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ABSTRACT 

CHARACTERIZATION OF THE IMPACT OF PRENATAL CIGARETTE SMOKE EXPOSURE ON 

AGE- AND SEX-SPECIFIC SIRT1-MEDIATED HEPATIC MOLECULAR PHENOTYPE IN 

C57BL/6 MICE 

Kendall Stocke 

December 2, 2019 

In the U.S., 7.2% of women still report having smoked at some point during pregnancy 

despite known risks to fetal health.  Prenatal cigarette smoke exposure (CSE) in children puts 

them at risk for low birth weight, premature birth, and other adverse impacts on developmental 

and postnatal health.  Children subjected to prenatal CSE have a higher risk of adulthood 

metabolic disease predicted by the Barker Hypothesis.  The hepatic molecular phenotype 

associated with this risk is unknown.  This dissertation characterizes the prenatal CSE-induced 

hepatic molecular phenotype during three key life stages. 

 We used a murine model of prenatal CSE utilizing a Teague TE-10C cigarette smoking 

apparatus that induces low birth weight with catch-up growth.  This model was used in a 

preliminary study to observe the hepatic metabolic phenotype of prenatal (gestational day 6-18) 

CSE offspring during adulthood in conjunction with a high-fat diet (HFD) or control low-fat diet 

(CD) feeding for three months.  The hepatic molecular phenotype was characterized by the 

expression of SIRT1, a Class III deacetylase NAD+ sensor, and associated genes and proteins.  

Female CSE offspring maintained on a HFD exhibited exacerbated weight gain and body fat 

accumulation while male CSE offspring exhibited decreased SIRT1-related protein expression.   

Follow up studies subjected offspring to prenatal (GD1-18) CSE and measured their 

hepatic molecular phenotype at the neonatal and post-weaning periods.  Male CSE offspring at 

1.5 weeks of age exhibited signs of elevated SIRT1 signaling independent of the main SIRT1 

regulatory loop.  Female CSE 1.5-week old offspring exhibited signs of delayed functional liver 
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ontogeny via depressed expression of Sirt1, related enzymes, and serum glucose levels.  

Weaned fed male CSE offspring exhibited mixed expression in SIRT1-regulatory pathways.  

Fasted male CSE offspring exhibited signs of an exacerbated fasting response via increased 

SIRT1-related gluconeogenic mRNA expression.  Fed female CSE offspring exhibited an 

exacerbated fed response and untimely gluconeogenic mRNA expression.  Fasted female CSE 

offspring exhibited signs of an exacerbated fasting response via SIRT1-related mRNA and protein 

expression and untimely lipogenic mRNA expression.  This work attempted to extend the Barker 

Hypothesis by characterizing the hepatic molecular phenotype at key life stages in offspring 

subjected to prenatal CSE. 
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CHAPTER I:  INTRODUCTION 

 

Direct Cigarette Smoke Exposure 

 The prevalence of smoking in the U.S. population remains a significant public health issue 

despite campaigns to minimize or eliminate this behavior.  The 2016 smoking prevalence among 

U.S. adults 18 years or older was 15.5%, with the rate being unequal between men (17.5%) and 

women (13.5%) [1].  The smoking prevalence among age groups varies with the highest being at 

18.0% in middle-aged individuals (45-64 years), followed by 17.6% in adults (25-44 years), 13.1% 

in young adults (18-24 years), and 8.8% in the elderly (65 years or older) [1].  Alaskan 

Natives/Native Americans smoke at nearly double the rate of White or Black individuals (31.8%, 

16.6%, and 16.5% respectively) [1].  The smoking prevalence decreased with higher levels of 

educational attainment [1].  Of those individuals who held a graduate degree, 4.5% were smokers 

[1].  The prevalence of smoking in people with a high school degree was 19.7%, while it was 40.6% 

for those who received a GED [1].  This difference in smoking prevalence between equivalent 

academic achievements suggests there was some other underlying factor that educational 

attainment alone did not fully capture.  The prevalence of smoking in people below the poverty line 

was 56.5% higher than in individuals at or above the poverty line [1].  The prevalence of smoking 

in self-reported disabled adults was 21.2% versus 14.4% in non-disabled people [1].  Smoking 

prevalence was higher for people who exhibited serious psychological distress as rated on the 

Kessler Scale (35.8%) as compared to individuals who scored low on this clinical measure (14.7%) 

[1].  It is evident that the prevalence of smoking is not evenly distributed in the U.S. population 

because certain demographic groups are more likely to engage in this health-adverse behavior. 

 Smoking occurred at a significant rate in the U.S. in 2008 in both high school (8.1%) [2] 

and middle school (1.8%) [2], although it was not as common as in adults (13.7%) [3].  The rates 

of smoking any tobacco product in high school and middle school students have declined since 



2 

 

2014-2015 [2].  However, there has been a tremendous resurgence in the rate of using any tobacco 

product between 2017-2018 in high school students (from 19.6% to 27.1%) and middle school 

students (from 5.6% to 7.2%) [2].  The prevalence of smoking e-cigarettes or vaping has gone 

down overall from 2014 to 2018 (from 3.7% to 3.2%, respectively), although it is projected to 

increase in the future [4].  This upward trend in the prevalence of smoking e-cigarettes or vaping 

behaviors is likely due to increased numbers of young adults (18-24 years old) engaging in these 

behaviors [4].  E-cigarette use is particularly concerning in high school students, in which it has 

increased from 2011 to 2018 (from 1.5% to 20.8%, respectively) [5].  Rates of e-cigarette usage 

has also increased in middle school students from 2011 to 2018 (from 0.6% to 4.9%, respectively) 

[5].  It is evident that the previously declining rates of smoking in adolescents are exhibiting a 

resurgence due to increasing rates of e-cigarette smoking or vaping behaviors that will undoubtedly 

contribute to future health problems.  

 Smoking is still responsible for numerous deaths in the U.S. population.  For the period 

spanning 2010-2014, approximately 638,500 deaths from lung cancer in the U.S. were attributed 

to smoking (818,500 deaths if including all cancers) [6].  Between the years 2010-2014, an 

additional 803,000 deaths from cardiovascular and metabolic disease in the U.S. were attributed 

to smoking and 565,500 deaths from pulmonary diseases [6].    In 2014, 448,865 U.S. adults aged 

35 years or older died due to smoking-related causes [7].  The percent attributable fraction of deaths 

due to smoking in the same age group of U.S. adults in 2014 was highest in Kentucky (22.1%) 

followed by Arkansas (21.5%), Nevada (21.3%), Tennessee (21.1%), West Virginia (20.6%), 

Oklahoma (20.2%), and Missouri (20.1%) [7].  The relative risk of death from various diseases in 

adults 55-64 years old was exacerbated due to smoking [6].  For lung cancer, the relative risk of 

death for smokers versus non-smokers was 19.03 for men and 18.95 for women [6].  The relative 

risk of smokers versus non-smokers of dying due to COPD was 84.76 for men and 22.58 for women 

[6].  The relative risk for male and female smokers versus non-smokers dying from stroke was 2.07 

and 3.27, respectively [6].  The relative risk of dying from coronary heart disease in male smokers 

versus non-smokers was 2.99, while the relative risk in female smokers versus non-smokers was 

3.25 [6].  The risk of death due to other heart disease was 2.50  and 1.49 times higher in male and 
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female smokers vs non-smokers, respectively [6].   Smoking caused a clear majority of deaths from 

lung cancer and COPD [6], which was unsurprising due to smoking being smoking the primary 

cause of COPD [6].  Smoking increased the risk of several cancers including lung, liver and 

colorectal cancer [6].  A report on the 2015 Global Burden of Disease Study found that 11.5% of 

global deaths were attributable to smoking [8].  A more recent report found that in 2016, smoking-

attributable deaths from 1990 to 2016 increased by 20.1% worldwide [9].  This same report also 

found that smoking was the second and sixth leading risk factor for deaths in men and women, 

respectively [9].  Despite ongoing efforts to curb this health-adverse behavior in the U.S. and 

beyond, it is evident that smoking continues to exert a heavy death toll.  

 Smoking is a significant risk factor for the development of type 2 diabetes.  According to a 

2007 meta-analysis utilizing 25 cohort studies, there was a higher risk for Type 2 diabetes in heavy 

smokers compared to light or former smokers [10].  A more recent meta-analysis in 2015 utilizing 

88 prospective studies found that the relative risk for Type 2 diabetes current smokers compared 

to non-smokers was 1.37 [11].  This same meta-analysis found this increase in risk for Type 2 

diabetes was dose-dependent with the relative risk being highest in heavy smokers (1.57) followed 

by moderate (1.34) and light smokers (1.21) [11].  A meta-analysis published in 2017 utilizing 22 

studies found that the pooled relative risk of developing Type 2 diabetes was 1.38 in current 

smokers versus non-smokers and 1.19 for former smokers versus non-smokers [12].  That same 

meta-analysis found that smoking-attributable cases of Type 2 diabetes in men and women were 

18.8% and 5.4%, respectively [12].  A prospective cohort study published in 2010 following Korean 

adults 30-95 years old found that the risk for outpatient treatment for diabetes was 1.55 times higher 

for current smokers (20 cigarettes per day or more) compared to non-smokers [13].  That 

prospective cohort study also found that the effect of smoking on outpatient diabetes treatment risk 

was lower in women compared to men [13].  Considering that the CDC found diabetes in the U.S. 

was the seventh leading cause of deaths in 2015 and lead to $245 billion in medical expenses in 

2012 [14], it is evident that smoking has tremendous potential to negatively impact public health. 

Smoking has several adverse reproductive effects such as but not limited to decreased 

sperm quality [15, 16] and decreased probability of getting pregnant or achieving a live birth [17].  
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A cross-sectional study published in 2015 found that women who actively smoked had increased 

odds for spontaneous abortion (1.16 times higher), stillbirths (1.44 times higher), and ectopic 

pregnancies (1.43) [18].  In a meta-analysis in 2014 utilizing 98 studies, the risk of miscarriage in 

mothers who actively smoked during pregnancy was 1.32 times higher compared to non-smokers 

[19].  A meta-analysis published in 2016 utilizing 142 studies found that the risk of either stillbirth 

or neonatal death was 1.33 times higher for mothers who were active smokers versus non-smokers 

[20].  A case-control study using Cameroonian women found that smoking increased the odds of 

ectopic pregnancy by 2.68 fold. [21].  Impacts of cigarette smoke exposure on the fetus and infants 

are discussed in the section on secondhand cigarette smoke exposure.  It is evident that aiding 

women in abstaining from smoking is critical to preventing adverse reproductive health outcomes. 

 Smoking has a substantial cost not just on health, but economically as well.  Smoking 

comprised 8.7% of aggregated annual healthcare spending in U.S. by the year 2010 [22].  

Approximately two-thirds of this cost was being paid by the public through Medicaid, Medicare, and 

other governmental programs [22].  It was found in a 2018 report that a positive return on 

investment of 78.4% on Medicaid plans after four years and 30.6% on Medicare plans after three 

years could be generated by utilizing the recommended smoking cessation prescription coverage 

given by the Affordable Care Act [23].  It is evident that minimizing or eliminating smoking not only 

has the potential to alleviate public health burdens, but also to recoup financial loses in combating 

smoking-attributable disease. 

 

Secondhand Cigarette Smoke Exposure 

Secondhand cigarette smoke exposure has a significant effect on health outcomes.  

Between 2010-2014, secondhand smoke in the U.S. was attributable to 206,420 deaths [6].  One 

study found that secondhand smoke exposure increased the hazard ratio of dying from 

cardiovascular disease (1.38), coronary heart disease (1.31), and any circulatory disease (1.28) 

[24].  A positive dose-response relationship was found between secondhand smoke and death from 

circulatory disease [24].  It was found that people who lived with a partner who smoked more than 

30 cigarettes each day were associated with a hazard ratio of 2.94 for circulatory disease-related 
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death [24].  A pooled analysis performed by the International Lung Cancer Consortium utilizing 18 

case-control studies demonstrated that the odds of developing any lung cancer from being exposed 

to any amount of secondhand smoke was 1.31 times higher than never being exposed [25]. 

Notably, secondhand smoke is associated with 2.11 times higher odds of developing small cell 

carcinoma compared to non-small cell carcinoma [25].  A meta-analysis utilizing 24 studies 

demonstrated a higher relative risk due to secondhand smoke exposure for developing COPD 

(1.66), stroke (1.35), and ischemic heart disease (1.27) [26].  It is evident that not only do smokers 

present a clear danger to their own health by engaging in cigarette smoking, but they also endanger 

the health of others.  It is clearly in the interest of improving public health to provide assistance and 

encouragement in aiding smoking cessation efforts. 

There are several reproductive health outcomes related to secondhand smoke.  A cross-

sectional analysis found that non-smoking women who were exposed to secondhand smoke had 

higher odds for spontaneous abortion (1.17 times higher), stillbirths (1.55 times higher), and ectopic 

pregnancies (1.61) [18].   In a meta-analysis in 2014 utilizing 98 studies, the risk of miscarriage in 

mothers who actively smoked during pregnancy was 1.11 times higher compared to non-smokers 

[19].  A study published in 2017 found that non-smoking women who lived with at least two smokers 

had 1.25 higher odds of experiencing pregnancy loss [27].  It is evident that in order to ensure 

optimal reproductive outcomes, it is essential to continue informing smokers that their behavior not 

only impacts their own health but also the health of others around them. 

A primary outcome of cigarette smoke exposure during pregnancy is intrauterine growth 

retardation, which presents itself as low birth weight [28, 29].  It has been found that prenatal 

cigarette smoke exposure was associated with increased diagnoses of attention deficit 

hyperactivity disorder in children [30].  A meta-analysis conducted in 2011 using 172 studies found 

that in utero cigarette smoke exposure increased the rate of congenital disabilities including 

orofacial clefts, congenital heart defects, gastroschisis, craniosynostosis, clubfoot, anorectal 

atresia, musculoskeletal defects, hernias, and undescended testes [31].  It has been found that 

exposure to cigarette smoke in utero doubled the risk of Sudden Infant Death Syndrome in infants 

[32].  The Ottawa Prenatal Prospective Study Cohort has shown that male children exposed to 
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prenatal cigarette smoke have an earlier onset of puberty as measured by the age at which the 

voice differentiates and the age of onset of shaving [33].  A prospective cohort study found that 

female children exposed to cigarette smoke in utero exhibited earlier age of menarche that was 

exacerbated the more cigarettes smoked per day by their mother [34].  It is without question that 

failure to prevent expectant mothers from engaging in cigarette smoking results in adverse health 

consequences for their children. 

It has been found that mouse models of prenatal CSE exhibit low birth weight [35-41], 

decreased crown-rump length [41] as well as decreased somite number [42].  Low birth weight has 

also been documented in rat models of prenatal CSE [43].  Animal models have found alterations 

in behavioral development such as reference memory, spatial learning, and decreased anxiety [44].  

Mice subjected to in utero cigarette smoke exposure exhibited enhanced airway hyperreactivity, 

inflammation from pulmonary eosinophils, and airway secretion following stimulation by house dust 

mite inhalation [45].  One study found that female mice subjected to in utero cigarette smoke 

exposure exhibited increased body weight and both high- and low-density lipoprotein [46].  That 

same study also found that male offspring exposed in utero to cigarette smoke and maintained on 

a high-fat diet for two weeks exhibited increased weight, total cholesterol, and high-density 

lipoprotein [46].  This data indicates that in utero cigarette smoke exposure sensitizes offspring to 

the effects of high-fat diet consumption, which can only contribute to the likelihood of developing 

metabolic disease in adulthood.  It is evident that animal models of prenatal cigarette smoke 

exposure also exhibit adverse health outcomes in offspring. 

During 2016 in the U.S., 7.2% of women reported smoking at any point during pregnancy 

[47],  which was a decrease from the previous rate of 8.4% overall in 2014 [48] and 9.7% overall in 

2008 [49].  Assuming one child per pregnancy, a rate of smoking during pregnancy of 7.2% in the 

U.S. translates to at least 284,000 fetuses that were subjected to prenatal secondhand cigarette 

smoke in 2016 [47].  Of those women who smoked during pregnancy, the highest prevalence 

occurred in women 20-24 years old, followed by 15-19 years old and 25-29 years old [47].  Native 

Indians and Alaskan Natives are most at risk of smoking during pregnancy, followed by White, 

Black, Native Hawaiian/Pacific Islander, Hispanic, and Asian [47].  Those more likely to smoke 
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during pregnancy had a high school (or equivalent) degree or less, with the prevalence being lowest 

for lowest for individuals with at least a Bachelor’s degree [47].  Although many states in 2016 had 

a low smoking prevalence in expectant mothers (5% or less), states such as Kentucky (18.4%) and 

West Virginia (25.1%) had much higher rates of smoking during pregnancy [47].  These rates are 

lower than the 2014 rates in Kentucky (20.7%) and West Virginia (27.1%) [48].  These rates were 

even lower still than the 1999 rates in Kentucky (24.5%) and West Virginia (26.1%) [50].  The trends 

in these rates highlight the fact that while in some states the rate has been steadily going down, in 

other places, the rate has not changed much. Even more alarming is the fact that smoking while 

pregnant has been underreported, with an analysis of 1999-2006 NHANES data indicating that 

22.9% of pregnant women did not report their current smoking status [51].  Women who smoked 

while pregnant in the U.S. in 1983 incurred an estimated $267 million in neonatal healthcare costs 

[52].  It has been estimated that smoking during pregnancy in the U.S. in 1996 was attributed to 

$244 million of neonatal expenses in Medicaid programs[53].  Using U.S. data from 2001-2002, an 

estimated $122 million in costs for delivery of all infants were attributable to maternal smoking 

during pregnancy [54].  It is evident that the prevalence of smoking during pregnancy is not evenly 

distributed in the U.S. population because certain demographic groups are more likely to engage 

in this costly health-adverse behavior. 

Even maternal secondhand smoke exposure is enough to induce in utero changes to the 

fetus.  One study found that pregnant women exposed to secondhand smoke had 2.71 times higher 

odds of delivering a low birth weight infant [55].  Another study found that the effects of secondhand 

smoke on low birth weight may, in part, be due to decreased placenta size [56].  A cross-sectional 

study published in 2019 found that the children of mothers exposed to secondhand smoke exhibited 

a birth weight that was, on average, 205.6 grams lower than normal [57].  A case-control study 

found that fathers who smoked while their partner was pregnant were associated with 1.15 higher 

odds of having children that developed childhood acute lymphoblastic leukemia [58].  A Hong Kong 

birth cohort found that secondhand smoke exposure during pregnancy resulted in increased 

behavioral problems at 11 years old according to the Revised Parent’s Rutter Scales, which 
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measure conduct, emotional, and inattention/hyperactivity problems [59].  It is essential to ensure 

that smokers are aware of the impact that their smoking has on children before they are even born. 

 

Cigarette Smoke Components 

 According to the U.S. Food and Drug Administration, there are 93 established harmful and 

potentially harmful constituents in tobacco smoke [60], but one of the most important and addictive 

is the alkaloid nicotine.  The content of nicotine and other alkaloids in tobacco is dependent on how 

it is processed, the use of specific blends, sun curing, and additive use to alter the pH of the 

generated smoke [61].  Nicotine exerts its addictive effects by competitively binding acetylcholine 

targets, which has several effects including the release of dopamine [62] and β-opioids [63] along 

with inhibition of long term GABA secretion [64].  Nicotine has also been shown to increase levels 

of serotonin acutely while decreasing serotonin levels chronically [65].  Prenatal nicotine exposure 

also recapitulates key impacts of prenatal smoke exposure.  For example, it has been hypothesized 

that prenatal nicotine exposure induces adrenal alterations to increase the risk of hypoxia-induced 

Sudden Infant Death Syndrome [66].  Specifically, 6 mg/kg/day maternal infusion of nicotine 

through an osmotic minipump from gestational day 5 to parturition found offspring exhibited 

inhibited catecholamine release in response to hypoxic challenge alterations [66].  Prenatal nicotine 

injections twice daily with 2 mg/kg free base nicotine resulted in offspring with non-sex-specific low 

birth weight and subsequent catch-up growth by postnatal day 10  [67].  Xu et al. [68] demonstrated 

that injecting pregnant Wistar rats twice daily with 1 mg/kg nicotine from gestational day ten results 

in lower offspring body weight one week after birth.  The offspring from this same study also 

exhibited subsequent catch-up growth in addition to the development of metabolic syndrome when 

exposed to a high-fat diet [68].  That same study did note some differences in timing of the catch-

up growth, in which it started in female offspring around postnatal week 11 and in male offspring 

starting around postnatal week 16 [68].  It has also been found that injecting dams with 1 mg/kg/day 

nicotine bitartrate starting two weeks before mating through weaning results in increased offspring 

serum and lipid triglycerides [69].  Injecting female Wistar rats with 1 mg/kg/day nicotine during 

pregnancy through lactation resulted in lost offspring pancreatic beta-cell mass [70].  This same 
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study also found in these offspring glucose intolerance without changes in insulin levels or weight 

[70].  Prenatal nicotine exposure through maternal subcutaneous injection with 1-3 mg/kg/day 

nicotine hydrogen tartrate resulted in lower fetal rat weight [71].  This same study also found 

proportional decreased fetal brain weight, loss of brain cells and histological abnormalities such as 

mitochondrial swelling and intracytoplasmic edema in the hippocampal CA1 region of the brain [71].  

Infusion of pregnant rat dams with 6mg/kg/day nicotine hydrogen tartrate via an implanted osmotic 

pump starting on gestational day 12 and onward inhibited male offspring brain aromatase activity, 

which plays an important role in rodent developmental brain masculinization [72].   Specifically, this 

inhibition of brain aromatase activity in exposed male offspring occurred in the preoptic area, 

hypothalamus, and amygdala, thereby disrupting brain sexual differentiation [72].  We have not 

noted any similar published findings in female offspring, which do not depend on prenatal 

aromatase activity for brain sexual differentiation [73].  As we discuss in more detail in a later 

section, changes to the hypothalamus can have important consequences on hepatic metabolic 

development.  It is evident that not only does prenatal nicotine exposure have generalized systemic 

impacts on offspring, but in particular results in lower birth weight and catch-up growth with 

indications of perturbed metabolic health later in life. 

 Another principal cigarette constituent is tobacco-specific nitrosamines (TSNAs).  These 

compounds vary in concentration based on processing methods mentioned previously [74] as well 

as the use of nitrogen-containing fertilizer [75].  The TSNA 4-(methylnitrosamino)-1-(3-pyridyl)-1-

butanone (NNAL) has been found both in the urine [76-78] and in the amniotic fluid of offspring 

born to mothers who smoked during pregnancy [79].  Nicotine-derived nitrosamine ketone (NNK) 

has also been detected in the urine of newborn children exposed in utero to cigarette smoke [78].  

N-nitrosamines, of which TSNAs are a part, have known carcinogenic effects.  Specifically, NNK 

and N-nitrosonornicotine (NNN), which are two important TSNAs in tobacco smoke, have been 

found to cause lung tumors and esophageal tumors, respectively [80].  We did not note at this time 

any published association of TSNAs with low birth weight or long-term effects such as metabolic 

syndrome.  Given how TSNAs can be transferred to the fetus, it is essential for future studies that 
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the potential of TSNAs to induce low birth weight with catch-up growth or adulthood metabolic 

effects be thoroughly investigated. 

 Polycyclic aromatic hydrocarbons (PAHs), including benzo[a]pyrene and benzo(a)pyrene 

diol epoxide, are a class of compounds produced from the incomplete combustion of organic matter 

[81].  One main factor affecting PAH content in tobacco leaves is the level of nitrates in the soil [82, 

83].  The levels of n-nitrosamines and PAHs have been found to be inversely related in tobacco 

leaves since higher levels of nitrates in the soil lowers the amount of PAHs produced but increases 

the levels of n-nitrosamines [84].  Levels of benzo[a]pyrene (BaP), in particular, can be used as a 

surrogate for total PAH levels, as research has indicated that BaP and total PAH levels are 

correlated [85].  The primary mechanism of BaP carcinogenicity is the formation of DNA adducts 

induced by the metabolic byproduct benzo(a)pyrene diol epoxide (BPDE) [86].  Prenatal exposure 

to PAHs has been associated with small for gestational age in children [87, 88].  Prenatal exposure 

to BaP has been shown to cause low birth weight in children [89].  Another study [90] found that 

daily oral gavage of pregnant dams with BaP during gestational day 7-16 resulted in increased 

obesity-related measures in adult female offspring such as increased weight gain, visceral fat, and 

hepatic lipid deposition.  However, the authors from that study admitted the dosage of BaP they 

used is 36-fold higher than what is experienced by women exposed throughout pregnancy to a high 

amount of PAHs from cigarette smoke or other sources [90].  We did not note any published studies 

regarding catch-up growth and prenatal exposure to PAHs.  It is evident that exposure in utero to 

PAHs such as BaP manifest some key characteristics predicted by the Barker Hypothesis including 

low birth weight and increased obesity-related measures in adulthood, but more studies should be 

done to confirm this is the case. 

 Volatile organic compounds (VOCs) in cigarettes are produced from the incomplete 

combustion of organic matter, much like PAHs.  The exact composition of VOCs present in cigarette 

smoke, however, varies significantly based on burning conditions such as the amount of O2 present 

and the temperature at the cigarette tip [91].  Notable VOCs include benzene and aldehydes such 

as acetaldehyde, acrolein, and formaldehyde [92].  Benzene, in particular, is a potent carcinogen 

contributing 9.5% to the cancer risk index of cigarette smoke, with aldehydes and other VOCs 
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contributing 43.6% [93].  VOCs [94], including formaldehyde [95] and benzene [96], have been 

associated with low birth weight in children.  Although we did not note any published studies on the 

development of metabolic syndrome or obesity following prenatal exposure to VOCs, studies 

should be done to examine this because of how often low birth weight has been associated with 

obesity in adulthood.  

 Heavy metals are present in tobacco because of absorption from the soil [97, 98].  

Cadmium [99], lead [99], and mercury [100] are readily absorbed by tobacco plants, which is 

correlated with the concentration found in the soil.  Both cadmium and lead are easily transferred 

from tobacco into smoke [101, 102].   In cigarette smoke, cadmium is mostly in the particulate 

phase, while lead is split into both gas and particulate phases in equal proportions [103].  In addition 

to being carcinogenic, cadmium has been proposed as an agent contributing to in utero cigarette 

smoke exposure-induced low birth weight [104, 105].  It has been hypothesized that cadmium 

causes this by interfering with placental zinc and copper transfer [104] and inhibiting placental 

progesterone production [105].  Five-year-old children exposed in utero to cadmium were recently 

shown to be associated with approximately 25-fold increased odds of being obese [106].  Prenatal 

lead exposure has been shown to result in delayed infant growth during the first two years of life, 

especially if their mothers consumed less than average amounts of calcium [107].  A recent study 

examining maternal red blood cell lead levels revealed 1.65 times increased odds of having an 

overweight or obese child by eight years of age on average [108].  It is evident that heavy metals, 

as well as other components of cigarette smoke discussed in this section, have great potential to 

cause manifestations of the Barker Hypothesis.  This potential makes it all the more prudent to 

examine the effects of in utero cigarette smoke exposure on the development of adulthood 

metabolic disease.  

 

Barker Hypothesis 

The Barker Hypothesis, more broadly known as the Developmental Origins of Health and 

Disease, states that adverse in utero environmental factors result in an increased risk of adult-

onset diseases [109].  Specifically, it appears that it is low birth weight and not preterm birth that 
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results in this increased risk later in life [110].  The amount of nutrition received by the developing 

fetus has a direct impact on birth weight.  It has been shown that children affected by maternal 

caloric restriction during pregnancy exhibited an increased risk of obesity [111-114], heart disease 

[112, 115-118], diabetes [115, 119-122], and hypertension [115, 123-125].  Further studies in 

animals [126-134] and human epidemiological studies [135-137] support the Barker Hypothesis by 

illustrating instances of maternal caloric insufficiency leading to adulthood manifestations of 

metabolic disease.  

Children exposed to active maternal smoking during pregnancy [138-142] or environmental 

tobacco smoke after birth [143-147] have been found to have an increased risk of obesity and 

metabolic syndrome.  A recent meta-analysis in 2018 utilizing 16 studies found the odds of children 

(the mean age of the children ranged from 3.8 to 15 years old) being overweight were increased 

when mothers smoked 1-15 cigarettes each day [148].  A proposed mechanism for this increased 

risk of metabolic syndrome development in children is from the Barker Hypothesis-derived concept 

of the “thrifty phenotype” [149].  This hypothesis predicts in the context of placental insufficiency 

that the fetus responds to maternal smoking in a manner that is analogous to caloric restriction 

[150].  Nicotine, acting as a vasoconstrictor, limits blood flow from the mother to the placenta and 

results in caloric restriction of the developing fetus [150].  It is predicted that as a result, the fetus 

will develop metabolic adaptations to survive nutrient scarcity.  A term that has been coined to 

describe this phenomenon is predictive adaptive response (PAR) [151].  In other words, the fetus 

detects through the mother facets of the in utero environment it expects to be born into and 

undergoes adaptations such as altered insulin activity to promote increased success or survival 

after birth [151].  Increased peripheral insulin resistance in conjunction with lowered insulin 

secretion have been posited as adaptations of the thrifty phenotype [152].  Subsequent exposure 

to a postnatal environment of calorie-dense food induces catch-up growth in these low birth weight 

offspring [150]. This process of catch-up growth increases the risk of developing metabolic 

syndrome in response to a high-fat Western diet in adulthood [150].  Further, this hypothesis 

predicts that male offspring will be more adversely affected by prenatal CSE since they are typically 

larger and more vulnerable to starvation during fetal development [150].  Considering the significant 
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ongoing exposure to in utero cigarette smoke, it is prudent to examine the potential impact on 

additional metabolic syndrome and obesity burden. 

 

Metabolic Syndrome and Obesity 

 Metabolic syndrome, at its simplest, is a condition characterized by obesity, dyslipidemia, 

and insulin resistance/hyperglycemia [153].  This syndrome is hypothesized to occur because each 

of these symptoms share underlying pathology and collectively contribute to the risk of developing 

cardiovascular disease and type 2 diabetes [153].  Over the years, metabolic syndrome has been 

defined in several ways.  The World Health Organization in 1998 required that insulin resistance 

as measured by fasting glucose or another appropriate method be accompanied by at least two of 

the following:  increased waist/hip ratio or BMI, increased triglycerides or HDL-C, hypertension, or 

microalbuminuria [154].  A more recent definition from the 2005 revision of the definition established 

by the National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III) requires 

3 out of the following criteria:  increased waist circumference, elevated fasting blood glucose, 

elevated triglyceride levels, lowered HDL cholesterol levels, or elevated systolic or diastolic blood 

pressure [155].  The International Diabetes Foundation (IDF) requires central obesity to be present, 

with two of the following:  increased fasting blood glucose, triglyceride levels, systolic or diastolic 

blood pressure, or decreased HDL cholesterol levels [156].  It should be noted that there are 

multiple additional definitions in current clinical use in addition to the ones mentioned here [153]. 

 According to a recent report from the Centers for Disease Control and Prevention (CDC) 

that analyzed data between 1992-2012 in the United States from the National Health and Nutrition 

Examination Survey (NHANES), the prevalence of metabolic syndrome in adults 18 years or older 

as defined by the NCEP ATP III criteria increased from 25.3% to 34.2% [157].  This same CDC 

report also found that age had a positive association with the prevalence of metabolic syndrome 

while education level was negatively associated with metabolic syndrome prevalence [157].  At 

least 50% of men and 60% of women by 70 years old had metabolic syndrome as reported in the 

2007-2012 NHANES population [157].  Given that the rate of obesity in adults in the U.S. between 

2000-2016 has risen from 30.5% to 39.6%, as well as the rate of obesity in youth going from 13.9% 
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to 18.5% within the same time period [158], it seems likely that the rate of metabolic syndrome will 

continue rising unless drastic measures are taken. 

The rates of both obesity and metabolic syndrome have been associated with offspring 

exposed in utero to cigarette smoke.  One study found that 5 year old children born to mothers that 

smoked during pregnancy were three times more likely to be overweight as defined by BMI [159].  

A meta-analysis performed in 2010 utilizing 17 studies found a pooled odds ratio of 1.52 for children 

becoming obese as a result of exposure in utero to cigarette smoke [160].  Another meta-analysis 

conducted in 2008 utilizing 14 studies found that children exposed to prenatal cigarette smoke have 

an increased odds ratio (1.40) for being overweight [138].  Adult women that were exposed in utero 

to cigarette smoke exhibited elevated triglycerides and lowered HDL cholesterol (two criteria from 

the NCEP ATP III metabolic syndrome definition) [161].  Both BMI and the prevalence of being 

overweight or obese were higher in 14-year-old children of mothers who smoked during pregnancy 

in a 2006 Australian cohort study after adjustment for several factors such as the reported diet of 

the child [162].  A United Kingdom-based cross-sectional survey also found that mothers who 

smoked ten or more cigarettes per day during pregnancy had children that exhibited higher BMI 

and were more likely to be obese at 5-11 years old [163].  Another study found that children that 

were on average 9.9 years old and exposed to cigarette smoke at any point in utero exhibited 

higher BMI and total fat mass [164].  Mothers who smoked early in pregnancy went on to have 

children that were at greater risk of being overweight, and exhibiting a higher BMI and systolic blood 

pressure at three years old with no evident confounding by child diet [140].  A cohort of 17-19 year 

old Swedish men followed between 1983-1988 whose mothers smoked during pregnancy were 

found to have significantly higher systolic and diastolic blood pressure during adolescence [165].  

A cohort of two-month old Netherlander infants whose mothers smoked during pregnancy was 

found to have a significantly increased systolic blood pressure after adjusting for confounders such 

as childhood nutrition [166].  Ten year old children exposed to prenatal CSE had higher insulin 

levels and insulin resistance, even more so if their mothers exclusively breastfed [167].  It is evident 

that cigarette smoke exposure in utero is contributing to obesity and metabolic disease in 

adulthood, but what is the underlying mechanism driving this pathogenesis? 
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Liver Development and Function 

We established in the prior section the import of obesity and metabolic syndrome 

concerning in utero exposure to cigarette smoke.  The question that has yet to be satisfactorily 

answered is what occurs in the liver of prenatal cigarette smoke-exposed children that results in 

this increased risk of adulthood metabolic disease?  To better understand the potential impacts 

that prenatal toxicants have on the liver, it is necessary to review facets of hepatic development 

and function.  Liver organogenesis occurs around gestational day 8.5-9 in mice and 23-26 days 

into human pregnancy, when the liver diverticulum forms from the anterior foregut endoderm that 

is adjacent to the cardiac mesoderm [168].  It is within this liver diverticulum in which the septum 

transversum and hepatoblasts begin to appear [168].  These hepatoblasts begin migration into 

the septum transversum and proliferate while expressing alpha-fetoprotein and albumin [169-

172], production of the latter being one of the critical functions of the liver.  Around the same time 

that the liver diverticulum is forming, a ring of endothelial cells encircling the diverticulum help to 

promote liver bud formation and migration of hepatoblasts into the septum transversum at 

gestation day 9.5 in mice and 26-32 days in humans [168].  Once the liver bud starts forming, 

hematopoietic progenitor cells begin migrating into the liver bud to establish fetal hematopoietic 

function around ten days of gestation in mice and week five in humans [173, 174].  Hepatoblasts 

are bipotential progenitor cells that can either differentiate into hepatocytes or cholangiocytes, 

which occurs around gestational day 13.5 in mice and 56-57 days in humans [168].  Together, 

these two cell types make up the majority of the cell mass of the liver; cell fate depends on 

proximity to the portal vein [168].  Hepatoblasts adjacent to the portal vein will differentiate into 

cholangiocytes, while hepatocytes located away from the portal vein will form hepatocytes [175].  

Cholangiocytes eventually start budding off from the ductal plate surrounding the portal vein and 

then form bile ducts around gestational day 17.5 in mice and 14 weeks in humans where the 

remaining cholangiocytes in the ductal plate regress [168, 176].  This process finally ends at 

about 30 weeks of gestation in the human fetus and within the first ten days after birth in mice 

[168, 177].  This process sets up the production of bile, a critical function of the liver during 
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development and after birth.  During development, the fetal liver in both mice and humans acts as 

the source of hematopoietic cells between gestational days 9.5-15 in mice and days 60-195 in 

humans [178].  After this period, hematopoiesis is shifted to the bone morrow while it is 

decreased in the liver [178].  It is apparent how prenatal toxicants could have lasting 

consequences on the liver if they occur at key hepatic developmental stages. 

The final phase of maturation for hepatocytes occurs within hepatic lobule zones, which 

specify the location of hepatocytes relative to the portal and central veins.  This process begins 

after the differentiation of hepatoblasts into hepatocytes and continues after birth [178].  In 

particular, the expression of many phase I and phase II metabolic enzymes are low in fetal livers 

but increase after birth [178].  The hepatocyte population becomes heterogeneous in nature with 

respect to what lobular zone they occupy [179].  Those closest to the portal vein in which higher 

oxygen concentrations are found become more focused on oxidative processes such as fatty acid 

oxidation and glutathione production [179].  Lobular zones surrounding the central vein and 

thereby have a lower concentration of oxygen becomes focused more on non-oxidative 

processes like glycolysis and lipogenesis [179].  Other primary functions of the liver that have not 

been mentioned, which are described in further detail in subsequent paragraphs, are synthesizing 

and storing glycogen as well as urea synthesis from nitrogen-containing compounds such as 

ammonia.  It is evident how prenatal toxicants could impact hepatic function by disrupting the 

organization of hepatoblasts into metabolic functional units. 

The mature liver is vital for glucose metabolism and maintaining blood glucose levels.  

After the consumption of a meal, glucose is taken up in hepatocytes after being brought into the 

liver via the portal vein from the small intestine [180].  After being brought into hepatocytes, 

glucose is is phosphorylated into glucose-6-phosphate by glucokinase, which effectively prevents 

glucose from diffusing out of hepatocytes [180].  It is at this point that glucose can meet several 

different fates depending on physiological needs.  One pathway glucose enters after a meal is 

glycogenesis in which glycogen is stored in the liver via the conversion of glucose-6-phosphate 

into glucose-1-phosphate [181] followed by production of UDP-glucose [182].  Glycogen is formed 

from the conversion of UDP-glucose by glycogen synthase [183].  During development, the drive 
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for glycogen storage is induced by expression of a large amount of Hexokinase I, which ensures 

glycogen is produced and stored regardless of circulating glucose levels [184].  Glycogen can 

also be converted back into glucose-6-phosphate and glucose can then be secreted into the 

circulatory system to maintain blood glucose levels [183].  Glucose-6-phosphate can also be used 

as a substrate for glycolytic and tricarboxylic acid pathways to produce ATP to power various 

cellular functions [183] or utilized in fatty acid synthesis [185].  Additionally, glucose-6-phosphate 

can be used to produce UDP-glucuronate [186] and UDP-galactose [183] which serve as 

monosaccharide donors for the glycosylation of proteins to induce differential activity [183].  The 

last significant fate of glucose-6-phosphate is the pentose phosphate pathway, in which NADPH 

is produced as a cofactor for many synthetic reactions [187].  The NADPH produced by the 

pentose phosphate pathway is also utilized in the synthesis of the ribose-5-phosphate necessary 

to produce nucleic acids [187].  The liver also produces glucose, particularly during fasting, and 

can do so via two pathways.  The first of these pathways which has already been mentioned is 

glycogenolysis, in which glycogen is broken down into glucose-1-phosphate then converted back 

to glucose-6-phosphate [188].  After these steps, glucose-6-phosphate is dephosphorylated into 

glucose [189] that can leave the liver and go into circulation [188].  The other pathway produces 

glucose via gluconeogenesis, which can take several substrates like lactate or alanine and 

convert them to pyruvate [183].  This pyruvate can then be combined with acetyl-CoA to form 

oxaloacetate [190], then converted to phosphoenolpyruvate [191], then enter the glycolytic 

pathway in reverse until it reaches fructose-1,6-bisphosphate [183].  The next step is irreversible 

and converts fructose-1,6-bisphosphate into fructose-6-phosphate [192].  After this step, glucose-

6-phosphate is formed and can be dephosphorylated to glucose [189] and can then be shunted 

back into circulation [183].  During the initial stages of fasting, glycogenolysis is the principal 

source of glucose production, but as glycogen stores are depleted, gluconeogenesis becomes 

predominant and by 48 hours is the primary source of glucose synthesis [193].  It is evident how 

prenatal toxicants that affect the liver have the potential to perturb normal glucose metabolic 

activity and increase the risk of adulthood metabolic disease.   



18 

 

Lipid metabolism is a crucial function of the liver, as it allows for the long-term storage of 

energy obtained from food [194].  Lipid metabolism also provides substrates used for the 

synthesis of specialized lipids for plasma membranes and bile acid production [194].  After dietary 

fat has been digested, the resultant fatty acids are converted into triacylglycerols (TAG) [194].  

TAGs are stored in hepatocytes as lipid droplets or they are shuttled out into general circulation 

as very-low-density lipoprotein (VLDL) [194].  De novo lipogenesis is another essential source of 

fatty acids that are derived from the hepatic conversion of glucose into fatty acids after feeding.  

Glucose is initially metabolized through the glycolytic pathway until it becomes pyruvate after 

which it is converted into acetyl-CoA in the mitochondria [194].  Acetyl-CoA combines with 

oxaloacetate to form citrate which is then converted in the cytoplasm back into acetyl-CoA and 

oxaloacetate [194].  Once out in the cytoplasm, acetyl-CoA is converted into malonyl-CoA [195], 

which serves as a 2-carbon substrate for the NADPH-powered synthesis of fatty acids [196], 

specifically palmitic acid [194].  Note that this process of lipogenesis only occurs after feeding 

when excess glucose and glycogen stores have been replenished [197].  During a fasted state, a 

process called lipolysis linked with β-oxidation is utilized to produce ATP as well as substrate for 

gluconeogenesis [194].  TAGs are initially broken down into glycerol and fatty acids, in which the 

glycerol unit is able to be used as a gluconeogenic input [194].  The fatty acids are then broken 

down within mitochondria via β-oxidation, where two-carbon atom units are repeatedly removed 

from the terminal end of the fatty acid until it is completely broken down [198].  Each round of β-

oxidation produces ATP as well as an acetyl-CoA molecule, which can be used as an input into 

the TCA cycle to produce even more ATP [198].  It is evident how prenatal toxicants that affect 

the liver can increase the risk of adulthood metabolic disease by their potential to disrupt lipid 

metabolism. 

Detoxification of both endogenous and exogenous compounds is an important task 

performed by the liver and is carried out in two primary phases.  The first of these phases is 

referred to as phase I reactions, which serve to add a reactive site to compounds through 

processes such as hydroxylation [199], though other reaction types are used as well, such as 

carboxylation [200].  The purpose of this phase is to render chemically inert compounds to be 
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susceptible to conjugation by other enzymes [200].  The family of enzymes responsible for 

carrying out phase I reactions are collectively known as the cytochrome P450 enzymes.  These 

enzymes are comprised of heme-thiolate proteins, of which there are numerous members.  The 

naming convention for these enzymes typically follow the letters CYP followed by a number for 

their family, which were historically Roman numerals [201].  Following these first parts is the 

subfamily letter and then the subfamily member number as each member is reported to the P450 

Nomenclature Committee (CYP1A1 would be the very first P450 enzyme, for example) [201].  It is 

hypothesized that the evolution of this family of enzymes came about mainly for the processing of 

endogenous compounds [200].  The fact that these enzymes are useful for processing 

exogenous and xenobiotic compounds is due mainly to structural similarity to endogenous 

compounds [200].  It is also hypothesized that P450 enzyme diversity was also driven in part by 

the employment of toxic compound synthesis in plants to counteract herbivory, resulting in 

herbivore adaptation by employing an expanding repertoire of P450 enzymes to neutralize toxic 

plant compounds [202, 203].  Given the sheer number of compounds that are found in cigarette 

smoke, it is evident how prenatal exposure to these compounds during development when liver 

phase I enzyme function has not fully formed can result in hepatic toxicity.  

The second set of major detoxification enzymes carry out phase II reactions in which the 

compounds initially processed by phase I enzymes are then conjugated with hydrophilic 

molecules [204].  Generally, these conjugation reactions render compounds more water-soluble 

so they can be excreted through the bile or the excretory system [204].  One of the most 

significant phase II enzyme families is the UDP-glucuronosyltransferases, which catalyze the 

conjugation of compounds with glucuronic acid using UDP glucuronic acid [205, 206].  This family 

of enzymes is estimated to be responsible for approximately 40-75% of xenobiotic detoxification 

[205, 206].  Sulfotransferases (SULTs) are another critical group of phase II enzymes that 

conjugate a hydrophilic group onto compounds, specifically a sulfuryl group [207, 208].  This 

reaction is applied to either hydroxyl or amine residues and generally render a compound more 

hydrophilic as well as less toxic or biologically active [207].  Glutathione-S-Transferases (GSTs) 

conjugate compounds with a molecule of glutathione in response to electrophiles or electrophile-
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generating compounds and reactive oxygen species (ROS) [209].  It is hypothesized that GST 

induction occurs as an adaptive response ROS and thereby results in GST reactions with 

hydroxyl, carbonyl, peroxide, and epoxide residues [210, 211].  Another major family of phase II 

enzymes are N-acetyl transferases (NATs) that conjugate aromatic amine- or hydrazine-

containing compounds with acetyl groups [212].  Polymorphisms in NAT-related genes can 

manifest different acetylator phenotypes in which slow acetylators have been associated with an 

increased risk of developing liver and colon cancer [213].  NAT-related gene polymorphisms have 

even been associated with cleft palate risk in infants with mothers that did not take prenatal 

multivitamins [214].  The last major group of phase II detoxification enzymes is the 

methyltransferases, which conjugate a methyl group onto compounds by using methionine from 

S-adenosylmethionine (SAMe) [212].  The two types of methyltransferases are thiopurine 

methyltransferase (TPMT) and catechol-O-methyltransferase (COMT) [212].   COMTs are 

essential not just in the inactivation of catecholamines such as dopamine, epinephrine, and 

norepinephrine [212, 215], but also inactivation of catechol-estrogens and metabolites [216].  

TPMT prototypically metabolizes thiopurine drugs such as azathioprine [217].  Polymorphisms 

affecting TPMT activity are essential in determining the toxicity of thiopurine drugs like 6-

mercaptopurine [218].  It is evident how prenatal exposure to cigarette smoke compounds during 

a time in which phase II enzymatic activity may not be fully developed can result in fetal hepatic 

toxicity. 

Throughout development and after birth, there are multiple trajectory types with respect 

to drug-metabolizing enzyme expression:  high expression during gestation with decreased 

expression after birth (Class 1), constant expression pre- and postnatally (Class 2), and low 

expression during gestation followed by increased expression after birth (Class 3) [219].  

Examples of Class 1 enzymes include CYP3A7 [220, 221] and SULT1E1 [222] which have been 

hypothesized to follow a Class 1 pattern because they serve a necessary function during 

gestation that is no longer needed after birth [219].  For example, SULT1E1 has been 

hypothesized to inactivate estrogens in order to promote androgenic activity at critical male 

gonadal developmental windows [223].  Class 2 enzyme examples include CYP2B6 [224] and 
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SULT1A1 [222], and while there is not a particular hypothesis about why these enzymes are 

expressed continuously during both gestation and after birth, it is thought that they serve different 

roles before and after birth or they carry out the same function during both life stages [219].  

Examples of Class 3 enzymes include CYP3A4 [220, 221] and SULT2A1 [225] and are predicted 

to express high levels after birth but not during gestation because of more contact with various 

environmental hazards and thereby need to be able to handle these exposures when 

encountered [219].  It is evident how prenatal exposure to cigarette smoke exposure can be 

variable depending on the enzymes responsible for metabolizing a particular cigarette smoke 

compound and when those enzymes are normally expressed. 

Bile acids are amphipathic compounds synthesized in the liver from cholesterol, where 

the rate-limiting enzyme is CYP7A1 [226].  Bile acids emulsify fats, cholesterol, and fat-soluble 

vitamins in the small intestine to aid in the maximal absorption by enterocytes [227].  Typically, 

~95% of bile acids are reabsorbed in the small intestine after which they are transported to the 

liver via the portal vein for reabsorption and subsequent resecretion into enterohepatic circulation 

[227].  The remaining 5% is excreted and replaced by compensatory hepatic synthesis [227].  

Primary bile acids, such as chenodeoxycholic (CDCA) and cholic acid (CA), are produced in the 

liver [227].  These primary bile acids are then conjugated with either taurine or glycine to be 

stored in the gallbladder for postprandial secretion into the duodenum of the small intestine [227].  

Conjugation of bile acids occurs is carried out by enzymes such as BACS [228] and BAT [229], 

as well as other conjugation enzymes typically utilized for detoxification, including SULT2A1 [230] 

and UGT2B4 [231].  Conjugation by these enzymes render primary bile acids more hydrophilic 

and amphipathic [232].  In the rat small intestine, taurine-conjugated bile acids are the majority in 

both the duodenum and ileum, whereas the large intestine is enriched in unconjugated bile acids 

[233].  Gut microbiota deconjugate bile acids via bile salt hydrolase and result in the release of 

glycine or taurine; conversion of primary bile acids into more hydrophobic secondary bile acids 

such as deoxycholic acid (DCA) occurs via 7α-dehydroxylase [234-236].  It is evident that 

prenatal exposure to toxicants that can disrupt the development of the liver could result in 
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perturbed bile acid metabolism in offspring, thereby potentially resulting in an altered bile acid 

pool composition with physiological consequences. 

Sexual differentiation is an important developmental facet that helps determine the 

functional hepatic phenotype.  Back in the 1930s it was noted that male rats given the same dose 

per kilogram of bodyweight of hexobarbital slept for a shorter duration than female rats and that 

this difference was abolished when male rats were castrated [237, 238].  Since then, it has been 

found that one of the significant determinants for these sex differences in hepatic function is the 

patterning of growth hormone (GH) secretion from the anterior pituitary gland.  By using an 

osmotic pump to mimic female-specific constant GH secretion in male mice in which the secretion 

of GH has been eliminated by the neonatal administration of monosodium glutamate, the hepatic 

expression of CYP2A4, CYP2B9, CYP2B10, CYP3A41 was increased while CYP2D9 was 

decreased [239].  Conversely, female mice with GH secretion eliminated via neonatal 

monosodium glutamate administration that were given twice daily GH injections to mimic the male 

GH secretion profile resulted in suppressed hepatic expression of CYP2A4, CYP2B9, CYP2B10, 

and CYP3A4 while promoting expression of CYP2D9 [239].  Other recent studies have also 

demonstrated this system of sex-specific GH secretion-induced hepatic gene expression for 

hepatic gene methylation [240], regulation of miRNA expression [241],  and direct and indirect 

mediation by hepatic STAT5b and HNF4α [242-244].  Given the sex-specific effects on hepatic 

gene expression and function, an examination of the sex-specific hepatic impacts of prenatal 

cigarette smoke exposure should be performed to fully characterize the risk of metabolic 

disorders in offspring. 

 

Non-Alcoholic Fatty Liver Disease 

 Non-alcoholic fatty liver disease (NAFLD), which at its simplest is the presence of hepatic 

steatosis (or fat accumulation in the liver), requires two criteria in order to be diagnosed [245]. 

The first criterion is confirmed evidence of hepatic steatosis either by imaging such as through 

ultrasound or by liver biopsy, which is considered to be the gold standard for identifying hepatic 

steatosis [245].  The second criterion is that nothing else is present which could cause hepatic fat 
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accumulation such as significant alcohol consumption, a genetic disorder, or the use of 

medication that is known to cause steatosis such as corticosteroids, tamoxifen, amiodarone, and 

others [245].  NAFLD commonly presents with mild to moderate steatosis and hepatocellular 

ballooning [246].  When non-alcoholic steatohepatitis (NASH) is present in NAFLD patients, it 

presents with lobular inflammatory that manifests as immune cell infiltration by mononuclear and 

polymorphonuclear cells [246].  When the condition of NASH has progressed into the fibrotic 

stage, it often presents in a pericellular manner [246].  Given the potential severity of NAFLD and 

NASH, it is essential to investigate the possibility of prenatal cigarette smoke exposure to 

increase the risk of developing these conditions during adulthood. 

NAFLD is increasingly becoming a global problem and is currently the most significant 

cause of chronic liver disease in the world.  The global prevalence of NAFLD was estimated to be 

25.24% by a meta-analysis published in 2016 utilizing 86 studies [247].  This same meta-analysis 

found the prevalence of NALD was lowest in Africa (13.48%), followed by Europe (23.71%), North 

America (24.13%), Asia (27.37%), South Africa (30.45%), and the Middle East (31.79%) [247].  

This meta-analysis also made clear that NAFLD was often accompanied by related metabolic 

disorders such as obesity (51.34%), hyperlipidemia (69.16%), hypertension (39.34%), Type 2 

diabetes (22.51%), and metabolic syndrome (42.54%) [247].  These comorbidities were even 

more prevalent when NASH was present, where obesity occurred with NASH at 81.83%, 

hyperlipidemia at 72.13%, hypertension at 67.97%, type 2 diabetes at 43.63%, and metabolic 

syndrome at 70.65% [247].  NASH was suspected of having an overall prevalence of somewhere 

between 1.5% and 6.45%, but had a prevalence of 59.1% in biopsy-confirmed NAFLD patients 

[247].  Progression of fibrosis in NASH patients was found to occur at an average annual rate of 

0.09% [247].  The annual incidence of HCC in NAFLD patients was found to be 0.44 per 1,000 

person-years and 5.29 per 1,000 person-years for NASH patients [247].  The severity of NASH 

relative to NAFLD can be seen explicitly with the incidence rate ratio (IRR) for liver-specific 

mortality and overall mortality.  NAFLD and NASH patients had an IRR for liver-specific mortality 

of 1.94 and 64.6, respectively, while NAFLD and NASH patients had an IRR for overall mortality 

of 1.05 and 2.56, respectively [247].  This data only serves to confirm precisely why the 



24 

 

increasing rates of NAFLD and, subsequently, NASH are so disconcerting.  The evidence clearly 

underlines the health burden on morbidity and mortality these diseases and their comorbidities 

will have on the global population.  These data are especially concerning due to NASH-related 

cirrhosis being the second leading cause for liver transplants in the U.S. between 2004-2013 

[248].  This same study found that the 90-day survival rate for NASH patients on the transplant 

waitlist was lower than patients with alcoholic liver disease, hepatitis C infection, or patients with 

both alcoholic liver disease and hepatitis C [248].  This lower survival rate in NASH patients was 

due to their lower likelihood to receive a liver transplant at 90 days compared to other patients 

[248].  NASH patients that were added to the waitlist for liver transplantation went up by 170% 

between 2004-2013, whereas it increased by only 45% for alcoholic liver disease patients and 

14% for hepatitis C patients [248].  If the current trend of ever increasing NAFLD and NASH 

prevalence continues unabated, the already strained supply of liver transplants will become a full-

blown crisis. 

Cigarette smoke exposure also has been known to impact the development and severity 

of NAFLD.  A retrospective study looking at the development of NAFLD in patients over a 10-year 

period demonstrated that smoking (1.91 adjusted OR) in addition to being male (1.46 adjusted 

OR), having a BMI 25 or higher (3.08 adjusted OR), and dyslipidemia (1.79 adjusted OR) all 

increased the odds of NAFLD diagnosis [249].  Additionally, the odds of developing NAFLD were 

higher in patients with a Brinkman Index, defined by the product of cigarettes smoked daily and 

the duration of smoking in years, between 1-399 (1.77 times higher) or 400 and higher (2.04 

times higher), which clearly demonstrated a dose-dependent effect [249].  A study utilizing the 

NASH Clinical Research Network found that NAFLD patients with a history of ten or more years 

of smoking was associated with odds 1.63 times higher for advanced fibrosis [250].  This study 

also found that these same NAFLD patients had increased odds for each year of age (1.06 times 

higher), or were diagnosed with diabetes (2.44 times higher) [250].  There has even been 

evidence that genetic polymorphisms for Adiponectin and GPx-1 that were positively associated 

with cigarette smoking-induced NAFLD risk [251].  If even some of the effects of cigarette smoke 
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exposure on the development of NAFLD are also present with in utero cigarette smoke exposure, 

it is all the more essential to study the impacts of prenatal CSE on adulthood metabolic disease.   

Pediatric cases of NAFLD differ from the typical presentation of this disease in a couple 

of ways.  In particular, the steatosis tends to be more severe with a lower frequency of 

hepatocytic ballooning, and any associated inflammation is found more in the portal regions while 

fibrosis is present more in the periportal regions [246].  This is in contrast to adult NAFLD cases 

in which any associated inflammation is more lobular in location while fibrosis is detected more 

often within pericellular regions [246].  The number of pediatric NAFLD cases that resemble an 

adult presentation were small, but the majority of pediatric cases presented themselves as 

previously described [246].  The remainder of the pediatric NAFLD cases that do not manifest 

themselves in the previously mentioned ways had some mixture that was between the typical 

adult and pediatric NAFLD presentation [246].  A meta-analysis found that the prevalence of 

pediatric NAFLD overall was 7.6% in the general population [252].   However, when considering 

studies using a clinically obese population, the prevalence was 34.2%, which was over four times 

higher than the general prevalence [252].  The odds of children having NAFLD were higher in 

males than females in a general population (1.63 times higher) and in clinical populations (2.02 

times higher) [252].  The prevalence of NAFLD in clinical pediatric populations was found to be 

higher in Asia (62.3%) compared to North America (39.2%), the Middle East (36.5%), Europe 

(29.8%), and South America (17.1%) [252].  RNAseq analysis of human fetal livers from 12-19 

weeks of gestation found that a number of NAFLD-related pathways were upregulated, such as 

steatosis and liver inflammation, in response to prenatal cigarette exposure [253].  As far as we 

know, it has not been explicitly studied if prenatal cigarette smoke exposure results in increased 

rates of pediatric NAFLD cases.  However, we may be able to infer the risk of pediatric NAFLD 

from in utero cigarette smoke exposure from examining the effect of intrauterine growth restriction 

on pediatric NAFLD risk, which the literature suggests is induced via increased insulin resistance 

[254].  It is evident that prenatal cigarette smoke exposure may have an impact on the 

development of not only adulthood NAFLD risk, but potentially childhood NAFLD risk as well.  It is 
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essential to examine effects of in utero cigarette smoke exposure on metabolic disease 

development in adulthood, but also at other life stages. 

 

Hepatic Metabolic Regulation by SIRT1 

 SIRT1 is NAD+-dependent class III deacetylase [255].  SIRT1 activity induces deacetylation 

of various transcription factors as a result of sensing low energy status through levels of 

NAD+/NADH [255].  This deacetylation action, as a part of the fasting response, results in the 

induction of gluconeogenesis, fatty acid oxidation, as well as the suppression of lipogenesis [255].  

Feeding results in a high energy state, in which there are lower levels of NAD+, thereby lowering 

the activity of SIRT1 [255].  Consumption of a high-fat diet, which also results in a high energy 

state, lowers SIRT1 activity as well via decreased levels of NAD+ [255].  In general, the 

deacetylation of proteins by SIRT1 is opposed by p300-induced acetylation [256].  SIRT1-induced 

deacetylation of FXR enhances FXR’s transactivation activity on its downstream targets by 

increasing the frequency in which FXR interacts with its partner heterodimer Retinoid X Receptor 

alpha (RXRα) [256].  In addition to SIRT1’s metabolic actions, NF-kB deacetylation by SIRT1 

results in lowering NF-kB’s transactivation activity on the expression of various pro-inflammatory 

mediators, thereby affecting immune function [257].  Given how prenatal CSE is hypothesized to 

induce caloric restriction by limiting blood flow to the developing fetus, it would be highly pertinent 

to investigate any impact of in utero cigarette smoke exposure on SIRT1 activity.   

SIRT1-induced deacetylation also affects protein stability.  CRTC2, an essential 

component in the promotion of gluconeogenesis, becomes more susceptible to ubiquitin-mediated 

proteasomal degradation once it has been deacetylated [258].  Deacetylation by SIRT1 can 

promote protein stabilization, a prime example of which is FOXO protein deacetylation, which 

inhibits their phosphorylation and their ubiquitination-mediated proteasomal degradation [259, 260].  

The final mechanism in which deacetylation by SIRT1 affects proteins is by histone deacetylation.  

Histone deacetylation causes the adjacent DNA to be more tightly associated with its histones, 

thereby limiting the accessibility of this DNA for transcription.  SIRT1 downregulates the expression 

of miR-34a via this mechanism of histone deacetylation [261].  This action of SIRT1 is particularly 
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of note since miR-34a inhibits SIRT1 activity via the inhibition of NAD+ production by NAMPT [262].  

miR-34a also directly inhibits transcription of SIRT1 by binding to the 3’-UTR of Sirt1 mRNA [261, 

263], thereby affecting both the production and activity of SIRT1.  It is evident that characterizing 

the impact of prenatal CSE on the deacetylation of protiens would be an effective way of 

investigating how in utero cigarette smoke exposure may be influencing SIRT1 activity in affected 

offspring.  

 SIRT1 activity and subsequent downstream pathway activation can be altered by several 

modulators.  As will be discussed later, there is a regulatory positive feedback loop shared with 

FXR that has a considerable impact on SIRT1 deacetylation activity and system-wide protein 

acetylation status [256, 261, 264, 265].  The main factor in terms of regulation of SIRT1 activity is 

the availability of NAD+, which is a necessary cofactor for SIRT1-catalyzed deacetylation [266].  

This factor is essential to consider when examining SIRT1 activity since a lack of NAD+
 can result 

in a failure of deacetylation to be carried out by SIRT1 even in the presence of excess SIRT1 

protein levels [267].  This mechanism is how miR-34a negatively regulates SIRT1 via inhibition of 

NAMPT, an NAD+-producing enzyme [262].  Likewise, AMPK positively upregulates SIRT1 

deacetylation activity by promoting the transcription of NAMPT [268].  Other factors that affect the 

availability of NAD+ can also influence SIRT1 activity.  This is the case with Poly ADP-Ribose 

Polymerase 1 (PARP-1) [269] and CD38 [270] consumption of NAD+ pools, thereby indirectly 

inhibiting SIRT1 activity.  SIRT1 is modulated by various protein interactions, such as the binding 

of AROS to the n-terminus of SIRT1 that further activates SIRT1-induced deacetylation [271].  

DBC1 that is bound to SIRT1’s catalytic domain is capable of directly impairing SIR1’s deacetylase 

activity [272].  SIRT1 activity can also be modulated by various post-translational modifications.  

SUMOylation of SIRT1, for example, increases the half-life of SIRT1 protein by promoting its 

stability [273].  Ubiquitination results in SIRT1 translocation into the nucleus [274], which increases 

the rate of deacetylation of nuclear proteins.  SIRT1 can also be phosphorylated, which results in 

increased SIRT1-induced deacetylation [275].  Although it has been shown that SIRT1 is a crucial 

regulator of metabolic activity during caloric restriction, these modifications can occur even during 

a well-fed state, indicating that SIRT1 has regulatory functions outside of metabolism [273-275].  It 
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is evident that investigation of the impact of prenatal CSE on SIRT1 deacetylase activity can be 

characterized in part by any perturbations caused by in utero cigarette smoke exposure found in 

factors known to modulate SIRT1-induced deacetylation. 

 SIRT1 is involved in a regulatory feedback loop with FXR and miR-34a.  SIRT1 increases 

the downstream activity of FXR through deacetylation, which increases the expression of the FXR 

target protein SHP.  This increase in SHP protein expression has an inhibitory effect on p53, which 

results in less expression of miR-34a, a known direct and indirect inhibitor of SIRT1.  Inhibition of 

miR-34a transcription allows higher SIRT1 expression as well as greater SIRT1 deacetylation 

activity.  This regulatory feedback loop comes into play in many metabolic processes, which is 

mainly exhibited in rodent models of obesity [256, 262].  One study showed that obesity caused an 

increase in miR-34a expression [262], which lead to a decrease in activity from both SIRT1 and 

FXR [256, 262].  This decrease in SIRT1 and FXR activity induced metabolic changes including 

increased expression of lipogenic genes [256, 262], decreased levels of bile acid export proteins 

[256], increased levels of serum VLDL and LDL, and decreased serum HDL levels [256].  These 

SIRT1-related pathways are illustrated in more detail in Figure 1.  Examining the SIRT1 regulatory 

loop with FXR and miR-34a and impacted downstream targets provide an opportunity to 

characterize impacts that prenatal CSE may have on SIRT1 activity in affected offspring. 

There are recent examples in the literature suggesting that hepatic SIRT1 plays a vital role 

in the development of NAFLD.  In one study, it was found that mice fed a high-fat diet for 16 weeks 

resulted in greater PARP activation and lower levels of NAD+ [276].  These changes ultimately 

contributed to lower levels of SIRT1 activity and higher levels of lipogenic SREBP-1 activity [276].  

Mice with disabled SIRT1 catalytic activity that were fed a high-fat diet for 34 weeks exhibited higher 

levels of SREBP-1 protein expression with decreased phosphorylation of the pro-SIRT1 factors 

AMPK and LKB1 [277].  Mice given a NAMPT inhibitor and fed a high-fat diet for 12 weeks resulted 

in lower levels of NAD+, which led to attenuated SIRT1 activity and levels along with decreased 

deacetylation of the pro-lipogenic transcription factor SREBP-1 [278].  One study found that the 

expression of miR-181b, which inhibits transcription of Sirt1 as well as its translation into protein, 

was increased in NAFLD patients in addition to decreased SIRT1 expression [279].  This same  



29 

 

 

Figure 1 – SIRT1 Regulatory and Downstream Target Pathways 
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study also found that mice with high-fat-diet-induced NAFLD exhibited increased miR-181b with a 

concomitant decrease in SIRT1 expression [279].  In light of this evidence and the hypothesized 

increase in obesity in adults that have been subjected to prenatal cigarette smoke exposure, it is 

prudent to examine what role hepatic SIRT1 may play in the manifestation of the Barker 

Hypothesis and the development of adulthood metabolic disease. 

 

Study Objectives 

 The objective of this study was to elucidate the neonatal and adult sex-specific 

phenotypic characteristics of mouse offspring exposed in utero to cigarette smoke.  The study 

documented herein was designed using a model of murine whole-body inhalation exposure to in 

utero cigarette smoke via the use of the Teague TE-10C cigarette smoking apparatus.  Metabolic 

characteristics were recorded since this is important in establishing whether an altered metabolic 

phenotype, as predicted by the Barker Hypothesis, does manifest in our model. 

Due to the importance of SIRT1 in regulating the metabolic response of the liver to a low-

energy state, hepatic expression of SIRT1 and the expression of hepatic genes and proteins in 

related metabolic pathways were examined.  These pathways include glucose, lipid, and bile acid 

metabolic processes known to be modulated by SIRT1 activity.  The characterization of these 

hepatic gene and protein changes during the neonatal period, post-weaning, and during 

adulthood will allow us to determine if any early changes observed in the liver are associated with 

perturbations found during adulthood, especially in conjunction with high-fat diet feeding.  There 

are future studies currently ongoing observing adult siblings of the neonatal offspring described in 

this dissertation.  Ultimately, conducting this study will allow insight into how in utero cigarette 

smoke exposure alters the hepatic metabolic phenotype and fulfills the prediction of the Barker 

Hypothesis of obesity development during adulthood.  The objectives of the study are as follows: 

 

1) Establish whether in utero CSE results in sex-specific diet-induced obesity coupled to impaired 

SIRT1 expression during adulthood. 
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2) Determine the sex-specific impact of prenatal cigarette smoke exposure on SIRT1-related 

hepatic gene and protein expression at 1.5 weeks, an age at which catch-up growth has 

occurred, and liver development is still ongoing. 

 

3) Determine the sex-specific impact of prenatal cigarette smoke exposure on SIRT1-related 

hepatic gene and protein expression at weaning in both the fed and fasted state.
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CHAPTER II:  PRENATAL CIGARETTE SMOKE EXPOSURE IMPACTS ADULTHOOD WEIGHT 

GAIN AND SIRT1-ASSOCIATED METABOLIC PATHWAYS DISTINCTLY BY SEX 

Introduction 

In 2016, 7.2% of U.S. women reported smoking at any point during pregnancy [47].  This 

rate translates to at least 284,000 fetuses per year exposed to in utero to cigarette smoke [47].  

Although many states have reported smoking prevalence in expectant mothers of 5% or less, 

several states have rates above 15% with Kentucky (18.4%) and West Virginia (25.1%) being the 

highest [47].  An analysis of 1999-2006 NHANES data indicated a significant level of underreporting 

of smoking by pregnant women (22.9%) after confirming serum cotinine levels [51].  Assuming this 

figure is still accurate for 2016, this means as many as 22901 out of 55449 infants born in Kentucky 

in 2016 were exposed to in utero cigarette smoke [47].  

A significant primary outcome of cigarette smoke exposure (CSE) during gestation in 

infants is intrauterine growth restriction (IUGR), which presents as low birth weight [28, 29].  A 

Meta-analysis found that in utero cigarette smoke exposure increases the rate of various congenital 

disabilities, including orofacial clefts, congenital heart defects, gastroschisis, craniosynostosis, 

clubfoot, anorectal atresia, musculoskeletal defects, hernias, and undescended testes [31].  It has 

been found that the risk of Sudden Infant Death Syndrome was more than double with children 

exposed to secondhand smoke in utero through active maternal smoking [32].  Murine models of 

prenatal CSE exhibit low birth weight [35], decreased crown-rump length [41] as well as decreased 

somite number [42].  The majority of murine [35-41] as well as rodent [43] models of prenatal CSE 

exhibit a similar low birth weight phenotype.   

The Barker Hypothesis proposes that caloric restriction during pregnancy, resulting in low 

birth weight, increases the risk of obesity [111], heart disease [115], diabetes [115, 119-122], and 
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hypertension [115, 123-125].  Further studies in animals [126-129], as well as human 

epidemiological studies [32-45], support the Barker Hypothesis by illustrating instances of caloric 

insufficiency leading to manifestations of metabolic disease later in life.  The Barker Hypothesis 

predicts, in the context of prenatal CSE, that the fetus will respond to maternal smoking in a manner 

that is analogous to calorie restriction [150].   

Nicotine, acting as a vasoconstrictor, limits blood flow from the mother to the placenta and 

in doing so, results in caloric restriction of the developing fetus [150].  Prenatal exposure to other 

cigarette smoke constituents have been shown to be associated with low birth weight or fetuses 

presenting with small for gestational age including carbon monoxide exposure [280, 281], 

benzo(a)pyrene [89],  volatile organic compounds [94] including specifically formaldehyde [95] and 

benzene [96], polycyclic aromatic hydrocarbons [87, 88], and heavy metals like cadmium [282-

285].  As a result of the fetus developing metabolic adaptations to survive nutrient scarcity, 

subsequent exposure to a postnatal environment of calorie-dense food induces catch-up growth in 

these low birth weight offspring which simultaneously increases the risk of developing metabolic 

syndrome in response to a high-fat Western diet [150, 286, 287].  Further, this hypothesis predicts 

that male offspring will be more adversely affected by prenatal CSE since they are more vulnerable 

to starvation during development [150].  

  Children exposed to active maternal smoking during pregnancy [138-142], as well as to 

environmental tobacco smoke after birth [143-147], have been found to have an increased risk of 

obesity and metabolic syndrome.  Defining metabolic syndrome in children is complicated by the 

fact that the biomarkers used as criteria naturally vary with age [288].  To illustrate how ill-advised 

applying adult criteria onto pediatric cases is, a cross-sectional study examining metabolic 

syndrome prevalence in children age 10 to 18 years using multiple definitions found that the 

prevalence ranged from 0.9-11.4% depending on the definition used [289].  In light of this, the 

International Diabetes Federation has attempted to set age-specific criteria:  for 10-16 year olds, 

use IDF criteria set for adults except use the age-specific 90th percentile for waist circumference 

cut-off instead of a specific circumference; for children 16 years and older, use the normal adult 

IDF criteria; for 6-10-year-olds, they state it simply cannot be diagnosed in this age range, but it 
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should be noted if there is an age-specific waist circumference above 90th percentile [290].  One 

study that has examined the effects of in utero cigarette smoke exposure on cardiovascular disease 

in weaned offspring in a murine model found that female CSE offspring fed a high-fat diet for two 

weeks gained more weight than male CSE offspring and perturbed total cholesterol and high-

density lipoprotein levels [46].  Additionally, our lab has also contributed several murine studies of 

combined pre- and postnatal exposure to cigarette smoke that induced low birth weight along with 

altered organ-specific proteomic changes after weaning [35-37] and later in adulthood [38-40] that 

show alterations in metabolic pathways. 

Maternal stress and glucocorticoid levels are potential mediators of the Barker Hypothesis, 

as well.  A report by the CDC found that in 2010, 70.2% of women experience at least on stressful 

life event in the year before the birth of their child [291].  Maternal depression, another factor thought 

to influence offspring outcomes, in 2015 occurred at a rate of 28.7 per 1000 delivery 

hospitalizations, according to a recent study [292].  Although it is not agreed on exactly how the 

hypothalamus-pituitary-adrenal (HPA) axis is affected in offspring following elevated maternal 

stress or glucocorticoid levels during pregnancy, there have been numerous studies documenting 

effects on offspring HPA axis function from these maternal exposures [293].  Of note is a study 

where the offspring of Wistar rats injected with nicotine twice daily (1.0 mg/kg) from gestational day 

11 until parturition and subjected to chronic stress exhibited exacerbated HPA-axis response in 

addition to the sensitization of the HPA-axis caused by the chronic maternal stress [68].  Given this 

study, it should be investigated if prenatal CSE exerts similar effects on the HPA-axis. 

SIRT1 is a NAD+-dependent enzyme that deacetylates proteins [255].  SIRT1 activity is 

induced through the sensing of low energy status through levels of NAD+/NADH to induce 

increased deacetylation of various transcription factors [255].  This deacetylation action results in 

the induction of gluconeogenesis, fatty acid oxidation, as well as the suppression of lipogenesis 

[255].  Conversely, the high energy status observed during a fed state, or consumption of a high-

fat diet, results in lower levels of NAD+ and thus lowers the activity of SIRT1 [255]. Placental 

samples showing IUGR gathered from patients experiencing preeclampsia exhibited decreased 

expression of Sirt1 [294] but appears to be unchanged in the fetal liver in a sheep model of placental 
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insufficiency IUGR [295].  A model using in utero calorie restriction of Wistar rats found that when 

21-day-old male offspring but not female offspring exhibited lower levels of hepatic Sirt1 expression 

[296].  In a Sprague Dawley rat model of in utero food restriction, low birth weight offspring exhibited 

increased prenatal hepatic SIRT1 activity with decreased hepatic SIRT1 activity at one day and 

three months of age [297].   Increased levels of histone H3 acetylation have been found in the livers 

of 21 day-old rat offspring subjected to IUGR [298].  Considering how both nutrient restriction in 

utero, as well as IUGR, modulate SIRT1 expression and their similarity in birth outcomes to in utero 

cigarette smoke exposure, it is pertinent to examine the role SIRT1 plays in prenatal cigarette 

smoke exposure.  A study conducted by our lab utilizing murine in utero and postnatal exposure to 

cigarette smoke observed that exposed offspring exhibited decreased birth weight with persistent 

weight decrements and decreased hepatic SIRT1 expression at six months of age [40].  This 

provides rationale for further investigating the role of SIRT1 in mediating the impact of in utero 

cigarette smoke exposure as well as whether it influences weight gain from high-fat diet 

consumption in adulthood. 

In this study, we utilized an established mouse inhalation model of cigarette smoke 

exposure that mimics active maternal smoking during pregnancy spanning from preimplantation 

throughout organogenesis and into late-stage fetal maturation (GD6-GD19).  This period would be 

approximately gestational day 13.5 to approximately the end of the first trimester in humans [299].  

In terms of liver development, this would correspond to liver development through hepatoblast 

differentiation into hepatocytes and cholangiocytes in both mice and humans, and the beginning of 

bile duct formation in mice [168].  We characterized the impact CSE has on model phenotypic 

characteristics, including hepatic protein expression of key metabolic enzymes, including SIRT1 

following a high-fat diet challenge.  We focused on impacts on the liver due to the critical role it 

plays in regulating metabolic processes including glucose and lipid metabolic pathways. This study 

was conducted to shed light on the impact of prenatal CSE-induced perturbation of SIRT1-

associated liver metabolic regulatory pathways. 

 

Methods 
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Animal Exposure 

Female C57BL/6 mice maintained on LabDiet 5015 were mated overnight (two females 

to one male) and checked the following day for the presence of a vaginal plug.  Vaginal sperm 

positive status was considered gestational day (GD) 0.  On GD6, female C57BL/6 mice were 

placed into either a cigarette smoke exposure (CSE) chamber or a Sham exposure (ambient 

filtered room air) chamber for six hours/day daily on GD1 through GD19.  Before exposure, each 

day, fresh cages with approximately 2-3 grams of food and unlimited water were provided for the 

duration of the exposure.  Whole-body cigarette smoke exposure was carried out utilizing a 

Teague TE-10C exposure apparatus (Teague Industries) using a standardized FTC method of 

smoking one 2-second puff per minute, nine puffs per cigarette.  Two packs of cigarettes were 

used per day.  The cigarettes used were Marlboro Red™, which was the most commonly smoked 

cigarette in reproductive-aged women at the time of model development.  In order to quantify the 

composition of the cigarette smoke achieved, levels of CO and total suspended particulates 

(TSPs) were measured daily in each exposure chambers.  Plasma cotinine was used as a 

measure of the internalization of cigarette smoke components since it is the primary metabolite of 

nicotine. 

 After parturition, dams with litters were maintained on LabDiet 5015 containing 12% fat.  

After weaning at three weeks of age, the offspring were maintained on the same diet until six 

months of age, at which age offspring entered the diet challenge.  For the diet challenge, Sham 

and CSE offspring were assigned to maintenance on a low-fat control diet (CD, TestDiet 5TJS) or 

a high-fat diet (HFD, TestDiet 5TJN).  The CD and HFD contained 5.1 % and 19.9% fat, 

respectively.  Other notable differences between diets include 70.1% carbohydrate, 15.5% 

protein, and 5.7% fiber content in the low-fat control diet versus 51.3% carbohydrate, 18.0% 

protein, and 6.7% fiber content in the high-fat diet.  Offspring were maintained on these diets with 

unrestricted access for three months.  Offspring weights were recorded weekly.  During the diet 

challenge, selected offspring from the same prenatal exposure group were cohoused.  No more 

than two animals of the same sex were cohoused together in a single cage during the duration of 

the diet challenge.  At the end of the diet challenge, offspring were euthanized following a 4-hour 
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fast by asphyxiation by carbon dioxide.  The excised liver was flash-frozen in liquid nitrogen and 

stored at -80°C. 

 Animals were housed and maintained at the University of Louisville Research Resources 

Center, an Association for Assessment and Accreditation of Laboratory Animal Care accredited 

facility.  All protocols were approved by the UofL Institutional Animal Care and Use Committee.  

Cages for animal housing were changed weekly, unlimited food and water provided, and 

maintained in an environment with a 12-hour light/dark cycle with controlled temperature and 

humidity. 

 

Characterization of Offspring Body Weight, Calorie Consumption, Fat Mass, and General 

Activity Levels 

Body weight and food consumption of offspring were measured once a week during the 

3-month diet challenge.  The body weight for each offspring was measured while food 

consumption was recorded on a per cage basis.  The first week of body weight and food 

consumption was excluded from analyses to avoid the effects of acclimation to a new diet from 

confounding the statistical analyses.  Offspring fat mass was measured via Dual-Energy X-Ray 

Absorptiometry (DEXA) using the Lunar PIXImus Densitometer (GE Medical Systems).    

Within one week before the termination of the diet challenge, offspring (aged nine 

months) maintained on a high-fat diet were placed into a clean open arena and allowed to move 

freely for a trial time of 30 minutes with movement recorded by video.  The video of each open 

field trial was analyzed utilizing open-source MATLAB-based software developed for the 

automation of the scoring of various behavioral assays [300].  Movement of individual mice during 

the trials was tracked in order to calculate the total distance traveled, speed, and as a measure of 

anxiety, the time spent in the inner versus the periphery of the arena.   

 

Cigarette Smoke Exposure Monitoring via Plasma Cotinine Measurement, Carbon 

Monoxide, and Total Suspended Particulates 
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In order to quantitate the magnitude of cigarette smoke dams were exposed to, cotinine, 

the primary metabolite of nicotine, was measured during the cigarette smoke exposure period.  

Tail vein blood was collected from dams within 30 minutes of the end of exposure into 

heparinized capillary tubes and was subsequently centrifuged at 10,000 x g for 10 minutes.  The 

collected plasma fractions were stored at -20 °C until ready for cotinine measurement.  Using the 

Cotinine Direct Elisa Kit (Immunalysis, Pomona CA), the collected plasma fractions were assayed 

for the concentration of cotinine following the manufacturer’s instructions.  Data was reported as 

nanograms per milliliter.  Levels of plasma cotinine greater than or equal to 50 ng/mL were 

considered sufficient to simulate active maternal smoking during pregnancy.  Twice daily, the 

level of CO within each exposure chamber was recorded on a carbon monoxide detector with a 

digital readout in parts per million.  TSPs were recorded twice daily by drawing air from each 

exposure chamber via a sampling port through a preweighed piece of filter paper.  Each piece of 

filter paper was then reweighed, and the calculated difference pre- and post-sampling was 

divided by the volume of air that was drawn in an interval of five minutes while sampling each 

chamber.  

 

Western Blotting 

Approximately 0.3 grams of liver was homogenized in 500 µL of ice-cold buffer [100 mM 

PO4 Buffer, 150 NaCl, 0.1% Tween, 0.1% SDS, 0.5M Tris pH 8.0, 2 tabs per 10 mL phosphatase 

and protease inhibitor cocktails, 10 µL per 10 mL EDTA, 7.5 mg/mL dithiothreitol (DTT)] using a 

Tissue-Tearor homogenizer in 2 sec on/off pulses over the span of 1 minute.  The sample was 

kept on ice during homogenization.  The concentration of protein in each sample was measured 

by the Bradford method [301].  Liver homogenates (1000 µg of total protein per sample in a total 

volume of 240 µL) were mixed with Laemmli buffer (0.25M Tris pH 6.8, glycerol, 10% SDS, trace 

bromophenol blue), reduced with DTT (1g/5mL) then heated at 70° C for 10 minutes for a final 

concentration of 4.2 µg/µL. Thirty-five µg total protein was applied to 10% acrylamide gels with 

separation at 100V (~ 2hours) in Tris-glycine run buffer (25 mM Tris, 192 mM glycine, pH 8.3) 

followed by transfer to PVDF membrane at 70V for 2 hours in non-reducing buffer (Tris-Glycine 
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buffer; 25 mM Tris; 192 mM glycine, pH 8.3 with 20% ethanol). Following blocking in 5% non-fat 

dry milk in TBS-T solution (Tris-buffered Saline-Tween; 137 mM NaCl, 20 mM Tris-Base pH 7.6, 

0.1% Tween-20), the blots were incubated overnight at 4°C with primary antibody (SIRT1 Santa 

Cruz #sc-15404, 1/500 dilution; PEPCK Santa Cruz #sc-271029, 1/500 dilution; GAPDH Cell 

Signaling #5174S, 1/5000 dilution; NAMPT Thermo-Fisher #PA5-23198, 1/1000 dilution; 

SULT2A1 Thermo-Fisher #PA5-12243, 1/1000 dilution; CYP8B1 Thermo-Fisher #PA5-37088, 

1/1000 dilution; Catalase Cell Signaling #14097, 1/5000 dilution; SOD2 Cell Signaling #13194, 

1/1000 dilution) diluted in non-fat dry milk in TBS-T.  After three 10-minute washes in TBS-T, 

blots were incubated with secondary antibody complexed to horseradish peroxidase (anti-mouse, 

Thermo #32430; anti-rabbit, Cell Signaling #7074S) in 5% non-fat dry milk diluted in TBS-T at 

room temperature for 3 hours. After three successive washes in TBS-T, blots were developed 

with LumiGLO chemiluminescent reagent and peroxide (Cell Signaling Technology #7003S, 

Danvers, MA), and visualized with a Bio-Rad Gel Doc XR+ system (Bio-Rad Laboratories, 

Hercules, CA). Following visualization, blots were washed briefly in TBS-T and incubated with 

Coomassie stain (0.1% Coomassie Brilliant Blue G250 Dye in 1:1 methanol:water) for 10 

minutes, followed by two 10 minute washes in destaining solution (5:4:1 ethanol:water:acetic 

acid), and a final wash for 5 minutes in deionized water.  Blots were briefly air-dried, placed on a 

scanner, then scanned into a digital format for import into ImageJ.  Quantification of total protein 

staining and target protein bands was performed in ImageJ by measuring pixel density for each 

sample.  The expression of the target protein was normalized per sample by the pixel density of 

the total protein stain for each sample. 

 

Liver Triglyceride Assay 

 Liver tissue (approximate weight of 0.10 grams) was incubated in 350 µL of ethanolic 

NaOH at 55 ˚C overnight with periodic vortexing.  The following morning, sample volume was 

adjusted to 1000 µL with 1:1 H2O:70% reagent grade EtOH then centrifuged for 5 minutes at 

4500 g.  The supernatant was placed into a new tube, diluted to 1200 µL with 1:1 H2O: 70% 

reagent grade EtOH and vortexed.  Two hundred microliters of the diluted supernatant were 
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mixed with 215 µL of MgCl2.  After incubating on ice for 10 minutes, the sample was centrifuged 

for 5 minutes, followed by placing the supernatant into a new tube. 

 Six microliters of sample or glycerol standard (Sigma #G7793) were mixed with 194 µL of 

free glycerol reagent (Sigma #F6428) and assayed with free glycerol reagent used as a blank.  

The microtiter plate was incubated at 37˚C for 15 minutes, and then absorbance was read at 540 

nm.  Triolein equivalents in samples were calculated as mg triglyceride/gram tissue. 

 

Linear Mixed-Effects Modeling 

 Linear mixed-effects modeling using the lme4 R package [302] was conducted to assess 

the independent and synergistic effects of prenatal CSE, postnatal adult diet, and sex of the 

offspring on phenotypic characteristics and hepatic protein expression levels.  Repeated 

measures analysis was also incorporated.  The general equation utilized to model the repeated 

measures data is given by: 

 

Eq. 1:  Variable of Interest ~ 1 + Week*Sex*Exposure*Diet + 

(Week|Litter/Individual Offspring) + (Week|Litter:Sex) + (Week|Litter:Diet) 

 

Where Week*Sex*Exposure*Diet indicates modeling of fixed effects for the week of diet 

challenge, sex of the offspring, prenatal exposure, and postnatal diet.  All possible interactions 

between the four fixed effects were considered with offspring treated as individuals. The 

(Week|Litter/Individual Offspring) term indicates the weeks of the diet challenge set as a random 

slope and the identity of individual offspring within each litter set as a random intercept.  The 

random intercept was set this way to account for the fact that each individual offspring is more 

likely to be similar to other littermates than offspring from different litters.  The goal of this was to 

help control potential confounding of results due to potential natural variance between litters.  The 

Week variable was set as a random slope to account for the fact that the rate of change from one 

week to the next may be variable and not constant.  For the (Week|Litter:Sex) and 

(Week|Litter:Diet) terms, the random intercept was modeled as a separate random litter intercept 
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per sex and diet.  These additional random intercept terms were used to account for potential 

baseline differences due to the litter that offspring belong to with respect to the sex of the 

offspring and what diet they were maintained on.  The general equation used for endpoint data 

(body weight and total calories consumed at the end of the diet challenge, offspring activity, body 

fat tissue percentage, liver triglyceride assay, and hepatic protein expression) is given by: 

 

Eq. 2:  Variable of Interest ~ 1 + Sex*Exposure*Diet + (1|Litter) + (1|Litter:Sex) + (1|Litter:Diet) 

 

The above equation 2 is similar to 1 but without the Week variable.  For each analysis conducted, 

there were issues with fitting random effects models due to the occurrence of singular fits.  For 

the general models listed above, random effects terms were systematically removed until each 

model successfully converged and no longer resulted in singular fits.  Any non-significant random 

effects, interaction terms, or fixed effects were systematically tested for using ANOVA and 

removed using AIC and BIC as the criteria for a good model fit to the data.  After this process the 

most parsimonious model was considered finalized for downstream analysis.  Post-hoc testing 

was conducted using t-tests for specific a priori contrasts of interest using the finalized models 

with the emmeans R package [303] in which multiple testing was corrected for using the Holm-

Bonferroni method [304].  One of the sets of contrasts tested for was the effect of CSE versus 

Sham exposure:  the effect of CSE versus Sham within Male offspring on a Control Low-fat Diet, 

Male offspring on a High-fat Diet, Female offspring on a Control Low-fat Diet, and Female 

offspring on a High-fat Diet.  The second set of contrasts tested for the effect of High-fat Diet 

versus Control Low-fat Diet:  High-fat Diet vs Control Low-fat Diet within Male Sham offspring, 

Male CSE offspring, Female Sham offspring, and Female CSE offspring.  The last set of 

contrasts tested for the effect of the sex of the offspring:  Female versus Male offspring within 

Sham offspring on a Control Low-fat Diet, Sham offspring on a High-fat Diet, CSE offspring on a 

Control Low-fat Diet, and CSE offspring on a High-fat Diet.  These sets of contrasts were chosen 

since they were salient to the hypotheses to be tested.  The first week and the first two weeks of 
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the weight and calorie consumption data, respectively, were removed to control for acclimation 

effects to new diets. 

 

Results 

Cigarette Smoke Exposure Conditions and Birth Weight of Offspring 

 The carbon monoxide level in the cigarette smoke exposure chamber was 110.88 ppm +/- 

8.096 ppm while total suspended particulates averaged 29.14 mg/m3
 +/- 8.34 mg/m3.  These values 

are consistent with previous cigarette smoke exposures performed by the Neal and Pisano labs 

(138 ppm +/- 19.8 ppm CO and 25.4 mg/m3
 +/- 6.5 mg/m3 TSP [40]; 128 ppm +/- 3.0 ppm CO and 

29.2 mg/m3
 +/- 2.6 mg/m3 TSP [41]).  The values of each of these measures of CSE were below 

the limit of detection in the Sham chamber.  Plasma cotinine levels in sperm positive females were 

84.57 ng/ml +/- 8.34 ng/mL.  Plasma cotinine exceeded 50 ng/ml, one accepted cutoff to designate 

a woman as an active smoker [305].  The plasma cotinine levels in the Sham sperm positive dams 

were below the limit of detection of 4 ng/mL.  The CSE offspring exhibited a low birth weight 

phenotype with a ~15% reduction in birth weight similar to that found in our prior studies [35-37].  

Catch-up growth was evident in the CSE offspring by the initiation of diet challenge (Figure 2).  

Male and female offspring did not vary in weight on week one based on prenatal exposure.  

Offspring subjected to in utero cigarette smoke exposure exhibited the classic phenotype of low 

birth weight followed by subsequent catch-up growth as predicted by the Barker Hypothesis. 

 

CSE-Induced Offspring Body Weight Perturbations Modulated by Diet and Sex of Offspring 

As shown in Figure 2, throughout the 3-month diet challenge, male CSE offspring exhibited 

a trend toward weekly weight gain both on a low-fat control and a high-fat diet (p = 0.06 for both).  

Male offspring exhibited increased weight gain when maintained on a high-fat diet regardless of 

prenatal exposure (p < 0.05).  Female offspring exposed to cigarette smoke during gestation 

exhibited a significant increase in body weight gain when maintained on a high-fat diet (p < 0.05) 

while no difference in weight was observed when female offspring exposed in utero to cigarette 

smoke were maintained on a low-fat control diet.  Female offspring exhibited increased weight gain  
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Figure 2 – CSE exacerbates diet-modulated sex-specific weight gain – The body weight of 

offspring was recorded weekly after the initiation of the diet challenge.  Prenatal exposure 

to cigarette smoke exacerbated weight gain in female offspring maintained on a high-fat 

diet.  Prenatal exposure to cigarette smoke resulted in a trend toward increased weight 

gain in male offspring when maintained on either diet.  Maintenance of offspring on a high-

fat diet resulted in increased weight gain regardless of prenatal exposure or sex.  Male 

offspring maintained on a high-fat diet gained weight more rapidly than female offspring 

on the same diet.  * p < 0.05, + p < 0.1. 
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when maintained on a high-fat diet regardless of prenatal exposure (p < 0.05).  Male offspring 

gained weight more rapidly than female offspring when maintained on a high-fat diet (p < 0.05).  

There was not an evident difference in weight gain between male and female offspring when 

maintained on a low-fat control diet.  There was no impact of prenatal exposure on weight gain 

between male and female offspring.  When subjected to only in utero cigarette smoke exposure, 

female offspring appear resistant to the increased weight gain evident in male offspring, but this 

resistance was not observed when female offspring were maintained on a high-fat diet. 

In Figure 3, at the end of the 12-week diet challenge period at nine months of age, 

maintenance of all male offspring on a high-fat diet resulted in a significant increase in body 

weight gain regardless of prenatal exposure (p < 0.05).  Male offspring exposed in utero to 

cigarette smoke and then maintained on a high-fat diet exhibited a trend toward increased body 

weight (p = 0.06).  Male CSE offspring maintained on a control low-fat diet exhibited no difference 

in body weight.  Female CSE offspring maintained on a high-fat diet exhibited a significant 

increase in body weight compared to female Sham offspring maintained on a high-fat diet (p < 

0.05).  There was no impact of prenatal CSE on body weight in female offspring maintained on a 

low-fat control diet.  Female CSE offspring on a high-fat diet exhibited a significant increase in 

body weight compared to female CSE offspring maintained on control low-fat diet (p < 0.05).  

Sham female offspring maintained on a high-fat diet exhibited a trend toward increased body 

weight compared to Sham female offspring maintained on a low-fat control diet (p < 0.10).  In all 

instances, male offspring were significantly heavier than female offspring regardless of prenatal 

exposure or diet (p < 0.05).  The manifestation of the Barker Hypothesis in female offspring 

subjected to in utero cigarette smoke exposure was conditional on the composition of the diet in 

adulthood.  These female offspring outcomes were in contrast to the consistent manifestation of 

the Barker Hypothesis in the male offspring exposed in utero to cigarette smoke regardless of the 

diet they were maintained on in adulthood. 

 

Impact of Prenatal Cigarette Smoke Exposure and Adult Diet Challenge on Calorie 

Consumption and Measures of Offspring Activity 
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Figure 3 – CSE-induced increase in sex-specific weight and modulated by diet – By the end 

of the 12-week diet challenge, all offspring maintained on a high-fat diet exhibited increased weight 

as compared to those offspring maintained on a low-fat control diet, except the female Sham 

offspring.  When maintained on a high-fat diet, male offspring subjected in utero to cigarette smoke 

resulted in a trend toward increased weight, whereas the corresponding female offspring exhibited 

a significant increase in weight.  In all instances, male offspring were heavier than female offspring.  

* p < 0.05. 
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As shown in Figure 4, the average total calories (kcals) consumed per animal during the 12-week 

diet challenge did not differ based on prenatal exposure or sex of the offspring.  Consumption of a 

high-fat diet, however, resulted in significantly more kcals consumed by both male and female 

offspring as compared to male and female offspring maintained on a control diet (p < 0.05).  The 

calories consumed weekly were monitored during the 12-week diet challenge (Figure 5).  Male 

offspring exposed in utero to cigarette smoke and maintained on a high-fat diet, at the time of diet 

challenge at age six months, exhibited lower weekly consumption of diet over time compared to 

male Sham offspring maintained on a high-fat diet (p < 0.05).  There was no impact of prenatal 

CSE on weekly consumption in male offspring maintained on a low-fat control diet.  There was no 

impact of a high-fat diet on weekly consumption in male offspring.  Female offspring exposed in 

utero to cigarette smoke and maintained on a high-fat diet exhibited lower weekly consumption of 

diet over time compared to female Sham offspring maintained on a high-fat diet (p < 0.05).  

Female Sham offspring maintained on a high-fat diet consumed fewer calories over time 

compared to female Sham offspring maintained on a low-fat control diet (p < 0.05).  Female 

offspring maintained on a high-fat diet consumed more calories over time compared to male 

offspring when maintained on a high-fat diet (p 0.05).  It should be noted that in Figure 5, the 

magnitude of all significant differences amounted to less than 1 kcal/week.  Overall, the one 

notable change observed in calorie consumption was the greater total calories consumed by 

offspring maintained on a high-fat diet versus a low-fat control diet during the entire 12-week diet 

challenge.  Although there were minor differences as a result of prenatal exposure to cigarette 

smoke, it seems that calorie consumption did not have a meaningful impact on prenatal CSE-

induced weight gain observed in exposed offspring. 

 One potential mediator of offspring body weight differences, general activity level, was 

assessed by open-field activity in the offspring.  Only the offspring maintained on a high-fat diet 

underwent open-field testing.  As shown in Figure 6A, prenatal CSE did not affect the speed of 

offspring maintained on a high-fat diet compared to Sham offspring maintained on a high-fat diet.  

Female Sham offspring maintained on a high-fat diet exhibited a trend toward increased activity 
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Figure 4 – High-fat diet results in greater calorie consumption – The number of calories (kcal) 

consumed throughout the diet challenge was monitored.  Neither sex of the offspring nor prenatal 

exposure influenced the total amount of calories consumed for the duration of the diet challenge.  

All offspring that were fed a high-fat diet consumed more total calories than those offspring 

maintained on a low-fat control diet.  * p < 0.05. 
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Figure 5 – Minor effect of CSE on the rate of calorie consumption modulated by diet – The 

number of calories (kcal) consumed weekly were tracked throughout the diet challenge.  Week 1 

was excluded to allow for acclimation to a new diet.  When maintained on a high-fat diet, offspring 

with prenatal exposure to cigarette smoke consumed calories at a lower rate.  Female offspring fed 

a high-fat diet consumed more calories at a higher rate than male offspring maintained on a high-

fat diet.  Female offspring fed a high-fat diet consumed calories at a higher rate than female 

offspring maintained on a low-fat control diet.  All effect sizes were < 1 calorie/week.  * p < 0.05. 
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Figure 6A – Female CSE offspring traveled more quickly on HFD than male CSE offspring - 

Open field assessment was used to determine the average speed of individual offspring while 

traveling in the arena.  Female offspring exposed in utero to cigarette smoke and maintained on a 

high-fat diet were more active than male CSE offspring maintained on a high-fat diet.  Female Sham 

offspring maintained on a high-fat diet resulted in a trend toward increased activity compared to the 

male Sham offspring maintained on a high-fat diet.  * p < 0.05, + p < 0.1. 
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compared to male Sham offspring maintained on a high-fat diet (p = 0.08).  Female CSE offspring 

maintained on a high-fat diet were significantly more active than male CSE offspring maintained 

on a high-fat diet (p < 0.05).  As shown in Figure 6B, the distance each offspring traveled 

mirrored the speed each offspring traveled in Figure 6A.  Female CSE offspring maintained on a 

high-fat diet traveled more than male CSE offspring maintained on a high-fat diet (p < 0.05).  As 

shown in Figure 6B, female Sham offspring maintained on a high-fat diet exhibited a trend toward 

increased distance traveled compared to male Sham offspring maintained on a high-fat diet (p = 

0.07).  In Figure 6C, the percentage of trial duration spent in the inner region of the arena, a 

measure of anxiety where mice naturally try to minimize the time spent in the center of the arena, 

was increased in female CSE offspring maintained on a high-fat diet compared to female Sham 

offspring maintained on a high-fat diet (p < 0.05).  Female CSE offspring maintained on a high-fat 

diet spent more of the trial in the inner region of the arena compared to male CSE offspring 

maintained on a high-fat diet (p < 0.05).  The absence of effects of prenatal CSE on the level of 

activity suggests a lack of contribution to the increased weight gain observed in Figure 2 in 

offspring subjected to in utero cigarette smoke exposure. 

 

CSE-Induced Sex-Specific Effect on Offspring Adiposity is Modulated by Diet 

 Body composition (lean and fat tissue mass, bone mass, and density) was assessed by 

DEXA scanning.  As shown in Figure 7, male CSE offspring maintained on a low-fat control diet 

exhibited a trend toward an increased percentage of fat tissue compared to Sham male offspring 

maintained on the same diet (p = 0.06).  Male CSE offspring maintained on a high-fat diet 

exhibited no difference compared to male Sham offspring maintained on a high-fat diet.  Male 

offspring maintained on a high-fat diet exhibited increased body fat compared to male offspring 

maintained on a low-fat control diet regardless of prenatal exposure (p < 0.05).  Female CSE 

offspring on a high-fat diet exhibited an increased percentage of body fat tissue compared to 

Sham female offspring maintained on a high-fat diet (p < 0.05).  There was no impact of prenatal 

CSE on body fat in female offspring maintained on a low-fat control diet.  Female offspring 

maintained on a high-fat diet exhibited increased body fat compared to female offspring 
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Figure 6B – Female CSE offspring traveled more on HFD than male CSE offspring – Open 

field assessment was used to determine the distance individual offspring traveled in the arena.  

Female offspring exposed in utero to cigarette smoke and maintained on a high-fat diet traveled 

more than male CSE offspring maintained on a high-fat diet.  Female Sham offspring maintained 

on a high-fat diet resulted in a trend toward increased distance traveled compared to the male 

Sham offspring maintained on a high-fat diet.  * p < 0.05, + p < 0.1. 
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Figure 6C – Female CSE offspring on HFD display less anxious behavior than male CSE 

offspring – Open field assessment was used to determine the level of anxiety behavior in individual 

offspring.  Female CSE offspring maintained on a high-fat diet spent a greater duration of the trial 

in the inner portion of the arena compared to female Sham offspring maintained on a high-fat diet, 

thereby displaying less anxiety behavior.  Female offspring exposed in utero to cigarette smoke 

and maintained on a high-fat diet spent in the inner portion of the arena was increased compared 

to male CSE offspring maintained on a high-fat diet.  * p < 0.05. 
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Figure 7 – Prenatal CSE increases body fat accumulation in female CSE offspring 

maintained on a HFD – DEXA scanning was used to characterize the body composition of the 

offspring, including fat, lean, and bone mass.  Male offspring exposed in utero to cigarette smoke 

and maintained on a low-fat control diet resulted in a trend toward increased percentage body fat.  

An increase in percentage body fat was observed in female CSE offspring maintained on a high-

fat diet.  A high-fat diet increased the percentage of body fat in all offspring regardless of prenatal 

exposure or sex of the offspring.  Male CSE offspring maintained on a low-fat control diet had a 

greater percentage of body fat compared to female CSE offspring maintained on a low-fat control 

diet.  Male Sham offspring maintained on a high-fat diet exhibited an increased percentage of body 

fat compared to female Sham offspring maintained on a high-fat diet.  * p < 0.05, + p < 0.1.  
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maintained on a low-fat control diet regardless of prenatal exposure.  Sex had no impact on body 

fat Sham offspring maintained on a low-fat control diet.  Female Sham offspring maintained on a 

high-fat diet exhibited a decreased percentage of body fat tissue compared to male Sham 

offspring maintained on a high-fat diet (p < 0.05).  Female CSE offspring maintained on a control 

low-fat control diet exhibited a lower percentage of body fat tissue compared to male CSE 

offspring maintained on a control low-fat control diet (p < 0.05).  Sex had no impact on body fat of 

CSE offspring maintained on a high-fat diet.  It was not surprising that Sham offspring maintained 

on a high-fat diet for 12 weeks resulted in fat accumulation; what was surprising is the impact in 

utero cigarette smoke exposure had on fat accumulation in male Sham offspring maintained on a 

low-fat control diet, and female CSE offspring maintained on a high-fat diet.  Our results 

demonstrated that in utero exposure to cigarette smoke in conjunction with maintenance on a 

high-fat diet caused exacerbated body fat accumulation in female offspring, mirroring the 

exacerbation of weight gain in female CSE offspring maintained on a high-fat diet.   

 Considering that maintenance on a high-fat diet can result in the development of fatty 

liver disease, liver triglycerides were measured in offspring at the end of the diet challenge.  We 

anticipated that three months of being maintained on a high-fat diet should induce fatty liver in all 

male offspring as this is an established phenomenon [306-312].  As shown in Figure 8, liver 

triglycerides were significantly increased in all male offspring maintained on a high-fat diet 

compared to male offspring maintained on a control diet regardless of prenatal exposure (p < 

0.05).  Prenatal CSE had no impact on liver triglyceride levels in offspring maintained on control 

low-fat diet.  Neither prenatal exposure or diet had an impact on liver triglyceride levels in female 

offspring.  There was no impact of the sex of offspring on liver triglyceride levels in offspring 

maintained on a low-fat control diet.  Female offspring maintained on a high-fat diet had 

significantly lower levels of liver triglycerides compared to male offspring maintained on a high-fat 

diet regardless of prenatal exposure (p < 0.05).  Despite the exacerbation of weight gain and 

body fat accumulation seen in female CSE offspring maintained on a high-fat diet, they appeared 

to be resistant to developing liver lipid accumulation, suggesting an innate resistance of female 

offspring to fatty liver development.  It was evident for male offspring that in utero exposure to 
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Figure 8 – Male offspring maintained on a low-fat diet do not exhibit liver fat deposition in 

response to prenatal CSE – Total liver triglycerides were measured from the livers of offspring.  

Prenatal exposure to cigarette smoke did not affect liver triglyceride concentrations.  Male offspring 

maintained on a high-fat diet had significantly higher liver triglyceride levels than male offspring fed 

a low-fat control diet.  Male offspring maintained on a high-fat diet had significantly higher liver 

triglyceride levels than the female offspring maintained on a high-fat diet.  Female offspring were 

resistant to liver fat deposition.  * p < 0.05.
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cigarette smoke did not exert an additional impact on high-fat diet-induced fatty liver.  

 

CSE-Induced Changes in Hepatic Protein Expression of SIRT1-Related Enzymes are 

Modulated by Diet 

 As shown in Figure 9A, hepatic SIRT1 protein expression is lower in male CSE offspring 

maintained on a low-fat control diet compared to male Sham offspring maintained on a low-fat 

control diet (p < 0.05).  Prenatal CSE had no impact on SIRT1 expression in male offspring 

maintained on a high-fat diet.  High-fat diet feeding in male offspring resulted in decreased 

hepatic protein expression of SIRT1 regardless of prenatal exposure (p < 0.05).  Hepatic SIRT1 

expression in female offspring was unaffected by either prenatal exposure or diet.  In males, 

prenatal CSE followed by low-fat diet maintenance results in a similar reduction in hepatic SIRT1 

when maintained on a high-fat diet. 

Figure 9B shows the hepatic expression of NAMPT, an enzyme responsible for 

generating NAD+, a necessary cofactor for many cellular processes, including SIRT1 deacetylase 

activity.  Hepatic expression of NAMPT in male offspring is unimpacted by either prenatal 

exposure or diet.  In female offspring, the hepatic expression of NAMPT was unaffected by 

prenatal CSE when maintained on either diet.  Female offspring maintained on a high-fat diet 

exhibit increased hepatic expression of NAMPT compared to female offspring maintained on a 

low-fat control diet regardless of prenatal exposure (p < 0.05).  It was anticipated that the hepatic 

expression of NAMPT would be decreased in response to high-fat diet maintenance having been 

maintained on a high-fat diet for 12-weeks, but unexpectedly male offspring were unaffected 

while female offspring exhibited increased NAMPT expression 

The hepatic expression of GAPDH, an essential regulatory enzyme in glycolysis, which is 

downregulated by SIRT1 through the deacetylation of PGC-1α, is shown in Figure 10A.  In male 

CSE offspring maintained on a low-fat control diet, hepatic GAPDH expression was decreased 

compared to male Sham offspring maintained on a low-fat control diet (p < 0.05).  Hepatic 

GAPDH expression was increased in male CSE offspring maintained on a high-fat diet compared 

to male Sham offspring maintained on a high-fat diet (p < 0.05).  High-fat diet maintenance in 



57 

 

 

Figure 9A – Prenatal CSE or high-fat diet independently decrease hepatic SIRT1 protein expression in male offspring – Male CSE offspring 

maintained on low-fat control diet exhibited decreased hepatic SIRT1 expression compared to male Sham offspring maintained on a low-fat control 

diet.  Male offspring maintained on a high-fat diet exhibited decreased hepatic SIRT1 expression compared to male offspring maintained on a low-

fat control diet regardless of prenatal exposure.  In male offspring, maintenance on a high-fat diet resulted in decreased expression of SIRT1 

irrespective of prenatal exposure.  There was no observed difference in hepatic SIRT1 expression in female offspring regardless of either prenatal 

exposure or diet.   * p < 0.05.  

5
7

 



58 

 

 

Figure 9B – Prenatal CSE does not impact hepatic NAMPT expression, while HFD increases NAMPT expression in female offspring – 

Prenatal CSE had no observable effect on hepatic NAMPT levels in offspring.  High-fat diet maintenance in female offspring increased hepatic 

NAMPT levels compared to low-fat control diet maintenance in female offspring.  Hepatic NAMPT levels in male offspring were not impacted by 

either prenatal exposure or diet.  * p < 0.05. 
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Figure 10A – The impact of prenatal CSE on hepatic GAPDH expression is highly modulated by diet in male offspring – Male CSE offspring 

maintained on a low-fat control diet exhibited decreased hepatic GAPDH expression compared to male Sham offspring maintained on a low-fat 

control diet.  Male CSE offspring maintained on a high-fat diet exhibited increased hepatic GAPDH expression compared to male Sham offspring 

maintained on a high-fat diet.  High-fat diet decreased hepatic GAPDH protein expression in male Sham offspring compared to the low-fat control 

diet in male Sham offspring.  A high-fat diet also increased hepatic GAPDH expression in male CSE offspring compared to the low-fat control diet 

in male CSE offspring.  A high-fat diet also increased GAPDH expression in female CSE offspring compared to low-fat control diet in female CSE 

offspring.  * p < 0.05. 
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male Sham offspring decreased hepatic GAPDH expression relative to control low-fat control diet 

maintenance in male Sham offspring (p < 0.05). High-fat diet maintenance in male CSE offspring 

increased hepatic GAPDH protein expression relative to low-fat control diet maintenance in male 

CSE offspring (p < 0.05).  Prenatal CSE had no impact on hepatic GAPHD expression in female 

offspring maintained on either diet.  High-fat diet maintenance had no impact on hepatic GAPDH 

expression on female Sham offspring.  High-fat diet maintenance in female CSE offspring 

increased hepatic GAPDH expression compared to low-fat control diet maintenance in female 

CSE offspring (p < 0.05).  Our results demonstrate that in male offspring, the impact of in utero 

cigarette smoke exposure on hepatic GAPDH expression was conditional on diet.  The 

expression of GAPDH in male offspring mirrored that of SIRT1 in Figure 9A except male CSE 

offspring maintained on a high-fat diet where SIRT1 expression was decreased while GAPDH 

expression was increased.  These results appear to be a mismatch in expression levels in male 

offspring since we anticipated GAPDH levels to be in opposition to SIRT1 levels based on the 

typical inhibitory action of SIRT1 activity on GAPDH levels.  In female offspring maintained on a 

high-fat diet, the increase in NAMPT expression seems inconsistent with the high levels of 

GAPDH since NAMPT, an enzyme whose activity is increased in a low-energy state, would seem 

in opposition to the promotion of glycolytic pathways. 

PEPCK is a regulatory gluconeogenic enzyme that catalyzes the conversion of 

oxaloacetate into phosphoenolpyruvate during gluconeogenesis and is upregulated by SIRT1 

activity.  As seen in Figure 10B, male CSE offspring maintained on a low-fat control diet exhibited 

decreased hepatic PEPCK expression relative to male Sham offspring maintained on a low-fat 

control diet (p < 0.05).  Prenatal CSE exhibited no impact on hepatic PEPCK expression in male 

offspring maintained on a high-fat diet.  High-fat diet maintenance in male Sham offspring 

decreased hepatic PEPCK hepatic expression compared to low-fat control diet maintenance in 

male Sham offspring (p < 0.05).  High-fat diet maintenance exhibited no impact on the hepatic 

expression of PEPCK in male CSE offspring.  The hepatic expression of PEPCK in female 

offspring was entirely unaffected by either prenatal exposure or diet.  Similar to the results seen in  
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Figure 10B – Prenatal CSE and high-fat diet independently decrease PEPCK expression in male offspring – Male CSE offspring maintained 

on a low-fat control diet exhibited decreased hepatic PEPCK expression compared to male Sham offspring maintained on a low-fat control diet.  

High-fat diet maintenance in male Sham offspring exhibited decreased PEPCK expression compared to low-fat control diet maintenance in male 

Sham offspring.  PEPCK expression was not impacted in female offspring by either prenatal exposure or diet.  * p < 0.05. 
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Figure 9A, hepatic PEPCK expression in male offspring was decreased independently by in utero 

cigarette smoke exposure or maintenance on a high-fat diet.  The expression of SIRT1 and 

PEPCK should match in general due to the stimulatory effect SIRT1 activity has gluconeogenic 

pathways.  The results suggest that whenever SIRT1 expression was decreased in male 

offspring, SIRT1 activity was likely to be decreased as well since a concomitant decrease in 

PEPCK was observed as well.  These results also mean that since SIRT1 and PEPCK were 

unaffected in female offspring, SIRT1 activity and gluconeogenesis pathways were relatively 

unimpacted. 

The hepatic expression of SULT2A1, CYP8B1, SOD2, and Catalase was also measured.  

No impact of prenatal cigarette smoke exposure was observed for these for proteins.  High-fat 

diet maintenance increased expression of SULT2A1 and CYP8B1 in female offspring and 

decreased expression of SULT2A1 in male offspring regardless of prenatal exposure (data not 

shown, p < 0.05).  In the context of fatty liver disease, lipid accumulation in the liver results in the 

production of ROS induced by the peroxidation of lipids.  One way the liver mitigates this 

phenomenon is by converting excess fatty acids into cholesterol and then into bile acids.  In light 

of this, female offspring maintained on a high-fat diet on our study exhibited increased expression 

of both CYP8B1 and SULT2A1, two enzymes that are important in the bile acid synthetic 

pathway.  These results may reflect the resistance of female offspring to lipid accumulation, which 

is in agreement with the lack of liver triglycerides in female offspring maintained on a high-fat diet. 

Conversely, the decreased expression of SULT2A1 in male offspring maintained on a 

high-fat diet may be reflective of increased susceptibility to lipid accumulation in the liver, which is 

in agreement with the observed increase in liver triglycerides observed in male offspring 

maintained on a high-fat diet.  Another process that often occurs to mitigate ROS generation from 

lipid peroxidation is the induction of antioxidant enzymes to neutralize ROS, such as SOD2 or 

Catalase.  However, the lack of any impact on the expression of either of these enzymes 

suggests that if lipid accumulation was occurring in any of the offspring, they have not progressed 

to the later stages of fatty liver disease.  It is evident that in light of the results observed in our 
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study, none of the offspring appear to be in later stages of fatty liver disease that are typically 

characterized by oxidative damage to hepatic tissues. 

 

Discussion 

In our current study, the presence of a low birth weight phenotype in the murine model of 

gestational CSE (GD1-19) was detected with subsequent catch-up growth by the initiation of the 

diet challenge (six months of age).  The serum cotinine levels present in the cigarette smoke-

exposed dams exceeded 50 ng/mL, a cutoff that is indicative of active maternal smoking [305].  

The low birth weight phenotype that was observed in our gestation-only exposure model is similar 

to that observed in other models of murine CSE [35-41].  Unlike models of both pre- and 

postnatal exposure to cigarette smoke (GD6-PD21) in which offspring exhibited low birth weight 

and had not caught up by six months of age [35-40], the exposed offspring in our gestation-only 

CSE model did exhibit catch-up growth by six months of age in both male and female offspring.  

Other studies using a gestation-only model of cigarette smoke exposure found a decrease in 

body weight of 10—12% that persisted 14 [313] and 30 days [314] after birth.  The model 

showing a persistent weight decrement at 14 days after birth was exposed only from E8-E20, with 

urine cotinine levels in the dams of 5,800 ng/mL [313].  The study showing decrements at 30 

days utilized a nose cone-based inhalation model where the mothers were exposed for three 

weeks before breeding [314] that could have impacted neonatal growth.  That same study could 

have confounding introduced by the animal restraint that needs to be used to conduct a nose-

cone inhalation exposure.  According to their methodology, before breeding, females were 

subjected to two exposure sessions of varying duration per day [314].  Additionally, they did not 

define duration in terms of time, but in the number of puffs per session (24 puffs per session 

throughout gestation) [314].  A study examining the effects of neonatal thirdhand cigarette smoke 

exposure in C57BL/6 mice found that offspring housed with terrycloth exposed to 5600 mg of 

cigarette smoke particulate material from birth to three weeks after birth had decreased weight at 

3-weeks old and complete catch-up growth at 5-weeks old [315].  It appears that the overall 

duration, intensity, timing, and maternal or paternal-only exposure to cigarette smoke exposure 
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may play a role in whether catch-up growth occurs in affected offspring.  It is evident that other 

models of pre- and periconception CSE also found low birth weight with persistent decrements in 

weight.  The current study, which monitored weights for a considerably greater length of time, 

found catch-up growth.  It should be noted that these studies vary in type of cigarette smoke 

exposure (nose cone or whole body) and other measures of duration and quantity of cigarette 

smoke exposure.  The current model of prenatal cigarette smoke exposure does fit the Barker 

Hypothesis with prototypical low birth weight followed by subsequent catch-up growth in exposed 

offspring. 

It was clear from the data presented from our current study that in utero cigarette smoke 

exposure exacerbates sex-specific weight gain in sexually mature mice with modulation by 

postnatal diet.  This finding is similar to a study by Ng et al. that found that 13- to 14-week old 

mouse female offspring exposed in utero to cigarette smoke and maintained on a control diet were 

heavier than air-exposed offspring [46].  They also found that female CSE offspring, when 

maintained on a high-fat diet for two weeks, were not different from air-exposed female offspring 

[46].  That same study found male offspring exposed in utero to cigarette smoke and maintained 

on a high-fat diet weighed more than air-exposed male offspring, with no impact of prenatal CSE 

when male offspring were fed a control diet [46].  However, in our study it was the female offspring 

exposed to prenatal cigarette smoke and high-fat diet maintenance that exhibited elevated body 

weight gain with no impact of prenatal CSE when maintained on a control diet.  There are several 

methodological differences between our study and the Ng et al. study that complicates the 

comparison of outcomes.  For example, the cigarette smoke produced in the Ng et al. study resulted 

in a lower CO level (23.4 ppm vs. 110.88 ppm), a lower total suspended particulate level (17.1 

mg/m3 vs 29.14 mg/m3), used a different strain of mice (B6C3F1 vs C57BL/6), different start of 

gestational exposure (4 days after mating vs 6 days after mating), different timing and duration of 

diet challenge (began at 11-12 weeks and lasted for 2 weeks vs began at 6 months and lasted for 

3 months), and different fat percentage content of the high-fat diet fed to offspring (21.2% fat versus 

19.9 % fat) [46].  Despite methodological differences, it is evident that in our study adult female 

offspring subjected to in utero cigarette smoke exposure and maintained on a high-fat diet are more 
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impacted than were the male offspring.  Overall, we found that the impact of in utero cigarette 

smoke exposure in sexually mature mice results in differential weight gain that is modulated by 

both the postnatal diet and sex of the offspring. 

 In the current study, prenatal cigarette smoke exposure had a limited impact on the total 

quantity of calories consumed during the diet challenge. Maintenance of offspring on a high-fat diet 

increased the total amount of calories consumed by offspring regardless of prenatal exposure.  As 

far as we know, there has not been a published study before ours that observed calorie intake of 

adult offspring maintained on various diets in an animal model of prenatal CSE.  One study has 

found that children exposed in utero to cigarette smoke had higher fat consumption and total body 

fat [316].  A cross-sectional study found that adolescent children subjected to in utero cigarette 

smoke exposure consume more fat through epigenetic modification of Oprm1 [317].  In the current 

study, we were not able to recapitulate the effects of prenatal cigarette smoke exposure on calorie 

consumption found in the literature.  However, the fact that calorie consumption was tracked on a 

per-cage basis rather than on an individual basis weakens the interpretation of our findings.  Future 

studies should track individual calorie consumption in order to fully determine the role of prenatal 

cigarette smoke exposure on eating habits during adulthood. 

The current study documents that female offspring exposed in utero to cigarette smoke did 

display less anxiety behavior, as demonstrated by more time spent in the central region in an open 

field assessment.  We did not characterize differences in offspring anxiety in CSE offspring 

maintained on a low-fat control diet.  Unlike our study, a prospective cohort study found that 

prenatal exposure to cigarette smoke was associated with children age two to three years exhibiting 

more anxiety behavior, particularly in girls [318].   Similar to our study, a study utilizing both pre- 

and postnatal cigarette smoke exposure in mice found that exposed female offspring were less 

anxious [44].  Similar to our study, rats exposed in utero to 5mg/kg/day to nicotine through an 

implanted minipump from gestational day 8-20 exhibited less anxiety behavior at 12-14 months of 

age [319].  It is evident that prenatal CSE or nicotine influences anxiety behavior; however, the 

directionality and which sex is more affected appears to vary.  Even though our results are not 
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entirely consistent with the literature, it is clear that in utero cigarette smoke exposure impacts 

neurobehavioral development.   

The current study also found that female offspring exposed in utero to cigarette smoke and 

maintained on a high-fat diet were more active than the corresponding male offspring both in terms 

of average speed traveled, and the total distance traveled.  Similar to the outcomes in our study, a 

prospective cohort study found that children subjected to prenatal cigarette smoke exposure were 

more hyperactive [320].  Unlike our study, however, the male offspring were more affected and had 

more attention and aggression behavioral problems [320].  A previously mentioned pre- and 

postnatal exposure found prenatal CSE offspring were more active anxious [44], much like the 

female CSE offspring from our current study.  A study found male B6C3F1 mice exposed in utero to 

cigarette smoke from GD4 to parturition exhibited increased locomotor activity at four weeks after 

birth and 4-6 months of age, similar to our current findings, and was found to co-occur with 

increased aggression [321].  A mouse model using C57BL/6 mice found that prenatal exposure to 

nicotine resulted in increased male offspring locomotor activity [322], unlike our study, where it was 

female offspring that displayed increased locomotor activity.  The only notable difference seen 

concerning in utero cigarette smoke exposure was the decreased anxious behavior seen in female 

CSE offspring when maintained on a high-fat diet.  We did not characterize differences in offspring 

activity in CSE offspring maintained on a low-fat control diet.  It did not appear from our results that 

activity mediated the impact of in utero cigarette smoke exposure on exacerbated weight gain in 

female offspring with high-fat diet maintenance.  Despite the increased levels of activity seen in 

female CSE offspring compared to male CSE offspring, female CSE offspring still experienced a 

significant increase in weight gain when fed a high-fat diet while male CSE offspring only exhibited 

a trend toward increased weight gain when maintained on a high-fat diet.  This exemplifies just how 

profoundly the metabolism of CSE female offspring is adversely affected with respect to resisting 

high-fat diet induced weight gain.  

 The current study demonstrates that male offspring exposed to in utero cigarette smoke 

exhibited differences in hepatic protein expression of several key metabolic enzymes involved with 

glucose metabolism, including decreased SIRT1, GAPDH, and PEPCK expression whereas livers 
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of female offspring were unaffected.  The literature has examples of decreased SIRT1 and NAMPT 

expression in the liver of mice fed a high-fat diet [261, 262]; however, in the current study, high-fat 

diet consumption resulted in no impact on hepatic NAMPT expression in male offspring and 

increased hepatic NAMPT expression in female offspring.  The current study did replicate in the 

male offspring the decrease in hepatic SIRT1 expression with high-fat diet feeding that is seen in 

the literature [261, 262], but not for female offspring maintained on a high-fat diet.  In a murine 

model of pre- and postnatal cigarette smoke exposure, decreased hepatic SIRT1 expression in 6-

month old offspring was observed but increased PEPCK expression [40]; however, that study used 

mice in a fed state whereas the current study the offspring were in a fasted state before 

euthanization.  Fasting state is essential to consider when interpreting these results since a typical 

fasting response includes increased SIRT1 expression and activity along with increased 

gluconeogenic activity via increased expression and activity of PEPCK and GAPDH in the 

gluconeogenesis direction.   

A remaining question about SIRT1 and Sirt1 expression is whether the change is due to 

the intrauterine growth restriction or directly by the cigarette smoke exposure.  One study found in 

C57BL/6 mice given twice daily nicotine plus fed a high-fat diet for ten weeks had both reduced 

hepatic SIRT1 protein and RNA expression [323].  Male A/J mice injected with nicotine three times 

a week for ten weeks after an initial injection with NNK 2 weeks before that exhibited decreased 

SIRT1 expression in the lung [324]. A more recent study found that ApoE-/- mice subjected to e-

cigarette exposure containing 2.4% nicotine for 12 weeks exhibited decreased hepatic SIRT1 

expression along with a decreased ratio of NAD+/NADH and increased hepatic PARP1 (a known 

consumer of NAD+) expression [325].  Although these studies were not prenatal exposures like in 

our studies, they offer some evidence that cigarette smoke may be able to influence SIRT1 levels 

directly rather than indirectly by causing intrauterine growth restriction.  Given the evidence, it 

seems probable that the hepatic SIRT1 decrease in expression seen in the male offspring in our 

current study could be due to direct effects of cigarette smoke on hepatic tissue that remain all the 

way into adulthood, however, more studies need to be done to determine whether this is a direct 

action of cigarette smoke or indirectly via intrauterine growth restriction.   
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 There were several limitations to the current study that prevented extracting as much 

information as we could have.  For example, tracking individual offspring weight from birth until the 

end of the study was not conducted.  This tracking would have allowed the determination of 

associations between magnitudes of low birth weight and subsequent expression of hepatic 

proteins and phenotypic characteristics at adulthood.  In future studies, we plan to take measures 

to allow weight tracking across the entire lifetime of offspring to strengthen the outcomes observed.  

Another limitation was not observing the expression of SIRT1 and other hepatic proteins in sibling 

animals at six months of age, before the initiation of the diet challenge.  Taking note of this would 

have provided information on the expression of SIRT1 on a diet that was intermediate in fat content 

(~12%) and any change in expression after three months of maintenance on a low-fat control diet 

(~5% fat) or a high-fat diet (~20% fat).  Taking note of this would also be essential to note since 

this design would have allowed us to investigate how prenatal CSE impacted modulation of SIRT1 

on these diets.  In a currently ongoing experiment, we have modified our design presented here to 

record differences in hepatic protein expression at a point before induction of a diet challenge in 

order to address this issue.  Using a low-fat diet as a control for the diet challenge may have 

complicated the interpretation of our results by modulating the total calories consumed.  The choice 

of control diet is an essential distinction since, as mentioned earlier in this report, SIRT1 is a sensor 

of the current cellular energy status where its activity is classically upregulated in a low-energy 

status.  As a result, our choice of a low-fat diet as the control of the high-fat diet potentially 

exacerbated any differences in SIRT1 expression and the expression of related glucose metabolic 

enzymes.  In the future, we plan to modify our experimental design to use a more appropriate 

control for high-fat diet maintenance.  Despite these limitations, we think the data presented here 

provide new insight into the sex-specific impacts on the liver in a model of in utero cigarette smoke 

exposure and how this is modulated by adulthood diet. 

Our model of prenatal cigarette smoke exposure (from gestational day 6-19) resulted in 

sexually dimorphic weight gain and hepatic SIRT1 protein and enzyme expression associated with 

glucose metabolism.  The low birth weight predicted by the Barker Hypothesis was apparent.  The 

resistance to perturbation by prenatal cigarette smoke exposure observed in female offspring is 
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potentially due in part to increased levels of estrogen signaling in females.  We hypothesize that 

females may be more resistant to developing non-alcoholic fatty liver disease in part due to being 

able to resist perturbation of hepatic SIRT1 expression and subsequent modulation of glucose 

metabolic pathways.  Future studies could confirm this by examining levels of estrogen signaling 

activation in offspring exposed in utero to cigarette smoke and search for correlations with the 

phenotypes demonstrated in the current study.  Future studies should examine whether the effects 

on hepatic protein expression observed here also are present at earlier time points in the lifecycle 

of in utero cigarette smoke-exposed offspring such as at weaning or during the perinatal period.  

The possibility that the perturbations induced by prenatal cigarette smoke exposure occurs 

regardless of the current energy status of the animal or specifically disrupts the fasting response to 

a low-energy state is the focus of subsequent chapters. 
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CHAPTER III:  IN UTERO CIGARETTE SMOKE EXPOSURE PERTURBS HEPATIC 

EXPRESSION OF METABOLIC PATHWAYS IN A SES-DEPENDENT MANNER SHORTLY 

AFTER BIRTH 

Introduction 

The reported rate of smoking during pregnancy in the U.S. has fallen over the years.  The 

earliest recorded data from 1967 and 1980 National Natality Surveys show the rate of smoking 

while pregnant in women age 20 years or older dropped from 40% to 25% in Caucasian women 

and from 33% to 23% in African American women [326].  It has continued to fall since, with the 

overall rate of smoking during pregnancy in the U.S. being 18.4% [50], 12.2% [327], and 10.7% 

[328] in 1990, 2000, and 2010, respectively.  According to the latest data available in the United 

States, smoking during pregnancy has fallen from a rate of 8.4% to 7.2% from 2014 to 2016 [47, 

48].  An initial examination makes it seem as though public health campaigns to inform the public 

about the adverse effects of in utero cigarette smoke exposure to the developing fetus have been 

successful.  Examining the data from Kentucky and West Virginia however reveals maternal 

smoking during pregnancy occurs at a rate of 18.4% and 25.1%, respectively [47].  It is evident that 

although overall the rate of smoking during pregnancy has gone down dramatically, there are still 

states that have disproportionately higher rates than others.   

A point of concern is that most of this data is highly dependent on self-reported smoking 

during pregnancy.  For example, a study utilizing NHANES data from 1999-2006 found that 22.9% 

of pregnant women fail to disclose their current smoking status, which was confirmed by serum 

cotinine levels that exceeded a defined cut-off for actively smoking [51].  Underreporting of smoking 

during pregnancy was also evident in a study comparing 2003 data from the Pregnancy Risk 

Assessment Monitoring System (PRAMS) and from states that had implemented the revised 2003 

standard birth certificate.  In that study, it was shown that PRAMS found that 14.0% of women 

smoked during pregnancy while data from the revised 2003 standard birth certificate found that 
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11.3% of women smoked during pregnancy [329].  Another example is a study utilizing data from 

New York City and Vermont, where the rate of smoking during pregnancy was 10.4% using the 

2003 U.S. Standard Birth Certificate and 14.1% using medical records [330].  Utilizing data that 

relies on self-reported maternal smoking habits potentially results in significantly underreporting the 

rates of smoking during pregnancy.  It is hypothesized that a reason for this phenomenon of 

underreporting is due to more well-educated women being concerned about being judged by their 

peers more harshly than less-educated women are [48].  For example, the study utilizing data from 

New York City and Vermont found a significantly higher discrepancy between birth certificate and 

medical records; the more educated the mother was and if they had private insurance vs Medicaid 

coverage [330].  These studies make evident that if proper care is not taken to collect data 

accurately, we risk significantly underestimating the rate of smoking during pregnancy, and by 

extension, the number of infants exposed in utero to cigarette smoke. 

A significant primary outcome of cigarette smoke exposure (CSE) during gestation in 

infants is intrauterine growth retardation, which presents as low birth weight [28, 29, 138-142].  

Models of mice [35-41], as well as rats [43], also exhibit this phenotype.  As described in the 

Introduction of Chapter II, the Barker Hypothesis predicts increased metabolic disease during 

adulthood as a result of prenatal exposures such as maternal caloric restriction.  As mentioned in 

Chapter II, the similarities between prenatal cigarette smoke/nicotine exposure and maternal 

caloric restriction result in a common manifestation of low birth weight and catch-up growth 

phenotypes. These similarities in phenotypes between prenatal cigarette smoke exposure and 

maternal caloric extension, by extension results in similar risks for metabolic disease in adulthood.  

Although the impact of prenatal cigarette smoke exposure has been documented in epidemiological 

studies, not much has been done to examine precisely how the metabolism of offspring exposed 

in utero to cigarette smoke on a mechanistic level.  In studies previously conducted by our lab with 

a mixed-sex murine model using pre- and postnatal exposure to cigarette smoke, it was found that 

exposed offspring had a perturbed metabolism [35, 331].  Our lab showed that exposed offspring 

at PD21 experience decrements in glucose, lipid, and amino acid metabolic proteins according to 

proteomic analysis [35].  Specifically, in a fed state, 6-month-old exposed offspring had decreased 
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levels of hepatic SIRT1 protein as well as increased levels of PEPCK and PGC1α protein and 

decreased serum glucose levels [331].  Exposed offspring also exhibited oxidative stress in the 

form of depleted glutathione [331].  One crucial facet of the Barker hypothesis that is not addressed 

by these studies is the examination of the sex-specific impact of prenatal CSE on liver metabolism.  

Additionally, these studies do not address whether liver metabolic changes can be detected in the 

perinatal period and whether these changes persist into adulthood.  Determining this would allow 

for the possible development of targeted early-life interventions in cases of prenatal exposure to 

cigarette smoke. 

As mentioned previously in Chapter II, SIRT1 is a NAD+-dependent enzyme that 

deacetylates acetyllysine residues on proteins and is induced through the sensing of low energy 

status through levels of NAD+ [255].  As an essential sensor of low-energy status, SIRT1 

deacetylates key transcription factors in order to promote the hepatic fasting response, including 

induction of gluconeogenic and lipolytic processes while inhibiting glycolytic and lipogenic 

processes [255].  After deacetylating transcription factors responsible for the regulation of these 

metabolic processes, these modified transcription factors result in the induction or inhibition of key 

metabolic enzymes.  For example, SIRT1-mediated deacetylation of FOXO1 [332] and PGC-1α 

[333] leads to enhanced transcription of selected gluconeogenic enzymes such as PEPCK.  

Seemingly paradoxically, SIRT1 deacetylation of the gluconeogenic transcription factor CRTC2 

promotes its degradation [258]; however, this is thought to occur in order to sustain 

gluconeogenesis at a steady rate during a prolonged fasting response [334].  Through 

deacetylation, SIRT1 also enhances the activity of PPARα [335, 336], a critical transcription factor 

for promoting transcription of lipolytic enzymes such as EHHADH and MCAD.  Further, in support 

of the fasting response, SIRT1 deacetylates the lipogenic transcription factor SREBP-1c [337], 

which results in lower transcription of lipogenic enzymes such as FAS in order to avoid conflicting 

with lipolytic processes.  There are additional metabolic processes that SIRT1 influences, such as 

the bile acid sensor and transcription factor FXR, where deacetylation promotes protein stability, 

thereby enhancing its transactivation function on downstream targets such as SHP [256], an 

essential negative regulator of CYP7A1 expression. 
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The objective of this study was to characterize the sex-specific impact of prenatal CSE on 

hepatic SIRT1 expression on target gene expression during the neonatal period, at a time at which 

low birth weight is no longer evident (1.5 weeks of age).  We utilized an established mouse 

inhalation model of cigarette smoke exposure that mimics active maternal smoking during 

pregnancy throughout the entire fetal development period (GD1-GD19).  The mRNA gene 

expression levels for SIRT1 targets, which are indicative of activation or suppression, are indirect 

indicators of SIRT1 activity.  A similar in utero cigarette smoke exposure paradigm leads to sex-

specific modulation of fat deposition, weight gain, liver SIRT1, GAPDH, and PEPCK protein 

expression, as seen in Chapter II. 

 

Methods 

Animal Exposure 

Female C57BL/6 mice maintained on breeder chow (LabDiet 5015) were mated overnight 

and checked the following day for the presence of vaginal sperm.  Sperm positive status was 

considered gestational day (GD) 0 for the exposure timing.  On GD1, female C57BL/6 mice were 

placed into either a cigarette smoke exposure (CSE) chamber or a sham exposure (ambient 

filtered room air) chamber for 6 hours/day daily from GD1 to GD19.  Cigarette smoke exposure 

was carried out using a Teague TE-10C exposure apparatus (Teague Industries) smoking 

Marlboro Red cigarettes, which was the most commonly smoked cigarette at the time of model 

development, using the FTC method of smoking (2-second puff per minute).  After parturition, 

dams with litters were maintained on breeder chow.  At 1.5 weeks of age, representative offspring 

of each litter were euthanized by carbon dioxide asphyxiation.  At euthanization, the excised liver 

was frozen on dry ice and stored at -80°C. 

 

Cigarette Smoke Exposure Monitoring via Measurement of Carbon Monoxide, Total 

Suspended Particulates, and Plasma Cotinine 

At the start of each day of exposure, the level of CO within the cigarette smoke exposure 

chamber was allowed to increase rapidly by fully closing the dilutor valve until the level reached 
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110 parts per million (ppm) as detected with a commercially available carbon monoxide detector 

with a digital readout.  Once this level was reached, CO levels were further adjusted by opening 

and closing the dilutor valve as appropriate to maintain a target CO level ranging between 110 to 

150 ppm.  At the end of exposure each day, the dilutor valve was fully opened to allow rapid 

dissipation of any remaining CO in the cigarette smoke exposure chamber.  TSPs were recorded 

twice daily by drawing air from each exposure chamber via a sampling port through a preweighed 

piece of filter paper.  The filter paper was then reweighed, and the pre- and the post-sampling 

difference was divided by the volume of air drawn through the sampling device in five minutes.  

Levels of CO were also recorded at the time of TSP recordings.  In order to quantitate the 

magnitude of cigarette smoke exposure, cotinine, the primary metabolite of nicotine, was 

measured in representative females immediately after cessation of the exposure period on days 

14-18.  Tail vein blood was collected from dams within 30 minutes of the end of exposure into 

heparinized capillary tubes and was subsequently centrifuged at 10,000 x g for 10 minutes.  The 

collected plasma fractions were stored at -20 °C until ready for cotinine measurement.  Using the 

Cotinine One-Step ELISA Detection Kit (International Diagnostic Systems; St. Joseph, MI), the 

collected plasma fractions were assayed for the concentration of cotinine following the 

manufacturer’s instructions.  The absorbance of the reaction substrate was measured at 450 nm 

using a SpectraMax 190 Microplate Reader (Molecular Devices, San Jose, CA) and reported as 

nanograms per milliliter.  Levels of plasma cotinine greater than or equal to 50 ng/mL were 

considered sufficient to simulate active maternal smoking during pregnancy. 

 

Offspring Health and Serum Glucose Measurement 

 Animals were housed and maintained at the University of Louisville Research Resources 

Center, an Association for Assessment and Accreditation of Laboratory Animal Care accredited 

facility.  All protocols were approved by the UofL Institutional Animal Care and Use Committee.  

Cages for animal housing were changed weekly, unlimited food and water provided, and 

maintained in an environment with a 12-hour light/dark cycle with controlled temperature and 

humidity.  Offspring were weighed daily and checked for health indicators such as levels of 
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activity and eye-opening.  Blood was collected from offspring after euthanization via cardiac 

puncture using heparinized syringes.  Blood samples were subsequently centrifuged at 10,000 x 

g for 10 minutes, and the separated plasma fraction was collected and stored at -80 °C. 

 Using the Glucose (HK) Assay Kit (Catalog # GAHK20; Sigma-Aldrich; St. Louis MO), the 

collected plasma fractions were diluted 50-fold and were assayed for the concentration of glucose 

following the manufacturer’s instructions.  The absorbance of the reaction substrate was 

measured at 340 nm using a SpectraMax 190 Microplate Reader (Molecular Devices, San Jose, 

CA) and reported as mg glucose/mL.   

 

Western Blotting 

Liver was homogenized in ice-cold buffer [100 mM PO4 Buffer, 150 NaCl, 0.1% Tween, 

0.1% SDS, 0.5M Tris pH 8.0, 2 tabs per 10 mL phosphatase and protease inhibitor cocktails, 10 

µL per 10 mL EDTA, 7.5 mg/mL dithiothreitol (DTT)] using a Tissue-Tearor homogenizer in 2-

second on/off pulses over the span of 1 minute. The concentration of protein was measured by 

the Bradford method [301].  Liver homogenates were mixed with Laemmli buffer (0.25M Tris pH 

6.8, glycerol, 10% SDS, trace bromophenol blue), reduced with DTT (1g/5mL) then heated at 70° 

C for 10 minutes. Thirty-five µg total protein was applied to 10% acrylamide gels with separation 

performed at 100V for 2 hours in Tris-glycine buffer (25 mM Tris, 192 mM glycine, pH 8.3) 

followed by transfer to PVDF membrane at 70V for 2 hours in a non-reducing buffer [Tris-Glycine 

buffer (25 mM Tris, 192 mM glycine, pH 8.3) with 20% ethanol]. Following blocking in 5% non-fat 

dry milk in TBS-T solution (Tris-Buffered Saline-Tween, 137 mM NaCl, 20 mM Tris-Base pH 7.6, 

0.1% Tween-20), the blots were incubated overnight at 4°C with primary antibody (SIRT1 1/500, 

Santa Cruz #sc-15404; PEPCK 1/500, Santa Cruz #sc-271029; HK 1/500, Cell Signaling #2024; 

NAMPT 1/1000, Thermo-Fisher #PA5-23198; ac-lysine 1/250, Millipore #AB3879; ac-FKHR 

1/250, Santa Cruz #sc-49437; FKHR 1/500, Santa Cruz #sc-11350) diluted in non-fat dry milk in 

TBS-T. After three washes of 10 minutes each in TBS-T, blots were incubated with secondary 

antibody complexed to horseradish peroxidase (anti-mouse, Thermo #32430; anti-rabbit, Cell 

Signaling #7074S) in non-fat dry milk diluted in TBS-T at room temperature for 3 hours. After 
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three successive washes in TBS-T, blots were developed with LumiGLO chemiluminescent 

reagent and peroxide (Cell Signaling Technology #7003S, Danvers, MA), and visualized with a 

Bio-Rad Gel Doc XR+ system (Bio-Rad Laboratories, Hercules, CA). Following visualization, 

blots were washed briefly in TBS-T and incubated with Coomassie stain (0.1% Coomassie 

Brilliant Blue G250 Dye in 1:1 methanol:water) for 10 minutes, followed by two 10 minute washes 

in destaining solution (5:4:1 ethanol:water:acetic acid), and a final wash for 5 minutes in 

deionized water.  Blots were briefly air-dried and scanned for quantitation of total protein. 

 

Real-Time Quantitative PCR (RT-qPCR) 

 At euthanization, a section of the liver was equilibrated overnight in RNAlater at 4°C, after 

which it was placed into long term storage at -80°C.  A portion of RNAlater-stabilized liver was 

used for RNA extraction using the Qiagen RNeasy Mini Kit (Qiagen, Germantown, MD) per 

manufacturer’s instructions.  The final elution was carried out using two aliquots of nuclease-free 

water and was stored at -80°C.  RNA concentration was determined using a NanoDrop 8000 

Spectrophotometer (Thermo Scientific, Waltham, MA).  Using two µg of each isolated RNA 

sample as input, cDNA was synthesized using the High-Capacity cDNA Reverse Transcription Kit 

following the manufacturer instructions (Applied Biosystems cat# 4368813).  cDNA reactions 

were carried out as 20 µL reactions in PCR tubes placed in a Bio-Rad MyCycler (Bio-Rad 

Laboratories, Hercules, CA).  The cDNA reactions were set for an initial 10 minutes at 25°C, 

followed by 2 hours at 37°C and 5 minutes at 85°C.  The cDNA reaction tubes were held at 4°C 

until placed into storage at -20°C. 

Mouse 18S rRNA gene was used as the reference gene for RT-qPCR. The genes of 

interest have the forward and reverse primer sequences listed in Table 1. PCR reactions were 

carried out as 10 µL reactions in 96 well plates and ran using a Bio-Rad iQ5 Multicolor Real-Time 

PCR Detection System (Bio-Rad Laboratories, Hercules, CA) in 96 well plates. The PCR 

reactions were set for an initial 3 min at 95°C, followed by 40 cycles of 15 sec at 95°C and 1 min 

at 60°C using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad Laboratories, Hercules, 

CA).  Each PCR plate was filled out with three technical replicates per sample and three  
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Table 1:  Forward and reverse primer pairs for RT-qPCR 

  

# Name Forward Primer Reverse Primer

1 SIRT1 GCAGGTTGCGGGAATCCAA GGCAAGATGCTGTTGCAAA

2 NAMPT CATAGGGGCATCTGCTCATT GCTGCTGGAACAGAATAGCC

3 PGC-1A ATGTGTCGCCTTCTTGCTCT ATCTACTGCCTGGGGACCTT

4 CRTC2 GCCACATTGACAGTTCTCCA AAGTGTCTTGGGGGTTAGGG

5 SREBP-1C ATGGATTGCACATTTGAAGACATGCTC CCTGGGCTGCTGGGGCCTG

6 PPARa AGAAGTTGCAGGAGGGGATT TCGGACTCGGTCTTCTTGAT

7 FGF21 CAAATCCTGGGTGTCAAAGC ATTGTAACCGTCCTCCAGCA

8 FGFR4 GACCAAACCAGCACCGTGGCTGTGAAGATG GTTTCCCTTGGCGGCACATTCCACAATCAC

9 B-Klotho CGAGCCCATTGTTACCTTGT CTCCAAAGGTCTGGAAGCAG

10 CYP7A1 CAGGGAGATGCTCTGTGTTCA AGGCATACATGCAAAACCTCC

11 CYP8B1 TTCGACTTCAAGCTGGTCGA CAAAGCCCCAGCGCCT

12 SHP AAGGGCACGATCCTCTTCAA CTGTTGCAGGTGTGCGATGT

13 BSEP CTGCCAAGGATGCTAATGCA CGATGGCTACCCTTTGCTTC

14 OSTB GATGCGGCTCCTTGGAATTA GGAGGAACATGCTTGTCATGAC

15 GAPDH AAATGGTGAAGGTCGGTGTGAAC CAACAATCTCCACTTTGCCACTG

16 PEPCK TATGCTGATCCTGGGCATAA CACGTTGGTGAAGATGGTGT

17 G6Pase TCTGTCCCGGATCTACCTTG GTAGAATCCAAGCGCGAAAC

18 HK TATGAAGACCGCCAATGTGA TTTCCGCCAATGATCTTTTC

19 PKM2 TCGCATGCAGCACCTGATT CCTCGAATAGCTGCAAGTGGTA

20 EHHADH CCGGTCAATGCCATCAGT CTAACCGTATGGTCCAAACTAGC

21 FAS GCTGCGGAAACTTCAGGAAAT AGAGACGTGTCACTCCTGGACTT

22 MCAD GGTTTGGCTTTTGGACAATG TGACGTGTCCAATCTACCACA

23 FXR TCCACAACCAAGTTTTGCAG TCTCTGTTTGTTGTACGAATCCA

24 LXR-a TGAGAGCATCACCTTCCTCA TGGAGAACTCAAAGATGGGG

25 LRH1 AACGATGTCCCTACTGTCGATT CATGCGGTCGGCTCTTAC

26 HNF4A CAGCAATGGACAGATGTGTGA TGGTGATGGCTGTGGAGTC

27 IL-6 CTGCAAGAGACTTCCATCCAG AGTGGTATAGACAGGTCTGTTGG

28 MCP-1 CAGGTCCCTGTCATGCTTCT GAGGATCACCAGCAGCAGGT

29 TNF-a AAGCCTGTAGCCCACGTCGTA AGGTACAACCCATCGGCTGG

30 COL1A1 TAGGCCATTGTGTATGCAGC ACATGTTCAGCTTTGTGGACC

31 PDK-4 GCCTTGGGAGAAATGTGTGT CACTGGCTTTTTGAGTGCAA

32 P53 GTCACAGCACATGACGGAGG TCTTCCAGATGCTCGGGATAC

33 18S CTCAACACGGGAAACCTCAC CGCTCCACCAACTAAGAACG
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template-free controls per primer pair.  Data were analyzed using the ΔΔCT method followed by 

log2 transformation of fold-change values. 

 

Imputation of Missing Weight Data 

Offspring weights were recorded from PD1 (the day after birth) until weaning (PD19).  

Occasionally, throughout the neonatal monitoring period, recording of daily weighs was missed.  

In order to utilized linear mixed-effects modeling, imputation was performed.  Imputation was 

accomplished using the mice R package [338] by the predictive mean matching method utilizing a 

value of m, the number of datasets to impute, of 50 with 100 max iterations.  At the end of the 

imputation procedure, all 50 potential imputed values generated for each missing value were 

averaged together and merged back with the original dataset to render it complete.  This 

completed dataset was then used for offspring weight analyses.    

 

Linear Mixed-Effects Modeling 

Linear mixed-effects modeling using the lme4 R package [302] was conducted to assess 

the effect of prenatal CSE on hepatic protein and mRNA expression levels.  The general mixed-

effects equation utilized to model the data is given by: 

 

Eq. 1:  Variable of Interest ~ 1 + Exposure + (1|Cohort) 

 

Where Exposure indicates modeling of fixed effects for prenatal exposure.  The (1/Cohort) term 

indicates the identity of the cohort set as a random intercept.  The random intercept was set this 

way to account for the fact that each individual offspring is more likely to be similar to other 

littermates than offspring from different litters.  The goal of this was to help control potential 

confounding of results due to potential natural variance between litters.  In instances where all 

individuals within each comparison to be done were all from the same cohort, the following 

equation was used instead:  
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Eq. 2:  Variable of Interest ~ 1 + Exposure 

 

The above equation 2 is similar to 1 but without the (1|Cohort) random intercept term.  For some 

analyses, fitting random-effects models were not possible due to the occurrence of singular fits.  

For the models using Eq. 1 listed above that resulted in a singular fit, Eq. 2 was instead used.  

Post-hoc testing was conducted using t-tests for specific a priori contrasts of interest using the 

finalized models with the emmeans R package [303].  The contrast of interest for all RT-qPCR 

experiments was CSE versus Sham.  For analysis of RT-qPCR data, log2 transformed fold-

change values were used while Western blot analysis used protein expression values normalized 

by total protein. 

 

Results 

Cigarette Smoke Exposure Parameters and Low-Birth Weight Phenotype 

 The average carbon monoxide level in the cigarette smoke exposure chamber was 147 

ppm +/- 43 ppm, while total suspended particulates averaged 26.8 mg/m3
 +/- 7.5 mg/m3.  Plasma 

cotinine levels in sperm positive females averaged 68.17 ng/ml +/- 12.1 ng/mL, though not all 

potential pregnancies resulted in the delivery of live litters.  Plasma cotinine exceeded 50 ng/ml, a 

level sufficient to designate a human as an active smoker [305].  The values of each of these 

measures of CSE were below the limit of detection in the Sham chamber.  The plasma cotinine 

levels in the Sham sperm positive dams were below the limit of detection of 4 ng/mL. 

In Figure 11A, there was no difference in the weight trajectory between prenatal CSE and 

Sham offspring.  During the first four days after birth, the low-birth-weight phenotype remained 

evident in the prenatal CSE offspring, after which there was no longer a significant difference 

between weights in the prenatal CSE and Sham offspring groups.  These results demonstrate a 

phenotype of low-birth-weight with subsequent catch-up growth in offspring exposed in utero to 

cigarette smoke.  In Figure 11B, the serum glucose levels of female CSE offspring were 

significantly lower compared to female Sham offspring (p < 0.05).  Serum glucose levels in male 

offspring were not impacted by prenatal CSE.  It should be noted that this decrement in serum  
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Figure 11A – Offspring exposed in utero to cigarette smoke exhibit a phenotype of low 

birth weight followed by subsequent catch-up growth – Offspring were subjected to prenatal 

CSE from GD1-GD19 daily.  After birth, the average weight of offspring in each litter was tracked 

for the first 19 days.  The inset chart represents the same data in the main chart but zoomed in on 

the first six days.  CSE offspring had lower birth weight than Sham offspring, which persisted 

through day 4 (p < 0.05), after which there was no longer a statistical difference between 

exposure.  Significant results had a p-value < 0.05, which is denoted with an * in the figure. 

  

* 
* 

* 

* 
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Figure 11B – Female offspring exposed in utero to cigarette smoke exhibit decreased 

serum glucose levels – Serum glucose was measured using collected serum from offspring at 

euthanization via a colorimetric assay.  One-way ANOVA (p = 0.03) followed by posthoc testing, 

found that female CSE offspring exhibited decreased serum glucose compared to female Sham 

offspring (p < 0.05).  No other differences were detected.  Significant results had a p-value < 0.05, 

which is denoted with an * in the figure. 
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glucose levels occurred in a fed state.  The key phenotypic changes present in models of in utero 

cigarette smoke exposure conform to the Barker Hypothesis. 

 

Prenatal CSE Modulates the Acetylation Status of Proteins and Enhances Hepatic SIRT1 

and NAMPT Expression in Male Offspring 

In Figure 12, male offspring exposed in utero to cigarette smoke exhibited increased 

hepatic expression of SIRT1 and NAMPT (p < 0.05).  A generalized decrease in protein 

acetylation was evident in both male and female offspring exposed in utero to cigarette smoke (p 

< 0.05).  Neither male nor female CSE offspring exhibited any change in the level of acetylated 

FKHR, a known SIRT1 target protein.  The increase in SIRT1 and NAMPT expression in male 

CSE offspring support the decrease in acetylated lysine protein residues found.  However, female 

CSE offspring did not exhibit changes in the expression of SIRT1 or NAMPT.  Neither male nor 

female CSE offspring exhibited changes in the expression of PEPCK or HK.  These data suggest 

that the decrease in protein acetylated lysine residues observed in female prenatal CSE offspring 

is mediated in a manner independent of SIRT1 or NAMPT expression. 

 

Effects of Prenatal CSE on Offspring Hepatic SIRT1 Regulatory Loop and Metabolic Gene 

Expression Modulated are by Sex 

Examining the effects of prenatal CSE on the hepatic expression of SIRT1 and related 

metabolic genes revealed marked differences between male and female offspring.  In Figure 13A, 

male offspring exposed to in utero cigarette smoke have increased expression of both Sirt1, 

Nampt, Pepck, Crtc2, and Pkm2 (p < 0.05), with a trend toward increased Ehhadh and Cyp7a1 

expression (p < 0.1).  In Figure 13B, female offspring exposed to prenatal CSE exhibited lower 

expression (p < 0.05) of a gluconeogenic gene (Pepck), fat metabolic genes (Pparα, Ehhadh, 

Mcad, Srebp-1c, Fas), genes involved with FXR signaling (Bsep, Fgfr4, β-Klotho, Hnf4a, Lxr-α, 

Lrh1, Cyp7a1), and genes in the SIRT1 regulatory loop (Nampt, Fxr, p53).   Female offspring 

subjected to in utero cigarette smoke also saw a trend toward decreased Sirt1, Hk, and Ost-β 

expression (Figure 13B, p < 0.01).  As seen in Figure 11B, the serum glucose levels of female  
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Figure 12A – Exposure in utero to cigarette smoke alters hepatic expression of SIRT1 and 

NAMPT in male offspring and decreases acetylation of lysine residues in all offspring – 

Protein expression was measured using the livers of male offspring euthanized on either 

postnatal day 9 or 10 in a fed state.  A) Images of Western Blots – Western blots of hepatic 

protein expression of both male and female offspring with the name of the protein probed in each 

image and its corresponding molecular weight (MW = Molecular weight marker).  Band intensities 

in each lane were normalized to the total protein present in each lane after Coomassie staining.  

The Coomassie-stained image presented is a representative image of all blots done. 
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12B 

  

Figure 12 – Exposure in utero to cigarette smoke alters hepatic expression of SIRT1 and 

NAMPT in male offspring and decreases acetylation of lysine residues in all offspring – 

Protein expression was measured using the livers of male offspring euthanized on either 

postnatal day 9 or 10 in a fed state.  B) Quantitation of Western Blots – Prenatal cigarette 

smoke exposure decreased the hepatic expression of proteins containing acetylated lysine 

residues.  In male offspring exposed to cigarette smoke in utero, the hepatic expression of both 

SIRT1 and NAMPT was increased, mirroring the increased expression of Sirt1 and Nampt 

observed.  Significant results had a p-value < 0.05, which is denoted with an * in the figure. 
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Figure 13A – Prenatal cigarette smoke exposure in male offspring increased hepatic gene 

expression of Sirt1, Nampt, and key regulatory gluconeogenic enzymes – mRNA expression 

of genes was measured using the livers of male offspring euthanized on either postnatal day 9 or 

10 in a fed state.  The expression of Sirt1, Nampt, Pepck, Crtc2, and PKM2 were significantly 

increased in male offspring in response to in utero cigarette smoke exposure, while Ehhadh and 

Cyp7a1 exhibited a trend toward increased expression.  Results are presented as the difference 

between the group means of log2 transformed data.  Significant results had a p-value < 0.05 

while trends had a p-value < 0.1. 
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Figure 13B – Prenatal cigarette smoke exposure in female offspring decreased hepatic 

expression of SIRT1-regulatory loop genes, as well as related groups of metabolic genes – 

mRNA expression of genes, was measured using the livers of female offspring euthanized on 

either postnatal day 9 or 10 in a fed state.  The expression of numerous genes in the SIRT1-

regulatory loop (not including Sirt1 itself), fat metabolism, FXR signaling, and glucose metabolism 

was significantly downregulated.  Results are presented as the difference between the group 

means of log2 transformed data.  Significant results had a p-value < 0.05 while trends had a p-

value < 0.1. 
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CSE offspring were lower compared to female Sham offspring, indicating a functional impact of 

decreased Pepck expression on systemic glucose availability.  Overall, it is apparent that female 

offspring experienced a more extensive array of hepatic gene expression changes after being 

exposed to cigarette smoke in utero.  For genes that were impacted by prenatal CSE in both male 

and female offspring, the directionality of these changes was in opposition. 

 

Discussion 

In the present current study, offspring subjected to in utero cigarette smoke exhibited a 

low-birth-weight phenotype.  After PD4, there was no longer a significant difference between 

prenatal CSE and Sham exposures indicating an early catch-up growth.  In Chapter II, offspring 

exposed in utero cigarette smoke also exhibited low birth weight with catch-up growth.  The low-

birth-weight phenotype that was observed in our gestation-only active cigarette smoke exposure 

model is similar to that observed in other models of murine CSE [35-41].  A low-birth-weight 

phenotype with subsequent catch-up growth was observed in the current study as well as the 

cohort from Chapter II, which demonstrates that our gestation-only exposure to cigarette smoke 

consistently induces a phenotype indicating the applicability of the Barker Hypothesis.  Unlike 

models with both pre- and postnatal exposure to cigarette smoke where offspring that exhibited a 

low-birth-weight and did not exhibit catch-up growth by six months of age [35-40], the offspring in 

our gestation-only CSE model did exhibit catch-up growth in both male and female offspring.  

Passive, or environmental, cigarette smoke exposure throughout gestation in a murine model has 

also been shown to produce a low birth weight phenotype [41].  The overall duration and dose of 

cigarette smoke play a role in whether or not catch-up growth occurs in affected offspring. 

As described herein, prenatal cigarette smoke exposure affects the hepatic expression of 

SIRT1 and related metabolic genes in a sex-dependent manner.  Male offspring exposed to 

cigarette smoke in utero exhibited increased hepatic expression of SIRT1 and NAMPT.  This 

observed increase mirrors the increase in hepatic Sirt1 and Nampt in the current study in male 

offspring subjected to prenatal cigarette smoke.  Levels of hepatic proteins with acetylated lysine-

residues were also decreased in male offspring in response to prenatal cigarette smoke exposure.  
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All this data indicates a generalized decrease in the acetylation of proteins in male offspring during 

the early neonatal period.  There is the probability that the decreased acetylated protein expression 

observed with in utero cigarette smoke-exposed male offspring in the current study is in part due 

to other deacetylase enzymes or a decrease in acetylation activity in enzymes such as P300.   

Male offspring subjected to prenatal cigarette smoke exposure exhibited increased hepatic 

expression of both Sirt1 and Nampt.  Knowing that Sirt1 is typically upregulated during a fasting 

response [255], and Nampt promotes SIRT1-induced deacetylation via increased levels of NAD+ 

[255] and that the offspring from the current study were in a fed state when euthanized, this is 

indicative of an inappropriately timed fasting response in male offspring when exposed in utero to 

cigarette smoke.  An inappropriately timed fasting response in male offspring in response to 

prenatal cigarette smoke exposure is further supported by the upregulation of both the 

gluconeogenic enzyme Pepck and gluconeogenesis-promoting transcription factor Crtc2.  Male 

offspring also exhibited increased Pkm2 when subjected to prenatal cigarette smoke.  Pyruvate 

kinase, which Pkm2 encodes, is an essential final regulatory step for glycolysis and acts as the 

final step of glycolysis.  Normally Pkm2 would be inhibited when gluconeogenic processes are 

occurring, but the presence of upregulation in both gluconeogenic-related genes and Pkm2 further 

support the notion of inappropriately timed gluconeogenesis in male offspring when subjected to in 

utero cigarette smoke.  A previous publication from our lab examining hepatic proteomic changes 

in response to in utero cigarette smoke exposure, lower protein expression of gluconeogenic 

enzymes Fructose 1,6-Bisphosphatase and Pyruvate Carboxylase was evident in CSE offspring at 

weaning, but there was only a trend toward decreased activity of those enzymes [35].  However, 

that study did not examine proteomic changes on a sex-specific basis [35], so those results are not 

directly comparable to the findings in the current study.  Male offspring exposed in utero to cigarette 

smoke exhibited signs of inappropriately timed-induction of gluconeogenic gene expression.  

Whether this hepatic molecular phenotype persists into later life stages will be critical in determining 

how manifestations of the Barker Hypothesis develop in adulthood. 

Female CSE offspring in the current study exhibited no changes in hepatic protein 

expression or acetylated FKHR.  However, female CSE offspring did exhibit decreased expression 
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of proteins with acetylated-lysine residues.  In light of the gene expression changes observed in 

female prenatal CSE offspring, it appears that there are additional mechanisms at play that are 

influencing gene expression other than SIRT1 activity by modulation of SIRT1 protein or mRNA 

levels.  SIRT1 is known to have its activity modulated by post-translational modification [339], such 

as by increasing nuclear localization or increasing its enzymatic activity.  SIRT1 also is modulated 

by factors such as AROS, which, when bound, improves the deacetylase activity of SIRT1 [271].  

SIRT1 is negatively regulated by the microRNA miR-34a [262] as well as the long non-coding RNAs 

MALAT1 [340] and FLRL2 [341].  Regardless of the mechanism, it is evident that female offspring 

exposed in utero to cigarette smoke possibly have perturbed acetylation or deacetylation processes 

that impacted the acetylation status of proteins. 

Female offspring exposed in utero to cigarette smoke exhibited decreased expression of 

several Sirt1-related genes, including Nampt, Fxr, and P53, with a trend decrease in Sirt1.  

Downregulation of FXR-signaling, glucose metabolism, and fat metabolism was also observed in 

female offspring subjected to prenatal cigarette smoke.  We also found that female CSE offspring 

exhibited decreased serum glucose levels in a fed state.  One possibility for these results is that 

the inherent female resistance predicted by the Barker Hypothesis becomes true later in their 

lifetime but not before sexual maturity when estrogen signaling in female offspring begins in 

earnest.  Considering how in utero exposure to cigarette smoke induces intrauterine growth 

restriction [28, 29], it is possible that the number of downregulated hepatic gene expression in 

conjunction with decreased serum glucose levels in a fed state is a reflection of delayed functional 

liver ontogeny.  These results may be reflective of either an underdeveloped liver or a failure in 

adequately detecting serum glucose or insulin levels, considering the importance of the liver in 

maintaining serum glucose levels. 

Male offspring had a higher number of protein expression changes relative to females in 

response to in utero cigarette smoke exposure.  However, female offspring have a higher number 

of affected hepatic genes (17 genes in female offspring versus 7 genes in male offspring).  These 

results were surprising considering the Barker Hypothesis suggests that male offspring should be 

more affected by in utero environmental perturbations compared to female offspring [150].  The 
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data presented in the present current study suggests that the sex-specific manifestations of the 

Barker Hypothesis may be conditional on the life stage being examined.  Our findings of in utero 

CSE-induced sex-dependent hepatic protein and gene expression changes in offspring shortly after 

birth is novel.  These findings represent a step forward in characterizing the impact of maternal 

smoking during pregnancy on offspring liver molecular phenotype. 

At the time of writing, no other published study has examined the sex-specific impact of 

prenatal cigarette smoke exposure on the expression of genes in the liver shortly after birth.  

Several studies have looked at gene expression changes occurring in fetal liver tissues [342-344], 

but not shortly after birth.  In one of those studies, prenatal CSE in human fetal liver (11-21 weeks 

gestation) altered the mRNA expression of enzymes from the 1-carbon cycle such that naturally 

occurring differences were abolished as well as reducing mRNA transcript levels of IGF2 in male 

offspring to levels closer to female offspring via increased methylation of related sites [342].  A 

proteomics study using human fetal liver tissue after 12-16 weeks of gestation showed in response 

to prenatal CSE affected pathways in glucose metabolism disorder in females and pathways in 

apoptosis, inflammation, cell proliferation and homeostasis in males [343].  In a study using human 

fetal liver tissue from the second trimester, prenatal CSE induced increased mRNA expression of 

phase I metabolic enzymes such as Cyp1a1 and Ephx1 in males in addition to Cyp3a7 and Ephx1 

in females [344].  One study using a C67BL/6 model of prenatal cigarette smoke exposure found 

that there are histological changes that were present 24 hours after birth, such as increased 

numbers of immune cells and decreased glycogen deposition, but they did not measure gene 

expression [345].  Together, these studies show that exposure in utero to cigarette smoke has a 

sex-specific impact on the hepatic molecular phenotype before even the neonatal period examined 

in the present current study.  Future studies with our model should include characterization of the 

changes to the hepatic molecular phenotype of fetal tissue in order to investigate any association 

with later life stages.  Our current model represents progress in elucidating how hepatic gene 

expression of metabolically relevant proteins are impacted by in utero exposure to cigarette smoke. 

Some limitations were present in the present current study.  For example, not tracking 

individual offspring weight from birth until the end of the study limited the ability to associate the 
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magnitude of prenatal CSE-induced low birth weight with specific hepatic molecular phenotypes.  

In future studies, we plan on taking measures to allow weight tracking across the entire lifetime of 

offspring to strengthen the outcomes observed.  Another limitation was the present current study 

looking at a single time point.  The phenotype that manifests as predicted by the Barker process is 

one that is long-term in nature and does not manifest fully until adulthood. 

Additionally, the changes that were observed in the present current study in the neonatal 

period begs the question of whether these changes persist into the future or if the hepatic molecular 

phenotype is altered further.  This limitation will be addressed in part in Chapter IV, where siblings 

of the offspring in the present current that have been weaned were examined.  There are also 

ongoing studies that are being conducted in adult siblings of the offspring in the present current 

study before and after being subjected to a diet challenge, which will further address the continuity 

of the observed hepatic molecular phenotype during the neonatal period.  Despite these limitations, 

we believe the data presented here provide new insight into the hepatic molecular phenotype 

induced by in utero exposure to cigarette smoke in a sex-dependent manner. 

 We confirmed in our novel study that prenatal cigarette smoke exposure resulted in 

sexually dimorphic hepatic gene and protein expression alterations with no difference in gross 

physical appearance in the liver, but histopathological examination has not been done.  The low-

birth-weight with subsequent catch-up growth predicted by the Barker Hypothesis was present.  

Sexually distinct responses to in utero cigarette smoke exposure exist during the early neonatal 

period.  It has been demonstrated that male rodents experience a short-lived surge of androgens 

on postnatal day 1 [346-348] as well as increased testosterone levels on day 18 of gestation [349].  

It should be investigated if prenatal cigarette smoke exposure contributes to the sexually dimorphic 

changes observed in exposed offspring in the present current study by disrupting these elevations 

in testosterone in male offspring and contribute to sexually dimorphic changes observed in exposed 

offspring in our current study.  Future studies should examine whether the effects on hepatic gene 

and protein expressions seen here also are present at subsequent time points in the lifecycle of in 

utero cigarette smoke-exposed offspring such as at weaning or during adulthood.  The effect of 

current energy status in offspring exposed in utero cigarette smoke should be examined as well to 
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confirm if prenatal cigarette smoke results in an inappropriately timed fasting response occur 

independently of whether offspring are in a fed or fasted state.  Our study presents novel insights 

into the hepatic molecular phenotype induced by in utero exposure to cigarette smoke in a sex-

dependent manner. 
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CHAPTER IV:  IN UTERO EXPOSURE TO CIGARETTE SMOKE EXACERBATES THE 

HEPATIC FASTING RESPONSE IN OFFSPRING AND CAUSES POORLY TIMED FASTING 

RESPONSE IN FEMALE OFFSPRING 

Introduction 

In 2016, 7.2% of U.S. women reported smoking at any point during pregnancy [47].  This 

rate of exposure translates to at least 284,000 per year exposed to in utero to cigarette smoke [47].  

Although the overall rate of smoking during pregnancy has steadily decreased from the previous 

rate of 8.4% overall in 2014 [48] 9.7% overall in 2008 [49], it is evident that this trend does not fit 

for all states.  Using Kentucky as an example, the rate of smoking during pregnancy was 28.5% in 

1990 [50], 24.5% in 1999 [50], 25.1% in 2008 [49], 20.7% in 2014 [48], and 18.4% in 2016 [47], 

showing an overall decrease over time.  With an initial examination, it seems that the rate of 

smoking during pregnancy in West Virginia decreased over time as well, with the rate being 27.8% 

in 1990 [50], 26.1% in 1999 [50], 27.1% in 2014 [48], and 25.1% in 2016 [47].  However, examining 

the rate of smoking during the last 3 months of pregnancy from the PRAMS dataset, the rate varies 

greatly from 2000-2010 with the rate ranging from 24.5%-31.9%, with a significant overall increase 

in the rate from the 2000 rate of 24.5% to the 2010 rate of 30.5% [328].  It is evident that some 

states like Kentucky have a significant rate of smoking during pregnancy despite a decrease in the 

rate over time, while others like West Virginia have a wildly varying rate that does not appear to be 

significantly decreasing over time.   In light of this, it is evident that exposure to cigarette smoke in 

utero in some states will continue to be a highly significant public health problem for years to come 

unless drastic measures are taken to curb smoking while pregnant. 

In Chapter II, we addressed how the primary outcome of cigarette smoke exposure is low 

birth weight followed by subsequent catch-up growth, and that this phenotype is a classical 

outcome with the Barker Hypothesis.  In Chapter III, we examined the impact of in utero cigarette 

smoke exposure on sex-specific low birth weight phenotypes and how this is associated with 
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changes in neonatal hepatic SIRT1-related gene and protein expression.  However, this leaves 

unanswered how the impact of in utero cigarette smoke exposure manifests during adolescence.  

The literature provides several examples of how the impact of exposure in utero to cigarette smoke 

can be observed during adolescence.  For example, a study examining a cohort of 10-year-old 

children found that prenatal and postnatal CSE was associated with a lower z-score for height-for-

age that persisted into adolescence [350].  Another study using a cohort of children in Brazil found 

that prenatal CSE was associated with decreased height-for-age z-score at birth, one-year-old, 4-

years-old, 11-years-old, and 15-years old [351].  Another cohort study of children in Brazil found 

that in utero exposure to cigarette smoke was associated with a more significant change in body 

mass index between 10 and 17 years old [352].  A study utilizing the Isle of Wight cohort found that 

the risk of early obesity in children between 1 and 4 years of age that persists to 18 years of age 

was 2.16 times higher if their mother smoked during pregnancy [353].  Those same children also 

were at increased risk of other adverse health outcomes at 18 years of age including 2.15 times 

higher risk for asthma, a 3.2% decrease in lung function as defined by the FEV1/FVC ratio, and an 

average elevated systolic and diastolic blood pressure of 11.3 and 12.0 mm Hg, respectively [353].  

It is evident from the literature that prenatal cigarette smoke exposure manifests in perturbed 

metabolic health not just in adulthood but also during adolescence.  However, there have yet to be 

definitive studies on the molecular phenotype during adolescence as a result of in utero cigarette 

smoke exposure. 

In a study previously conducted by our lab with a mixed-sex murine model using pre- and 

postnatal exposure to cigarette smoke, our lab observed that exposed offspring at PD21 experience 

decrements in glucose, lipid, and amino acid metabolic proteins according to hepatic proteomic 

analysis [35].  It was also found that 6-month-old prenatal CSE offspring had a perturbed 

expression of metabolic enzymes utilizing the same study design [331].  Specifically, in a fed state, 

6-month-old prenatal CSE offspring had decreased levels of hepatic SIRT1 protein as well as 

increased levels of PEPCK and PGC1α protein [331].  Prenatal CSE offspring also exhibited 

oxidative stress in the form of depleted glutathione levels and experienced decreased serum 

glucose levels [331].  In Chapter II, we observed that 9-month old male offspring subjected to in 
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utero cigarette smoke exposure exhibited decreased hepatic SIRT1 protein expression while 

female offspring were unaffected.  In Chapter III, we demonstrated that 1.5-week old male offspring 

exposed in utero to cigarette smoke exhibited increased expression of hepatic SIRT1 protein and 

mRNA while female CSE offspring exhibited no change in SIRT1 protein and a trend toward 

decreased Sirt1 mRNA expression with decrements in many SIRT1-related genes.  We also 

observed in Chapter III that female CSE offspring exhibited a decrement in serum glucose levels 

despite being in a fed state.  Despite all this data previously generated by our lab, the hepatic 

molecular phenotype manifested due to prenatal cigarette smoke exposure still has not been 

examined on a sex-specific basis or how it is modulated by a fed versus a fasted state.  

There are several pressing questions to be answered still.  Are the perinatal sex-specific 

changes observed in Chapter III still present after weaning?  Do the changes observed depend on 

the current fasting status of the offspring?  Does the sex of the offspring modulate the impact of 

prenatal CSE on metabolic function?  Does prenatal cigarette smoke exposure result in a perturbed 

fed or fasted state response?  Do female CSE offspring still exhibit a decrement in serum glucose 

levels?  Answering these questions would allow for a more thorough understanding of the increased 

risk of metabolic diseases in exposed offspring and facilitate the possible development of targeted 

early-life interventions and is the aim of the present current chapter. 

The objective of this study was to characterize the sex-specific impact of prenatal CSE on 

hepatic SIRT1 expression and on target gene expression in weanling mice, at a time which low 

birth weight is no longer evident and have not yet reached full sexual maturity (19 days of age), in 

either a fed or fasted state.  We utilized an established mouse inhalation model of cigarette smoke 

exposure that mimics active maternal smoking during pregnancy throughout the entire fetal 

development period (GD1-GD19).  The mRNA gene expression levels for SIRT1 targets, which are 

indicative of activation or suppression, are indirect indicators of SIRT1 activity.  The offspring in the 

present current study are siblings to the neonatal offspring examined in Chapter III. 

 

Methods 

Animal Exposure 
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Female C57BL/6 mice maintained on breeder chow (LabDiet 5015) were mated overnight 

and checked the following day for the presence of vaginal sperm.  Sperm positive status was 

considered gestational day (GD) 0 for the exposure timing.  On GD1, female C57BL/6 mice were 

placed into either a cigarette smoke exposure (CSE) chamber or a sham exposure (ambient 

filtered room air) chamber for 6 hours/day daily from GD1 to GD19.  Cigarette smoke exposure 

was carried out using a Teague TE-10C exposure apparatus (Teague Industries) smoking 

Marlboro Red cigarettes, which was the most commonly smoked cigarette at the time of model 

development, using the FTC method of smoking (2-second puff per minute).  After parturition, 

dams with litters were maintained on breeder chow.  Offspring were weaned by PD19.  On PD19, 

representative offspring of each litter were euthanized by carbon dioxide asphyxiation either 

immediately or following a ~4 hour fast.  At euthanization, the excised liver was frozen on dry ice 

and stored at -80°C. 

  

Cigarette Smoke Exposure Monitoring via Measurement of Carbon Monoxide, Total 

Suspended Particulates, and Plasma Cotinine 

At the start of each day of exposure, the level of CO within the cigarette smoke exposure 

chamber was allowed to increase rapidly by fully closing the dilutor valve until the level reached 

110 parts per million (ppm) as detected with a commercially available carbon monoxide detector 

with a digital readout.  Once this level was reached, CO levels were further adjusted by opening 

and closing the dilutor valve as appropriate to maintain a target CO level ranging between 110 to 

150 ppm.  At the end of exposure each day, the dilutor valve was fully opened to allow rapid 

dissipation of any remaining CO in the cigarette smoke exposure chamber.  TSPs were recorded 

twice daily by drawing air from each exposure chamber via a sampling port through a preweighed 

piece of filter paper.  The filter paper was then reweighed, and the pre- and post-sampling 

difference was divided by the volume of air drawn through the sampling device in a five minute 

interval  In order to quantitate the magnitude of cigarette smoke exposure, cotinine, the primary 

metabolite of nicotine, was measured in representative females immediately after cessation of the 

exposure period on days 14-18.  Tail vein blood was collected from dams within 30 minutes of the 



97 

 

end of exposure into heparinized capillary tubes and was subsequently centrifuged at 10,000 x g 

for 10 minutes.  The collected plasma fractions were stored at -20 °C until ready for cotinine 

measurement.  Using the Cotinine One-Step ELISA Detection Kit (International Diagnostic 

Systems; St. Joseph, MI), the collected plasma fractions were assayed for the concentration of 

cotinine following the manufacturer’s instructions.  The absorbance of the reaction substrate was 

measured at 450 nm using a SpectraMax 190 Microplate Reader (Molecular Devices, San Jose, 

CA) and reported as nanograms per milliliter.  Levels of plasma cotinine greater than or equal to 

50 ng/mL were considered sufficient to simulate active maternal smoking during pregnancy. 

 

Offspring Health and Serum Glucose Measurement 

 Animals were housed and maintained at the University of Louisville Research Resources 

Center, an Association for Assessment and Accreditation of Laboratory Animal Care accredited 

facility.  All protocols were approved by the UofL Institutional Animal Care and Use Committee.  

Cages for animal housing were changed weekly, unlimited food and water provided, and 

maintained in an environment with a 12-hour light/dark cycle with controlled temperature and 

humidity.  Offspring were weighed daily and checked for health indicators such as levels of 

activity and eye-opening.  Blood was collected from offspring after euthanization via cardiac 

puncture using heparinized syringes.  Blood samples were subsequently centrifuged at 10,000 x 

g for 10 minutes, and the separated plasma fraction was collected and stored at -80 °C. 

 Using the Glucose (HK) Assay Kit (Catalog # GAHK20; Sigma-Aldrich; St. Louis MO), the 

collected plasma fractions were diluted 50-fold and were assayed for the concentration of glucose 

following the manufacturer’s instructions.  The absorbance of the reaction substrate was 

measured at 340 nm using a SpectraMax 190 Microplate Reader (Molecular Devices, San Jose, 

CA) and reported as mg glucose/mL.   

 

Western Blotting 

Liver was homogenized in ice-cold buffer [100 mM PO4 Buffer, 150 NaCl, 0.1% Tween, 

0.1% SDS, 0.5M Tris pH 8.0, 2 tabs per 10 mL phosphatase and protease inhibitor cocktails, 10 
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µL per 10 mL EDTA, 7.5 mg/mL dithiothreitol (DTT)] using a Tissue-Tearor homogenizer in 2-

second on/off pulses over the span of 1 minute. The concentration of protein was measured by 

the Bradford method [301].  Liver homogenates were mixed with Laemmli buffer (0.25M Tris pH 

6.8, glycerol, 10% SDS, trace bromophenol blue), reduced with DTT (1g/5mL) then heated at 70° 

C for 10 minutes. Thirty-five µg total protein was applied to 10% acrylamide gels with separation 

performed at 100V for 2 hours in Tris-glycine buffer (25 mM Tris, 192 mM glycine, pH 8.3) 

followed by transfer to PVDF membrane at 70V for 2 hours in a non-reducing buffer [Tris-Glycine 

buffer (25 mM Tris, 192 mM glycine, pH 8.3) with 20% ethanol]. Following blocking in 5% non-fat 

dry milk in TBS-T solution (Tris-Buffered Saline-Tween, 137 mM NaCl, 20 mM Tris-Base pH 7.6, 

0.1% Tween-20), the blots were incubated overnight at 4°C with primary antibody (SIRT1 1/500, 

Santa Cruz #sc-15404; PEPCK 1/500, Santa Cruz #sc-271029; HK 1/500, Cell Signaling #2024; 

NAMPT 1/1000, Thermo-Fisher #PA5-23198; ac-lysine 1/250, Millipore #AB3879; ac-FKHR 

1/250, Santa Cruz #sc-49437; FKHR 1/500, Santa Cruz #sc-11350) diluted in non-fat dry milk in 

TBS-T. After three washes of 10 minutes each in TBS-T, blots were incubated with secondary 

antibody complexed to horseradish peroxidase (anti-mouse, Thermo #32430; anti-rabbit, Cell 

Signaling #7074S) in non-fat dry milk diluted in TBS-T at room temperature for 3 hours. After 

three successive washes in TBS-T, blots were developed with LumiGLO chemiluminescent 

reagent and peroxide (Cell Signaling Technology #7003S, Danvers, MA), and visualized with a 

Bio-Rad Gel Doc XR+ system (Bio-Rad Laboratories, Hercules, CA). Following visualization, 

blots were washed briefly in TBS-T and incubated with Coomassie stain (0.1% Coomassie 

Brilliant Blue G250 Dye in 1:1 methanol:water) for 10 minutes, followed by two 10 minute washes 

in destaining solution (5:4:1 ethanol:water:acetic acid), and a final wash for 5 minutes in 

deionized water.  Blots were briefly air-dried and scanned for quantitation of total protein. 

 

Real-Time Quantitative PCR (RT-qPCR) for mRNA Expression 

 At euthanization, a section of the liver was equilibrated overnight in RNAlater at 4°C, after 

which it was placed into long term storage at -80°C.  A portion of RNAlater-stabilized liver was 

used for RNA extraction using the Qiagen RNeasy Mini Kit (Qiagen, Germantown, MD) per 
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manufacturer’s instructions.  The final elution was carried out using two aliquots of nuclease-free 

water and was stored at -80°C.  RNA concentration was determined using a NanoDrop 8000 

Spectrophotometer (Thermo Scientific, Waltham, MA).  Using two µg of each isolated RNA 

sample as input, cDNA was synthesized using the High-Capacity cDNA Reverse Transcription Kit 

following the manufacturer instructions (Applied Biosystems cat# 4368813).  cDNA reactions 

were carried out as 20 µL reactions in PCR tubes placed in a Bio-Rad MyCycler (Bio-Rad 

Laboratories, Hercules, CA).  The cDNA reactions were set for an initial 10 minutes at 25°C, 

followed by 2 hours at 37°C and 5 minutes at 85°C.  The cDNA reaction tubes were held at 4°C 

until placed into storage at -20°C. 

Mouse 18S rRNA gene was used as the reference gene for RT-qPCR. The genes of 

interest have the forward and reverse primer sequences listed in Table 2.  PCR reactions were 

carried out as 10 µL reactions in 96 well plates and ran using a Bio-Rad iQ5 Multicolor Real-Time 

PCR Detection System (Bio-Rad Laboratories, Hercules, CA) in 96 well plates. The PCR 

reactions were set for an initial 3 min at 95°C, followed by 40 cycles of 15 sec at 95°C and 1 min 

at 60°C using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad Laboratories, Hercules, 

CA).  Each PCR plate was filled out with three technical replicates per sample and three 

template-free controls per primer pair.  Data were analyzed using the ΔΔCT method followed by 

log2 transformation of fold-change values. 

 

Real-Time Quantitative PCR (RT-qPCR) for miRNA Expression 

 At euthanization, a section of the liver was equilibrated overnight in RNAlater at 4°C, after 

which it was placed into long term storage at -80°C.  A portion of RNAlater-stabilized liver was 

used for miRNA extraction using the Qiagen miRNeasy Mini Kit (Qiagen, Germantown, MD) per 

manufacturer’s instructions.  The final elution was carried out using two aliquots of nuclease-free 

water and was stored at -80°C.  RNA concentration was determined using a NanoDrop 8000 

Spectrophotometer (Thermo Scientific, Waltham, MA).  Using two µg of each isolated total RNA 

sample as input, cDNA was synthesized using the miScript II RT Kit following the manufacturer 

instructions using miScript HiSpec Buffer included in the kit to selectively convert mature miRNA  
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Table 2:  Forward and reverse primer pairs for RT-qPCR 

 

  

# Name Forward Primer Reverse Primer

1 SIRT1 GCAGGTTGCGGGAATCCAA GGCAAGATGCTGTTGCAAA

2 NAMPT CATAGGGGCATCTGCTCATT GCTGCTGGAACAGAATAGCC

3 PGC-1A ATGTGTCGCCTTCTTGCTCT ATCTACTGCCTGGGGACCTT

4 CRTC2 GCCACATTGACAGTTCTCCA AAGTGTCTTGGGGGTTAGGG

5 SREBP-1C ATGGATTGCACATTTGAAGACATGCTC CCTGGGCTGCTGGGGCCTG

6 PPARa AGAAGTTGCAGGAGGGGATT TCGGACTCGGTCTTCTTGAT

7 FGF21 CAAATCCTGGGTGTCAAAGC ATTGTAACCGTCCTCCAGCA

8 FGFR4 GACCAAACCAGCACCGTGGCTGTGAAGATG GTTTCCCTTGGCGGCACATTCCACAATCAC

9 B-Klotho CGAGCCCATTGTTACCTTGT CTCCAAAGGTCTGGAAGCAG

10 CYP7A1 CAGGGAGATGCTCTGTGTTCA AGGCATACATGCAAAACCTCC

11 CYP8B1 TTCGACTTCAAGCTGGTCGA CAAAGCCCCAGCGCCT

12 SHP AAGGGCACGATCCTCTTCAA CTGTTGCAGGTGTGCGATGT

13 BSEP CTGCCAAGGATGCTAATGCA CGATGGCTACCCTTTGCTTC

14 OSTB GATGCGGCTCCTTGGAATTA GGAGGAACATGCTTGTCATGAC

15 GAPDH AAATGGTGAAGGTCGGTGTGAAC CAACAATCTCCACTTTGCCACTG

16 PEPCK TATGCTGATCCTGGGCATAA CACGTTGGTGAAGATGGTGT

17 G6Pase TCTGTCCCGGATCTACCTTG GTAGAATCCAAGCGCGAAAC

18 HK TATGAAGACCGCCAATGTGA TTTCCGCCAATGATCTTTTC

19 PKM2 TCGCATGCAGCACCTGATT CCTCGAATAGCTGCAAGTGGTA

20 EHHADH CCGGTCAATGCCATCAGT CTAACCGTATGGTCCAAACTAGC

21 FAS GCTGCGGAAACTTCAGGAAAT AGAGACGTGTCACTCCTGGACTT

22 MCAD GGTTTGGCTTTTGGACAATG TGACGTGTCCAATCTACCACA

23 FXR TCCACAACCAAGTTTTGCAG TCTCTGTTTGTTGTACGAATCCA

24 LXR-a TGAGAGCATCACCTTCCTCA TGGAGAACTCAAAGATGGGG

25 LRH1 AACGATGTCCCTACTGTCGATT CATGCGGTCGGCTCTTAC

26 HNF4A CAGCAATGGACAGATGTGTGA TGGTGATGGCTGTGGAGTC

27 IL-6 CTGCAAGAGACTTCCATCCAG AGTGGTATAGACAGGTCTGTTGG

28 MCP-1 CAGGTCCCTGTCATGCTTCT GAGGATCACCAGCAGCAGGT

29 TNF-a AAGCCTGTAGCCCACGTCGTA AGGTACAACCCATCGGCTGG

30 COL1A1 TAGGCCATTGTGTATGCAGC ACATGTTCAGCTTTGTGGACC

31 PDK-4 GCCTTGGGAGAAATGTGTGT CACTGGCTTTTTGAGTGCAA

32 P53 GTCACAGCACATGACGGAGG TCTTCCAGATGCTCGGGATAC

33 18S CTCAACACGGGAAACCTCAC CGCTCCACCAACTAAGAACG

34 miR-34a GCAGTGTCTTAGCTGGTTG AATCGAGCACCAGTTACG

35 miR-152 AGTGCATGACAGAACTTGG AATCGAGCACCAGTTACG
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(Qiagen, Germantown, MD).  cDNA reactions were carried out as 20 µL reactions in PCR tubes 

placed in a Bio-Rad MyCycler (Bio-Rad Laboratories, Hercules, CA).  The cDNA reactions were 

set for 60 minutes at 37°C and 5 minutes at 95°C.  The cDNA reaction tubes were held at 4°C 

until placed into storage at -20°C. 

Mouse miR-152 miRNA gene was used as the reference gene for RT-qPCR for miRNA 

expression. The miRNA gene of interest have the forward and reverse primer sequences listed in 

Table 2. PCR reactions were carried out as 10 µL reactions in 96 well plates and ran using a Bio-

Rad iQ5 Multicolor Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA) in 96 

well plates. The PCR reactions were set for an initial 3 min at 95°C, followed by 40 cycles of 15 

sec at 95°C and 1 min at 60°C using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad 

Laboratories, Hercules, CA).  Each PCR plate was filled out with three technical replicates per 

sample and three template-free controls per primer pair.  Data were analyzed using the ΔΔCT 

method followed by log2 transformation of fold-change values. 

 

Imputation of Missing Weight Data 

 Offspring weights were recorded from PD1 (the day after birth) until weaning (PD19).  

Occasionally, throughout the neonatal monitoring period, recording of daily weighs was missed.  

In order to utilized linear mixed-effects modeling, imputation was performed.  Imputation was 

accomplished using the mice R package [338] by the predictive mean matching method utilizing a 

value of m, the number of datasets to impute, of 50 with 100 max iterations.  At the end of the 

imputation procedure, all 50 potential imputed values generated for each missing value were 

averaged together and merged back with the original dataset to render it complete.  This 

completed dataset was then used for offspring weight analyses.    

 
Linear Mixed-Effects Modeling 

Linear mixed-effects modeling using the lme4 R package [302] was conducted to assess 

the effect of prenatal CSE on hepatic protein and mRNA expression levels.  The general mixed-

effects equation utilized to model the data is given by: 
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Eq. 1:  Variable of Interest ~ 1 + Exposure + (1|Cohort) 

 

Where Exposure indicates modeling of fixed effects for prenatal exposure.  The (1/Cohort) term 

indicates the identity of the cohort set as a random intercept.  The random intercept was set this 

way to account for the fact that each individual offspring is more likely to be similar to other 

littermates than offspring from different litters.  The goal of this was to help control potential 

confounding of results due to potential natural variance between litters.  In instances where all 

individuals within each comparison to be done were all from the same cohort, the following 

equation was used instead:  

 

Eq. 2:  Variable of Interest ~ 1 + Exposure 

 

The above equation 2 is similar to 1 but without the (1|Cohort) random intercept term.  For some 

analyses, fitting random-effects models were not possible due to the occurrence of singular fits.  

For the models using Eq. 1 listed above that resulted in a singular fit, Eq. 2 was instead used.  

Post-hoc testing was conducted using t-tests for specific a priori contrasts of interest using the 

finalized models with the emmeans R package [303].  The contrast of interest for all RT-qPCR 

experiments was CSE versus Sham.  For analysis of RT-qPCR data, log2 transformed fold-

change values were used while Western blot analysis used protein expression values normalized 

by total protein. 

 

Results 

Cigarette Smoke Exposure Parameters and Low-Birth Weight Phenotype 

 The carbon monoxide level in the cigarette smoke exposure chamber was 147 ppm +/- 

43 ppm while total suspended particulates averaged 26.8 mg/m3
 +/- 7.5 mg/m3.  Plasma cotinine 

levels in sperm positive females were 68.17 ng/ml +/- 12.1 ng/ml.  Plasma cotinine exceeded 50 

ng/ml, a level sufficient to designate a human as an active smoker [305].  The values of each of 
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these measures of CSE were below the limit of detection in the Sham chamber.  The plasma 

cotinine levels in the Sham sperm positive dams were below the limit of detection of 4 ng/mL. 

The data present in Figure 14 is from siblings of offspring from Chapter III.  In Figure 14, 

there was no difference in the weight trajectory between prenatal CSE and Sham offspring.  As  

mentioned in Chapter III, low birth weight was evident in the prenatal CSE offspring that persists 

until day 5, after which there is no longer a significant difference between prenatal CSE and 

Sham offspring groups.  There continued to be no difference between prenatal CSE and Sham 

offspring at PD19 when the offspring have been weaned.  There was also no difference in serum 

glucose levels between prenatal exposure groups at PD19 (data not shown).  These results 

demonstrate a phenotype of low birth weight with subsequent catch-up growth in offspring 

exposed in utero to cigarette smoke with no detectable difference after weaning.  These results 

recapitulate fundamental phenotypic changes present in models of in utero cigarette smoke 

exposure and what is predicted by the Barker Hypothesis. 

 

Offspring subjected to in utero cigarette smoke exposure modulated hepatic expression of 

SIRT1, NAMPT, and acetylated proteins in a sex- and fasting status-specific manner 

 We examined the effects of in utero cigarette smoke exposure on hepatic expression of 

SIRT1 and related proteins in weanling offspring in both a fed and fasted state.  As shown in 

Figure 15, the hepatic expression of NAMPT was decreased in male CSE offspring in a fed state 

(p < 0.05) while the expression of SIRT1, PEPCK, HK, acetylated-FKHR, and acetylated-lysine 

residues were unchanged.  As shown in Figure 16, male offspring in a fasted state and subjected 

to in utero cigarette smoke exposure exhibited increased hepatic expression of SIRT1 and 

decreased expression of NAMPT (p < 0.05).  Male CSE offspring in a fasted state also exhibited 

a trend toward decreased expression of FKHR and proteins with acetylated lysine residues (p < 

0.10).  Hepatic expression of PEPCK and HK were unchanged in male CSE offspring in a fasted 

state.   

In Figure 15, female CSE offspring in a fed exhibited increased hepatic expression of 

SIRT1 and decreased expression of NAMPT (p < 0.05) with a trend toward increased HK  
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Figure 14 – Offspring exposed in utero to cigarette smoke exhibit catch-up growth by 

weaning – Offspring were subjected to prenatal CSE from GD1-GD19 daily for 6 hours.  After 

birth, the average weight of offspring in each litter was tracked each postnatal day (PD).  CSE 

offspring exhibited no difference from Sham offspring on PD19.  
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15A 

 

Figure 15 – Exposure in utero to cigarette smoke increased expression of SIRT1 in fed 

female offspring and decreased hepatic expression of NAMPT in all fed offspring – Protein 

expression was measured using the livers of male offspring euthanized on postnatal day 19 in a 

fed state.  A) Images of Western Blots – Western blots of hepatic protein expression of both 

male and female offspring with the name of the protein probed in each image and its 

corresponding molecular weight (MW = Molecular weight marker).  Band intensities in each lane 

were normalized to the total protein present in each lane after Coomassie staining.  The 

Coomassie-stained image presented is a representative image of all blots done.   
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15B 

 

Figure 15 – Exposure in utero to cigarette smoke increased expression of SIRT1 in fed 

female offspring and decreased hepatic expression of NAMPT in all fed offspring– Protein 

expression was measured using the livers of male offspring euthanized on postnatal day 19 in a 

fed state.  B) Quantitation of Blots – In all offspring in a fed state, in utero exposure to cigarette 

smoke decreased the expression of NAMPT.  In fed female CSE offspring, the expression of 

SIRT1 was increased while the expression of HK exhibited a trend toward increased expression.  

Significant results had a p-value < 0.05, which is denoted with an * in the figure.  Results 

exhibited a trend that had a p-value < 0.10, which is denoted with a + in the figure. 
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16A 

 

Figure 16 – Exposure in utero to cigarette smoke altered hepatic expression of SIRT1 and 

NAMPT in fasted male offspring – Protein expression was measured using the livers of male 

offspring euthanized on postnatal day 19 in a fasted state.  A) Images of Western Blots – 

Western blots of hepatic protein expression of both male and female offspring with the name of 

the protein probed in each image and its corresponding molecular weight (MW = Molecular 

weight marker).  Band intensities in each lane were normalized to the total protein present in each 

lane after Coomassie staining.  The Coomassie-stained image presented is a representative 

image of all blots done. 
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16B 

  

Figure 16 – Exposure in utero to cigarette smoke altered hepatic expression of SIRT1 and 

NAMPT in fasted male offspring – Protein expression was measured using the livers of male 

offspring euthanized on postnatal day 19 in a fasted state.  B) Quantitation of Blots – Fasted 

male CSE offspring exhibited increased hepatic expression of SIRT1 and decreased expression 

of NAMPT.  Fasted male CSE offspring also exhibited a trend toward decreased expression of 

proteins with acetylated lysine residues.  Fasted female offspring exposed in utero to cigarette 

smoke exhibited decreased expression of HK, acetylated-FKHR/FKHR, and proteins with 

acetylated lysine residues.  Significant results had a p-value < 0.05, which is denoted with an * in 

the figure.  Results exhibited a trend that had a p-value < 0.10, which is denoted with a + in the 

figure. 
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expression (p < 0.05).  Hepatic expression of PEPCK, HK, ac-FKHR, and acetylated-lysine 

residues were unchanged in female CSE offspring in a fed state.  In Figure 16, female CSE 

offspring exhibited decreased hepatic expression of acetylated FKHR without a concomitant 

decrease in FKHR as well as decreased expression of HK and proteins with acetylated lysine 

residues (p < 0.05).  Female CSE offspring in a fasted state exhibited no difference in the hepatic 

expression of SIRT1, NAMPT, or PEPCK.  While both male and female CSE offspring in a fed 

state exhibited decreased hepatic NAMPT protein expression, only female CSE offspring 

exhibited an increase in SIRT1 expression.  Conversely, male CSE offspring in a fasted state had 

SIRT1 and NAMPT protein expression that mirrored that observed in female CSE offspring in a 

fed state.  Female CSE offspring in a fasted state were the only offspring to exhibit decreased 

hepatic expression of ac-FKHR, acetylated lysine residues, and HK in response to in utero 

cigarette smoke exposure.  The data suggest that female offspring in a fasted that have been 

subjected to cigarette smoke exposure in utero exhibit facets of an exaggerated fasting response 

that is independent of SIRT1 liver expression.  The current study demonstrates how in utero 

cigarette smoke exposure resulted in sex-specific alteration in the hepatic gene and protein 

expression of SIRT1 and related proteins.   

 

Offspring exposed to in utero cigarette smoke exhibited altered hepatic expression of Sirt1 

and related genes in the SIRT1 regulatory loop according to sex and fasting status 

 To better contextualize the alterations in the protein expression of SIRT1 and related 

metabolic proteins observed in offspring subjected to in utero cigarette smoke exposure, we 

measured the mRNA expression of Sirt1 as well as related genes in the SIRT1 regulatory loop.  

In Figure 17A, fed male CSE offspring exhibited increased hepatic expression of Sirt1 (p < 0.05) 

and a trend toward increased expression of Fxr (p < 0.1).  Male CSE offspring in a fed state 

exhibited no differences in hepatic mRNA expression for Fxr, Shp, or P53.  In Figure 18A, fasted 

male CSE offspring exhibited a trend toward decreased hepatic expression of Sirt1 and P53 (p < 

0.10).  Male CSE offspring in a fasted state exhibited no difference in hepatic mRNA expression 

for Nampt, Fxr, or Shp.  Male CSE offspring also exhibited no difference in the hepatic expression  



110 

 

17A 

 

Figure 17 – Prenatal cigarette smoke exposure in fed offspring increased hepatic gene 

expression of Sirt1 and modulates the expression of other related enzymes by sex – mRNA 

expression of genes was measured using the livers of offspring euthanized on postnatal day 19 in 

a fed state.  A) Fed Male Offspring – The expression of Sirt1 was significantly increased in fed 

male offspring in response to in utero cigarette smoke exposure, while Fxr exhibited a trend 

toward increased expression.  Results are presented as the difference between the group means 

of log2 transformed data.  Significant results had a p-value < 0.05 while trends had a p-value < 

0.1. 
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17B 

 

Figure 17 – Prenatal cigarette smoke exposure in fed offspring increased hepatic gene 

expression of Sirt1 and modulates the expression of other related enzymes by sex – mRNA 

expression of genes was measured using the livers of offspring euthanized on postnatal day 19 in 

a fed state.  B) Fed Female Offspring – Fed female CSE offspring exhibited increased 

expression of Sirt1, Fxr, and Shp. Results are presented as the difference between the group 

means of log2 transformed data.  Significant results had a p-value < 0.05. 
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18A 

 

Figure 18 – Prenatal cigarette smoke exposure in fasted offspring modulated hepatic 

expression of SIRT1 regulatory loop based on sex– mRNA expression of genes was 

measured using the livers of offspring euthanized on postnatal day 19 in a fasted state.  A) 

Fasted Male Offspring – In fed male offspring subjected to in utero cigarette smoke exposure, 

Sirt1 and P53 exhibited a trend toward decreased hepatic expression.  Results are presented as 

the difference between the group means of log2 transformed data.  Trending results had a p-

value < 0.1. 
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18B 

 

Figure 18 – Prenatal cigarette smoke exposure in fasted offspring modulated hepatic 

expression of SIRT1 regulatory loop based on sex– mRNA expression of genes was 

measured using the livers of offspring euthanized on postnatal day 19 in a fasted state.  B) 

Fasted Female Offspring – Fasted female CSE offspring exhibited increased expression of 

Nampt, Shp, and P53, and exhibited a trend toward increased Fxr expression.  Results are 

presented as the difference between the group means of log2 transformed data.  Significant 

results had a p-value < 0.05 while trends had a p-value < 0.1. 
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of the miRNA miR-34a.   

As seen in Figure 17B, fed female CSE offspring exhibited increased hepatic expression 

of Sirt1, Fxr, and Shp (p < 0.05).  Female CSE offspring in a fed state exhibited no difference in 

hepatic mRNA expression for Nampt, or P53.  As seen in Figure 18B, fasted female offspring 

exhibited increased hepatic expression of Nampt, Shp, and P53 (p < 0.10) and a trend toward 

increased expression of Fxr (p < 0.10).  Female CSE offspring in a fasted state exhibited no 

difference in hepatic mRNA expression for Sirt1 or the expression of the miRNA miR-34a.   

Both male and female CSE offspring in a fed state exhibited increased mRNA expression 

of Sirt1.  However, only fed male CSE offspring exhibited a trend toward increased Nampt mRNA 

expression while only fed female offspring exhibited increased Fxr and Shp mRNA expression.  

Female CSE offspring in a fasted state exhibited increased mRNA expression of several genes in 

the SIRT1 regulatory loop while male CSE offspring in a fasting state showed no significant 

difference in mRNA expression in the SIRT1 regulatory loop.  It should be noted that there was 

no change in the hepatic expression of miR-34a, a well-established microRNA associated with 

the suppression of both protein and mRNA expression of SIRT1 and NAMPT in either fasted 

male or female offspring subjected to in utero cigarette smoke exposure.  These data show that in 

a fasted state, any modulation of SIRT1 regulatory loop components as a result of in utero 

cigarette smoke exposure was independent of miR-34a.  These data suggest that modulation of 

SIRT1 regulatory loop components may have been enacted via stimulation from outside of the 

primary regulatory loop. 

It should be noted that for the hepatic expression of Sirt1 and Nampt, the directionality of 

mRNA expression did not always match that of their corresponding protein.  For example, in fed 

male CSE offspring, SIRT1 protein expression was increased while mRNA was unchanged.  Male 

CSE offspring in a fed state also exhibited no difference in NAMPT protein expression, while 

mRNA expression was increased.  The only two instances where the mRNA and protein 

expression were matched was in fed female CSE offspring exhibited increased mRNA and 

protein expression of SIRT1 and fasted female CSE offspring exhibited no change in mRNA and 

protein expression of SIRT1.  These results suggest that there may be a disconnect between 
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transcription of mRNA and subsequent translation into protein, or there is a post-translational 

factor that is influencing the stability of proteins and their expression levels relative to their mRNA 

expression levels. 

 

In utero cigarette smoke exposure resulted in modulation of SIRT1-deacetylated 

transcription factors and their downstream targets based on sex and fasting status   

Examining the effects of prenatal CSE on the hepatic expression of SIRT1-deacetylated 

transcription factors and their downstream targets revealed marked differences between weanling 

male and female offspring in a fed state.  In Figure 19A, fed male offspring in a fed state exposed 

to in utero cigarette smoke have increased expression of Bsep and Cyp8b1 (p < 0.05) while Pgc-

1α exhibited a trend toward increased expression (p < 0.1).  In fed male offspring subjected to in 

utero cigarette smoke exposure also exhibited a decrease in Pparα expression (p < 0.05) and a 

trend toward decreased Srebp-1c (p < 0.10).  No other changes in mRNA expression were 

detected in male offspring in a fed state.  In Figure 20A, male CSE offspring in a fasted state 

exhibit increased hepatic expression of G6pase, Pepck, and Mcad (p < 0.05) while exhibiting a 

trend toward increased Cyp7a1 expression and a trend toward decreased β-Klotho expression (p 

< 0.10).  No other changes were detected in male CSE offspring in a fasted state. 

Fed female CSE offspring in Figure 19B exhibited increased hepatic expression (p < 0.05) of fat 

metabolic genes (Mcad, Srebp-1c), glucose metabolic genes (Pgc-1α, Crtc2), and genes involved 

with FXR signaling (Ost-β, Bsep, Fgfr4, β-Klotho, Hnf4a, Lxr-α, Lrh1, Cyp7a1).   Fed female 

offspring subjected to in utero cigarette smoke also saw a trend toward increased Pepck and 

Ehhadh expression (p < 0.10).  Female CSE offspring in a fed state exhibited no other changes in 

mRNA expression.  As seen in Figure 20B, fasted female offspring subjected to in utero cigarette 

smoke exposure exhibited increased hepatic expression of genes (p < 0.05) in glucose 

metabolism (Pepck, Crtc2, Gapdh, and Pdk-4), fat metabolism (Pparα, Ehhadh, Srebp-1c, Fas), 

and FXR signaling (Bsep and Lrh1).  Female CSE offspring in a fasted state also exhibited a 

trend toward increased hepatic expression of Pgc-1α, G6pase, and Ost-β (p < 0.10).  Female 

CSE offspring in a fasted state exhibited no other differences in mRNA expression. 
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19A 

 

Figure 19 – Prenatal cigarette smoke exposure in fed offspring differentially modulated 

hepatic gene expression of SIRT1-related metabolic processes by sex – mRNA expression 

of genes was measured using the livers of offspring euthanized on postnatal day 19 in a fed 

state.  A) Fed Male Offspring – The expression of Bsep and Cyp8b1 was significantly increased 

in fed male offspring in response to in utero cigarette smoke exposure, while Pgc-1α exhibited a 

trend toward increased expression.  Fed male CSE offspring exhibited decreased expression of 

Pparα and exhibited a trend toward decreased Srebp-1c expression.  Results are presented as 

the difference between the group means of log2 transformed data.  Significant results had a p-

value < 0.05 while trends had a p-value < 0.1. 
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Figure 19 – Prenatal cigarette smoke exposure in fed offspring differentially modulated 

hepatic gene expression of SIRT1-related metabolic processes by sex – mRNA expression 

of genes was measured using the livers of offspring euthanized on postnatal day 19 in a fed 

state.  B) Fed Female Offspring – In fed female offspring subjected to in utero cigarette smoke 

exposure, the expression of numerous genes in fat metabolism, FXR signaling, and 

gluconeogenic genes were significantly upregulated.  Fed female CSE offspring also exhibited a 

trend toward increased expression of Ehhadh and Pepck.  Results are presented as the 

difference between the group means of log2 transformed data.  Significant results had a p-value 

< 0.05 while trends had a p-value < 0.1. 
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20A 

 

Figure 20 – Prenatal cigarette smoke exposure in fasted female offspring exacerbated 

fasting response-induced hepatic gene expression – mRNA expression of genes was 

measured using the livers of offspring euthanized on postnatal day 19 in a fasted state.  A) 

Fasted Male Offspring – The expression of gluconeogenic genes G6pase and Pepck in addition 

to the lipolytic gene Mcad were significantly increased in male offspring in response to in utero 

cigarette smoke exposure.  Fasted male CSE offspring exhibited a trend toward increased 

Cyp7a1 expression and a trend toward decreased Sirt1, P53, and β-Klotho expression.    Results 

are presented as the difference between the group means of log2 transformed data.  Significant 

results had a p-value < 0.05 while trends had a p-value < 0.1. 
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Figure 20 –Prenatal cigarette smoke exposure in fasted female offspring exacerbated 

fasting response-induced hepatic gene expression – mRNA expression of genes was 

measured using the livers of offspring euthanized on postnatal day 19 in a fasted state.  B) 

Fasted Female Offspring – The expression of numerous genes in fat metabolism, FXR 

signaling, and glucose metabolism were significantly upregulated in fasted female offspring 

subjected to in utero cigarette smoke exposure.  Fasted female CSE offspring also exhibited a 

trend toward increased expression of Pgc-1a, G6pase, Mcad, and Ost-β.  Results are presented 

as the difference between the group means of log2 transformed data.  Significant results had a p-

value < 0.05 while trends had a p-value < 0.1. 
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It was evident when comparing the impact of in utero cigarette smoke exposure in male 

versus female offspring that mRNA expression of downstream SIRT1 target genes was starkly 

different.  Overall, weaned female offspring in a fed state experienced a more extensive array of 

hepatic gene expression changes after being exposed to cigarette smoke in utero while male  

offspring did not appear to be altered much concerning hepatic gene expression.  It seems that 

the female CSE offspring exhibited exacerbated fed and fasted responses.  Male CSE offspring, 

however, seemed to not have an exacerbated fed response in a fed state and a mildly 

exacerbated fasted response in a fasted state relative to female CSE offspring.  The sex-specific 

impact of exposure to in utero cigarette smoke is highly modulated by a fed or fasted state, 

especially in female CSE offspring. 

 

Discussion 

As we observed in Chapter III, offspring subjected to in utero cigarette smoke exhibited a 

low birth weight phenotype.  After PD4, there was no longer an observable difference between 

prenatal CSE and Sham exposures, which was still evident by the time the offspring were weaned 

and then euthanized at 19 days of age.  As also noted in Chapters II and III, our model of gestational 

only cigarette smoke exposure results in a well-defined phenotype of low birth weight followed by 

catch-up growth consistent with the Barker Hypothesis.   

We observed that the decreased levels of serum glucose that were found in female CSE 

offspring 1.5 weeks old in Chapter III are no longer present in the weaned fed female CSE offspring 

from the current study.  This finding suggests that the potential liver underdevelopment that may 

have occurred with female CSE offspring aged nine days was rectified by the time they reach the 

weaning stage in their life cycle.  After weaning, the offspring subjected to prenatal cigarette smoke 

in utero appear normal concerning physical phenotype.  This finding is in contrast to human studies, 

which show that adolescent children subjected to cigarette smoke in utero not only exhibit 

decrements in height-for-age [350, 351] but also an increased risk of obesity [352, 353].  A prior 

murine study conducted by our lab examining the impact of pre- and postnatal cigarette smoke 

exposure found that at PD21, CSE offspring did not exhibit altered serum glucose levels compared 
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to Sham offspring [35]. This absence of serum glucose decrements is similar to the outcomes of 

the current present study.  Another study from our lab found that at six months of age, offspring 

subjected to pre- and postnatal CSE did exhibit decreased serum glucose levels [40].  It seems 

that a lack of overt perturbations to physical phenotype shortly after weaning but which manifests 

into an altered phenotype later in adulthood in mice subjected to in utero cigarette smoke exposure 

is reasonable to conclude based on the evidence from both past and current studies from our lab.  

Additionally, this murine pattern to prenatal cigarette smoke exposure-induced phenotypic 

development may be a distinct feature from the phenotypic development observed in humans.  

These types of observations are critical to note when applying murine findings to humans and for 

developing potential health interventions. 

We found in our study that male and female CSE offspring in a fed state exhibited 

decreased hepatic expression of NAMPT protein.  However, in a fasted state, only male CSE 

offspring exhibited decreased NAMPT protein expression.  It could be inferred from this that a 

decrement in NAD+ and thus SIRT1 deacetylase activity would occur; however, the level of 

acetylated FKHR, a known target of SIRT1-induced deacetylation, remained unchanged in male 

CSE offspring in either a fed or fasted state and in female CSE offspring in a fed state.  Male CSE 

offspring during a fasted state and female CSE offspring in a fed state exhibited increased 

expression of SIRT1 in conjunction with decreased expression of NAMPT.  Due to these results, 

we currently cannot definitively determine how SIRT1 deacetylase activity was impacted by in utero 

cigarette smoke exposure in these offspring.  One step that could have helped determine the impact 

of NAMPT expression on SIRT1 deacetylase activity is measuring the levels of NAD+.  It is crucial 

to consider the overall effect of the NAD+ levels on the resultant phenotypes observed in the current 

study since, in the context of aging, the cellular pool of NAD+ naturally decays over time and that 

anything that accelerates the aging process could, in turn, exacerbate the diminishing of the NAD+ 

pool [354].  In the context of our experiment, the decrement in hepatic NAMPT expression in fed 

and fasted male CSE offspring and fed female CSE offspring could be an indicator of accelerated 

aging that will more readily manifest itself later in life in the form of metabolic disease.  This process 

could also be exacerbated by the consumption of a high-fat diet, which has been reported to 
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decrease levels of hepatic NAMPT [262].  This phenomenon may be particularly pertinent for male 

CSE offspring since they exhibited a decrement in NAMPT protein expression in either a fed or 

fasted state.  This decrement that occurred in male CSE offspring regardless of fasting status may 

be a manifestation of increased susceptibility of male offspring to in utero cigarette smoke 

exposure.  The data presented are novel findings that may help explain why the Barker Hypothesis 

predicts that male offspring are more susceptible to in utero perturbations. 

A significant finding from the current present study was the apparent exacerbated fasting-

induced hepatic mRNA expression in response to exposure in utero to cigarette smoke.  This 

exacerbation was apparent in both male and female CSE offspring but to different degrees.  Male 

CSE offspring during a fasted state exhibited more signs of an exacerbated fasting response with 

an increased hepatic expression of both G6pase and Pepck, two classically upregulated 

gluconeogenic enzymes during fasting.  Fasted male CSE offspring also exhibited increased 

expression of Mcad, a lipolytic enzyme that is upregulated during a fasting response.  Initially, these 

results seem counter to the fact that fasted male CSE offspring also exhibited decreased Sirt1 

expression but also exhibited increased expression of SIRT1.  However, fasted male CSE offspring 

exhibited decreased expression of NAMPT, so it is unclear how SIRT1 activity was being 

functionally impacted.  It would seem that looking merely at protein and gene expression of SIRT1 

and NAMPT would suggest a downregulation of SIRT1 activity, but there are numerous factors 

outside of expression levels that can impact SIRT1 including but not limited to post-translational 

modification [339], location within the cell [339], NAD+ levels[262], and interacting proteins that 

directly modulate SIRT1’s catalytic activity [271, 272].  Overall, it appears that there is an 

exacerbation of the fasting response in fasted male offspring.  However, it is not at the level of 

exacerbation as exhibited by fasted female CSE offspring. 

Fasted weanling female CSE offspring have more genes being upregulated compared to 

fasted male CSE offspring in addition to increased lipolytic-related genes.  Additionally, fasted 

female CSE offspring exhibited increased expression of Gapdh and decreased expression of 

Hexokinase.  GAPDH, although an enzyme classically associated with glycolysis, is also an 

important enzyme needed for gluconeogenesis to occur effectively via deacetylation of GAPDH 
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[355] and its gene expression is upregulated during the early stages of the fasting response in a 

murine model [356].  Lower levels of Hexokinase activity are critical during the fasting response 

since the downregulation of this enzyme allows glucose to leave the liver to maintain circulating 

blood glucose levels [194], and its hepatic protein expression was decreased in the current study 

in fasted female CSE offspring.   Pdk-4, which inhibits glucose utilization by inhibiting the pyruvate 

dehydrogenase complex and is increased during fasting and starvation [357], was also increased 

in fasted female CSE offspring.  Almost paradoxically, there was the presence of upregulation of 

lipogenic genes such as Srebp-1c and Fas in addition to lipolytic genes Pparα, Ehhadh, and a trend 

toward upregulation of Mcad.  Lipogenic genes are typically upregulated following feeding and 

suppressed during fasting [358].  However, it is possible that lower expression or activation-

resistance of negative upstream regulators of Srebp-1c such as leptin to result in increased 

SREBP-1c-induced lipogenesis even when energetically inappropriate [359, 360].  Additionally, 

research suggests that cigarette smoking while pregnant reduced umbilical cord levels of leptin 

[361, 362].  It is possible that in our current model, in utero cigarette smoke exposure results in 

perturbing leptin signaling in offspring and would account for the induction of both lipogenic and 

lipolytic genes during fasting that we observed.  Collectively, the data show that female CSE 

offspring in a fasted state exhibit an exacerbated fasting phenotype above what is found in a normal 

fasted state. Overall, we conclude that weaned offspring responded to in utero cigarette smoke 

exposure exhibit sex-specific exacerbation of the fasting response, and this could be a novel 

mechanism that contributes to sex-specific increases in the risk of metabolic disease later in life as 

predicted by the Barker Hypothesis. 

Another significant finding from the current present study was the prenatal CSE-induced 

sex-specific responses in hepatic mRNA expression during a fed state.  In male CSE offspring in a 

fed state, there were few changes to hepatic mRNA expression with the notable exceptions of 

decreased Pparα and increased Sirt1.  There was a trend toward increased expression of Pgc-1α 

in addition to a trend toward decreased expression of Srebp-1c that would reflect increased 

gluconeogenic and decreased lipogenic activity, respectively, which is what would be expected 

during fasting with increased SIRT1 activity.  It is not clear whether the changes in hepatic gene 
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expression that fed male CSE offspring exhibited result in a functional impact on their metabolic 

phenotype. 

Conversely, female CSE offspring in a fed state exhibited increased expression of Sirt1-

related genes as well as increased expression of gluconeogenic and lipolytic genes.  Increased 

hepatic Sirt1 mRNA expression in female CSE offspring in a fed state along with the upregulation 

of Shp expression suggests that the SIRT1 regulatory loop was enhanced in the fed state.  These 

results suggest that female CSE offspring developed a metabolic phenotype where the current 

energy status is not detected correctly.  Additionally, these results indicate that female CSE 

offspring exhibit an inappropriately timed hepatic fasting response in a fed state.  Additionally, in a 

fed state, female CSE offspring exhibit globally increased expression of various Fxr-related genes 

including Fxr itself.  In particular, there is an increase in the expression of Fgfr4 and β-Klotho which 

has been shown in the literature to enhance intestinal Fgf15 signaling [363].  The human analog of 

FGF15, FGF19, is essential in inducing glycogenesis after a meal [364].  Once glycogen stores are 

replenished, excess glucose is converted to fatty acids through de novo lipogenesis [358].  All this 

information together suggests that fed weanling female CSE offspring have their hepatic 

metabolism primed to store excess energy from food consumption more efficiently.  The results 

presented here are a novel finding that may help explain why in Chapter II, female CSE offspring 

maintained on a high-fat diet gain weight so rapidly if the hepatic metabolic phenotype observed in 

the current present study is propagated into adulthood. 

A novel finding from the current present study was the sex-specific prenatal CSE-induced 

modulation of acetylated proteins in fasted offspring.  Male CSE offspring in a fasted state, despite 

the presence of increased hepatic SIRT1 protein expression, exhibited only a trend toward 

decreased acetylated lysine residues.  This outcome may, in part, be due to male CSE offspring in 

a fasted state, also exhibited decreased hepatic NAMPT protein expression.  If this decrease in 

NAMPT expression negatively impacted NAD+ levels, it could explain why there was no net effect 

on protein acetylation. In contrast, female CSE offspring in a fasted state exhibited decreased 

hepatic expression of both acetylated FKHR, a known deacetylation target of SIRT1, and acetylated 

lysine residues.  These results in female CSE offspring suggest that in a fasted state, there is 
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something that is influencing the levels of acetylated proteins that is independent of SIRT1 protein 

expression levels.  Various factors that can influence SIRT1 deacetylase activity were mentioned 

earlier in the discussion, but another factor that should be considered in the context of our results 

is the cellular pool of Acetyl-CoA that is available. It is known that the levels of available acetyl-CoA 

influence the enzymatic activity of acetyltransferase enzymes, such as EP300 [365].  Lower 

bioavailability of acetyl-CoA can result in less acetylation of proteins and thus play a role in the 

trend toward decreased acetylated lysine residues in fasted male CSE offspring.   Lower levels of 

available acetyl-CoA are a factor to consider as well in fasted female CSE offspring since they 

exhibited decreased expression of both acetylated FKHR and proteins with acetylated lysine 

residues without any changes in the protein expression of either SIRT1 or NAMPT.  Even though 

the results reflect the possibility of increased SIRT1 activity in female CSE offspring in a fasted 

state, lower availability of acetyl-CoA could provide an alternative hypothesis as to the apparent 

exacerbated fasting response seen in female CSE offspring in a fasted state.  This hypothesis is 

especially important to consider since acetylated FKHR, and acetylated lysine residues alone do 

not confirm that these changes in protein acetylation were due to strictly SIRT1 deacetylase activity.   

Lower acetyltransferase activity due to depleted pools of acetyl-CoA [365] also has the potential of 

being the cause of decreased protein acetylation seen in the current present study.  We conclude 

that our results provide evidence that the greater exacerbation of the fasting response seen in 

female CSE offspring relative to male CSE offspring is driven in part by decreased protein 

acetylation.  This decrease in protein acetylation in female offspring subjected to in utero cigarette 

smoke exposure provides further evidence of the need to examine sex-specific outcomes with 

regard to the Barker Hypothesis. 

Future studies will examine siblings from our current study that have reached adulthood 

and were maintained on either a low-fat control diet or a high-fat diet in order to determine if the 

changes in hepatic expression of SIRT1 and related metabolic enzymes are seen in Chapters III 

and IV are correlated with predicted enhanced weight gain in response to high-fat diet feeding.  

Future studies will also examine if perturbations to the gut microbiome of offspring occur in 

response to prenatal cigarette smoke exposure and high-fat diet maintenance.  We confirmed in 
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our novel study that prenatal cigarette smoke exposure resulted in sexually dimorphic hepatic gene 

and protein expression alterations without overt hepatotoxicity.  Sexually distinct responses to in 

utero cigarette smoke exposure exist post-weaning and before sexual maturity and are highly 

dependent on fasting status.  Our study presents novel insights into the hepatic molecular 

phenotype induced by in utero exposure to cigarette smoke in a sex- and fasting state-dependent 

manner.
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CHAPTER V:  DISCUSSION 

The overarching goal of the dissertation work documented here was to characterize the 

age-specific as well as the sex-specific impact of in utero cigarette smoke exposure on offspring 

hepatic SIRT1-related metabolic function and how this fulfills the Barker Hypothesis-predicted 

perturbation of metabolic phenotypes in adulthood.  Experiments in Chapter II aimed to 

characterize the sex-specific impact of prenatal cigarette smoke exposure in adult offspring 

consuming a high-fat diet on the manifested hepatic molecular phenotype, including hepatic protein 

expression of SIRT1 and related enzymes.  The goal of the study in Chapter III was to determine 

the sex-specific impact of in utero cigarette smoke exposure on offspring hepatic molecular 

phenotype through hepatic SIRT1 and related gene and protein expression in the neonatal period.  

Chapter IV experiments were designed to determine how prenatal cigarette smoke exposure 

influences the hepatic molecular phenotype through hepatic SIRT1 and related gene and protein 

expression after weaning based on the sex of the offspring and current fasting status.  Collectively 

these experiments provide new insight into potential mechanistic pathways of how prenatal 

cigarette smoke exposure impacts the hepatic molecular phenotype of offspring at various critical 

life stages and provides new observations as to how the Barker Hypothesis results in a sex-specific 

impact of in utero cigarette smoke exposure. 

 

Low Birth Weight and Catchup Growth Phenotypes 

One of the significant outcomes of this dissertation work is the presence of a low birth 

weight phenotype with subsequent catch-up growth, as seen in Chapters II through IV.  The 

manifestation of this phenotype in response to in utero cigarette smoke exposure agrees with the 

basic premise of the Barker Hypothesis, in which prenatal exposure to cigarette smoke results in 

perturbed offspring health outcomes [150].  However, comparing the results of this dissertation 
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work with the literature illustrates that depending on the timing, duration, and severity of the 

exposure, the degree of low birth weight and whether subsequent catch-up growth occurs can vary.  

Also complicating this is the potential of maternal and paternal factors to modulate the magnitude 

of low birth weight and subsequent catch-up growth.   

One retrospective cohort study found that when the BMI of mothers who smoked 

increased, the severity of the low birth weight phenotype in offspring decreased [366].  A Japanese 

cohort study found that the association between maternal smoking during pregnancy and low birth 

weight in offspring increased with maternal age [367].  Even if the low birth weight phenotype is not 

present, it is possible for the weight gain of offspring exposed in utero to cigarette smoke to be 

affected adversely.  Another Japanese study found a positive dose-response relationship of 

smoking during pregnancy to the risk of rapid weight gain during infancy [368].  In terms of paternal 

factors, male mice that were exposed to CSC during puberty resulted in offspring that had a low-

birth-weight but still did not exhibit catch-up growth by six weeks after birth [369].  The effect of 

paternal exposure to CSC during puberty on catch-up growth was not present when maternal CSC 

exposure during pregnancy also occurred [369].   

Another factor that could influence low birth weight and catch up growth outcomes is 

maternal glucocorticoid usage during pregnancy.  Maternal glucocorticoid usage is of particular 

concern since glucocorticoid administration is utilized in managing the risk of preterm birth [370], 

which is a well-documented risk of prenatal cigarette smoke exposure [371-378].  It has been found 

that a single prenatal treatment with glucocorticoids is associated with low birth weight in term 

infants [379].  It has also been found that multiple courses of prenatal corticosteroid treatment also 

increases the risk of low birth weight [380, 381].  Even increased glucocorticoid levels independent 

of synthetic glucocorticoid administration can be sufficient to trigger similar results.  One 

prospective longitudinal study that examined levels of placental corticotropin-releasing hormone 

(pCRH) and maternal plasma cortisol found that increased pCRH exposure at gestational week 30 

was associated with low birth weight and subsequent catch-up growth by either within the first 12 

months or within 12 to 24 months [382].  It is clear that to fully characterize how prenatal cigarette 

smoke results in low birth weight with subsequent catchup growth, it is necessary to determine how 
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a variety of both maternal and paternal factors could modulate the health outcomes of offspring 

subjected to in utero cigarette smoke exposure.  Doing so has the potential to clarify the reason for 

some of the inconsistencies present in the literature regarding low birth weight and subsequent 

catchup growth of offspring that are induced by maternal smoking. 

 

Impact of Prenatal CSE on Development of Obesity and Fatty Liver in Adulthood 

 A hypothesis of interest for this dissertation work was whether there were any indications 

of prenatal CSE in inducing a hepatic molecular phenotype that promotes the development of 

obesity and fatty liver disease.  The early stage of non-alcoholic fatty liver disease (NAFLD) is the 

accumulation of lipids in the liver, which is often accompanied by obesity.  In Chapter II, we found 

that adult male CSE offspring exhibited a trend toward increased weight gain when maintained on 

either a low-fat control diet or a high-fat diet.  Additionally, we found that male offspring gained 

weight at a higher rate if fed a high-fat diet regardless of prenatal exposure.  We also found that 

male offspring maintained on a high-fat diet exhibited elevated body fat accumulation regardless of 

prenatal exposure.  We also observed that only male offspring maintained on a high-fat diet 

exhibited elevated liver triglycerides with no impact by in utero cigarette smoke exposure.  It would 

seem that exposure to prenatal cigarette smoke did not enhance the rate of obesity or liver lipid 

accumulation in male offspring.  However, the lack of an impact of in utero cigarette smoke 

exposure on obesity or fatty liver in male offspring could have been in part due to our choice of a 

low-fat diet, which contained approximately 5% fat, as the control to the high-fat diet.  It is possible 

that had we chosen a control diet that had higher levels of fat, we could have observed prenatal 

CSE-induced obesity or fatty liver development.  Additionally, we did not observe an exacerbation 

of the obesity- and fatty liver-inducing effects of a high-fat diet by in utero cigarette smoke exposure 

in male offspring.  There are two possibilities for this outcome.  First, there could be no impact of 

prenatal CSE on exacerbating the effects of high-fat diet-induced obesity or fatty liver.  Secondly, 

the 3-month long duration of the high-fat diet maintenance may have initially revealed some 

exacerbation by prenatal CSE but was overtaken by the continued maintenance on a high-fat diet.  
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We plan to investigate this factor in currently ongoing studies.  Overall, we found that prenatal CSE 

did not contribute significantly to the development of either obesity or fatty liver. 

 In female offspring subjected to in utero cigarette smoke exposure as described in Chapter 

II, we did observe an exacerbation of weight gain and body fat accumulation when maintained on 

a high-fat diet.  No change was detected; however, in female CSE offspring, when maintained on 

a low-fat control diet.  It is evident that in utero cigarette smoke exposure in female offspring was 

capable of acting with high-fat diet maintenance to exacerbate the development of obesity.  

However, none of the female offspring exhibited any sign of liver lipid accumulation.  Not even 

maintenance on a high-fat diet resulted in any change in liver lipid levels.  Given the apparent effect 

of prenatal CSE on exacerbating the effects of high-fat diet maintenance on developing obesity, it 

was surprising to see no impact on liver lipid accumulation.  Although surprising to us, these 

outcomes in female offspring are consistent with the literature.  The literature shows that females, 

in general, are more resistant to the acquisition of a NAFLD phenotype.  Of note is that women no 

longer show this resistance to NALFD development when they are post-menopausal [383] and that 

a greater magnitude of estrogen-deficiency (i.e. premature menopause) exacerbates the severity 

of NAFLD-related fibrosis independent of age or any other metabolic disease [384].  That estrogen 

signaling could be mediating the severity of NAFLD development is also seen in a study in which 

ovariectomized mice developed more severe liver injury compared to sham-operated mice when 

fed a high-fat-high-cholesterol diet [385].  The same study found that the severity of the diet-induced 

liver injury was lessened when the ovariectomized mice were given estrogen treatment [385].  

According to one study, this apparent resistance of females to NAFLD development may, in part, 

be due to being able to emphasize fatty acid transformation into ketone bodies rather than VLDL-

triacylglycerol [386].  Overall, we conclude that the innate resistance of female offspring to 

developing fatty liver is present even when exposed in utero to cigarette smoke.  This evidence 

supports the prediction of the Barker Hypothesis that female offspring are more resistant to the 

development of metabolic disease relative to male offspring as a result of prenatal cigarette smoke 

exposure. 
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 A facet of more advanced fatty liver disease is the progression of NAFLD to non-alcoholic 

steatohepatitis (NASH), in which the accumulation of lipids in the liver leads to the production of 

radical oxidation species (ROS).  As a result, it is common to find antioxidant enzymes upregulated 

to counteract these effects.  To detect whether there may be more advanced fatty liver disease 

pathology, we measured in Chapter II the hepatic protein levels of two antioxidant enzymes, 

superoxide dismutase (SOD2) and Catalase (CAT).  We observed no effect in either male or female 

offspring on the hepatic protein expression of either of these enzymes by either prenatal exposure 

to cigarette smoke or maintenance on a high-fat diet.  In conjunction with our other findings, these 

results indicate that the male offspring maintained on a high-fat diet have developed fatty liver 

disease.  Conversely, female offspring on a high-fat diet did not develop any level of fatty liver 

disease, much less the later stages of steatohepatitis.  Not even the exacerbation by prenatal CSE 

on weight gain and body fat accumulation in female offspring resulted in any progression into fatty 

liver disease.  Whether the phenotypes that manifested in the current study would eventually 

progress given a more prolonged diet challenge remains unanswered.  We conclude that given the 

current study design, female offspring subjected to prenatal cigarette smoke exposure exhibited 

sensitization toward increased high-fat diet-induced obesity and body fat accumulation without 

development of fatty liver disease. 

 

Impact of Prenatal CSE on Hepatic Metabolic Phenotype in Neonatal and Weaned Offspring 

and Contribution to Future Obesity and Fatty Liver Disease 

 One question that we wanted to address with this work was whether prenatal cigarette 

smoke exposure perturbs the hepatic molecular phenotype at an earlier life stage before adulthood.  

This investigation was done to clarify how the perturbed sex-specific metabolic phenotypes 

observed in offspring in Chapter II may have developed as a result of prenatal cigarette smoke 

exposure.  At 1.5 weeks of age, we found that male CSE offspring exhibited increased hepatic 

expression of SIRT1 and NAMPT mRNA and protein.  This observation was in addition to increased 

mRNA expression of PEPCK and CRTC2, two critical genes for gluconeogenesis.  Although there 

was increased expression of SIRT1 and NAMPT for both mRNA and protein, there did not appear 
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to be any noticeable impact on other components of the SIRT1 regulatory loop such as FXR, SHP, 

or P53.  These results led us to conclude that something may be activating SIRT1-related pathways 

independent of the SIRT1-regulatory loop.  Additionally, these results led us to conclude that there 

may be an appropriately timed fasting response in male offspring during the neonatal period.  If 

these changes are related to the metabolic phenotype in adulthood, it is conceivable that the 

changes in hepatic molecular phenotype seen in male CSE offspring during the neonatal period 

could contribute to obesity and fatty liver development in adulthood. 

In stark contrast, female CSE offspring exhibited a wide array of mRNA expression 

downregulation, including in glucose metabolism, fat metabolism, and FXR signaling.  Additionally, 

female CSE offspring exhibited decreased mRNA expression of Nampt, Fxr, and P53.  This latter 

result was surprising since those three genes in conjunction with Sirt1 participate in a regulatory 

loop where Sirt1, Nampt, Fxr, and Shp act in opposition to P53 and miR-34a.  Due to the fact that 

this regulatory loop was globally downregulated in conjunction with several related gene pathways, 

we concluded that this was evidence of delayed functional liver ontogeny in female offspring 

exposed in utero to cigarette smoke.  This delayed functional liver ontogeny was further supported 

by our observation of decreased serum glucose levels in female CSE offspring.  However, these 

neonatal changes in the hepatic molecular phenotype occurred after the resolution of low birth 

weight and catch-up growth.  We currently are unable to conclude if these changes in female CSE 

offspring are beneficial or detrimental to future development of obesity or fatty liver disease. 

Another critical life stage to examine for potential contributions to future obesity and fatty 

liver disease was immediately after weaning.  This allowed us to examine the impact of prenatal 

cigarette smoke exposure both in a fed and a fasted state.  Male CSE offspring in a fed state 

exhibited decreased expression of NAMPT protein accompanied by increased Sirt1 mRNA 

expression.  No other facets of the SIRT1-regulatory loop were affected in male CSE offspring in a 

fed state.  The inconsistency between NAMPT protein expression and Sirt1 mRNA expression 

suggests that the SIRT1-regulatory loop was not being impacted, and something outside of this 

regulatory loop was affecting SIRT1 and NAMPT.  Conversely, male CSE offspring in a fasted state 

still show decreased expression of NAMPT protein but with increased expression of SIRT1 protein 
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and related gluconeogenic genes and Mcad, a typical upregulated lipolytic gene during a fasting 

response.  However, male CSE offspring in a fasted state did not exhibit significant changes in the 

expression of other SIRT1-regulatory loop components, including miR-34a.  It is evident that in light 

of the hepatic molecular phenotype present that male CSE offspring exhibited an exacerbated 

fasting response that appears to be independent of engagement of the SIRT1-regulatory loop.  If 

the hepatic molecular phenotype observed in weaned male CSE offspring impacts future metabolic 

phenotype development, it is plausible that these changes may contribute to the development of 

obesity and fatty liver in adulthood. 

It is without question that the most impacted offspring in this dissertation work were weaned 

females that had been subjected to in utero cigarette smoke exposure.  In weaned female CSE 

offspring in a fed state, we observed increased protein expression of SIRT1 and decreased protein 

expression of NAMPT accompanied by increased mRNA expression of Sirt1, Fxr, and Shp.  These 

changes appear to be independent of the SIRT1-regulatory loop since there was no change in the 

expression of P53 mRNA expression in addition to the decreased protein expression of NAMPT.  

We hypothesize that something was activating SIRT1-related pathways independently of the 

SIRT1-regulatory loop.  Additionally, we observed that female CSE offspring in a fed state exhibited 

mRNA upregulation of FXR signaling as well as the gluconeogenic transcription factors Crtc2 and 

Pgc-1α.  We also observed mRNA upregulation of the lipogenic transcription factor Srebp-1c in 

female CSE offspring in a fed state.  Overall, we believe that female CSE offspring in a fed state 

exhibited an exacerbated fed state with components of an inappropriately-timed fasting response.  

If these changes in hepatic molecular phenotype were to be propagated into adulthood, it is 

conceivable that female offspring subjected to in utero cigarette smoke exposure could experience 

enhanced development of obesity or fatty liver in adulthood. 

Weaned female CSE offspring in a fasted state provided a surprising array of changes in 

the hepatic molecular phenotype, such as decreased protein expression of acetylated FKHR, a 

known SIRT1 deacetylation target that promotes gluconeogenesis, as well as decreased 

expression of hexokinase and acetylated-lysine protein residues.  These results suggest but do not 

confirm the presence of enhanced SIRT1 deacetylation activity in weaned female CSE offspring in 
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a fasted state.  However, these changes were accompanied by mRNA upregulation of Nampt, Shp, 

and P53 without any change in mir-34a.  It is evident that if SIRT1-related pathways and SIRT1 

deacetylase activity were being upregulated in weaned female CSE offspring in a fasted state, it 

was occurring independently of the SIRT1-regulatory loop.  It was evident that there was an 

exacerbation of the fasting response in mRNA expression in weaned female CSE offspring in a 

fasted state with the upregulation of gluconeogenic genes, lipolytic genes, as well as Pdk-4, which 

inhibits glucose utilization by inhibiting the pyruvate dehydrogenase complex and is increased 

during fasting and starvation [357].  What was surprising was the observed mRNA upregulation of 

lipogenic Sreb-1c and Fas in weaned female CSE offspring in a fasted state, which would seem 

counter-productive in a fasting response [358].  One potential explanation for this phenomenon 

would be a deficiency in leptin levels.  Leptin is known to downregulate the expression and activity 

of Srebp-1c and thus downregulate the expression of Fas and that suppression of leptin levels or 

leptin receptor activity can result in inappropriately timed expression of Srebp-1c [359, 360].  It has 

been shown that there are decreased levels of leptin in the umbilical cords of children subjected to 

in utero cigarette smoke exposure and that lower levels of leptin are associated with greater 

decrements in birth weight in response to intrauterine growth restriction.  In light of this evidence, it 

is plausible that if the observed changes in hepatic molecular phenotype were to be propagated 

into adulthood that female CSE offspring would experience accelerated weight gain and body fat 

accumulation in adulthood, which matches what we observed in female CSE offspring maintained 

on a high-fat diet in Chapter II. 

 

Overall Strengths and Limitations 

 One strength of this dissertation is the novelty in examining the hepatic molecular 

phenotype through measuring hepatic SIRT1 and related metabolic genes and proteins after being 

subjected to cigarette smoke exposure in utero in a strictly gestational model.  As noted elsewhere 

in this work, our lab has previously demonstrated using a murine exposure model that cigarette 

smoke exposure in utero, in addition to postnatal exposure, results in the modulation of SIRT1 and 

related metabolic pathways (particularly with glucose metabolism).  This dissertation, in addition to 
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the past work of our lab, demonstrates that the livers of offspring subjected to in utero cigarette 

smoke exposure exhibit protein and gene expression changes related to SIRT1 and closely related 

metabolic targets.  As far as we know, this dissertation is the first work in the literature to observe 

the hepatic molecular phenotype in adulthood as a result of a strictly prenatal cigarette smoke 

exposure as predicted by the Barker Hypothesis and explore how hepatic changes are potentially 

linked to these adulthood outcomes.  Continuing this work will be vital in elucidating the molecular 

underpinning of how in utero cigarette smoke exposure translates into an increased risk of 

cardiometabolic disease in adulthood.  Given how prenatal cigarette smoke exposure drives a low 

birth weight phenotype through intrauterine growth restriction [28, 29], this work could also be useful 

as a starting point for other in utero exposures to toxicants resulting in intrauterine growth restriction 

and the potential impact on health in adulthood.  Once the underlying mechanism in our model is 

determined, this could provide new avenues for therapeutic interventions for children who are 

subjected to in utero cigarette smoke exposure. 

 Another strength of this study is the use of a whole-body inhalation exposure apparatus to 

expose pregnant mice to cigarette smoke.  There are numerous studies that examine prenatal 

effects of cigarette smoke constituents other than nicotine in isolation on low birth weight including 

carbon monoxide [280, 281], benzo(a)pyrene [89], volatile organic compounds [94] including 

specifically formaldehyde [95] and benzene [96], polycyclic aromatic hydrocarbons [87, 88], and 

heavy metals like cadmium [282-285], but a significant disadvantage to this type of approach is that 

it undoubtedly fails to capture the complex interactive effects that each cigarette smoke component 

has with the others.  Another disadvantage to exposing with individual components is that it involves 

either injection or oral ingestion, routes of exposure that have very different toxicological 

consequences compared to inhalation.  Utilizing a cigarette smoking apparatus that exposes 

animals to both mainstream and sidestream smoke via whole-body inhalation provides a more 

realistic exposure scenario mimicking mothers who smoke while pregnant.  Additionally, our model 

utilizes Marlboro Red cigarettes™ instead of a reference cigarette in part due to the presence of 

additives typically found in commercial cigarettes that are not present in reference cigarettes [387].  

At the time of the development of this model, Marlboro Red™ cigarettes were the most commonly 
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smoked cigarette [41].  This figure includes women aged 18-25, which was also the age group most 

likely to smoke at any time during pregnancy during this time [41].  This choice in cigarette was 

made to simulate a scenario of active maternal smoking while pregnant as accurately as possible.  

In our model, a whole-body exposure was used instead of a nose-cone based exposure mainly due 

to the usage of animal restraint necessary to ensure that the nose cone delivering cigarette smoke 

stays in place throughout the exposure.  Given that restraining animals results in increased serum 

levels of glucocorticoids [388], in order to avoid the potential confounding effects of elevated 

glucocorticoid levels on postnatal health outcomes in the offspring, our model utilizes a whole-body 

inhalation exposure approach.  A whole-body inhalation-based model has the added benefit of 

allowing the efficient exposure of multiple mice simultaneously while keeping them housed in their 

cage, which also helps minimize handling stress. 

 This dissertation work is novel in that it characterizes the hepatic molecular phenotype in 

response to prenatal cigarette smoke exposure at multiple key life stages.  Although the Barker 

Hypothesis predicts that metabolic disease as a result of in utero exposure to cigarette smoke 

manifests itself in adulthood, it leaves unanswered if any disease occurs earlier, such as during the 

neonatal period or adolescence before sexual maturity.  It also does not address if the changes 

that result in metabolic disease in adulthood are present at an early age or if the hepatic molecular 

phenotype dynamically shifts over the lifetime of the individual that is exposed in utero to cigarette 

smoke.  This dissertation work addresses these points by characterizing the hepatic molecular 

phenotype not only in adulthood after a diet challenge, but also during the neonatal period and just 

after weaning.  By examining prenatal cigarette smoke-exposed offspring during the neonatal 

period, at 1.5 weeks of age, we were able to examine offspring at a time when catch-up growth has 

occurred, and low birth weight is no longer evident.  This examination provided insight as to the 

hepatic molecular phenotypes that are associated with low birth weight and subsequent catch-up 

growth.  By examining post-weaned offspring, we were able to characterize the hepatic molecular 

phenotype in prenatal cigarette smoke-exposed offspring at a time before full sexual maturity as 

well as in a fed versus a fasted state.  Examining in a fed versus a fasted state was especially 

crucial as it allowed us to answer the questions of whether offspring exhibited perturbed hepatic 
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fed or fasted responses, gaining insight into the potential factors driving metabolic disease 

pathology in adulthood.  These facets of our work bring important new findings to the literature 

since no one else has attempted to characterize the hepatic molecular phenotype at multiple critical 

life stages after being exposed in utero to cigarette smoke and how they relate to the manifestation 

of the Barker Hypothesis in adulthood. 

 What was especially novel about this work was the discovery that even at an early age, 

female offspring subjected to cigarette smoke in utero exhibited a greater number of perturbations 

in the hepatic molecular phenotype compared to male offspring.  Additionally, female CSE offspring 

maintained on a high-fat diet experienced greater weight gain that was not present in male CSE 

offspring maintained on a high-fat diet.  This result was surprising given that the Barker Hypothesis 

predicts that male offspring are more impacted by adverse in utero events compared to female 

offspring.  However, because these female offspring after weaning appeared otherwise 

phenotypically normal, we cannot conclude whether these changes in the hepatic molecular 

phenotype are ultimately beneficial or detrimental to metabolic health in adulthood.  Our findings 

reveal an urgent need to examine more closely at multiple life stages the sex-specific impact of 

prenatal cigarette smoke exposure on the hepatic molecular phenotype and any subsequent impact 

on developing metabolic disease. 

 With the current dissertation work, we were able to characterize a large number of gene 

expression changes in prenatal cigarette smoke exposed-offspring at various life stages before the 

induction of any metabolic disease pathology in adulthood.  However, from the results of our study 

it is unclear whether the prenatal CSE-induced changes we observed do, in fact, lead to a fatty liver 

phenotype.  Although adult male offspring maintained on a high-fat diet did develop obesity and 

fatty liver, there was no significant impact on these measures based on prenatal CSE.  Additionally, 

female CSE offspring maintained on a high-fat diet did exhibit increased weight gain and body fat 

accumulation, but there there was no effect of prenatal CSE alone.  Female offspring also did not 

develop fatty liver due to either high-fat diet or prenatal cigarette smoke exposure.  We cannot 

definitively conclude whether prenatal cigarette smoke exposure, either alone or in conjunction with 

maintenance on a high-fat diet, contributes to fatty liver disease pathology in either sex.  
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A factor that was not accounted for was observing prenatal CSE-induced low birth weight 

and subsequent catchup growth with respect to the sex of the offspring.  Recording the sex of 

individual offspring from birth to weaning was not done due to the technical difficulty of individually 

tracking individual pups in a litter at such a young age as well as the difficulty in accurately sexing 

pups at a young age.  Had we accomplished these tasks, it would have been possible to associate 

the severity of low birth weight with the hepatic molecular phenotype at various life stages and 

development of metabolic disease in adulthood.  Additionally, we could have identified if there were 

offspring that responded strongly to prenatal cigarette smoke exposure versus offspring that 

responded weakly to prenatal cigarette smoke exposure.  Identifying these “high-responders” 

versus “low-responders” would have provided another factor that could have been controlled for to 

refine further how the hepatic molecular phenotype is perturbed due to prenatal CSE and how this 

is linked to the development of metabolic disease.  One downside to this approach is that it would 

likely require a larger sample size of offspring in experiments that would be more costly and time-

consuming.  However, this is a necessary step to fully unravel the mechanism that drives the 

metabolic manifestations of the Barker Hypothesis. 

One limitation of this dissertation lies in the duration of the diet challenge for the offspring 

in Chapter II.  Although we did not observe any significant effects of prenatal CSE alone on weight 

gain, body fat accumulation, or fatty liver development, prenatal CSE could have exacerbated the 

effects of a high-fat diet at an earlier point in the diet challenge, and we did not observe it.  Under 

this scenario, it is possible that the effects of long-term maintenance on a high-fat diet eventually 

obfuscated any initial effects that prenatal CSE may have contributed to the metabolic phenotype 

observed in offspring.  Due to this potentially confounding factor, we cannot definitively conclude 

that all effects seen in the offspring in Chapter II in response to prenatal cigarette smoke exposure 

were not influenced by the prolonged duration of the diet challenge.  In future studies we plan to 

examine adult offspring exposed in utero to cigarette smoke earlier in adulthood and shorten the 

duration of the diet challenge to ensure the potential confounding effects of long-term high-fat diet 

feeding do not exert undue influence on metabolic phenotype. 
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Another limitation of our work was the choice of a low-fat diet as the control for the high-fat 

diet during the diet challenge in Chapter II.  This factor is an essential consideration since the 

effects of high-fat diet maintenance may have been exacerbated by the low-fat content of the 

control diet (approximately 5% and 19% fat content, respectively).  One way we could have helped 

account for this is by examining the hepatic molecular phenotype before the initiation of the diet 

challenge.  Doing this may have provided additional context as to how prenatal cigarette smoke 

exposure affected the baseline hepatic molecular phenotype and how it is modulated by 

maintenance on either a high-fat or low-fat diet.  In ongoing studies, we are examining adult siblings 

of the offspring from Chapters III and IV at a point before a diet challenge to address this limitation 

from Chapter II. 

This ties into another limitation from our study; the fact that the adult offspring in Chapter 

II are not siblings of the offspring in Chapters III and IV.  This factor is a significant limitation because 

although the prenatal cigarette smoke exposure parameters of the offspring in Chapters II versus 

Chapters III and IV were similar, they are not precisely the same.  Although we were confident that 

the prenatal exposures were similar enough that it was reasonable to relate the changes seen in 

Chapter II to those in Chapters III and IV, we admit that there may be some other underlying 

difference between the two cohorts that confounded this comparison.  This limitation is being 

addressed by currently in-progress studies examining adult siblings of the offspring from Chapters 

III and IV. 

A factor that was not accounted for was the presence of mismatched levels of protein, and 

their corresponding mRNA levels within the same groups.  For example, in Chapter III, neonatal 

female CSE offspring exhibited decreased hepatic expression of Sirt1, Nampt, Pepck, and Hk 

without any change in the corresponding protein levels.  In other instances, the mRNA and protein 

expression matched each other such as the neonatal male CSE offspring exhibiting increased 

SIRT1 and NAMPT expression along with their corresponding mRNA in Chapter III.  It is known 

that protein levels can be influenced independently from mRNA levels, such as through post-

translational modifications that can result in increased protein stability or promote proteasomal 

degradation, and SIRT1 is no exception to these naturally-occurring processes [339].  Additionally, 
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it has been shown that levels of mRNA can be influenced by micro-RNAs, such as miR-34a being 

responsible for suppressing the expression of Sirt1 and Nampt, along with the corresponding 

proteins [262].  We attempted to look at the potential effects of miR-34a to modulate levels of Sirt1 

and Nampt expression in fasted offspring in Chapter IV but found no difference in miR-34a levels 

despite changes in fasted male offspring exhibiting increased levels of SIRT1 and decreased levels 

of NAMPT while fasted female CSE offspring exhibited increased levels of NAMPT.  These results 

suggest that levels of SIRT1, NAMPT, and their corresponding proteins were not subjected to 

modulation by CSE via a miR-34a-related pathway.  We conclude from these data that the 

mismatched levels of SIRT1, NAMPT, and their corresponding mRNA is not due to modulation of 

the central SIRT1 regulatory pathway that includes miR-34a as a central component.  In future 

studies, it is necessary to look at other pathways that interact with SIRT1, such as the mTORC 

pathways or mechanism involving post-translational modifications other than acetylation. 

Tied into the previous limitation, we did not measure levels of either NADH/NAD+ or 

ATP/AMP.  Measuring these would have provided valuable information as to the current cellular 

stores of energy in offspring subjected to in utero exposure to cigarette smoke.  We observed that, 

for weaned female offspring in particular, there were signs of an exacerbated hepatic fasting 

response with respect to mRNA expression in response to prenatal cigarette smoke exposure.  One 

possible explanation for this exacerbated fasting response in weaned female CSE offspring could 

have been that current cellular energy stores were being improperly sensed.  If improper sensing 

of current cellular energy stores was occurring, this would provide novel insight into why the hepatic 

molecular phenotype is altered and would provide a potential mechanism to investigate further.  

Additionally, measuring levels of NAD+ could have helped clarify how SIRT1 deacetylase activity 

was being impacted.  In instances such as the weaned female CSE offspring in a fasted state 

exhibiting decreased hepatic protein expression of acetylated FKHR and acetylated lysine residues 

without a change in the protein expression of either SIRT1 or NAMPT, knowing the levels of NAD+ 

present could have allowed us to conclude better if this change in protein acetylation was due to a 

change in SIRT1 deacetylation activity.  
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Another factor that we did not examine is the impact of cigarette smoke exposure on the 

quality of milk from the exposed dams.  It is noted in the literature that smoking negatively impacts 

breastfeeding in a variety of ways, including but not limited to lower milk production [389], earlier 

weaning [389, 390], lower duration of breastfeeding [391], lower-fat concentration [389, 392, 393], 

altered breast milk lipid profile [394], lower cholesterol [395], lower protein [392, 395], heavy metal 

contamination [396-398], and lower antioxidative properties [399].  Additionally, smoking effectively 

cancels out the protective effects of breastfeeding on the risk of sudden infant death syndrome 

[400] and respiratory disorders [401].  Although we ceased exposure of pregnant dams to cigarette 

smoke at GD19, pups born to exposed dams could be adversely affected through the dams’ milk 

for as long as cigarette smoke constituents and metabolites were still present within the dams.  In 

future studies, it may be beneficial to conduct an experiment to determine what impact breast milk 

from cigarette exposure has on perinatal outcomes through a cross-fostering experiment.  This 

experiment would allow for separation of the impact of in utero exposure to cigarette smoke from 

any confounding effect from altered milk quality or nursing behaviors. 

 

Future Directions 

 One of the future studies that can be done to elucidate further how in utero cigarette smoke 

exposure modulates cardiometabolic perturbation in offspring would be via a systems biology 

approach that looks for associations with other body systems in exposed offspring.  For example, 

examining changes in the brain, particularly in the hypothalamus, could be especially illuminating.  

It has been shown that in utero cigarette smoke exposure perturbs neurological development [402, 

403] and given the importance of specific structures of the brain in controlling body-wide 

metabolism it would be prudent to interrogate if changes occur in these metabolic regulatory 

centers in response to prenatal cigarette smoke and if so, if these changes are related to the hepatic 

changes we have observed in our murine model.  As mentioned previously, sex-specific secretion 

patterns of growth hormone are vital in determining the metabolic phenotype of the liver, and that 

perturbation of these secretion patterns can modulate the sex-specific imprinting of hepatic 

metabolic enzyme expression [242-244].  If changes to the growth hormone secretion pathway are 
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apparent and associated with some of the hepatic changes we observed in our murine model, this 

could provide valuable insight into the hepatic and cardiometabolic pathology of the Barker 

Hypothesis as well as a potential avenue for therapeutic interventions of individuals affected by in 

utero cigarette smoke exposure. 

 A potential future study could further examine the SIRT1 regulatory pathway that includes 

miR-34a to confirm the importance of this pathway.  Such an approach could include transgenic 

mice that would allow at-will perturbation of Sirt1 or miR-34a expression.  An alternative approach 

to also test this could be the treatment of offspring with a SIRT1 promoter such as resveratrol or a 

SIRT1 inhibitor.  Another way that could indirectly test the importance of the SIRT1 regulatory 

pathway would be to supplement the NAD+ pool using nicotinamide mononucleotide (NMN), a 

precursor molecule for NAD+.  Since SIRT1’s deacetylase activity is dependent on NAD+ as a 

cofactor, scenarios that affect levels of NAD+ can have a net result of decreasing SIRT1 activity.  

Examples of this include NAD+ consumers such as PARP1 increasing their activity [255] or the 

activity of NAMPT decreasing [262] result in decreased SIRT1 activity.  Manipulating the NAD+ pool 

in addition to quantifying base levels of NAD+ without supplementation could also help in 

determining whether the activity of SIRT1 is being modulated in our murine prenatal CSE model 

and thus contributing to the observations detected in the study. 

 Given the alarming rise in the rate of electronic cigarette and vaporizer use [4], especially 

in teenagers [5], it would be prudent to examine if similar changes we observed in this dissertation 

work were also present as a result in utero exposure to e-cigarette- or vaporizer-produced aerosols.  

Even if one only considered the effects of nicotine and none of the other components of e-cigarette 

solutions, there is an abundance of evidence that prenatal exposure to nicotine alone has 

numerous adverse effects, such as lower fetal body weight in addition to decreased fetal brain 

weight, loss of brain cells, and histological abnormalities in the brain [71].  These findings are not 

surprising given that nicotine acts as a vasoconstrictor, which limits blood flow from the mother to 

the placenta, thereby inducing intrauterine growth restriction [150].  Even if the resultant phenotype 

in e-cigarette/vaporizer aerosol-exposed offspring is not as severe as that induced by cigarettes, 

the upward trajectory of e-cigarette/vaporizer use indicates the possibility of a large number of 
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individuals being affected, especially given the perception among some of the public that e-

cigarettes are inherently less harmful than cigarettes [404].  The implications of this on prenatal 

exposure to nicotine are potentially dire if expectant mothers who find themselves unable to wean 

off cigarettes instead switch to e-cigarettes due to perceived lower risk to health, which would still 

result in a significant number of fetuses being exposed to nicotine in utero.  We are currently 

planning studies that will adapt our current murine in utero cigarette smoke exposure to utilize e-

cigarettes in order to characterize exposed offspring in the same manner we have in this 

dissertation work. 

 

Summary and Conclusions 

 The unifying goal of the dissertation work described herein was to provide novel 

characterization the impact of in utero cigarette smoke exposure on the murine hepatic molecular 

phenotype via the expression of SIRT1-related gene and proteins at several life stages in 

conjunction with sex-specific altered metabolic phenotypes during adulthood as modulated by 

maintenance on a high-fat diet.  This work was necessary to provide further evidence for how an 

in utero toxicant exposure results in a perturbed metabolic phenotype during adulthood, as 

predicted by the Barker Hypothesis.  The study described in Chapter II of this dissertation provided 

initial support of how a gestation-only exposure to cigarette smoke-induced low birth weight with 

catch-up growth as well as other sex-specific metabolic, behavioral, and hepatic molecular 

phenotype changes in adulthood and how these phenotypic outcomes are modulated by the fat 

content of the diet the adult offspring consumed.  Chapter II helped support the Barker Hypothesis 

by showing that gestational exposure to prenatal cigarette smoke exposure resulted in perturbed 

hepatic molecular phenotype in a sex-specific manner.  These initial experiments inspired us to 

examine the hepatic molecular phenotype via SIRT1-related hepatic gene and protein expression 

in the liver at a young age shortly after birth in Chapter III.  The findings in Chapter III suggest that, 

even as early as 1.5 weeks of age, the hepatic expression of SIRT1-related genes and proteins 

was perturbed in a sex-specific manner.  These results suggest that future studies need to examine 

the sexual differentiation processes that occur perinatally.  Chapter IV took the findings in Chapters 
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II and III further by examining hepatic molecular phenotype through SIRT1-related gene and protein 

expression changes in response to in utero cigarette smoke exposure in weaned offspring in either 

a fed or a fasted state.  Once again, there were apparent sex-specific perturbations in SIRT1-

related hepatic gene and protein expression with additional modulation based on fasting status.  

Offspring subjected to in utero cigarette smoke exposure, especially female offspring, have 

abnormal fed and fasted responses, but exactly how these particular changes are related to the 

altered metabolic phenotypes during adulthood that we observed in Chapter II will be the subject 

of future studies.  The findings of this dissertation work have provided the initial characterizing steps 

necessary to more thoroughly investigate and probe the underlying mechanistic pathway that 

facilitates the adulthood metabolic manifestations of in utero cigarette smoke exposure as predicted 

by the Barker Hypothesis.
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