified as differentially regulated in the 

absence of AnkH and these multiplex data support those findings. These observations 

support our finding for the role of AnkH-LARP7 interaction in modulating function of 

the 7SK snRNP complex in human macrophages but the effect of AnkH on host global 

transcription is likely impacted by interaction of AnkH with other host targets.  

Although AnkH had previously been studied, little was known about the crystal 

structure. The crystal structure revealed that AnkH contains four ARDs, two of which 

contain an asparagine hydroxylation motif located on the outer surface of the ARD 

domain. The crystal structure also revealed a cysteine-like protease pocket which had 
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previously not been detected based on secondary structure predictions. The ARDs are 

involved in protein-protein interactions by acting as a scaffold for proteins to bind. ARD-

containing proteins can typically bind to one or more targets [54, 181]. The ARD 

domains contain multiple ankyrin repeats that form crescent-like structures and contact 

their binding partners on the concave side that is formed from the inner short helices and 

the long β-hairpin/loop regions connecting the ankyrin repeats [182]. Several residues on 

the putative target binding side of AnkH ARD that are located on the tips of the inter-

repeat loops are required for the function of AnkH in intracellular replication of L. 

pneumophila. These sidechains are exposed to the solvent and aside from Tyr31 and 

Asn97, are not in contact with the cysteine protease-like domain. Therefore, mutation of 

these residues likely disrupts the ability of AnkH to interact with LARP7 or other specific 

host targets. Data has shown that residues within the β hairpin loops of the ARDs are 

involved in binding to substrates. Our data are consistent with these findings as we have 

shown that substitution in β hairpin loops of the ARD3, particularly at residue 97, results 

in reduced binding of AnkH to LARP7, indicating that this loop likely is the loop that is 

interacting with the LARP7 component of the 7SK snRNP complex. Not only do these 

mutations affect binding of AnkH and LARP7, but the residues within the ARDs also 

resulted in a defect in intracellular replication within human macrophages similar to the 

∆ankH indicating that each repeat is required for the function of AnkH. 

We have previously shown that AnkH is hydroxylated at N59 [179]. We have also 

shown that the host FIH asparagine hydroxylase localizes to the LCV and is involved in 

hydroxylating another L. pneumophila effector, AnkB [179]. Asparagine hydroxylation 

of AnkB is also required for the function of the AnkB effector in intracellular replication 
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of L. pneumophila [179]. The asparagine hydroxylation motif is commonly found in 

ARDs and serve as target sequences for the FIH asparagine hydroxylase [262, 263], 

which is responsible for hydroxylating an asparagine residue within this motif [179]. This 

hydroxylation can act as a molecular switch for protein-protein interactions by either 

inhibiting or strengthening the interaction [263-265]. The N59 and N92 residues of AnkH 

are located at the beginning of the loop connecting two neighboring ARDs. Mutation of 

either of these residues results in a significant decrease in intracellular replication of 

L.pneumophila, indicating that the asparagine hydroxylation motifs are important for the 

function of AnkH in the intracellular replication. A possible explanation for the role of 

this modification is provided by the structure of the ankyrin domain of the mouse notch 1 

with this modification (PDB ID: 2QC9) [266]. The FIH-hydroxylated asparagine is 

located at a sharp bend of the backbone and hydrogen bonds through the added hydroxyl 

with the aspartic acid sidechain two residues back and located at the other corner of the 

bend. It has been suggested that this additional hydrogen bond might help to stabilize the 

loop in the ARD [266]. Equivalent aspartic acids are found in AnkH at positions 57 and 

90, two back from the asparagines. Therefore, a similar possibility of stabilization of the 

inter-ARD loops has to be considered for AnkH as a means to strengthen the interaction 

with its cellular target.  

The crystal structure also revealed a cysteine-like protease domain. The function 

of this domain is currently unknown. Our data show that the predicted protease catalytic 

triad is essential for the function of AnkH, but we were not able to detect protease 

activity in vitro for AnkH purified from E. coli (unpublished data) or cleavage of the 

interacting partner LARP7. We speculate that the lack of a detectable protease activity in 
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vitro is likely due to the closed nature of the catalytic pocket of purified AnkH, 

suggesting a requirement of its binding to a substrate in vivo to potentially open the 

pocket for catalysis. In most cases, homologs of AnkH contain all domains and in some 

cases the C-terminal domain is partially or fully missing. All these homologs conserve 

the His-Asp-Cys catalytic triad residues, which are embedded in conserved patterns: 

rGHa, D/NRg and GNCSWANV that is preserved down to ~30% sequence identity with 

AnkH Cysteine-like protease domain. This would indicate that the cysteine-like protease 

domain is important for the function of AnkH since it is conserved in AnkH homologs. 

In summary, AnkH is targeted to the nucleus where it interacts with LARP7 and 

likely other host targets, leading to reprograming of host transcription to promote 

intracellular bacterial growth. This is mediated, at least in part, by the effect of AnkH-

LARP7 interaction and abolishment of interaction of LARP7 with critical subunits of the 

7SK snRNP complex essential for its negative transcriptional elongation, leading to host 

global transcriptional reprogramming. The conservation of AnkH in intracellular 

pathogens harboring the Dot/Icm T4SS and its involvement in a conserved pathway 

supports AnkH-LARP7 interaction and its partial effect on reprogramming global host 

transcription, which is likely impacted by interaction of AnkH with other host targets.  It 

is most likely the AnkH-dependent host transcriptional reprogramming to have unique 

consequences in various protist hosts compared to human macrophages. The crystal 

structure of AnkH shows it contains an ARD with four ankyrin repeats containing two 

asparagine hydroxylation motifs, a cysteine protease-like domain and a C-terminal 

domain of unknown function.  Critical residues in the ARD and the cysteine protease-like 
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domains identified from the structure are shown to be required for AnkH-LARP7 

interaction and function of AnkH in intracellular replication.  
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CHAPTER 4: 

CONCLUSIONS AND FUTURE DIRECTIONS 
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No human proteins had previously been identified as interacting partners for 

AnkH. In addition, no pathogenic factor has ever been shown to interact with a host 

transcriptional complex. We show that the human LARP7 protein is an interacting 

partner of AnkH. LARP7 is a component of a transcription regulatory complex, the 7SK 

snRNP. After identifying LARP7 as an AnkH interacting partner we wanted to determine 

if other components of the 7SK snRNP complex were associated with AnkH. We were 

not able to detect other components of the 7SK snRNP complex during 

immunoprecipitation. Native protein levels were measured during immunoprecipitation 

of AnkH, so these proteins may not occur in high abundance which would make them 

harder to detect. One way we could further test if there were any interactions between the 

complex and AnkH would be to over express the different complex components and 

perform co-immunoprecipitation to determine if they are capable of interacting. It would 

also be beneficial to show that the interaction of AnkH and LARP7 is occurring during 

infection conditions and not just during ectopic expression of AnkH. An antibody 

suitable for detecting AnkH via immunofluorescence does not currently exist so it would 

need to be made in order to perform immunofluorescence during infection. 

We show that AnkH has a subcellular localization to both the nucleus and the 

cytoplasm of transfected cells. AnkH does not contain a known nuclear localization 

signal (NLS) so the method by which it is being localized to the nucleus remains 

unknown. Through better immunofluorescence, with both more tags and using an AnkH 

specific antibody, it could more definitely be shown that AnkH localizes to the cell 

nucleus. The localization could also be tested in the presence of LARP7 knock down to 

determine if that alters the cellular localization of AnkH. There are multiple different 
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classes of NLS. It is possible that AnkH harbors a modified signal sequence that aids in 

transport to the nucleus of cells. There may also be an uncharacterized NLS located 

within AnkH which is what is responsible for localization. AnkH may complex with a 

host factor harboring an NLS, which would enable its nuclear localization. 

Knockdown of LARP7 resulted in a significant defect in intracellular replication. 

We hypothesize that this is a result of the shutdown of transcriptional regulation within 

the host cell which creates an environment that negatively affects bacterial proliferation. 

It is possible that during infection AnkH interacts with a portion of the pool of LARP7 

present within the host cell. This would leave room for partial transcriptional regulation 

through the 7SK snRNP complex. We hypothesize that a favorable environment for L. 

pneumophila is achieved by creating a balance between functional and non-functional 

7SK snRNP transcriptional regulation through the LARP7-AnkH interaction. This theory 

could be tested using varying methods. One way to test this would be to determine the 

stability of the 7SK snRNA during infection, since LARP7 is required for formation of 

the complex and the 7SK snRNA is degraded when not part of the 7SK snRNP complex. 

This could be achieved by using RT-PCR to measure the amount of 7SK snRNA present 

during infection compared to uninfected cells or by using northern blots to test the 

stability of the 7SK snRNA. RNA-FISH could also be used to visualize 7SK snRNP 

location and concentration as well. To test if the 7SK snRNP complex is functioning, P-

TEFb is responsible for phosphorylating RNA pol 2 but when it is sequestered in the 7SK 

snRNP complex it is not capable of performing its kinase activity. As a result, measuring 

the phosphorylation of RNA pol 2 would be an indicator of P-TEFb function which could 

show whether the 7SK snRNP complex is properly functioning. To test partial shutdown 
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of transcription as a result of AnkH the total RNA from infected cells could be compared 

to the total RNA from uninfected cells to quantitate transcription. Radiolabeled 

nucleotides could also be used to determine transcription levels by measuring their 

integration in mRNA. Another method could be to knockdown LARP7 and perform 

RNASeq. The 7SK snRNP complex does not function in the absence of LARP7 and 

comparing the transcriptome of RNAi treated cells to the transcriptome of infected cells 

could aid in determining if infection with L. pneumophila is indeed causing a partial 

shutdown in transcription. 

The crystal structure of AnkH revealed that AnkH contains four ankyrin domains, 

a cysteine-like protease domain, two asparagine hydroxylation motifs and a CAP domain. 

Through point mutation of specific residues within the ANK domains, asparagine 

hydroxylation motif and the cysteine-like protease domain, we determined that all are 

important for the function of AnkH because mutation resulted in a decrease in 

intracellular proliferation. We also show that the ANK domains are required for AnkH-

LARP7 interaction through co-immunoprecipitation of the point mutations and LARP7. 

Asn97, in particular, is likely important due to the observation that less LARP7 was able 

to be pulled down when this residue was mutated based on the amount of AnkH also 

present. It is also possible that loops 1 and/or 2 play a role in the interaction of AnkH and 

LARP7 as well. The effect the asparagine hydroxylation sites and the cysteine-like 

protease domain on the interaction between LARP7 and AnkH is unknown. This could be 

tested by performing co-immunoprecipitation of the AnkH Asn hydroxylation and 

cysteine-like protease domain mutants with LARP7. The ARD mutants would also need 

to be tested with other confirmed interacting partners to determine which loops are 
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responsible for the interaction between AnkH and its host targets. Another way the 

substitution mutants could be tested for their effect on AnkH interactions would be to 

utilize the yeast 2-hybrid system. The prey proteins have already been determined. The 

substitution mutants would have to be created in the AnkH bait construct and then used 

with the prey targets for yeast mating. If a mutation does alter AnkH binding to a target, 

then we would see results indicative of no interaction using this system. 

The function of AnkH during infection of different protozoa hosts has not been 

elucidated. Further characterization of the host target and function of AnkH in amoeba 

would determine whether the function of AnkH is host specific and whether the response 

seen in human macrophages is an accidental response to an amoeba-adapted effector. 

Amoeba contain a LARP7 homolog. Therefore, the LARP7-AnkH interaction may also 

occur in amoeba but the affected cellular pathways in amoeba may be different from 

human macrophages. One way to test this would be to perform RNASeq on infected 

amoebae and compare the results to the human macrophage transcriptome results. This 

would help identify which pathways are affected in each host and to determine where the 

differences are. Similar pathways affected could be pursed further as they would likely be 

more indicative of the true function of AnkH. 

While we have some answers as to the function of AnkH, it is still unclear how 

AnkH enables the survival and robust intracellular replication of L. pneumophila within 

target host cells. In order to more fully answer this question, the genes identified by 

RNASeq as being differentially regulated in the absence of AnkH and numerous 

pathways were identified by this screen, each one gives more insight into the function of 

AnkH and each would need to be further explored to determine how AnkH is altering 
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these pathways.  Determining what other proteins identified in the yeast 2-hybrid screen 

will aid in answering this question since each will likely act on parts of different 

pathways. 
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